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Deutsche Zusammenfassung

Diese Arbeit stellt ein Rahmenkonzept für den Umgang mit Unsicherheiten von Fahrzeug-
crashanwendungen vor. Der Bedarf an diesem Rahmenkonzept ist auf die vielfältigen
Unsicherheiten von unterschiedlichen Quellen in Crashszenarien zurückzuführen, die sich
entscheidend auf die Ergebnisse und damit auf die Sicherheit von Fahrzeugen auswirken.
Ingenieure müssen sich daher mit den Unsicherheiten von Crashmodellen, die rechen-
intensiv sein können, auseinandersetzen.

Das Rahmenkonzept zeigt verschiedene Möglichkeiten auf, um Unsicherheitsanalysen
zu befähigen. Der passende sowie schnellste Weg hängt vom Typ des zu untersuchen-
den Objekts ab. Modelle mit kleinen Rechenzeiten können direkt weiteren Analysen
unterzogen werden. Modelle mit hohem Rechenaufwand können zunächst optional durch
technisches Wissen vereinfacht werden. Das verbleibende Modell wird dann durch Appro-
ximationsmodelle ersetzt, welche sich durch geringe Rechenzeiten auszeichnen. Darüber
werden anschließende Analysen zeitlich ermöglicht. Die Qualität der Approximations-
modelle kann unter Berücksichtigung vieler Parameter leiden. Screeningverfahren können
eingesetzt werden, um den Eingaberaum vor Erstellung der Approximationsmodelle auf
die wichtigen Dimensionen zu reduzieren. Hinterher lässt sich mithilfe der erstellten Ap-
proximationsmodelle eine Sensitivitätsanalyse rapide durchführen. Diese bewertet die
Relevanz einzelner Parameter und deren Interaktionen. Als letzten Schritt beziffert
die Unsicherheitsquantifizierung Auswirkungen der unsicheren Parameter auf definierte
Ergebnisgrößen und bestimmt deren Beschaffenheit.

Finite-Elemente-Simulationen, die am häufigsten untersuchten Modelle im Crashbe-
reich, wird besondere Aufmerksamkeit gewidmet. Das Rahmenkonzept wird demnach
an diese angepasst. Als erstes werden die Simulationen als mathematische Abbildung-
en unterschiedlicher Informationsebenen definiert. Der zweite Schritt besteht aus Meta-
modellen, Vertretern von Approximationsmodellen, die sich den genannten Abbildung-
en angleichen. Als nächstes werden varianzbasierte Sensitivitätsanalysen eingesetzt. Zu
guter Letzt wird die Evidenztheorie für die Unsicherheitsanalyse benutzt. Die vom Rah-
menkonzept vorgegebene Kopplung dieser Methoden macht eine Unsicherheitsanalyse erst
möglich. Diese ist dadurch zeitlich machbar, kann flexibel gestaltet werden und liefert eine
für Ingenieure auswertbare Visualisierung.

Die Realisierbarkeit des Rahmenkonzept wird anhand eines realen Projekts geprüft.
Das Untersuchungsobjekt ist eine Finite-Elemente-Simulation eines Seitenpfahltests. Die
einzelnen Komponenten des Rahmenkonzepts werden Schritt für Schritt angewandt. Meta-
modelle, die Ergebnisgrößen verschiedener Informationsebenen approximieren, werden
verglichen. Das beste Metamodell wird dann für die weitere Analyse verwendet, d.h. für
die Sensitivitäts- und Unsicherheitsanalyse. Ingenieure können mithilfe der Ergebnisse
dieser Analysen beurteilen, wie sicher und robust ihre Systeme sind. Das Rahmenkonzept
trägt somit erfolgreich zur Bewertung und Verbesserung von Strategien für die passive
Sicherheit bei.
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Abstract

This thesis presents a general framework for managing uncertainties of vehicle safety
applications. The need for this framework stems from the multiple uncertainties from
different sources present in crash scenarios that have a decisive effect on the results and
thus on the safety of vehicles. Engineers must therefore confront these uncertainties
inherent in crash models that can be computationally expensive.

The framework shows different ways to enable uncertainty analysis. The appropriate
route depends on the type of the object under investigation. Resource efficient models
can be directly subjected to further analysis. Resource inefficient models can first be op-
tionally simplified by technical expertise. The model under consideration is then replaced
by approximated response surfaces characterized by low computational times. In terms
of time, this enables subsequent analyses. When the model includes many parameters,
the quality of the approximated response surfaces may suffer. Screening can therefore be
used to reduce the input space to the important dimensions before creating the approxi-
mated response surfaces. By using them afterwards, sensitivity analysis can be performed
rapidly. This evaluates the relevance of the individual parameters and their interactions.
As a final step, uncertainty propagation measures the effects of the uncertain parameters
for specified quantities of interest.

Finite element simulations, the most commonly studied models in crash, are devoted
special focus. Accordingly, the framework is adapted to them. At first, the simulations
are defined as mathematical mappings of different levels of information. The second step
consists of metamodels, representatives of approximated response surfaces, which approx-
imate the mappings. Next, variance-based sensitivity analysis is performed quickly by
using the metamodels. In the end, the Dempster-Shafer evidence theory is used for un-
certainty propagation. The framework that structures these methods makes this whole
procedure efficient, temporally feasible, and flexible. It also yields a reasonable visualiza-
tion for engineers.

The practicability of the framework is examined on the basis of a real-world project.
The object of investigation is a finite element simulation of a side pole test. The individ-
ual components of the framework are applied step by step. Metamodels approximating
quantities of interest at different levels of information are compared. The best metamodel
is then used for further investigations, i.e. sensitivity and uncertainty analysis. Engineers
can use the results of these analyses to assess the level of maturity of their systems. The
framework thus successfully contributes to the evaluation and improvement of passive
safety concepts.
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Chapter 1

Introduction

1.1 || Motivation and problem definition

Nowadays, over a billion vehicles are driven on roads all over the world, see [SG10]. In
fact, this number is expected to further increase, see [Gro16]. Many vehicles mean many
kilometers traveled. During these numerous trips, dangerous traffic situations can occur
that may lead to accidents — or fatalities in the worst case. Vehicle safety aims to prevent
accidents, mitigate occupant injuries, or even avert deaths. Among other factors, it is still
instrumental in making the roads safer. For example, the fatality rate per vehicle miles
traveled in the United States significantly decreased from 1975 to 2018 thanks to safety
programs and improvements, see [Nat19].

Vehicle safety can be divided into active, passive, and integral categories, see [KGD10].
Active safety serves drivers in pre-emptive accident avoidance. This refers primarily to
driver assistance systems and technologies. These include, for instance, electronic stability
program, anti-lock braking system, rear view camera, and driver drowsiness detection.
The passive counterpart comprises components designed to reduce or circumvent the risk
of injury in events of accidents. These mainly encompass physical structures and restraint
systems, most notably crumple zone, seat belt and its tensioner, airbags, head restraints,
and child seats, see [Bau98]. Integral safety combines passive with active features, e.g.
restraint systems profit from early detection of accident situations, see [KH09].

Service

Pre-development

Product strategy
Aleatory

Epistemic and aleatory

AleatoryFrom epistemic to mixed to aleatoryEpistemic

Product evolution process

Innovations

Vehicle Vision

MarketProductionNew vehicle
Initial

phase

Concept

phase
Series development phase

Figure 1: The product evolution process. Fig. 1.4 from [Web09] is extended by the
allocation of uncertainties.

The focus of this thesis is on passive safety for which the terms crash safety, accident
safety, and occupant protection are also consulted. In concrete terms, events are examined
in which collisions take place. To assess and improve the crashworthiness of an arbitrary
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but fixed car project, vehicle safety engineers analyze diverse impact scenarios of objects
in the laboratory under realistic controlled conditions. These experiments are called
crash tests. Engineers consider crash tests of components and total vehicles from various
development stages. Before the production of a vehicle is started, it passes the product
evolution process. It consists of three phases and is accompanied by product strategy and
pre-development, see [Web09] and Figure 1.

A product strategy is devised and constantly updated, in which the wishes and needs
of the customer are captured. In parallel, pre-development continuously designs and
refines components and technologies. The technical and business aspects of the project
are settled in the initial phase of the product evolution process. The concept phase then
condenses the project into a systematic target catalog. These targets are realized in the
series development phase. Prototypes, pre-series, and series cars are therefore developed
and validated. Regarding vehicle safety, car companies carry out hardware crash tests
especially in the pre-development and series development phase.

Besides internal studies, these tests are defined by two instances. On the one hand, the
automotive homologation needs to be approved. It represents the procedure for certifying
vehicles or particular components in vehicles for fulfilling the requirements of regulatory
authorities. On the other hand, crash test programs exist worldwide to serve as a source
of comparative information for consumers on the safety performance of new and used
vehicles. These information are provided through ratings typically illustrated by stars.
Both — the legal requirements as well as the consumer safety programs — specify safety
standards. They consist of multiple load cases. There are frontal-, side-, pole-impact,
overlap, roll-over tests, etc. An overview is given in Fig. 2 and [car21].

(a) Full frontal test (b) Frontal overlap test (c) Side barrier test (d) Side pole test

Figure 2: Different crash test disciplines. The images from the Safety Companion 2021
brochure, see [car21], were used as a template.

Engineers design and construct vehicles to satisfy the homologation conditions while
achieving desired scores in consumer tests at the same time. To this end, during the
development process, the vehicle is already subjected to numerous crash tests to ascertain
the maturity level of current designs. This must be done for each car project and its
derivatives, i.e. not only for the base car but also for convertibles, coupes, etc. Many
automotive companies offer more than one car series, see e.g. [BMW21] for the online

2



catalog of the Bayerische Motoren Werke (BMW) Group. This requires a large number of
crash tests. Each test incurs high financial costs as the test equipment is expensive and
the examined car usually has to be scrapped afterwards.

Alongside these hardware tests, many mathematical models are created, cf. [DW15].
These models comprise numerical simulations and analytical functions. Investigating
these models and their results can yield useful insights about the behavior of the ex-
perimental objects in the considered hardware load case. Unlike hardware testing, these
simulations or functions cause comparatively low financial costs, e.g. due to acquisition of
and electricity for high-performance computers. From a financial point of view, they can
therefore be evaluated repeatedly enabling all kinds of mathematical analysis in theory.

Part of these investigations is the quantification and propagation of uncertainties.
When performing crash tests, a variety of uncertainties is existent that can be crucial for
the test result and also transfer to the accident behavior. It is thus important to identify
and assess these uncertain factors. Depending on the phase of the product evolution pro-
cess, which load case is considered, which object is analyzed, and how the test conditions
are arranged, etc., uncertainties appear in different compositions and characteristics. All
of these uncertainties can hardly be assessed by just the handful of possible hardware
tests. For this purpose, mathematical surrogate models, e.g. virtual simulations, are
utilized or serve as support. Their inputs and parameters shall imitate the nature of the
uncertainties. The literature typically divides uncertainties into two classes.

The distinction is made between the epistemic and aleatory category, see [DKD09,
BS07], which specify the mathematical perspective on the parameters. Epistemic uncer-
tainties are provoked by lack of knowledge if no appropriate values can be assigned to
specific quantities. They can be diminished by a greater understanding through further
or enhanced data, see [SG07]. Aleatory uncertainties cannot be removed — they are
irreducible, i.e. the investigated system reaction is inherently random [OHJ+85]. The
product evolution process is confronted with both forms of uncertainty.

The initial and concept phase is dominated by lack of knowledge, i.e. epistemic un-
certainties, see Fig. 1. The form of the final product cannot yet be recognized. The
architecture and systems, e.g. the structure of the crumple zone or the size and settings
of the airbag or belt, are revised several times in the series development phase. That is,
such quantities vary between prototypes, pre-series, and series cars. By renewing con-
cepts, more experience, and data derived from tests, the epistemic uncertainties of those
design parameters vanish.

Operating with surrogate models instead of hardware tests means presence of approxi-
mation inadequacy and numerical uncertainties, see [KO01] for an overview of uncertainty
sources. Model inadequacy occurs as underlying physics of the hardware test cannot be
reproduced exactly. Examples for numerical uncertainties are algorithmic, rounding, or
interpolation errors. Either source is considered aleatory along with parametric variabil-
ity that stems from production as well as experimental scatter. A crash test may be
performed unintentionally with conditions divergent from the exact test program. The
velocity may deviate from the prescribed test schedule. Depending on the positioning of
the measuring instruments, the recorded signals could exhibit noise.

In the product evolution process, parameters can be associated with both uncertainty
classes. Uncertainties of epistemic class can transition into aleatory uncertainties from
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time to time, see Fig. 1. Although concrete values are established for particular quantities,
thereby eliminating epistemic uncertainties, they may inhere aleatory irregularities. Shape
and state of specific prototype components may not be finalized. Later, for series cars,
decisions are made and manufacturing plans are prepared. Not all components, however,
can be built in the factory exactly as plans dictate. For instance, the wall thickness of
the crashbox has a fixed value but materials used have impurities in some places.

Epistemic Mixed Aleatory Crash Output uncertainties

Injuries

Consumer safety rating

DeformationsLack of knowledge Intrinsic random

Reducible Irreducible

Design

Transition

specifications
Testing
inaccuracies

Manufacturing
margin

Input and model uncertainties Output quantities

Figure 3: Uncertainties in the crash world.

Summarizing, vehicle safety engineers may face several sources of uncertainties: uncer-
tain design variables and parameters, manufacturing, testing, and numerical uncertainties
as well as model inadequacy. These sources possess elements of both classes — epistemic
and aleatory. According to the phase of the product evolution process, the proportion
of epistemic or aleatory uncertainties predominates. Engineers therefore have to tackle
various uncertainties encountered in diverse objects and models at different times in order
to plan and ultimately develop safe and robust cars. These multifaceted tasks must be
completed in the shortest possible time and in the most cost-efficient way, thus posing a
great challenge.

1.2 || State-of-the-art and research question

This section highlights the confrontation of well-established and current research with
uncertainties. At first, examples from different fields of study that take uncertainties
into account are presented. Then, the uncertainty analysis is divided into two types —
forward and backward quantification. It is discussed that its high computational effort
can be resolved using approximated response surfaces. Methods for forward uncertainty
quantification, which is the focus of this thesis, are described. Sensitivity analysis is
introduced next that provides information about the considered uncertain parameters.
Afterwards, an overview of the models used in vehicle safety is given. These models are
to be subjected to uncertainty analysis. Last but not least, the research question of this
thesis is formulated.

Uncertainties appearing in different fields
Dealing with uncertainties is an important part of science. The influence of uncer-
tainties can crucially change results of experiments. For this reason, the investigation
of uncertainties in more and more fields is gaining in priority. Uncertainties are de-
tected, quantified, and propagated on the one hand. On the other hand, they are in-
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corporated into analyses like optimization, optimal control, robustness studies, etc, see
[FCJR17, Ger11, BMNHG18]. These studies can make systems safer by identifying how
likely certain outcomes or scenarios are. Negative surprises can be predicted beforehand.
They can be prevented by revising concepts or revealed risks can be accepted.

In aerospace engineering, components of the aircraft, e.g. airframe, wings, or airfoil,
are optimized with regards to crashworthiness, drag, or lift under uncertain conditions, see
[Zan02, PGL06]. Architects and civil engineers want to build durable and stable houses,
bridges, platforms, etc. For this, they want to remove vulnerabilities of their objects that
often come from uncertainties. Thus, they consider strength properties of materials, e.g.
cement, structural load characteristics, e.g. water wave loads on offshore oil platforms,
etc., as aleatory, see [AK06]. Environmental researchers use uncertainty analysis to eval-
uate risks, potential adverse effects, and effectiveness of proposed remediation measures
when hazardous substances are released into the atmosphere, see [HHB94].

Meteorologists make forecasts taking into account uncertainty. For example, para-
metric and structural uncertainties in the climatological planetary boundary layer are
examined in [SAL10b] that highly influence climate, weather, and air quality. The re-
cent pandemic, COVID-19, had physicians analyzing the impact of diagnostic uncer-
tainties in virus detection testing, see [GCW+20]. In the automotive sector, there are
likewise many places where uncertainty analyses are or should be made: design optimiza-
tion [ZZC11, ABH+17], autonomous driving [CCKL19, HFRD13, CGEO15], but also for
crashworthiness [DW15], and many more.

Types of uncertainty analysis and their time burden
One goal unites different sciences in analysis of uncertainties: all aim for fast, accurate,
and reliable results. Concerning detection and quantification of uncertainties, literature
distinguishes between two types, forward and backward uncertainty quantification, see
[AKVS03, CI12]. Forward quantification or propagation of uncertainty is the determina-
tion of output uncertainty caused by uncertain system parameters. In more detail, this
type is used to provide information about mean, variance, and reliability of outputs or
to estimate their probability distribution. By contrast, backward or inverse uncertainty
quantification deals with the opposite task. Given the output distribution function, it
searches the values of unknown parameters, e.g. under a Bayesian framework, see [KO01].
The distinction between forward and backward uncertainty quantification is elaborated
in more detail in Section 3.4.1.

The focus here is on forward propagation. In the following, this type is meant when
uncertainty quantification or analysis is mentioned. Methodologies for forward uncertainty
propagation often overlap, especially for engineering applications. Particularly there,
several models, e.g. analytical functions derived from physics or computer simulations, are
used to represent the actual situation. Often, they incur high computational efforts, e.g.
finite element models. To perform uncertainty analyses in a reliable and profound manner,
thousands or millions of evaluations may be required. This can make the investigation
infeasible in terms of time and resources. Pure sampling-based methods like Monte Carlo
simulations [KBTB14], importance sampling [Sri02], etc. are often too expensive to be
applied. So, auxiliary methods must be implemented.
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Approximated response surfaces as a remedy
As a workaround, approximated response surfaces can be employed to emulate costly
models. They require some sample points to be trained with. There exist two main
approaches for response surfaces, an intrusive and a non-intrusive option. For intru-
sive approaches, the governing equations of the model must be known. It can then be
tried to simplify these equations and thereby accelerate the computational time of the
model. For instance, complexity of equations, e.g. the size of matrices, can be reduced
via dimensionality reduction. This technique is also called model order reduction, see
[KMV18, BSV14, LV13, GV17].

For finite element crash simulations, a dissertation was published recently that de-
scribes an intrusive model order reduction method, see [Bac19]. This method is able to
reproduce the already computed results of the full model. However, the method was not
yet sophisticated enough to make good predictions for parameters outside the training
set. In addition, the author had a special license with insights into the solver code. Gen-
erally, finite element crash models have to be considered as black boxes, i.e. non-intrusive
mappings, as their underlying code is hard to access or is denied to be touched.

For these black boxes, metamodels as non-intrusive approaches are better suited. They
are mathematical functions whose hyperparameters have to be optimized for a suffi-
cient replicate of the actual model. Several methods are present that assume different
mathematical source terms and hyperparameters. For instance, there are linear regres-
sion routines [MPV21], Gaussian process regression [Wil98], polynomial chaos expansion
[TMES19], support vector machines [BL10], decision trees [XWVA05], random features
[YLL+14], etc. Methods from the field of machine learning, see [RN10], like artificial
neural networks [Abr05] can also be used. They are here also referred to as metamodels.
All have advantages and disadvantages regarding fitting quality subject to the data to
be observed. Nevertheless, each of them can be evaluated quickly. Detailed information
about metamodel concepts can be found in Section 3.2.

Integration of these metamodels into multifidelity methods may improve performances.
Multifidelity methods combine models of high-fidelity, e.g. finite element simulations, with
models of low-fidelity, e.g. metamodels, see [PWG18, KGH20]. Low-fidelity models speed
up evaluations, where possible. Where impossible, the high-fidelity model is invoked
to retain accuracy. In theory, this sounds promising but e.g. the prohibitively high
costs of finite element crash simulations — even when used solely for corrections within
multifidelity methods — complicates the realization in terms of computing time. In this
case, it is proposed to work only with metamodels. If they are of high quality, multifidelity
methods become obsolete anyway.

Methods for forward uncertainty quantification
After constructing an approximated response surface, uncertainty analysis can be exe-
cuted, e.g. using sampling-based methods, on the fast response surface. Moments of
outputs, e.g. mean and variance, can be calculated. Probability of system failures can
be identified by analyzing the reliability of outputs, see [OK12]. On that account, a limit
state function is defined. It indicates where a system satisfies certain conditions and where
it fails. Response surfaces accelerate calculating the probability of failure. Moreover, other
popular methods exist to measure the probability of failure without using response sur-
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faces, e.g. first order or second order reliability method, see [ZO99]. However, they are
prone to become inaccurate for nonlinear limit state functions, see [MS18].

Depending on the form of the input uncertainty, different methods can be used to
propagate them through the system via response surfaces. Results of these methods
are histograms, probability density, and cumulative distribution functions, or corridors
thereof. All of them can help engineers to better understand their systems and inform
whether concepts should be revised. Popular methods are now briefly introduced.

Interval analysis only assumes that the uncertain parameters lie in intervals, see
[JKDW01]. Interval fields inferred by interval analysis are an interesting approach for
interval finite element models, see [MDMDV11]. They model spatial varying input un-
certainty. Via machine learning, they can be extended to supervised interval fields, see
[BMM18]. Finite element crash models, however, are usually deterministic, i.e. there is
no clear interval model expression yet. So, this calls for further research.

Possibility theory considers uncertainties as variables that endow quantities with at-
tributes ranging from impossible to possible and from unnecessary to necessary, see
[DP01]. One special case of possibility theory is fuzzy theory, see [Kli99]. Fuzzy logic
deals with the concept of partial truth where the observation can be between completely
true and completely false, see [NPM12]. However, the uncertainty descriptions of these
methods are neither optimal for the parameters of vehicle crashes nor straightforward for
engineers to interpret. They need unambiguous terms and no fuzzy terminology.

Second-order probability uses an inner and an outer loop to propagate uncertainties.
It deals with the case that the distribution family of a parameter is known but its defining
hyperparameters, e.g. the mean and the standard deviation for a Gaussian distribution,
are unknown, see [SPM09]. In the outer loop, the hyperparameters are specified and sent
to the inner loop where sampling is performed from the realized distributions. In vehicle
safety applications, parameters are usually designed to have a clear uncertainty allocation.
It is not necessary to introduce double uncertainties, i.e. an inner and an outer loop, for
the parameter definitions themselves. If another allocations shall be tested, this can also
be done by running other methods multiple times.

Probability boxes imprecisely surround probability distributions, see [DMS21]. Prob-
ability boxes for parameters can be evaluated to obtain another probability box for the
output. Moreover, a version of the Dempster-Shafer evidence theory propagates uncer-
tainties through the system, see [EST11]. The method — described more precisely in
Section 3.4.2 — works with intervals for the uncertain parameters. These intervals are
then assessed by experts: they are divided into subintervals and afterwards, probabilities
are allocated to these subintervals. All combinations of subintervals are generated and
propagated through the model. This leads to a corridor for the cumulative distribution
function including worst and best case boundaries.

Probability boxes and the Dempster-Shafer evidence theory are related, see [FKG+15].
Dempster-Shafer structures can be interpreted as probability boxes. Conversely, proba-
bility boxes can be approximated with Dempster-Shafer curves. In this thesis, Dempster-
Shafer structures are preferred as the uncertainties of the parameters are based on the
mentioned expert opinions. Vehicle safety engineers can handle the uncertainty assign-
ments for the parameters with ease and flexibility. Their opinion can additionally be fused
with assignments coming from, for example, old data or associated information before the
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propagation is absolved. Note that it can be attempted to perform the discussed methods
straightly with the models and without the use of approximated response surfaces. As
already mentioned, the computational effort are too expensive in most cases. Therefore,
approximated response surfaces will be a key feature to enable uncertainty propagation
in this thesis, especially for finite element models.

Input exploration via sensitivity analysis
Besides the quantification of uncertainties, engineers are interested in understanding the
parameters of their system. Global sensitivity analysis explores how output uncertainty
can be apportioned and attributed to the uncertainty in the parameters, see [SRA+08].
This must not be confused with local sensitivity analysis — often based on derivatives —
which examines the effects of slight changes in a chosen set of factor values, see [ZL08b].
In global sensitivity analysis, the uncertainty in the outputs is assigned to the parameters
over their full range of interest, see [ZL08a]. The difference between local and global
sensitivity analysis is described in more detail in Section 3.3.1. In this thesis, the global
approach is meant when speaking about sensitivity analysis as comprehensive findings
need to be obtained.

Methods for global sensitivity analysis usually require a number of model evaluations.
There are qualitative approaches that superficially identify significant parameters and
operate with relatively low computational effort, i.e. number of sample points. In contrast,
approaches exist that make quantitative statements about the influence of the parameters.
They rely on larger computation expenses, see [IS17].

Incurred computational costs can again be addressed through use of approximated
response surfaces, e.g. metamodels. However, the so-called curse of dimensionality can
occur, see [Don00, Tru79]. On the one side, it describes the problem that costs for an
entire study of the input space exponentially increase with the dimension of this space. On
the other side, some metamodels may stop functioning well when dimensions become too
high. In short, one needs to find the right number of inputs to balance the costs to create
the model and the quality of its predictions. Therefore, cheap qualitative approaches may
be employed before constructing metamodels and applying quantitative measures.

Depending on the model properties and the assumptions on the model parameters,
qualitative approaches lead to the correct relevant parameters. They are also referred to
as screening methods. The Cotter method is a very simple and cheap screening method
to determine the importance of parameters, see [Cot79]. Its drawback is that it may not
be in-depth enough to yield solid results.

The Morris method, see [Mor91] and Section 3.3.2, tries to cover the input space more
carefully. It determines so-called elementary effects — basically difference quotients — of
each parameter at different random starting points. Then, mean and standard deviation
of these effects indicate the importance of parameters. The number of random starting
points can be chosen arbitrarily. The more points are used, the more trustworthy the
method becomes. Campolongo et al. use a radial design-based sampling in [CSC11] that
enhances the method to make it quantitative.

The active subspace method, see [CDW14], reduces model parameters by rotating
their coordinates to directions of strongest variation. It therefore requires the gradient
which is not accessible when facing black boxes. Gradients can be sketched through
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finite differences, see [CEW15]. This, however, asks for additional model evaluations.
Furthermore, for non-smooth problems, one needs approximations of subgradients.

Examples for quantitative measures are Borgonovo, Sobol’, or Kucherenko indices.
Borgonovo indices of a parameter declare the expected shift in the output probability
distribution when the observed parameter is fixed, see [Bor07]. The idea of Sobol’ indices
is to decompose the model into an expansion of summands growing in dimension, see
[Sob01] and Section 3.3.3. The variance of the expansion can then be expressed in terms
of the sum of all single variances of the summands. For this reason, Sobol’ indices are
also called variance-based sensitivity measures.

The decomposition applies only to independent parameters. Therefore, Sobol’ indices
are not suited for dependent parameters. Kucherenko et al. extended Sobol’ indices in
[KTA12] for dependent parameters. Kucherenko indices are based on a direct decompo-
sition of the output variance. A great review of global sensitivity analysis methods can
be found in [IL15].

Models considered in passive vehicle safety
Vehicle safety engineers encounter different models during car development. To arrive at
a broad understanding of emerging phenomena, uncertainties should be considered for all
of these models. The most popular and frequently employed models to imitate hardware
crash events in high fidelity are explicit finite element simulations, see [DW15]. These
simulations consists of many finite elements, e.g. several millions in full vehicle models,
that form a mesh for the underlying geometry. To calculate the crash characteristics, dif-
ferential equations are formulated and solved on the mesh. Due to the complex geometry
and the nonlinear behavior, solving finite element models demands multiple hours on a
great number of parallel computing central processing units (CPU).

Finite element models can be simplified — also known as physical surrogates, e.g.
by applying sub-structure modeling, hybrid nonlinear finite element rigid body or elastic
approaches, or hybrid fine-rough finite element meshes, see [Ray14, GJP13, DW15]. They
maintain physical processes in the model. Some concentrate on components or consider
parts to be elastic. Others replace the fine mesh by rigid bodies or alternative structures.
All aim for faster calculations but often simplified models remain computational expensive.

Another approach similar to finite element simulations is called isogeometric analy-
sis, see [CHB09]. It integrates finite element methodologies into computer-aided design
(CAD). By doing so, the geometry does not have to be meshed. The solution is carried
out directly on the CAD geometry where non-uniform rational basis splines are used.
This saves time and effort due to omitting meshing procedure. A recent doctoral the-
sis, see [Lei20], discusses this technique for crash applications, i.e. contact problems. The
method, while promising, needs further research for use in large impact scenarios. Further-
more, first results demonstrate that solving isogeometric analysis models is comparably
expensive to running meshed finite element simulations.

Other examples for simplified models are multi-body system [CAE11, Fen13], deforma-
tion space models [Lan21, LFSD18], analytical and semi-analytical crash modeling, and
equivalent static load methods [HHMR08], see [DW15, LFSD18] for an overview. In many
cases, these models are suited merely for early phase development as they are derived by
drastic simplifications, e.g. linearizations, heavy coarsening, etc. They give intuitions and
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rough guidelines for design possibilities but they are not suitable for in-depth analysis.
Moreover, engineers work with crash performance functions like safety ratings, see [car21],
that are concerned with processed measurement quantities. These are not provided by
the early phase models.

Posing the research question
A clear, uniform procedure to enable uncertainty investigations for these diverse crash
models is to be found. It has to tackle the three main challenges: numerous, multifaceted
parameters and their uncertainty definitions, large computational costs, and appropriate
visualizations for interpretation. Accordingly, the following research question arises:

How can uncertainty management be structured for fast, flexible, and visualizable
usage towards vehicle crash models?

This thesis will provide an answer by means of a framework that brings required
global methods in the correct order. The framework will be specifically trimmed for finite
element crash simulations — the most common, precise, and expensive models in the field
of vehicle safety. A selection of state-of-the-art methods from different science applications
and their adaptions will be proposed as proxies of the global methods. The structure of
the work is presented in the following section.

1.3 || Thesis structure

Chapter 2 proposes a global uncertainty management framework that answers the posed
research questions by presenting a way to analyze uncertainties in arbitrary vehicle crash
models. For this purpose, it provides a unified, generic process with general methodologies
in a compact manner. Chapter 3 customizes the global framework to finite element crash
simulations. It is divided into four sections. First, preliminaries are provided and finite
element crash simulations are formulated as mathematical mappings. Second, different
forms of metamodels are introduced for the mathematical mappings. For each type, a
choice of state-of-the-art metamodels is presented. Third, sensitivity analysis including
the elementary effects method and variance-based sensitivity indices are discussed. At
last, uncertainty propagation via the Dempster-Shafer evidence theory is shown and its
benefits are explained. Metamodels as well as sensitivity and uncertainty analysis are
demonstrated on several examples.

