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ABSTRACT

Shared mobility systems have become a frequently used inner-city mobility option. In particular, free-
floating shared mobility systems are experiencing strong growth compared to station-based systems. For
both, many approaches have been proposed to optimize operations, e.g., through pricing and vehicle re-
location. To date, however, optimization models for free-floating shared mobility systems have simply
adopted key assumptions from station-based models. This refers, in particular, to the models’ part that
formalizes how rentals realize depending on available vehicles and arriving customers, i.e., how supply
and demand match. However, this adoption results in simplifications that do not adequately account for
the unique characteristics of free-floating systems, leading to overestimated rentals, suboptimal decisions,
and lost profits.

In this paper, we address the issue of accurate optimization model formulation for free-floating systems.
Thereby, we build on the state-of-the-art concept of considering a spatial discretization of the operating
area into zones. We formally derive two novel analytical matching functions specifically suited for free-
floating system optimization, incorporating additional parameters besides supply and demand, such as
customers’ maximum walking distance and zone sizes. We investigate their properties, like their lineariz-
ability and integrability into existing optimization models. Our computational study shows that the two
functions’ accuracy can be up to 20 times higher than the existing approach. In addition, in a pricing case
study based on data of Share Now, Europe’s largest free-floating car sharing provider, we demonstrate
that more profitable pricing decisions are made. Most importantly, our work enables the adaptation of
station-based optimization models to free-floating systems.

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

based (SB) systems (Lu, Chen, & Shen, 2017), especially FF SMSs
experienced considerable growth during the last decade (Shaheen,

Shared mobility systems (SMSs) such as car sharing and bike Cohen, & Jaffee, 2018). The decisive difference between FF SMSs

sharing systems have become an integral part of the inner-city
mobility. Globally, the shared mobility market today has a size of
approximately 250 bn. USD and is projected to grow annually by
around 25% the next years (Data Bridge Market Research, 2021).
Among the two general concepts of free-floating (FF) and station-
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and SB SMSs is that pick-up and drop-off locations for vehicles are
not limited to certain predefined locations - the stations in an SB
SMS. Instead, in an FF SMS, vehicles are free-floating within some
predefined operating area and can be dropped-off (and picked-up)
at any publicly accessible location.

The optimization of SMSs, e.g. with regard to pricing and relo-
cation, has been studied extensively in the literature, summarized
e.g. in review papers on car sharing by Ferrero, Perboli, Vesco, Ca-
iati, & Gobbato (2015a) and on SMSs in general by Laporte, Me-
unier, & Wolfler Calvo (2018), Atag, Obrenovi¢, & Bierlair (2021).
However, in the body of works addressing operational optimiza-
tion problems with endogenous modeling of rentals, FF SMSs -
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despite their dominance in practice - have not been adequately
considered. Instead, up to now, FF SMSs are treated like SB SMSs
(compare e.g. Haider, Nikolaev, Kang, & Kwon, 2018; Jorge, Molnar,
& Correia, 2015 for SB SMSs and Hardt & Bogenberger, 2021; Lu,
Correia, Zhao, Liang, & Lv, 2021 for FF SMSs). However, as it turned
out in a close collaboration with Share Now, Europe’s largest FF car
sharing provider operating in 16 cities in 8 countries (Share Now,
2021), ignoring the difference between both concepts in the opti-
mization models can result in an overestimation of rentals in the
FF SMS, suboptimal decisions and substantial profit losses. In this
work, we address and solve this fundamental issue of inaccurate
rentals modeling in FF SMS optimization models.

To give an idea of the causes of this issue, we first need
to consider how SMS optimization models are usually formu-
lated: Regarding space, it is the state-of-the-art approach in lit-
erature and practice to discretize the operating area of an FF
SMS into zones - the counterpart of stations in an SB SMS (e.g.
Neijmeijer, Schulte, Tierney, Polinder, & Negenborn, 2020; Weikl &
Bogenberger, 2016). Regarding time, the considered time frame is
discretized into periods for both SB and FF SMSs. The SMSs are
described and optimized on this level of aggregation, i.e. relevant
data (e.g. demand) is collected, and optimization models are for-
mulated on this location-period level (station-period in SB SMSs,
zone-period in FF SMSs). Typically, these optimization models are
mixed-integer (linear) programs based on network flow formula-
tions for both SB (e.g. Jorge et al., 2015) and FF (e.g. Lu et al., 2017)
SMSs.

Now, a central component of these optimization models is the
formalization on the location-period level how rentals realize in
dependence of the number of available vehicles and the number
of arriving customers - i.e.,, how supply and demand match. The
existing SB and FF SMS optimization models rely on the implicit
assumption that rentals are determined by the minimum of supply
and demand. While the realization of rentals can be modeled well
with this matching function in an SB SMS, applying the same sim-
plified assumption to FF SMSs can cause substantial errors. Con-
sider e.g. a station-period combination in an SB SMS with one (ex-
pected) available vehicle and one (expected) arriving customer. In
this SB SMS, it is valid to assume that one (expected) rental real-
izes. For the same situation in an FF SMS in contrast, an accurate
matching function must differ: When the zone is large, the avail-
able vehicle is not necessarily within reach of the customer, be-
cause the zone has a spatial expansion and customers have a max-
imum willingness-to-walk (e.g. Herrmann, Schulte, & VoR, 2014).
Thus, at most one - for a large zone, much less than one - (ex-
pected) rental results. Note that we explicitly write “(expected)”,
because even though realizations of supply, demand and rentals
are discrete values in reality, they can be (and often are) modeled
continuously.

