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Abstract
We consider the binary supremum function sup : Z × Z → Z on a sup semilattice
Z and its topological properties with respect to the Scott topology and the product
topology. It is well known that this function is continuous with respect to the Scott
topology on Z × Z . We show that it is open as well. Isbell has constructed several
examples of complete lattices Z such that the binary supremum function on Z is
discontinuous with respect to the product topology. Of course, in these cases the Scott
topology on Z × Z is strictly finer than the product topology. This raises the question
whether there exists a complete lattice Z such that the Scott topology on Z × Z is
strictly finer than the product topology and such that the binary supremum function
is continuous even with respect to the product topology. We construct such a lattice.
Finally, by using any of the examples constructed by Isbell, we show the following
result: Bounded completeness of a complete lattice Z is in general not inherited by the
dcpo C(X , Z) of continuous functions from X to Z where X is a topological space
and where on Z the Scott topology is considered. On the other hand, we show that
bounded completeness of Z is inherited by C(X , Z) if the topology on X is the Scott
topology of a partial order.

Keywords Sup semilattice · Supremum function · Scott topology · Product
topology · Continuity · Open functions · Bounded completeness

1 Introduction

In this article two examples in the theory of partial orders are constructed. The first
example concerns the question whether the binary supremum function on a sup semi-
lattice is continuous with respect to the product topology of the Scott topology on each
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Topological properties of the binary supremum function 619

copy of the sup semilattice. The second example is a counterexample concerning the
question whether bounded completeness of a complete lattice is inherited by the dcpo
of continuous functions from some topological space to the complete lattice.

The Scott topology on a partially ordered set (short: poset) (X ,≤) has turned out
to be important in many areas of computer science. Given two posets (X ,≤X ) and
(Y ,≤Y ) we have two natural topologies on the product poset (X × Y ,≤X×Y ):

• The product topology of the Scott topology on (X ,≤X ) and of the Scott topology
on (Y ,≤Y ),

• the Scott topology on (X × Y ,≤X×Y ).

It is well known that the second topology on X × Y is always at least as fine as the
first topology, and that there are examples where the second topology is strictly finer
than the first topology. The best known example of this kind seems to consist of the
Johnstone space (compare [12]) for (X ,≤) and the dcpo of its Scott open subsets
for (Y ,≤); see [6, Exercise II-4.26 and Exercise II.1-36] and [7, Exercise 5.2.16
and Exercise 5.2.15]. Other examples are the complete lattices constructed by Isbell
[10,11].

If the supremum of any two elements of a poset (X ,≤) exists (in this case the poset
is called a sup semilattice) then the binary supremum function sup(2) : X × X → X is
well defined. Is it continuous? It is easy to see andwell known that it is continuous if on
X × X the finer topology of the two topologies discussed above, the Scott topology,
is considered. Isbell [10,11] has constructed several examples of complete lattices
such that the binary supremum function is discontinuous with respect to the product
topology on X × X . Of course, in these cases the Scott topology on Z × Z is strictly
finer than the product topology. This raises the question (posed by an anonymous
referee of [8]) whether perhaps the binary supremum function sup(2) : X × X → X is
always discontinuous with respect to the product topology on X × X if this is different
from the Scott topology on X × X . We answer this question negatively by providing
an example of a complete lattice X such that the Scott topology on X × X is strictly
finer than the product topology but nevertheless the function sup(2) : X × X → X is
continuous with respect to the product topology on X × X ; see Theorem 7.4.

Our second example concerns bounded completeness of the dcpo of continuous
functions from a topological space to a bounded complete dcpo. A poset is called
bounded complete if each bounded subset has a supremum. The following question
arises: If (Z ,≤) is a bounded complete dcpo and X a topological space, is then the
dcpo C(X , Z) of continuous functions from X to Z (where on Z the Scott topology
is considered) bounded complete as well? It turns out that the answer to this question
is yes if the topology on X is the Scott topology of some partial order on X . One may
now speculate whether the answer is yes even for arbitrary topological spaces. But it is
the second main goal of this article to show that in general the answer to this question
is no. In Sect. 8 we shall even construct a topological space X and a complete lattice Z
such that the dcpo of continuous functions from X to Z is not bounded complete; see
Theorem 8.5. This construction makes essential use of a complete lattice X such that
the binary supremum function sup(2) : X × X → X is discontinuous with respect to
the product topology, as constructed by Isbell [10,11] (Theorem 7.1). Note that in [13,
Page 26] the closely related question is discussed whether the pointwise supremum
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of two continuous functions f , g : X → Z for a topological space X and a complete
lattice Z is again continuous. The authors observe that this is true if the product
topology on Z × Z is identical with the Scott topology on Z × Z . Concerning the
general case, they write “But in general, we cannot conclude that f ∨ g or f ∧ g are
Scott continuous”. But they do not give an example where the pointwise supremum
f ∨ g of f and g is not continuous. In Theorem 8.5, the main result of Sect. 8, such
an example is constructed.

After introducing some notation and collecting several elementary notions concern-
ing partial orders in the following two sections, in Sect. 4 we modify the Johnstone
space in order to obtain a considerably simpler partial order which is even a complete
lattice and has additional properties that will be needed in the proof of Theorem 7.4
in Sect. 7. In Sect. 5 we first remind the reader of some elementary algebraic prop-
erties of the binary supremum function sup(2) : X × X → X and then show that
it is not only continuous with respect to the Scott topology on X × X but also an
open mapping with respect to the Scott topology on X × X . In Sect. 6 we present an
observation byWei and Shouli [14] saying that for certain posets one can characterize
the property “sobriety” by a condition on the binary supremum function. In Sect. 7,
first we shortly speak about the constructions by Isbell [10,11] of complete lattices
(X ,≤) such that the function sup(2) : X × X → X is not continuous with respect to
the product topology on X × X . Then we construct a complete lattice (X ,≤) such that
the function sup(2) : X × X → X is continuous with respect to the product topology
on X × X although this topology is different from the Scott topology on X × X .
Finally, in Sect. 8, first we show that for any poset X and any bounded complete dcpo
Z the dcpo C(X , Z) of continuous functions from X to Z is bounded complete as
well. Then we construct a topological space X and a complete lattice Z such that the
dcpo of continuous functions from X to Z is not bounded complete and such that
there exist two continuous functions f , g : X → Z whose pointwise supremum is
not continuous.

2 Some notations

Let N := {0, 1, 2, . . .} denote the set of natural numbers, that is, of non-negative
integers. For k ∈ N and a total function f : N → N let

f � k : {0, 1, . . . , k − 1} → N

be the restriction of the function f to the set {0, 1, . . . , k−1}. For sets X ,Y , a function
f : X → Y and subsets S ⊆ X , T ⊆ Y we write

f −1[T ] := {x ∈ X : f (x) ∈ T },
f [S] := {y ∈ Y : (∃s ∈ S) f (s) = y}.

For sets X ,Y the projections π1 : X × Y → X and π2 : X × Y → Y are defined as
usual by π1(x, y) := x and π2(x, y) := y, for (x, y) ∈ X × Y .
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3 Basic notions: partial orders and topology

In this section, for the convenience of the reader, we collect several elementary notions
concerning partial orders and topological spaces, in particular the definition of theScott
topology.

Let (Z ,≤) be a poset. For a subset S ⊆ Z we define ↑ S := {z ∈ Z : (∃y ∈ S)y ≤
z} and ↓ S := {z ∈ Z : (∃y ∈ S)z ≤ y}. A subset S ⊆ Z is called upwards closed
if S = ↑ S. It is called downwards closed if S = ↓ S. An element z ∈ Z is called an
upper bound of a subset S ⊆ Z if S ⊆ ↓{z}. An element z ∈ Z is called a supremum
or least upper bound of a subset S ⊆ Z if it is an upper bound of S and if for all upper
bounds y of S one has z ≤ y. Obviously, if a subset S ⊆ Z has a supremum, then
this supremum is unique. Then we denote it by sup≤(S) or simply by sup(S) if it is
clear which relation ≤ is meant. An element z ∈ Z is called a lower bound of a subset
S ⊆ Z if S ⊆ ↑{z}. An element z ∈ Z is called an infimum or greatest lower bound
of a subset S ⊆ Z if it is a lower bound of S and if for all lower bounds y of S one
has y ≤ z. Obviously, if a subset S ⊆ Z has an infimum, then this infimum is unique.
Then we denote it by inf≤(S) or simply by inf(S). The poset (Z ,≤) is called a sup
semilattice if sup({x, y}) exists for all x, y ∈ Z . The poset (Z ,≤) is called a complete
lattice if sup(S) exists for all subsets S ⊆ Z . Note that then also inf(S) exists for all
subsets S ⊆ Z . Indeed, it is well known—compare, e.g., [6, Proposition O-2.2(i)]—
and straightforward to check that if sup(S) exists for all subsets S ⊆ Z then for any
subset T ⊆ Z , the supremum of the set of all lower bounds of T is an infimum of T .
A subset S ⊆ Z is called directed if it is nonempty and for any two elements x, y ∈ S
there exists an upper bound z ∈ S of the set {x, y}. The poset (Z ,≤) is called a dcpo
if for any directed subset S ⊆ Z there exists a supremum of S in Z . It is clear that any
complete lattice is a dcpo. In Sect. 6 we will consider posets that are at the same time
a sup semilattice and a dcpo. Such posets can be characterized as follows.

Lemma 3.1 For a poset (Z ,≤) the following two conditions are equivalent.

1. It is a sup semilattice and a dcpo.
2. For every nonempty subset S ⊆ Z the supremum sup(S) exists.

Proof “2 ⇒ 1”: Trivial. “1 ⇒ 2”: Let us assume that (Z ,≤) is a sup semilattice and
a dcpo. Let S ⊆ Z be a nonempty subset of Z . We wish to show that sup(S) exists.
The set

D := {z ∈ Z | (∃F ⊆ S)(F is finite and z = sup(F))}

is a directed subset of Z . Therefore, sup(D) exists. Obviously, an element z ∈ Z is an
upper bound of D if, and only if, it is an upper bound of S. Hence, sup(D) is a least
upper bound of S as well, that means, sup(S) exists and is equal to sup(D). �
Example 3.2 Let (X , τ ) be a topological space. Then (τ,⊆) is a complete lattice and,
for any subset σ ⊆ τ , sup(σ ) = ⋃

σ [6, Examples O-2.7(3)].

