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Abstract. Isogeometric Kirchhoff-Love elements have received an increasing attention in geometrically

nonlinear analysis of thin walled structures. They make it possible to meet the C1 requirement in the

interior of surface patches, to avoid the use of finite rotations and to reduce the number of unknowns

compared to shear flexible models. Locking elimination, patch coupling and iterative solution are crucial

points for a robust and efficient nonlinear analysis and represent the main focus of this work. Patch-wise

reduced integrations are investigated to deal with locking in large deformation problems discretized via

a standard displacement-based formulation. An optimal integration scheme for third order C2 NURBS,

in terms of accuracy and efficiency, is identified, allowing to avoid locking without resorting to a mixed

formulation. The Newton method with mixed integration points (MIP) is used for the solution of the

discrete nonlinear equations with a great reduction of the iterative burden and a superior robustness

with respect to the standard Newton scheme. A simple penalty approach for coupling adjacent patches,

applicable to either smooth or non-smooth interfaces, is proposed. An accurate coupling, also for a non-

matching discretization, is obtained using an interface-wise reduced integration while the MIP iterative

scheme allows for a robust and efficient solution also with very high values of the penalty parameter.

1 INTRODUCTION

Isogeometric Kirchhoff-Love elements have received an increasing attention in geometrically nonlinear

analysis of thin shells due to the high continuity of NURBS functions that makes it possible to meet

the C1 requirement in the interior of patches [1]. This kind of analysis spread rapidly in the scientific

community. Among the main reasons for its success is the high order and continuity while practically

maintaining the same number of degrees of freedom (DOFs) of linear Lagrangian interpolations and the

exact geometric description of shells. These considerations make IGA very attractive, particularly in

geometrically nonlinear analysis where a highly continuous solution is often expected, like for instance

in buckling problems [2, 3]. The standard displacement-based formulation is affected by locking when

low order splines are used. Increasing the order of the shape functions reduces locking but, at the same
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time, increases the computational burden for the assembly of the discrete operators and for the solution

of the discrete equations because of the decreasing stiffness matrix sparsity. Mixed formulations with

continuous stress shape functions have been successfully proposed [4] to eliminate locking in linear and

nonlinear problems, but the extra variables can be condensed only at the patch level and this is not conve-

nient because leads to a fully populated stiffness matrix. An interesting alternative is the use of displace-

ment formulations with patch-wise reduced integration rules [5, 6, 7]. In this case, locking is drastically

reduced and its effects are made insignificant in most practical computations. Moreover, a significantly

lower number of integration points is employed compared to standard Gauss quadrature, improving also

the computational efficiency. In path-following methods for geometrically nonlinear analyses of beams

and shells, many authors observed a more robust and efficient iterative solution for mixed formulations

[8]. The performance of Newton’s method drastically deteriorates in displacement formulations when

the membrane/flexural stiffness ratios get higher [9, 10]. Mixed formulations are not affected by this

drawback as the stress unknowns are used as independent variables in the iterative process. To eliminate

this inconvenience in displacement-based formulations, the Mixed Integration Point (MIP) strategy has

been recently proposed in [11]. It consists of a relaxation of the constitutive equations at each integration

point during the Newton iterative process. Within a MIP framework, Newton’s method can withstand

much larger increments with a reduced number of iterations to obtain an equilibrium point compared

to a standard Newton’s strategy without the need of defining a stress interpolation [6, 12]. Engineering

models of appreciable complexity are typically modeled using multiple surface patches and, often, nei-

ther rotational continuity nor conforming discretization can be practically obtained at patch interfaces.

Despite the many potential advantages offered by isogeometric Kirchhoff–Love shells, they cannot be

readily applied to such complex, multi-patch designs; additional actions must be taken to enforce conti-

nuity at patch interfaces. A simple penalty approach for coupling adjacent patches, applicable to either

smooth or non-smooth interfaces and either matching or non-matching discretizations, has been recently

proposed in [13]. Both displacement and rotational continuity are controlled by a single, dimensionless

penalty coefficient. This work seems very promising because of its simplicity and effectiveness even

for complex geometries. However, two main issues are still to be addressed. Firstly, although the prob-

lem dependence of the penalty coefficient can be reduced by scaling factors which take into account

