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Abstract: This paper deals with a novel theoretic approach to the robust state estimations
in discrete-time dynamic systems with the non-Gaussian correlated stochastic noises. The
methodology we develop is based on the so-called ”worst case” robust Kalman Filter (KF)
approach proposed in [2,3]. We are interested in the robust state estimation for the controlled
ARMA models under assumption of the colored noises. Since an ARMA model involves the
correlated noises in the equivalent Linear Model (LM) representation, the resulting dynamic
system also includes the correlated stochastic variables. These two crucial properties of the
ARMA models under consideration imply the impossibility of application of the classic KF-type
state estimations. We use the modified ”instrumental variable” method and derive an auxiliary
LM with the uncorrelated noises. Application of the robust KF to this auxiliary LM makes
it possible to derive a guaranteed state estimation in the initially given ARMA model. The
proposed non-standard KF based state estimations are finally applied to the linear stochastic
dynamic systems with the time delays.

1. INTRODUCTION

The advanced KF based state estimation methodology for
diverse types of discrete and continuous dynamic systems
constitutes nowadays a powerful practical tool of the mod-
ern systems engineering (see [1,7,15,17,20,29]). While the
classic KF development has been around for about 55 years
(see [10,18]), it has been established in many challenging
engineering areas and real-world applications. Implemen-
tations of the classic and advanced KF based state es-
timation algorithms span from aerospace technology, to
control engineering and robotics, to the signal processing,
communication engineering and mathematical economics.
We refer to [1,10,11,23,24,26,30]) for some important ex-
amples of application of the celebrated KF approach. Let
us also mention here some successful usages of the general
KF methodology in financial engineering, economy and
sociology [6,25].

It is common knowledge that the Normality Hypothesis
(NH) associated with the stochastic noises of dynamic
processes under consideration constitutes one of the funda-
mental hypothesises in the classic KF theory. The same is
also true for the basic Stochastic Independency Hypothesis

(SIH) for the system noises. Initially developed for the
LMs equipped with the linear observer, the original KF
approach was next extended to some important classes of
nonlinear dynamic processes (see e.g., [1,10,15,20,29]).

Our paper is devoted to a specific application of the
so-called ”worst-case” minimax robust KF (developed in
[2,3]) to the state estimation of the controlled ARMA
processes with the non-Gaussian noises. We consider some
families of stochastic variables and assume that the prob-
ability distributions of these variables possess bounded
second moments. The resulting robust KF state estimation
involves a guaranteed state estimation for the introduced
family of system noises. Recall that the generic ARMA
type models imply the correlated additive noises in the
equivalent LMs such that the necessary SIH does not sat-
isfied. This fact implies that the resulting discrete dynamic
model contains the non-Gaussian as well as the correlated
stochastic noises. In this paper, we use a modified ”instru-
mental variable” method and determine an auxiliary LM
that contains the uncorrelated stochastic variables. This
instrumental variable based approach makes it possible to
apply the robust KF to the auxiliary LM associated with
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correlated noises in the equivalent Linear Model (LM) representation, the resulting dynamic
system also includes the correlated stochastic variables. These two crucial properties of the
ARMA models under consideration imply the impossibility of application of the classic KF-type
state estimations. We use the modified ”instrumental variable” method and derive an auxiliary
LM with the uncorrelated noises. Application of the robust KF to this auxiliary LM makes
it possible to derive a guaranteed state estimation in the initially given ARMA model. The
proposed non-standard KF based state estimations are finally applied to the linear stochastic
dynamic systems with the time delays.

1. INTRODUCTION

The advanced KF based state estimation methodology for
diverse types of discrete and continuous dynamic systems
constitutes nowadays a powerful practical tool of the mod-
ern systems engineering (see [1,7,15,17,20,29]). While the
classic KF development has been around for about 55 years
(see [10,18]), it has been established in many challenging
engineering areas and real-world applications. Implemen-
tations of the classic and advanced KF based state es-
timation algorithms span from aerospace technology, to
control engineering and robotics, to the signal processing,
communication engineering and mathematical economics.
We refer to [1,10,11,23,24,26,30]) for some important ex-
amples of application of the celebrated KF approach. Let
us also mention here some successful usages of the general
KF methodology in financial engineering, economy and
sociology [6,25].

It is common knowledge that the Normality Hypothesis
(NH) associated with the stochastic noises of dynamic
processes under consideration constitutes one of the funda-
mental hypothesises in the classic KF theory. The same is
also true for the basic Stochastic Independency Hypothesis

(SIH) for the system noises. Initially developed for the
LMs equipped with the linear observer, the original KF
approach was next extended to some important classes of
nonlinear dynamic processes (see e.g., [1,10,15,20,29]).