Next, we introduce the Scott topology.
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Lemma 3.3 (See, e.g., [1, Definition 2.3.1 and Proposition 2.3.2] [6, Section II-1] or
[7, Prop. 4.2.18]) Let (Z ,≤) be a poset. The set of all subsets U ⊆ Z satisfying the
following two conditions:

1. U is upwards closed,
2. for every directed subset S ⊆ Z such that sup(S) exists and sup(S) ∈ U the

intersection S ∩U is not empty,

is a T0 topology on Z.

The topology described in this lemma is called the Scott topology of (Z ,≤). Its
elements are called Scott open. Let us denote this topology by σ(Z ,≤). For a topo-
logical space X and a point x0 ∈ X let cl({x0}) be the closure of the set {x0}, that is,
the intersection of all closed sets containing x0 (thus, cl({x0}) is the smallest closed
set containing x0). The following example of a Scott open set is useful for the proof
of the assertion in Lemma 3.3 that the Scott topology is T0 and will be useful later as
well.

Example 3.4 Let (Z ,≤) be a poset. Then for any y ∈ Z the set

Z \ ↓{y} = {z ∈ Z : z � y},

is Scott open. In fact, ↓{y} = cl({y}).

4 Products of partial orders

Let (X ,≤X ) and (Y ,≤Y ) be two posets. On the product Z := X × Y we define a
binary relation ≤X×Y⊆ Z × Z by

(x, y) ≤X×Y (x ′, y′) : ⇐⇒ (x ≤X x ′ and y ≤Y y′),

for any x, x ′ ∈ X and y, y′ ∈ Y .

Lemma 4.1 1. (X × Y ,≤X×Y ) is a poset as well.
2. If S ⊆ X × Y is a directed subset then the sets π1[S] ⊆ X and π2[S] ⊆ Y are

directed as well.
3. For any subset S ⊆ X × Y the following two conditions are equivalent:

(a) The suprema sup≤X
(π1[S]) and sup≤Y

(π2[S]) exist,
(b) The supremum sup≤X×Y

(S) exists.

If one, and the both, of these two conditions are satisfied then sup≤X×Y
(S) =

(sup≤X
(π1[S]), sup≤Y

(π2[S])).
4. If (X ,≤X ) and (Y ,≤Y ) are complete lattices then (X × Y ,≤X×Y ) is a complete

lattice as well.

Proof It is obvious that ≤X×Y is a partial order. The second and the third assertion are
straightforward to check as well. And the fourth assertion follows directly from the
first and the third assertion. �
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Topological properties of the binary supremum function 623

For two posets (X ,≤X ) and (Y ,≤Y ), we have two natural topologies on the product
X × Y : the Scott topology σ(X × Y ,≤X×Y ) and the product topology σ(X ,≤X )

×σ(Y ,≤Y ). What is the relation between these two topologies? It is well-known that
the Scott topology is always at least as fine as the product topology.

Lemma 4.2 ( [6, Page 197] or [7, Exercise 4.5.19]) For any two posets (X ,≤X ) and
(Y ,≤Y ), every subset of X × Y that is open in the product topology is Scott open as
well.

It is also well known that in general the converse of Lemma 4.2 is not true.

Proposition 4.3 There exist dcpo’s (X ,≤X ) and (Y ,≤Y ) such that the Scott topology
on (X × Y ,≤X×Y ) is strictly finer than the product topology on X × Y of the Scott
topology on (X ,≤X ) and the Scott topology on (Y ,≤Y ).

The standard example seems to be (X ,≤X ) := the so-called Johnstone space,
(Y ,≤Y ) := the complete lattice of the Scott open subsets of X with the subset relation;
compare [6, Exercise II-4.26 andExercise II.1-36] and [7, Exercises 5.2.16 and 5.2.15].
Since in the following we are going to define a similar but simpler partial order (that
is even a complete lattice) for comparison in the following example we define the
Johnstone space [12] and sketch the well-known proof of Proposition 4.3.

Example 4.4 Let ≤ on N ∪ {ω} be the usual linear ordering with n ≤ ω for all n ∈
N ∪ {ω}. On X := N × (N ∪ {ω}) we define a binary relation ≤X by

(i, p) ≤X ( j, q) : ⇐⇒ ((i = j and p ≤ q) or (q = ω and p ≤ j)).

Then the pair (X ,≤X ) is a dcpo. It is called the Johnstone space. Let Y be the set
of all Scott open subsets of X , and let the binary relation ≤Y on Y be set-theoretic
inclusion. By Example 3.2 (Y ,≤Y ) is a complete lattice, hence, a dcpo as well. One
can check that the subset E ⊆ X × Y defined by

E := {(x, y) ∈ X × Y : x ∈ y}

is open in the Scott topology on (X × Y ,≤X×Y ) but not open in the product topology
of the Scott topology on (X ,≤X ) and the Scott topology on (Y ,≤Y ).

For later use, we explicitly formulate one general step in the previous example.

Lemma 4.5 Let (X ,≤X ) be a poset, and let (Y ,≤Y ) be the complete lattice consisting
of the Scott open subsets of X where ≤Y is set-theoretic inclusion. Then the set

E := {(x, y) ∈ X × Y : x ∈ y}

is a Scott open subset of X ×Y , that is, open in the Scott topology on (X ×Y ,≤X×Y ).
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Proof Let (x, y) ∈ E and (x ′, y′) ∈ X × Y be a pair with (x, y) ≤X×Y (x ′, y′). Then
x ≤X x ′ and y ≤Y y′. Furthermore, x ∈ y. As y is upwards closed, we obtain x ′ ∈ y.
And y ≤Y y′ means y ⊆ y′, hence, x ′ ∈ y′, hence, (x ′, y′) ∈ E . We have shown that
E is ≤X×Y -upwards closed.

Now let S ⊆ X × Y be a directed subset such that sup≤X×Y
(S) exists and

is an element of E . According to Lemma 4.1(3) the suprema sup≤X
(π1[S]) and

sup≤Y
(π2[s]) exist and satisfy (sup≤X

(π1[S]), sup≤Y
(π2[S])) = sup≤X×Y

(S) ∈ E .
Thus, sup≤X

(π1[S]) ∈ sup≤Y
(π2[S]) = ⋃

π2[S] (compare Example 3.2). We con-
clude that there is some ỹ ∈ π2[S] with sup≤X

(π1[S]) ∈ ỹ. By Lemma 4.1 (2) the set
π1[S] is a directed subset of X . As ỹ is a Scott open subset of X we conclude that there
exists some x̂ ∈ π1[S] ∩ ỹ. The fact x̂ ∈ π1[S] implies that there exists some ŷ ∈ Y
with (̂x, ŷ) ∈ S. Analogously, the fact ỹ ∈ π2[S] implies that there exists some x̃ ∈ X
with (̃x, ỹ) ∈ S. As S is directed there exists some (x, y) ∈ S with (̂x, ŷ) ≤X×Y (x, y)
and (̃x, ỹ) ≤X×Y (x, y). Finally, similarly as in the proof above that E is upwards
closed, from x̂ ∈ ỹ we conclude x ∈ y, hence, (x, y) ∈ E . This shows S ∩ E �= ∅.
We have shown that E is a Scott open subset of X × Y . �

By a modification (which is mostly a simplification) of the definition of the John-
stone space we can prove the following slight improvement of Proposition 4.3. It will
be used in the proof of Theorem 7.4 in Sect. 7.

Proposition 4.6 There exist complete lattices (X ,≤X ) and (Y ,≤Y ) such that the fol-
lowing three conditions are satisfied:

1. the Scott topology on (X × Y ,≤X×Y ) is strictly finer than the product topology on
X × Y (of the Scott topology on (X ,≤X ) and the Scott topology on (Y ,≤Y )),

2. but the Scott topology on X × X is identical with the product topology on X × X,
3. and the Scott topology on Y × Y is identical with the product topology on Y × Y .

In the following examplewe shall define ourmodification (X ,≤X ) of the Johnstone
space. For (Y ,≤Y ) we will then take the set of Scott open subsets of X and the
subset relation. Thenwe formulate and prove several lemmas that collect the important
properties of (X ,≤X ) and (Y ,≤Y ) and from which we then deduce Proposition 4.6.

Example 4.7 Our modification of the Johnstone space is defined as follows. Let

X := {⊥,�} ∪ (N × N)

where ⊥ and � are different elements that are not elements of N × N. We define a
binary relation ≤X on X by

x ≤X y : ⇐⇒ x = ⊥ or y = � or (∃i ∈ N)(∃p, q ∈ N)(
x = (i, p) and y = (i, q) and p ≤ q

)

for all x, y ∈ X . Compare Fig. 1.

The reader is invited to convince himself that this poset is indeed simpler than the
Johnstone space by comparing the graphical representation in Fig. 1 with the graphical
representation of the Johnstone space in [7, Figure 5.2 on Page 143].
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Topological properties of the binary supremum function 625

Fig. 1 The binary relation ≤ on
X := {⊥,�} ∪ (N × N) defined
in Example 4.7 is the reflexive
and transitive closure of the
binary relation given by the
arrows in this figure

Remark 4.8 The construction in Example 4.7 was obtained by the author by slightly
simplifying a similar construction in the preprint [8]. In the recent article [2] Chen,
Kou, and Lyu arrive at the same construction. They also observe that it is a complete
lattice and explicitly describe [2, Example 4.13] the lattice of its Scott open subsets
in the same way as this is done in Lemma 4.9 (2) and 4.9 (3).

In the following lemma we show that (X ,≤X ) is a complete lattice and give an
explicit description of all Scott open subsets of X .

Lemma 4.9 Let (X ,≤X ) be the pair defined in Example 4.7.