geometrical and material parameters, such a formulation is still subjected to the general trade-off be-

tween accuracy and numerical stability, which is typical for penalty formulations. This is the same issue

experienced in finite rotation analysis of beams and shells, where the ill-conditioning is due to the sig-

nificant difference between axial/membrane and flexural stiffness. In the penalty coupling approach, the

ill-conditioning is due to the significant difference between coupling and patches stiffness. The second

issue is that enforcing the constraints for a non-matching discretization could in general lead to an over-

constrained interface and consequently to a wrong solution [14]. Locking elimination, patch coupling

and iterative solution are crucial points for a robust and efficient nonlinear analysis of Kirchhoff-Love

shells and represent the main focus of this work. Patch-wise reduced integrations are investigated to deal

with locking in large deformation problems discretized via a standard displacement-based formulation.

An optimal integration scheme for third order C2 NURBS, in terms of accuracy and efficiency, is identi-

fied, allowing to avoid locking [15] without resorting to a mixed formulation. The Newton method with

mixed integration points (MIP) is used for the solution of the discrete nonlinear equations with a great

reduction in the iterative burden and a superior robustness with respect to the standard Newton scheme

(large steps). A simple penalty approach for coupling adjacent patches, applicable to either smooth or

non-smooth interfaces, is proposed. It is an improved version of the penalty approach in [13], able to
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avoid both the convergence difficulties in large deformation problems and the overconstraint issue for

non-matching discretizations. An accurate coupling, also for the non-matching case, is obtained using

an interface-wise reduced integration while the MIP iterative scheme allow for a robust and efficient

solution also with very high values of the penalty parameter.

2 THE ISOGEOMETRIC KIRCHHOFF-LOVE SHELL MODEL

2.1 Kirchhoff–Love shell kinematics

We use a Total Lagrangian formulation to identify material points on the middle surface of the current

configuration in terms of their position vector X(ξ,η) in the reference configuration and the displacement

field u(ξ,η):
x(ξ,η) = X(ξ,η)+u(ξ,η) (1)

where ξ = [ξ,η] denotes convective curvilinear shell coordinates with (ξ,η) representing in-plane coor-

dinates. The middle surface covariant basis vectors in the undeformed and deformed configuration are

obtained from the corresponding partial derivatives of the position vectors X and x, respectively

Gi = X,i , gi = x,i= Gi +u,i with i = 1,2 , (2)

where (),i denotes the partial derivative with respect to the i-th component of ξ, while the unit normal

ones are

G3 = G1 ×G2, A3 =
G3

‖G3‖
, g3 = g1 ×g2, a3 =

g3

‖g3‖
(3)

which corresponds to the Kirchhoff-Love (KL) shell assumption that the director remains straight and

normal to the mid-surface during deformation.

The contravariant basis vectors follow from the dual basis condition: gi ·g
j = Gi ·G

j = δ
j
i and the metric

coefficients are gi j = gi ·g j and Gi j = Gi ·G j with i, j = 1,2. Due to Eq.(3), the transverse shear strains

vanish and the Green-Lagrange strain tensor reduces to

E = Ēi j Gi ⊗G j i, j = 1,2 (4)

where Ēi j are the covariant strain components. Assuming the strain to vary linearly through the thickness,

it is possible to split it into a constant membrane part and a linear bending one. The covariant strain

coefficients are

Ēi j = ēi j +ζχ̄i j =
1

2
(gi j −Gi j)+ζ(Bi j −bi j) with i, j = 1,2 (5)

with ζ ∈ [−t/2, t/2] and t the thickness of the shell. The curvature tensor coefficients are defined as in

[1]

Bi j =−
1

2
(Gi ·A3, j +G j ·A3,i ) = Gi, j ·a3,

bi j =−
1

2
(gi ·a3, j +g j ·a3,i ) = gi, j ·a3.

A simplified third order strain measure providing the same results can be also adopted [15].
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2.2 The isogeometric shell element

Following the isoparametric concept, geometry and displacement fields are approximated, over the ele-

ment, as follows

X(ξ,η) = Nu(ξ,η)Xe, u(ξ,η) = Nu(ξ,η)de (6)

where Xe and de collect the element control points and the element control displacements, respectively.