Our paper is devoted to a specific application of the
so-called ”worst-case” minimax robust KF (developed in
[2,3]) to the state estimation of the controlled ARMA
processes with the non-Gaussian noises. We consider some
families of stochastic variables and assume that the prob-
ability distributions of these variables possess bounded
second moments. The resulting robust KF state estimation
involves a guaranteed state estimation for the introduced
family of system noises. Recall that the generic ARMA
type models imply the correlated additive noises in the
equivalent LMs such that the necessary SIH does not sat-
isfied. This fact implies that the resulting discrete dynamic
model contains the non-Gaussian as well as the correlated
stochastic noises. In this paper, we use a modified ”instru-
mental variable” method and determine an auxiliary LM
that contains the uncorrelated stochastic variables. This
instrumental variable based approach makes it possible to
apply the robust KF to the auxiliary LM associated with

the initially given controlled ARMA model. We next study
the developed non-standard state estimation methodology
in the context of a linear stochastic control system with
delays. The robust KF estimation strategy we propose
involves a guaranteed state estimation for a consistent
discrete approximation of the given delayed stochastic
system.

The remainder of this paper is organized as follows: Section
2 contains the main mathematical model of a controlled
ARMA process with the non-Gaussian noises. We consider
a class of colored system noises characterized by a specific
family of the probability distributions. Section 3 includes
some basic facts related to the robust KF we developed
in [2,4]. Section 4 presents a self-closed solution approach
to the robust state estimation for the ARMA processes
in the absence of the NH and SIH. We use here the
modified instrumental variable approach. In Section 5 we
apply the developed robust state estimation procedure to
a linear stochastic control system with delays. Section V
summarizes our paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section we give a formal description of the initial
state-observer model. Consider the generic ARMA model
of the order (la, ld) (denoted as ARMA (la, ld))

zt+1 = a0zt + a1zt−1 + . . .+ alazt−la + but+

d0ξt + . . .+ dldξt−ld , z0 ∈ R, (1)

in the absence of the classic Gaussian hypothesis for the
stochastic variable ξt, t ∈ N. Here la, ld ∈ N and z0
denotes an initial value of the state variable. The orig-
inal discrete-time model (1) with the known coefficients
describes a controlled dynamics with the control input ut

and b ∈ R. Assume ut ∈ U , where U ⊂ R is a compact
set of admissible control inputs. We next assume that the
controlled ARMA model (1) is equipped with the linear
observer

yt = ctzt + ζt, t ∈ N (2)

with the known coefficients ct, t ∈ N. We also assume the
non-Gaussian character of the stochastic variable ζt, t ∈ N
in (2). The concrete probabilistic characterization of the
stochastic variables ξt and ζt in (1)-(2) is given as follows:

ξt ∼ Gξ ∈ P(0, r1),

ζt ∼ Gζ ∈ P(0, r2),
(3)

where P(0, r1) and P(0, r2) in (3) are classes of probability
distribution functions (pdf’s) defined as follows

P(0, r1) := {G(·)
∣∣

∞∑
t=0

ξtGξ = 0,

∞∑
t=0

ξ2tGξ ≤ r1},

P(0, r2) := {G(·)
∣∣

∞∑
t=0

ζtGζ = 0,

∞∑
t=0

ζ2t Gζ ≤ r2}.

Here r1 > 0 and r2 > 0 are known positive numbers.
We next assume that the typical stochastic independency
hypothesis for variable ξt in ARMA (la, ld) model (1) are
satisfied:

∞∑
t=0

ξtξsGξ = 0 ∀s �= t, s, t ∈ N.

The probabilistic characterization (3) of the uncertainties
ξ and ζ in the controlled ARMA (la, ld) model describes
a very wide class of possible stochastic variables. Let us
note that the possible Gaussian (discrete-time) stochastic
processes also belong to the given families P(0, r1) and
P(0, r2). Therefore, the ARMA involved dynamic state-
observer model (1)-(2) generalizes the classic ARMA mod-
els with the standard Gaussian noises. In parallel to the
concept of a ”white noise” we call a stochastic variable
in (3) a ”colored noise”. We also refer to [2] for the
rigorous mathematical description of the classes P(0, r1)
and P(0, r2) of pdf’s.

It is well known that the controlled ARMA (la, ld) model
of the type (1) can be rewritten as a linear type state-space
system (LM)

xt+1 = Axt +But +Dwt (4)

We refer to [14,22] for the necessary technical details. Note
that

xt := (zt, zt−1, ..., zt−la)
T ∈ Rla+1,

and moreover, the corresponding system and control ma-
trices in (4) can be specified as follows:

A :=




a0 a1 ... ala−1 ala
1 0 ... 0 0
0 1 ... 0 0
0 0 ... 0 0
0 0 ... 1 0


 , B :=




b
...
...
0


 .