1. This pair (X ,≤X ) is a complete lattice. In fact, the supremum of an arbitrary
subset S ⊆ X is given as follows:

(a) If S = ∅ or S = {⊥} then sup(S) = ⊥.
(b) If S is finite but neither empty nor equal to {⊥} and if there exists a number

i ∈ N with S ⊆ {⊥} ∪ ({i} × N) then sup(S) = (i,max{p : (i, p) ∈ S}).
(c) In all other cases sup(S) = �.

2. For any total function f : N → N the set

U f := {�} ∪ {(i, p) ∈ N × N : p ≥ f (i)}

is a Scott open subset of X.
3. For every Scott open subset V ⊆ X with V /∈ {∅, X} there exists a function

f : N → N with V = U f .

Proof 1. It is straightforward to check that ≤X is a partial order. It is clear that
sup(∅) = ⊥ and sup({⊥}) = ⊥ as well. And if, for some i ∈ N, the set S is a
finite subset of {⊥} ∪ {i} × N with S ∩ ({i} × N) �= ∅ then it is clear as well that
sup(S) = (i,max{p : (i, p) ∈ S}). Let us consider the third case. If there are
i, j, p, q ∈ N with i �= j and (i, p), ( j, q) ∈ S then clearly sup(S) = �. If S is

123



626 P. Hertling

infinite then also sup(S) = �. Thus, sup(S) exists for every subset S ⊆ X . Hence,
(X ,≤X ) is a a complete lattice.

2. Let f : N → N be a total function. It is clear that U f is upwards closed. Let
S ⊆ X be a directed subset such that sup(S) exists and sup(S) ∈ U f . We wish to
show that there exists an element s ∈ S ∩U f . This is clear if � ∈ S because then
sup(S) = � ∈ U f , hence, � ∈ S ∩ U f . So, let us assume that � /∈ S. Can there
exist numbers i, j, p, q ∈ N with i �= j and (i, p) ∈ S and ( j, q) ∈ S? No. As S
is directed, in that case there would have to exist some s ∈ S with (i, p) ≤X s and
( j, q) ≤X s. But the only element s of X that satisfies (i, p) ≤X s and ( j, q) ≤X s
is the element s = �. Hence, we would get � ∈ S. So, we can conclude that there
exists some i ∈ N such that S ⊆ {⊥} ∪ ({i} × N). If S is infinite then there exists
some p ∈ N such that p ≥ f (i) and (i, p) ∈ S. As we also have (i, p) ∈ U f ,
we conclude (i, p) ∈ S ∩ U f . Finally, let us consider the case that S is finite and
S ⊆ {⊥}∪ ({i}×N). As ⊥ is not an element ofU f , the set S can neither be empty
nor be equal to {⊥} because in both cases one would arrive at sup(S) = ⊥. Thus,
we obtain sup(S) = (i,max{p : (i, p) ∈ S}). But in this case we have not only
sup(S) ∈ U f but also sup(S) ∈ S.

3. Let V ⊆ X be a Scott open subset of X with V �= ∅ and V �= X . Then � ∈ V
(otherwise V = ∅) and ⊥ /∈ V (otherwise V = X). For any i ∈ N the set {i} × N

is a directed subset of X with sup({i} × N) = � ∈ V . Hence, for any i ∈ N

there exists some p ∈ N with (i, p) ∈ V . Therefore, we can define a function
f : N → N by

f (i) := min{p ∈ N : (i, p) ∈ V },

for i ∈ N, and see that V = U f . �
Lemma 4.10 Let (X ,≤X ) be the complete lattice defined in Example 4.7 (see
Lemma 4.9 (1)), and let (Y ,≤Y ) be the complete lattice where Y is the set of all
Scott open subsets of X and ≤Y is set-theoretic inclusion (see Example 3.2). Then the
subset

E := {(x, y) ∈ X × Y : x ∈ y}

is not open with respect to the product topology on X × Y .

Proof First, let us choose an element of E as follows. Let 0̃ : N → N be the constant
number function with 0̃(n) = 0 for all n ∈ N. Then, according to Lemma 4.9 (2), the
set y := U0̃ = X \ {⊥} is a Scott open subset of X . The element x := (0, 0) ∈ X is
an element of y. Thus, (x, y) ∈ E .

Now, for the sake of a contradiction, let us assume that E is open in the product
topology. Then there exist Scott open subsetsU ⊆ X and V ⊆ Y with (x, y) ∈ U ×V
and U × V ⊆ E . The fact (x, y) ∈ U × V implies U �= ∅. Can U be equal to X?
No, because otherwise we would have X × V ⊆ E , hence x ∈ V , for all x ∈ X and
V ∈ V . This would imply X ⊆ V for all V ∈ V , hence, V = {X} in contradiction to
X \ {⊥} = y ∈ V . So, we conclude thatU �= ∅ andU �= X . According to Lemma 4.9
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Topological properties of the binary supremum function 627

(3) there exists some function f : N → N such that U = U f . For i ∈ N we define
gi : N → N by

gi (m) :=
{
0 if m < i,

f (m) + 1 if m ≥ i .

Then the sequence (Ugi )i∈N is an increasing sequence of Scott open subsets of X with

sup({Ugi : i ∈ N}) =
⋃

i∈N
Ugi = X \ {⊥} = U0̃ = y ∈ V.

As V is a Scott open subset of Y , there must exist some i ∈ N with Ugi ∈ V . As
U × V ⊆ E , we obtain (x,Ugi ) ∈ E , for all x ∈ U , hence x ∈ Ugi , for all x ∈ U ,
hence, U ⊆ Ugi . But that is false! �
Remark 4.11 It is instructive to discuss the previous lemma in the context of some
further domain-theoretic notions. Let (Z ,≤) be a poset.

• For x, y ∈ Z we write x � y and say that x is way-below y if for every directed
set S ⊆ Z such that sup(S) exists and satisfies y ≤ sup(S) there exists an element
s ∈ S with x ≤ s.

• The poset (Z ,≤) is called continuous if, for every z ∈ Z , the set {x ∈ Z : x � z}
has the following properties: (1) it is directed, (2) its supremum exists, (3) its
supremum is equal to z.

• The poset (Z ,≤) is called core-compact if the poset (σ (Z ,≤),⊆) is a continuous
poset.

In the following, as in Lemma 4.10, we consider the complete lattice (X ,≤X ) defined
in Example 4.7 and the complete lattice (Y ,≤Y ) := (σ (X ,≤X ),⊆). First, it is obvious
that (X ,≤X ) is not continuous (because {x ∈ X : x � �} = {⊥}). Secondly, it
is well known that the assertion proved in the previous lemma (that the set E :=
{(x, y) ∈ X ×Y : x ∈ y} is not open with respect to the product topology on X ×Y )
is equivalent to the assertion that (Y ,≤Y ) is not continuous, thus, to the assertion
that (X ,≤X ) is not core-compact (indeed, the conditions (4) and (6) in [6, Theorem
II-4.10] are equivalent). Thus, neither (X ,≤X ) nor (Y ,≤Y ) are continuous lattices.

Note also that, if (σ (X ,≤X ),⊆)were continuous then, due to [6, Theorem II-4.13],
this would imply that for any dcpo (Z ,≤Z ) the product topology on X × Z would
coincide with the Scott topology on X × Z . But, we have just seen that (σ (X ,≤X ),⊆)

is not continuous. And, indeed, Lemmas 4.5 and 4.10 show that the product topology
on X × Y (where again (Y ,≤Y ) := (σ (X ,≤X ),⊆)) does not coincide with the Scott
topology on X × Y . Nevertheless, the Scott topology on X × X coincides with the
product topology on X × X .

Lemma 4.12 Let (X ,≤X ) be the complete lattice defined in Example 4.7 (see
Lemma 4.9 (1)). Then the Scott topology on X×X coincides with the product topology
on X × X.
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Proof By Lemma 4.2 it is sufficient to show that any Scott open subset of X × X is
open in the product topology on X × X . So, let us consider some Scott open subset
W of X × X . If W is empty then it is open in the product topology. So, let us assume
that W is not empty. Let us fix some element (x1, x2) ∈ W . It is sufficient to show
that there exist Scott open subsets U , V ⊆ X with x1 ∈ U , with x2 ∈ V , and with
U × V ⊆ W . There are three cases for x1: (1) x1 = ⊥, (2) x1 ∈ N × N, (3) x1 = �,
similarly for x2. So, we have to consider nine cases.

Case 1 x1 = x2 = ⊥. Then, as W is upwards closed, it must be equal to X × X .
Hence, it is open in the product topology.

Case 2 x1 = ⊥ and x2 = �. Similarly as in the proof of Lemma 4.9 (3) one shows
that there exists a function f : N → N with X × U f ⊆ W . Let us show this in
detail. For every i ∈ N the set Si := {⊥}× ({i}×N) is a directed subset of X × X
with sup(S) = (⊥,�) = (x1, x2) ∈ W . We conclude that Si ∩ W �= ∅. We define
f : N → N by f (i) := min{p : (⊥, (i, p)) ∈ W }. As W is upwards closed,
X ×U f ⊆ W . Finally, we note that (⊥,�) ∈ X ×U f .

Case 3 x1 = ⊥ and x2 ∈ N × N. As (⊥, x2) ≤X×X (⊥,�) and W is upwards
closed we see (⊥,�) ∈ W . As in Case 2, we define f : N → N by f (i) :=
min{p : (⊥, (i, p)) ∈ W }, for all i ∈ N. AsW is upwards closed, X ×U f ⊆ W .
Let j, q be the numbers with x2 = ( j, q). By definition of f , f ( j) ≤ q, hence,
(x1, x2) = (⊥, ( j, q)) ∈ X ×U f .

Case 4 x1 = � and x2 = ⊥. This case is symmetric to Case 2 and is treated in the
same way.

Case 5 x1 ∈ N × N and x2 = ⊥. This case is symmetric to Case 3 and is treated
in the same way.