In Chapter 4, the adjusted framework is applied to a large real-world project, a full
vehicle side pole impact with nine parameters that exhibit uncertainties of the epistemic or
aleatory type. The model is replaced by different metamodels to quickly approximate the
quantities of interest, i.e. the key results. The best performing metamodel is then used to
calculate Sobol’ indices. Afterwards, Dempster-Shafer structures are assigned to the most
relevant parameters. This package is subsequently evaluated with the evidence theory to
obtain informative results about the output uncertainty, i.e. bounds for the cumulative
distribution function of the key results. Chapter 5 critically reviews the chosen methods
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for the framework components and provides an outlook on future efforts to refine and
further extend the findings of this thesis. Chapter 6 delivers the final conclusion.

1.4 || New scientific contributions

The main contribution of this thesis is the framework that enables global sensitivity
analysis and uncertainty propagation for crash applications that can be computationally
expensive, are considered as black boxes, and may have multiple uncertain parameters.
Each component and step of the framework is placed to best accommodate the application
of uncertainty propagation. The generic framework is adapted to the most common com-
puter models in vehicle crash, i.e. finite element simulations. The final aim of the tailored
framework is to enable the Dempster-Shafer evidence theory for uncertainty propagation.
This method appears to be most suitable for this field of research. Therefore, its concept
is rewritten mathematically to make it understandable and manageable for engineers. For
describing the single components of the framework, novel model descriptions of industrial
finite element simulations are introduced. This allows to easily determine which types
of metamodels can be used to approximate the time-consuming finite element models.
These types, i.e. scalar metamodels, multi-target regression metamodels, and model or-
der reduction metamodels are trimmed to the data, tested, and compared. Moreover, an
adaptive algorithm for the elementary effects method is proposed to reduce the problem
dimensionality at the right stage of the analysis.

Additional scientific contributions by the author of this thesis related to the topic here
are [JLG21a] and [JLG21b]. The first work applies a non-intrusive model order reduction
metamodel to a crashbox simulation to enable the Dempster-Shafer evidence theory. The
second contribution suggests a generic framework similar to the one presented in this thesis
and demonstrates it using a simplified occupant simulation. Furthermore, the author of
this work advised four Master theses [Dek20, LN21, Go21, Her21] that were incorporated
here. All of them investigated metamodels of different types, i.e. scalar metamodels,
multi-target regression metamodels, and model order reduction metamodels.
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Chapter 2

General uncertainty management framework
for vehicle crash applications

Vehicle safety engineers work with diverse models. Here, a model is defined as a construct
that assigns n-dimensional inputs to outputs, i.e.

F : X ⊂ Rn → Y (2.1)

where X ⊂ Rn, n ∈ N, and Y designate the input and the output space, respectively.
Thereby, it is not mandatory to know explicitly how the mapping works, i.e. the model
can be non-intrusive or simply a black box function. An input reflects the uncertain pa-
rameters of the model. Different input settings effect output uncertainties. This process,
its reasons, and its outcomes are to be uncovered via sensitivity and uncertainty analyses.
The right strategy for these studies must be found for each model individually. In the
following, a global framework illustrated in Fig. 4 is proposed and subsequently discussed.
It shows the paths to follow in order to enable global sensitivity and forward uncertainty
analysis for vehicle safety models. To this end, various properties of the underlying model
have to be examined. According to these, it is decided which steps must be taken to
perform analyses in a fast, efficient, and accurate way.

First and foremost, the type of the model decides whether analyses can only be run
with prior application of other techniques or directly without them. By type, it is meant
if the model is resource efficient or inefficient. This separation is depicted as the first
branch in Fig. 4. A resource efficient model can be evaluated quickly. On the contrary,
resource inefficient models have large computational costs making profound investigations
infeasible with respect to time. This is due to the many evaluations that are needed for
reliable and precise analyses.

Known analytical functions such as safety ratings from crash test programs, see [car21],
or mathematical formulas based on physics describing the crash event are computationally
cheap, i.e. resource efficient. By contrast, high-fidelity virtual simulations, e.g. finite ele-
ment models, are typically considered resource inefficient. Analyses of resource inefficient
models must be enabled by additional methods whereas sensitivities and uncertainties of
resource efficient models can be directly analyzed. This is illustrated in Fig. 4 where re-
source efficient models can skip the intermediary methods. For resource inefficient models,
further branches must be traversed.

The next step for resource inefficient models is to check if the model can be simplified.
Full vehicle models with occupants for instance can be partitioned into smaller models. In
engineering practice, it is common — though not necessary — to observe the structure of
the vehicle first. Then, the obtained information on the movement activity of the vehicle
is forwarded to a compact occupant model, cf. the sub-structure modeling approach in
[Ray14]. Usually, this still results in resource inefficient models as occupant models have
long computation times. There are, however, other possibilities to reduce the model to
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make it resource efficient. Examples are to consider only small components that might
incur lower calculation efforts, to use drastic simplifications of the physics, see [LFSD18,
Bra17], or to break it down to straightforward mathematical formulas. This would in
turn enable the desired analyses immediately — portrayed as the arrow at the simplified
modeling level in Fig. 4 pointing from left to right. Note that simplifying also demands
time and effort for developing sophisticated concepts that imitate the complex behavior.

Crash Model with Uncertain Parameters

Resource Inefficient

Simplified Modeling Not Feasible

Screening

Approximated Response Surface

Sensitivity Analysis

Resource Efficient

(Still) Resource Inefficient

Simplified Modeling Feasible

Many Parameters Few Parameters

Uncertainty Quantification

Input exploration

Output exploration

Figure 4: Uncertainty management framework for vehicle crash models. The framework
is similar to the one presented in [JLG21b].

The framework recommends to replace resource inefficient models by approximated
response surfaces,

M : X ⊂ Rn → Y , (2.2)

to accelerate the output generation. To keep it general, i.e. concerning black boxes,
metamodels are used as approximation response surfaces. Metamodels are mathematical
surrogates that emulate the behavior of the considered model. They aim for precise
approximations, i.e.

M(x) = F(x) (2.3)

for all x ∈ X . Depending on the investigated model and the data of interest, several
approaches exist and different variants are available to utilize them. For instance output
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dimensions of diverse complexity can be considered when dealing with finite element
simulations, see Chapter 3 for details. All have in common that they have to be trained
by a sample of actual model input-output data,(

x1,F
(
x1
))
, . . . , (xntrain ,F (xntrain)) ∈ X × Y , ntrain ∈ N. (2.4)

After this offline training stage, a well-fitted metamodel can quickly make predictions
close to the actual outputs in the online phase. For the creation of appropriate response
surfaces, it can be beneficial to take the number of parameters, i.e. n, into account.
Broadly speaking, the higher the dimension of the input space is, the more mathematical
terms must be used to construct the metamodel. The more terms there are, the more
equations have to be solved to do the regression. Consequently, the harder it gets to
optimize the metamodel and possibly, the worse the quality may become.

Therefore, in case of many parameters, it may help to install a screening method
before training metamodels. Screening belongs to sensitivity analysis methods that quali-
tatively identify the contributions of parameters to the output, see [IL15]. Only the most
relevant parameters, e.g. in total k ∈ N, k < n, are then considered in the following
steps, e.g. metamodel creation. Some parameters may have little or no influence on the
output. These irrelevant parameters do not need to be investigated further. They can be
eliminated from the model, i.e. the dimension of the input space, X , shrinks from n to
k. This can be advantageous because examining a model with more parameters normally
demands more evaluations. So, it is advisable to limit the model to its most important
parameters by exploiting the information from screening. In addition, screening methods
require a relatively small number of sample points which makes them attractive.

Besides, there exist metamodels that can handle high dimensional input spaces. For
example, there are techniques that are coupled with the high dimensional model represen-
tation, see [LWR00, SW10, CWYH19, HQZ+15]. Others try to diminish the expression of
the metamodel. They are supposed to detect its significant terms and discard the insignif-
icant ones, e.g. different possibilities are available to make the expansion of polynomial
chaos sparse, see [LMS21]. Generalized, this can also be done by connecting metamodels
with dimensionality reduction methods, see [LMS20]. In a nested optimization approach,
the dimension of the problem is reduced in the outer loop and afterwards, the metamodel
is fit within the reduced space in the inner loop.

All options can help to deal with a high input dimension and facilitate training of
metamodels. There can be indeed many parameters. Engineers face test uncertainties,
uncertain design specifications, production uncertainties, etc., see Fig. 3. The initial
speed, the impact angle resulting from the rocking of the vehicle, the position of the
dummy or other measuring devices, etc. can lead to different results. These parameters
are treated as test uncertainties that are aleatory as they cannot be reduced and may
appear in each test. Uncertainties can also stem from production instructions to be
defined by the pre-development or they come from manufacturing inaccuracies.

The definitions of the input uncertainty for e.g. the choice of material properties or
wall thicknesses thus depends on the point in time of the product evolution process. In
the initial and concept phase, see Fig. 1, the lack of knowledge, e.g. of the wall thicknesses
of the crashboxes, might dominate. Hence, the parameter is to be regarded as epistemic.
In later series development phases, this could transition to an aleatory view. The size
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might be defined on the plan but it may be realized slightly imprecisely in the production
possibly which could cause uncertain behaviors.

Design specifications of vehicle restraint systems can be epistemic or aleatory as well.
In the concept phase, it is not clarified what the optimal time is for the airbag to deploy
since the structure of the passenger compartment — a production uncertainty — is not
yet settled. Later, it is determined but the airbag itself could respond with delay that
can influence results drastically. For the protection against rib injuries in a side crash,
the deployment of the side airbag is crucial. Moreover, numerical effects and model
inadequacy could also be modeled by specific parameters. Here, however, the focus lies
on the presented test, design, and production parameters.

Through the metamodels, a fast output generation is guaranteed which enables pro-
found studies of the model, i.e. the approximated response surface level in Fig. 4 is pierced
through. Sensitivities can be extensively analyzed, i.e. quantitative measures can be cal-
culated as opposed to qualitative information from screening. Global sensitivity indices
expose important properties of the model, especially its parameters. They indicate which
parameters control the global output variation and to what extent. From a mathematical
perspective, the input, x ∈ X , is considered to be the realization of a multivariate random
variable, X , see Section 3.1 for notations and definitions. The global sensitivity index of
first order then represents the proportion,

Vi

Var (Y )
, i ∈ {1, . . . , n}, (2.5)

see (3.128), that the influence, Vi, of the i-th dimension of the random vector, X , has
on the total output variance, Var (Y ). There, Y = F(X ) is the random vector that
belongs to the output space, Y . Other global sensitivity indices highlight which param-
eters interact and can also indicate whether the model is additive. Extensive sensitivity
analysis can concretely determine which parameters need further investigation, whereas
screening can only give an idea of relevant and irrelevant parameters. It is therefore pos-
sible that further parameters will be deleted for the upcoming uncertainty analysis. Note
that global instead of local approaches are taken in this thesis since influences of entire
parameter ranges are of interest, see Section 3.3.1 for more details.

After the knowledge about the parameters, uncertainty quantification is performed as
last level of the total framework, see Fig. 4. In fact, forward uncertainty propagation
is meant here while backward uncertainty quantification is not part of this thesis. The
distinction between both is elucidated in Section 3.4.1. The forward approach is applied to
quantify uncertainties in the outputs caused by epistemic and aleatory input parameters
following a known distribution, pX . For example, the output range, its distribution,
pY , and, by association, the probability, P(Y = F(x)), at which a particular output
value occurs, can be ascertained. This allows conclusions to be drawn about safety,
reliability, risks, and chances of the underlying event and components thereof. Depending
on the assessment, engineers can decide whether systems need to be revised. Aleatory
uncertainties cannot be erased but they can be made benign through enhanced concepts.
All in all, the framework can lead to an improvement of vehicle safety by detecting possible
uncertainties as well as being aware of where they come from and which parameters control
them. Note that sensitivity analysis is intentionally used prior to uncertainty analysis
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because it facilitates uncertainty analysis by reducing the number of relevant parameters
and thus avoiding the curse of dimensionality.

The framework was explained in a forward fashion. Actually, it was created backwards.
The main intention is to run uncertainty analysis. For that, it is useful to know which
parameters actually contribute to the output variation to assist uncertainty quantification.
Sensitivity analysis identifies these information. Irrelevant parameters can be rejected
and set to their nominal values. Special attention can be paid to the most important
parameters. Then, complex models, e.g. finite element simulations, posed the challenge
of being resource inefficient. So, they had to be exchanged by fast approximations, i.e.
metamodels. Metamodels in turn may suffer from the curse of dimensionality. This
can be tackled by screening the most relevant parameters in advance, by using sparse
methodologies or dimensionality reduction techniques. Before these methods are applied,
the model may be simplified to a simpler surrogate model which potentially avoids the
whole metamodel procedure. In the end, the framework in Fig. 4 was established.

A model can also simply consist of collected data from e.g. hardware crash tests.
Parameters could be test or vehicle conditions. The measured outputs could be motion
related quantities of the experiment. This data certainly requires high effort to be ob-
tained. A real crash test is an expensive time-consuming event. Observed data is therefore
resource inefficient. Furthermore, hardware crash tests of full vehicles are rarely repeated
several times. Therefore, it is difficult to perform reliable analyses only on the small
sample of these hardware tests. In some cases, however, enough data is available, i.e. the
methodologies can be applied with better results. Nevertheless, the framework focuses on
surrogate models for these crash events. Note that this procedure can also be applied to
applications from technical fields other than vehicle safety.

The next chapter provides precise technical details how the framework can be tailored
to finite element simulations. These simulations are the standard for computer models
approximating crash scenarios, see [DW15]. They are solved explicitly — due to contact
issues — by a commercial solver that must be seen as a black box function. Furthermore,
they are designed using a large complex geometry including complex material proper-
ties. Solving them can entail tackling highly nonlinear phenomena. This all implies long
computational times. Different options for metamodels replacing the simulations will be
shown. For the sensitivity analysis, the variance-based Sobol’ indices will be presented as
parameter independence is assumed. The propagation of the uncertainties will be carried
out with the Dempster-Shafer evidence theory. In principle, the framework customized
for finite element simulations and its methods can also be transferred to other virtual or
non-virtual models.
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Chapter 3

Methods specific to finite element models

In this chapter, finite element (FE) simulations as the most commonly used computer
models in the crash domain are subjected to the uncertainty management framework
shown in Fig. 4. For this purpose, the framework can be formulated more concisely.
In most cases, finite element models are resource inefficient whether simplified or not.
The optional screening component is integrated into the approximated response surface
strategy, i.e. the metamodel. Fig. 5 features the resulting more compact framework.

Metamodeling

(Sections 3.2, 3.3.2)

Sensitivities

(Section 3.3.3)

Uncertainties

(Section 3.4)

Resource inefficient,

black box solver,

various parameters

Different options,

screening, dimen-

sionality reduction

FE Model

(Section 3.1.2)

Parameter assess-

ment, ranking,

deletion

Output analysis,

visualization,

decision making

2 1
3

Figure 5: Compact uncertainty management framework for finite element crash simula-
tions.

3.1 || Preliminaries and model description

Before concrete methods are introduced for the framework components, preliminaries are
provided and representations of finite element models for this work are discussed. These
representations, i.e. treating finite element methods as mappings containing different
levels of information, enable various options of metamodels mentioned in Fig. 5.

3.1.1 Preliminaries and notation

To begin with, regularly occurring abbreviations along with their descriptions can be
found in the list of essential abbreviations after the table of contents. Additionally, Table 1
records repeatedly used mathematical symbols.
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Table 1: Mathematical symbols often appearing in this thesis.

Symbol Description
· Standard multiplication or placeholder
◦ Function composition
R Real numbers
N Natural numbers

Lower case letters, e.g. x Scalar values or vectors
Upper case letters, e.g. X Matrices
Script letters, e.g. X Random variables, vectors, or resulting quantities

E(·) Expected value of a random variable
Var(·) Variance of a random variable
F andM Mapping, e.g. FE black box function, and its metamodel
X and Y Input and output spaces of mappings, e.g. F

n Initial number of (model) parameters
ntrain Size of the training sample
nval Size of the validation sample
nred Number of parameters after dimensionality reduction
k Number of parameters after screening
d Number of parameters after sensitivity analysis
NT Number of discrete time steps of a FE model

NEN, NCN, and N Number of entire or component nodes of a FE model
Nred Number of reduced nodes, e.g. principal components

Now, further required notions and concepts are discussed. A model maps from an
input space to an output space. In this thesis, one input consists of several parameters.
In other words, a parameter configuration defines one input that can be evaluated via the
model to obtain the corresponding output. Furthermore, the term hyperparameters, e.g.
coefficients of basis functions, describes settings of models or techniques, e.g. metamodels
or dimensionality reduction. They need to be optimized to yield optimal results.

The last terminologies being introduced are related to probability theory and statistics.
The definitions orientate on the works [Kle13, Dur19, Ash08]. Let (Ω,F ,P) be a proba-
bility space, i.e. a triple consisting of the event space Ω, the σ-algebra F , and the proba-
bility measure P. A random variable is a measurable function, X : Ω→ B,ω 7→X (ω),
from the event space, Ω, i.e. a set of possible outcomes, to a measurable space, B. The
expected value of a random variable, X , is defined as

E (X ) =

∫
Ω

X (ω) dP(ω). (3.1)

The variance of X is denoted as

Var (X ) = E
(
(X − E (X ))2

)
= E

(
X 2

)
− E (X )2 . (3.2)

The expected value of a multivariate random variable, i.e. a random vector, (X1, . . . ,Xn),
n ∈ N, is defined as E (X1, . . . ,Xn) = (E (X1) , . . . ,E (Xn))

T .
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In this work, event spaces, Ω, of probability spaces are equipped with the Borel-σ-
algebra as σ-algebra and the Lebesgue measure as probability measure. The expected
value of a random variable, X : Ω → R, ω 7→ x = X (ω) with the probability density
function, pX , and the cumulative distribution function, PX , can then be formulated as

E (X ) =

∫
R
xpX (x) dx. (3.3)

Two random variables, X1,X2 : Ω→ R, are called independent if and only if the combined
random variable (X1,X2) possesses a joint cumulative distribution function that fulfills

PX1,X2(x1, x2) = PX1(x1)PX2(x2), (3.4)

or equivalently, it has a joint probability density function that satisfies

pX1,X2(x1, x2) = pX1(x1)pX2(x2). (3.5)

Later, uniform distribution is assumed when, for example, training points are sampled
for metamodels. The uniform distribution is defined for an interval, [a, b] ⊂ R, a < b. Its
probability density function for a random variable, X : Ω→ R, reads

puniformX (x) =

{
1

b−a
, for a ≤ x ≤ b,

0, otherwise.
(3.6)

Its cumulative distribution function is declared as

P uniform
X (x) =


0, for x < a,

x−a
b−a

, for a ≤ x ≤ b,

1, for x > b.
(3.7)

As a final note, other required definitions are provided directly in the respective sections.

3.1.2 Model description

Finite element (FE) models are now described in a nutshell — for more information on this
topic see e.g. [ZTZ05, Red19, Log16]. First, a geometry of the object under investigation
is usually drawn in a computer-aided design (CAD) program. This geometry is meshed,
i.e. it is discretized into small parts — the so-called finite elements, see Fig. 6. After
defining the trial functions and setting the boundary conditions, material properties, etc.,
the governing equations are solved on the nodes of the finite elements to model the physical
behavior. This means the solution of a complex system of differential equations must be
found numerically.

For vehicle crash models, explicit solvers are used due to contact issues, multiple ma-
terial definitions, etc. The FE models in this thesis are solved using commercial software,
LS-DYNA or Abaqus FEA. Although manuals, see [LS-06, FEA15], exist that explain
theoretical foundations of the solvers, exact mathematics behind them — including many
heuristics — are hard to access in most cases. In the end, only the results of the simula-
tions and their prescribed processed quantities can be analyzed, i.e. models must be seen
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as black box functions. Outputs that can be demanded from the model are time devel-
opments of quantities like displacements, velocities, accelerations, forces, moments, etc.,
of all finite element nodes. These discrete time developments are also called histories or
profiles. Due to their typical high sampling rate, e.g. every 0.1ms, they are referred to as
curves as well — although they are still non-continuous objects from a strictly mathemat-
ical point of view. The output quantities are reciprocally linked, e.g. displacements can
be differentiated to obtain velocities. Differentiation of velocities yields accelerations. On
the opposite, integration provides the transition to the other direction. Other quantities
can be obtained by using basic physics, e.g. Newton’s law of motion to calculate forces
from masses and accelerations.

(a) CAD model

Time

x-Displ.

(b) Meshed FE model (c) Simulated FE model

z

x y

Time

Time

x-Displ.

x-Displ.

Figure 6: From a CAD model to a simulated FE model. The simulation code is taken
from the LS-DYNA example homepage, see [LS-20].

The solver internally retrieves further single quantities from the node histories that
are required for later analysis or evaluation of the crashworthiness. This postprocessing
is actually deterministic and defined a-priori but its formulas are not invariably accessi-
ble. Mandatory information such as modeling formulations and material plans may be
contained in encrypted software code resulting in a second and unresolvable black box.
Therefore, it may not be sufficient to solely know the node profiles. As a remedy, engineers
can tell the solver to additionally output quantities of several measuring nodes, elements,
or objects to figure out desired crash performance values.

For example, the chest deflection of specific FE dummies are measured by the change
in length of connector beams. It is complicated to flawlessly reconstruct this change, i.e.
compression, by corresponding node histories due to the inaccessible modeling topology
of the beam within the encoded dummy. However, the single chest deflection curve can
be requested from the model. In contrast, it is straightforward to find the acceleration
of the node describing the center of gravity of the dummy head among the entire node
acceleration histories.

To investigate the crash scenario under uncertainty, model parameters are defined and
varied for the FE simulation. One parameter configuration is here called an input. Each
input, x = X (ω) ∈ Rn, is a realization of a multivariate random variable, i.e. a random
vector, X : Ω → Rn, from the probability space (Ω,F ,P), cf. Section 3.1.1. Its joint
probability density function is denoted as pX . Its components, Xi, i ∈ {1, . . . , n}, are

20



assumed to be independent. The joint density function can thus be described as the
product of the marginal probability density functions, i.e.

pX =
n∏

i=1

pXi
. (3.8)

Each realized input component, xi, is supposed to lie within a compact interval,

Ii = [ai, bi] ⊂ R, ai, bi ∈ R, ai < bi, i ∈ {1, . . . , n}, (3.9)

that largely covers the support of the corresponding marginal probability density function,
pXi

. Consequently, the input space,

X =
n∏

i=1

Ii ⊂ Rn, n ∈ N, (3.10)

is regarded as a Cartesian product of compact intervals.
Together, from a mathematical point of view, there arise several options to consider

FE models as black box functions. Four global and interrelated variants covering different
levels of information are presented below. Depending on the key result, i.e. scalar quantity
of interest, to be examined, a variant can or cannot be selected. Histories of all NEN ∈ N
model nodes in one degree of freedom or the resultant direction can be regarded as a black
box called the entirety function,

F i,q
EN : X ⊂ Rn → Y i,q

EN ⊂ RNEN×NT , (3.11)

where Y i,q
EN is the output space containing real-valued matrices. The variable NT ∈ N is

the number of model time steps and i is the direction of the behavior, e.g. x, y, z, or
resultant (res), i.e.

√
x2 + y2 + z2. Displacements, velocities, accelerations, forces, etc.,

are exemplary quantity types, q. Where possible, the superscript indices, i and q, are
omitted from now on for better readability, e.g. FEN := F i,q

EN,YEN := Y i,q
EN. The rows of

one output realization Y ∈ YEN represent the nodes. The columns stand for the prescribed
discrete NT time steps.

A concentration function,

c : YEN ⊂ RNEN×NT → YCN ⊂ RNCN×NT , (3.12)

can be applied to focus on specific components of the model, e.g. the dummy. It selects
the NCN ∈ N nodes that are located on the desired component, i.e. it withdraws the
NCN relevant rows of the matrix Y ∈ YEN. For instance, the deformation behavior of the
vehicle’s front end in a frontal impact is clearly different from that of the rear end. The
concentration function can help to better analyze both behavior by isolating them.

With it, the component function

FCN := c ◦ FEN : X ⊂ Rn → YCN ⊂ RNCN×NT (3.13)
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is declared as the mapping from input space, X , to the set of histories of the component
nodes, YCN. It composes the function c with the black box FEN implying that FCN is
a black box as well. In the case that NCN = 1, the concentration function reduces the
problem to one node history lying in R1×NT . This is interesting when engineers want to
observe a specific measurement node, e.g. the center of gravity acceleration of the head
in driving direction.

Existent quantities can be processed to a single desired object history. Postprocessing
functions of the form

g : Y i1,q1
CN × Y i1,q2

CN × · · · × Y id,qm
CN → YSH ⊂ R1×NT , (3.14)

represent this operation form ∈ N quantity types, ql where l ∈ {1, . . . ,m}, and their d ∈ N
behavior directions, ik where k ∈ {1, . . . , d}. Some postprocessing functions are encrypted
within the solver code, e.g. for determining the chest deflection of the dummy. Others
are available or can be easily designed. For example, the resultant head acceleration is
the 2-norm of the x-, y-, z-directions. This means the component of interest could be the
single head measurement node — NCN = 1 — and the required quantity, q, could be the
acceleration — m = 1. The x-, the y-, and the z-accelerations, i.e.

Yx, Acceleration
Head Node ,Yy, Acceleration

Head Node ,Yz, Acceleration
Head Node , (3.15)

can then be used to calculate the 2-norm — d = 3. There are truly several options. The
resultant acceleration could be directly considered, i.e. d shrinks to 1, or the velocity
could be taken and differentiated. Note that postprocessing functions, g, can also be
applied to output spaces of the entirety function, F ql,ik

EN .
Composing postprocessing, g, with functions F ql,ik

CN yields the next black box, the
history function,

FSH := g ◦
(
F q1,i1

CN ,F q1,i2
CN , . . . ,F qm,id

CN

)
: X ⊂ Rn → YSH ⊂ R1×NT , (3.16)

that sends inputs to individual output behavior, e.g. single, averaged, or aggregated node
profiles, element histories, component part curves, etc. Actually, the most obvious manner
to evaluate performances is to look at scalar values. Therefore, extraction functions,

e : YSH ⊂ R1×NT → Y ⊂ R, (3.17)

are applied to YSH. Often these deterministic functions seek the maximum or minimum
of the curve that FSH outputs. However, they can have complex expressions as well —
they may be nonlinear or even discontinuous. Their function equations are well-known
from the respective test protocol.

In hardware crash tests, for example, the maximum Head Injury Criterion of 15 mil-
liseconds (HIC15), see [U.S21], is an indication of how well the restraint system can pro-
tect the occupant’s head. It is extracted from the resultant and filtered head acceleration
curve, ares, expressed as a multiple of 9.81m/s2 — the gravitational acceleration. More
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precisely, this scalar value is calculated through

HIC15(ares) = max
t1,t2
t1<t2

t1−t2≤15


 1

t2 − t1

t2∫
t1

ares(t) dt

2.5

(t2 − t1)

 , (3.18)

where t1 ≥ 0, t2 > 0 are two points in time during the event, specified in milliseconds,
that are not more than 15ms apart from each other. For FE models, this can be trans-
lated to a discrete HIC15 extraction function, e, applied on head acceleration matrices,
Y ∈ Yres, Acceleration

Head Node , in the correct unit.
The extraction finally leads to the key result function,

FKR = e ◦ FSH : X ⊂ Rn → Y ⊂ R. (3.19)

Key result functions connect the input space, X , with scalar key results, i.e. quantities
of interests. Altogether, a key result function can be written as a composition of several
functions, i.e.

FKR = e ◦ FSH = e ◦ g ◦
(
F q1,i1

CN ,F q1,i2
CN , . . . ,F qm,id

CN

)
= e ◦ g ◦

(
c ◦ F q1,i1

EN , c ◦ F q1,i2
EN , . . . , c ◦ F qm,id

EN

)
.

(3.20)

To recall, the functions FSH,FCN,FEN are black boxes. The formulas of the postprocess-
ing, g, are also unknown in some cases. Accordingly, the key result mapping, FKR, is
regarded as a black box function.

The equality in (3.20) demonstrates that the key results can theoretically be obtained
through different routes, cf. Fig. 7. If the formulas of g are accessible, one can use
the entirety function (3.11), concentrate on the desired component, use postprocessing
to obtain an individual history, and then extract the key result. Option two is to start
from the component function (3.13) and then break it down to the key result. The third
possibility is to leave out the component and analyze the history function (3.16). The
fourth and last presented alternative deploys the key result function (3.19) itself. If the
formulas of g are not available, one cannot start later than from the history function.

z

x y
Time steps

N
o
d
es

∈ YEN ⊂ RNEN×NT

z

x y

∈ YCN

⊂ RNCN×NT

Time

Res. Acc.

HIC15 (3.18)

∈ Y ⊂ R

FEN (3.11) FCN (3.13) FSH (3.16) FKR (3.19)

c (3.12) g (3.14) e (3.17)

∈ YSH
⊂ R1×NT

Figure 7: From a FE model to a key result, e.g. HIC15.
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Summarizing, four ways can lead to desired key results. In the following, FKR is
mainly taken to explain the proposed methods of the uncertainty management framework
as essentially its scalar outputs, i.e. the key results, are analyzed by engineers. It should
be kept in mind that the functions, FEN,FCN,FSH, may also be used for the upcoming
methodologies due to their relation with FKR. In the end, note that FE models can be
represented via other mappings as well. The time dependence, for example, could be more
clearly emphasized by grid functions. However, this is not necessary here. Consequently,
the novel definitions proposed are preferred as they are more user friendly — in the
author’s opinion — for the purpose, i.e. the following methodology, of this thesis.

3.2 || Metamodeling

Everyday tasks of engineers include design space exploration, optimization, sensitivity
analysis, see Section 3.3, or studies on other aspects of underlying models. Most analyses
require thousands or even millions of model evaluations. In real-world problems, a single
model evaluation can last minutes, hours, or even days, e.g. full vehicle crash simulations.
Together, those analyses are not feasible due to huge time burdens. One possibility to
tackle this bottleneck is to use metamodels as approximations. They intend to replace
the actual model which yields high speed-ups as they are computationally cheap.

