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In this paper, the isogeometric formulations of the finite element and boundary element methods are
applied to the dynamic analysis of thin-walled structures submerged in an infinite, inviscid, and incom-
pressible fluid medium. This fluid–structure interaction problem is decoupled using the modal analysis
technique, and the fluid effect on the structure is taken into account through the generalized added mass
matrix. The structure is modeled with NURBS-based Kirchhoff–Love shell elements. The fluid response is
computed using a regularized boundary integral equation. We take advantage of the geometry preserving
property of the NURBS refinement techniques to reduce the computational cost without the need for a
projection scheme. The implementation is benchmarked with three test cases, and good accuracy is
obtained for a relatively low number of degrees of freedom.
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1. Introduction

The prediction of the dynamic characteristics of structures
immersed in a fluid of infinite extent is of relevant importance
across multiple engineering disciplines, and one of the practical
applications of structural acoustics. Accurate estimates of the wet
natural frequencies and vibration modes are needed for a correct
assessment of the dynamic response of, for instance, propellers,
appendices, and submersibles in naval engineering or submerged
floating tunnels in civil engineering.

There exist several numerical techniques and modeling consid-
erations to tackle this fluid–structure interaction (FSI) problem. In
general, the fluid is modeled as an inviscid acoustic medium, and
whether or not its compressibility is included in the analysis
depends on the frequency range of interest. In the low-frequency
range, the fluid medium can be considered incompressible, it is
governed by the Laplace’s equation, and the effect of the fluid on
the structure is embodied in an added-mass matrix [1]. In the
high-frequency range, the fluid acts as a compressible medium,
and its governing equation is the Helmholtz’s equation.

Among the different numerical techniques available to the prac-
titioner for solving this FSI problem, the most common ones are
using the standard finite element method (FEM) for the structure,
and for the fluid either a low order boundary element method
(BEM) or the standard FEM as well. For the pros and cons of each
combination of methods, an in-depth review can be found in [2].
Regardless of the numerical method, this FSI problem can be solved
in a fully coupled manner [3–6], or it can be decoupled through the
modal analysis approach [7–13] under the assumption that the
structure preserves its in-vacuo eigenmodes when in contact with
an incompressible fluid.

In the last 50 years, these methods have been successfully
applied in the field of numerical structural acoustics since the
pioneering work of Zienkiewicz and Newton [3] in 1969. They used
a finite element-finite element approach to study the vibrations of
submerged structures in a compressible fluid. Antoniadis and
Kanarachos [7] proposed a decoupling procedure based on the
modal superposition methodology for the eigenproblem of struc-
tures in contact with incompressible fluids. This latter procedure
has been widely adopted in the literature for the free vibration
analysis of submerged structures, i.e. partially liquid-filled cylin-
ders [8], cantilever plates [9], and a container ship hull [11].

In these analyses there are two mesh generations involved, and
in case each domain is meshed with a different mesh topology and/
or density, a projection scheme between them is needed. This
workflow can largely benefit from the adoption of the isogeometric
analysis (IGA) framework [14], especially when only a surface rep-
resentation of the body suffices for both the structural and fluid
analyses. With IGA, the solution spaces inherit the basis functions
used to describe the geometry, which is exactly represented in
each domain and remains invariant to the refinement of the
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solution spaces. The isogeometric formulation of the FEM and the
BEM for structural dynamics and potential flow problems, respec-
tively, has been proved to be superior to their standard formula-
tions as reported in [15–17]. Furthermore, it has been recently
applied to the hydroelastic analysis of partially submerged plates
[12] and partially filled cylinders [13].

This work focuses on the application of the isogeometric formu-
lation of the FEM and the BEM to the analysis of the natural fre-
quencies of thin-walled structures submerged in a medium of
infinite extent. These analyses fall in the low-frequency regime.
Thus, the fluid is treated as an incompressible non-dissipative
medium and the decoupled approach [7] is implemented. We use
Non-Uniform Rational B-Splines (NURBS) surfaces to represent
the geometry of the structures. The structural analysis is linear
and is performed with NURBS-based Kirchhoff–Love shell finite
elements [18], and the structural damping is neglected when com-
puting the vibration modes.

The rest of this paper is organized as follows: Section 2 briefly
introduces non-uniform rational B-splines surfaces; Section 3 pre-
sents the structural model based on the Kirchhoff–Love shell the-
ory, the modal superposition approach, and how the geometric
continuity of the deformed configuration can be enforced in
geometries with poles; Section 4 details the formulation and
implementation of the boundary element method within the iso-
geometric framework; Section 5 explains how we perform the
modal analysis of a submerged structure; Section 6 contains three
numerical examples validating the current numerical scheme; and
finally Section 7 closes the document with the conclusions.

2. Non-Uniform Rational B-Splines

Non-Uniform Rational B-Splines are still the de facto standard
for parametric surface representation within the CAD industry.
NURBS have a high level of maturity in the CAD community, of
flexibility for free-form modeling, and the ability to exactly repre-
sent all the conic sections. Consequently, the use of NURBS as basis
functions becomes a natural choice in the isogeometric analysis
framework.

A NURBS surface is a bivariate vector-valued piecewise rational
function [19, p. 128] of the form

S n;gð Þ ¼
Xn
i¼1

Xm
j¼1

Ri;j n;gð ÞPi;j ð1Þ

where Pi;j 2 R3 defines a bidirectional net of control points; and
Ri;j n;gð Þ are the piecewise rational basis functions. These are defined
as

Ri;j n;gð Þ ¼ Ni;p nð ÞNj;q gð Þwi;jXn
k¼1

Xm
l¼1

Nk;p nð ÞNl;q gð Þwk;l

ð2Þ

upon the non-rational B-spline basis functions Ni;p nð Þ;Nj;q gð Þ; the
degrees p and q in the parametric directions n and g, respectively;
and the weights wi;j of the control points.

The B-spline basis functions are defined on the open knot vec-
tors U and V, which are a non-decreasing and non-uniform
sequence of real numbers,

U ¼ 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
pþ1

; npþ2; . . . ; nn;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
pþ1

2
64

3
75 ð3Þ

V ¼ 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
qþ1

;gqþ2; . . . ;gm;1; . . . ;1|fflfflfflffl{zfflfflfflffl}
qþ1

2
64

3
75 ð4Þ

and are evaluated with the Cox deBoor recurrence formula [20]:
2

p ¼ 0

Ni;0 nð Þ ¼ 1 ni 6 n < niþ1

0 otherwise

� ð5Þ

p P 1

Ni;p nð Þ ¼ n�ni
niþp�ni

Ni;p�1 nð Þ þ niþpþ1�n

niþpþ1�niþ1
Niþ1;p�1 nð Þ ð6Þ
3. Structural model

In this work, we use the Kirchhoff–Love shell theory to model
thin-walled structures. Its isogeometric formulation for linear elas-
ticity is briefly reviewed here. For a thorough elaboration, see
[18,21].