Case 6 x1 ∈ N × N and x2 ∈ N × N. We shall define functions f : N → N

and g : N → N with x1 ∈ U f , x2 ∈ Ug , and U f × Ug ⊆ W . Let i1, p1, i2, p2
be the numbers with x1 = (i1, p1) and x2 = (i2, p2). We define the functions f
and g step by step and, additionally, in parallel two increasing sequences of finite
sets N1 ⊆ N and N2 ⊆ N (containing the numbers on which f and g have been
defined already) as follows. In the first step we define

f (i1) := p1,

N1 := {i1},
g(i2) := p2,

N2 := {i2}.

Then we repeat the following infinitely often:

j1 := min(N \ N1),

f ( j1) := min{q ∈ N : (∀k2 ∈ N2)(( j1, q), (k2, g(k2))) ∈ W },
N1 := N1 ∪ { j1},
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j2 := min(N \ N2),

g( j2) := min{q ∈ N : (∀k1 ∈ N1)((k1, f (k1)), ( j2, q)) ∈ W },
N2 := N2 ∪ { j2}.

Let us show that these definitions make sense and define functions f and g
with the desired properties. By induction we show that after each step we have
((k1, f (k1)), (k2, g(k2))) ∈ W , for all k1 ∈ N1 and all k2 ∈ N2. It is clear that
this is true after the first step, that is, for N1 = {i1} and N2 = {i2}. Let us
assume by induction that this is true after some step. We show that it is true after
the next step as well. Note that for every k2 ∈ N2 and j1 := min(N \ N1) the
set ({ j1} × N) × {(k2, g(k2))} is a directed subset of X × X whose supremum
(�, (k2, g(k2))) is an element ofW (remember that ((i1, f (i1)), (k2, g(k2))) ∈ W
by induction hypothesis and ((i1, f (i1)), (k2, g(k2))) ≤X×X (�, (k2, g(k2)))).
Thus, there exists some q ∈ N with (( j1, q), (k2, g(k2))) ∈ W . As W is upwards
closed and N2 is finite in every step of the definition of f , f ( j1) is well-defined for
j1 = min(N\N1), and we obtain (( j1, f ( j1)), (k2, g(k2))) ∈ W , for this j1 and all
k2 ∈ N2. The same argument applies to the definition of g( j2). This ends the proof
by induction. Thus, by the steps above we have defined two functions f : N → N

and g : N → N such that ((k1, f (k1)), (k2, g(k2))) ∈ W , for all k1 ∈ N and all
k2 ∈ N. This shows U f × Ug ⊆ W . Finally, it is clear that x1 = (i1, p1) ∈ U f

and that x2 = (i2, p2) ∈ Ug . This ends the treatment of Case 6.

Case 7 x1 ∈ N × N and x2 = �. The set {x1} × ({0} × N) is a directed subset
of X × X whose supremum (x1,�) = (x1, x2) is an element of W . Hence, there
exists some number p with (x1, (0, p)) ∈ W . By Case 6 there exist functions
f : N → N and g : N → N with x1 ∈ U f , (0, p) ∈ Ug and U f × Ug ⊆ W . As
� ∈ Ug is clear, this ends the treatment of Case 7.

Case 8 x1 = � and x2 ∈ N × N. This case is symmetric to Case 7 and is treated
in the same way.

Case 9 x1 = x2 = �. The set ({0} × N) × {�} is a directed subset of X × X
whose supremum (�,�) = (x1, x2) is an element ofW . Hence, there exists some
number p with ((0, p),�) ∈ W . By Case 7 there exist functions f : N → N and
g : N → N with (0, p) ∈ U f , � ∈ Ug and U f × Ug ⊆ W . As � ∈ U f is clear,
this ends the treatment of Case 9. �
In the following let (X ,≤X ) be the complete lattice defined in Example 4.7, and

let (Y ,≤Y ) be the complete lattice consisting of the set Y of Scott open subsets of
X and the subset relation ≤Y :=⊆ on Y . A partial function f :⊆ N → N with finite
domain is any function f : F → N where F ⊆ N is a finite subset of N. In this case
F is called the domain of f , and we write dom( f ) := F . For any partial function
g :⊆ N → N with finite domain let

Vg := {X} ∪ {U f : f : N → N is a total function with

(∀i ∈ dom(g)) f (i) ≤ g(i)}.
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In the following lemma we identify some Scott open subsets of Y .

Lemma 4.13 1. The set {X} is a Scott open subset of Y .
2. For any partial function g :⊆ N → N with finite domain the set Vg is a Scott open

subset of Y .

Proof It is clear that the set {X} is upwards closed. Let S ⊆ Y be a directed subset
with sup(S) ∈ {X}. Then sup(S) = X , in particular ⊥ ∈ sup(S). As sup(S) is the
union of all sets that are elements of S there must exist some U ∈ S with ⊥ ∈ U . As
U is a Scott open subset of X this impliesU = X , hence, X ∈ S. We have shown that
{X} is a Scott open subset of Y .

Now let g :⊆ N → N be a partial function with finite domain. We wish to show
that Vg is a Scott open subset of Y . If the domain of g is empty then Vg is equal to
Y \ {∅}, and this is obviously a Scott open subset of Y . Let us assume that g is not
empty. Let i0, . . . , ie−1 be the elements of dom(g), and let g j be the restriction of g
to {i j }, for j = 0, . . . , e − 1. Then

Vg =
e−1⋂

j=0

Vg j .

Therefore, we can assume without loss of generality that dom(g) contains exactly one
number. Let i0 be this number, and let p0 := g(i0). Then

Vg = {X} ∪ {U f : f : N → N is a total function with f (i0) ≤ p0}.

It is clear that this set is upwards closed. Let S ⊆ Y be a directed subset with sup(S) ∈
Vg . If sup(S) = X then we can conclude as above in the proof of the first assertion
of this lemma that X ∈ S. So, in this case we have S ∩ Vg �= ∅. Let us assume
that sup(S) = U f for some total function f : N → N with U f ∈ Vg , hence, with
f (i0) ≤ p0, hence, with (i0, p0) ∈ U f . As sup(S) is the union of all sets that are
elements ofS theremust exist someU ∈ S with (i0, p0) ∈ U . AsU = X is impossible
(this would imply sup(S) = X ) we conclude that there is some function h : N → N

with U = Uh and h(i0) ≤ p0. We obtain U ∈ S ∩ Vg , hence, S ∩ Vg �= ∅. �
Actually, the Scott open subsets of Y identified in the previous lemma already form

a base of the Scott topology of Y . Thus, the Scott topology of (Y ,≤Y ) has a countable
base.

Lemma 4.14 The set

B := {{X},Y } ∪ {Vg : g :⊆ N → N is a partial function with finite
domain, and (∃n ∈ N) dom(g) = {0, . . . , n − 1}}

is a base of the topology of (Y ,≤Y ).

Proof According to Lemma 4.13 all elements of the set B are Scott open subsets of
(Y ,≤Y ). LetZ ⊆ Y be a Scott open subset of Y . LetU ⊆ X be a Scott open subset of
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X with U ∈ Z . It is sufficient to show that there exists a set V ∈ B with U ∈ V ⊆ Z .
In the case U = ∅ we obtain Z = Y and can use V := Y . In the case U = X we
can simply use V := {X}. In the following we consider the case U /∈ {∅, X}. Then,
according to Lemma 4.9 (3) there exists a function f : N → N with U = U f . We
claim that there exists a number k ∈ Nwith V f �k ⊆ Z . For the sake of a contradiction,
let us assume that this is not the case. Then there exists a sequence V : N → Y such
that, for all k ∈ N, V (k) ∈ V f �k and V (k) /∈ Z . For every k either V (k) = X or there
exists a function gk : N → N with V (k) = Ugk . In the first case we define gk := f
and observe Ugk ⊆ X = V (k) and Ugk ∈ V f �k . So, for every k ∈ N there exists a
function gk : N → N with Ugk ⊆ V (k) and Ugk ∈ V f �k . We are going to construct a
sequence W : N → Y of Scott open subsets of X such that

⋃

k∈N
W (k) = U f and (∀k ∈ N)(W (k) ⊆ Ugk and W (k) ⊆ W (k + 1)). (1)

In order to construct such a sequence, we define a function g : N → N by

g( j) := max({ f ( j)} ∪ {gk( j) : k ≤ j}),

for j ∈ N. It is clear that f ( j) ≤ g( j), for all j . Furthermore, for all k, j ∈ N,
gk( j) ≤ g( j). Indeed, this is clear for k ≤ j by definition of g, and for j < k we
observe that Ugk ∈ V f �k implies gk( j) ≤ f ( j), hence, gk( j) ≤ f ( j) ≤ g( j). For
k ∈ N we define a function hk : N → N by

hk( j) :=
{
f ( j) if j < k,

g( j) if k ≤ j .

We observe that for all k, j ∈ N

f ( j) ≤ hk+1( j) ≤ hk( j)

and

gk( j) ≤ hk( j)

(indeed, for j < k we have already seen gk( j) ≤ f ( j) = hk( j), and for k ≤ j we
see gk( j) ≤ g( j) = hk( j)). Furthermore, limk→∞ hk( j) = f ( j), for all j . Thus,
the sequence W : N → Y defined by W (k) := Uhk , for k ∈ N, has the desired
property (1). The set {W (k) : k ∈ N} is a directed subset of Y with sup{W (k) : k ∈
N} = U f = U . As Z is a Scott open subset of Y and U ∈ Z there exists a number
k with W (k) ∈ Z , hence, as Z is upwards closed and W (k) ⊆ Ugk ⊆ V (k), with
V (k) ∈ Z . Contradiction. We have shown that there exists a number k ∈ N with
V f �k ⊆ W . Note that U = U f ∈ V f �k . �

A topological space (X , τ ) is called first-countable if for every point x ∈ X there
exists a sequence B : N → τ of open sets such that, for all k ∈ N, x ∈ B(k) and, for
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any open subset U ⊆ X with x ∈ U there exists a k ∈ N with B(k) ⊆ U . Matthew
de Brecht made the following observation, explained in detail in the blog of Jean
Goubault-Larrecq [3].