Metamodels — also called surrogate models, response surface models, or emulators
— are mathematical constructs. They map input values of the actual model to an ap-
proximation of the actual model output. This output is originally conceived as a scalar
quantity. In general, a classical metamodel consists of chosen mathematical terms, e.g.
basis functions, and their hyperparameters, e.g. coefficients. These terms are combined
via prescribed mathematical operations. To create the metamodel after defining its terms,
the optimal values for their hyperparameters have to be found. These values can be de-
termined by minimizing a selected loss function for a sample of actual model evaluations
denoted as training sample. This leads to a trained metamodel that is meant to appro-
priately approximate outputs of the actual model for new input values.

In case there are outputs of higher dimension, several ways exist to enable metamod-
eling. A dimensionality reduction technique can be coupled to the metamodel when, for
example, the output consists of spatio-temporal quantities, i.e. time histories of several
different objects. Usually, in this context, output instances are represented in a matrix
where the rows stand for the objects and the columns describe the time steps. The meta-
model is then referred to as model order reduction metamodel. When the time history of a
single object — reported in a vector — is considered, multi-target regression metamodels
can be applied.

To distinguish the three possibilities for outputs of different magnitude, metamodels
for scalar quantities are named scalar metamodels from now on. Summarizing, these
three options — scalar, multi-target regression, model order reduction metamodels — are
interesting for our applications: they can be applied to the four black box functions, FEN

(3.11), FCN (3.13), FSH (3.16), FKR (3.19), that were described in Section 3.1.2. Diverse
representatives of these methods will be discussed in the following. It is recommended
to test several methods and compare their accuracy as the no free lunch theorems imply
that there exists no universally best one, see [Wol02, HP02, Mur12, KJ13].

24



3.2.1 Creating the training sample

To find the optimal hyperparameters of metamodels, they are trained with ntrain ∈ N
actual model observations,(

x1, y1
)
, . . . , (xntrain , yntrain) ∈ X × Y ⊂ Rn × Y , (3.21)

where it holds yi = F (xi) for i ∈ {1, . . . , ntrain}. Depending on the choice

F ∈ {FKR,FSH,FCN,FEN}, (3.22)

the output space can be of arbitrary but fixed dimension, i.e.

Y ∈
{
Y ⊂ R,YSH ⊂ R1×NT ,YCN ⊂ RNCN×NT ,YEN ⊂ RNEN×NT

}
, (3.23)

see Section 3.1.2. To create a design of experiments, i.e. the training sample, values for
the training inputs, x1, . . . , xntrain , are generated by sampling strategies. These inputs
are then evaluated via the model, i.e. one simulation is started for each input. After
the simulations are finished, outputs can be collected. It depends on the analyst which
dimension for the output is chosen. The metamodel then tries to find a mathematical
connection between the training inputs, x1, . . . , xntrain , and their corresponding outputs,
y1, . . . , yntrain , by tuning the hyperparameters of chosen mathematical terms.

To achieve an appropriate fit, the training inputs should cover the input space as
comprehensively as possible. That is, all regions of the input space should be included in
the training set. This wishful thinking is countered by the fact that, for reasons of time, as
few simulations as necessary should be calculated. Two sampling strategies are presented
that, in theory, distribute the training inputs fairly throughout the space. For overall
good approximations, the strategies are used to produce uniformly distributed numbers
that best cover the whole input range,

X =
n∏

i=1

Ii ⊂ Rn, (3.24)

cf. (3.10). For explaining the methods and their numerical realization, the single intervals,
Ii = [ai, bi] ⊂ R, see (3.9), are w.l.o.g. assumed to be equal to the interval [0, 1], i.e.
X = [0, 1]n. In fact, a number, ζ, of the interval [0, 1] can be converted into a number of
the compact interval Ii through the linear operation

(bi − ai)ζ + ai. (3.25)

Certainly there are many sampling methods existent in literature, e.g. random sam-
pling, orthogonal array sampling, etc., see [Tah16, LXW16]. Some are combined with the
metamodel to sample more in the regions where the approximation is not satisfactory, e.g.
adaptive sampling strategies, see [LOC18, LCO17, VMQ+13]. Nevertheless, the choice
fell on the well-established methods Latin hypercube and Sobol’ sequence sampling whose
theories and advantaged are briefly described in the following.
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Latin hypercube sampling
Latin hypercube sampling is a method for producing near-random points from a multi-
dimensional distribution, see [MBC00]. It is based on the Latin square design: a square
grid that contains sample positions where there is exactly one point in each row and
column. For Latin hypercube sampling, the Latin square is extended to draw samples
from multiple dimensions and hyperplanes. Each sample point is unique in any axis-
aligned hyperplane that encloses it, see [HD03].

Based on how many sample points are desired, say ntrain ∈ N, the strategy divides each
dimension, Ii = [0, 1], of the input space into ntrain equally probable disjoint intervals. As
the elements of the input space, X = [0, 1]n, are considered to be uniformly distributed,
each Ii can be divided into[

0,
1

ntrain

)
,

[
1

ntrain

,
2

ntrain

)
, . . . ,

[
ntrain − 1

ntrain

, 1

]
. (3.26)

For each input dimension, i ∈ {1, . . . , n}, exactly one value is randomly drawn from each
of the respective ntrain intervals, i.e. for each of the n input parameters, ntrain values are
created. The established values for the dimensions are then combined — again at random
— resulting in a ntrain × n Latin hypercube sample matrix.

In [OSD03], the efficiency of the Latin hypercube sampling is shown and compared
with standard sampling methods. One drawback of the strategy is its dependence on the
desired sample size. The chosen sample size may not be large enough, e.g. to build well-
approximating metamodels. Increasing this size by including another points may not be
optimal in terms of covering the space as the initial sample point distribution is designed
specifically for the original number of points chosen. For example, additional sampling
points from a second Latin hypercube sample might not fill the empty space left by the
first sample ideally.

Sobol’ sequence sampling
In 1967, Sobol’ introduced a quasi-random sequence whose numbers cover the sampling
domain rapidly and evenly, see [Sob67]. This later called Sobol’ sequence generates num-
bers taking into account the previously sampled points. It thereby avoids gaps and clus-
ters, see [BJH11]. Numbers are generated using a base of two to create gradually finer
uniform partitions of the unit interval. Afterwards, the coordinates are rearranged in each
dimension. This minimizes the discrepancy between the points, see [Sob76].

Sobol’ sequence sampling is of advantage when additional points are required to guar-
antee a good approximation. When using quasi-random sequences, accuracy typically
increases continuously as more data points are added whereby the existing points are
fully reused. Moreover, in [BJH11], the strategy is compared to other standard sam-
pling procedures, e.g. Latin hypercube sampling, where it outperforms them in most of
the analyzed aspects. Therefore, Sobol’ sequence sampling is slightly preferred to Latin
hypercube sampling in this thesis.

Data preprocessing
The approximation quality of metamodels highly depends on the quality and structure
of the training data. Proper preparation of this data can result in improved accuracy.
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Data preprocessing encompasses data cleaning, selection, scaling, etc., see [KKP06]. As
the data comes from computer simulations, it is expected to be clean. There ought to
be no unintended outliers as can occur when analyzing hardware instances, e.g. due to
measurement errors or inaccuracies. On top of that, the data points should be well elected
via the sampling method. Data selection can hence be skipped. Conversely, data scaling
is worth to be taken into consideration.

Scaling is usually a linear transformation of the data. It is recommended to convert the
n parameters of the model to have the same level of magnitude, i.e. scaling them to prac-
tically consistent ranges. Actually, scaling does not affect the metamodel theoretically as
linear transformations can mostly be captured by adapting its hyperparameters. Indeed,
after scaling, the calculation of these hyperparameters, e.g. the coefficient of the monomi-
als in polynomial regressions, may become numerically more stable which can accelerate
the training procedure, see [Wan19, AZI16, YHHZ20, IS15]. Scaling the output values
can again improve the methods. Especially for neural networks, training outputs should
have a similar range as the image of the chosen activation function, see Section 3.2.4.

There exist two common scaling techniques. On the one hand, data can be normalized,
i.e. rescaled from its original range to the interval [0, 1]. For example, this can be done
by the so-called MinMaxScaler,

MinMaxScaler
(
ξi
)
=

ξi − min
i∈{1,...,ntrain}

ξi

max
i∈{1,...,ntrain}

ξi − min
i∈{1,...,ntrain}

ξi
, (3.27)

where ξi, i ∈ {1, . . . , ntrain}, can be equal to one of the sampled parameters, xi1, . . . , x
i
n, or

the sampled output, yi, in case it holds Y = Y , see [JNR05, LL11]. For higher dimensional
spaces Y ∈ {YSH,YCN,YEN}, this can be done for each output entry separately or for all
together. On the other hand, data can be standardized that sets the mean of the values
to zero and their standard deviation to one. This is accomplished by

StandardScaler
(
ξi
)
=
ξi − µξ

σξ
=

ξi − 1
ntrain

ntrain∑
i=1

ξi√
1

ntrain

ntrain∑
i=1

(
ξi − 1

ntrain

ntrain∑
i=1

ξi
)2
, (3.28)

with the same notations as for (3.27), see [Joe15]. After the metamodel is trained, new
parameter values must obviously be scaled before evaluation. Gained output values need
to be returned to their original range by corresponding inverse operations.

3.2.2 Quality measures

After training metamodels, their quality should be assessed. There are different measures
that can be used for comparison. Basically, it can be distinguished between metrics
that are calculated using the ntrain training sample points and metrics that require new
nval ∈ N points forming the validation sample. Popular methods that only use the training
sample are cross-validation techniques, e.g. π-fold or leave-one-out cross-validation, see
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[Ber19]. They can also be used to train metamodels, i.e. to tune their hyperparameters,
by employing them as regression cost functions.

Usually, several metamodels have to be built to compute cross-validation techniques.
The training sample is therefore divided into two sets — often multiple times. One set is
used to optimize the metamodel hyperparameters. The other set is taken to evaluate a
loss function to assess how good the metamodel was trained to forecast the corresponding
outputs. The π-fold cross validation repeats this process π ∈ N times. It considers π
different pairs of actual training and evaluation sets, trains π metamodels, calculates
their losses, and averages them.

The leave-one-out cross validation is a special case of the π-fold cross validation where
it holds π = ntrain. This means ntrain metamodels are trained with ntrain − 1 points
and evaluated with the point missing that completes the training sample of size ntrain.
For some metamodels, computation of cross-validation techniques, e.g. the leave-one-
out error, can be done by evaluating an analytical function, e.g. for Gaussian process
regression and polynomial chaos expansion, see [SSW15]. However, they do not exist in
general demanding to construct numerous independent metamodels.

Several single metamodels already have to be created or updated for finalizing specific
metamodel variants that will be discussed in the next sections. Examples are scalar meta-
models coupled to dimensionality reduction, certain multi-target regression and model
order reduction metamodels. The number of metamodels to be trained would become
tremendously large if cross-validation techniques were to be utilized. For this reason,
these techniques are not chosen as quality measures. Instead, a second sample — the
validation sample of size nval — that is not shown to the metamodel during training is
generated to evaluate selected error functions in order to compare performances.

The mean squared error (MSE) is a well-established option for these loss functions,
see [WB09]. It calculates the average of the squares of the errors to measure the dis-
crepancy between the actual and predicted data. The lower its values are, the better the
approximation is. For the validation sample points,(

x1, y1
)
, . . . , (xnval , ynval) ∈ X × Y ⊂ Rn × Y , (3.29)

in case Y = Y ⊂ R, the MSE is determined by

MSE(x1, . . . , xnval) =
1

nval

nval∑
i=1

(
F(xi)−M(xi)

)2
=

1

nval

nval∑
i=1

(
yi − ŷi

)2
(3.30)

where ŷi :=M(xi), i ∈ {1, . . . , nval}, are the outputs of the metamodel,

M : X ⊂ Rn → Y . (3.31)

For Y = YSH ∈ R1×NT , MSE can be independently determined for each time step and,
if desired, averaged to obtain a scalar value for all time steps. If Y = YCN ∈ RNCN×NT

or Y = YEN ∈ RNEN×NT , it can be done as for Y = YSH, i.e. MSE can be computed
separately for each time step and for each node. Then, individual errors can be averaged
to errors for specific time steps, errors for chosen node histories, or the overall error.
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A second popular metric is called the coefficient of determination (R2), see [FHK+16].
It is measured by means of the proportion of the total variation in outputs represented
by the metamodel. For Y = Y , it can be computed through

R2(x1, . . . , xnval) = 1− SSres(x
1, . . . , xnval)

SStot(x1, . . . , xnval)
= 1−

nval∑
i=1

(yi − ŷi)2

nval∑
i=1

(yi − y)2
(3.32)

where

y =
1

nval

nval∑
i=1

yi (3.33)

is the mean of the actual output values y1, . . . , ynval .
The nominator of the fraction in (3.32) is called the residual sum of squares (SSres).

Besides the factor 1/nval, it is equal to the MSE from (3.30). The denominator is called
the total sum of squares (SStot). It indicates the total variation of the observed outputs.
The coefficient of determination can take values up to one. If it is less than zero, the
approximation quality of the metamodel is worse than just taking the mean value as the
estimator for each output. This is due to the fact that it holds

nval∑
i=1

(yi − ŷi)2 =
nval∑
i=1

(yi − y)2 (3.34)

for ŷ1 = ŷ2 = . . . = ŷnval = y implying R2(x1, . . . , xnval) = 0. Values between zero
and one for R2 mean obtaining better approximations than just using the mean val-
ues. The nearer they are to one, the tighter the fits are, i.e. R2 = 1 describes a per-
fect emulation. Analogous to the MSE, the coefficient of determination can be broad-
ened to Y ∈ {YSH,YCN,YEN}. Alternatively, to expand R2 for YEN for instance, one
can let the sum in (3.32) run until nvalNENNT and consider the entries of the ma-
trices, Y i and Ŷ i ∈ YEN, i ∈ {1, . . . , nval}, as the scalar output values, yj and
ŷj, j ∈ {1, . . . , nvalNENNT}.

For both measures, there are no general thresholds at which one speaks of a good fit.
This is totally problem dependent and will be declared for each application separately.
Furthermore, there exist many more error measures. The mean absolute error, see [CD14],
is similar to the mean squared error with the difference that it does not square the residuals
but uses its absolute values. In this way, outliers are not punished as severely as in the
MSE. Besides, the R2 can be adapted to the R2 adjusted, see [Mil05], that sentences the
number of hyperparameters used. This is to prevent using unnecessary extra terms for the
metamodel. However, it is not necessary here to keep the size of the metamodel small.
In fact, the best-performing model — but possibly entailing many terms — should be
chosen as, in particular for crash applications, each digit can count. Besides that, there
exist several other measures, e.g. the mean squared weighted deviation [WC91], the root
mean squared error [HK06], the mean absolute percentage error [DMGLGR16], etc.
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Additionally, actual versus predicted plots (AvP) illustrate how well the data is ap-
proximated. Actual model outputs from the validation sample are plotted against corre-
sponding outputs of the metamodel. The closer the points lie at the bisectrix, the better
the fit is. For time histories of objects, e.g. nodes, all output entries can be shown in one
AvP. Alternatively, separate AvPs can be plotted for each time step or each object. The
actual and the predicted time history of one parameter configuration can be compared
in quantity-time diagrams. The last two options, however, can require plenty of plots
dependent on the number of time steps, NT, and the number of validation points, nval.

In the following, to the best of the author’s knowledge, a selection of the currently most
sophisticated methods for different metamodel options are briefly introduced. However,
there exist several more techniques that can be employed within the framework. For
comparison purposes, the well-known multiple linear regression and versions of it are
additionally given.

3.2.3 Scalar metamodels

The most common and probably easiest way is to use metamodels for scalar outputs.
Scalar metamodels emulate black box functions that have the form of the key result
function,

FKR : X ⊂ Rn → Y ⊂ R, (3.35)

see (3.19), i.e. the output space, Y , is embedded in the real numbers. Therefore, a
metamodel,

MKR : X ⊂ Rn → Y ⊂ R, (3.36)

is a mapping between the spaces of the underlying model. It aims to approximate this
model, i.e.

MKR(x) ≈ FKR(x), (3.37)

for x ∈ X . It is trained with the sample points from (3.21) using Y = Y ⊂ R.

Multiple linear regression
Perhaps the simplest method for a metamodel with a single parameter, i.e. n = 1, is
called simple linear regression, see [AK15]. It assumes that the relationship between this
parameter and the output is linear. Graphically, this relationship can be expressed by a
straight line. Multiple linear regression (MLR) extends this idea to a model with more
than one parameter. It also supposes that a linear connection between the parameters,
x ∈ X ⊂ Rn, and the outputs, y ∈ Y ⊂ R, can be established.

Mathematically speaking, it takes the function

MMLR
KR (x) = βTx+ β0 (3.38)
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as a starting point. Its coefficients, β = (β1, . . . , βk) ∈ Rk and β0 ∈ R, need to be adjusted
to best fit the ntrain observations, see [MPV21]. Usually, this is accomplished by solving
a least-squares optimization problem, e.g. finding β and β0 that minimize

ntrain∑
i=1

(
yi −MMLR

KR (xi)
)2

=

ntrain∑
i=1

(
yi − ŷi

)2
. (3.39)

Thanks to its simple nature, tuning the MLR and producing predictions is quick
— notwithstanding whether high dimensional parameters appear, i.e. for large n. The
shortage in terms of approximation quality is reached as soon as there exist nonlinear
behavior between the spaces, X and Y .

Gaussian process regression
Also known as kriging, Gaussian process regression (GPR) is a widely practiced regression
method for interpolation, see [SWMW89, SWN03]. Danie Krige originally developed the
method to find gold spots at the Witwatersrand reefs in South Africa based on information
from some boreholes, see [Kri51]. His idea was then cast into a metamodel.

GPR provides a function MGPR
KR : X ⊂ Rn → Y ⊂ R that interpolates between the

ntrain observations, i.e. the kriging function is exact at the training data,

MGPR
KR

(
xi
)
= yi, i ∈ {1, . . . , ntrain}. (3.40)

In [MBGS18] for instance, the function is formulated as

MGPR
KR (x) = βTφ(x) + Z(x) =

P∑
p=1

βpφp(x) + Z(x), (3.41)

where the first term, βTφ(x) called trend, is composed of the weight vector β ∈ RP , P ∈ N,
and the preselected regression function vector φ : Rk → RP of length P , e.g. consisting
of polynomials. The second term, Z(x), is a realization of a Gaussian process with zero
mean and variance σ2.

Numerically, auto-covariance functions, e.g. Matérn kernel functions,

Kθ,ν(x, x
′) =

n∏
i=1

1

2ν−1Γ(ν)

(√
2ν
|xi − x′i|

θi

)ν

κν

(√
2ν
|xi − x′i|

θi

)
, (3.42)

see [SSW15], where it holds x, x′ ∈ X , ν ≥ 1/2, Γ is the Euler gamma function, and
κν is the modified Bessel function of second kind, are chosen to model Z(x), see [RW06]
for other possible choices. The kriging model is calibrated by finding the optimal hy-
perparameter values, θ, of the auto-covariance functions. They may be obtained by
maximum-likelihood-estimation or leave-one-out cross-validation, see [SSW15]. Least-
squares optimization can then yield the kriging parameters, β = β(θ) and σ2 = σ2(θ),
see [SSM16] for analytical expressions. Inserting tuned hyperparameters into the kriging
model,MGPR

KR , allows for quick output prediction of a new input configuration. The cal-
culated estimate, ŷ =MGPR

KR (x), for x ∈ X , is a Gaussian random variable. Its mean is
taken as proxy for the actual outcome. Additionally, its variance measures local error.
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Three types of kriging are named in the literature: simple, ordinary, and universal
kriging, see [Jos06]. The first term, βTφ(x), in (3.41) sets the type:

1. For simple kriging, it holds βTφ(x) = β0, where β0 ∈ R is a prescribed fixed constant.

2. One parameter, β1 ∈ R for P = 1 where φ1(x) = 1, must be optimized for ordinary
kriging.

3. The general formulation βTφ(x) is called universal kriging.

Many works exist that suggest ways to improve the presented concept of kriging for spe-
cific problems, see [UCD+16, BBOM16], and show practical applications, see [MSBG14,
MSBG15] — even for vehicle safety examples.

Polynomial chaos expansion
Another state-of-the-art method is called polynomial chaos expansion (PCE). The core
idea of PCE is to emulate the actual model by an infinite series of polynomials. It works
with orthogonal polynomial basis functions that build metamodels of the form

MPCE
KR (x) =

∑
α∈A

aαψα(x), (3.43)

see [BS11, BS08]. The quantity A ⊂ Nn is called the truncation set. It makes the
expansion finite. This is required as infinite series cannot be implemented in practice.

So, the truncation set contains a finite number of multi-indices for the polynomial
basis functions, ψα, and their coefficients, aα, α ∈ A. There exist different techniques to
choose this set, e.g. using the hyperbolic truncation set, see [SSW15], running an adaptive
algorithm, see [BS10], etc. The bases, ψα, are selected dependent on the distribution of
the parameters. Considering uniformly distributed variables, it is common practice to
choose Legendre polynomials, see [XK02] for other distributions. The degrees of ψα are
a-priori restricted to range up to a preset number P ∈ N.

Once the set of candidate polynomials is defined, optimal coefficients, aα, α ∈ A, of
the basis functions, ψα, must be calculated. A least-squares minimization on the training
data can be utilized for this task, cf. (3.39). Over the last years, many other variants
were developed that are compared and explained in [LMS21]. Some of them use sparse
regression to make the expansion even shorter. By doing so, the significant coefficients
of the polynomial chaos expansion are detected leading to a smaller size of A. This can
avoid the curse of dimensionality which may appear when n is large. The expansion is
hereby shortened again and therefore computationally tractable. This, for example, can
be realized by adding regularization terms to the least-squares optimization. Furthermore,
least angle regression, the least absolute shrinkage operator, or a combined version can
be used, see [BS11, LMS21]. Another strategy comes from the context of compressive
sensing that allows to solve an underdetermined system of equations, see [LMS21].

In recent developments, the combination of polynomial chaos expansion and kriging
was investigated, see [SSW15, SSM16]. So-called polynomial chaos kriging is categorized
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as universal kriging. There, the polynomials are chosen as the regression function vector,
φ, and their coefficients as the weight vector, β, see (3.41). This leads to the formula

MPCK
KR (x) =

∑
α∈A

aαψα(x) + Z(x), (3.44)

where Z(x) is again a realization of a Gaussian process with zero mean and variance σ2.
The optimal set of polynomials is determined first before the kriging trend, i.e. the PCE
coefficients, is tuned and its auto-covariance function is tweaked.

3.2.4 Multi-target regression metamodels

The second option for metamodels is their application to vectors, e.g. time histories,
from which scalar quantities of interest may be extracted. Multi-target regression (MTR)
can be employed for this job. A survey on this strategy can be found in [BVBL15] that
lists multi-output, multi-variate, or multi-response regression as its synonyms. MTR
metamodels approximate models like the history function,

FSH : X ⊂ Rn → YSH ⊂ R1×NT , (3.45)

see (3.16). Consequently, the metamodel,

MSH : X ⊂ Rn → YSH ⊂ R1×NT , (3.46)

maps from the input space to the space of vectors, YSH. Hence, the training points must
all be vectors, i.e.

yi =
(
yi1, . . . , y

i
NT

)
∈ YSH, i ∈ {1, . . . , ntrain}. (3.47)

The scalar metamodels from Section 3.2.3 can be extended to MTR metamodels either
via problem transformation methods or algorithm adaption methods, see [BVBL15]. Two
problem transformation methods are shown in the following. Moreover, artificial neural
networks that may be count to algorithm adaption methods are introduced. Actually, the
networks can solve a multi-task learning problem, see [ZY21]. This problem may deviate
from multi-output regression: its tasks are allowed to have different training sets or dis-
parate descriptive features, see [BVBL15]. In this thesis, however, these circumstances
are identical. The networks thus are considered as MTR methods. Other algorithm adap-
tion methods are not treated as their creation depends on the scalar metamodel chosen.
They usually need to be formulated specifically for each emulator, see the adaptions of
Gaussian process regression for multiple outputs in [AL08, GB16].

Single-target method
The single-target (ST) method is the most basic MTR metamodel that gathers NT inde-
pendent scalar metamodels — one for each output, see [BVBL15]. Therefore, the output
vector, y = (y1, . . . , yNT

) ∈ YSH ⊂ R1×NT , is divided into NT scalar values, i.e. its com-
ponents y1, . . . , yNT

. The j-th scalar metamodel, Mj
KR, inside the single-target method
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is trained with all j-th entries of the training vectors, i.e. y1j , . . . , y
ntrain
j , j ∈ {1, . . . , NT}.

After the independent training sessions, ST method can be written as

MST
SH =

(
M1

KR, . . . ,MNT
KR

)
. (3.48)

Regressor chains-based approach
The concept of regressor chains is to link scalar metamodels. Originally, a random per-
mutation, i.e. chain, of output instances is drawn. Then, individual scalar metamodels
are created for the output instances step by step following the order of the chain, see
[BVBL15]. Thereby, in the current stage, the metamodel shall profit from the informa-
tion gained in the previous stage.

Let the output y = (y1, . . . , yNT
) ∈ YSH without loss of generality be already permuted.

To begin with, the first ordered output target, y1 of y ∈ YSH, is approximated by the first
scalar metamodel that takes merely the original n parameters, x ∈ X , into account. The
second scalar metamodel uses n + 1 parameters, namely (x, y1), to forecast the second
ordered output, y2. Next, the third ordered target, y3, is the outcome of the third scalar
metamodel that takes n+2 parameters, (x, y1, y2), into account. In general, the i-th scalar
metamodel maps (x, y1, . . . , yi−1) to the i-th ordered output, yi, i ∈ {2, . . . , NT}. In this
way, the single scalar metamodels are connected.

The regressor chains method entails that the evaluation must be done step by step as
the previous output or outputs are taken as additional parameters for the current output.
FE crash simulations face long temporal sequences as output vectors. For them, especially
the last scalar metamodel and its predecessors might suffer the curse of dimensionality, see
[Don00, Tru79], leading to poor performances. This might occur as they operate on large
input spaces, e.g. the space of the last metamodel would be (n+NT − 1)-dimensional.

Accordingly, the regressor chains method is adjusted for long time histories to avoid the
curse of dimensionality. For non-sequential targets, testing different permutations might
lead to improved results. The adapted regressor chains-based (RC) approach, however,
does not permute the time sequence. This sequence should not be touched as the standard
order is correct: the i-th time step follows the (i−1)-th in a dependent manner due to the
FE model solver. In addition, to keep the input dimension low, only the previous scalar
output is considered as extra parameter, respectively.

The obtained MTR metamodel hence reads

MRC
SH (x) =

(
M1

KR(x),M2
KR

(
x,M1

KR(x)
)
, . . . ,MNT

KR

(
x,MNT−1

KR (x)
))
. (3.49)

Note that one could also use the previous two, three, or more outputs in addition to the
parameters, x. In [LN21] — a Master thesis tutored by the author of this work — a
similar approach is applied to time histories of dummy signals from FE simulations of a
full frontal crash. The results indicate that, if at all, taking into account the previous
output as proposed in (3.49) leads to improved results. Prior time steps did not enhance
the metamodel. Due to its knowledge of past information, the RC approach slightly out-
performed the ST method. Both approaches were beaten by feed-forward neural networks
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that are introduced next. The ST method and the RC approach, however, were coupled
with MLR. Other scalar metamodels, e.g. GPR or PCE, should be employed within
multi-target regression as well and then again compared with neural networks. This is
done in Section 3.2.7.

Neural Networks
Artificial neural networks belong to machine learning of artificial intelligence, see [NJ18].
If they are to learn a function based on observed input-output pairs, they are specifically
assigned to the subcategory called supervised learning. Metamodels from uncertainty
quantification and supervised learning methods are related. In fact, they differ slightly in
where they originate but not in what can be done with them and how they work. Both
need observations to be trained with. They attempt to find the mapping between input
and output spaces using mathematical expression, see [TMES19]. Metamodels replace
computationally expensive models whose parameters are uncertain variables. Training
data is generated by evaluating the actual model at prescribed parameter configurations,
e.g. produced by a sampling strategy, see Section 3.2.1.

Supervised learning tries to set up a function connecting the presented input-output
pairs. The training data must not come from sampling parameter values and evaluation
of the actual model at these points. On the contrary, there does not necessarily have to be
a model that shall be approximated. Data can come from other sources, e.g. real-world
measurements. This data is then linked to a mapping by neural networks. Nevertheless,
supervised learning methods can handle sample points from actual models. Neural net-
works can thus be used for metamodeling. The other way round, most metamodels are
naturally designed, e.g. MLR [KVR16] and GPR [Ras03], or can be adapted, e.g. PCE
[TMES19], to tackle supervised learning problems.

MNN
SH : X ⊂ Rn → YSH ⊂ R1×NT
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Figure 8: Sketch of a feed-forward neural network architecture. Exemplary components
— neurons, weights, and activation functions — of the network are labeled.

As a metamodel, neural networks reproduce complex relationships between sampled
input-output training points by forming hierarchically connected layers, see [Spe91]. Con-
formably, the universal approximation theorem, see [HSW89, KB20], states that standard
feed-forward neural networks are capable of emulating any measurable function to any
level of precision. Feed-forward neural networks let information flow in forward direction
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without using cycles, see [Zel94]. They are also called multilayer perceptron and consist
of at least three layers: the input layer, one or more hidden layers, and the output layer,
see Fig. 8. The input layer receives the input parameters and passes them to the first
hidden layer. Inside the hidden layers, computations are performed which are — from the
last hidden layer — sent to the output layer. There, they are converted to results of the
actual output space, YSH. Note that neural networks (NN) with more than one hidden
layer are often called deep neural networks, see [HDY+12].

Each layer is composed of units also called neurons. The input and the output layer
have the same dimension as the input and the output space, i.e. the input layer comprises
n units and the output layer is made of NT neurons. The ν ∈ N hidden layers consist
of arbitrary but fixed numbers of units, N i

H, i ∈ {1, . . . , ν}. By raising the complexity
of the neural network, i.e. increasing the number of layers or units, the information is
gradually decomposed into finer individual features. Thereby, each unit of a given layer
is fully connected to the units of the previous layer. Mathematically, fully connected
means summing up all weighted neurons of the previous layer and subsequently applying
a chosen activation function, φi, i ∈ {0, 1, . . . , ν}, see [Hay10]. The activation functions
for the neurons between two layers are the same. They can be chosen differently when
the connection between other two layers must be prepared. For example, the activation
functions between hidden layer 1 and hidden layer 2 can be of type A whereas the functions
between hidden layer 2 and hidden layer 3 can be of type B.