Observe, that A ∈ R(la+1)×(la+1) and B ∈ R(la+1)×1 and
the control input ut in (4) is a scalar for every t ∈ N.
Moreover, we have

D :=




d0 d1 ... dld−1 dld
0 0 ... 0 0
0 0 ... 0 0
0 0 ... 0 0
0 0 ... 0 0


 ∈ R(la+1)×(ld+1).

The colored noise wt, t ∈ N in (4) is in fact determined
by the delayed components of stochastic variables ξt from
the originally given system (1):

wt := (ξt, ξt−1, ..., ξt−ld)
T ∈ R(ld+1).

Taking into consideration the non-Gaussian nature of the
stochastic variables ξt in the originally given controlled
ARMA (la, ld) (1), we conclude that

wt ∼ Gw ∈ P(ld+1)(0, r1). (5)

The power symbol in (5) is understood here as a Cartesian
power. We next deduce

P(ld+1)(0, r1) = {G(·)
∣∣

∞∑
t=0

wtGw = 0,

∞∑
t=0

wtw
T
t Gw ≤ R},

where R ∈ R(ld+1)×(ld+1) is a limiting covariance matrix
for the newly defined stochastic vector wt in the state
equation (4). Using the above definition of the class
P(0, r1), we finally obtain

R1 := diag(r1).

Note that the probabilistic characterization (5) for the
stochastic variable wt is a direct consequence of the
non-Gaussian assumption (3). However, the timely differ-
ent uncertainties in model (4) constitute the correlated
stochastic variables. Evidently, wt and ws are correlated
for all indexes t, s ∈ N such that

t+ (ld + 1) > s > t.
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the initially given controlled ARMA model. We next study
the developed non-standard state estimation methodology
in the context of a linear stochastic control system with
delays. The robust KF estimation strategy we propose
involves a guaranteed state estimation for a consistent
discrete approximation of the given delayed stochastic
system.

The remainder of this paper is organized as follows: Section
2 contains the main mathematical model of a controlled
ARMA process with the non-Gaussian noises. We consider
a class of colored system noises characterized by a specific
family of the probability distributions. Section 3 includes
some basic facts related to the robust KF we developed
in [2,4]. Section 4 presents a self-closed solution approach
to the robust state estimation for the ARMA processes
in the absence of the NH and SIH. We use here the
modified instrumental variable approach. In Section 5 we
apply the developed robust state estimation procedure to
a linear stochastic control system with delays. Section V
summarizes our paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section we give a formal description of the initial
state-observer model. Consider the generic ARMA model
of the order (la, ld) (denoted as ARMA (la, ld))

zt+1 = a0zt + a1zt−1 + . . .+ alazt−la + but+

d0ξt + . . .+ dldξt−ld , z0 ∈ R, (1)

in the absence of the classic Gaussian hypothesis for the
stochastic variable ξt, t ∈ N. Here la, ld ∈ N and z0
denotes an initial value of the state variable. The orig-
inal discrete-time model (1) with the known coefficients
describes a controlled dynamics with the control input ut

and b ∈ R. Assume ut ∈ U , where U ⊂ R is a compact
set of admissible control inputs. We next assume that the
controlled ARMA model (1) is equipped with the linear
observer

yt = ctzt + ζt, t ∈ N (2)

with the known coefficients ct, t ∈ N. We also assume the
non-Gaussian character of the stochastic variable ζt, t ∈ N
in (2). The concrete probabilistic characterization of the
stochastic variables ξt and ζt in (1)-(2) is given as follows:

ξt ∼ Gξ ∈ P(0, r1),

ζt ∼ Gζ ∈ P(0, r2),
(3)

where P(0, r1) and P(0, r2) in (3) are classes of probability
distribution functions (pdf’s) defined as follows

P(0, r1) := {G(·)
∣∣

∞∑
t=0

ξtGξ = 0,

∞∑
t=0

ξ2tGξ ≤ r1},

P(0, r2) := {G(·)
∣∣

∞∑
t=0

ζtGζ = 0,

∞∑
t=0

ζ2t Gζ ≤ r2}.

Here r1 > 0 and r2 > 0 are known positive numbers.
We next assume that the typical stochastic independency
hypothesis for variable ξt in ARMA (la, ld) model (1) are
satisfied:

∞∑
t=0

ξtξsGξ = 0 ∀s �= t, s, t ∈ N.

The probabilistic characterization (3) of the uncertainties
ξ and ζ in the controlled ARMA (la, ld) model describes
a very wide class of possible stochastic variables. Let us
note that the possible Gaussian (discrete-time) stochastic
processes also belong to the given families P(0, r1) and
P(0, r2). Therefore, the ARMA involved dynamic state-
observer model (1)-(2) generalizes the classic ARMA mod-
els with the standard Gaussian noises. In parallel to the
concept of a ”white noise” we call a stochastic variable
in (3) a ”colored noise”. We also refer to [2] for the
rigorous mathematical description of the classes P(0, r1)
and P(0, r2) of pdf’s.