Proposition 4.15 [de Brecht [3]] Let (Z1,≤1) and (Z2,≤2) be posets such that the
Scott spaces (Z1, σ (Z1,≤1)) and (Z2, σ (Z2,≤2)) are first-countable. Then the Scott
topology on Z1 × Z2 coincides with the product topology on Z1 × Z2.

Corollary 4.16 Let (X ,≤X ) be the complete lattice defined in Example 4.7 (see
Lemma 4.9 (1)), and let (Y ,≤Y ) be the complete lattice where Y is the set of all
Scott open subsets of X and ≤Y is set-theoretic inclusion (see Example 3.2). Then the
Scott topology on Y × Y coincides with the product topology on Y × Y .

Proof In Lemma 4.13we have seen that the space (Y , σ (Y ,≤Y )) has a countable base.
In particular, it is first-countable. By Proposition 4.15 the Scott topology on Y × Y
coincides with the product topology on Y × Y . �
Proof of Proposition 4.6. Let (X ,≤X ) be the pair defined in Example 4.7. According
to Lemma 4.9 (1) (X ,≤X ) is a complete lattice. Let (Y ,≤Y ) be the pair consisting
of the set Y of all Scott open subsets of X and set-theoretic inclusion ≤Y :=⊆ on Y .
By Example 3.2 (Y ,≤Y ) is a complete lattice. According to Lemma 4.2 the Scott
topology on X × Y is at least as fine as the product topology on X × Y . The subset
E := {(x, y) ∈ X × Y : x ∈ y} of X × Y is Scott open according to Lemma 4.5, but
not open with the respect to the product topology, according to Lemma 4.10. Hence,
the Scott topology on X × Y is strictly finer than the product topology on X × Y . By
Lemma 4.12 the Scott topology on X × X coincides with the product topology on
X × X , and by Corollary 4.16 the Scott topology on Y ×Y coincides with the product
topology on Y × Y . �

5 Elementary properties of the binary supremum function

Let X be a set. If ≤ is a partial order on X such that (X ,≤) is a sup semilattice then
we define the binary supremum function sup(2)

≤ : X × X → X on X by

sup(2)
≤ (x, y) := sup({x, y}),

for x, y ∈ X . If the relation≤ is clear from the context then instead of sup(2)
≤ we simply

write sup(2). For completeness sake let us mention the following well known algebraic
characterisation of the binary supremum function. We call a function f : X × X → X

• idempotent if (∀x ∈ X) f (x, x) = x ,
• commutative if (∀x, y ∈ X) f (x, y) = f (y, x),
• associative if (∀x, y, z ∈ X) f ( f (x, y), z) = f (x, f (y, z)).

For a function f : X × X → X let us define a binary relation ≤ f ⊆ X × X by

x ≤ f y : ⇐⇒ y = f (x, y),
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for x, y ∈ X .

Lemma 5.1 Let X be a nonempty set.

1. If ≤ is a partial order on X such that (X ,≤) is a sup semilattice then the function
f := sup(2)

≤ is idempotent, commutative, and associative, and the relation ≤ f is
identical with ≤.

2. If f : X×X → X is an idempotent, commutative, and associative function then the
binary relation ≤ f on X is a partial order such that (X ,≤ f ) is a sup semilattice,
and f is the binary supremum function of this sup semilattice.

This is well-known, and the proof is straightforward.We omit it. This lemma shows
that the transition from a sup semilattice (X ,≤) (an order-theoretic object) to the pair
(X , sup(2)

≤ ) consisting of a set X and a function with the three properties above (an
algebraic object) on the one hand and the transition from a pair (X , f ) consisting of a
set X and a function f with the three properties above (an algebraic object) to the sup
semilattice (X ,≤ f ) (an order-theoretic object) on the other hand are inverse to each
other. In this article we work with the order-theoretic description.

Let us have a first look at topological properties of the binary supremum function
on a sup semilattice. Let (X , τX ) and (Y , τY ) be topological spaces. A function f :
X → Y is called

• continuous if for every open subset V ⊆ Y its preimage f −1[V ] = {x ∈
X : f (x) ∈ V } is an open subset of X ,

• open if for every open subset U ⊆ X its image f [U ] = {y ∈ Y : (∃x ∈ U ) y =
f (x)} is an open subset of Y .

Often the following fundamental characterization of Scott continuous functions
between partial orders is useful.

Lemma 5.2 (see, e.g., [7, Proposiation. 4.3.5]) Let (X ,≤X ) and (Y ,≤Y ) be posets.
For a function f : X → Y the following two conditions are equivalent.

1. f is Scott continuous, that is, continuous with respect to the Scott topology on X
and the Scott topology on Y .

2. f is monotone (that is, (∀x, x ′ ∈ X)(x ≤X x ′ ⇒ f (x) ≤Y f (x ′)) and, if S ⊆ X
is a directed set whose supremum sup(S) exists, then sup( f [S]) exists as well and
satisfies sup( f [S]) = f (sup(S)).

Proposition 5.3 Let (X ,≤)bea sup semilattice. Then the function sup(2) : X×X → X
is continuous and open with respect to the Scott topology on X × X (on the left hand
side) and the Scott topology on X (on the right hand side).

The continuity of sup(2) is well known [13, p. 26]. It seems that the openness of
sup(2) has not been stated so far.

Proof For completeness sake, we prove the continuity of sup(2). We use Lemma 5.2.
It is obvious that sup(2) is monotone. Let S ⊆ X × X be a directed set such that sup(S)

exists. We have to show that sup(2)(sup(S)) is a supremum of sup(2)[S]. For any
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(x, x ′) ∈ S we have (x, x ′) ≤X×X sup(S), hence, due to the monotonicity of sup(2),
also sup(2)(x, x ′) ≤ sup(2)(sup(S)). This shows that sup(2)(sup(S)) is an upper bound
of sup(2)[S]. Now let y ∈ X be an upper bound of sup(2)[S]. Then for all (x, x ′) ∈ S
we have sup(2)(x, x ′) ≤ y, hence, x ≤ y and x ′ ≤ y, hence, (x, x ′) ≤X×X (y, y). This
implies sup(S) ≤X×X (y, y) and, due to the monotonicity of sup(2), sup(2)(sup(S)) ≤
sup(2)(y, y) = y. Thus, sup(2)(sup(S)) is indeed a supremum of sup(2)[S].

For the openness of sup(2) let us consider a Scott open subsetU ⊆ X × X . We wish
to show that sup(2)[U ] is a Scott open subset of X . First we show that sup(2)[U ] is
upwards closed. This is clear ifU is empty. Let us assumeU �= ∅, and let us consider
some (x, x ′) ∈ U and some y ∈ X with sup(2)(x, x ′) ≤ y. Then x ≤ y and x ′ ≤ y,
hence, (x, x ′) ≤X×X (y, y). As U is upwards closed we conclude (y, y) ∈ U , hence,
y = sup(2)(y, y) ∈ sup(2)[U ]. We have shown that sup(2)[U ] is upwards closed. Now
let us assume that S ⊆ X is a directed set such that sup(S) exists and is an element of
sup(2)[U ]. Then the set P := {(s, s) ∈ X × X : s ∈ S} is a≤X×X -directed set whose
≤X×X -supremum exists and is equal to (sup(S), sup(S)). Remember that sup(S) ∈
sup(2)[U ]. Let (x, x ′) ∈ U be an element of U with sup(S) = sup(2)(x, x ′). We
conclude that x ≤ sup(S) and x ′ ≤ sup(S), hence, (x, x ′) ≤X×X (sup(S), sup(S)).
AsU is upwards closed we conclude (sup(S), sup(S)) ∈ U . Thus, sup≤X×X

(P) ∈ U .
As U is Scott open we obtain P ∩ U �= ∅. Thus, there exists some y ∈ S with
(y, y) ∈ U . This implies y = sup(2)(y, y) ∈ sup(2)[U ]. Thus, S ∩ sup(2)[U ] �= ∅. We
have shown that sup(2)[U ] is Scott open. �
Corollary 5.4 Let (X ,≤) be a sup semilattice. Then the function sup(2) : X × X → X
is open with respect to the product topology on X × X of the Scott topologies on both
copies of X (on the left hand side) and the Scott topology on X (on the right hand
side).

Proof This follows from Proposition 5.3 and from Lemma 4.2. �

6 Sobriety and the binary supremum function

In this section we present the observation byWei and Shouli [14] that a slightly weaker
property than continuity of the binary supremum function with respect to the product
topology is equivalent to the property “sober”, for suitable posets. The following
definitions are copied from [6, Sect. O-5], [7, Sect. 8.2]. Let X be a topological space.
We call a subset C ⊆ X irreducible if it is nonempty and, for any closed subsets
A, B ⊆ X the following implication is true: if C ⊆ A∪ B then C ⊆ A or C ⊆ B. It is
clear that the closure cl({x0}) of a point x0 is irreducible, for any x0 ∈ X . A topological
space X (or its topology) is called sober if it is a T0 space and for every irreducible
closed subset C ⊆ X there exists a point x0 ∈ X with C = cl({x0}). Note that the T0
property of a topological space X implies for x0, x1 ∈ X : if cl({x0}) = cl({x1}) then
x0 = x1.

We wish to analyze which posets that are dcpos and sup semilattices (compare
Lemma 3.1) have a sober Scott topology. The following lemma is implicitly contained
in the proof of [6, Proposition II-1.11].
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Lemma 6.1 Let (X ,≤) be a dcpo and consider on X the Scott topology. For a closed
subset C ⊆ X the following two conditions are equivalent.

1. C is directed.
2. There exists a point x0 ∈ X with C = cl({x0}).

Proof Let x0 ∈ X . On the one hand, in Example 3.4 we already mentioned that
cl({x0}) = ↓{x0}. And it is clear that the set ↓{x0} is directed. On the other hand, if a
setC is directed then sup(C) exists because we assume that (X ,≤) is a dcpo. And ifC
is closed and directed then sup(C) ∈ C . But in that case it is clear thatC = ↓{sup(C)}.