In more detail, for the j-th neuron, χi+1
j , of the (i + 1)-th hidden layer, the neural

network connections can be expressed as

χi+1
j = φi

 N i
H∑

k=1

wi
k,jχ

i
k + βi+1

j

 (3.50)

for j ∈
{
1, . . . , N i+1

H

}
, i ∈ {0, 1, . . . , ν}. The weights, wi

k,j ∈ R, as well as the biases,

βi+1
j ∈ R, are the hyperparameters that have to be adjusted to the training data. The

neurons of the input and the output layer are denoted as χ0
1, . . . , χ

0
n and χν+1

1 , . . . , χν+1
NT

with N0
H = n and N ν+1

H = NT, respectively.
There are many possibilities for activation functions, φi, see [SS17]. Three of them

are shown here. The identity (id) activation function,

φid(χ) = χ, (3.51)

does not influence the weighted sum. A range from -1 and 1 is provided by the hyperbolic
tangent (tanh) activation function,

φtanh(χ) =
exp (χ)− exp (−χ)
exp (χ) + exp (−χ) . (3.52)

The rectified linear unit (relu) activation function

φrelu(χ) = max {0, χ} (3.53)
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removes negative values. To work in the correct ranges, the data is normalized during pre-
processing using scaling functions, e.g. from Section 3.2.1. In this thesis, MinMaxScaler
(3.27) is employed.

Formula (3.50) shows the recursive relationship between the neurons of the current
layer and the units of the previous layer, which in turn are related to the neurons of the
preceding layer, and so on. These relationships can be found in Fig. 8 which represents
the overall appearance of the network. The beauty of neural networks as a multi-target
regression metamodel is that — unlike the ST method and the RC approach — only one
closed model is set up to predict the complete output vector. This means it holds

ŷ = (ŷ1, . . . , ŷNT
) =

(
χν+1
1 , . . . , χν+1

NT

)
=MNN

SH (x) ≈ y ∈ YSH (3.54)

for the corresponding input, x = (x1, . . . , xn) = (χ0
1, . . . , χ

0
n) ∈ X , cf. Fig. 8. Neural

networks are also powerful instruments to approximate scalar values. In this case, the
output layer consists of one neuron, NT = 1. The space YSH ⊂ R1×NT can be replaced by
the space Y ⊂ R. Therefore, neural networks can also be allocated to scalar metamodels,
see (3.36), i.e. they approximate the key result function, see (3.19).

To train feed-forward neural networks, i.e. to update their weights and biases, a
cost function is minimized. The cost function, e.g. a least-squares formula, is evaluated
through forward propagation of the information through the network. The hyperparame-
ters, i.e. the weights and the biases, are then updated through sending the cost backwards
through the network. More precisely, gradients are calculated using an inexpensive pro-
cedure called back-propagation, see [GBC16]. A first-order optimization can then be used
to revise the current hyperparameters. Normally, versions of the gradient descent algo-
rithm, e.g. stochastic gradient descent [Bot91] or adaptive moment estimation [BW19],
are applied. For an appropriate fit, these methods include adjusting the learning rate,
e.g. the step size of the gradient descent, and the number of epochs, i.e. the iterations
to be performed. Moreover, it often helps to use preprocessing for the training data, see
Section 3.2.1. The convergence speed may be improved as the activation functions are
more effective for specific ranges.

Recently, feed-forward neural networks are further developed to additionally yield
uncertainty assessments of predictions. Stochastic neural networks like Bayesian networks
quantify inference uncertainty, see [JBB+20]. This is an interesting extra information
that can be used for error analysis but it is not necessary for the proposed framework.
Besides feed-forward neural networks, there exist other architectures that may be applied
to the considered problem. Recurrent neural networks, especially with long short-term
memory, see [HS97], seem to be ideal to be dedicated to long time sequences, e.g. history
function, see (3.16). Internally, they integrate loops, i.e. cycles, to establish sequential
dependencies, see [GBC16]. At first glance, they should improve predictions.

In the mentioned Master thesis [LN21], it is shown that there is no benefit in using
recurrent neural networks for the considered task, i.e. mapping independent parameters
to time sequential output vectors. To start with, there is no temporal sequence in the
input space as, for example, in time series forecasting where recurrent neural networks
are attractive to continue the time development of historical data, see [SK19]. Here,
temporal dependencies only exist in the output space. In this setting, recurrent neural
networks may outperform feed-forward networks when there is a probabilistic context for
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the output, see [LN21]. That is, when it is advantageous or even necessary to know the
previous members of the sequence. For instance, in text-related problems, e.g. image
captioning, the current word is highly dependent on the previous word. Recurrent neural
networks can — by means of hidden states — provide probabilities for words to be chosen
at specific locations, remember them, and thus improve the quality of the output sentence.

The examined problem, however, does not possess this kind of randomness. Time
steps are to keep in a fixed order. For each time step, the single error must be minimized.
The hidden state of the recurrent neural network does not contribute new information as
it merely stores deterministic transformations of the input parameters. Moreover, training
recurrent neural networks may be difficult and time-consuming, see [LN21]. Therefore,
feed-forward neural networks are used for the applications of this thesis.

3.2.5 Model order reduction metamodels

Model order reduction (MOR) metamodels — also known as reduced order modeling —
are the third and last variant presented here to approximate black boxes. They are used
when it is intended to emulate output matrices. These matrices can have large sizes,
e.g. when a whole crash model must be reconstructed. They would then have dimension
NEN×NT, see the entirety function, FEN (3.11). The same can be done for the component
function, FCN (3.13), where the output dimension is NCN×NT. Thus, the larger the values
of NEN or NCN become, the more rows and hence entries appear in the matrices and the
more values must be predicted.

MTRmetamodels like ST method or RC approach must createN ·NT, N ∈ {NEN, NCN},
single scalar metamodels — one for each matrix entry. This can become practically infea-
sible, e.g. when the product N ·NT tends to a million or more. In practice, the number
of nodes, N , in full vehicle simulations can alone be equal to a few millions.

Therefore, when a metamodel of the form

Mγ : X ⊂ Rn → Yγ ⊂ RN×NT , (3.55)

for γ ∈ {EN,CN}, where N · NT is large, shall be implemented, the dimension of the
output space should be reduced with dimensionality reduction techniques, cf. [GH18,
HU18, MP21, SMA19]. This combination of dimensionality reduction and metamodel is
here referred to as MOR metamodel. Here, only the number of matrix rows, e.g. nodes,
N , are reduced although it can also be attempted to reduce the number of columns, e.g.
time steps, NT. The reason for not shrinking both is that the less fidelity is removed, the
more likely it is to keep the reduction error low. As N is usually larger than NT, N is
preferred to be decreased — to reach a small number of required MTR metamodels.

To achieve that, the dimensionality reduction seeks to find the important character-
istics of the rows, e.g. the most significant time histories of finite element nodes. It then
transforms the original, long N ×NT matrix to a short matrix of size

Nred ×NT, Nred ∈ N, Nred < N, (3.56)
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by compressing the principal information of all N rows. This process can be denoted as
the projection mapping

Proj : Yγ ⊂ RN×NT → Yred ⊂ RNred×NT , Y 7→ Yred. (3.57)

In this way, only Nred MTR metamodels must be created making the procedure feasible
if Nred is sufficiently small.

These MTR metamodels together operate in the reduced space, Yred ⊂ RNred×NT .
To have the predictions in the correct dimensions, the approximated matrices from the
reduced space, Yred, need to be projected back into the full space, Yγ, see Fig. 9 for the
whole process. This can be done by the exact or an approximated inverse operation of
the forward projection, Proj, also called back projection,

Back : Yred ⊂ RNred×NT → Yγ ⊂ RN×NT , Yred 7→ Y. (3.58)

The error made by this procedure can be computed, for example, by using the Frobenius
norm. This norm must be applied to the differences between actual matrices, Y k ∈ Yγ,
and their projected and subsequently back-projected versions,

Ŷ k = Back
(
Y k
red

)
= Back

(
Proj

(
Y k
))
∈ Yγ, k ∈ {1, . . . , ntrain}, (3.59)

respectively. This can then be averaged, i.e. the error is written as

1

ntrain

ntrain∑
k=1

∥∥∥Y k − Ŷ k
∥∥∥
F
=

1

ntrain

ntrain∑
k=1

√√√√ N∑
i=1

NT∑
j=1

∣∣ykij − ŷkij∣∣2. (3.60)

Note that the mapping Back may be approximated by regression models as its form may
not be derived analytically depending on the projection mapping, Proj, chosen.

The dimensionality reduction is coupled with MTR metamodels, e.g. from Sec-
tion 3.2.4, as follows. The projection mapping, Proj, converts the training matrices,

Y 1, . . . , Y ntrain ∈ Yγ ⊂ RN×NT , (3.61)

to matrices,

Y 1
red = Proj

(
Y 1
)
, . . . , Y ntrain

red = Proj (Y ntrain) ∈ Yred ⊂ RNred×NT , (3.62)

of reduced dimension. Then, Nred MTR metamodels are trained — one for each row of the
reduced matrices. Concretely, the i-th rows of Y 1

red, . . . , Y
ntrain
red are used for training the

i-th MTR metamodel, i ∈ {1, . . . , Nred}. These MTR metamodels are merged to output
a matrix of dimension Nred × NT. Via the mapping Back, this matrix is then projected
up into full space, Yγ, leading to the approximation of the actual output matrix.

Summarizing, the mapping (3.55) can be read as the function composition

Mγ = Back ◦

 M1
SH
...

MNred
SH

 , (3.63)
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where modelsMi
SH are trained with the i-th rows of Y j

red = Proj (Y j) , i ∈ {1, . . . , Nred},
j ∈ {1, . . . , ntrain}, cf. Fig. 9. For this combined approach, hyperparameters for the
dimensionality reduction as well as for the MTR metamodels must be tuned. This can
be done in two ways.

NT time steps

N
n
o
d
es

∈ Yγ ⊂ RN×NT

Proj

(3.57)

Back

(3.58)

NT time steps

N
n
o
d
es

N
re
d

NT time steps

∈ Yred ⊂ RNred×NT

∈ Yγ ⊂ RN×NT

Y Yred Ŷ ≈ Y

Metamodels can

be created here.

Figure 9: Process of dimensionality reduction including the place for metamodels. The
bright pixels in the rectangles, i.e. the entries of matrix Ŷ , represent the projection error.

On the one hand, both methods can be optimized independently. By doing so, the
hyperparameters of the dimensionality reduction and its inverse are found first, e.g. by
minimizing the error of the averaged Frobenius error formula, see (3.60). Then, Nred

MTR metamodels are trained — one for each row of the reduced matrices. Executing an
output compression without direct consideration of the metamodel performances may lead
to highly complex input-output mappings that are afterwards difficult to approximate.
So, on the other hand, a nested optimization problem can be formulated as a remedy.

This concept orientates on [LMS20] where, in fact, the input dimension is reduced
via dimensionality reduction to improve scalar metamodels. This can be translated to
be used for MOR metamodels as done in a Master thesis [Go21] tutored by the author
of this work. The mentioned optimization problem consists of an inner and an outer
loop. The outer loop searches for the optimal hyperparameters of the dimensionality
reduction. The inner loop fits the chosen MTR metamodels to the then reduced data.
The algorithm stops when the approximation error that is made by the combination, i.e.
the present MOR metamodel, regarding the training data is minimized. By doing so,
the dimensionality is lowered in a way that endows the resulting matrices with suitable
structures that facilitate the creation of MTR metamodels. Further details can be found
in Section 3.2.6 where the original method from [LMS20] is presented.

There exist several methodologies for the dimensionality reduction and its inverse op-
eration. For this purpose, principal component analysis and its nonlinear variant, kernel
principal component analysis, are discussed below. They are used in several works as
components of MOR metamodels, see [JLG21a, Go21, GH19, RGGZ+21, Roh15]. Other
methods, e.g. isomap, local linear embedding, autoencoder, discrete empirical interpola-
tion method, see [vdMPvdH09, Kli13, KE19], however, could also be employed but are
not part of this thesis. These methods can be connected with any MTR metamodel from
Section 3.2.4.
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Principal component analysis
A popular dimensionality reduction technique is called principal component analysis
(PCA). It is equivalent to other methods in various fields of study. For instance, in signal
processing, it is known as the discrete Karhunen-Loève transform, see [HL98]. Linear
algebra names it singular value decomposition, see [KL80]. In engineering applications, it
is familiar as proper orthogonal decomposition, see [KGVB05]. Thus, this term is often
used in academic works dealing with model order reduction, see [GHV20, BBV17, BSV14].
Therefore, it would be also suited here. However, the name principal component analy-
sis and its workflow are chosen since its relative, kernel principal component analysis, is
introduced as well.

PCA is an orthogonal linear transformation of the considered data that maps it into a
new coordinate system, see [Jol02]. In this coordinate system, the variance portion of the
data resides in the coordinates in descending order — from highest to lowest. By taking
advantage of that, PCA can reduce the number of columns of a matrix,

A = (aij)1≤i≤η,1≤j≤ρ ∈ Rη×ρ, η, ρ ∈ N. (3.64)

For this task, practice exploits the sample covariance matrix with Bessel’s correction,

C = Cov
(
Ã
)
=

1

η − 1
ÃT Ã ∈ Rρ×ρ, (3.65)

of the centered matrix, Ã, see [LMS20, Jol02]. Centering the matrix means that each row
must have zero mean, i.e. it can be computed through

Ã = A− 1η

(
µA
)T
. (3.66)

In this formula, 1η ∈ Rη is a vector of ones and µA ∈ Rρ,

µA
j =

1

η

η∑
i=1

aij, (3.67)

is the vector of the means along each column, j ∈ {1, . . . , ρ}. Centering is beneficial for
finding an appropriate solution, see [MLBB08].

Now, the eigenvectors, vi, and eigenvalues, λi, of the covariance matrix, C, must be
found, i.e. the problem

Cvi = λiv
i, i ∈ {1, . . . , ρ}, (3.68)

is considered. Many algorithms exist for numerical calculation of these quantities, see
[Saa11]. After their computation, the so-called projection matrix, V ∈ Rρ×Nred can be
arranged. From left to the right, it consists of the Nred eigenvectors that correspond to the
Nred highest eigenvalues — in descending order. These eigenvectors, i.e. columns of V ,
are also referred to as the principal components. The reduction of A can now be achieved
by multiplication with the projection matrix, i.e. the reduced matrix is obtained by

Ared = AV ∈ Rη×Nred . (3.69)
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Vice versa, the reduced matrix can be projected back into the full space via multiplication
with the transposed projection matrix, i.e.

AredV
T = AV V T ≈ A ∈ Rη×ρ. (3.70)

For the MOR metamodels, the so-called snapshot matrix, S, is set up, see [GH18]. It
is the concatenation of all ntrain training output matrices, Y i ∈ Yγ, i ∈ {1, . . . , ntrain}, i.e.
it holds

S =
(
Y 1, . . . , Y ntrain

)
∈ RN×NT·ntrain . (3.71)

Using the snapshot matrix, different characteristics of the output caused by different
parameter manifestations come into play. To reduce the output dimension forMγ (3.55),
PCA is applied to the snapshot matrix. As the rows of Y ∈ Yγ are supposed to be reduced,

it is applied on the transposed snapshot matrix, ST ∈ RNT·ntrain×N , i.e. η = NT · ntrain,
ρ = N . The sample covariance matrix of S̃T thus equals

C = Cov
(
S̃T
)
=

1

NT · ntrain − 1

(
S̃T
)T

S̃T =
1

NT · ntrain − 1
S̃S̃T ∈ RN×N , (3.72)

cf. (3.65). Its eigenvectors and eigenvalues must then be found to derive the projection

matrix, V ∈ RN×Nred .
Recalling the transposition, the reduction is carried out via

Yred =
(
Y TV

)T
= V TY ∈ Yred ⊂ RNred×NT (3.73)

for arbitrary matrices Y ∈ Yγ ⊂ RN×NT . Consequently, using the projection matrix, the
projection mapping (3.57) for the MOR metamodels can be designed as

Proj : Yγ ⊂ RN×NT → Yred ⊂ RNred×NT , Y 7→ Yred = V TY. (3.74)

The inverse operation, Back (3.58), can then be formulated as

Back : Yred ⊂ RNred×NT → Yγ ⊂ RN×NT , Yred 7→ V Yred = V V TY. (3.75)

The only hyperparameter that has to be tuned for principal component analysis isNred,
i.e. the number of principal components. This variable is not calculated via optimization.
Instead the formula,

Nred∑
i=1

λhi

/
N∑
j=1

λj ≥ ελ (3.76)

is considered, see [JLG21a], where λh1, . . . , λ
h
Nred

are the Nred highest eigenvalues of C.
The threshold ελ ∈ (0, 1] ensures that at least ελ · 100% of the variance can be explained
by the Nred associated eigenvectors. The value for Nred is chosen as the lowest natural
number that fulfills (3.76) for a fixed ελ. The threshold, ελ, is selected dependent on the
problem — generally, it is set to at least 0.9. PCA therefore enables using Nred MTR
metamodels to emulate FEN (3.11) or FCN (3.13), see Fig. 9, while both methods are
established independently, i.e. without applying the nested optimization problem.
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Kernel principal component analysis
A nonlinear extension of PCA is kernel principal component analysis (kPCA), see [SSM97].
Via a kernel function, it reforms principal component analysis in a high-dimensional space,
[LMS20]. A kernel function, K, processes two vectors of same dimension ρ ∈ N, e.g. the
i1-th column, a1i1 ∈ Rρ, of

A1 =
(
a1i1
)
1≤i1≤η1

=
(
a1i1,j

)
1≤i1≤η1,1≤j≤ρ

∈ Rη1×ρ, η1 ∈ N, (3.77)

and the i2-th column, a2i2 ∈ Rρ, of

A2 =
(
a2i2
)
1≤i2≤η2

=
(
a2i2,j

)
1≤i2≤η2,1≤j≤ρ

∈ Rη2×ρ, η2 ∈ N. (3.78)

The operation can be defined by K : Rρ × Rρ → R with

K
(
a1i1 , a

2
i2

)
= ⟨Φ

(
a1i1
)
,Φ
(
a2i2
)
⟩H, i1 ∈ {1, . . . η1}, i2 ∈ {1, . . . η2}, (3.79)

where Φ : Rρ → H is a mapping into an intractable, high-dimensional space H.
Practically, Φ is not evaluated explicitly. Instead, kernel functions are defined without

the use of Φ that avoids working in H. This relief is also referred to as the kernel trick,
see [NDLT08]. Moreover, the so-called kernel matrix of A1 and A2, denoted as

K = K
(
A1, A2

)
= (ki1,i2)1≤i1≤η1,1≤i2≤η2

∈ Rη1×η2 , (3.80)

is composed of

ki1,i2 = K
(
a1i1 , a

2
i2

)
= ⟨Φ

(
a1i1
)
,Φ
(
a2i2
)
⟩H ∈ R, (3.81)

see [HSS08].
By using the kernel trick and matrix, kPCA reduces the number of columns of

A = (ai)1≤i≤η = (aij)1≤i≤η,1≤j≤ρ ∈ Rη×ρ, η, ρ ∈ N, (3.82)

with ai ∈ Rρ, i ∈ {1, . . . , η}. The kernel matrix, K = K(A,A), is thereto passed through
the standard principal component analysis procedure. This means it is centered, its
covariance matrix,

Cov
(
K̃
)
∈ Rη×η, (3.83)

is established, and consequently eigenvalues and eigenvectors are determined. In this way,
the projection matrix, V ∈ Rη×Nred , can be derived. This matrix can be multiplied to
kernel transformed data, e.g. to K ∈ Rη×η yielding Kred = KV ∈ Rη×Nred . Vice versa,
reduced kernel transformed matrices, e.g. Kred, are projected up by multiplying V T , e.g.
KredV

T = KV V T ≈ K. This construct must then be treated with the inverse, K−1, of
the kernel function to obtain data in the correct space, i.e.

K−1
(
KredV

T
)
= K−1

(
KV V T

)
≈ A ∈ Rη×ρ. (3.84)

Numerically, the inverse function, K−1, may be intractable and is thus often approximated
through regression techniques.
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For the MOR metamodels, the snapshot matrix, S ∈ RN×NT·ntrain (3.71), is utilized
again. Analogous to PCA, kPCA is applied to its transpose, ST . The projection matrix,
V ∈ RNT·ntrain×Nred , is the concatenation of the eigenvectors corresponding to the Nred

highest eigenvalues of the covariance matrix of the kernel matrix K = K
(
ST , ST

)
. It is

used to project between the full and reduced kernel transformed spaces. Summarizing,
the projection mapping, Proj (3.57), can be written as

Proj : Yγ ⊂ RN×NT → Yred ⊂ RNred×NT , Y 7→ Kred = V TK
(
ST , Y T

)
, (3.85)

cf. (3.74). Note that the transposition is taken into account. Furthermore, it holds
K
(
ST , Y T

)
∈ RNT ·ntrain×NT . The inverse operation, Back (3.58), can then be expressed as

Back : Yred ⊂ RNred×NT → Yγ ⊂ RN×NT , Kred 7→ K−1 (V Kred) , (3.86)

cf. (3.75). Therefore, kPCA allows Nred < N MTR metamodels to approximate FEN

(3.11) or FCN (3.13), see Fig. 9.
For kPCA, formula (3.76) cannot be used as the computed eigenvalues are transformed

and do not belong to the original problem. Therefore, different numbers of principal
components should be tested and compared. Moreover, the kernel function, K = Kθ,
consists of hyperparameters, θ, specific to the function chosen. They must be tuned
through one of the two mentioned optimization procedures — the independent or the
nested approach. Popular functions to use for K are the polynomial kernel,

Kθ

(
y1, y2

)
=
(
θ1
(
y1
)T
y2 + θ2

)θ3
, θ1 > 0, θ2 ≥ 0, θ3 ∈ N, (3.87)

and the Gaussian kernel,

Kθ

(
y1, y2

)
= exp

−1

2

N∑
i=1

1

θ2i

(
y1i − y2i

)2, θi > 0, i ∈
{
1, . . . , N

}
, (3.88)

for y1, y2 ∈ RN , see [LMS20]. Other choices for K can be found in [Sou10]. The polyno-
mial kernel with the hyperparameter setting θ1 = θ3 = 1, θ2 = 0 is identical to standard
PCA. The Gaussian kernel is called isotropic if all hyperparameters, θ1, . . . , θN , are equal.
Otherwise, it is called anisotropic. All kernels consist of different hyperparameters lead-
ing to diverse, complex optimization problems. Anisotropic Gaussian kernels might be
difficult to tune as many, i.e. N , optimal values have to be found making the problem
high dimensional.

As seen above, kPCA as an generalization can be adjusted to be equal to PCA. In case
standard PCA is the optimal choice, the kernel version may converge to it. Hence, kPCA
may be preferred over the standard option. However, solving the optimization problem to
gain appropriate kernel hyperparameters might be difficult. In addition, the conclusion of
[vdMPvdH09] states that nonlinear dimensionality reduction techniques, e.g. the kernel
version, often may not be capable of surpassing linear methods, e.g. standard PCA.
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3.2.6 Dimensionality reduction of the input space

The curse of dimensionality, see [Don00, Tru79, VF05], regarding metamodels means that
high-dimensional input spaces may cause problems. This happens for various methods.
For instance, choosing the anisotropic Gaussian kernel function (3.88) for a scalar universal
kriging metamodel, MGPR

KR (3.41), requires tuning the weight vector, β ∈ RP , and the
hyperparameter, θ ∈ Rn — here, θ is of same dimension as the input, x ∈ Rn. When n
and P both are large and not sufficient training data is available, the approximation may
get inappropriate due to facing an underdetermined system of equations. The same may
occur for scalar polynomial chaos expansion metamodels, MPCE

KR (3.43). The number of
polynomial basis functions, ψα, α ∈ A ⊂ Nn, rapidly increase when n or the maximum
degree, P ∈ N, of the polynomials are raised. For large n, it is therefore hard to tweak
their coefficients, aα, possibly leading to bad approximated response surfaces.

A workaround is presented in [LMS20]. As mentioned in Section 3.2.5, this work
reduces the dimension of the input space before a scalar metamodel is applied. This is
done via dimensionality reduction techniques. The reductions and the scalar metamodels
are combined via nested optimization problems also suggested for MOR metamodels, see
Section 3.2.5. This approach is now presented in more detail. Another description can be
found in a Master thesis, see [Her21], tutored by the author of this work.

The inclusion of dimensionality reduction leads to additional hyperparameters that
need to be trimmed. To distinguish, the hyperparameters, e.g. the coefficients of poly-
nomial chaos expansion, for metamodels are denoted as θM. The symbol, θD, signifies
the hyperparameters for the dimensionality reduction. For optimizing the total meta-
model, a cost function, C, e.g. the least-squares formula, the π-fold cross validation, or
the leave-one-out error, must be chosen. It evaluates how good the predictions fit to
the actual training data, τtrain = {(x1, y1) , . . . , (xntrain , yntrain)}. Hence, it depends on the
training data as well as on the dimensionality reduction and the metamodel along with
their hyperparameters.

The procedure for combining the methods shown in Algorithm 1 consists of two loops.
In the outer loop, the dimensionality reduction — dependent on the current settings, θ̌M,
of the metamodel and on its performance — is revised, i.e. θD is updated through

θ̌D = argmin
θD

C
(
Proj (·; θD) ,MKR

(
·; θ̌M

)
, τtrain

)
. (3.89)

The dimensionality reduction is applied to the input space. This means it compresses the
number of parameters from n to nred ∈ N, nred < n. The reduced parameters must not
be projected back. As a consequence, only projection of the data to a lower dimensional
subspace, cf. (3.57), without applying its inverse operation, cf. (3.58), is required. The
projection mapping, Proj, is defined as

Proj : X ⊂ Rn → Xred ⊂ Rnred , x 7→ xred, (3.90)

cf. (3.57). Proj converts the training input, x1, . . . , xtrain, to x1red, . . . , x
train
red which fa-

cilitates the creation of the metamodel. The inner loop then optimizes the metamodel
operating with the reduced number of parameters — found by the dimensionality reduc-
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tion with argument θ̌D. Its hyperparameters, θM, are adjusted by solving

θ̌M = argmin
θM

C
(
Proj

(
·; θ̌D

)
,MKR (·; θM) , τtrain

)
. (3.91)

Algorithm 1: Nested optimization for combining dimensionality reduction with
metamodels.
Input: Projection mapping, Proj; metamodel,MKR; training data, τtrain; initial

guess, θ̌D; cost function, C; stopping value, εNO

Output: Optimized hyperparameters, θD and θM
1 set flag = true
2 while flag do

3 determine θ̌M using (3.91) with θ̌D
4 update θ̌D using (3.89) with θ̌M
5 if C

(
Proj

(
·; θ̌D

)
,MKR

(
·; θ̌M

)
, τtrain

)
< εNO then

6 set flag = false
7 else
8 continue

9 set θD = θ̌D, θM = θ̌M

The work [LMS20] proposes to use standard or kernel PCA introduced above as the
mapping Proj. For them, the training input matrix

X =

 x1

...
xtrain

 =

 x11 · · · x1n
...

. . .
...

xtrain1 · · · xtrainn

 ∈ Rntrain×n (3.92)

is arranged and send through the strategies. The aim is to prune the columns, n, of X
implying a reduced input dimension. Dimensionality reduction techniques may improve
metamodels not merely via parameter reductions but also through resolving the given —
possibly complex — input-output structures into simpler entities.

The outlined approach can be adapted for MTR metamodels from Section 3.2.4. The
nested optimization can be done independently for each component of the ST method
and the RC approach. Neural networks, however, do not suffer the curse of dimension-
ality due to its integral compressing architecture. Therefore, they do not rely on extra
dimension reductions. In fact, they can be used for dimensionality reduction itself, e.g.
autoencoders can be utilized, see [Sch15]. Similarly, MOR metamodels can be improved
by this strategy. For independent optimization of the combined methods — dimension-
ality reduction and metamodels — parameter reduction proceeds in the same way as for
the MTR metamodels. By contrast, a third loop is required for the nested optimization.
The outer loop reduces the dimension of the output space, the middle loop the dimension
of the input space, and the inner loop establishes a revised metamodel. It is also possible
to swap tasks of the outer and the middle loop.
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3.2.7 Exemplary applications of metamodels

This section shows that metamodels are suitable approximations for finite element model
outputs. They accelerate the output generation which makes them central to the frame-
work of this work. To show their workable quality, four applications are approximated by
metamodels. For this purpose, methods from the Sections 3.2.3-3.2.6 are tested, i.e. scalar
metamodels, multi-target regression metamodels, model order reduction metamodels, and
scalar metamodels coupled with dimensionality reduction applied to the input space. To
recall, the ingredients of these metamodels may be scalar metamodels — multiple lin-
ear regression (MLR), Gaussian process regression (GPR), Polynomial chaos expansion
(PCE) — scalar or multi-target neural networks (SNN, MNN), and dimensionality reduc-
tion techniques — principal component analysis (PCA) and its nonlinear version using
kernel functions (kPCA).

The numerical realization is done in Python [VRD09]. The routines for MLR, GPR,
PCA, and kPCA are taken from the library Scikit-learn [PVG+11]. The library Chaospy
[FL15] provides PCE. Neural networks, i.e. SNN and MNN, are implemented using the
packages TensorFlow [AAB+15] and Keras [Cho15]. The GPR models throughout employ
anisotropic Matérn 3/2 kernels as auto-covariance functions. As the applications treated
with PCE assume uniformly distributed parameters, Legendre polynomial basis functions
are utilized. Their maximal degrees, P ∈ N, are varied. The suffix of the PCE title
indicates the maximum degree, e.g. PCE-3 is the PCE model with monomials up to
degree 3. The common truncation set,

A =

{
α ∈ Nn

∣∣∣∣∣
n∑

i=1

αi ≤ P

}
, (3.93)

for the expansion is chosen, see [BS10, BS11]. This leads to an expansion of length

#A =
(n+ P )!

n!P !
, (3.94)

see [XK02, BS08].
Number of hidden layers, neurons, and activation functions of neural networks are

specified in the text separately for each application. The number of iterations, i.e. epochs,
to train the networks are included in their respective names, e.g. MNN-200 denotes a
multi-target network trained for 200 epochs. Moreover, the reduced dimension, nred or
Nred, is written after the corresponding dimensionality reduction method. For a model
order reduction metamodel that e.g. combines a single-target method using GPR (ST-
GPR) with kPCA to reduce the dimensions of the problem to Nred = 10, the abbreviated
title would read kPCA-10-ST-GPR. Analogously, this applies to metamodels coupled with
dimensionality reduction for the input space.