It is well known that the controlled ARMA (la, ld) model
of the type (1) can be rewritten as a linear type state-space
system (LM)

xt+1 = Axt +But +Dwt (4)

We refer to [14,22] for the necessary technical details. Note
that

xt := (zt, zt−1, ..., zt−la)
T ∈ Rla+1,

and moreover, the corresponding system and control ma-
trices in (4) can be specified as follows:

A :=




a0 a1 ... ala−1 ala
1 0 ... 0 0
0 1 ... 0 0
0 0 ... 0 0
0 0 ... 1 0


 , B :=




b
...
...
0


 .

Observe, that A ∈ R(la+1)×(la+1) and B ∈ R(la+1)×1 and
the control input ut in (4) is a scalar for every t ∈ N.
Moreover, we have

D :=




d0 d1 ... dld−1 dld
0 0 ... 0 0
0 0 ... 0 0
0 0 ... 0 0
0 0 ... 0 0


 ∈ R(la+1)×(ld+1).

The colored noise wt, t ∈ N in (4) is in fact determined
by the delayed components of stochastic variables ξt from
the originally given system (1):

wt := (ξt, ξt−1, ..., ξt−ld)
T ∈ R(ld+1).

Taking into consideration the non-Gaussian nature of the
stochastic variables ξt in the originally given controlled
ARMA (la, ld) (1), we conclude that

wt ∼ Gw ∈ P(ld+1)(0, r1). (5)

The power symbol in (5) is understood here as a Cartesian
power. We next deduce

P(ld+1)(0, r1) = {G(·)
∣∣

∞∑
t=0

wtGw = 0,

∞∑
t=0

wtw
T
t Gw ≤ R},

where R ∈ R(ld+1)×(ld+1) is a limiting covariance matrix
for the newly defined stochastic vector wt in the state
equation (4). Using the above definition of the class
P(0, r1), we finally obtain

R1 := diag(r1).

Note that the probabilistic characterization (5) for the
stochastic variable wt is a direct consequence of the
non-Gaussian assumption (3). However, the timely differ-
ent uncertainties in model (4) constitute the correlated
stochastic variables. Evidently, wt and ws are correlated
for all indexes t, s ∈ N such that

t+ (ld + 1) > s > t.
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For the above indexes t, s the covariance Cov(wt, ws) be-
tween wt and ws is non-zero and can be easily calculated:

Cov(wt, ws) :=

∞∑
t=0

wtw
T
s Gw =




0 0 ... 0 σ2
t−s 0 ... 0

0 ... ... ... ... σ2
t−s−1 ... 0

0 ... ... ... ... ... ... 0
0 ... ... ... ... ... 0 σ2

t−ld


 �= 0.

The above important fact, namely, the evident stochastic
dependence (correlation) of the noises wt and ws for

t+ (ld + 1) > s > t

is a direct consequence of the specific definition of the
uncertainty vector wt in LM (4) in the auxiliary LM (4).

The observation process (2) associated with the originally
given ARMA (la, ld) model (1) can also be rewritten

yt = Hxt + ζt, t ∈ N (6)

with the observer matrix

H := ( ct 0 ... 0 ) ∈ R1×(la+1).

Let us recall that the distribution of ζt in (6) is given by
(3).

We next consider the resulting state-observer LM given by
(4) and(6). Note that this model involves the correlated,
non-Gaussian system and observer noises such that the
generic NH and SIH are not valid. This conclusion makes
it impossible a direct application of the classic KF and
extended to the obtained LM (4)-(6).

3. FOUNDATIONS OF THE ROBUST KALMAN
FILTER

We now present the main mathematical facts related to
the robust Kalman Filter introduced in [2]. This advanced
version of the KF will next be applied to the controlled
ARMA model in the presence of observations, namely, to
(4)-(6) for t = 1, ..., N ∈ N.

Consider the main state-observer model (4)-(6) and as-
sume for the moment that the SIH is formally satisfied.
The covariance matrix Cov[(xT

t , y
T
t )

T ] of the joint vector
(xT

t , y
T
t )

T can be expressed as follows:

Cov[(xT
t , y

T
t )

T ] =

[
Σt|t−1 Σt|t−1H

T

HΣt|t−1 HΣt|t−1H
T +Cov[ζt]

]
.

Here
Σt|t−1 := Cov[xt|y∗t−1]

is a (conditional) covariance matrix of the state xt and
Cov[ζt] is a covariance matrix of the vector ζt. By y∗t we
denote here the following ”observation history” vector:

y∗t := (yT1 , ..., y
T
t )

T .