�

It is well known that, if (X ,≤) is a dcpo and a sup semilattice and the function
sup(2) : X × X → X is continuous with respect to the product topology on X ,
then X with the Scott topology is sober; see [5, Corollary II.1-12], [6, Corollary II-
1.12]. Wei and Shouli [14] observed that by weakening the continuity requirement
on sup(2) one can obtain a condition that is equivalent to sobriety, under sufficiently
strong further assumptions. The following theorem was essentially stated by them
with slightly different assumptions.

Theorem 6.2 Let (X ,≤) be a poset that is a dcpo and a sup semilattice. Then the
following two conditions are equivalent.

1. The Scott topology σ(X ,≤) is sober.
2. For every Scott open subset W � X whose complement is irreducible, the set

(sup(2))−1[W ] ⊆ X × X is open in the product topology on X × X.

Proof “(1) ⇒ (2)”: Let (X , σ (X ,≤)) be sober. Let W � X be a proper Scott open
subset of X whose complement C := X \ W is irreducible. Let x, y ∈ X be two
elements with sup(2)(x, y) =: z ∈ W . We wish to show that there are Scott open
subsets U , V ⊆ X with x ∈ U , y ∈ V and sup(2)[U × V ] ⊆ W . As C is irreducible
and X is sober there exists a point c ∈ X with C = cl({c}). If x and y would satisfy
x ≤ c and y ≤ c then their supremum z would satisfy z ≤ c as well, that is, z ∈ ↓{c} =
cl({c}) = C . Thus, we observe that x � c or y � c. Without loss of generality we
assume x � c, hence, x /∈ ↓{c} = cl({c}) = C , hence, x ∈ W . But now the open sets
U := W and V := X satisfy x ∈ U , y ∈ V and sup(2)[U×V ] = sup(2)[W×X ] ⊆ W .

“(2) ⇒ (1)”: Let us assume that (2) is true. Let C ⊆ X be a closed and irreducible
subset of X . According to Lemma 6.1 it is sufficient to show that C is directed. Let us
consider two elements x, y ∈ C . We claim that the supremum z := sup(2)(x, y) is an
element ofC . Suppose that this is not the case. Then z ∈ W := X \C . ByCondition (2)
there exist Scott open subsetsU , V ⊆ X with x ∈ U , y ∈ V and sup(2)[U ×V ] ⊆ W .
As U and V are upwards closed we obtain sup(2)[U × V ] = U ∩ V . Hence, we have
U ∩ V ⊆ W . For the closed sets A := X \U and B := X \ V that means C ⊆ A∪ B.
As C is irrreducible this implies C ⊆ A or C ⊆ B, hence, U ⊆ W or V ⊆ W . We
conclude x ∈ W or y ∈ W , in contradiction to x, y ∈ C . �
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7 Continuity or discontinuity of the supremum function with respect
to the product topology on a complete lattice

Let (X ,≤) be a sup semilattice. Proposition 5.3 says that the binary supremum function
is continuous with respect to the Scott topology on X × X . This leads to the question
whether it is necessarily even continuous with respect to the product topology on
X × X as well. This question was answered negatively by Isbell.

Theorem 7.1 (Isbell [10,11]) There exists a complete lattice (Z ,≤) such that the
binary supremum function sup(2) : Z × Z → Z is not continuous with respect to the
product topology on Z × Z of the Scott topology on each copy of Z (on the left hand
side) and the Scott topology on Z (on the right hand side).

In fact, in [10] Isbell constructed a complete lattice such that this lattice with
the Scott topology is not sober. It follows from [5, Corollary II.1-12] as well as [6,
Corollary II-1.12] or Theorem 6.2 that the binary supremum function on this lattice is
not continuous with respect to the product topology. This result by Isbell leads to the
question (posed byHoffmann, according to [11]) whether there exists a sober complete
lattice such that the binary supremum function is discontinuous with respect to the
product topology. This question was answered positively by Isbell, who constructed
such a lattice [11].

The observation described in the following lemma was made by Isbell in [11] for
complete lattices. This fact was rediscovered by the author [8, Proof of Theorem 4.2],
who at the time of writing [8] was not aware of the articles [10,11] by Isbell.

Lemma 7.2 Let (X ,≤X ) and (Y ,≤Y ) be sup semilattices such that ⊥X := inf(X)

and ⊥Y := inf(Y ) exist and such that the product topology on X ×Y is different from
the Scott topology on X × Y . Then Z := X × Y with ≤X×Y is a sup semilattice such
that the binary supremum function sup(2) : Z × Z → Z is discontinuous with respect
to the product topology on Z.

For completeness sake we give the proof. First, we formulate and prove another
simple lemma.

Lemma 7.3 Let (X ,≤X ) and (Y ,≤Y ) be posets. For any x ∈ X the function gx :
Y → X × Y defined by gx (y) := (x, y) is Scott continuous, and for any y ∈ Y the
function gy : X → X × Y defined by gy(x) := (x, y) is Scott continuous.

Proof This follows directly by applying Lemma 5.2. �
Proof of Lemma 7.2 By Lemma 4.1 it is clear the (Z ,≤X×Y ) is a sup semilattice. Let
E ⊆ Z = X × Y be a subset that is open in the Scott topology on X × Y but not open
in the product topology on X × Y . We are going to show that the preimage

D :=
(
sup(2)

)−1 [E] = {(z, z′) ∈ Z × Z : sup(2)(z, z′) ∈ E}

of E under the function sup(2) is not open in the product topology on Z × Z (of the
Scott topologies on each copy of Z ). For the sake of a contradiction, let us assume that
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Topological properties of the binary supremum function 637

D is open in the product topology on Z×Z . We are going to show that this assumption
would imply that E is open in the product topology on Z = X × Y .

Let us fix some element (x (0), y(0)) ∈ E . It is sufficient to show that the assumption
that D is open in the product topology on Z × Z implies that there exist a Scott open
subset F ⊆ X and a Scott open subset G ⊆ Y with x (0) ∈ F , with y(0) ∈ G and with
F×G ⊆ E . Howdowe arrive at such sets?Note that sup(2)((x (0),⊥Y ), (⊥X , y(0))) =
(x (0), y(0)) ∈ E , hence,

((x (0),⊥Y ), (⊥X , y(0))) ∈ D.

Our assumption that D is open in the product topology on Z×Z implies that there exist
two Scott open subsets D1, D2 ⊆ Z with (x (0),⊥Y ) ∈ D1, with (⊥X , y(0)) ∈ D2,
and with D1 × D2 ⊆ D. By Lemma 7.3 the sets

F := {x ∈ X : (x,⊥Y ) ∈ D1},
G := {y ∈ Y : (⊥X , y) ∈ D2}.

are Scott open subsets of X resp. of Y . It is clear that x (0) ∈ F and y(0) ∈ G. Finally,
we claim F × G ⊆ E . Indeed, for x ∈ F and y ∈ G we obtain (x,⊥Y ) ∈ D1 and
(⊥X , y) ∈ D2, hence,

(x, y) = sup(2)((x,⊥Y ), (⊥X , y)) ∈ sup(2)[D1 × D2] ⊆ E .

This shows F × G ⊆ E . �
Proof of Theorem 7.1 The complete lattice (X ,≤X ) defined in Example 4.7 (compare
Lemma4.9) and the complete lattice (Y ,≤Y )whereY is the set of all Scott open subsets
of X and ≤Y is set-theoretic inclusion (see Example 3.2) satisfy the assumptions of
Lemma 7.2; see Lemmas 4.5 and 4.10. �

In viewof Theorem7.1 onemight even suspect that the binary supremum function is
necessarily discontinuous with respect to the product topology if the product topology
is different from the Scott topology. The question whether this is the case or not was
posed by an anonymous referee of [8]. The following theorem shows that this is not
the case. The binary supremum function can be continuous with respect to the product
topology even if the product topology is strictly weaker than the Scott topology.

Theorem 7.4 There exists a complete lattice (Z ,≤) such that the product topology on
Z × Z of the Scott topology on each copy of Z is different from the Scott topology on
Z × Z, and the binary supremum function sup(2) : Z × Z → Z is still continuous
with respect to the product topology on Z × Z of the Scott topology on each copy of
Z (on the left hand side) and the Scott topology on Z (on the right hand side).

Proof Let (X ,≤X ) and (Y ,≤Y ) be complete lattices as in Proposition 4.6. We will
construct a suitable Z as the direct sum of X and Y except that we add an additional
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Fig. 2 The complete lattice Z in the proof of Theorem 7.4, constructed out of two complete lattices X and Y

smallest and an additional largest element in order to make Z a complete lattice.
Formally, this can be done as follows. Let

Z := (X × {0}) ∪ (Y × {1}) ∪ {⊥,�},

where ⊥ and � are different elements that are not elements of (X × {0}) ∪ (Y × {1}),
and let the binary relation ≤Z on Z be defined by

z ≤Z z′ : ⇐⇒ z = ⊥ or z′ = � or

(∃x, x ′ ∈ X)(z = (x, 0) and z′ = (x ′, 0) and x ≤X x ′) or
(∃y, y′ ∈ Y )(z = (y, 1) and z′ = (y′, 1) and y ≤Y y′),

for all z, z′ ∈ Z .
We come to the correctness proof. In fact, for notational simplicity, in the following

we will identify X with X × {0} and Y with Y × {1}. In other words, we will assume
that ⊥ �= � and that the three sets X , Y , and {⊥,�} are pairwise disjoint. Then the
pair (Z ,≤Z ) consisting of a set Z and a binary relation ≤Z on Z can be defined as
follows.