Scalar metamodels for the simplified simulation of the WorldSID 50th per-
centile male dummy in a side crash scenario
In [JLG21b], the author of this thesis and his colleagues present an uncertainty man-
agement framework that is strongly related to the one in Fig. 4. There it is applied
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to a simplified finite element side crash simulation of a WorldSID 50th percentile male
dummy. The finite element simulation is solved with the commercial software Abaqus
FEA [FEA16]. The applied simplification realized in [Bra17, SB19] lead to a condensed
finite element construct of connected pushing masses, see Fig. 10. The simplified simu-
lation has a computational time of 5 seconds. The key result considered in [JLG21b] is
the maximum deflection at the middle rib of the dummy, thus a scalar. In total n = 36
parameters are defined that are all uniformly distributed — for the metamodeling task —
and normalized to [0, 1] with MinMaxScaler (3.27). The parameters describe the course
of the plastic force-displacement curves for the mass point connectors, see [JLG21b] for
more information.

z
xy

(a) Initial configuration (b) Intermediate time state (c) Final time state

x1, x2, x3

x34, x35, x36

x4, x5, x6...
v0

ζ
η

Figure 10: Simplified finite element side crash simulation of a WorldSID 50th percentile
male dummy. The figure is taken from [JLG21b].

Using a combination of screening and a scalar metamodel, namely the elementary
effects (EE) method, see Section 3.3.2, associated with GPR (EE-GPR), quantitative
sensitivity analysis and uncertainty quantification were enabled. Screening required 148
simulations runs, i.e. r = 4 random starting points, to identify k = 6 relevant parameters.
The kriging metamodel — using the default settings of MATLAB’s [MAT18] GPR routine
and operating on k = 6 parameters — was trained with ntrain = 102 points produced by
Sobol’ sequence sampling.

Here, the performance of this screening-based metamodel is compared with other
scalar metamodels,MKR (3.36): multiple linear regression, kriging, and polynomial chaos
expansion as standalone metamodels but also reinforced by dimensionality reduction. An
anisotropic Gaussian kernel, see (3.88), is utilized for kPCA. This reduction technique is
meant to eradicate the curse of dimensionality from the input space. The kPCA-based
scalar metamodels are optimized via the nested approach from Section 3.2.6.

For a fair comparison, the new metamodels are trained with ntrain = 148 + 102 = 250
Sobol’ sequence sampling points as they do not use the information of screening, thus
operate on n = 36 parameters. The quality of all metamodels are validated using an
unseen Sobol’ sequence sample of size nval = 350, cf. [JLG21b]. The histogram of the
ntrain + nval = 600 output points, i.e. the key results, is shown in Fig. 11.

The optimization of the dimensionality reduction-based metamodels is conducted us-
ing the particle swarm routine from the Python library Scikit-opt [Guo21]. As cost func-
tion, the empirical relative generalization error is used, see [LMS20]. The error is calcu-
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lated using all 250 training points. Only 80% of this training set, i.e. the first 200 sample
points, however, are fed into the metamodel to tune its hyperparameters. Using the other
20% as validation sample within the training process avoids overfitting. In [LMS20], an
alternative is proposed to tackle overfitting via calculating the leave-one-out error. In
general, ntrain metamodels have to be determined for this measure. Note that for some
metamodels, e.g. GPR and PCE, there exist analytical formulas for the leave-one-out
error which enable its usage, see [Dub83, BS11].
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Figure 11: Histogram of the ntrain + nval = 600 key results from the simplified dummy
simulation. It is constituted of ten equal-width bins which together cover the range from
13.87 to 36.20mm.

To keep it generic, i.e. for metamodels for which this kind of formula is not provided,
the already expensive nested optimization would become more costly using the leave-
one-out error. So, the approach here takes the proposed 80% of the training set and
thus prevents additional efforts. Moreover, the number of principal components is fixed
a-priori. A loop determines the results for a range of 5 to 20 principal components. The
best result is then taken as final configuration for the specific combination.

Table 2 shows a comparison of the results produced by different metamodels — MLR,
GPR, PCE, and their combinations with kPCA, EE-GPR, and SNN. The neural net-
work, SNN-500, has two hidden layers each equipped with 128 neurons and φid activation
functions. All in all, the quality of EE-GPR from [JLG21b] is slightly the best. Besides
PCE-2, the others are close to the performance of EE-GPR. Except for GPR, connecting
the metamodel with kPCA improves the results. For GPR, it virtually stays the same.

For PCE-2, the curse of dimensionality noticeably decreases the approximation quality.
Formula (3.94) shows that

(36 + 2)!

36!2!
= 703 (3.95)

hyperparameters, i.e. PCE coefficients, need to be optimized for PCE-2. As only ntrain =
250 training points are available, the system that must be solved is underdetermined. The
voluminous PCE-2 therefore lacks sufficient training data due to this curse of dimension-
ality. This leads to the inappropriate AvP plot shown in Fig. 12 (a). This changes when
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bringing kPCA into play. The best performing dimension found for PCE-2 with kPCA
is nred = 17, i.e. kPCA-17-PCE-2 is the final configuration after nested optimization of
the combination comprising kPCA and PCE-2. The input space of size 17 can be treated
without facing the curse of dimensionality as the number of hyperparameters shrinks to

(17 + 2)!

17!2!
= 171. (3.96)

This produces a proper fit with high R2 score, cf. Table 2, and a proper AvP plot depicted
in Fig. 12 (b).

Table 2: Results of the different scalar meta-
models for the simplified side crash simulation of
the WorldSID 50th percentile male dummy de-
termined with the validation sample. The best
result is marked in bold. For comparison rea-
sons, the standalone methods are listed on top of
their combinations with dimensionality reduction
or screening, respectively.

Approach R2

MLR 0.97559
kPCA-16-MLR 0.99041
GPR 0.98953
kPCA-13-GPR 0.98921
EE-GPR [JLG21b] 0.99369
PCE-1 0.97559
kPCA-15-PCE-1 0.98973
PCE-2 0.32406
kPCA-17-PCE-2 0.98318
SNN-500 0.97501
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Figure 12: AvP plots of metamod-
els using PCE-2 for the simplified
dummy model.

Moreover, it is worth mentioning that the results of PCE-1 and MLR — or kPCA-
16-MLR and kPCA-15-PCE-1 — are similar. This is due to the fact that the considered
PCE works with the same basis functions as MLR since it uses Legendre polynomials up
to degree P = 1 that have the form ψ(x) = x and ψ(x) = 1, cf. (3.43) and see [Jac12].
These monomials are also part of the MLR formula (3.38). Slightly deviating results may
come from the different hyperparameter optimization techniques that are integrated in
the corresponding Python libraries. Last but not least, these metamodels — except for
PCE-2 — allow for efficient and accurate investigations afterwards, e.g. sensitivity and
uncertainty analysis as done in [JLG21a].
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Occupant simulation of a full frontal test
The Master thesis [LN21] uses multi-target regression metamodels,MSH (3.46), to approx-
imate specific processed time histories of a finite element simulation modeling a full frontal
test. Target values for this test, measured e.g. with the aid of dummies, are stipulated
by legal authorities and must be achieved in order to obtain automotive homologation.
According to safety standards of the U.S. market, see [U.S08], one manifestation of the
full frontal test places Hybrid III 50th percentile male (HIII 50%) dummies on the front
seats. The car under consideration is driven head-on against a rigid barrier at a velocity
equal to 56 km/h, see Fig. 13 (a).
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Figure 13: A sketch of the full frontal test is shown in (a). The simulation considers the
passenger dummy in a separate occupant model. All 140 curves for the head (b) and chest
acceleration (c) are displayed.

The simulation corresponding to this test is simplified: as mentioned in Chapter 2,
it is oftentimes engineering practice to simulate the vehicle structure a-priori and then
observe the dummy behaviors in extra occupant models subjected to the structure values
obtained. The occupant model studied here investigates the passenger dummy seated in
the interior of a state-of-the-art car. The driver dummy is not considered here and hence
excluded from the simulations. The model is simulated in LS-DYNA. One simulation
lasts over 45 hours on 36 CPUs.

Four parameters characterizing the restraint system are regarded as uncertain. The
parameter ranges for this study are intentionally extended to yield more variability than
in real projects. So, the outputs shown in Fig. 13 and 14 do not match actual develop-
ment quantities. All parameters are uniformly distributed and normalized to [0, 1] with
MinMaxScaler (3.27). The first parameter, x1, calibrates the passenger airbag to be soft,
x1 = 0, or hard, x1 = 1. The second parameter, x2, repeats this for the knee airbag. The
third parameter, x3, controls the time-to-fire of the restraint systems. For low values, e.g.
x3 = 0, the systems are triggered early. For high values, e.g. x3 = 1, the systems react
late. The fourth parameter, x4, regulates the belt settings — from soft, x4 = 0, to hard,
x4 = 1.

The occupant model is simulated ntrain + nval = 100 + 40 = 140 times using different
parameter configurations created by Sobol’ sequence sampling. The work of the Master
thesis [LN21] is continued in terms of considering prescribed target values. Therefore, two
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key results are exemplarily addressed: the head injury criterion (HIC15) (3.18) extracted
from the resultant head acceleration time history of the dummy as well as the so-called
cumulative 3ms value (CA3ms) of the chest acceleration curve. The expensive finite el-
ement model is replaced by metamodels to quickly approximate the key results for new
parameter values. For this task, two types of metamodels are tested. On the one hand,
the finite element model is considered to have the form of history functions, FSH (3.16),
having NT = 1150 time steps. The key results can then be extracted from these functions
— using the respective extraction function, e (3.17). On the other hand, the simulation
is directly regarded as the corresponding key result function, FKR (3.19).
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(a) Histogram for HIC15 covers the range
from 343.50 to 816.02
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(b) Histogram for CA3ms spans from 360.58
to 537.48

Figure 14: Histograms of the considered key results from the occupant simulation. Both
are constituted of ten equal-width bins.

The histograms of the key results, i.e. HIC15 and CA3ms, created with the 140 respec-
tive exact values can be found in Fig. 14. GPR, PCE, and SNN are employed as scalar
metamodels,MKR (3.36), to approximate these key results. Next to it, the resultant head
acceleration curves also studied in [LN21] as well as the resultant chest acceleration time
history are emulated by single-target methods (ST-GPR, ST-PCE) and regressor chain-
based approaches (RC-GPR, RC-PCE) using GPR and PCE. In addition, multi-target
neural networks (MNN) are tested. These metamodels have the form MSH (3.46). All
140 exact head and chest acceleration curves that the multi-target regression metamodels
have to deal with, respectively, are depicted in Fig. 13 (b) and (c). The key results are
then processed by applying the HIC15 formula (3.18) to the head acceleration curves or
finding the 3ms value of the chest acceleration time profiles, i.e. CA3ms. The 3ms value of
a measurement signal is defined as the largest amplitude that is present for 3 milliseconds
— either continuous or cumulated — see [COZ+]. Here, the cumulated version is used.

The performance of the different metamodels for the time histories and the extracted
key results are compared in Table 3. Four different maximal degrees, P ∈ {1, 2, 3, 4}, for
PCE models are compared. The SNN models are constituted of two hidden layers with
256 neurons each. They use φrelu as activation functions and are trained for different
epochs defining their names. Similarly, the MNN models are equal concerning the choice
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of the architecture: three hidden layers with 256, 512, 1024 neurons from left to the right
activated by φtanh. The number of iterations, i.e. epochs, are different and can be read
from the title endings.

Table 3: Results of different metamodels approximating head as well as chest acceleration
time histories and HIC15 as well as CA3ms key results of the occupant simulation. The
mean squared error, MSESH, shows the averaged MSE of the time histories. The coefficient
of determination is calculated for the key results. The best result for each quality measure
is marked in bold.

Approach Head-MSESH HIC15-R
2
KR Chest-MSESH CA3ms-R

2
KR

GPR - 0.97340 - 0.97230
PCE-1 - 0.88809 - 0.98273
PCE-2 - 0.97562 - 0.97973
PCE-3 - 0.97892 - 0.97195
PCE-4 - 0.92638 - 0.94895
SNN-100 - 0.96811 - 0.97765
SNN-200 - 0.97613 - 0.97493
SNN-300 - 0.97625 - 0.97581
ST-GPR 602.73217 0.96126 86.29035 0.96690
ST-PCE-1 1154.09729 0.94194 92.54107 0.98209
ST-PCE-2 775.56576 0.97853 71.51075 0.98002
ST-PCE-3 787.41539 0.98367 90.10494 0.96550
ST-PCE-4 2622.87375 0.95975 326.93971 0.91369
RC-GPR 796.44560 0.93022 160.45546 0.91144
RC-PCE-1 1097.65395 0.91730 95.4902 0.97005
RC-PCE-2 3541.83062 0.95877 236.11060 0.82453
RC-PCE-3 2380.49518 0.92509 330.95230 0.85588
RC-PCE-4 4423.53116 0.67315 845.85581 0.34099
MNN-100 1124.35491 0.93616 91.76897 0.98188
MNN-200 718.02920 0.97468 71.37379 0.97975
MNN-300 479.14381 0.95840 64.75791 0.97273

By definition, for the regressor chain-based approaches, the output of the previous
time step is used as an additional parameter for predicting the output of the current time
step. To be consistent with the other parameters, the values of the output are normalized
to be between [0, 1]. Predicted values that are outside the range [0, 1] are projected to the
nearest limit value, i.e. 0 or 1. Otherwise, the use of these values as additional parameters
would lead to poor approximation results as they would lie outside the defined parameter
interval forcing to solve an extrapolation task.

At first, the key result for the head, HIC15, is studied. According to the R2
KR values in

Table 3, the best metamodel for HIC15 is ST-PCE-3 — ST-PCE using P = 3. Besides its
high R2

KR, the actual versus predicted (AvP) plot in Fig. 15 (a) reaffirms the satisfying
quality. While ST-PCE-3 provides the best approximated time histories out of the consid-
ered approaches to extract the key result from, the time histories created by MNN-300 are
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better approximates for the total curve correspondent to the error measures from Table 3.
All nval = 40 exact curves are plotted in Fig. 39 together with the approximated curves
of ST-PCE-3 and MNN-300.
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Figure 15: AvP of ST-PCE-3 for HIC15 (a) and AvP of PCE-1 for CA3ms (b) using the
validation sample of size nval = 40.

Due to its definition, HIC15 is extracted from the first wider peak of these curves,
see also Fig. 13 (b). This first peak is predicted better by ST-PCE-3 than by MNN-300.
The second peak, however, can be reproduced more precisely by MNN-300 leading to an
overall better approximation result. When MNN is trained for less epochs, e.g. 200, see
MNN-200 in Table 3, the predictions of the key result may be better but the overall fit
is less strong. This may be due to an overfitting around the first peak when training for
too long, e.g. for 300 epochs. Training for 200 epochs does not yield overfitting in the
first peak. For the second peak, however, the network MNN-200 is valid but it is not
developed as fully as for 300 epochs, cf. MNN-300 in Table 3.

Regarding the HIC15 key result, ST-PCE-3 should be used for further analysis. After
reviewing the simulation videos, the second peak, if existent, comes from an impact of
the dummy head against the instrument panel. This incident must be prevented at all
costs and thus reliably predicted. Optimal predictions of the key result are less important
than the statement whether the impact will occur or not. This is better accomplished
by MNN-300, see Fig. 39. Moreover, appropriate head acceleration curve approximations
are also provided by other methods, e.g. ST-GPR and MNN-200, see Table 3. The same
holds for the key result approximations where PCE-3, ST-PCE-2, PCE-2, SNN, MNN-200
for example show high R2

KR values.
The regressor chain-based approach cannot be recommended here. For all options

tried, it downgraded the results compared to its integrated scalar metamodels, e.g. observe
the results for GPR, ST-GPR, and RC-GPR in Table 3. This may be interpreted such
that the curve regression task here cannot benefit from past information. On the contrary,
it lowers the quality, as it has to cope with one more parameter. This does not only apply
to the head but also to the chest acceleration curves. Future work should be dedicated to
deeply analyze this observation.
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Analogous to the head acceleration curves, the same metamodel types are implemented
for the resultant chest acceleration curves and their 3ms values. Again MNN-300 pro-
vides the best result for total curve approximation, see Table 3. The single validation
time histories — exact curves and predicted profiles produced by MNN-300 — can be
observed in Fig. 40. Furthermore, when training the network for shorter epochs, e.g. 100,
slightly better results for CA3ms are obtained. Indeed, the best metamodel to approxi-
mate CA3ms values is PCE-1, cf. Table 3. Its AvP plot can be viewed in Fig. 15 (c). In
conclusion, further in-depth analysis is enabled by replacing the expensive, i.e. 45 hours,
finite element model with one of the adequate fast-responding, i.e. within a fraction of
a second, metamodels presented. This demonstrates the merit of metamodels for the
proposed framework.

Hardware data from the offset deformable barrier frontal impact test
For several years now, the so-called offset deformable barrier (ODB) frontal impact test
has been carried out for various consumer protection organizations that are mostly referred
to as New Car Assessment Programs (NCAP). The ODB frontal impact is part of e.g. the
Euro NCAP, China NCAP, etc., see [car21]. There, the test vehicle contacts a crushable
aluminum honeycomb barrier with an overlap of 40% on the driver’s side at 56 km/h, see
[Uni17]. This is meant to mimic a collision with another vehicle.

To measure the impact on the occupants, two dummies of type Hybrid III 50th per-
centile male (HIII 50%) are placed on the front seats, see Fig. 16 (a). For this study, the
author was provided with data from 112 historical tests from the archive of the BMW
Group. These included small, medium, and large cars with different engines, optional
equipment, etc., from various phases of the product evolution process, see Fig. 1. Differ-
ent data, e.g. displacement, velocity, acceleration, force curves, etc., measured by sensors,
e.g. the dummies, are available for each test. These quantities are used to assess crash
severity. For the NCAPs, some of them are processed to injury criteria that can be con-
verted to rating values, e.g. via injury risk curves or sliding scale functions. Thus, they
provide the safety rating of the observed vehicle. This rating then serves as a reference
for customers, see [car21].
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Figure 16: Sketch of the ODB frontal impact test (a); 113 hardware curves of the crash
pulses (b) and the head accelerations (c).
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(l) Validation curve 12

Figure 17: The predictions results (black) for all nval = 12 individual validation head
acceleration curves are compared to the exact hardware trajectories (blue).

It is now attempted to model the relationship between two special data types by a
feed-forward deep neural network, i.e. a multi-target regression metamodel,MSH (3.46).
Crash pulses, time histories of vehicle accelerations, are considered to be the input of
the network. They are already recorded in previous early-phase structural tests — with
no dummies being involved yet. This means they are available a-priori, i.e. before the
dummy measurements. Thus, they can indeed be chosen as feature of the neural network.
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Occupant load curves are regarded as the outputs. These load curves are the ingredients
to calculate the safety rating of the corresponding NCAP. Here, head acceleration curves
of the driver dummy are investigated. Fig. 16 (b) and (c) show all 112 curve pairs, i.e.
crash pulses and corresponding head accelerations.

For each curve type, one can observe differences between the trajectories, i.e. the
curves are exposed to uncertainties. To train and validate the neural network, the data
is randomly separated into ntrain = 100 training and nval = 12 validation sample curves.
A dense network with three layers using 64, 128, 256 neurons each activated by φtanh

activation functions, respectively, is chosen to emulate the relationship. The network is
trained for 100 epochs.

The network does not receive any additional information that might improve its qual-
ity, i.e. no vehicle mass or measurements, nothing regarding usage or nature of the
restraint systems, etc. Furthermore, the curves may exhibit noise due to possible devia-
tions or inconsistencies in measurement processes, see the beginnings of the crash pulses
in Fig. 16 (b) for instance. Both curve types are long time series of over thousand time
steps — 1150 for the crash pulse curves, 1450 for the head acceleration curves. Each time
step is considered to be a feature or an output value, i.e. the input and output spaces of
the net are high dimensional. In general, there is little data that can be fed to the net.

Despite all these obstacles, the network predicts the trends of the validation curves
appropriately, see Fig. 17. One the one hand, this result shows the strong relationship
between the two observed quantities, the crash pulses and the head accelerations, that is
known from previous studies, see [KGE09, Lan21]. On the other hand, it encourages the
use of metamodels in the crash domain.

Crashbox deformation simulation
In [JLG21a], the author of this thesis and his colleagues enable uncertainty quantification
through a model order reduction metamodel that replaces a crashbox deformation simula-
tion. The model simulated in LS-DYNA [LS-18] can be found on the LS-DYNA example
homepage [LS-20] and takes 22 seconds CPU time. It calculates the deformation process
of a crashbox that is impacted by a moving plate in negative z-direction, see Fig. 18. The
crashbox is a symmetric tube with three pairs of ribbings. It consists of NEN = 1925
nodes. The time histories of the node behaviors are divided into NT = 22 time steps.
Five parameters are declared uncertain: x1 stands for the wall thickness of the crashbox,
x2 represents the initial velocity of the plate, and x3, x4, x5 characterize the depths of
the respective opposite upper, middle, and lower ribbings, see Fig. 18, respectively. All
parameters are treated as uniformly distributed for the metamodeling task. Bounds for
the parameter intervals can be found in [JLG21a].

The work [JLG21a] reconstructs the simulation via a model order reduction metamodel
where singular value decomposition (SVD), i.e. basically principal component analysis, is
used before training Gaussian process regression (GPR) models. This approach is applied
to the x-, y-, z-displacements of all nodes simultaneously which yields 3NEN = 5775
rows for the snapshot matrix, S (3.71). Moreover, it divides the training data of size
ntrain = 100 into 20 simulations forming the snapshot matrix, i.e. S ∈ R3NEN×20NT , and
80 simulations used to create the metamodels. The data is produced by Latin hypercube
sampling. SVD reduces the number of rows of S to Nred = 8. On top, a second SVD
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is used to decompose the time and the parameter spaces. Then, several metamodels are
built for time and parameter instances of the principal components. In this way, the
time is regarded as a continuous variable as the times between the NT time steps are
interpolated. This approach called 2SVD-8-GPR in the following was implemented in
MATLAB [MAT18]. Additionally to 2SVD-8-GPR from [JLG21a], the same strategy is
run with more principal components, Nred = 20 and Nred = 30, denoted as 2SVD-20-GPR
and 2SVD-30-GPR.

upper
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(ribbing) v0
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−132
−115
−99
−82
−66
−49
−33
−16
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(a) Time state 1 (b) Time state 11 (c) Time state 22
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Figure 18: Crashbox deformation simulation. The figure is taken from [JLG21a].

Another strategy is tested here. Three model order reduction metamodels, Mi
EN

(3.55), are constructed — one for each direction, i ∈ {x, y, z}. Behavior directions with
relatively little action are otherwise sieved out by the dimensionality reduction and the
principal components are formed from the behavior directions with great action. As a
consequence, predicting behavior directions with little action might be error-prone. The
following procedure is discussed concerning one of the three model order reduction meta-
models. Kernel PCA (kPCA) replaces standard SVD to account for nonlinear effects. The
polynomial kernel (3.87) is employed. With its three hyperparameters, it is better suited
and easier to tune than the Gaussian kernel (3.88) that possesses NEN hyperparameters
entailing a difficult optimization problem.

In the new process, the whole training data establishes the snapshot matrices, i.e.
Si ∈ RNEN×100NT , i ∈ {x, y, z}. Likewise, the metamodels are trained with all ntrain = 100
training points. Furthermore, the time is left discrete. Finite element models themselves
do not work with continuous times. Time is therefore not considered as a variable which
avoids prediction errors. Instead, each time step means one output entry for each of the
Nred, Nred < NEN, chosen principal components. Together, Nred functions of the form
FSH (3.16) must be approximated. This calls for multi-target regression metamodels, see
Section 3.2.4. For each of the Nred selected principal components from kPCA, a single-
target method using Gaussian process regression (ST-GPR) is trained.

The kPCA-ST-GPR metamodel is optimized using the nested approach, see Section
3.2.5 and 3.2.6. A 5-fold cross validation is chosen as cost function, C, in (3.89) to
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avoid overfitting. This incident might appear as the hyperparameters of the kPCA-ST-
GPR may be trimmed to optimally fit the training values when using the common least-
squares formula. Ideal generalization, however, may not be given. Thus, cross validation
comes into play. After the cost function is minimized, i.e. the 5-fold cross validation is
terminated, the settings for kPCA are installed for the final kPCA-ST-GPR metamodel.
The utilized multi-target regression metamodels, i.e. ST-GPR, are fitted for the last time
using the whole training set rather than a fraction as for the nested optimization involving
cross validation.

Numerically, the nested optimization is executed by the randomized search routine
from scikit-learn [PVG+11]. It tests 200 hyperparameter configurations of the reduction
method, then trains the corresponding multi-target regression metamodels, and returns
the best hyperparameter values that are used for the final model order reduction meta-
model. Different numbers of principal components, i.e. Nred, are considered and compared
— also with the 2SVD-8-GPR approach from [JLG21a]. For the comparison, special forms
of the mean squared error and the coefficient of determination for the overall fit are cal-
culated with nval = 100 validation sample points. These points are created by a second
Latin hypercube sampling.

The coefficient of determination, cf. (3.32), for the whole simulation is calculated in
[JLG21a] using

R2
EN

(
x1, . . . , xnval

)
= 1−

nval∑
i=1

3NEN∑
j=1

NT∑
k=1

(
Y i
jk − Ŷ i

jk

)2
nval∑
i=1

3NEN∑
j=1

NT∑
k=1

(
Y i
jk −

nval∑̄
i=1

3NEN∑̄
j=1

NT∑̄
k=1

Y ī
j̄k̄

)2 (3.97)

for the validation parameter vectors x1, . . . xnval ∈ X , its corresponding exact outputs
Y 1, . . . , Y nval ∈ R3NEN×NT and the approximations Ŷ 1, . . . , Ŷ nval ∈ R3NEN×NT produced by
the model order reduction metamodel. Here, the mean squared error (3.30),

MSEEN

(
x1, . . . , xnval

)
=

1

3nvalNENNT

nval∑
i=1

3NEN∑
j=1

NT∑
k=1

(
Y i
jk − Ŷ i

jk

)2
, (3.98)

is given in addition to R2
EN. To calculate these error measures for the new approach, the

outputs of the three model order reduction metamodels are gathered in one matrix, i.e.
for kPCA-ST-GPR, it holds

Ŷ =

 Ŷ x

Ŷ y

Ŷ z

 ∈ R3NEN×NT (3.99)

with Ŷ i =Mi
EN(x) ∈ RNEN×NT , i ∈ {x, y, z}, for an arbitrary but fixed x ∈ X .

Table 4 shows a comparison of the results. Each metamodel yields appropriate predic-
tions. All listed kPCA-ST-GPR models, i.e. using among others kPCA instead of SVD,
outperform the 2SVD-GPR approaches. The best results are provided by the kPCA-10-
ST-GPR model — using Nred = 10 principal components. Its AvP plot for all nodes
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and all time steps shown in Fig. 19 endorses the proper quality. According to Table 4,
one might infer that the more principal components used, the better the results are. In
[Go21], however, it is shown for analytical applications that the error can start to increase
above a certain number of principal components since the last entities derived from them
may become difficult to approximate. Therefore, with more principal components, the
approximation error may exceed the truncation error leading to worse results than when
using fewer principal components.

Table 4: Results of the different model order re-
duction metamodels for the crashbox deformation
simulation determined with the validation sam-
ple. The best result is marked in bold.

Approach R2
EN MSEEN

2SVD-8-GPR [JLG21b] 0.99980 0.12299
2SVD-20-GPR 0.99986 0.08784
2SVD-30-GPR 0.99986 0.08551
kPCA-4-ST-GPR 0.99987 0.07910
kPCA-5-ST-GPR 0.99991 0.05315
kPCA-6-ST-GPR 0.99997 0.01915
kPCA-7-ST-GPR 0.99996 0.02156
kPCA-8-ST-GPR 0.99996 0.02028
kPCA-9-ST-GPR 0.99997 0.01769
kPCA-10-ST-GPR 0.99998 0.01347

Figure 19: AvP of the best performing
model order reduction metamodel, i.e.
kPCA-10-ST-GPR, for all entries of the
nval = 100 validation matrices.

Furthermore, using less, e.g. Nred = 4, principal components means creating less scalar
metamodels, e.g. 4NT = 88, for the single-target methods inside Mi

EN — leading to a
compacter model. Using Nred = 10 principal components, for instance, demands 10NT =
220 scalar metamodels to be trained. Training and validation is faster when taking less
principal components into account. Indeed, training must be done once and validation is
quick — even for models constituted of many principal components. Nonetheless, as a
user, one has to find the correct balance between approximation quality and efficiency.

All shown examples considering models for or data from structural components, re-
straint systems, or complete tests were approximated appropriately by different meta-
modeling techniques. These include the simplified dummy in a side crash, the occupant
simulation of a full frontal test, the hardware data from the ODB frontal impact test, and
the crashbox deformation simulation. Without metamodeling, subsequent analysis would
not be feasible with respect to time. Their high qualities for the discussed four examples
strongly support their usage as chief point in the proposed framework for further applica-
tions. Note that they do not only enable sensitivity and uncertainty analysis. Engineers
can use them to rapidly perform optimization, reliability analysis, etc.

60



3.3 || Sensitivity analysis

Two sensitivity approaches are discussed that intend to achieve different goals. Screen-
ing is a qualitative approach to identify the relevant inputs that can then be further
investigated by quantitative sensitivity approaches, e.g. Sobol’ indices. While screening
techniques are used without metamodels and can improve approximation quality when
metamodels are applied subsequently, variance-based measures are usually calculated on
metamodels, see the global framework in Fig. 4.