In this section, geometric variables indicated with ��� �refer to the
reference configuration. Greek indices take on values 1;2f g, while
Latin indices take on values 1;2;3f g, and the Einstein summation
convention is applied on repeated indices. The shell differential
geometry is formulated in a convective curvilinear coordinate sys-
tem h1; h2; h3ð Þ. The in-plane coordinates are denoted by ha and
h3 2 �0:5h;0:5h½ � is the thickness coordinate, h being the shell
thickness. Partial derivatives with respect to ha are indicated as
@ �ð Þ;a ¼ @ �ð Þ=@ha.

3.1. Shell differential geometry

By virtue of the Kirchhoff hypothesis (cross sections remain
straight and orthogonal to the shell midsurface after deformation),
the shell continuum can be described by the midsurface and its
normal vector field. The position vector in the current configura-
tion of an arbitrary material point of the shell continuum is defined
as

x h1; h2; h3ð Þ ¼ r h1; h2ð Þ þ h3 a3 h1; h2ð Þ ð7Þ
where r and a3 are, respectively, the position vector and the director
or normal vector of a point on the midsurface (h3 ¼ 0). In the sequel,
the explicit dependence of the geometric variables on hi is omitted
to make the equations more compact.

Given a point r on the midsurface, the tangent base vectors of
the midsurface are obtained by aa ¼ r;a, and the director vector is
computed as

a3 ¼ a1 � a2

ka1 � a2k ð8Þ

The covariant base vectors at a point in the shell continuum are
denoted by gi ¼ @x=@hi, and can be expressed in terms of the tan-
gent base vectors of the midsurface ai as follows:

ga ¼ aa þ h3a3;a ð9Þ
g3 ¼ a3 ð10Þ
The covariant metric coefficients denoted by gij ¼ gi � gj are then
computed as:

gab ¼ aa � ab þ 2h3a3;a � ab þ h3ð Þ2a3;a � a3;b ð11Þ
ga3 ¼ aa � a3 þ h3a3;a � a3 ¼ 0 ð12Þ
g3a ¼ a3 � aa þ h3a3 � a3;a ¼ 0 ð13Þ
g33 ¼ a3 � a3 ¼ 1 ð14Þ
Under the assumption of linear strain distribution through the
thickness, the quadratic term in Eq. 11 can be neglected:

gab ¼ aa � ab þ 2h3a3;a � ab ð15Þ
The contravariant metric coefficients denoted by gij are obtained
from gij as follows:



A. del Toro Llorens and J. Kiendl Computers and Structures 256 (2021) 106636
gab
� � ¼ gab

� ��1 ð16Þ
ga3 ¼ 0 ð17Þ
g3a ¼ 0 ð18Þ
g33 ¼ 1 ð19Þ
where Eq. 16 has to be understood in matrix form. The contravari-
ant base vectors denoted by gi can be computed from the covariant
base vectors, such that they satisfy the Kronecker delta property
gi � gj ¼ dij, and the contravariant metric coefficients:

ga ¼ gabgb ð20Þ
g3 ¼ g3 ð21Þ
Finally, Eqs. (7)–(21) hold analogously for the reference configura-

tion (x
�
; r

�
; a

�
i; g

�
i; g

�
ij; gi

�
and gij

�
).

3.2. Shell kinematics

The displacement field v of any point in the shell continuum is
computed as the difference in the position vectors between the
current and the reference configurations, leading to

v ¼ x� x
� ¼ r� r

� þh3 a3 � a
�
3

� 	
¼ uþ h3 a3 � a

�
3

� 	
ð22Þ

where u is the displacement field of the shell midsurface. The par-
tial derivatives of v with respect to hiare

v;a ¼ u;a þ h3 a3;a � a
�
3;a

� 	
ð23Þ

v;3 ¼ a3 � a
�
3 ð24Þ

As strain measure, we use the infinitesimal strain tensor, denoted as
�, and defined as the linearized Green - Lagrange strain tensor. This
tensor is formulated in convective curvilinear coordinates as

� ¼ �ij gi
�
�gj

�
ð25Þ

with

�ij ¼ 1
2

v;i � g
�
j þ v;j � g

�
i

� 	
ð26Þ

In Kirchhoff–Love shells, transverse shear strains vanish, �3a ¼ 0,
while the transverse normal strain, �33 – 0, is statically condensed,
and hence, only in-plane strain components �ab are considered.
Close inspection of the Eqs. 23, 24, and 26 reveals that, after
neglecting quadratic terms of h3, the in-plane strains are the sum
of a constant term representing membrane strains and a linear term
representing bending strains:

�ab ¼ �mab þ h3jab ð27Þ

where the membrane strains are denoted by �mab, while jab corre-
sponds to the change in curvature, and therefore h3jab represents
the bending strains. The linear equations of these strain contribu-
tions are:

�mab ¼
1
2

u;a � a
�
b þ u;b � a

�
a

� 	
ð28Þ

jab ¼ �a
�
3 � u;ab þ 1

ka�1�a
�
2k

r
�
;ab � a

�
2

� 	
� u;1 þ a

�
1 � r

�
;ab

� 	
� u;2

h
þr

�
;ab � a

�
3 a

�
2 � a

�
3

� 	
� u;1 þ a

�
3 � a

�
1

� 	
� u;2

� 	i ð29Þ

Eq. 28 and Eq. 29 show that this shell formulation is rotation-free
because the kinematics of the shell is described by the three compo-
nents of the displacement field of the shell midsurface. Therefore,
this is the field to be solved for.
3

3.3. Constitutive equation

In this study, a linear elastic, isotropic material model is used.
The constitutive equation is formulated in terms of the Cauchy
stress tensor r, the linearized Green - Lagrange strain tensor �,
and the elasticity tensor C:

r ¼ C : � ð30Þ
For an isotropic material, the components of C defined in the con-
vective curvilinear coordinate system are given by

Cijkl ¼ k gij
�
gkl
�
 �

þ l gik
�

gjl
�
þ gil

�
gjk
�
 �

ð31Þ

where k and l are the Lamé constants. They are expressed in terms
of the Young’s modulus E and the Poisson’s ratio m as

k ¼ mE
1þ mð Þ 1� 2mð Þ ð32Þ

l ¼ E
2 1þ mð Þ ð33Þ

Enforcing the plane stress condition (r33 ¼ 0) allows eliminating
the transverse normal strain �33 by static condensation of the mate-
rial tensor:

r33 ¼ C33ab�ab þ C3333�33 ¼ 0 ð34Þ
Implying that:

�33 ¼ �C33ab

C3333
�ab ð35Þ

In addition, in the Kirchhoff–Love shell theory the transverse shear
deformations are neglected. Then, the equations involving the shear
stresses and strains are removed from Eq. 30. Based on this and Eq.
35, the constitutive equation becomes

rab ¼ Cabcd � Cab33C33cd

C3333


 �
�cd ¼ Ĉabcd �cd ð36Þ

where Ĉabcd is the statically condensed material tensor.