The matrix Nu(ξ,η) collects bivariate NURBS functions [16]. In this paper we deal only third order C2

NURBS.

Adopting Voigt’s notation, the covariant strain components in Eq.(5) are collected in the vector Ē =
[Ēξξ, Ēηη,2Ēξη]

T , that, exploiting Eq.(6), becomes

Ē = ē+ζχ̄χχ (7)

with ē = [ēξξ, ēηη,2ēξη]
T and χ̄χχ = [χ̄ξξ, χ̄ηη,2χ̄ξη]

T .

The generalized stress components, once the kinematic model is assumed, are automatically given by

assuring the invariance of the internal work. By collecting the contravariant stress components S̄ ≡
[S̄ξξ, S̄ηη, S̄ξη]T , we can write

W =
∫

V
S̄

T
ĒdV =

∫
Ω

(

N̄
T

ē+M̄
T

χ̄χχ
)

=
∫

Ω
σ̄σσT ε̄εεdΩ

(8)

with the generalized contravariant stresses σ̄σσ ≡ [N̄ ,M̄ ]T obtained as

N̄ ≡
∫ t/2

−t/2
S̄dζ M̄ ≡

∫ t/2

−t/2
ζS̄dζ (9)

and the generalized covariant strain vector ε̄εε ≡ [ē, χ̄χχ]T . Exploiting the isogeometric approximation, ε̄εε

becomes

ε̄εε = D̄(ξ,η,de)de, (10)

where D̄ depends on the displacement DOFs.

For writing the constitutive equations with standard material matrices, we transform the generalized

strains from the curvilinear coordinate system to a local Cartesian coordinate system whose x− y plane

is coincident with the mid-plane of the shell. For the Kirchhoff-Love shells we have furnishes the sought

relationship:

σσσ =Tσσ̄σσ

εεε =Tεε̄εε = T−T
σ ε̄εε

with Tσ =

[

Tp 0

0 Tp

]

(11)

where

Tp =







x2
ξ x2

η 2xξxη

y2
ξ y2

η 2yξyη

xξyξ xηyη xξyη + xηyξ






(12)
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with xξ = iT1 G1, yξ = iT2 G1, xη = iT1 G2, yη = iT1 G2; i1 and i2 are the unit vectors along the axis of the

local Cartesian coordinates where the material properties are assigned.

Eq.(7) and (10) in Cartesian components become respectively

E = e+ζχχχ and εεε = D(ξ,η,de)de. (13)

The homogenized material law of the shell can be expressed as

σσσ = Cεεεε Cε =

[

Cee Ceχ

CT
eχ Cχχ

]

Cee = ∑
k

tkCk, Ceχ = ∑
k

zktkCk, Cχχ = ∑
k

(

t3
k

12
+ tkz2

k

)

Ck

where the sum is on the number of layers, tk is the thickness of the k-th ply, zk is the distance between

the centroid of the k-th ply and the mid-plane of the laminate and Ck is the lamina constitutive matrix.

2.3 Nonlinear analysis

In displacement-based formulations, the strain energy can be expressed as a sum of element contributions

Φ(d)≡ ∑e Φe(de)

Φe(de)≡
∫

Ωe

(

1

2
εεεT Cεεεε

)

dΩe (14)

where Ωe is the element domain. The discrete equilibrium equations of slender elastic structures subject

to conservative loads amplified by a proportionality factor λ are

r(d, λ)≡ s(d)−λ f = 0 (15)

where r : RN+1 → R
N is a nonlinear vectorial function of the vector z ≡ {d,λ} ∈ R

N+1, collecting the

configuration d ∈R
N and the load multiplier λ ∈R, f is the reference load vector and s[d] is the internal

force vector, i.e. the strain energy gradient with respect to d. Eq.(15) represents a system of N equations

and N+1 unknowns and its solutions define the equilibrium paths as curves in R
N+1. The Riks’ approach

[17] can be used to trace these curves step-by-step from a known initial configuration d0 corresponding

to λ = 0. At each step some Newton iterations are needed to solve (15). To this end we also define the

tangent stiffness matrix as the strain energy Hessian with respect to d, which at element level assumes

the following form

Ke(de)≡
∫

Ωe

(

B(de)
T CεB(de)+Γ(de,σσσ(de))

)

dΩe. (16)

In order to avoid locking, the patch-wise reduced integrations proposed in [15] are used to evaluate the

integrals.