Let now
xt|t := E(xt|y∗t )

be the a posteriori state estimation of the state vector xt

in (4) and
xt|t−1 := E(xt|y∗t−1)

be a consistent KF state prediction. The ”worst-case”
robust KF from [2] can now be expressed as follows:

state estimation step

x0|0 = x0,

xt|t−1 = Axt−1|t−1 +But,

xt|t = xt|t−1 + ψopt(δyt)δyt, t = 1, ..., N,

ψopt(δyt) := S12S
−1
22 ,

(7)

and

moments estimation step

Σ0|0 = 0,

Σt|t−1 = AΣt−1|t−1A
T +DCov[ξt]D

T ∀t = 1, ..., N,

Σt|t = Σt|t−1 − Σt|t−1QT
t −QtΣt|t−1+

QtΣt|t−1QT
t + S12S

−1
22 Cov[ζt]S

−1
22 ST

12.

(8)

Here

δyt := yt − E(yt|y∗t−1) = Hδxt + ζt

with

δxt := xt − xt|t−1.

Moreover, Σt|t := Cov[xt] is a covariance matrix of the
state vector xt in (4). Note that matrices S12 and S22 are
defined as proposed in [2].

The obtained relations (7)-(8) also include the additional
notation:

Qt := S12S
−1
22 H,

and

R2 := diag(r2, 0).

The robust KF (7)-(8) guarantees a ”worst-case” robust
state estimation and constitutes a specific robustness
framework for the wide classes of pdf’s under consider-
ation. The main optimization problem that implies (7)-(8)
has the following formal structure:

minimize sup
P(0,S)

E||δxt − ψ(δyt)δyt||2

t = 1, ..., N ∈ N
subject to ψ(·) ∈ L2.

(9)

By L2 we denote here the classic Lebesgue space of all
square integrable functions. Note that the main minimiza-
tion problem (9) is considered on a finite time interval
determined by a (large) natural number N . By

S := diag(R1,R2)

we denote here the block-diagonal matrix S, namely, the
upper bound of the covariance matrix Cov[(ξTt , ζ

T
t )

T ] of
the joint noise vector (ξTt , ζ

T
t ) in the state-observer model

under consideration. A further useful generalization of this
approach can be found in [2].

Let us note that the presented generalization (7)-(8) of
the classic KF was developed in the absence of the NH.
However, it is based on the fundamental SIH. As we can see
the equivalent LM (4) additionally involves the correlated
additive system noises wt. This fact implies some further
necessary formal transformations of the state space model
in order to guarantee the necessary SIH. We next propose
such a mathematically rigorous transformation and con-
sider the celebrated ”instrumental variable” approach.

4. ROBUST STATE ESTIMATION IN THE
PRESENCE OF CORRELATED NON-GAUSSIAN

NOISES

As shown in the previous section, the specific structure
of the non-Gaussian stochastic noise wt in the resulting
state equation (4) evidently implies the strong correlation
between wt and ws for all indexes t, s ∈ N that satisfy

t+ (ld + 1) > s > t.

On the other hand, the ”worst-case” robust KF from
Section 3 was developed under the main assumption on the
timely uncorrelated (non-autocorrelated) noises. In this
section we apply the celebrated ”instrumental variable”
method to (4) and construct an auxiliary (with respect
to (4)-(6)) uncorrelated state-observer mode. Next one
can directly apply the proposed (”worst-case”) robust KF
to this auxiliary state-observer model with the resulting
timely uncorrelated stochastic noises.

Let us start by introduction to the ”instrumental variable”
method for a state-observer model. We refer to [22] for the
further mathematical details. For the variable zt from (1)
consider the so-called ”lag-operator”

L(zt) := zt−1

associated with the controlled ARMA (la, ld) (1). It is
common knowledge that the above operator L make it
possible to represent the given ARMA (la, ld) process in
the algebraic form:

zt =
d(L)

a(L)
ξt,

where

a(L) := 1− a0L− ...− alaL
la ,

and

d(L) := 1− d1L− ...− dldL
ld

are operator-polynomials with respect to the operator
L. We now are ready to define formally the general
”instrumental variable” for ARMA (la, ld) (1)

z̃t := zt−ld ≡ Lld(zt). (10)

Recall that the basic definition (10) of the ”instrumental
variable” z̃t involves a specific ”forming filter” (see e.g.,
[22]). As we can see, the above concept of the ”instrumen-
tal variable” concept makes it possible to obtain the state
dynamics with the stochastically independent variables.
From (10), we deduce

Cov(zt+1, z̃t) = Cov(zt+1, zt−ld) = 0 (11)

and the basic SIH in the context of the instrumental
variable (10) is reestablished.