3.4. Variational formulation

The variational formulation is based on the principle of virtual
work:

dW ¼ dWint � dWext þ dWkin ¼ 0 ð37Þ
where dW is the virtual total work; dWint is the virtual internal

work; dWext is the virtual external work; dWkin is the virtual inertial
work; and d �ð Þ denotes the variation of a quantity �ð Þ with respect to
a virtual displacement.

The virtual internal work takes the form

dWint ¼
Z
V

d� : rð ÞdV ð38Þ

where V is the volume of the structural domain and d� is the virtual
strain. Eq. 38 is the general formula for the virtual internal work in
linear elasticity, but we are interested in its particular form for
shells with a linear stress–strain relation. Introducing Eq. 27 and

Eq. 36 in tensor form into Eq. 38, dWint reads as

dWint ¼ RV d�m : Ĉ : �m þ d�m : Ĉ : h3jþ h3dj : Ĉ : �m
�

þh3dj : Ĉ : h3j
	
dV

ð39Þ

with d�m and dj being, respectively, the virtual membrane strain
and the virtual change in curvature.
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Integrating through the thickness in Eq. 39, the second and
third terms vanish because, when the material is homogeneous,
they correspond to the integration of an odd function over a sym-
metrical domain. Then, the virtual internal work for a Kirchhoff–
Love shell with a linear stress–strain relation becomes

dWint ¼
Z
S

d�m : nþ dj : mð ÞdS ð40Þ

where S is the shell midsurface, and n andm are the stress resultant
tensors, respectively, for the normal forces and the bending
moments, and whose formulas are

n ¼
Z h=2

�h=2
Ĉ : �m
� 	

dh3 ¼ h Ĉ : �m
� 	

ð41Þ

m ¼
Z h=2

�h=2
Ĉ : j
� 	

h23dh3 ¼ h3

12
Ĉ : j
� 	

ð42Þ

The virtual external and kinetic works for a shell can be formulated
as

dWext ¼
Z
S

du � tð ÞdS ð43Þ

dWkin ¼
Z
S

du � qs
€uð ÞhdS ð44Þ

where t denotes the external load per unit area, qs is the material
density, €u is the acceleration vector, and it has been assumed that
the differential of volume dV can be approximated by dV � hdS
[22].

3.5. Discretization

The discretized displacement field of the shell midsurface is
expressed as:

u r
�
; t

� 	
¼
Xn
j¼1

Rj r
�� 	
ûj tð Þ ð45Þ

where t is the time variable, Rj are the shape functions, n is the total
number of shape functions, and ûjare the nodal displacement vec-
tors or control points of the displacement field with the compo-
nents ûj

i(i ¼ 1;2;3) referring to the global x-,y-,z-components. The
global degree of freedom number r of a nodal displacement is

defined by r ¼ 3 j� 1ð Þ þ i, such that ûr ¼ ûj
i. The variation of u with

respect to ûr is obtained by the partial derivative @=@ûr:

@u
@ûr

¼ Rjei ð46Þ

where ei is the global Cartesian base vector.

The variations of dWint ; dWext , and dWkin yield, respectively, the

vectors of internal, external and kinetic forces, f int ; fext , and fkin,
such that Eq. 37 becomes:

fkin þ f int ¼ fext ð47Þ
with:

f kinr ¼
Z
S
qs

@u
@ûr

� €u

 �

hdS ð48Þ

f intr ¼
Z
S

@�m

@ûr
: nþ @j

@ûr
: m


 �
dS ð49Þ

f extr ¼
Z
S

@u
@ûr

� tdS ð50Þ

The derivative of the vector of kinetic forces with respect to an

acceleration degree of freedom €̂us yields the global consistent mass
matrix:
4

Mrs ¼
Z
S
qs

@u
@ûr

� @€u
@ €̂us

 !
hdS ¼

Z
S
qs

@u
@ûr

� @u
@ûs


 �
hdS ð51Þ

The components of the global stiffness matrix are computed from
the derivative of the vector of internal forces with respect to ûs:

Krs ¼
Z
S

@2�m

@ûs@ûr
: nþ @�m

@ûr
:
@n
@ûs

þ @2j
@ûs@ûr

: mþ @j
@ûr

:
@m
@ûs

 !
dS

ð52Þ
For a geometrically linear analysis, there is no distinction between
the current and the reference configurations. Since �m and j are
computed as the difference of these quantities between these two
configurations, they become zero, and also n and m. Therefore,
the linear stiffness matrix becomes:

Klinear
rs ¼

Z
S

@�m

@ûr
:
@n
@ûs

þ @j
@ûr

:
@m
@ûs


 �
dS ð53Þ
3.6. Modal superposition and the generalized equation of motion

The discrete equilibrium equation derived from Eq. 37 and gov-
erning the linear elastodynamic response of a conservative system
with arbitrary initial conditions is

M � €̂uþ K � û ¼ f ð54Þ
where M is the consistent structural mass matrix defined by Eq. 51;
K is the structural stiffness matrix defined by Eq. 53; f is the consis-
tent nodal vector of external loads acting on the structure defined
by Eq. 50; û is the vector of displacements; and dots indicate partial
differentiation with respect to time.

The free response (f ¼ 0) of the undamped system is a harmonic
motion, and the displacement vector can be expressed as

û ¼ weixt ð55Þ
where w defines the vibration mode; x is the angular frequency of
the free vibration; and i is the unit imaginary number. Combining
Eq. 55 and Eq. 54 for the free vibration case leads to the generalized
eigenproblem

K � w ¼ x2M � w ð56Þ
whose solutions are the in-vacuo natural frequencies and vibration
modes.

These vibration modes define a basis of orthogonal vectors that
serve to represent any displacement vector [23]. The latter can be
computed as a superposition of the vibration modes, each of them
scaled by a weight that changes over time. These weights are called
generalized coordinates, modal coordinates, or normal coordinates
[23]. Thus, the displacement vector is expressed as

û tð Þ ¼
Xm
k¼1

wkzk tð Þ ð57Þ

beingm the total number of modes; wk the kth-vibration mode; and

zk tð Þ ¼ zkeixkt ð58Þ
the kth-generalized coordinate.

Collecting column-wise the m vibration modes into a matrix,
called the in-vacuo modal matrix W, and the generalized coordi-
nates into a vector z, Eq. 57 can be written in matrix form

û tð Þ ¼ W � z tð Þ ð59Þ
Combining Eq. 59 with Eq. 54 and premultiplying the resulting
equation by WT , we arrive to the generalized equation of motion

M
	
�€zþ K

	
�z ¼ ~f ð60Þ
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being M
	
¼ WT �M �W the generalized consistent structural mass

matrix; K
	
¼ WT � K �W the generalized structural stiffness matrix;

and ~f ¼ WT � f the generalized external force vector.