2.4 The iterative scheme with mixed integration points

In [10, 9], it is shown that the Newton’s method convergence for displacement-based formulations gets

slower and requires a smaller step size when the slenderness of the structure increases. This fact is
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unrelated to the accuracy of the interpolation and occurs because the stresses σσσg(de), used to evalu-

ate the tangent stiffness matrix Ke(σσσg(de),de), are forced to satisfy the constitutive equations at each

iteration. In [11], a strategy called Mixed Integration Point has been proposed in order to overcome

these limitations in standard displacement-based finite element problems and then extended and tested in

displacement-based isogeometric formulations [6, 12]. The fundamental idea of the MIP Newton scheme

is to relax the constitutive equations at the level of each integration point during the iterations. This is

made by rewriting the strain energy in a pseudo Hellinger-Reissner form on the element:

Φe(de)≡
n

∑
g=1

(

σσσT
g εεεg(de)−

1

2
σσσT

g C−1
g σσσg

)

wg (17)

where the stresses at each integration point σσσg are now independent variables, which however can be

condensed out at the element level without any additional cost. Details on the method formulation are

reported in [11, 6]. The MIP iterative scheme is very close to the standard Newton’s one for purely

displacement-based models. The main difference consists of the different values of the stresses at the

integration points used for the evaluation of the tangent stiffness matrix. These stresses are independent

variables which are directly predicted as extrapolation of the previous equilibrium points, just as the

displacements, and updated during the iterations with the correction term

σ̇σσg = CgB j
gḋe +Cgεεε j

g −σσσ j
g. (18)

The stresses are defined at integration point level and then are not involved in the global operations. This

means that the computational cost of a MIP iteration is practically the same as a standard one. Results

proved that the replacement of the standard Newton method with the MIP Newton scheme is strongly

recommended for the efficient solution of any displacement-based discretization problem [15].

3 PENALTY COUPLING OF NON-MATCHING SHELL PATCHES

In the following, after recalling briefly the penalty approach in [13] to couple multiple non-matching

patches, we propose an extension which eliminates the convergence difficulties in large deformations

and improve the accuracy for non-matching cases.

3.1 Displacement-based penalty formulation

In the following, it is assumed that there are two patches, A and B, with two edges which, in the un-

deformed configuration, are approximately co-located along an interface curve ℓ. For enforcing dis-

placement continuity between the two patches, the following penalty energy [13] is added to the total

energy:

Wd =
1

2

∫
ℓ
αd

(

uA −uB
)T (

uA −uB
)

where superscripts A and B indicate quantities evaluated on the common edge of patches A or B respec-

tively, αd is a penalty parameter, further discussed in the following, large enough to dictate that, if the

distance between points belonging to the common edge of A and B is not the same in the deformed and

undeformed configurations, a large penalty energy is introduced into the system. The coupling method-

ology must also maintain the angle formed by patches A and B. Analogously, for imposing rotational

continuity between the two patches, using the unit vectors defined in Fig.1, the following penalty energy
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Figure 1: Illustration of vectors a3 and an.

is further introduced:

Wr =
1

2

∫
ℓ
αr

((

aA
3 ·a

B
3 −AA

3 ·A
B
3

)(

aA
3 ·a

B
3 −AA

3 ·A
B
3

)

+
(

aA
n ·a

B
3 −AA

n ·A
B
3

)(

aA
n ·a

B
3 −AA

n ·A
B
3

))

where αr is a large enough penalty parameter. The extension to multiple patches is trivial and requires

only the addition of the corresponding coupling energies. A key drawback of penalty methods is that

the penalty parameters are problem dependent, must be high enough to ensure constraint satisfaction but

not too high to create excessive ill-conditioning. The selection of penalty parameters, usually performed

empirically by the analyst, has a strong influence on the solution quality. Problem dependence can be

reduced taking into account geometry and material properties in the selection. The displacement and

rotation penalty parameters can be, for example, scaled with respect to the shell membrane and bending

stiffnesses, respectively, in order to make the penalty terms dimensionally consistent with the relevant

stiffness properties:

αd = α
maxC

i j
ee

h
αr = α

maxC
i j
χχ

h
(19)

where α is a single penalty coefficient, h = hA+hB

2
with hA and hB the lengths of the elements in the

direction most parallel to the coupling curve and i, j = 1,2. With the scaling terms (19), the penalty term

α is chosen as a dimensionless parameter and, at the same time, dimensional consistency of the penalty

energy is guaranteed [13].