The above fact, namely, the obtained stochastic indepen-
dency of zt+1 and z̃t (expressed by (11)) motivates the
re-definition of the ARMA involved LM (4)

xt+1 = Ald+1xt−ld−1 +AldBut−ld−1 +AldDwt−ld + ...+

ABut−1 +ADwt−1 +But +Dwt =

Ald+1xt−ld−1 + (AldBut−ld−1 + ...+ABut−1 +But)+

(AldDwt−ld + ...+ADwt−1 +Dwt).
(12)

Evidently, the dynamics (12) constitutes an equivalent
rewriting of the original LM (4). We now redefine the

originally given discrete time and introduce the new time-
step

τ := ld + 2.
Then the discrete-time dynamic system (12) has the fol-
lowing equivalent LM representation:

xt+τ = Ald+1xt + B̃ut + εt (13)

The control input in (12) and (13) is given by

B̃ut := (AldBut−ld−1 + ...+ABut−1 +But),

and the stochastic system noise εt has the following ex-
pression:

εt := (AldDwt−ld−1 + ...+ADwt−1 +Dwt).

Evidently, the new stochastic variables εt in the resulting
LM (13) satisfy the basic SIH. Moreover, the correspond-
ing probability distributions of εt belong to the previously
defined pdf’s functional class P(ld+1)(0, r1). This fact mo-
tivates a direct application of the proposed robust KF (7)-
(8) to the delayed LM (13) with uncorrelated noises. The
complete recursive robust KF for LM (13) can now be
written as follows:

state estimation step

x0|0 = x0,

xt|t−τ = Ald+1xt−τ |t−τ + B̃ut,

xt|t = xt|t−τ + ψopt(δyt)δyt, t = τ, ..., N + τ,

ψopt(δyt) := S12S
−1
22 ,

moments estimation step

Σ0|0 = 0,

Σt|t−τ = Ald+1Σt−τ |t−τ (A
ld+1)T +DCov[ξt]D

T

∀t = τ, ..., N + τ,

Σt|t = Σt|t−τ − Σt|t−τQT
t −QtΣt|t−τ+

QtΣt|t−τQT
t + S12S

−1
22 Cov[ζt]S

−1
22 ST

12.

(14)

Here we re-define the components of (7)-(8) using the new
step-size τ in (13)

δyt := yt − E(yt|y∗t−τ ) = Hδxt + ζt,

δxt := xt − xt|t−τ .

The resulting robust KF (14) is now written in conformity
with the basic SIH for the delayed LM (13).

Using the closed form of the instrumental variable robust
KF (13), we now propose a state estimation based control
design for the resulting ARMA model (13). Let g :
Rla+1 → U be a Lipschitz function and

ut−1 = ... = ut−ld−1 = 0,

ut := g(xt|t).

In a simple (but useful) case of the proportional control
scheme we have

ut−1 = ... = ut−ld−1 = 0,

ut := kTxt|t,
(15)

where k ∈ Rla+1 is a gain vector. The corresponding
closed-loop ARMA model (13) involving the proportional
state estimation based control design (15) has the following
form

xt+τ = Ald+1xt +BkTxt|t + ετ , (16)
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between wt and ws for all indexes t, s ∈ N that satisfy
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On the other hand, the ”worst-case” robust KF from
Section 3 was developed under the main assumption on the
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can directly apply the proposed (”worst-case”) robust KF
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consider the so-called ”lag-operator”
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associated with the controlled ARMA (la, ld) (1). It is
common knowledge that the above operator L make it
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zt =
d(L)

a(L)
ξt,

where

a(L) := 1− a0L− ...− alaL
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and

d(L) := 1− d1L− ...− dldL
ld

are operator-polynomials with respect to the operator
L. We now are ready to define formally the general
”instrumental variable” for ARMA (la, ld) (1)

z̃t := zt−ld ≡ Lld(zt). (10)

Recall that the basic definition (10) of the ”instrumental
variable” z̃t involves a specific ”forming filter” (see e.g.,
[22]). As we can see, the above concept of the ”instrumen-
tal variable” concept makes it possible to obtain the state
dynamics with the stochastically independent variables.
From (10), we deduce

Cov(zt+1, z̃t) = Cov(zt+1, zt−ld) = 0 (11)

and the basic SIH in the context of the instrumental
variable (10) is reestablished.

The above fact, namely, the obtained stochastic indepen-
dency of zt+1 and z̃t (expressed by (11)) motivates the
re-definition of the ARMA involved LM (4)

xt+1 = Ald+1xt−ld−1 +AldBut−ld−1 +AldDwt−ld + ...+

ABut−1 +ADwt−1 +But +Dwt =

Ald+1xt−ld−1 + (AldBut−ld−1 + ...+ABut−1 +But)+

(AldDwt−ld + ...+ADwt−1 +Dwt).
(12)

Evidently, the dynamics (12) constitutes an equivalent
rewriting of the original LM (4). We now redefine the

originally given discrete time and introduce the new time-
step

τ := ld + 2.
Then the discrete-time dynamic system (12) has the fol-
lowing equivalent LM representation:

xt+τ = Ald+1xt + B̃ut + εt (13)

The control input in (12) and (13) is given by

B̃ut := (AldBut−ld−1 + ...+ABut−1 +But),

and the stochastic system noise εt has the following ex-
pression:

εt := (AldDwt−ld−1 + ...+ADwt−1 +Dwt).