3.7. A master–slave approach to enforce the G1 continuity

The NURBS-based Kirchhoff–Love shell theory requires that the
NURBS patches modeling a structure have at least G1 continuity.
Even though in this work the geometries are single-patch smooth
NURBS surfaces, they contain C0 knot lines. These lines act as hinge
lines when the structure deforms, and hence they will turn into G0

lines if the G1 continuity is not enforced.
The enforcement of this condition can be achieved through dif-

ferent techniques. For instance, with the bending strip method
[24], the penalty method [25–27], the Lagrange multipliers method
[28], or the master–slave approach [18], among others. In this
work, we opt for the master–slave approach because of being a
simple yet effective method for the problems at hand.

The geometries that we use for the benchmark examples in Sec-
tion 6 are single-patch closed surfaces of revolution. Due to how
they are constructed, they contain three C0 knot lines along the
direction of revolution, and in the particular case of the sphere, also
one in the circumferential direction. Additionally, at the poles and
along the edges closing the surface, not only the G1 continuity must
be enforced but also the G0 continuity to ensure that the surface
remains watertight for any deformed configuration.

Owing to the trivial character of the linear constraint to enforce
the G0 continuity, only the linear constraints to impose the G1 con-
tinuity are presented hereafter. Let k be the row (column) number
of the polygon of control points aligned with a C0 knot line. The
geometry is G1 continuous if across this line the following relation
holds in homogeneous coordinates [18,21]

Pw
kþ1;j � Pw

k;j

� 	
¼ cj Pw

k;j � Pw
k�1;j

� 	
ð61Þ

where cj is the scalar coefficient corresponding to the jth-column
(row) of control points and is computed as follows:

cj ¼
kPw

kþ1;j � Pw
k;jk

kPw
k;j � Pw

k�1;jk
ð62Þ

The geometrical interpretation of this condition is that these three
control points must be collinear. Across this C0 knot line, the
deformed geometry will be G1 continuous if the Eq. 61 also holds
in the deformed configuration [21, p. 70], yielding the following
constraint for the control points of the displacement field

ûkþ1;j ¼ 1þ cj
� �

ûk;j � cj ûk�1;j ð63Þ

where ûkþ1;j is taken as the slave, and ûk;j and ûk�1;j as the masters.

The imposition of the G1 continuity at a pole requires that the
first and second, or the next-to-last and last, rows (columns) of
control points are coplanar in the deformed configuration. To
enforce this coplanarity with a master–slave approach, three of
these control points must always act as master, and as many con-
straints as the remaining number of control points are required.

At the pole, only one control point acts as master since all the
others are slaves of the former after imposing the G0 continuity.
At the row (column) of control points contiguous to the pole, only
two of these control points can always act as master, and they can-
not be collinear with the master control point at the pole. In this
manner, these three master control points will define the tangent
plane at the pole.
5

Fig. 1 illustrates the application of Eq. 63 to two cases that differ
in the number of control points influencing the continuity at the
pole. In this figure, the constraints between points are represented
with colored rectangles, and m and s stand for master and slave,
respectively. The color of these letters relates them to the con-
straint in which they are involved. This figure shows that depend-
ing on the number of points at the row (column) of control points
contiguous to the pole, it can happen that Eq. 63 cannot be applied
the required number of times. Consequently, at this row (column)
the number of control points that are always master can be larger
than two. Whereas in Fig. 1 (a) it is possible to build the required
number of constraints, in Fig. 1 (b) only 12 out of 14 constraints
can be established. Therefore, it is desirable an alternative
approach that works for any number of control points. The way
we achieve it is through the triangular or area coordinates [29, p.
173].

Let us assume that the pole is defined by the collapsed control
points of the first row. We choose three control points as masters,
Pm1 ;Pm2 and Pm3 , one at the pole and the other two at the second
row of control points with the sole condition that they are non-
collinear. Then, we compute the area coordinates f ¼ f1; f2; f3ð Þ
for the remaining (slave) control points of the second row. In this
work, the poles of the geometry are always on the Cartesian X axis,
and the tangent planes at the poles in the undeformed configura-
tion are parallel to the Cartesian YZ plane. Therefore, only the Y
and Z Cartesian coordinates of the masters and slaves are used to
compute the area coordinates.

Let ûs be the displacement degrees of freedom of one of the
slaves and fs its area coordinates, the linear constraint equation is

ûs ¼ ûm1 ; ûm2 ; ûm3½ � � fs ð64Þ
where ûm1 ; ûm2 and ûm3 are the degrees of freedom of the displace-
ments of the master control points Pm1 ;Pm2 and Pm3 , respectively.
Fig. 2 illustrates an example of the application of these constraints
with a static analysis where the coplanarity of the control points at
the pole is highlighted in yellow.

4. Fluid model

4.1. Boundary value problem

We consider a 3D body with boundary Cb submerged in an
inviscid, incompressible, and non-flowing fluid. The fluid domain
X is of infinite extent. Assuming that the fluid motion will be irro-
tational, there exist a velocity potential U xð Þ such that its gradient
is the fluid velocity rU xð Þ ¼ v xð Þ. Furthermore, U xð Þ is the solu-
tion of the following boundary value problem (BVP):

r2U ¼ 0; 8x 2 X ð65Þ
@U
@n

¼ vb � n; 8x 2 Cb ð66Þ

U ¼ 0; if kxk ! 1 ð67Þ
where vb is the body surface velocity and n is the unit outward nor-
mal vector pointing from the body surface into the fluid. In this BVP,
Eq. 66 represents the impermeability boundary condition on the
body surface, and Eq. 67 is the condition at infinity.

4.2. Boundary integral equation

Applying the Green’s second identity [30,31] to U xð Þ and to the
fundamental solution of the Laplace equation in 3D defined by
G x; yð Þ ¼ �1= 4prð Þ, with r ¼ kx� yk, one can recast the BVP into
a Fredholm boundary integral equation of the second kind with
respect to U xð Þ:



Fig. 1. Examples of enforcing the G1 continuity at a pole with Eq. 63.

Fig. 2. Example of enforcing the G1 continuity.
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c xð ÞU xð Þ þ R Cb
U yð ÞryG x; yð Þ � n yð ÞdC yð Þ

¼ R Cb
G x; yð ÞryU yð Þ � n yð ÞdC yð Þ ð68Þ

where c is the solid angle [32, p. 12] divided by 4p; x is the evalu-
ation point and y is the source point, both of them on Cb.

4.2.1. Regularization
The fundamental solution tends to infinity as the source point

approaches the evaluation point, making Eq. 68 singular. The
degree of this singularity is strong for the integrand on the left
hand side rG � n ! O 1=r2

� �
whereas it is weak for the integrand

on the right hand side G ! O 1=rð Þ.
Weakly singular integrals can be integrated with special

quadrature techniques, but strongly singular integrals can only
be determined in the Cauchy principal value sense. A straightfor-
ward way of avoiding the computation of the Cauchy principal
value is regularizing the strongly singular integrand using integral
identities [33] or the ‘‘rigid body motion trick” applied to an infi-
nite domain [34, p. 105].