3.2 Penalty formulation with reduced integration and mixed integration points

An exact integration of the penalty energy for the displacement penalty approach can cause overcon-

strained interfaces with consequent inaccurate results. As the overconstrained coupling can be interpreted

as a form of locking, we propose the use of an interface-wise reduced integration for the displacement-

based approach. After an intense experimental campaign we selected the following rule: integration

points and weights to be used are those which exactly integrate a target space S
q
c along the interface of

the patch with coarsest mesh of order q = 2p−1 and regularity c = p−1, with p the order of the isoge-

ometric approximation functions on such a patch. Integration points and weights are easily provided by

the algorithm given in [5]. The proposed reduced integration rule is accurate and does not give stability

problems [18]. However, this does not solve the convergence issue in large deformation problems for

high values of the penalty parameter. In order to avoid the convergence difficulties without explicitly

introducing the approximation of the Lagrange multipliers work-conjugated to the coupling equations,

since the computation of the penalty energy is performed by numerical integration, we can exploit the

7
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Table 1: Wingbox: stacking sequence.

Skin bay Skin Stiffener Spar web

90/[(0±〈52|35〉)/0/±45]S 90/[±35/0/±45]S [90/45/02/−45/0]S 90/[±35/03/±45]S

mixed integration point strategy

Wd = ∑
e

Wde with Wde = ∑
g

(

qT
g vg −

1

2
qT

g hdgqg

)

wg (20)

Wr = ∑
e

Wre with Wre = ∑
g

(

rT
g wg −

1

2
rT

g hrgrg

)

wg (21)

where the values of the Lagrangian fields at the integration points qg and rg are used as independent

variables in the iterative solution, directly predicted and corrected. In this case, by adding Wd and Wr,

evaluated as in Eq.(20) and Eq.(21), to the total energy of the structure, we can now directly apply the

MIP Newton iteration method described in the previous section to solve the global discrete equations.

qg and rg are condensed out as for the mixed penalty formulation after linearization of the stationarity

condition. However, the condensation is now local at each integration point exploiting the local definition

of qg and rg. This means that, as already explained in the previous section, they are not involved in

the definition of the global residual vector, which remains the same as in the classical displacement

formulation [13]. However, they are used to evaluate the tangent global stiffness matrix, making the

performance of the iterative process almost unaffected by the penalty parameter α. As a consequence we

can now use high values of α without compromising the iterative effort to gain equilibrium [18].

4 NUMERICAL TEST: A VARIABLE ANGLE TOW COMPOSITE WINGBOX

The numerical example regards a full-scale composite wingbox, that has been recently designed, man-

ufactured and tested at the University of Limerick [19]. This structure is made of a variable angle tow

(VAT) composite material, that is a multi-layered composite in which each fiber can draw a curvilinear

path [19, 20]. Hereafter, the wingbox is analyzed using the proposed multi-patch IGA Kirchhoff-Love

model named RMIP. We show how, thanks to the multi-patch coupling algorithm [18], the Kirchhoff-

Love model can be successfully employed on structures composed by many panels and the solution

accuracy within each patch due to the patch-wise reduced integration [15]. Additionally, it is shown

that the use of a non-matching discretization can further reduce the DOFs of the numerical problem,

thereby speeding-up the geometrically nonlinear analysis of a full-scale structure. The material proper-

ties of the ply, having thickness of 0.1875mm, are E1 = 135.00GPa, E2 = 7.54GPa, G12 = 5.00GPa

and ν12 = 0.30. The fiber orientations are measured, according to the local reference systems reported

in Fig.2, from the e1 axis, in the direction of e3. The VAT laminate is characterized by linear variation

of the fiber orientations. According to the notation suggested by Gürdal and Olmedo [21], Tab.1 shows

the stacking sequence of the main parts of the wingbox. The skin is composed by 11 layers, while 4

additional layers have been added to the spar web to improve the resistance against shear-buckling. It is

possible to note from Fig.3 how the thickness change is realized on the skin near the corner and a zone

composed by 13 layers has been added to make it smoother. More details can be found in [19]. The

wingbox is considered to be loaded on one end by a shear force FA = 23.8kN and a flexural moment