Z = X ∪ Y ∪ {⊥,�}

and

z ≤Z z′ : ⇐⇒ z = ⊥ or z′ = � or

(z ∈ X and z′ ∈ X and z ≤X z′) or
(z ∈ Y and z′ ∈ Y and z ≤Y z′),

for all z, z′ ∈ Z . See Fig. 2.
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It is straightforward to check that (Z ,≤Z ) is a partial order. And for any subset
S ⊆ Z the supremum of S exists:

sup
≤Z

(S) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if S ⊆ {⊥},
sup≤X

(S ∩ X) if S ⊆ X ∪ {⊥} and S ∩ X �= ∅,

sup≤Y
(S ∩ Y ) if S ⊆ Y ∪ {⊥} and S ∩ Y �= ∅,

� if S � X ∪ {⊥} and S � Y ∪ {⊥}.
(2)

Hence, (Z ,≤Z ) is a complete lattice. Next, we show that the Scott topology on Z × Z
is strictly finer than the product topology on Z × Z (that is, than the product topology
on Z × Z of the Scott topology on each copy of Z ). Let E ⊆ X × Y be a Scott open
subset of X × Y that is not open with respect to the product topology on X × Y . We
claim that the set

G := E ∪ ((Y ∪ {�}) × Z) ∪ (Z × (X ∪ {�}))

is a Scott open subset of Z × Z and not open with respect to the product topology on
Z × Z .

Let us show that G is ≤Z×Z -upwards closed. The subsets (Y ∪ {�}) × Z and
Z × (X ∪ {�}) are obviously ≤Z×Z -upwards closed. Let us consider some (x, y) ∈
E and some (z1, z2) ∈ Z × Z with (x, y) ≤Z×Z (z1, z2). It is sufficient to show
(z1, z2) ∈ G. From E ⊆ X × Y we conclude z1 ∈ X ∪ {�} and z2 ∈ Y ∪ {�}
and, furthermore, z1 ∈ X ⇒ x ≤X z1, and, similarly, z2 ∈ Y ⇒ y ≤Y z2. If
z1 = � then (z1, z2) ∈ (Y ∪ {�}) × Z ⊆ G, and similarly, if z2 = � then (z1, z2) ∈
Z × (X ∪ {�}) ⊆ G. So, let us assume that z1 ∈ X and z2 ∈ Y . Then x ≤X z1 and
y ≤Y z2, hence (x, y) ≤X×Y (z1, z2). As E is ≤X×Y -upwards closed we conclude
(z1, z2) ∈ E ⊆ G. We have shown that G is ≤Z×Z -upwards closed.

Next, let S ⊆ Z × Z be a directed set such that sup≤Z×Z
(S) is an element of G

(note that supZ×Z (S) exists because Z × Z is a complete lattice by Lemma 4.1 (4)).
We wish to show that S ∩ G �= ∅. For the sake of a contradiction, let us assume that
S ∩ G = ∅. Then S ∩ ((Y ∪ {�}) × Z) = ∅ and S ∩ (Z × (X ∪ {�})) = ∅, hence,
S ⊆ (X ∪ {⊥}) × (Y ∪ {⊥}). This implies

sup≤Z×Z
(S) = (sup≤Z

(π1[S]), sup≤Z
(π2[S])) ∈ (X ∪ {⊥}) × (Y ∪ {⊥}),

compare Lemma 4.1 (3). With sup≤Z×Z
(S) ∈ G and by the definition of G we obtain

sup≤Z×Z
(S) ∈ E . This, in turn, implies π1[S] ∩ X �= ∅ (otherwise we would have

π1[S] = {⊥}, hence, also sup≤Z (π1[S]) = ⊥ in contradiction to sup≤Z×Z
(S) ∈ E

and E ∩ ({⊥} × Z) = ∅) and π2[S] ∩ Y �= ∅. As S is a directed set we can conclude
that S ∩ (X × Y ) �= ∅. Furthermore, the set S ∩ (X × Y ) is a ≤X×Y -directed subset
of X × Y with

sup≤X×Y
(S ∩ (X × Y )) = sup≤Z×Z

(S ∩ (X × Y )) = sup≤Z×Z
(S) ∈ E .
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As E is a Scott open subset of X × Y we conclude that S ∩ (X × Y ) ∩ E �= ∅, hence,
S ∩ E �= ∅, hence, S ∩ G �= ∅. Contradiction. We have shown that G is a Scott open
subset of Z × Z .

We still have to show that G is not open with respect to the product topology on
Z × Z . For the sake of a contradiction, let us assume that G is open with respect to
the product topology on Z × Z . We are going to show that this implies that the subset
E of X × Y is open with respect to the product topology on X × Y . Let us consider
an arbitrary element (x, y) of E . We wish to show that there exist Scott open subsets
U ′ ⊆ X and V ′ ⊆ Y with x ∈ U ′, y ∈ V ′, andU ′ × V ′ ⊆ E . We make use of the fact
that (x, y) ∈ E implies (x, y) ∈ G. As by assumption G is open with respect to the
product topology on Z × Z there exist Scott open subsets U ⊆ Z and V ⊆ Z with
(x, y) ∈ U × V andU × V ⊆ G. Then the setU ′ := U ∩ X is a Scott open subset of
X , and the set V ′ := V ∩ Y is a Scott open subset of Y . We observe x ∈ U ′, y ∈ V ′,
and U ′ × V ′ ⊆ G ∩ (X × Y ) = E . Hence, G is indeed not open with respect to the
product topology on Z × Z .

Finally, we have to show that the function sup(2) : Z × Z → Z is continuous with
respect to the product topology on Z × Z . Let W ⊆ Z be a Scott open subset. It is
sufficient to show that (sup(2))−1[W ] is open in the product topology on Z×Z .We can
assume that W is not empty. Let (z1, z2) ∈ Z × Z be a pair with sup(2)(z1, z2) ∈ W .
It is sufficient to show that there exist Scott open subsets W1,W2 ⊆ Z with z1 ∈ W1,
z2 ∈ W2 and W1 × W2 ⊆ (sup(2))−1[W ]. We distinguish several cases for (z1, z2).

Case 1 z1 = ⊥. The sets Z and W are Scott open subsets of Z , z1 = ⊥ ∈ Z ,
z2 = sup(2)(z1, z2) ∈ W , and Z × W ⊆ (sup(2))−1[W ].
Case 2 z2 = ⊥. This case is symmetric to Case 1 and is treated in the same way.

Case 3 z1 = �. Then � = sup(2)(z1, z2) ∈ W . The set {�} is a Scott open subset
of Z (indeed, if S ⊆ Z is a subset with sup(S) = � then S ∩ (X ∪ {�}) �= ∅ and
S ∩ (Y ∪ {�}) �= ∅, and if S is directed this implies � ∈ S). And the set Z is of
course a Scott open subset of Z as well. Finally, we note that z1 ∈ {�}, z2 ∈ Z ,
and {�} × Z ⊆ (sup(2))−1[W ].
Case 4 z2 = �. This case is symmetric to Case 3 and is treated in the same way.

Case 5 z1 ∈ X and z2 ∈ Y . Then � = sup(2)(z1, z2) ∈ W . The sets X ∪ {�}
and Y ∪ {�} are Scott open subsets of Z , z1 ∈ X ∪ {�}, z2 ∈ Y ∪ {�}, and
(X ∪ {�}) × (Y ∪ {�}) ⊆ (sup(2))−1[{�}] ⊆ (sup(2))−1[W ].
Case 6 z1 ∈ Y and z2 ∈ X . This case is symmetric to Case 5 and is treated in the
same way.

Case 7 z1 ∈ X and z2 ∈ X . By Proposition 5.3 the function sup(2) : Z× Z → Z is
continuous with respect to the Scott topology on Z × Z . Hence, (sup(2))−1[W ] is a
Scott open subset of Z × Z . We claim that the setW ′ := (sup(2))−1[W ]∩ (X × X)

is a Scott open subset of X×X (thatmeans, Scott openwith respect to≤X×X ). This
follows directly from the fact that the restriction of ≤Z×Z to X × X is identical
with ≤X×X . By the second condition in Proposition 4.6 the Scott topology on
X × X is identical with the product topology. Hence, the subset W ′ of X × X
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is open in the product topology. Furthermore (z1, z2) ∈ W ′. Hence, there exist
≤X -Scott open subsets U1,U2 ⊆ X with z1 ∈ U1, z2 ∈ U2 and U1 × U2 ⊆ W ′.
The sets W1 := U1 ∪ {�} and W2 := U2 ∪ {�} are ≤Z -Scott open subsets of Z
and satisfy z1 ∈ W1, z2 ∈ W2, and W1 × W2 ⊆ (sup(2))−1[W ].
Case 8 z1 ∈ Y and z2 ∈ Y . This case is treated in the same way as Case 7, using
the third condition in Proposition 4.6 instead of the second condition. �

8 Failure of bounded completeness for the directed complete partial
order of Scott continuous functions

Let us consider some poset (Z ,≤) and an arbitrary topological space X . We call a
function f : X → Z Scott continuous if it is continuous with respect to the given
topology on X and the Scott topology on Z . Let C(X , Z) denote the set of all Scott
continuous functions f : X → Z . It is clear that the binary relation ≤C defined on X
by

f ≤C g : ⇐⇒ (∀x ∈ X) f (x) ≤ g(x),

for f , g ∈ C(X , Z), is a partial order, that is, (C(X , Z),≤C) is a poset.

Proposition 8.1 ( [13, Lemma 1-4.6], [9, Prop. 6]) Let (Z ,≤) be a dcpo, and let X
be an arbitrary topological space. Then C(X , Z) with ≤C is a dcpo. Furthermore, if
F ⊆ C(X , Z) is a ≤C-directed set then the function g : X → Z defined by

g(x) := sup({ f (x) : f ∈ F})

(this is well defined because, for any x ∈ X, the set { f (x) : f ∈ F} is directed and
because (Z ,≤) is a dcpo) is Scott continuous and the least upper bound of F.

Let (Z ,≤) be a poset. A subset S ⊆ Z is called bounded if there exists an upper
bound z ∈ Z for S. The poset (Z ,≤) itself is called bounded if Z is a bounded set.
The poset (Z ,≤) is called bounded complete if for any bounded subset S ⊆ Z there
exists a supremum of S in Z . An element of Z is called a least element of Z if it is a
lower bound of Z . Obviously, if a least element exists then it is unique. Note that any
bounded complete poset (Z ,≤) has a least element (the element sup(∅) does the job).
And note that any complete lattice is a dcpo and that a poset is a complete lattice if,
and only if, it is bounded and bounded complete.