Either of these two techniques allows getting an expression for
the solid angle fraction that solely depends on the geometry:

c xð Þ ¼ 1�
Z
Cb

ryG x; yð Þ � n yð ÞdC yð Þ ð69Þ
6

Replacing Eq. 69 into Eq. 68 and rearranging terms, one obtains
the regularized version of the boundary integral equation in
which now the integrand of the left hand side is weakly singular
too:

U xð Þ þ R Cb
U yð Þ �U xð Þ½ �ryG x; yð Þ � n yð ÞdC yð Þ

¼ R Cb
G x; yð ÞryU yð Þ � n yð ÞdC yð Þ ð70Þ
4.2.2. Discretization
For the discretization of Eq. 70 we approximate the velocity

potential with the NURBS basis functions used to represent the
geometry:

U xð Þ ¼
Xn
j¼1

Rj xð Þ/̂j

where /̂j are the control points of the NURBS representation of the
velocity potential.

In Eq. 70, only the terms U xð Þ and U yð Þ of the left hand side
need to be discretized. The term ryU yð Þ � n yð Þ of the right hand
side is known from the impermeability boundary condition (Eq.
66). Then, introducing Eq. 71 and Eq. 66 into Eq. 70 and rear-
ranging terms, the discretized boundary integral equation
becomes:



Fig. 3. Subdivision strategy for near-field �a ¼ 0ð Þ and in-field regions.
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Xn
j¼1

Rj xð Þ þ RCb
Rj yð Þ � Rj xð Þ� �ryG x; yð Þ � n yð ÞdC yð Þ

n o
/̂j

¼ RCb
G x; yð Þvb yð Þ � n yð ÞdC yð Þ

ð72Þ

We build the algebraic system of equations using the collocation
method. Eq. 72 is evaluated at n collocation points xi resulting in
the following linear system:

A � /̂ ¼ b ð73Þ
where:

Aij ¼ Rj xið Þ þ
Z
Cb

Rj yð Þ � Rj xið Þ� �ryG xi; yð Þ � n yð ÞdC yð Þ ð74Þ

bi ¼
Z
Cb

G xi; yð Þvb yð Þ � n yð ÞdC yð Þ ð75Þ

The collocation points are chosen according to the physical image of
the Greville abscissae, computed using Eq. 1, associated with each
direction of the NURBS parametric space. For instance, along the
parametric direction n, the Greville abscissae are defined as

~nk ¼ 1
p

nkþ1 þ . . .þ nkþp

� � ð76Þ

where p is the NURBS degree and k goes from 1 to n, the total num-
ber of control points along this direction.

For problems with multi-patch geometries, some authors
[35,36] modify the location of the first and last Greville abscissae
to avoid collocating along sharp edges and/or having redundant
collocation points. Though the geometries of this work are
single-patch surfaces, we also move the first and last Greville
abscissae inward the first and last knot span, respectively. In this
way, we do not collocate at the poles of the geometries, and we
avoid having redundant collocation points along their closing
edges. We do this modification as follows

~n10 ¼ ~n1 þ b ~n2 � ~n1
� 	

ð77Þ
~nn0 ¼ ~nn � b ~nn � ~nn�1

� 	
ð78Þ

where b 2 0;1½ Þ is a parameter that controls how much the colloca-
tion point is moved. This modification speeds up the evaluation of
the integrals without compromising the quality of the solution from
a practical point of view as we show in the Appendix A. We choose
b ¼ 0:25 for the simulations performed in this work.

4.2.3. Numerical evaluation of the integrals
The strategy for the numerical evaluation of the integrals clo-

sely follows the one described in [17]. Let xi 2 Cb be a collocation
point defined by its parametric coordinates ni;gið Þ; Ce 
 Cb be a
region of integration defined by n1; n2½ � � g1;g2½ �; d denote a repre-
sentative measure of Ce in the physical space computed as

d ¼ max kr n1;g1ð Þ � r n2;g2ð Þk; kr n1;g2ð Þ � r n2;g1ð Þkð Þ ð79Þ
with r being the position vector. We distinguish three cases:

� Far-field: ni;gið Þ R Ce and kr ni;gið Þ � r ns;gsð Þk > 2d. We use the
standard Gauss quadrature rule.

� Near-field: ni;gið Þ R Ce and kr ni;gið Þ � r ns;gsð Þk 6 2d. The
region of integration is initially split into four subregions (see
Fig. 3 with �a ¼ 0) and in each of them we apply the Gauss
quadrature rule modified with the Telles map [37].

� In-field: ni;gið Þ 2 Ce. The region of integration is initially split
into eight subregions (see Fig. 3) and in each of them we apply
the Gauss quadrature rule modified with the Telles map [37].
7

where ns;gsð Þ represents the parametric coordinates of the closest
point to xi on Ce. For the three cases, we adaptively increase the
number of quadrature points until the integral is computed with
the desired number of significant digits nsd. Besides this, for the
near and in-field cases a quad-tree subdivision is recursively
applied in each subregion in the event of not attaining the desired
accuracy with 100 quadrature points.

In Fig. 3, �a is used to isolate the closest point to the collocation
point, and it is defined as

�a ¼ �r min n2 � n1;g2 � g1ð Þ ð80Þ
where �r 2 0;1½ Þ is a numerical parameter that controls the size of
the cell isolating the point in question. The introduction of this
parameter eases the convergence of the numerical quadrature. As
we show in the Appendix A, this parameter does not compromise
the accuracy of the solution for a given nsd if �r < 10�nsd . We choose
nsd ¼ 5 and thereby �r ¼ 5 � 10�6 for the simulations performed in
this work.

5. Modal analysis of a submerged structure

5.1. Fluid modes

The harmonic vibration of a submerged structure induces
motion in the surrounding fluid that can be considered irrotational
because of the small displacements both systems undergo [7].
Assuming an inviscid and incompressible fluid, and recalling that
the vibration of the structure is expressed in the form of a finite
series of distortions in its principal modes, there exist a velocity
potential that can be expressed as a finite series of fluid modes
or velocity potentials [38]:

U x; tð Þ ¼
Xm
k¼1

/k xð Þzk tð Þ ð81Þ

where m is the total number of in-vacuo vibrations modes under
consideration.

Introducing Eq. 81 into Eq. 65 and considering that it must hold
for an arbitrary value of m at any time instant, then each velocity
potential must satisfy the Laplace equation:

r2/k ¼ 0 ð82Þ
The displacement of the body surface d results from the superposi-
tion of the modal displacements dk induced by each in-vacuo vibra-
tion mode weighted with the generalized coordinates:
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d x; tð Þ ¼
Xm
k¼1

dk xð Þzk tð Þ ð83Þ

The time derivative of d x; tð Þ defines the body surface velocity:

vb x; tð Þ ¼ i
Xm
k¼1

xkdk xð Þzk tð Þ ð84Þ

Introducing Eq. 81 and Eq. 84 in Eq. 66 leads to the impermeability
boundary condition that each velocity potential must satisfy on the
body surface:

@/k

@n
¼ ixkdk � n ð85Þ

Therefore, the solution of the fluid response is decomposed in a set
of BVPs, one for each velocity potential /k, defined by Eq. 82, Eq. 85
and its corresponding far field condition. We solve these BVPs as
described in the Section 4.