3.3.1 Distinction between local and global sensitivity analysis

Before these two methods are introduced, a distinction between local and global sensitivity
analysis is given. Both methods, screening and variance-based sensitivity analysis, belong
to global sensitivity analysis, see [IL15]. This type seeks to find the influence of the full
parameter range on the global output uncertainty, see [ZL08a]. Speaking about Sobol’
indices, cf. Section 3.3.3, the problem is treated in a probabilistic framework where X
describes the random input vector. Variance-based sensitivity analysis determines the
proportion of the impact that the single dimensions of X , i.e. single model parameters,
at full range have on

Var(F(X )) = Var(Y ). (3.100)

By contrast, local sensitivity analysis is the measurement of the influence of local
changes in parameters on the output, i.e. the sensitivity is evaluated near a chosen point
of interest, see [ZL08b]. Often, local sensitivities are calculated by using gradients,

∂F(x)
∂xi

, i ∈ {1, . . . , n}, (3.101)

see [CFP02, SRTC05, PBF+16]. In [Sal99], clear drawbacks of local derivative-based
methods are reported, e.g. only a fraction of the full parameter range is studied, possible
interactions are ignored, etc. The work also recommends to calculate Sobol’ measures.
Note that local approaches may be extended to global approaches, e.g. via integration
over the input space, see [SK10, LIPG13] that also present links to Sobol’ indices. This
extension makes them attractive but still requires derivatives.

In finite element software, however, several heuristics, detailed modeling, and case
distinctions, among others, are involved. Even if the source code would be available,
i.e. the simulation would not be regarded as a black box, a derivative-based sensitivity
analysis might not be practicable. For this reason, sampling-based screening techniques
and variance-based sensitivity analysis are chosen. In the following, the global approaches
are meant when sensitivities are to be investigated.

3.3.2 Screening

For all types of analyses that investigate model behavior based on sample points, the more
variables there are, the larger the sample size may need to be. The number of variables
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translates into the number of model dimensions — the more variables, the higher the
number of dimensions and the more difficult the analyses are to perform. In practice, it
repeatedly turned out that only the minority of input dimensions contributes significantly
to the model output, see [IL15]. Screening methods as qualitative sensitivity analysis
techniques identify the relevance of each input implying an input importance ranking, see
[IS17]. Hardly or not contributing parameters can be removed from the analysis. In this
way, screening can avoid the curse of dimensionality and serve as an alternative to the
dimensionality reduction add-on approach for metamodels from Section 3.2.6.

Compared to other sensitivity analysis methods, screening methods work on low bud-
get yet are less profound. In global sensitivity analysis frameworks, it is therefore common
to use screening to eliminate irrelevant variables before a more informative but expensive
sensitivity approach is applied to the dimension reduced model, see [JLG21b]. A quan-
titative, i.e. more subtle, sensitivity method after screening may be the calculation of
variance-based sensitivity measures introduced in Section 3.3.3. In the following, the ele-
mentary effects method is proposed as it is able to identify all types of model complexity,
e.g. non-monotonicity and discontinuity, see [IL15].

Radial design-based elementary effects method
A global screening plan was published 1991 by Morris, see [Mor91]. This approach —
known as elementary effects method or Morris method — highlights the most important
parameters among those of a computer experiment. For each parameter, so-called ele-
mentary effects are calculated based on a predefined sampling strategy — consisting of
one-factor-at-a-time trajectories in the original approach, see [CCS07]. Estimators for
the mean and variance of the elementary effects indicate the contribution of the single
parameters to the output uncertainty, see [SRA+08]. According to these quantities, the
parameters can be ranked.

An improved version of the Morris method can be found in [CSC11]. It is here referred
to as the radial design-based elementary effects method. There, an enhanced estimator
for the mean of the elementary effects is presented. In addition, a more efficient sampling
strategy is suggested using radial-based setups that also allows to advance the method
to calculate total effect Sobol’ indices. Our global framework does not only aim for an
in-depth sensitivity analysis but also for a metamodel needed for subsequent uncertainty
quantification. It is computationally more favorable to later compute Sobol’ indices on the
approximated response surface than to use the extension of the elementary effects method.
The screening method itself, however, can be applied to simplify the work of metamodels
by reducing the input dimensionality of the problem. The mathematics behind are briefly
summarized based on [CSC11, JLG21b].

Let x = (x1, . . . , xn)
⊤ ∈ [0, 1]n be the input of the model, i.e. the system function,

F : [0, 1]n → R, (3.102)

e.g. F = FKR from Section 3.1, that produces the output

y = F(x) ∈ R. (3.103)
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No requirements are imposed on the system function. Note that the unit hypercube
input space, [0, 1]n, does not cause a loss of generality since any compact one-dimensional
interval can be transformed into [0, 1], cf. (3.25).

The method is designed using r ∈ N random starting points,

x̂(j) =
(
x̂
(j)
1 , . . . , x̂(j)n

)⊤
∈ [0, 1]n, j ∈ {1, . . . , r}. (3.104)

Each random starting point asks for extra n points to compute an elementary effect for
each dimension. By doing so, the whole procedure results in an overall sample size equal
to r(n + 1). A non-zero perturbation, ∆

(j)
i ∈ (−1, 1)\{0}, i ∈ {1, . . . , n}, is added to

the i-th component of x̂(j), j ∈ {1, . . . , r}, yielding the i-th additional point — this is
illustrated in Fig. 20. It must hold

δ
(j)
i := x̂

(j)
i +∆

(j)
i ∈ [0, 1]. (3.105)

In [CSC11], the sampling is accomplished via a Sobol’ sequence, i.e. a low-discrepancy
sequence, to generate the random starting points, x̂(j), and their altered companions,

δ(j) :=
(
δ
(j)
1 , . . . , δ(j)n

)⊤
. (3.106)

Note that the perturbation, ∆
(j)
i , must be chosen sufficiently large to identify effects due

to actual parameter changes rather than e.g. rounding errors, especially for discontinuous
computer models.
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Figure 20: Creation of the radial design sample for an arbitrary but fixed random starting
point, x̂ ∈

{
x̂(1), . . . , x̂(r)

}
.

The elementary effect, EE
(j)
i , of x̂(j) for the i-th parameter is then calculated by

EE
(j)
i :=

F
(
x̂(j) +∆

(j)
i ei

)
−F

(
x̂(j)
)

∆
(j)
i

=
F
(
x̂
(j)
1 , . . . , δ

(j)
i , . . . , x̂

(j)
n

)
−F

(
x̂(j)
)

δ
(j)
i − x̂(j)i

, (3.107)

where ei, i ∈ {1, . . . , n}, denotes the i-th canonical basis of Rn. These effects can be
understood as directional derivatives along the respective dimensions.

Now, estimators for the mean,

µi :=
1

r

r∑
j=1

EE
(j)
i , (3.108)
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and the variance,

σi :=
1

r

r∑
j=1

(
EE

(j)
i − µi

)2
, (3.109)

of the elementary effects, EEj
i , for all inputs i ∈ {1, . . . , n} can be determined. To

avoid that elementary effects annul each other due to opposed signs, see [CCSS05], the
conventional mean µi is augmented to the quantity,

µ∗
i :=

1

r

r∑
j=1

∣∣∣EE(j)
i

∣∣∣ . (3.110)

According to these quantities, µi, µ
∗
i , σi, the relevance of each input can be assessed.

Algorithm 2: Adaptive radial design-based elementary effects algorithm.

Input: System function, F ; initial number of iterations, r ∈ N; threshold,
εEE ∈ (0, 0.1]

Output: Estimated means, µi and µ
∗
i ; variances, σi, i ∈ {1, . . . , n}; algorithm

iterations, ra
1 forall j ∈ {1, . . . , r} do
2 draw random starting point x̂(j) from input space and create radial basis

sample according to Fig. 20

3 calculate elementary effects, EE
(j)
i , see (3.107)

4 calculate Morris quantities, µi, µ
∗
i , σi, using (3.108), (3.110), (3.109), and denote

as µo
i , µ

∗,o
i , σo

i , respectively
5 set flag = true and ra = 0
6 while flag do
7 set ra ← ra + 1
8 draw random starting point, create radial basis sample and calculate

elementary effects, EE
(r+ra)
i

9 update Morris quantities,

µi =
1

r + ra

r+ra∑
j=1

EE
(j)
i , µ∗

i =
1

r + ra

r+ra∑
j=1

∣∣∣EE(j)
i

∣∣∣ , σi =
1

r + ra

r+ra∑
j=1

(
EE

(j)
i − µi

)2
10

11 if 1
3n

n∑
i=1

|µi−µo
i |

|µi| +
|µ∗

i−µ∗,o
i |

µ∗
i

+
|σi−σo

i |
σi

< εEE then

12 set flag = false
13 else
14 continue

15 set µo
i = µi, µ

∗,o
i = µ∗

i , σ
o
i = σi
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Adaptive algorithm for radial design-based elementary effects method
A novel adaptive algorithm is proposed where the radial design-based elementary effects
method is embedded. The initial step of the algorithm is to run the common method
introduced above using a small r ∈ N. First estimates for the quantities, µi, µ

∗
i , σi are

obtained that are denoted as µo
i , µ

∗,o
i , and σo

i , respectively. It is recommended to initialize
with r = 3 — cf. [STCR04] where the smallest number suggested is equal to 4 for
performing the mere Morris method.

For the second step of the algorithm — considered to be the first algorithm iteration
— an additional elementary effect for each input is determined. This means another
random starting point, x̂, is drawn and the procedure is repeated once more. The new
elementary effects are then assembled with the pre-existing effects and processed into
updated estimates for the means, µi and µ

∗
i , and the variance, σi.

If the stopping criterion,

1

3n

n∑
i=1

|µi − µo
i |

|µi|
+
|µ∗

i − µ∗,o
i |

µ∗
i

+
|σi − σo

i |
σi

< εEE, (3.111)

is fulfilled for a fixed threshold εEE ∈ (0, 1), the algorithm ends. If not, we set µo
i ,

µ∗,o
i , σo

i equal to the updated quantities, µi, µ
∗
i , σi. In case µi = 0, µ∗

i = 0, or σi = 0
appear, corresponding quotients must be excluded from the sum to avoid dividing through
zero. Then, a further random starting point is selected yielding a renewed update of the
elementary effects and hence of the aforementioned quantities. The stopping criterion is
re-examined. As long as the criterion is not satisfied, the estimates, µi, µ

∗
i , σi, are revised

step by step through the use of new random starting points.
The entire adaptive algorithm thus demands an overall sample of size

(r + ra)(n+ 1) (3.112)

to be evaluated where ra denotes the number of algorithm iterations. Note that the
stopping criterion in (3.111) is met when an additional elementary effect does not affect
the estimates for the means and the variance. The algorithm formulated as pseudo code
in Algorithm 2 guarantees reliable results and saves computational effort that could incur
as one might involuntarily choose r higher than necessary in the conventional method.

Assessment and ranking
After all, results of the algorithm can be assessed. Estimated means, µi and µ

∗
i , indicate

the influence of the respective parameter, xi, i ∈ {1, . . . , n}, to the output variability
of the system function, F . The higher their values are, the more important is the corre-
sponding parameter. Quantity, σi, measures the degree of interactions of each parameter
with other variables and identifies possible evoked nonlinear behavior, see [CCS07].

Statements can be made by ranking µi, µ
∗
i , and σi, i ∈ {1, . . . , n}, respectively. Here,

the observation of the estimated mean, µi, is omitted — only the enhanced version, µ∗
i ,

is considered. It is common to plot the values for σi against the ones for µ
∗
i to get a clear

overview. If a plotted point is close to the origin, the corresponding parameter is of low
relevance for the output and does not interact with other parameters. This is due to the
fact that both quantities, µ∗

i and σi, must then exhibit low values.
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Besides the visual assessment of the input relevance, the formula,

k∑
i=1

σh
i

/
n∑

i=1

σi ≥ εσ, (3.113)

from [JLG21b], cf. (3.76), is used, where σh
1 > · · · > σh

k are the k ∈ N, k < n, highest
estimated variances picked out of {σi

∣∣i ∈ {1, . . . , n}}. If this inequality is fulfilled for a
given tolerance εσ ∈ [0.9, 1), it is ensured that a percentage over ϵσ ·100% of the elementary
effects variance resides in the k highest ranked parameters. Hence, using (3.113), the most
important variables — the k highest ranked parameters — are automatically determined.
This can be safeguarded by examining the ranking of the estimated mean, µ∗

i . One may
as well apply a formula for this quantity analogous to (3.113).

In any case, the irrelevant parameters can be neglected in further investigations. This
reduces the number of input dimensions, i.e. the model dimensionality, from n to k and
therefore accelerates subsequent analyses which renders the method valuable. Note that
the radial design-based elementary effects method is in fact a global approach but its
results nonetheless rely on the selection of random starting points.

3.3.3 Variance-based sensitivity analysis

Screening introduced in Section 3.3.2 can identify irrelevant parameters whereby the num-
ber of model dimensions is decreased. To better understand the remaining input dimen-
sions, i.e. the relevant variables, variance-based sensitivity measures are calculated. These
measures profoundly analyze the relationship between the individual parameters and the
observed output as well as interactions among the parameters. In contrast to screening
methods, they claim many samples and are therefore computationally intensive. Variance-
based sensitivity measures belong to the field of quantitative global sensitivity analysis
methods. These measures are chosen as they can cope with nonlinear responses and
measure interaction effects in non-additive systems, see [SRA+08].

Theoretical background of Sobol’ indices
Originating from the work of Sobol’, see [Sob93], variance-based sensitivity measures are
also called Sobol’ indices. The theoretical foundations of these measures are now briefly
introduced by reference to [Sob01, SRA+08, Sal10a]. Let

x = (x1, . . . , xk)
⊤ ∈ [0, 1]k, k ∈ N, k ≤ n, (3.114)

without loss of generality be the preserved parameters after the use of screening for the
reduced system function,

F : [0, 1]k → R, (3.115)

mapped to the output

y = F(x) ∈ R, (3.116)

cf. (3.103).
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In case no screening method was used or all parameters are relevant according to
screening, k is equal to n. It is furthermore assumed that the parameters are independently
and uniformly distributed within the unit hypercube, [0, 1]k, and F is integrable as well
as square-integrable. Again, assuming hypercubes as input spaces is not a restriction, cf.
(3.25). Furthermore, uniform random numbers can be converted into numbers of other
distributions, via inversion methods, see [Dev06]. Parameter independence is given in this
work, see (3.8). Per parameter, two sensitivity indices are presented in the following that
are deduced from the variance decomposition of the output.

The foundation of the variance-based sensitivity indices is given by the fact that F
can be decomposed into

F(x) = F0 +
k∑

i=1

Fi(xi) +
k−1∑
i1=1

k∑
i2=i1+1

Fi1,i2(xi1 , xi2) + . . .+ F1,2,...,k(x1, x2, . . . , xk),

(3.117)

where the total number of summands is equal to 2k. In (3.117), one constant term, F0, k
first-order functions, Fi of xi,

(
k
2

)
second-order functions, Fij of xi and xj, etc., appear. To

call (3.117) the ANOVA (Analysis of variances) representation of F , the unicity condition,

1∫
0

Fi1,i2,...,is(xi1 , xi2 , . . . , xis) dxiw = 0, (3.118)

where 1 ≤ i1 < i2 < · · · < is ≤ k, iw ∈ {i1, i2, . . . , is}, and s ∈ {1, . . . , k}, must
additionally hold for the functions in (3.117). This property implies orthogonality of
all members in (3.117). Sobol’ proved that there exists a unique decomposition (3.117)
satisfying (3.118) for any function integrable in [0, 1]k, see [Sob93].

Beyond, one can determine expressions for each function in the ANOVA representation
of F , i.e.

F0 =

∫
[0,1]k

F(x) dx, (3.119)

Fi(xi) =

∫
[0,1]k−1

F(x)
∏

w∈{1,...,k}\{i}

dxw −F0, 1 ≤ i ≤ k, (3.120)

Fij(xi, xj) =

∫
[0,1]k−2

F(x)
∏

w∈{1,...,k}\{i,j}

dxw −F0 −Fi(xi)−Fj(xj), 1 ≤ i < j ≤ k,

(3.121)

etc. For the corresponding independent and uniformly distributed random variables
Xi, i ∈ {1, . . . , k}, and the random variable F(X ) = Y , this translates to

F0 = E(F(X )) = E(Y ), (3.122)

Fi := Fi(Xi) = EX∼i
(Y |Xi)−F0, (3.123)

Fij := Fij(Xi,Xj) = EX∼ij
(Y |Xi,Xj)−Fi −Fj −F0, (3.124)
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etc., where X∼i — and X∼ij — declare all variables but Xi — along with Xj. The
variance of the output can now be decomposed, i.e.

Var(Y ) = E
(
Y 2
)
− E(Y )2 = E

(
F2(X )

)
−F2

0

=
k∑

i=1

Vi +
k−1∑
i1=1

k∑
i2=i1+1

Vij + . . .+ V1,2,...,k

(3.125)

with the contributions

Vi := VarXi
(EX∼i

(Y |Xi)) , (3.126)

Vij := VarXi,Xj

(
EX∼ij

(Y |Xi,Xj)
)
− Vi − Vj, (3.127)

etc. There, the square-integrability of F was used. Furthermore, for the term E (F2(X )),
the ANOVA representation was squared where several terms vanish after integrating due
to the orthogonality of the members. Note that the quantity Vi is the variance — taken
over the i-th parameter — of the output mean conditional on the i-th parameter over all
factors but the i-th.

The first order and total effect sensitivity indices are defined as

Si =
Vi

Var(Y )
, (3.128)

STi
= 1− VarX∼i

(EXi
(Y |X∼i))

Var(Y )
=

EX∼i
(VarXi

(Y |X∼i))

Var(Y )
, (3.129)

respectively. The first order index, Si, measures the main effect, i.e. first order effect, of
the considered parameter on the model output. In formula (3.128), this can be recognized
by the term Vi which signifies the part of the variance that is caused solely and directly
by the i-th parameter. All other effects resulting from the remaining parameters or the
combination of the considered parameter and other quantities are disregarded there.

By contrast, the total effect sensitivity index, STi
, estimates first and higher order

effects of the i-th parameter. Interactions involving this parameter are examples of higher
order effects in STi

. This interpretation is confirmed by the fact that VarX∼i
(EXi

(Y |X∼i)
involves the variance parts influenced by all parameters except the i-th and its interactions,
i.e. it contains the first order effects of X∼i. Thus, Var(Y ) − VarX∼i

(EXi
(Y |X∼i)) is

the variance part that is composed of all terms where the i-th parameter provides an
order-independent contribution. In (3.129), the equality

Var(Y ) = EX∼i
(VarXi

(Y |X∼i)) + VarX∼i
(EXi

(Y |X∼i)) (3.130)

was exploited, see [MGB74]. The quantity EX∼i
(VarXi

(Y |X∼i)) moreover denotes the
mean — taken over all factors except the i-th — of the output variance conditional on all
factors but the i-th over the i-th parameter.

Whether higher order effects exist in the model, can hence be identified by calculating
respective differences of STi

and Si — by definition, it holds STi
≥ Si. Moreover, by

sorting Si, an importance ranking of the parameters is established. The output variance
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can, on average, be reduced by Si in case the i-th parameter would be fixed. If, for a
fixed i ∈ {1, . . . , k}, it holds that STi

= 0, the i-th parameter is a non-influential factor
and can be set to any constant value within its range. For perfectly additive models, the
sum of all Si equals one, i.e.

k∑
i=1

Si = 1. (3.131)

If it is less than one, the model at hand is non-additive. Similarly, the sum of all STi

is equal to one if the model is additive. Otherwise, the sum is greater than one and the
model is non-additive.

Numerical calculation of Sobol’ indices
In practice, the first order and total effect sensitivity indices are realized as described
in [JLG21b]. To compute them, a radial design setup is again used, cf. Section 3.3.2.
For the sake of consistency, we choose the same terms as for screening. This yields an
alternative notation which underlines the similarity between Morris and Sobol’ indices.
Common notations are written down in [Sal10a]. Compared to the Morris method, the
function has to be evaluated at nSob ∈ N random starting points, x̂(j) ∈ [0, 1]k, and their
altered companions,

x̂
(j)
δi

:=
(
x̂
(j)
1 , . . . , δ

(j)
i , . . . , x̂

(j)
k

)⊤
∈ [0, 1]k, j ∈ {1, . . . , N}. (3.132)

In addition and unlike the Morris method, the outputs of the mutations,

δ(j) =
(
δ
(j)
1 , . . . , δ

(j)
k

)
∈ [0, 1]k, j ∈ {1, . . . , N}, (3.133)

are needed.
The sensitivity indices can now be computed. In literature, one can find different ways

to calculate them, see e.g. [Sob93, HS96, Jan96]. Saltelli et al. discuss several variants in
[Sal10a]. According to their suggestion, the formula

si :=

1
nSob

nSob∑
j=1

F
(
δ(j)
) (
F
(
x̂
(j)
δi

)
−F

(
x̂(j)
))

1
2
σ̂x̂,δ

(3.134)

is chosen to estimate the first order sensitivity index whereas the so-called Jansen’s esti-
mator,

sTi
:=

1
2nSob

nSob∑
j=1

(
F
(
x̂(j)
)
−F

(
x̂
(j)
δi

))2
1
2
σ̂x̂,δ

(3.135)
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is used for the total effect sensitivity index for the single parameters, xi, i ∈ {1, . . . , k}.
These formulas serve as numerical representatives of Si and STi

, see (3.128) and (3.129),
since, on the one hand, the coincident denominators of si and sTi

, i ∈ {1, . . . , k}, in (3.134)
and (3.135) are estimators for the variance of the output,

σ̂x̂,δ :=
1

nSob

nSob∑
j=1

(
F
(
x̂(j)
)2

+ F
(
δ(j)
)2)−( 1

nSob

nSob∑
j=1

F
(
x̂(j)
))2

−
(

1

nSob

nSob∑
j=1

F
(
δ(j)
))2

.

(3.136)

On the other hand, the numerator of si estimates Vi, see (3.126), that is the numerator of
Si and the numerator of sTi

gauges EX∼i
(VarXi

(Y |X∼i)) that is the numerator of STi
.

The calculation effort to determine all Sobol’ indices, si and sTi
, amounts to

nSob(k + 2). (3.137)

To gain accurate results, a high nSob is requisite. Here, it is proposed to use nSob = 10 000.
This entails heavy computational costs for the method. Variance-based sensitivity analysis
for time-consuming models is therefore infeasible with respect to computational time, e.g.
for explicit finite element simulations of crash events with contact issues.

To allow this kind of analysis, it is typical to fit metamodels, e.g. from Section 3.2,
to laborious system functions, F , by feeding them a narrow size of training points, see
[IL15]. Then, instead of evaluating the exact system function, the quickly responding
metamodels are utilized to approximate the required outputs. In this way, the indices, si
and sTi

, can be computed within seconds. There exist even metamodels from that these
indices can be derived analytically, i.e. calculating the estimators (3.134) and (3.135) can
be omitted. Examples are polynomial chaos expansion in [Sud08] or Gaussian process
regression in [MILR09]. The formulas, (3.134) and (3.135), however, can generally be
applied to any model that can be translated into the form (3.115). An open question is
whether sensitivities are fully preserved due to approximation by metamodels. Does a
small approximation error lead to a small or yet larger noise in sensitivities? This question
should be answered in future research.

3.3.4 Exemplary usage of sensitivity analysis

One mission of the National Highway Traffic Safety Administration (NHTSA), the U.S.
federal agency for road and vehicle safety, is to define consumer protection programs.
These programs consist of crash tests that automobiles may have to undergo. The NHTSA
is free to choose which model it evaluates. As a rule, frequently sold cars are drawn. The
selected car earns points for each test set by the program. These points sum up to an
overall score called the safety rating. The current flagship program of the NHTSA is
called the U.S. New Car Assessment Program (U.S. NCAP), see [car21]. Depending on
the performance, it awards more or less stars. One star stands for the worst and five stars
for the best rating.

The U.S. NCAP carries out a frontal, two side, and a rollover test, see [U.S08]. Here,
the frontal crash test is considered where the car frontally impacts a rigid barrier with full
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width at a speed of 56 km/h, see Fig. 21 (a). Two dummies are placed on the front seats.
They measure different signals that are filtered and processed to scalar crash performance
values — also referred to as injury criteria. Six injury criteria are used to assess the full
frontal test: the head injury criterion (HIC15), see (3.18), as well as the chest deflection
(CD), the femur force (FF), neck compression (NC), the neck tension (NT), and the
so-called Nij, a quantity extracted and processed from neck signals. HIC15 and Nij are
unitless. CD is measured in millimeters. FF, NC, plus NT are given in kilonewtons.
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Figure 21: Sketch of the U.S. NCAP full frontal test (a); Risk curves for the head injury
criterion (b) and the chest deflection (c).

The injury criteria are then passed through medically empirical functions using the
Abbreviated Injury Scale (AIS), see [Sta69]. These functions calculate probabilities for
injuries of certain severity, e.g. AIS 3+, at specific body regions. For the dummy, a
Hybrid III 50th percentile male (HIII 50%) ATD, on the driver’s seat, the probability of
suffering a head injury is calculated by the risk curve

PAIS 3+
Head := PAIS 3+

Head (HIC15) = Φ

(
ln(HIC15)− 7.45231

0.73998

)
(3.138)

where Φ is the cumulative distribution function of the standard normal distribution.
Similarly, probabilities of chest, femur, and neck injuries are obtained by the functions

PAIS 3+
Chest := PAIS 3+

Chest (CD) =
1

1 + exp
(
10.5456− 1.568 · CD0.4612

) , (3.139)

PAIS 2+
Femur := PAIS 2+

Femur (FF) =
1

1 + exp(5.795− 0.5196 · FF) , (3.140)

PAIS 3+
Neck := PAIS 3+

Neck

(
P 1
Neck, P

2
Neck, P

3
Neck

)
= max(P 1

Neck, P
2
Neck, P

3
Neck) (3.141)

where the arguments of PAIS 3+
neck come from

P 1
Neck := P 1

Neck(NC) =
1

1 + exp(10.9745− 2.375 · NC) , (3.142)
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P 2
Neck := P 2

Neck(NT) =
1

1 + exp(10.9745− 2.375 · NT) , (3.143)

P 3
Neck := P 3

Neck(Nij) =
1

1 + exp(3.2269− 1.9688 · Nij)
, (3.144)

see [car21]. Risk curves of the head and the chest injury criteria are depicted in Fig. 21
(b) and (c), respectively.

The joint probability of overall injury is determined by

PJoint := PJoint

(
PAIS 3+
Head , PAIS 3+

Chest , PAIS 2+
Femur , P

AIS 3+
Neck

)
= 1−

(
1− PAIS 3+

Head

) (
1− PAIS 3+

Chest

) (
1− PAIS 2+

Femur

) (
1− PAIS 3+

Neck

)
.

(3.145)

The final score for the driver in the considered test called relative risk (RR) is computed
via the expression

RR =
PJoint

0.15
(3.146)

where 0.15 is taken as the baseline risk. RR can then be interpreted as stars. It is now
considered as a function of the injury criteria, i.e.

RR
(
HIC15,CD, FF, NC, NT, Nij

)
. (3.147)

Exemplarily, the two sensitivity methods are demonstrated on this function. For this
purpose, intervals for the injury criteria are specified, see Table 5. Here, the independent
injury criteria are assumed to be uniformly distributed.

Table 5: Chosen intervals of the injury criteria for the sensitivity analyses.

Injury criteria Interval
HIC15 [250, 400]
CD [15, 28]
FF [3, 5]
NC [2.8, 3.6]
NT [2.5, 3.6]
Nij [0.05, 0.15]

Elementary effects method
The adaptive algorithm of the Morris method is used. There are n = 6 parameters —
injury criteria. The stopping value is set to εEE = 0.15. Algorithm 2 is started with r = 3.
After two iterations, i.e. at ra = 2, the left-hand side of the formula (3.111) is equal to
0.11740. So, the stopping criterion is already fulfilled. For this, a total of

(r + ra)(n+ 1) = (3 + 2)(6 + 1) = 35 (3.148)

functional evaluations were required.

72



The results shown in Fig. 22 indicate that NT, NC, CD, FF, and HIC15 have all
significant influence on the RR value due to the high µ∗ scores when the intervals of the
injury criteria are defined as in Table 5. These five lead to over 99% of the elementary
effects variance according to formula (3.113). So, the missing injury criterion, Nij, is
hardly relevant and might be discarded for further analysis. Furthermore, NC and NT
have high σ values. These are due to the interactions residing in PAIS 3+

Neck (3.141) where
the maximum of P 1

Neck(NC), P
2
Neck(NT), P

3
Neck(Nij) is taken.
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Figure 22: Screening results of the RR function from the U.S. NCAP rating show the
relevance of injury criteria.

Sobol’ indices
Variance-based sensitivity analysis confirms the results of screening, cf. Fig. 22 with 23.
The first order and total effect Sobol’ indices, see (3.134) and (3.135), were calculated
using nSob = 10 000. They attest that all injury criteria except Nij are important for the
RR value. The sum of the first order as well as the sum of the total effect indices,

n∑
i=1

si = 0.96259,
n∑

i=1

sTi
= 1.03138, (3.149)

are different. Thus, the function is non-additive. First order and total effect indices
clearly deviate for NC and NT, respectively, cf. σ values of the Morris method. This can
again be comprehended by analyzing formula (3.141): the maximum injury probability
of the neck quantities is taken to calculate the probability of overall injury as well as the
RR value. According to this, NC interacts with NT coinciding with their Sobol’ indices.

Note that importance rankings that may be derived are not consistent between Morris
and Sobol’ indices, cf. the indices for NT in Fig. 22 (b) and Fig. 23. The elementary
effects method used a small number of random starting points, i.e. a high stopping value,
εEE, that cannot yield a reliable ranking. To improve, one would have to increase the
number of random starting points. However, the small Morris sample is able to classify
whether parameters are relevant or irrelevant. The Sobol’ indices calculated based on a
large sample are profound measures and can be used to provide a solid ranking.
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Figure 23: Sobol’ indices for the parameters of the RR function with chosen intervals
from Table 5.

3.4 || Uncertainty quantification

As discussed in Section 3.3, sensitivity analysis identifies the relevance of each parameter
to the considered output. It moreover shows possible interaction effects between param-
eters. Thus, sensitivity analyses primarily explore the input space. For details about the
output, an uncertainty quantification is performed afterwards. Thereby, the character-
istics and the constitution of the output are determined. The results of an uncertainty
quantification include how likely certain outputs are to occur.

3.4.1 Distinction of forward and backward uncertainty quantifi-
cation

Uncertainty quantification separates two tasks — forward and backward analyses, see
[GHO17]. Forward quantification is also called uncertainty propagation. It sends the in-
put, X , following a fixed probability distribution, pX , e.g. a continuous density function
or a discrete probability allocation, through the model, F . The goal is to identify the
unknown mean, variance, or probability distribution, pY , of the output, Y = F(X ), see
[LC09]. For this purpose, the model is evaluated in forward fashion. Parameter distribu-
tions must be chosen carefully as inaccuracies falsify results due to error propagation.