Evidently, the new stochastic variables εt in the resulting
LM (13) satisfy the basic SIH. Moreover, the correspond-
ing probability distributions of εt belong to the previously
defined pdf’s functional class P(ld+1)(0, r1). This fact mo-
tivates a direct application of the proposed robust KF (7)-
(8) to the delayed LM (13) with uncorrelated noises. The
complete recursive robust KF for LM (13) can now be
written as follows:

state estimation step

x0|0 = x0,

xt|t−τ = Ald+1xt−τ |t−τ + B̃ut,

xt|t = xt|t−τ + ψopt(δyt)δyt, t = τ, ..., N + τ,

ψopt(δyt) := S12S
−1
22 ,

moments estimation step

Σ0|0 = 0,

Σt|t−τ = Ald+1Σt−τ |t−τ (A
ld+1)T +DCov[ξt]D

T

∀t = τ, ..., N + τ,

Σt|t = Σt|t−τ − Σt|t−τQT
t −QtΣt|t−τ+

QtΣt|t−τQT
t + S12S

−1
22 Cov[ζt]S

−1
22 ST

12.

(14)

Here we re-define the components of (7)-(8) using the new
step-size τ in (13)

δyt := yt − E(yt|y∗t−τ ) = Hδxt + ζt,

δxt := xt − xt|t−τ .

The resulting robust KF (14) is now written in conformity
with the basic SIH for the delayed LM (13).

Using the closed form of the instrumental variable robust
KF (13), we now propose a state estimation based control
design for the resulting ARMA model (13). Let g :
Rla+1 → U be a Lipschitz function and

ut−1 = ... = ut−ld−1 = 0,

ut := g(xt|t).

In a simple (but useful) case of the proportional control
scheme we have

ut−1 = ... = ut−ld−1 = 0,

ut := kTxt|t,
(15)

where k ∈ Rla+1 is a gain vector. The corresponding
closed-loop ARMA model (13) involving the proportional
state estimation based control design (15) has the following
form

xt+τ = Ald+1xt +BkTxt|t + ετ , (16)
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Note that in this case the state prediction step in (14) can
be rewritten as follows:

xt+τ |t = (Ald+1 +BkT )xt|t. (17)

Finally note that the state estimation based control strat-
egy (15)-(17) constitutes an adequate control design ap-
proach to the linear dynamic systems with stochastic un-
certainties.

5. APPLICATION OF THE ROBUST STATE
ESTIMATIONS TO THE LINEAR STOCHASTIC

CONTROL SYSTEM WITH DELAYS

In this section we apply the developed robust KF method-
ology to the state estimation of the following delayed
integral dynamics

X(t) =

∫ ∞

0

X(t−s)µ(ds)+bu(t)+

∫ t

0

θ(t−s)dL(s). (18)

Here µ is a probability measure on [0,∞), L(·) is a Levy
stochastic process with E(L(t)) = 0 and θ(·) is a scalar
measurable function. The control input u(·) and b ∈ R are
defined similar to (1). We assume that u(t) ∈ U ⊂ R and
that U is a compact.

The resulting stochastic process X(·) can often be consid-
ered as a suitable approximation of an initially given con-
trolled Stochastic Delayed Differential Equation (SDDE).
The delayed stochastic models (18) and the original SD-
DEs constitute a useful modelling framework for many
real-world dynamic systems with random uncertainties.
We refer to [4] for the delayed robot dynamics and to
[9,12,27] for the general theory of the delayed systems and
SDDEs. For the basic model (18) we additionally assume
that

E[L2(t)] ≤ ∞,

where r1 ∈ R+ is defined in (3).

It is well known that a probability measure µ can be ap-
proximated by a convex combination of the Dirac measures
(see e.g., (19)). Let δl, l = 0, ..., la be Dirac measures.
Assume that

µ(ds) =

la∑
l=0

alδl(ds), (19)

where
la∑
l=0

al = 1, al ≥ 0 ∀ l = 0, ..., la. (20)

Here la is a sufficiently big natural number. Moreover, let

θ(s) = d0χ[0,1)(s) + d1χ[2,3)(s)+

...+ dldχ[2ld,2ld+1](s)
(21)

for a given natural number ld and coefficients {d1, ..., dld−2}.
By χI(·) we denote here the usual characteristic function
of an interval I. We now consider the dynamic equation
(18) taking into consideration the specific approximation
(19) of µ. Moreover, the parameter function θ(·) in (18) is
assumed to be given by (21). For the selected parameters
the general dynamic equation (18) can be rewritten as
follows:

X(t) =

la∑
l=0

alX(t− l) + bu(t)+

ld∑
l=0

dl(L(t− 2l)− L(t− (2l + 1))) =

la∑
l=0

alX(t− l) + bu(t) +

ld∑
l=0

dlYt−l,

(22)

where
Y (t− l) := L(t− 2l)− L(t− 2l − 1).