Finally, because of the linear character of the modal analysis
technique, the impermeability boundary condition defined by Eq.
85 is applied on the reference configuration of the structure and
not on its deformed configuration. Therefore, for all these BVPs
the structure has the same geometry.

5.2. Generalized fluid force

The fluid inertial effects acting on the structure are modeled
with the generalized added mass matrix. The fluid pressure acting
on the structure can be computed with the linearized version of
the Bernoulli’s equation in which second-order terms in the veloc-
ity potential are neglected due to the small amplitude vibrations of
the structure. This equation reads as follows:

p x; tð Þ � �qw
@U x; tð Þ

@t
ð86Þ

where qw is the fluid density. Those readers interested in using Ber-
noulli’s equation with its non-linear terms are referred to [39,40].

According to [38], the rth-component of the generalized fluid
force acting on the structure can be expressed in the form

~f r tð Þ ¼ �
Z
Cb

p y; tð Þdr yð Þ � n yð ÞdC yð Þ ð87Þ

with r ¼ 1; . . . ;m. Elaborating on Eq. 87, one can express the gener-
alized fluid force as a generalized added mass times the acceleration
of the modal coordinates:

~f r tð Þ ¼ �A
	
rk €zk tð Þ ð88Þ

where

A
	
rk ¼ qw

x2
k

Re
Z
Cb

ixk/k yð Þdr yð Þ � n yð ÞdC yð Þ
" #

ð89Þ

is the rth,kth-coefficient of the generalized added mass matrix A
	

associated with the rth-mode, and represents the coupled effect
due to the harmonic oscillation of unit amplitude in the kth-mode
[38]. Moreover, a close examination of Eq. 89, Eq. 85, and Eq. 73

shows that A
	
is frequency-independent [4,9].

5.3. In-water eigenvalue analysis

In the absence of structural damping, and under the sole action
of the generalized fluid force defined by Eq. 88, the generalized
equation of motion has the form

M
	
þA

	
 �
� €zþ K

	
�z ¼ 0 ð90Þ
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Since the free response of the system is harmonic, the solution to
Eq. 90 can be expressed as z ¼ ŵeix̂t , leading to a generalized
eigenproblem

K
	
�ŵ ¼ x̂2 M

	
þA

	
 �
� ŵ ð91Þ

whose solutions are the wet natural frequencies x̂ and the wet
vibration modes ŵ in generalized coordinates. The coordinates of
the control points of the wet vibration modes are computed multi-
plying the in-vacuo modal matrix and the in-water modal matrix
[10].

6. Benchmark examples

In the following, we use the methodology described in Section 5
to compute the dynamic characteristics of unconstrained and
closed shells of revolution. In order to validate our implementa-
tion, we have selected three test cases for which there are refer-
ence results publicly available in the literature. The three test
cases are:

� Unconstrained sphere: theoretical reference values presented
by Junger and Feit [41, p. 257];

� Unconstrained cylinders:

– Cylinder A: numerical reference values presented by Ever-
stine [4], Gilroy [42], Monterrubio and Krysl [10];
– Cylinder B: theoretical and experimental reference values
presented by Randall [43], and numerical reference values
by Gilroy [42], Monterrubio and Krysl [10].

In this section, E stands for the Young’s modulus; m for the Pois-
son’s ratio; L and R for the outer shell length and radius; Lms and Rms

for the midsurface shell length and radius; h for the shell thick-
ness; and qs for the material density.

6.1. Unconstrained sphere

This test case shows the results for the dry and wet natural fre-
quencies and vibration modes of a hollow spherical shell. A com-
plete convergence study of the natural frequencies is carried out,
both in dry and wet conditions, assessing the computational
advantage of using non-matching parametrizations between the
structural and the fluid problems when computing the wet natural
frequencies.

This analysis focuses on the modes of order n ¼ 2; . . . ;9. For
each value of n, there are 2nþ 1 eigenmodes sharing the same
eigenfrequency, one axisymmetric and 2n non-axisymmetric
modes. Therefore, a total of 102 eigenmodes have to be computed.

We benchmark the computed frequencies against their theoret-
ical values [41, p. 257]. These reference values were determined
neglecting flexural effects and considering that the fluid surround-
ing the sphere is compressible. For this example, the results are
presented in terms of the dimensionless angular frequency

x
	 ¼ xRms

cp
ð92Þ

where x is the angular frequency and

cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
qs 1� m2ð Þ

s
ð93Þ

is the low frequency phase velocity of the compressional waves in
an elastic plate.

Finally, the shell material properties are E ¼ 196 GPa, m ¼ 0:30
and qs ¼ 7670 kg/m3, and the density of the water is qw ¼ 1000
kg/m3.



Fig. 4. Bi-quadratic NURBS modelling a sphere.

1 Line that is revolved around an axis of revolution to produce a surface.
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6.1.1. Parametrization of the geometry
The spherical shell has Rms ¼ 3:0 m and h ¼ 0:03 m. Its geome-

try is described by a single bi-quadratic NURBS surface with 45
control points [19, p. 347] and is illustrated in Fig. 4. This
parametrization is the coarsest level that we use in the analysis.

6.1.2. Results
We have performed a convergence study of the natural frequen-

cies of the sphere, both in dry and wet conditions. These results are
presented in Fig. 5, 7 and 8, in which n is the mode identifier, ncp is
the number of degrees of freedom or control points, and � is the

relative error of x
	
, computed as

� ¼ x
	

ref �x
	

com

x
	

ref

ð94Þ

where x
	

ref is the reference value taken from [41] and x
	

com is the
computed value.

For this convergence study, we have excluded the shell bending
stiffness from Eq. 53 to get a pure membrane behavior as in [41].
For the sake of conciseness, we only present the results for the
bi-quadratic and bi-cubic NURBS parametrizations concerning
the modes 2;3;8 and 9 in dry conditions and for the modes
8 and 9 in wet conditions.

Fig. 5 shows the convergence plots in dry conditions where one
can see that the four modes exhibit similar orders of convergence.
We highlight that the reference results in [41] are provided with
only three significant digits. For this reason and as can be seen in
Fig. 5, the convergence curves level off at a relative error approxi-
mately equal to 10�4.

It is known that the higher the mode order, the larger the num-
ber of degrees of freedom needed to achieve convergence. Fig. 5 (b)
is a clear example of it when comparing, for instance, modes 2 and
8. The latter needs approximately ten times more control points
than the former for a similar relative error at convergence. If one
is interested only in the low order modes, a coarse parametrization
already allows us getting a converged solution and a good repre-
sentation of the vibration patterns [44] as shown in Fig. 6.