Backward or inverse uncertainty analysis intends to solve the opposite problem. The
probability distribution, pY , of the output is known while distributions, pX , of the param-
eters are objects of desire. It is common to use a Bayesian framework to calibrate these
distributions, see [Nag19]. Parameter identification, see [HPR17], and data assimilation,
see [LG07], also belong to inverse uncertainty quantification. Backward quantification
has to cope with the so-called identifiability issue: different combinations of parameters
can produce identical results leading to decision difficulties, see [ACA11]. In addition,
forward and backward uncertainty analysis may suffer the curse of dimensionality that
may be addressed by the sensitivity analysis methods from Section 3.3.
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In this thesis, the problem at hand is to identify the probability distribution of the
output given uncertain parameters. Therefore, forward quantification is used to propagate
the parameters through the system. This will be done by the Dempster-Shafer evidence
theory that is discussed in the next section. As a possible extension of the framework,
future research may explore whether backward quantification can be performed after
forward analysis to validate results.

3.4.2 Uncertainty propagation through the system via Dempster-
Shafer evidence theory

In 1976, the mathematician Shafer further developed the work of Dempster, see [Dem67],
to the evidence theory (ET). Other sources also refer to ET as Dempster-Shafer (evidence)
theory or as theory of the belief functions. Conventional ET merges data from multiple
perspectives into one comprehensive assertion. Each of these perspectives features a
probability allocation that is integrated into the calculation. The basic construct of
ET can be extended to perform uncertainty propagation, see [NGS04, SPM09, ES09,
ALRL10]. Uncertain parameters are herein defined as intervals. The model is evaluated
with respect to the uncertainties in a way that lower and upper limits for the cumulative
distribution function (CDF) of the output are determined. These limits are called belief
and plausibility curve, respectively.

Mathematics behind the evidence theory
The following concept orientates at [JLG21a, JLG21b]. ET can be applied to a general
input-output model,

y = F(x) ∈ R, (3.150)

where F is the system function for the input x ∈ Rd, d ∈ N, d ≤ k ≤ n. The dimension,
d, can be equal to the initial input dimension, n, see (3.10), if no other method was used
before. According to our framework, see Fig. 4 and 5, specific methodologies can reduce
this number: if a screening approach was applied a-priori, d can be set equal to k, see
(3.114). Should the variance-based sensitivity analysis from Section 3.3.3 identify further
irrelevant parameters, d can be even smaller than k.

Each uncertain, independent parameter, xi, is supposed to lie within a connected
interval, Ii = [ai, bi] ⊂ R, ai, bi ∈ R, i ∈ {1, . . . , d}. These intervals may cover, for
instance, the support of assumed probability density functions of random variables, Xi,
corresponding to xi, see (3.9). Moreover, no further knowledge about F is required to
enable the theory, i.e. F can also be a black box model. This makes ET applicable for
finite element crash simulations. The ET procedure is shown in six steps beginning with
an expert assessment of the overall intervals, Ii, i ∈ {1, . . . , d}. This assessment defines
the probability density function of each component. Each density function has the form
of a step function. The expert assessment is explained in two steps:

1. The intervals, Ii, are divided into κi ∈ N subintervals called focal elements,

Iji ⊂ Ii, j ∈ {1, . . . , κi}, (3.151)
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for each input dimension, i ∈ {1, . . . , d}. Their union establishes a new input set,

Îi :=

κi⋃
j=1

Iji ⊂ Ii, (3.152)

for xi. For each dimension, i.e. an arbitrary but fixed i ∈ {1, . . . , d}, it is possible
that these subintervals, Iji , j ∈ {1, . . . , κi}, are overlapping, connected, or disjoint.
Note that in the case of disjoint focal elements, the resulting input set, Îi, can
contain gaps, i.e. it can be disconnected.

2. Subsequently, the experts associate the focal elements, Iji , with probabilities in a
so-called basic probability assignment (BPA). This is done using a BPA operator,
mi, corresponding to xi that is defined by

mi(J)

{
∈ [0, 1], for J ∈ Ii :=

{
Iji

∣∣∣j ∈ {1, . . . , κi}} ,
= 0, for J ∈ B(R)\Ii,

(3.153)

where B(R) is the Borel σ-algebra of the real numbers. A necessary condition of
each operator, mi, is that the sum of probabilities assigned to the focal elements
must equal one, ∑

J∈Ii

mi(J) = 1, i ∈ {1, . . . , d}. (3.154)
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Figure 24: Illustration of the two expert assessment steps.

The expert assessment depicted in Figure 24 is not required to reach unanimity be-
tween all experts in the assessment. In case there are differing opinions, they can be
combined and weighted. The following procedures, however, stays the same.

C1 = I11 × I12 × · · · × I1d =

C2 = I11 × I12 × · · · × I2d =
...

Cκ = Iκ1
1 × Iκ2

2 × · · · × Iκd

d =

× × · · ·×
× × · · ·×

× × · · ·×

Figure 25: Processing the focal elements to interval cells.

The uncertainties assessed by the experts, i.e. the created data, are first processed as
shown in Figure 25 and then propagated through the model. This procedure is delineated
in the next four steps:

76



3. All possible focal element combinations between input dimensions are formed yield-
ing d-dimensional spaces also known as interval cells. In total κ :=

∏d
i=1 κi interval

cells are obtained. These interval cells are denoted as

Cj1,j2,...,jd := Ij11 × Ij22 × · · · × Ijdd , (3.155)

for ji ∈ {1, . . . , κi} and i ∈ {1, . . . , d}. Instead of writing Cj1,j2,...,jd , ji ∈ {1, . . . , κi},
respectively, the notation is simplified by C l, l ∈ {1, . . . , κ}. This is admissible since
there is a one-to-one mapping between {1, . . . , κ} and ∏d

i=1{1, . . . , κi}. The set of
resulting interval cells is henceforth declared as C.

4. For each C l, the composite BPA, pl, is calculated by

pl := pj1,...,jd :=
d∏

i=1

mi

(
Ijii
)
. (3.156)

exploiting the independence of probability variables, Xi, i ∈ {1, . . . , d}. Basically,
the single BPAs belonging to the focal elements that define the interval cell, C l, are
multiplied together. Adding up all composite BPAs, pl, must equal one, i.e.

κ∑
l=1

pl = 1. (3.157)

5. Lower and upper limits for the CDF of the output are found by propagating every
interval cell, C l, through the model. In mathematical terms, two optimization
problems,

yl = sup
x∈Cl

F(x), (3.158)

yl = inf
x∈Cl
F(x), (3.159)

must be solved for each interval cell — that makes 2κ optimization problems in
total. Note that there are also other possibilities to obtain yl and yl, e.g. by applying
sampling strategies, see [HJS06, TdWL+18]. Their accuracy strongly depends on
the size of the sample.

6. As final step, the ET curves are formulated. The belief curve reads

Bel(y) =
∑

{
l

∣∣y≥yl
} pl. (3.160)

The plausibility curve is defined as

Pl(y) =
∑

{
l

∣∣y≥yl
} pl. (3.161)
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The formulas contain the supremum and infimum values, yl and yl, as well as their

composite BPAs, pl. Practically, one sorts the supremum and infimum values in
ascending order, respectively. Then, their probabilities are cumulated. This pro-
duces CDF-like curves which can serve as limits of the unknown CDF of the output.
To provide a probabilistic interpretation, note that y = F(x) is a realization of a
random variable, Y , since x is the one of X . For an arbitrary but fixed ỹ, the
belief curve is viewed to be a lower limit of the CDF of Y , i.e. it holds

Bel(ỹ) ≤P(Y ≤ ỹ), (3.162)

where P(A) symbolizes the probability of event A. Analogously, the plausibility
curve is taken as an upper limit, i.e.

P(Y ≤ ỹ) ≤ Pl(ỹ). (3.163)

A bottleneck of ET may arise if the number of parameters or focal elements is too
high. Because then, there are numerous interval cells and accordingly many optimization
problems that need to be solved. This can cause large computational efforts. For example,
the first application of Section 3.2.7 has n = 36 parameters. In [JLG21b], where the same
example is considered, it is discussed that 2κ = 2 ·336 > 1017 optimization problems would
have to be solved in case each parameter interval is divided into three subintervals. This
huge amount of data would have to be stored. Therefore, our framework in Fig. 4 suggests
to narrow down parameters by sensitivity analysis. This can break the bottleneck.

Further, the use of ET becomes prohibitively expensive when optimizing the system
function is costly, e.g. owing to nonlinearities or its black-box nature. This can be over-
come by applying metamodels — see Section 3.2 — to approximate the system function
and thus accelerate the optimization. Other works also take these remedies, see the multi-
point approximation method in [BGC04], stochastic expansion methods in [EST11], the
model order reduction approach in [JLG21a], or kriging in [JLG21b] for instance.

Differing expert assessments
The parameter intervals, Ii, can be associated with uncertainty by several experts. Their
opinions may vary as sources can be diverse, e.g. assessments can come from human
knowledge, existing related data or information, etc. Thus, different BPAs can occur
for one parameter. These BPAs can be bundled for each parameter. Greater weight
can be given to more trustworthy sources. There exist different methods to combine
BPAs, see [Lim08]. Common approaches are Dempster’s rule of combination or Yager’s
rule. According to [Lim08], the method of weighted mixture is supposed to be even more
robust than the other two.

Reasons for using the evidence theory
Among multiple uncertainty propagation methods, see Section 1.2, the choice fell on the
Dempster-Shafer evidence theory. This is due to diverse reasons. ET is flexible regarding
uncertainty assignment. It allows different characteristics to be tested, e.g. fine or rough
division into subintervals. The assignment is designed in a simple and comprehensible way.
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Most uncertainty allocations in the field of crash are based on expert opinions as there
are no standard universally accepted classifications for the parameters to be considered.
ET offers the ideal platform for this.

Although intended for epistemic uncertainties, ET can be used for aleatory uncer-
tainties enabling mixed uncertainty propagation, see [ES09, EST11]. Probability density
functions of aleatory variables can therefore be sufficiently well approximated by his-
tograms. These histograms can be converted to ET structures, see [JLG21a].

Assessments can differ between engineers or other sources. Therefore, ET is capable of
weighing these opinions and propagating the resulting summarized uncertainties through
the system — another plus point in terms of flexibility. Besides, the outcome of ET,
a corridor for the CDF of the output, is easy to interpret. Based on this visualization,
decisions can be made, e.g. whether revising or keeping the current design. In summary,
by enabling the evidence theory through the proposed framework in Fig. 5 with its single
components, the research question from Section 1.2 is successfully answered, especially
for finite element crash simulations.

3.4.3 Exemplary usage of evidence theory

The U.S. NCAP rating from Section 3.3.4 is addressed here again to demonstrate the
procedure of ET. Therefore, the analytical relative risk function, RR (3.147), that con-
siders the injury criteria as arguments is taken as the system function, F , of ET. The six
steps of ET from Section 3.4.2 are passed through. A fictive expert makes the uncertainty
assessment, i.e. BPAs, for the injury criteria, see Fig. 26.
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Figure 26: Fictive BPA allocations of the five injury criteria, the arguments of the U.S.
NCAP RR function, that contribute in the considered constellation.

First, the expert decides to use the same ranges, ÎHIC15 , ÎCD, ÎFF, ÎNC, ÎNT, for the injury
criteria as considered in Table 5 of Section 3.3.4 when sensitivity analyses were applied.
The expert knows the results of the sensitivity analyses. Therefore, he does not consider
Nij as parameter for uncertainty propagation as Nij hardly influences the rating, see the
results of Section 3.3.4. Hence, Nij is fixed to its highest, i.e. most penetrating, interval
value — equal to 0.15. The expert divides three of the remaining five intervals into three
subintervals, respectively. The other two are segregated into four subintervals each.

In total 33 ·42 = 432 interval cells are created, i.e. 2 ·432 = 864 optimization problems
must be solved. The optimization for this function is straightforward. Since all probability
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functions of injuries are monotone, the joint probability of overall injuries, PJoint, and the
RR function are also monotone. On this account, each minimum value of RR is located on
the lower limits of the subintervals, respectively. On the contrary, each maximum value
can be found at the upper limits of the subintervals, respectively.

The result of the uncertainty propagation via ET shown in Fig. 27 tells that three
discrete rating results are possible — in particular, three, four, or five stars. The regions of
the stars are separated by gray solid vertical lines. ET provides two curves, the plausibility
and the belief curve, from which probabilities for specific results can be derived. In this
application, the plausibility curve is the best case curve whereas the belief curve represents
the worst case. The actual CDF of the relative risk lies between the two.

P
(Y
≤

R
R
)

RR

Figure 27: ET results of RR for the BPA allocations from Fig. 26.

The plausibility curve, Pl (3.161), indicates that it is very likely or rather plausible
— over 84% — that five stars will be achieved. Four stars are reached even to 100%
according to Pl. On the contrary, the belief curve, Bel (3.160), warns engineers. It says
that it is only less than 0.6% believable that five stars will be earned. If the goal is to
gain these five stars, engineers should think about revising the current design to remove
probabilities of ending up in the three or four star region. They can also take the risk and
be rewarded with at least four stars if the actual CDF is close to Pl. In this case, however,
they should not be surprised if they fall back to three stars when the CDF tends toward
Bel since the belief curve can only exclude three stars by about 79%. So, according to
the few remaining percentages, it could also come to three stars.

Another practical application where ET is combined with an model order reduction
metamodel can be found in [JLG21a]. There, the author of this thesis and his colleagues
consider the maximum deformation of a crashbox as uncertain due to epistemic and
aleatory parameters, cf. the fourth application of Section 3.2.7. The belief and the
plausibility curve are then calculated to limit the actual CDF of the maximum crashbox
deformation. Furthermore, ET bounds for the CDF of the rib deflection of the simplified
dummy are established in [JLG21b], cf. the first application of Section 3.2.7. There, the
importance of metamodels for finite element simulations is emphasized.
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Chapter 4

Application of the framework to a
real-world project

4.1 || Introduction of the real-world project

The framework is now demonstrated on a real world application. Uncertainties of a full
vehicle crash simulation are therefore defined and analyzed. The finite element model sim-
ulates a side pole test — that is part of the European New Car Assessment Programme
(Euro NCAP), the customer protection of Europe for vehicle safety — of a state-of-the-art
car. This LS-DYNA simulation is calculated on 168 CPUs via high performance comput-
ing. The model is not simplified, i.e. it remains a full vehicle simulation. Each simulation
takes over 32 hours to be finished. This large simulation was intentionally chosen to chal-
lenge the framework to the greatest extent. However, engineers may be able to reduce
the computation time through sophisticated simplifications, geometry revisions, etc. The
same holds for the parameters. Their ranges are extended to yield more variability. The
considered quantities therefore differ from actual development magnitudes.

In the side pole test, the vehicle is pushed sideways at 32 km/h against a fixed, narrow
pole, see [Uni16]. The vehicle is positioned at an angle of 75 degrees to the pole. These
conditions impose high demands on the vehicle. Since the impact acts only on a limited
area of the vehicle, large deformation forces are generated. This may allow the pole to
penetrate deep into the interior. Engineers must therefore prescribe precise controls of
passive safety concepts to best protect occupants. The Euro NCAP program places a
WorldSID 50th percentile adult male ATC (WS 50%) on the front seat to assess the
occupant safety of vehicles, see Fig. 28.

32 km/h

WS 50%

Figure 28: Drawing of the Euro
NCAP side pole test.

Table 6: Limits for the Euro NCAP rating functions,
see [car21].

Injury criteria Lower limit lIC Upper limit uIC
HIC15 (-) 500 700
HA3ms (g) 72 80
CD (mm) 28 50
AD (mm) 47 65
PF (kN) 1.7 2.8

The side pole test is rated by points. For different body segments, injury criteria
(IC) are defined similar to the U.S. NCAP rating, see Section 3.3.4. The impacts on the
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head are expressed via the HIC15 (3.18) and the so-called 3ms value (HA3ms). The latter
declares the maximum acceleration measured in multiples of the gravitational acceleration
that lasts for at least 3ms, cf. Section 3.2.7. The maximum chest deflection (CD), the
maximum abdomen deflection (AD), and the maximum pubic force (PF) are quantities
symbolizing the dummy torso from top to bottom. Sensors are installed on the dummy
that record the time histories of these quantities. For the rating, the maximum of these
time histories are taken, respectively.

The measured values of the ICs are processed to rating points. The rating functions
for the ICs are all of the form

SSIC(ζ) =


4, for ζ < lIC,

4(ζ−uIC)
lIC−uIC

, for lIC ≤ ζ ≤ uIC,

0, for ζ > uIC,

(4.1)

where ζ is the value for the chosen IC. Due to its shape, the function is also referred to
as sliding scale (SS) system, see [Eur20]. Fig. 29 depicts the sliding form for the injury
criterion CD. The values for the thresholds, lIC and uIC, are specific for each IC and can
be found in Table 6. The highest score for each IC is to obtain four points. The lowest
score is zero points. The smaller the value of the IC is, the better score is yielded.

0 20 40 60 80
CD

0

1

2

3

4

S
S
C
D

Figure 29: Sliding scale (SSCD) function for the chest deflection (CD).

The points coming from these functions are summed up to an overall rating. For
the deflection ICs — AD and CD — there is a peculiarity. AD is measured at two
locations, the lower and the upper rib of the abdomen, ADl and ADu. The higher value,
max {ADl,ADu}, of both is then used for the corresponding rating function. For CD, it is
analogous except that there exist three locations, the lower, middle, and the upper thorax
rib deflection, i.e. CDl, CDm, and CDu. Besides these points for the injury criteria, the
overall rating can lose score if so-called modifiers are violated, e.g. the airbag deploys
incorrect, the door opens, etc. These modifiers are neglected here. Indeed, they are not
infringed in this model.

Values for the injury criteria are obtained by evaluating the full vehicle simulation
for the side pole impact. Due to uncertainty, the resulting values are scattered. Here,
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n = 9 uncertain parameters are examined. They involve uncertainties of both classes.
Aleatory irregularities are e.g. caused by deviating test executions, see Fig. 3. In this
study, aleatory factors are the varying barrier position, the differing velocity, diverging
car mass and mass ratio, and the scattering impact angle. Next to them, epistemic
uncertainties are considered. Engineers need to calibrate different design specification.
Here, the firing times of four restraint systems are investigated: the time-to-fire (TTF) of
the curtain airbag, the side airbag, the load limiter, and the belt retractor. Table 7 shows
an overview of the parameters along with their properties such as ranges, category, etc.

Table 7: Uncertain input parameters for the full vehicle finite element model of the side
pole test.

Parameter Description Category Nominal value Range Unit
x1 Delta barrier x-position Aleatory 0 [−15, 15] mm
x2 Delta velocity Aleatory 0 [−1, 1] km/h
x3 Delta mass Aleatory 0 [−25, 25] kg
x4 Delta mass ratio Aleatory 0 [0, 0.02] /
x5 TTF curtain airbag Epistemic 8 [5, 10] ms
x6 TTF side airbag Epistemic 8 [5, 10] ms
x7 TTF belt load limiter Epistemic 8 [5, 10] ms
x8 TTF belt retractor Epistemic 8 [5, 10] ms
x9 Delta impact angle Aleatory 0 [−1, 1] °

Thanks to defining the parameters, the simulation can be regarded as black box func-
tions of different complexity, FEN,FCN,FSH,FKR, see Section 3.1.2. Particularly, the Euro
NCAP asks for the injury criteria, i.e. scalar key results, that can be modeled by FKR.
Note that Section 3.1.2 covers how the different black box functions relate to each other,
i.e. key results may be extracted from the outputs of FEN,FCN, and FSH. For the FE
simulation and consequently these mappings, the time is discretized into NT = 1200 time
steps. To accelerate the slow FE simulations, metamodels are used as approximations. For
their creation, training data must be generated. Therefore, a total of 240 simulations were
run. Their parameter values were generated by Sobol’ sequence sampling. Practically,
this was done by using Python’s library SALib [HU17].

Before the framework components are applied, the results of the 240 simulations are
reviewed. Since the points of the Sobol’ sequence sample span the entire input space
uniformly, rough ranges of the key results, i.e. injury criteria, as well as their approximate
distributions in form of histograms can be analyzed, see Fig. 30. A first observation states
that there is clear uncertainty in each IC caused by the parameters. Nevertheless, for some
ICs, it is good-natured scattering. That is, uncertainty is present but it causes relatively
minor harm to the dummy. This can be deduced from the safety rating that, among
others, is used by engineers and the consumer protection authority to assess systems.

For this reason, before starting the planned analysis, it is now determined how many
points are lost for single ICs. The bounds for the simulated key results from Fig. 30 are
thus compared with the limits of the sliding scale system from Table 6 as between these
limits the change in points is made out. Then, from that, the resulting point range of the
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safety rating can be interpreted. The results from Table 8 indicate that only two types of
ICs lead to deduction in rating scores: HA3ms and the chest ICs, CDi, i ∈ {l,m, u}.
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Figure 30: Histograms of the ICs ((a), (b): head-related IC; (c), (d), (e): chest-related
ICs; (f), (g), (h): abdomen- and pubic-related ICs). All histograms are constituted of ten
equal-width bins. The ranges they cover are given under the respective plots. Units can
be found in Table 6.

According to Table 8, CDu can cause the biggest possible loss regarding points fol-
lowed by CDm and CDl. Recall that these ICs are combined to one point supplier,
CD = max{CDl,CDm,CDu}. Although CDu shows the highest values, all three should
be considered as, for instance, it could happen that it holds CDu < CDi, i ∈ {m, l}, for
some parameter constellation. In the following, CDl, CDm, and CDu are thus analyzed in
more detail and subjected to the framework. The smaller uncertainty caused by HA3ms

is not studied further. Theoretically, however, it can be studied in the same way — this
holds for the other ICs as well.

Note that the findings established by Table 8 may also be obtained by e.g. calculation
of the Spearman’s rank correlation coefficients, see [Dod08]. The function to be observed
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may be defined as a merged rating function that sums up the single SSIC functions (4.1).
The Spearman’s rank correlation can be applied as this function would be monotone.
Correlation coefficients between an arbitrary but fixed IC and the corresponding output
of the merged rating function could be calculated. Coefficients close to 1 or -1 indicate
that the correlation is high, i.e. the considered IC changes the outcome and should be
considered for further analysis. Coefficients near zero suggest the opposite. However,
Table 8 is given here because it remained manageable and overseeable with the few ICs.

Table 8: Comparison of the obtained bounds for the simulated key results and the limits
of the sliding scale system.

Injury criteria Obtained IC bounds ∩ Limits SSIC Point range
HIC15 (-) [230.830, 446.806] ∩ [500, 700] = {} {4}
HA3ms (g) [53.644, 73.695] ∩ [72, 80] = [72, 73.695] [3.153, 4]
CDu (mm) [25.046, 44.710] ∩ [28, 50] = [28, 44.710] [0.962, 4]
CDm (mm) [20.193, 41.214] ∩ [28, 50] = [28, 41.214] [1.597, 4]
CDl (mm) [19.670, 34.598] ∩ [28, 50] = [28, 34.598] [2.800, 4]
ADu (mm) [21.960, 33.057] ∩ [47, 65] = {} {4}
ADl (mm) [26.117, 37.111] ∩ [47, 65] = {} {4}
PF (kN) [1.044, 1.206] ∩ [1.7, 2.8] = {} {4}

4.2 || Metamodeling

As in Section 3.2.7, different metamodels are trained, validated, and compared. Therefore,
the 240 simulations are divided into a training sample of size ntrain = 200 and a validation
sample of size nval = 40. The considered key results, CDl, CDm, and CDu, are not
straightforward regarding their postprocessing mapping, g (3.14). This postprocessing
is performed in black box manner by commercial software code. Therefore, the finite
element simulation is only considered in two forms: as history function, FSH (3.16), and
as key result function, FKR (3.19). Consequently, two types of metamodels — scalar
metamodels, MKR (3.36), and multi-target regression metamodels, MSH (3.46), from
Sections 3.2.3 and 3.2.4 — can be utilized. These metamodels are and are not combined
with the elementary effects method from Section 3.3.2.

For simplicity, the key result notations

y = CD ∈ R (4.2)

for the Euro NCAP point supplier,

yl = CDl ∈ R, ym = CDm ∈ R, yu = CDu ∈ R (4.3)

for the lower, middle, and upper maximal chest deflections, respectively, are introduced.
From now on, the time histories of these key results are denoted as yL, yM, yU ∈ R1×NT ,
respectively. These quantities have the relationship

y = max {yl, ym, yu} = max {max {yL} ,max {yM} ,max {yU}} . (4.4)
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4.2.1 Elementary effects method

The number of simulations required for screening are subtracted from the ntrain = 200
training points for subsequent metamodel creation. To keep the budget low, the radial
design-based elementary effects (EE) method is executed for overall 4 random starting
points, i.e. the adaptive algorithm, see Section 3.3.2, is only run for ra = 1 iteration
ignoring the stopping criterion. In total, (r + ra)(n + 1) = 4 · 10 = 40 simulations are
needed. This leaves 160 points for the creation of metamodels that are combined with the
EE method. As the method here is meant to mitigate the curse of dimensionality and to
boost metamodels, it must find clearly irrelevant parameters instead of providing e.g. an
importance ranking that it is also capable of. Therefore, r+ra = 4 is considered sufficient.
Results of the EE method for yl, ym, and yu are illustrated in Fig. 31, respectively.

0.0 2.5 5.0 7.5 10.0
µ∗

0

20

40

60

σ

x1

x2

x3 x4

x5

x6

x7

x8
x9

x1

x2

x3x4

x5

x6

x7

x8 x9

r + ra = 3

r + ra = 4

(a) Evolving (µ∗, σ) for yl

5 10
µ∗

0

50

100

σ

x1 x2

x3

x4

x5

x6

x7

x8

x9
x1

x2

x3
x4

x5

x6

x7

x8

x9

r + ra = 3

r + ra = 4

(b) Evolving (µ∗, σ) for ym

5 10 15
µ∗

0

200

400

σ

x1

x2x3x4

x5

x6

x7
x8 x9

x1
x2

x3

x4 x5

x6

x7

x8 x9

r + ra = 3

r + ra = 4

(c) Evolving (µ∗, σ) for yu

0.0 2.5 5.0 7.5 10.0
µ∗

0

20

40

60

σ

x1

x2

x3x4

x5

x6

x7

x8 x9

(d) Final (µ∗, σ) for yl

5 10
µ∗

0

50

100

σ

x1

x2

x3
x4

x5

x6

x7

x8

x9

(e) Final (µ∗, σ) for ym

5 10 15
µ∗

0

200

400

σ

x1
x2

x3

x4 x5

x6

x7

x8 x9

(f) Final (µ∗, σ) for yu

Figure 31: Screening results for the key results yl ((a) and (d)), ym ((b) and (e)), and yu
((c) and (f)). The top row shows the development of the Morris indices while the bottom
row shows the final indices for r + ra = 4.

The Morris plots in Fig. 31 and consequently the screening results are different between
the three key results, yl, ym, and yu. Each key result is therefore assessed separately. For
yl, Fig. 31 (d) suggests to keep the parameters x1, x2, x5, x6, x7. Formula (3.113) states
that a percentage greater than 94% of the elementary effects variance is preserved using
these k = 5 parameters which is considered sufficient. The metamodels for yl coupled
with screening thus operate with x1, x2, x5, x6, x7. For ym, screening, cf. Fig. 31 (e), iden-
tifies x1, x2, x4, x6, x7, x9, i.e. k = 6, maintaining 93% of the elementary effects variance.
Finally, 98% are obtained when taking x1, x2, x3, x4, x5, x6, x7, i.e. k = 7, into account for
yu, cf. Fig. 31 (f). In particular, the parameters x1, x2, x6, x7 seem to be relevant for each
key result according to the shallow EE method being applied.

86



4.2.2 Scalar and multi-target regression metamodels

Several metamodels are created and compared. The main settings for the metamodels
to be tested are the same as used in Section 3.2.7: anisotropic Matérn 3/2 kernels for
Gaussian process regressions (GPR) and Legendre polynomial basis functions with max-
imal degree, P ∈ N, chosen by the common truncation set (3.93) for polynomial chaos
expansions (PCE). Nonetheless, individual configurations are provided specially, e.g. for
scalar or multi-target neural networks (SNN, MNN). The abbreviations for the metamod-
els are defined in the same way as in Section 3.2.7 except for neural networks that are
additionally numbered serially starting with one due to different architectures. Likewise,
the numerical implementation is realized with the same routines from there.

Scalar metamodels and multi-target regression metamodels, see Sections 3.2.3 and
3.2.4, are trained with ntrain = 200 Sobol’ sequence sampling points. When they are
combined with the EE method from Section 4.2.1, the training data shrinks to a sample
of 160 points for a fair comparison. These metamodels can be recognized by their prefix,
EE. The histogram of the three key results, yl, ym, and yu, that scalar metamodels work
with can be found, among others, in Fig. 30. The curves, yL, yM, and yU, that the
multi-target regression metamodels have to face are depicted in Fig. 32 — divided into
ntrain = 200 training curves and nval = 40 validation curves.
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Figure 32: Time histories of the thorax rib deflections, yL ((a) and (d)), yM ((b) and (e)),
and yU ((c) and (f)), are illustrated. The top row shows all ntrain = 200 training curves
while the bottom row depicts the nval = 40 validation curves.

Table 9 shows a comparison of results produced by different metamodels. All chosen
metamodels, are run with and without the EE method. In combination with the EE
method, the metamodels operate on less — 5, 6, 7 — parameters depending on the
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screening results for yl, ym, and yu, respectively, see Section 4.2.1. As scalar metamodels,
GPR, PCE with different maximal degrees, and SNN models are utilized. SNN-1-100
and EE-SNN-1-100 consist of one hidden layer with 512 neurons and the φtanh activation
function. They are trained for 100 epochs characterized by their suffixes. SNN-2-120 and
EE-SNN-2-120 comprise three hidden layers with 32, 64, 32 units from left to the right
that are activated by φrelu. SNN-3-60 and EE-SNN-3-60 are composed of five hidden
layers made up of 32, 64, 128, 64, 32 neurons and φrelu activation functions.

Table 9: Metamodel qualities for the key results yl, ym, and yu. The mean squared errors
(MSE) assess the approximations of the whole curves, i.e. the single histories (SH). The
coefficients of determination (R2) are calculated on the scalar key results (KR).