Evidently,
Y (t− l), l = 0, ..., ld

in (22) are stochastically independent variables. The re-
sulting expression (22) evidently constitutes a special case
of the controlled ARMA model (1) with the barycentric
coefficients al, l = 0, ..., la determined in (19). Let us
additionally assume that

E[(L(t− 2l)− L(t− (2l + 1)))2] ≤ r1.

In that case the stochastic variables Y (t−l) in the resulting
ARMA model (22) have a pdf from the generic class
P(0, r1) introduced in Section 2. We now can use the
instrumental variable based robust KF (14) for the state
estimation in the specific ARMA model (22).

Using the proposed instrumental variable based approach,
we can rewrite the obtained ARMA model (22) in the
form of the equivalent LM (13). The state estimation
based control design scheme (15)-(17) can now be applied
the resulting equivalent LM associated with the specific
ARMA model (22).

6. CONCLUDING REMARKS

In this contribution, we proposed a new conceptual KF
based solution approach to the robust state estimation for
the general controlled ARMA processes with the specific
colored noises. We consider a wide family of the probability
distributions associated with the system noises and replace
the classic NH in the conventional KF by an alterna-
tive assumption involving a class of non-Gaussian systems
disturbances. The non-standard noise probability distri-
butions under consideration possess the bounded second
moments. The minimax based KF approach we propose
finally leads to a numerically consistent recursive computa-
tional scheme and makes it possible a self-closed numerical
treatment of the optimal state estimation problem for the
ARMA processes under consideration.

Since the consideration of a general ARMA processes im-
plies the violation of the basic SIH, we consider an further
necessary modification of the classic method of ”instru-
mental variable” in order to reestablish the necessary SIH
in an equivalent LM. This approach makes it possible
to use the developed robust KF also in the case of the
ARMA processes with the colored noises. The resulting
robust feedback-type control design for the originally given
ARMA model can now involve the obtained specific state
estimation.

Analytic approaches we propose in this paper are devel-
oped in the context of a conceptually new approach to the
robust state estimation in the controlled ARMA models.

Our paper presents some necessary conceptual aspects of
the newly developed robust state estimation methodology
for LMs with the colored noises. The theoretical solution
approaches we elaborated need the further comprehen-
sively studies and numerical simulations. Note that the
proposed robust state estimation methodology can also
incorporate the heavy-tailed probability distributions as-
sociated with the corresponding outliers involved system
noises. The developed robust KF based state estimation
in general controlled ARMA models can be used in sev-
eral real-world data driven modelling frameworks for the
real-world dynamic systems. It provides a mathematically
rigorous optimization based methodology and extends the
conventional approaches to the state estimation and state
based control of the ARMA processes.
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Switzerland, 2014.

[23] J. Prakash, K. Srinivasan, Design of nonlinear PID
controller and nonlinear model predictive controller
for a continuous stirred tank reactor, ISA Transac-
tions, 2009, vol. 48, pp. 273 – 282.

[24] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R.
Jones, Magnetic position and orientation tracking
system, IEEE Transactions on Aerospace and Elec-
tronic Systems, 1979, vol. AES-15, pp. 709 – 718.

[25] S. Taylor, Modeling Financial Time Series, Wiley,
Chichester, 1986.

[26] M. Vogelsbergera, S. Grubic, T. Habetler, and T.
Wolbank, Using pwm-induced transient excitation
and advanced signal processing for zero-speed sensor-
less control of AC machines, IEEE Transactions on
Industrial Electronics, 2010, vol. 57, pp. 365 -– 374.

[27] H.O. Walther, Linearized stability for semiflows gen-
erated by a class of neutral equations, with applica-
tions to state-dependent delays, Journal of Dynamics
and Differential Equations, vol. 22, 2010, pp. 439 -–
462.

[28] Y. Wardi Optimal control of switched-mode dynami-
cal systems, in: Proceedings of the 11th International
Workshop on Discrete Event Systems, Guadalajara,
Mexico, 2012, pp. 4 – 8.

[29] G. Welch, G. Bishop, An Introduction to the Kalman
Filter, University of North Carolina Press, Chapel
Hill, 2006.

[30] D. Zaltni, M. Ghanes, J. Barbot, and M. Abdelkrim,
Synchronous motor observability study and an im-
proved zero-speed position estimation design, in Pro-
ceedings of the 49th IEEE Conference on Decision and
Control, Atlanta, USA, 2010, pp. 5074 — 5079.