For the wet convergence analysis we have followed two
approaches. In the first one, the NURBS spaces used to discretize
the displacements and the velocity potential are refined simultane-
ously, and therefore, they match each other. Fig. 7 shows the
results with this first approach.

In the second approach, the NURBS spaces of the displacements
and the velocity potential are independent. Contrary to the case of
the standard FEM and BEM for non-matching meshes, within the
isogeometric framework there is no need to interpolate the solu-
tion fields at the body surface. This is because the geometry is
the same for both numerical methods and the solution fields have
a continuous representation over the body surface.

The way we proceed in this second approach is the following.
First, only one dry eigenvalue analysis is performed, with the dis-
placement field discretized by a bi-septic NURBS plus two levels
of knot refinement (861 control points). With this parametrization,
the relative error of all the dry eigenfrequencies is below 10�3.
Then, the eigenmodes of this dry analysis are used in all the subse-
quent fluid analyses in which the NURBS representation of the
velocity potential is refined starting from a bi-quadratic NURBS
with 45 control points. Fig. 8 shows the results for this second
approach.

Let us compare Fig. 7 and Fig. 8 focusing on, for instance, the
mode 8 and p; qð Þ ¼ 2;2ð Þ. One can see that to attain a relative error
of 10�2, with the first approach around 1000 control points are
needed whereas with the second approach 400 control points suf-
fice to discretize the velocity potential. The total computational
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cost of this kind of simulation is completely driven by the fluid
analysis, and hence any significant reduction in the number of con-
trol points of the velocity potential is largely beneficial. This is
achieved with the second approach, and consequently, it is more
efficient than the first one for a given accuracy.

The results presented hereafter correspond to a parametrization
with a bi-septic NURBS for the displacement field, and with a bi-
quintic NURBS for the velocity potential field. For both fields, we
also apply two levels of knot refinement. The number of control
points is 861 for the displacement field and 561 for the velocity
potential field. The frequencies have been computed with and
without bending stiffness to assess how it influences the results.

The comparison between theoretical and computed dry fre-
quencies is shown in Fig. 9. One can notice that the bending stiff-
ness influences the solution by slightly increasing the frequency
of the modes n P 5. When this stiffness is neglected, the numerical
values completely match the theoretical counterparts.

Fig. 10 illustrates the generatrix1 of the dry axisymmetric vibra-
tion modes without bending stiffness. The mode of order n ¼ 0 is
used to represent the reference generatrix line of the sphere.

Next, Fig. 11 shows the same comparison as before but now for
the wet natural frequencies. The agreement for these frequencies is
fairly good, especially for modes of order n P 4 for which the dis-
crepancy is below 4% in the case of the membrane model. The
modes of order 2 and 3 exhibit a discrepancy of 9.9% and 9.2%,
respectively, regardless of whether or not the bending stiffness is
vanished. For these two modes, further investigations are needed
to identify the source of these discrepancies. We think that it is a
consequence of the incompressible fluid assumption because the
fluid compressibility is responsible for the radiation damping,
which decreases as the complexity of the mode shape increases
[45].

6.2. Unconstrained cylinders

These test cases show the results for the dry and wet natural
frequencies and vibration modes of two hollow cylindrical shells
with different aspect ratio and thickness to radius ratio. These
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Fig. 5. Unconstrained sphere: convergence of the relative error of the dry natural frequencies for the modes 2, 3, 8 and 9. (a): bi-quadratic parametrization. (b): bi-cubic
parametrization.

Fig. 6. Unconstrained sphere: axisymmetric vibration modes 2 and 3 in dry conditions. Bi-cubic NURBS, with one level of knot refinement (153 control points).
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Fig. 7. Unconstrained sphere: convergence of the relative error of the wet natural frequencies for the modes 8 and 9 with matching parametrizations. (a): bi-quadratic
parametrization. (b): bi-cubic parametrization.

A. del Toro Llorens and J. Kiendl Computers and Structures 256 (2021) 106636

10



1

3

1

4

Fig. 8. Unconstrained sphere: convergence of the relative error of the wet natural frequencies for the modes 8 and 9 with non-matching parametrizations. (a): bi-quadratic
parametrization. (b): bi-cubic parametrization.

Fig. 9. Unconstrained sphere: dry natural frequencies.

Fig. 10. Unconstrained sphere: generatrices of the axisymmetric dry eigenmodes without bending stiffness.
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Fig. 11. Unconstrained sphere: wet natural frequencies.

Table 1
Main dimensions and material properties of the unconstrained cylinders.

Cylinder L [m] R [m] h [m] E [GPa] m [–] qs [kg/m
3]

A 60.00 5.00 0.050 196 0.30 7900
B 1.284 0.18 0.003 207 0.29 7750

Fig. 12. Generatrix for a single-patch NURBS cylinder.
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analyses focus on the first 16 vibration modes, rigid body modes
excluded. Table 1 summarizes the main dimensions and shell
material properties for each cylinder. For both cases, the density
of the water is qw ¼ 1000 kg/m3.

6.2.1. Parametrization of the geometry
The geometry of the cylinder is described by a single-patch

NURBS surface. This geometry is constructed as a surface of revo-
lution using the generatrix line depicted in Fig. 12. It is a cubic
NURBS curve, with a non-uniform knot vector, and its 12 control
points have unit weight. The knot vector is computed using a
chordal-length parametrization and the algorithm described in
[46].

With this generatrix line, the cylinder will have a small fillet
between the flat end caps and the wall, and thereby no sharp edges
will be present in the geometry. The resulting NURBS surface mod-
eling the cylinder has 108 control points, it is quadratic in the cir-
cumferential direction and is cubic in the axial direction.

6.2.2. Results
As for the sphere test case, a different NURBS parametrization

is used for the displacement and the velocity potential fields. For
the in-vacuo eigenvalue analysis, the NURBS surface is made sex-
tic in the circumferential direction and quintic in the axial direc-
tion. For the in-water analysis, the NURBS surface is made
quintic in the circumferential direction and quartic in the axial
direction. For both solution fields, the knot vector in the circum-
ferential direction is uniformly refined twice, and the knot vector
in the axial direction is locally refined. After these operations of
degree elevation and knot insertion, the final number of control
points in 1443 for the displacements and 990 for the velocity
potential.

We classify the vibration modes of a cylinder as m;nð Þ or eð Þ.
The axial wave number is m, while n is the circumferential wave
number. The end-plate modes are identified with an e followed
by the number of nodal diametrical lines. The first 16 dry vibration
12



Fig. 13. Cylinder A: dry eigenmodes.
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modes are illustrated in Fig. 13 and Fig. 14 for the cylinders A and
B, respectively. In these figures, the two e0 modes do not corre-
spond to a repeated eigenfrequency (see Appendix B). The differ-
ence between them is that in the first case, both end-plates
deform outward (symmetric mode), whereas in the second case,
one end-plate deforms outward and the other one inward (asym-
metric mode).