Approach yL-MSESH yl-R
2
KR yM-MSESH ym-R

2
KR yU-MSESH yu-R

2
KR

GPR - 0.88420 - 0.87875 - 0.74825
PCE-1 - 0.90145 - 0.89285 - 0.82267
PCE-2 - 0.89532 - 0.90799 - 0.78179
PCE-3 - < 0 - 0.37287 - < 0
EE-GPR - 0.80089 - 0.87032 - 0.60736
EE-PCE-1 - 0.89763 - 0.89664 - 0.80581
EE-PCE-2 - 0.91353 - 0.91669 - 0.76889
EE-PCE-3 - 0.89053 - 0.88370 - < 0
SNN-1-100 - 0.90547 - 0.89696 - 0.82481
SNN-2-120 - 0.90829 - 0.91132 - 0.84907
SNN-3-60 - 0.89859 - 0.89353 - 0.86211
EE-SNN-1-100 - 0.89968 - 0.89880 - 0.80725
EE-SNN-2-120 - 0.88815 - 0.89635 - 0.77994
EE-SNN-3-60 - 0.89042 - 0.91201 - 0.77392
ST-GPR 1.33958 0.38244 1.71177 0.40355 2.57741 0.54306
EE-ST-GPR 1.15879 0.798212 0.94973 0.85808 2.88671 0.50491
ST-PCE-1 0.51037 0.90385 0.54651 0.90247 0.91411 0.83289
ST-PCE-2 0.57228 0.89347 0.61764 0.91287 1.08959 0.78494
ST-PCE-3 24.09076 < 0 35.08040 < 0 62.92448 < 0
EE-ST-PCE-1 0.54181 0.89865 0.56599 0.90364 1.01265 0.81531
EE-ST-PCE-2 0.51926 0.91201 0.56016 0.91507 1.19627 0.77605
EE-ST-PCE-3 0.71400 0.86909 0.88064 0.88258 7.69683 < 0
MNN-1-290 0.49168 0.91988 0.53185 0.91702 0.94979 0.82507
MNN-2-110 0.50260 0.91070 0.53429 0.90838 0.90791 0.83791
MNN-3-140 0.50524 0.91225 0.53641 0.90780 0.90911 0.83587
EE-MNN-1-290 0.51220 0.90231 0.54115 0.90782 1.07546 0.80652
EE-MNN-2-110 0.53792 0.90675 0.56227 0.90932 1.00814 0.82382
EE-MNN-3-140 0.53662 0.90412 0.56157 0.90789 1.00670 0.82388

Multi-target regression metamodels examined are single-target methods with GPR
and PCE (ST-GPR, ST-PCE) and multi-target feed-forward neural networks (MNN).
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Three MNNs are trained. MNN-1-290 and EE-MNN-1-290 hold one hidden layer with
256 neurons. They use φrelu as activation functions. MNN-2-110 and EE-MNN-2-110
assemble three hidden layer each featuring 128 neurons that are activated by φid activa-
tion functions. MNN-3-140 and EE-MNN-3-140 also include three hidden layer with φid

activation functions but they are equipped with 32, 64, and 128 neurons from left to right.
The strategies of the scalar and the multi-target regression metamodels to approximate
the key results are different. Scalar metamodels directly predict the maximum values of
the corresponding time histories. So, purely theoretically, they must indirectly anticipate
the times of the maxima. Multi-target regression metamodels recreate the time histories
and do not actually care about the times of the maxima. They are in fact read off af-
terwards. Thus, one might think that the role of multi-target regression metamodels is
simpler and hence, the approximations may be better than for scalar metamodels.
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Figure 33: AvP plots of MNN-1-290, SNN-3-60, and their fusion for yl, ym, yu, and y.

Indeed, the scarcely best metamodel for yl, ym, and simultaneously yL, yM is MNN-1-
290 regarding the highest R2

KR values and the lowest MSESH — a multi-target regression
metamodel, see Table 9. However, the scalar metamodel SNN-3-60 exhibits best results
for yu, i.e. it refutes the speculation that multi-target regression metamodels generally
perform better. Similar observations can be made in Section 3.2.7 on the occupant simu-
lation of a full frontal test. Moreover, the highest prediction score for the time histories
yU are obtained by MNN-2-110. All nval = 40 exact validation time histories for yL, yM,
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and yU are plotted in Fig. 41, 42, 43. In each single plot within these three figures, the
approximated profile — corresponding to the shown exact curve — produced by the best
multi-target regression metamodel, i.e. MNN-1-290 for yL, yM, and MNN-2-110 for yU,
is depicted on top. This provides visual comparisons of actual and predicted quantities
that truly promise appropriate approximations.

AvP plots for the extracted key results, i.e. processed from MNN-1-290 for yl and ym,
as well as for the directly computed values, i.e. evaluating SNN-3-60 for yu, can be found
in Fig. 33. In addition, the same figure features the AvP plot of the comprising quantity
y. Its values are composed of the predictions of the three best performing metamodels.
Mathematically, as it holds y = max {yl, ym, yu}, one has ŷ = max {ŷl, ŷm, ŷu} where
ŷl, ŷm come from the respective MNN-1-290 model and ŷu is derived by SNN-3-60. In
the following, i.e. for sensitivity and uncertainty analysis, ŷ resulting from ŷl, ŷm, ŷu
produced by the two MNN-1-290 models and SNN-3-60 is meant when speaking about
the approximation of y. The corresponding metamodel for ŷ is called the fusion of the
three neural networks. All aforementioned AvP plots confirm the high R2 values and
indicate suitable approximation qualities of the metamodels enabling further analyses.
The deviations between the actual and predicted values, however, are higher than e.g.
observed in the applications of Section 3.2.7. These incidents are later addressed in
Section 4.4.1.

It can be concluded that neural networks should definitely be considered for crash
applications. For the real-world project, they yield the best fitting metamodels among
all possibilities. However, it is not guaranteed that they will consistently produce better
results for general applications than other metamodels, cf. the results obtained in Sec-
tion 3.2.7 for an empirical rebuttal. Moreover, the performance of GPR could possibly
increase if another kernel — perhaps more suited for the problem – would be used. PCE
could become better if e.g. the truncation strategy would be changed. Obviously, it is not
feasible to try out everything imaginable. Nevertheless, several options should be defined,
considered, and compared. The best option should then be utilized for the next steps.
Note that each application may require a different metamodel regarding the variant, the
method, and the configuration to optimally fit the data and enable further investigations.

4.3 || Sensitivity analysis

The best performing metamodels, MNN-1-290 and SNN-3-60, for yu, yl, ym from Section
4.2.2 and their fusion to find y = max {yl, ym, yu} are now used to analyze sensitivities of
the n = 9 parameters, see Table 7. Therefore, variance-based sensitivity measures from
Section 3.3.3 are calculated. Using nSob = 10 000, first order and total effect indices,
si (3.134) and sTi

(3.135), provide profound relevance classifications of parameters for
considered key results, see [SRA+08, IL15]. The respective metamodels must be evaluated

nSob(n+ 2) = 110 000 (4.5)

times. So, this analysis would not be temporally feasible using the slow finite element
model itself. The uniformly distributed Sobol’ sequence numbers for the parameters are
not converted to other distributions, thus the parameters follow uniform distributions.
This practice is further explained in Section 4.5.
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The bar plot of the Sobol’ indices for each key result is shown in Fig. 34. On the
one hand, it can be noticed that the bar graphs for yl and ym look similar. Parameter
x6, the time-to-fire of the side airbag, is the most contributing parameter for yl and ym.
From a technical point of view, this is reasonable as the side airbag is located in the
door panel below the window and is hence able to protect the lower part of the upper
body. Furthermore, the aleatory parameters x1 and x2 are also relevant and decide on the
severity of the deflections. Other parameters hardly influence the key results and can be
neglected. The input space for yl and ym thus can be shrunken to be three-dimensional.
The small differences between the indices, si and sTi

, for x1, x2, x6 indicate little higher
order effects in the system.

On the other hand, Fig. 34 (c) and (d) depict that the bar charts for yu and y are
virtually identical. This is due to the fact that y is dominated by yu because of its
definition to be the maximum of yl, ym, and yu where it holds

yu ≥ ym ≥ yl (4.6)

in most cases, cf. the ranges of Fig. 30 and the time history heights in Fig. 32. For the
same reason, the AvP plots of yu and y are practically equal, see Fig. 33 (c) and (d).
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Figure 34: Bar charts of the Sobol’ indices for the parameters mapped to yl, ym, yu, and
y. The best performing metamodels from Section 4.2.2 are utilized to determine these
indices.
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It is conspicuous that parameter x6 does not affect yu and y. An engineering expla-
nation may be that the side airbag in this application sits too low to mitigate deflections
at the upper rib of the chest. One could expect that the curtain airbag whose ignition
time is regulated by x5 stands in for the side airbag. Effectively, this does not apply. The
curtain airbag does not intervene upper chest rib injuries as it apparently does not deploy
extensively enough. In the end, it turns out that only parameters x1 and x2 are significant
for yu and y. Nevertheless, x6 is retained for subsequent uncertainty analysis to define a
consistent uncertainty assignment for all key results, yl, ym, yu and y. Summarizing, the
variance-based sensitivity measures reduces the number of parameters to d = 3, i.e. only
x1, x2, and x6 are considered to be uncertain. Other parameters are set to their nominal
values. Screening from Section 4.2.1 could not limit the input space to the same extent
but its anticipation that x1, x2, and x6 are relevant was correct.

4.4 || Uncertainty propagation

Uncertainties are allocated to the remaining d = 3 parameters, x1, x2, and x6, of the
real-world application. The previously assumed uniform distributions are replaced by
problem-specific Dempster-Shafer uncertainty structures, see Section 3.4.2. Speaking in
ET terms, the parameter intervals from Table 7 are split into focal elements and undergo
basic probability assignments (BPA). In other words, they are divided into subintervals
to which probabilities are ascribed, see the first two steps in Section 3.4.2. This is done
fictively which is illustrated in Fig. 35.
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Figure 35: Fictive focal elements and basic probability assignments for the three retained
parameters, x1, x2, and x6.

For x1 and x2, four focal elements are considered. The interval of parameter x6 is
divided into three subintervals. So, κ = 42 · 3 = 48 interval cells are established, for each
of which the composite BPA has to be calculated as well as the minimum and maximum of
the system function must be found, see steps three to five of Section 3.4.2. To enable this
optimization, the metamodels of Section 4.2.2 are used as system function — analogously
to Section 4.3 — here mapping x1, x2, and x6 to yl, ym, yu, and y, respectively. The
particle swarm routine from the Python library Scikit-opt [Guo21] determines the minima
and maxima. For each optimization, the particle swarm algorithm requires hundreds or
even thousands of metamodel evaluations. For this reason, ET cannot be performed with
the full-scale model — analogous to variance-based sensitivity analysis. After the 2κ
optimization problems are solved, the ET curves can be plotted. For each of the four key
results, yl, ym, yu, and y, the belief and plausibility curves are depicted in separate graphs,
see Fig. 36.

The belief and plausibility curves envelop the actual cumulative distribution function
for the key results based on the Dempster-Shafer uncertainty allocations illustrated in
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Fig. 35. Specific statements are exemplarily made using the graph for y = CD, i.e.
Fig. 36 (d). This Euro NCAP injury criterion can be translated to rating points, see
Section 4.1. The integer boundaries of these points are delineated in the bottom graph
by solid gray vertical lines with golden round dots attached to them that characterize the
number of points. Basically, the beginning of the plausibility curves and the end of the
belief curve indicate that chest deflections between about 26mm and 44mm are possible
with certain probabilities of two different measures. From this, it can be deduced that
Euro NCAP points between 1.09 and 4 are achievable.

According to the plausibility curve, the maximum chest deflection is smaller than or
equal to 33.5mm leading to at least three rating points by plausible 82%. As antagonist,
the belief curve warns and states that this is only 23% believable. Considering at least
2 points or a deflection of less than or equal to 39mm, the plausibility curve guarantees
100% probability of occurrence while the belief curve is at 80%. Such conclusions can
therefore be drawn from these curves. Engineers have to decide whether these risk should
be taken or concepts have to revised. Therefore, they must judge by hand whether the
actual cumulative distribution function is closer to the plausibility or belief curve.
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Figure 36: Plausibility and belief curves for yl, ym, yu, and y based on the assignments
prepared in Fig. 35.

Note that the ET curves slip tighter together when the focal elements are more finely
defined, i.e. a greater number of subintervals is selected. This narrows the gap between
the two curves which allows the actual cumulative distribution function to be better
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identified. For quasi-continuous assignments, the curves would almost lie on top of each
other. This would make the ET procedure, especially its optimization, more complicated,
as the number of interval cells would increase drastically. In the field of vehicle crash,
however, it is difficult to agree on clear continuous distributions due to sparse data and
limited knowledge about the parameters. Therefore, the imprecise distributions of the
Dempster-Shafer evidence theory are predestined for uncertainty propagation.

4.4.1 Error awareness and conservative evidence theory curves

The AvP plots in Fig. 33 and the R2 scores from Table 9 indicate that the neural networks
used for the approximation of the finite element simulation have a sufficient accuracy.
However, slight deviations between actual and predicted values — higher than in the
applications of Section 3.2.7 — can be detected in the AvP plots. Among others, this is
due to the complex finite element model and its long computational times on many CPUs
from diverse computing machines. The distribution of the calculation jobs to various
CPUs can lead to differing results for the same initial parameters when using different
computers, e.g. because of disparate rounding techniques. These and other numerical
effects imply that the finite element model or rather its gathered data, i.e. the training
and validation sample, is mathematically speaking noisy or rather not fully well-defined.
The accuracy of metamodels is limited by this circumstance. Therefore, precise results
cannot be expected but the correct detection and forecast of trends. This is definitely
fulfilled as can be recognized e.g. from the curve approximations in Fig. 41, 42, and 43.

Figure 37: AvP plot of y with conservative error bounds established by the largest meta-
modeling underestimate and overestimate.

Nevertheless, deviations are present and should not be ignored. For this reason, the
differences between the nval = 40 validation points and their approximations are analyzed.
Exemplarily, the Euro NCAP key result, y = max{yl, ym, yu}, is considered, i.e. the fusion
of the MNN-1-290 metamodels and SNN-3-60 is investigated. The biggest underestimation
of a validation sample point is equal to e = 3.11273mm — found at y = 34.88977
and ŷ = 31.77704, cf. Fig. 37. The largest overestimation is e = −3.66406mm for
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y = 32.39803 or ŷ = 36.06209. The overestimate and the underestimate are used to
calculate conservative ET curves.

On the one hand, the system function to find the conservative maximum value for
each interval cell is augmented by adding the largest underestimate, i.e. the optimization
procedure in (3.158) changes to

yl = sup
x∈Cl

F(x) + e. (4.7)

On the other hand, optimizations for the conservative minimum values read

yl = inf
x∈Cl
F(x) + e, (4.8)

cf. (3.159). Actually, the conservative optimal values thus must not be determined again.
They can also be calculated by adding these overestimation and underestimation values to
the already found optimal values from Section 4.4, i.e. by shifting the plausibility curve
towards left and moving the belief curve towards right in the bottom plot of Fig. 36.
This can be done as the constant terms added to the original system function do not
influence the optimal arguments. The resulting conservative plausibility and belief curves
can be observed in Fig. 38. They are indeed conservative as the largest deviation — from
one specific location — is incorporated whereas the error around other parameter regions
might be less.
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Figure 38: Evidence theory plots including original and conservative plausibility and belief
curves for y.

The conservative ET curves envelop the original plausibility and belief curves. They
permit more latitude for the actual cumulative distribution function. On one side, the
conservative plausibility curve suggest higher chances to obtain four points: it is, for
instance, 59% conservatively plausible while originally, this is only 14% plausible. On the
other side, the original belief curve excludes scores below one point. The conservative
belief curve, however, displays a small probability that the score can fall below one.
The conservative ET curves thus take a more cautious approach to the assessment of
uncertainties. Metamodeling errors caused by approximating the finite element simulation
are taken into account.
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4.5 || Recalling the results and discussion

The real-world project was passed through the uncertainty management framework de-
picted in Fig. 5. The large finite element simulation of a side pole test was first assessed
in an engineering manner. It was worked out that the maximum chest deflection, y, is
the injury criterion most likely to lose points in the Euro NCAP rating. The framework
thus concentrated on this key result and its suppliers — lower, middle, and upper chest
rib deflection, i.e. yl, ym, and yu. The elementary effects method filtered out irrelevant
parameters with a deliberately small budget, see Fig. 31. For the single key results, dif-
ferent numbers of parameters were identified as important. These information could but
must not necessarily be fed to the next stage: metamodeling.

Different metamodels were studied. Many of them provided appropriate approxima-
tion results, see Table 9. The slightly best quality was reached by variants of neural
networks — MNN-1-290 architectures for yl, ym, and SNN-3-60 for yu. The Euro NCAP
key result, y, was then extracted from the fusion of these three metamodels. Instead of
awaiting a computational time more than 32 hours on 168 CPUs for a new parameter
configuration, the neural networks could be evaluated within fractions of a second. This
relief on calculation efforts enabled the use of profound sensitivity analysis and uncer-
tainty propagation. In addition, reducing the number of parameters through sensitivity
analysis facilitated the evidence theory.

As with the metamodels, uniformly distributed parameters were assumed for the Sobol’
sensitivity analysis. In the case of the metamodels, the entire input space should be ap-
proximated as thoroughly as possible which is why the samples are drawn in a way that
their points are uniformly distributed in the space. This ensures a fair chance of approx-
imating the system in each input region at the same level. Sensitivity analysis intends to
treat each spot of the parameter intervals as equally important to especially account for
parameter outliers that can be crucial for the system. Furthermore, expert opinions are
provided later in the development stage. In earlier phases, e.g. for sensitivity analysis, ET
uncertainty assignments are not known. This situation is also described in [JLG21b]. In
case the assignments are available, sensitivity analysis can already be run with the uncer-
tainty allocation of ET instead of using uniformly distributed parameters. Note that this
may change Sobol’ indices. Here, however, parameters were considered to be uniformly
distributed for sensitivity analysis. Before applying uncertainty propagation, the uniform
distributions were substituted by ET structures: experts assessed the remaining relevant
parameters in-depth and allocated probabilities of occurrence.

Sensitivity analysis identified that the aleatory parameters x1 and x2 significantly
contribute to all key results. They stand for the barrier x-position and the velocity,
respectively, see Table 7. Moreover, the time-to-fire of the side airbag — denoted as x6 —
is additionally crucial for yl and ym. For this reason, it is also considered for the subsequent
uncertainty quantification together with x1 and x2. The Dempster-Shafer evidence theory
is utilized. Basic probability assignments were realized fictitiously. Exemplary statements
were made using the plausibility and belief curve depicted in Fig. 36. These statements,
however, were critically edited by taking into account the metamodeling error. For this
purpose, conservative ET curves were defined. They are a rigorous way to incorporate
the error made by the metamodel into the ET curves. Future research should examine
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how to process this error in a more sophisticated manner. Besides, the metamodeling
error may also be considered in the sensitivity analysis, see [SWV+22]. In fact, the small
error that is present here has no significant influence on the Sobol’ indices, especially not
on the importance of the parameters. Another open question is how sensitive the basic
probability assignments are to the Dempster-Shafer evidence theory curves. Future work
should investigate this matter.

Summarizing, the framework was successfully applied. It provided insight into the
relevance of the parameters considered and the uncertainties inherent in the key results.
The parameters, x1 and x2, that are relevant to the main key result, y, are aleatory,
i.e. they cannot be controlled and reduced. Engineers therefore cannot improve the
behavior of their car in this load case by configuring the chosen epistemic parameters.
For this specific constellation, they must accept the risk of possibly losing around three
Euro NCAP rating points in the worst case. In practice, to improve the performance
nonetheless, one should introduce and address further epistemic parameters to make the
car and its systems more crash-proof.
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Chapter 5

Critical reflection and outlook

The compact uncertainty management framework for finite element simulations from
Fig. 5, i.e. representative methods for its components, was kept as broad as possible.
Not every single exceptional case could be treated. Individual methods for the frame-
work components might be adjusted for specific applications. Nonetheless, the general
uncertainty management framework from Fig. 4 provides a structured procedure on how
to approach.

For example, the parameters were considered to be continuous quantities intrinsic to
the model code and represented hardware settings. This thesis did not specifically address
how to deal with discrete parameters or hardware-unrelated instances, e.g. numerical
uncertainties or approximation inadequacies. Parameters of class numerical uncertainties
are e.g. different discrete numbers of CPUs for solving the finite element model, the length
of the solver time step, or the fineness of the finite element mesh. These parameters may be
varied to assess the numerical robustness of the simulation. If metamodels are intended to
be used for this purpose, methods capable of processing discrete or mixed input quantities
may be required, see [XCY16, Bar15].

For model inadequacy, i.e. the discrepancy between simulation and experiment, ref-
erence is made to the field of verification and validation that attempts to cope with and
minimize this type of uncertainty, see [OT02, RKW15, Sar13]. In [WM19], the epistemic
uncertainty of a crashbox is reduced by using verification and validation tools to calibrate
the numerical finite element model to experimental investigations. Adequacy of the ap-
plications was presumed throughout this thesis. Still, numerical effects leading to noisy
data had to be faced for the real-world project, see Section 4.4.1. The metamodels thus
could not be fully accurate. In future applications, it is recommended to quantify, assess,
and, if necessary, reduce these numerical robustness issues before actually applying the
framework to the finite element model.

While the scope of this thesis does not extend to the prevention of these numerical
issues, the following thoughts should be considered in future research. Note that the
practicability of these recommendations need to be verified. To begin with, the solver
version should not be changed among the simulations. It is recommended to solve all finite
element simulations on a fixed number of CPUs and, if possible, on the same hardware.
Rounding inconsistencies, for instance, which would result from other implementation
settings, can thus be circumvented.

The simulations in this thesis were calculated on different machines as the single jobs
were distributed through a high-performance computing cluster. Divergent rounding and
interpolation procedures of the various machines yielded deviating results in some cases.
This was not optimal with respect to precision but by doing so, the required samples were
established faster than using a single machine where all but one simulation pause in a
queue. Besides, quantification of the numerical uncertainties by simulating the model for
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several solver time steps and mesh sizes can bring insights about the numerical stability.
If the performance is insufficient, i.e. the outputs highly deviate, the initial conditions,
the CAD geometry, etc. may require adjustments.

Moreover, the proposed metamodels presented in Section 3.2 emulate continuous re-
sponses. In fact, continuity was given in the applications of this thesis. The approximation
quality hence was appropriate. Crash phenomena, however, might feature discontinuous
behavior, non-differentiabilities, or bifurcations. Especially, for structural crash events,
these situations might occur. A crashbox, for instance, kinks to the right for one pa-
rameter configuration and to the left for the other — similar to the well-known Euler’s
column, see [Joh83]. Likewise, this can happen for dummy signals. The motion-related
time history of the dummy head might have either a positive or a negative slope when
the head moves up or down. Both examples exhibit jumps, i.e. discontinuities, that the
metamodels used may struggle with.

To handle this, classification algorithms, see [Kot07, SHG20, OAA+17], could be em-
ployed to label the discontinuity types before training a metamodel for each of these
types. Alternatively, there exist metamodels that can theoretically model jumps. A Mas-
ter thesis, see [Dek20], tutored by the author of this dissertation investigates multi-variate
B-spline regression. By defining multiple knots for B-spline basis functions, discontinu-
ities at the location of these knots can be introduced. The Master thesis pursues a free
knot selection to automatically determine the optimal knot locations. To accomplish this
by a gradient-based optimization, new numerically efficient derivative expressions of the
B-splines with respect to the knots are determined. However, this promising approach
quickly suffers the curse of dimensionality since the hyperparameters of a variety of basis
functions must be optimized — even for small input dimensions. Future research should
look into ways to make the B-spline regression sparse.

Aside from that, additional metamodels could be tested and compared for the real-
world project in Chapter 4. This does not only refer to methods or variants but also
to the considered key results. The fused quantity, y, used for the Euro NCAP rating
is extracted from three neural networks emulating yl, ym, and yu. Metamodels could be
established for y directly. Vehicle safety engineers are also interested in the Euro NCAP
rating points that are deduced from y. One could thus regard these points as key result
and let metamodels map from the input space to the rating points. The considered
strategies in Section 4.2.2, however, yield appropriate results. On top of that, engineers
want to trace the origin of the rating points back to the single sources, yl, ym, and yu. For
these reasons and the sake of clarity, additional key results are omitted.

Beyond, further multi-target regression metamodels should be studied. The regressor
chain-based method could not satisfy author’s expectations, cf. results for the occupant
model in Section 3.2.7. Recurrent neural networks are designed for long time sequences
but do not bring any benefit to the task at hand, i.e. mapping independent parameters
to output curves, see Section 3.2.4. Hence, temporal dependencies of output time histo-
ries could not be exploited using the metamodels of this thesis. Future studies should
be devoted to incorporate these dependencies and thus improving quality of multi-target
regression metamodels. For example, neural networks that use loops — similar to recur-
rent neural networks but only for output quantities — could be examined. Possibly, the
regressor chain-based method might be enhanced to effectively improve approximations.
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Last but not least, recent research explores how additional available technical informa-
tion, e.g. physical laws, scientific principles, or constraints, can be integrated into meta-
modeling approaches or machine learning algorithms, see [KKL+21]. In so-called physics-
informed or physics-inspired neural networks, known or assumed underlying physical equa-
tions, e.g. ordinary or partial differential equations, are incorporated into the loss function
to boost model training and to strengthen approximations, see [RPK19, YP19, ZLS20].
These ideas are promising regarding the advancement of metamodels. Particularly for
crash applications, future research must elaborate what information or data of required
type are available and which of these can actually be incorporated and ultimately be
useful. If this eventually yields an improvement, physics-informed approaches should be
included in the presented framework, see Fig. 5.

100



Chapter 6

Conclusion

This thesis proposes a general framework to manage uncertainties in automotive crash
applications. The main challenges that are tackled by this framework are resource inef-
ficiency of models for passive safety scenarios and their high number of parameters from
several sources that crucially impact results and subsequently safety of vehicles. The
framework therefore considers different paths to enable the final stage uncertainty prop-
agation. Which route to take depends on the type of the object under study. Resource
efficient models can be directly subjected to sensitivity and uncertainty analysis. Resource
inefficient models might or might not be simplified by engineering knowledge. The num-
ber of parameters of the pending model decide on how to proceed. All presented options
amount to fast-responding approximated response surfaces that replace the expensive
model. Many parameters may impede the creation of high quality approximated response
surfaces. It is proposed to use screening to rectify this situation by identifying clearly
irrelevant parameters and reducing the input space to the contributing dimensions. After
approximated response surfaces are established, sensitivity analysis profoundly explores
the input space. Finally, uncertainty quantification can be performed to measure the
impact of the uncertain parameters on the output. The entire framework is summarized
in Fig. 4.

Finite element simulations are the models most frequently investigated by engineers.
For this reason, special attention was paid to these simulations, i.e. the framework was
customized to them, see Fig. 5. First, these black box-like objects were put into a novel
mathematical form and decomposed to mappings of different levels of information. Sec-
ond, variants of metamodels approximating these mappings were discussed and applied.
Third, screening via the Morris method and variance-based sensitivity analysis were ex-
plained and prepared for numerical implementation. Last, the Dempster-Shafer evidence
theory was presented for uncertainty propagation. These methods collectively — struc-
tured via the proposed framework — overcome the mentioned obstacles, e.g. the large
number of parameters and resource inefficiency. They provide a fast, flexible, and visual-
izable usage to support engineers, thus the framework offers a satisfactory answer to the
research question posed in Section 1.2.

To substantiate the theoretical procedure, the framework is tested practically in a
real-world project. Therefore, the finite element simulation of a side pole test from
the European New Car Assessment Programme was subjected to the components of the
framework. Different metamodels approximating scalar crash test quantities of interest
are compared with multi-target regression metamodels that emulate the time histories of
these quantities before scalar values are extracted. The best metamodel was used for next
analyses, i.e. sensitivity analysis and uncertainty propagation. Sobol’ indices indicated
that only two out of nine initial parameters are relevant for the key result, here the max-
imum chest deflection. These two important parameters are both aleatory uncertainties.
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Thus, engineers cannot change or improve the situation in this set-up, e.g. by configuring
epistemic parameters. They have to cope with the corridor for the actual cumulative
distribution function — the corridor that is defined by the plausibility and belief curve of
the Dempster-Shafer evidence theory.

The application of the framework was successful and its outcome guides engineers
in decision making. Nonetheless, opportunities for further research were devised to en-
hance the framework. Proposed metamodels must be substituted if discrete parameters or
discontinuous outputs are encountered. Furthermore, model inadequacy as special uncer-
tainty type is not considered in this thesis. To address this type, methods from the field
of verification and validation should be examined and coupled with the presented frame-
work. In addition to the investigated metamodels, other methodologies may be utilized
or existing approaches may be refined. For example, one might study how to profitably
include the temporal dependencies of the time history outputs or further available techni-
cal information into the metamodel. Notwithstanding these potential updates, this work
represents an important step forward in tackling uncertainties that appear in applications
of vehicle safety. Even for resource intensive models with several parameters, engineers
receive information about the uncertainties they must address in vehicle development to
build safer cars.
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Chapter A

Appendix

To improve the flow of reading, this appendix includes figures that would have occupied
excessive space in the previous chapters. Subplots of figures are enumerated using numbers
— not letters as before — due to their high number.

A.1 || Time histories for the occupant simulation of
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Figure 39: Actual and predicted time histories of the nval = 40 validation head acceleration
curves of the occupant simulation. The predictions are from ST-PCE-3 and MNN-300.
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Figure 40: Actual and predicted time histories of the nval = 40 validation chest accelera-
tion curves of the occupant simulation. The predictions are produced by MNN-300.
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Figure 41: Actual and predicted time histories of the nval = 40 lower chest deflection
curves, yL, of the real-world project. The predictions are produced by MNN-1-290.

A.2.2 Middle chest deflection curves
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Figure 42: Actual and predicted time histories of the nval = 40 middle chest deflection
curves, yM, of the real-world project. The predictions are produced by MNN-1-290.

A.2.3 Upper chest deflection curves
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Figure 43: Actual and predicted time histories of the nval = 40 upper chest deflection
curves, yU, of the real-world project. The predictions are produced by MNN-2-110.

118



References

[AAB+15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
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