8



D. Magisano, L. Leonetti, F.S. Liguori, J. Kiendl, A. Reali and G. Garcea

X, u

Y, v

Z, w

640.0

B
e2

e1

e3

e3

e1

e2
e2

e1

e3

Clamped

Loaded

section

VAT panels

A

e3
e1

e2
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e2

e3
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wingbox

Figure 2: Wingbox: geometry and boundary conditions. The interface lines are marked in red.
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65.1

49.5

184.9 84.4

1
2
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3
8
.0

sym

sym

R
8.
0

X
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Y

R
6.

3reference plane

Figure 3: Wingbox: detailed view of the cross-section. A green line defines the shell reference planes.

MA = 14.28kNm, while the opposite side is fully clamped. The loaded section is modeled to behave

rigidly. The stiffness properties are evaluated with respect to a reference plane that differs from the

mid-plane of the panels (see Fig.3). In this way, the actual configuration of the panels is modeled with

no need for rigid links. The geometrically nonlinear behavior of the wingbox is characterized by local

buckling waves on the skin bay. Consequently, one expects that a relatively fine discretization is required

on the skin bay to obtain converged results, while a coarser mesh can be used elsewhere. For this reason

two meshes are adopted, as reported in Fig.4. The first one is a matching discretization having 33984

DOFs. Starting from the first mesh, by reducing the number of subdivisions of stiffeners, skin, and spar

web we obtain the second, non-matching mesh, characterized by 19962 DOFs. Tab.2 shows the value

of the tip displacement for two load levels, namely λ = 1 and λ = 2. The results are compared with

the solution provided by a very fine mesh of S4R elements from ABAQUS and that obtained using a C0

Matching (33984 DOFs) Non-matching (19962 DOFs)

Figure 4: Wingbox: matching discretization and non-matching discretization.
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Table 2: Wingbox: comparison of the tip displacement at two different load levels for different models.

model α wB(λ = 1) wB(λ = 2)

RMIP, mesh (a) 103 2.131 4.339

RMIP, mesh (b) 103 2.182 4.443

RMIP, mesh (a) 106 1.661 3.374

RMIP, mesh (b) 106 1.649 3.350

ABAQUS S4R - 1.664 3.403

solid-shell FE [19] - 1.657 3.389

−2 −1 0
0

0.5

1

1.5

2

wA

λ

Matching

Non-matching

Matching Non-matching

0

3.5

Figure 5: Wingbox: equilibrium paths and deformed configuration at λ = 1.4 for α = 106.

solid-shell model [19]. Interestingly, the penalty value α = 103 is not sufficient to obtain a good solution,

if one takes the ABAQUS results as baseline. On the other side, RMIP provides very similar results either

in both matching and non-matching cases and for both α = 103 and α = 106. A good agreement with

the other models is obtained for α = 106. The agreement between matching and non-matching meshes

can be observed in Fig.5, showing the equilibrium paths and the deformed configuration at λ = 1.4 for

the two discretizations and for α = 106. These results can give us the idea of using the non-matching

coupling technique for local mesh refinement to reduce the DOFs number of the discrete model (41%).

5 Conclusions

This work showed how to perform an accurate, efficient and robust analysis of thin-walled structures in

large deformations modeled as assemblage of Kirchhoff-Love shell patches. An isogeometric discretiza-

tion with third order C2 NURBS is employed to describe geometry and displacement field within each

patch. An accurate patch-wise reduced integration was found to avoid locking and reduce significantly

the total number of integration points. A simple penalty method was given to impose displacement and

rotational continuity in multi-patch structures. An interface-wise reduced integration provides an accu-

rate coupling also for non-matching meshes. Finally, the Newton method with mixed integration points

gives robustness and efficiency in the iterative solution. Large load steps can be used in path-following

analyses with a reduced number of iterations to achieve equilibrium, also for very slender structures and

high penalty coefficients. More details can be found in [15, 18].
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