Lemma 8.2 Let X be an arbitrary topological space.

1. If (Z ,≤) is a bounded poset then (C(X , Z),≤C) is a bounded poset as well.
2. If (Z ,≤) is a poset with least element then (C(X , Z),≤C) is a poset with least

element as well.

Proof Let (Z ,≤) be a poset. We have already seen that then (C(X , Z),≤C) is a poset
as well.
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1. Let � ∈ Z be an upper bound for Z . The constant function f : X → Z with
f (x) := � for all x ∈ X is Scott continuous, thus, an element of C(X , Z), and it
is an upper bound for C(X , Z).

2. Let ⊥ ∈ Z be a least element of Z . The constant function f : X → Z with
f (x) := ⊥ for all x ∈ X is Scott continuous, thus, an element of C(X , Z), and it
is a lower bound for C(X , Z). �
The following question arises: If (Z ,≤) is bounded complete, is then C(X , Z)

bounded complete as well? This is true if the topology considered on X is the Scott
topology induced by a partial order relation on X .

Proposition 8.3 Let (X ,≤X ) be a poset and consider on X the Scott topology. If
(Z ,≤Z ) is a bounded complete poset then (C(X , Z),≤C) is a bounded complete
poset as well.

Proof Let F ⊆ C(X , Z) be a ≤C-bounded set. Then for each x ∈ X the set

F(x) := { f (x) : f ∈ F} = {z ∈ Z : (∃ f ∈ F) z = f (x)}

is bounded (indeed, if h ∈ C(X , Z) is a ≤C-upper bound of F then, for every x ∈ X ,
the element h(x) ∈ Z is a≤Z -upper bound of the set F(x)). Since we assume (Z ,≤Z )

to be bounded complete, we can define a function g : X → Z by

g(x) := sup(F(x)).

First, we show that this function g is Scott continuous. We use the characterization
in Lemma 5.2. First we show that g is monotone. Let us consider x, y ∈ X with
x ≤X y. As each function f ∈ F is monotone, we have for each function f ∈ F

f (x) ≤Z f (y) ≤Z g(y),

hence, g(x) ≤Z g(y). Thus, g is monotone. Now, let S ⊆ X be a directed set such that
sup(S) exists. For every s ∈ S we have g(s) ≤Z g(sup(S)) because g is monotone,
hence, g(sup(S)) is an upper bound of g[S]. Let z0 ∈ Z be an arbitrary upper bound
of g[S]. We wish to show g(sup(S)) ≤Z z0. For every f ∈ F and every s ∈ S,

f (s) ≤Z g(s) ≤Z z0.

As every f ∈ F is Scott continuous, for every f ∈ F , sup( f [S]) exists and we obtain

f (sup(S)) = sup( f [S]) ≤Z z0.

We conclude

g(sup(S)) = sup(F(sup(S))) = sup{ f (sup(S)) : f ∈ F} ≤Z z0.

This completes the proof of our claim that g is Scott continuous.
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It is obvious that g is an upper bound of F . If h ∈ C(X , Z) is any upper bound of
F then for all x ∈ X and all f ∈ F , f (x) ≤Z h(x), hence, g(x) = sup{ f (x) : f ∈
F} ≤Z h(x), hence, g ≤C h. We have shown that g is the least upper bound of F . �

One may now speculate whether for an arbitrary topological space X and an arbi-
trary bounded complete dcpo Z (with least element) the dcpo C(X , Z) is bounded
complete as well. For example, Edalat [4, p. 502] claims that this is the case by writ-
ing: “For any topological space Z and any bounded complete dcpo D with bottom
⊥, let Z → D be the bounded complete dcpo of Scott continuous functions from Z
to D.” But we are going to show that in general this is not the case; see Theorem 8.5
below.

Remark 8.4 The claim by Edalat, cited above, is a crucial step in his argument in [4]
why the notion of the L-derivative, introduced by him in [4], is well-defined. As this
claim is incorrect the reader might now be worried whether the L-derivative is well-
defined at all. But indeed it is. One can replace the cited claim by a different argument;
compare [9].

Theorem 8.5 There exist a topological space X and a complete lattice (Z ,≤) with
the following properties:

1. C(X , Z) is a bounded dcpo with least element, but not bounded complete.
2. There exist two functions f , g ∈ C(X , Z) with the following two properties.

(a) The set { f , g} does not have a ≤C-supremum in C(X , Z).
(b) The pointwise supremum of f and g, that is, the function h : X → Z defined

by h(x) := sup{ f (x), g(x)}, is not Scott continuous.
It is clear that Property (a) in Theorem 8.5 implies Property (b). The converse in

not so obvious, but true as well, as the following lemma shows. It will be used in the
proof of Theorem 8.5.

Lemma 8.6 For any topological space X, any bounded sup semilattice (Z ,≤Z ), and
any two functions f , g ∈ C(X , Z) the following two conditions are equivalent.

1. The set { f , g} has a ≤C-supremum in C(X , Z).
2. The pointwise supremum h : X → Z of f and g defined by

h(x) := sup{ f (x), g(x)},

for all x ∈ X, is Scott continuous.

Furthermore, if one (and then both) of these two conditions is satisfied then the point-
wise supremum of f and g is the ≤C-supremum of { f , g} in C(X , Z).

Proof Fix some functions f , g ∈ C(X , Z), and let h : X → Z be the pointwise
supremum of f and g.

“2 ⇒ 1”: If h is Scott continuous and r ∈ C(X , Z) any function with f ≤C r and
g ≤C r then h ≤C r . Thus, in this case h is a supremum of { f , g} in C(X , Z).
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“1 ⇒ 2”: For the converse direction, let us first show the following claim.
Claim. For any x0 ∈ X there exists a function sx0 ∈ C(X , Z) with f ≤C sx0 , with

g ≤C sx0 , and with sx0(x0) = sup{ f (x0), g(x0)}.
Proof of this claim. Let � := sup(Z) (this exists because (Z ,≤) is assumed to be
bounded). Let us fix an arbitrary point x0 ∈ X . Let us define a “step function” sx0 :
X → Z by

sx0(x) :=
{
sup{ f (x0), g(x0)} if x ∈ cl({x0}),
� otherwise.

We claim that this function has the desired properties. First, we claim that sx0 is Scott
continuous. This is clear if sup{ f (x0), g(x0)} = � because in that case sx0 is the
constant function with value �. Also in the case sup{ f (x0), g(x0)} �= � for any Scott
open subset V ⊆ Z the set

s−1
x0 [V ] =

⎧
⎪⎨

⎪⎩

∅ if V = ∅,

X \ cl({x0}) if V �= ∅ and sup{ f (x0), g(x0)} /∈ V ,

X if sup{ f (x0), g(x0)} ∈ V

is an open subset of X . Hence, the function sx0 is Scott continuous, thus, an element of
C(X , Z). We claim that furthermore f ≤C sx0 . Indeed, if x /∈ cl({x0}) then f (x) ≤Z

� = sx0(x). Let us now consider the case x ∈ cl({x0}). The set

V := {z ∈ Z : z �Z f (x0)}

is a Scott open subset of Z by Example 3.4. As f : X → Z is Scott continuous, the set
U := f −1[V ] is an open subset of X . It is clear that x0 /∈ U . Hence, x ∈ cl({x0}) ⊆
X \U , that is, x /∈ U . This means f (x) ≤Z f (x0). We obtain

f (x) ≤Z f (x0) ≤Z sup{ f (x0), g(x0)} = sx0(x).

We have shown f ≤C sx0 . By the same argument g ≤C sx0 follows. Finally, it is clear
that sx0(x0) = sup{ f (x0), f (x0)}. We have shown the claim.

Now let us assume that the set { f , g} has a supremum in C(X , Z). Let us call this
supremum t . Let us consider some x0 ∈ X . Clearly h(x0) = sup{ f (x0), g(x0)} ≤Z

t(x0). According to the claim that we have just proved, there exists a function
sx0 ∈ C(X , Z) with f ≤C sx0 , with g ≤C sx0 and with sx0(x0) = sup{ f (x0), g(x0)}.
This implies t = sup{ f , g} ≤C sx0 and in particular t(x0) ≤Z sx0(x0) =
sup{ f (x0), g(x0)} = h(x0). Thus, we do not only have h(x0) ≤Z t(x0) but also
t(x0) ≤Z h(x0), thus, t(x0) = h(x0). As this is true for all x0 ∈ X , we have t = h,
that is, t must be the pointwise supremum of f and g. �
Proof of Theorem 8.5 Let (Z ,≤) be a complete lattice as in Theorem 7.1. Then Z
is bounded (sup(Z) is an upper bound) as well as bounded complete and directed
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complete (every subset has a supremum), and it has a least element. For X we choose
Z × Z with the product topology of the Scott topologies on each copy of Z . By
Proposition 8.1 C(X , Z) is a dcpo and by Lemma 8.2 it is bounded and has a least
element. Once we have shown that there exist two functions f , g ∈ C(X , Z) that
do not have a supremum in C(X , Z) we have shown that C(X , Z) is not bounded
complete.

In fact, for f and g we can take the projection functions π1, π2 : X = Z × Z → Z
defined by πi (z1, z2) := zi for i = 1, 2 and all z1, z2 ∈ Z . For i = 1, 2 the projection
function πi is continuous with respect to the product topology on X = Z × Z , thus,
πi ∈ C(X , Z). Note that the function sup(2) is the pointwise supremum of π1 and π2.
As we have chosen Z to be a complete lattice as in Theorem 7.1 and X to be Z × Z
with the product topology, the function sup(2) is not an element of C(X , Z), that is,
sup(2) is not continuous. Thus, the pointwise supremum of the continuous functions
π1 : X → Z and π2 : X → Z is not continuous. And, according to Lemma 8.6,
the set {π1, π2} does not have a ≤C-supremum in C(X , Z). This ends the proof of
Theorem 8.5. �
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