Figs. 15–18 compare the computed dry and wet natural fre-
quencies with the values published by the different authors. In
these figures we show only the results for the modes that were
computed by all the authors. For the frequencies of the other
modes, please see Appendix B.

In general, there is a good agreement with the results reported
in the literature, with the largest discrepancies happening for the
end-plate mode e0.
13
7. Conclusions

A high-order numerical scheme based on the isogeometric for-
mulations of the FEM and the BEM, combined with the modal
superposition approach, has been applied to the assessment of
the dynamic characteristics of submerged thin-walled structures.
The geometry preserving property of the NURBS refinement strate-
gies has been exploited in the analyses. We have used a finer dis-
cretization for the structural problem than for the fluid problem
without the need for a projection scheme as it would have been
required by the standard formulations of the FEM and the BEM.

On the structural problem side, we have proposed a novel mas-
ter–slave strategy to enforce the G1 continuity at the pole of a sur-
face of revolution. With the use of the area coordinates, we have
shown how to exactly enforce the coplanarity of the control points



Fig. 14. Cylinder B: dry eigenmodes.

Fig. 15. Cylinder A: dry frequencies - comparison among authors. Fig. 16. Cylinder A: wet frequencies - comparison among authors.

A. del Toro Llorens and J. Kiendl Computers and Structures 256 (2021) 106636
that govern this continuity. On the fluid problem side, we have
used a weakly-singular boundary integral equation in contrast to
the standard strongly-singular one commonly used in the applica-
tion of the isogeometric analysis to potential flow problems.

This numerical scheme has been implemented and bench-
marked against reference results available in the literature for a
14
submerged sphere and two submerged cylinders. They show a
good agreement for both the in-vacuo and wet conditions, and
the differences lie within the expected range when comparing
numerical with theoretical or experimental results. Moreover,
these satisfactory numerical results have been computed with a
relatively low number of degrees of freedom.



Fig. 17. Cylinder B: dry frequencies - comparison among authors.

Fig. 18. Cylinder B: wet frequencies - comparison among authors.
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Fig. A.19. Influence of b on the L2-norm of the relative error of the perturbation
potential.
Appendix A. Selection of the numerical parameters b and �r

In this appendix, we present two parametric studies that we
have carried out to choose the values of the numerical parameters
b and �r introduced in Section 4.2. The test case is a sphere in a free
stream for which the velocity potential has a closed-form solution
(for instance, see [30, p. 67]). For this test case, we study the influ-
15



Fig. A.20. Influence of �r on the L2-norm of the relative error of the perturbation
potential.
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ence of these parameters on the L2-norm of the relative error of the
perturbation potential. The sphere has a unit radius and the free
stream speed is 1.0 m/s.

The first study concerns the influence of the parameter b. The
sphere is represented with a bi-quadratic NURBS surface, and three
Table B.2
Dry and wet natural frequencies [Hz] of the cylinder A.

Mode Reference - Dry

(m, n) [4] [42] [10] Prese

(1, 2) 2.72 2.72 2.72 2.71
(1, 3) 3.90 3.85 3.95 3.88
(e0) 4.22 4.88 4.99 4.54

– – 5.11 4.65
(2, 3) – – 5.86 5.83
(1, 4) 7.19 7.08 7.36 7.13
(2, 4) – – 7.86 7.64
(2, 2) – – – 9.04
(3, 4) 9.34 9.27 – 9.29
(e1) 9.20 10.80 – 9.61
(3, 3) 10.40 10.30 – 10.35
(1, 5) 11.60 11.40 – 11.59
(2, 5) – – – 11.79

Table B.3
Dry and wet natural frequencies [Hz] of the cylinder B.

Mode Reference - Dry

(m, n) [43] [42] [10] Presen

(1, 2) 193.9 196.0 196.0 196.8
(1, 3) 197.4 199.0 208.0 202.7
(e0) 240.7 220.0 237.0 217.0

270.5 228.0 245.0 225.2
(1, 4) 336.5 341.0 365.0 348.7
(2, 3) 387.0 388.0 391.0 390.5

389.9 – – –
(2, 4) 403.1 405.0 425.0 411.4
(e1) 389.3 – – –

402.2 – – –
422.6 – – –
457.0 – – 455.8

(1, 5) 537.1 546.0 – 559.5
(3, 4) 564.7 570.0 584.0 574.8
(2, 5) 568.6 575.0 – 587.0
(2, 2) 653.2 – – 639.4
(3, 5) 662.0 – – 660.8

16
levels of knot refinement are considered leading to the following
number of control points (ncp): 45, 91, and 231. Integrals are com-

puted with 6 significant digits and �r ¼ 5 � 10�7.
Fig. A.19 shows the results for this study. One can conclude that

if b 6 0:4, the L2-norm of the solution is not sensitive to this
parameter from a practical viewpoint. Moreover, the influence of
this parameter decreases as the NURBS parametric space is refined.

Next, we proceed to analyze the influence of the parameter �r .
The sphere is represented with a bi-quadratic NURBS surface
including one level of knot refinement (91 control points). Integrals
are computed with 4, 6, 8 and 10 significant digits (nsd), �r ranges
from 10�15 to 10�1, and b ¼ 0:25.

Fig. A.20 shows the results for this second analysis. It becomes
noticeable that for each nsd the behavior of the L2-norm resembles
a bi-linear function, being constant for �r < 10�nsd and then
increasing linearly with �r in a logarithmic scale.
Appendix B. Tabulated natural frequencies for the cylinders

Table B.2 and Table B.3 summarize the values of the dry and wet
natural frequencies for the cylinders A and B, respectively. In
Table B.2 all the values were determined numerically. In
Table B.3 all the values were determined numerically with the
exception of the reference [43]. In this reference, the values were
determined experimentally except for the dry modes 2;2ð Þ and
Reference - Wet

nt [4] [42] [10] Present

1.13 1.25 1.04 1.11
1.81 2.06 1.55 1.78
1.44 2.01 1.51 1.56
– – 1.88 1.96
– – 2.31 2.69
3.67 4.45 2.99 3.59
– – 3.21 3.86
– – – 3.79
4.82 6.05 – 4.74
4.26 6.01 – 4.42
4.93 5.96 – 4.86
6.38 – – 6.27
– – – 6.40

Reference - Wet

t [43] [42] [10] Present

96.4 90.5 96.0 99.3
106.7 115.0 105.0 112.2
114.4 85.3 88.9 91.6
128.6 85.3 112.0 116.6
195.9 238.0 190.0 208.8
216.3 266.0 198.0 219.7
– – – –
239.2 301.0 222.0 248.4
252.9 – – 251.6
– – – –
– – – –
– – – –
360.4 – – 356.3
344.5 – 308.0 351.9
376.9 – – 375.7
327.8 340.0 – 334.6
422.4 – – 426.9
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3;5ð Þ, and the wet modes 1;5ð Þ; 3;4ð Þ; 2;5ð Þ; 2;2ð Þ and 3;5ð Þ that
were computed analytically.
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