A presumably simple solution is to apply a finer spatial dis-
cretization scheme to the FF SMS, i.e. to define many small zones
such that a customer can reach any vehicle in the respective zone,
and then use the matching function to determine rentals as in an
SB SMS. This, however, simply substitutes the problem of a vehi-
cle being too far away in a large zone by other problems, which
become more severe with decreasing zone size: Most importantly,
defining many small zones is problematic, because observed data
points of demand and supply that in reality resulted in a rental
are more likely to be assigned to neighboring zones such that
there would not be a matching in the FF SMS model. This ag-
gregation error is related to the modifiable areal unit problem (see,
e.g., Manley, 2019) which summarizes that statistical results, such
as mean values, variance, and correlations do depend on the spe-
cific discretization scheme. Typical discretization schemes in liter-
ature and practice use zones in the order of several square kilo-
meters (e.g. Weikl & Bogenberger, 2016) and for these zone area
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sizes, the described issue regarding the supply-demand matching
due to the customers’ maximum walking distance indeed prevails.
These larger zone area sizes also have the practical advantage that
the typically resulting fifty to hundred zones have a count which
is still manageable for the staff of the SMS provider and that the
optimization models which scale with the zone count do not grow
too large. All of the named aspects already show that the deci-
sion on appropriate discretization schemes (including count, size
and shape of zones) for FF SMSs is very complex. In fact, there
is no single best definition of the discretization scheme. Thus, in
our work, we consider a certain discretization scheme as given, and
we address the search for accurate matching functions for FF SMSs
that adapt to the given circumstances.

Clearly, any matching process can be replicated arbitrarily ex-
act with stochastic simulations that consider discrete supply, de-
mand, and resulting rentals. However, we are interested in ana-
Iytical functions that output expected rentals (continuous values)
and that can be integrated in the existing SMS optimization mod-
els from the literature. Therefore, to solve the issue of inaccurate
matching modeling in FF SMS optimization models, we first for-
mulate a general matching function that replicates the matching
process within an FF SMS and incorporates its specific character-
istics. Based on this, we then formally derive two novel match-
ing functions which are specifically suited for FF SMS optimization
models. We also formalize what is assumed in the existing litera-
ture so far by a third matching function and show that only the
two novel matching functions can widely be applied to FF SMSs,
and that their integration in FF SMS optimization models improves
decision making.

To properly distinguish our work from the literature, two
streams are of particular importance. First, matching functions
have a long history in macroeconomics, mostly focusing on la-
bor markets and with the intention to explain unemployment
(e.g. Petrongolo & Pissarides, 2001). Some extensions also consider
matching functions in transportation systems, such as taxi systems
(e.g. Buchholz, 2019). However, as we discuss in more detail in
Section 2, matching functions that incorporate the specifics of FF
SMSs have not been discussed yet. Moreover, in contrast to this
literature stream, our focus eventually lies on the formulation of
optimization models, such that we have a different view on match-
ing functions and their requirements: For example, the matching
functions’ linearizability and integrability in an overall FF SMS op-
timization model is of particular importance in our case, but irrel-
evant in the existing literature. Second, the development of match-
ing functions for FF SMSs in our work must not be mixed up with
the development of so-called matching algorithms in platform-based
SMSs such as on-demand ride-hailing, like Uber or Lyft (e.g. Yan,
Zhu, Korolko, & Woodard, 2020). In the latter, a central platform
faces the problem to assign customer requests most efficiently to
available drivers. Since the customer’s GPS coordinates are shared
with the driver after the assignment happened, the ride realizes
with certainty and, thus, there is no need for matching functions
in the sense explained above. In contrast to the matching algo-
rithms in platform-based SMSs, the provider of the SMSs that we
consider cannot explicitly decide on the assignment of vehicles to
customers as customers choose vehicles themselves. Instead, the
matching functions formalize how many rentals are expected to re-
alize within some location-period combination, given supply, de-
mand, and other relevant parameters.

The contributions of this paper are as follows:

o To the best of our knowledge, we are the first to reveal the ne-
cessity to formulate SB and FF SMS optimization models dif-
ferently. We show that more sophisticated matching functions
improve FF SMSs models and the decisions resulting from opti-
mization.
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e Second, we derive two novel matching functions for FF SMSs,
which take into account the customers’ sequential arrival, their
maximum walking distance, and the size of the zone. These
functions differ regarding their mathematical properties and
can be integrated in different types of optimization models -
one into the widespread linear network flow-based SMS opti-
mization models, allowing to adapt a variety of existing SB SMS
optimization models to FF SMSs.

Third, we formalize a third matching function that reflects the
assumptions made (implicitly) in the SMS optimization litera-
ture, i.e. that (expected) rentals correspond to the minimum
of (expected) supply and demand. We demonstrate that this
benchmark does not yield accurate rentals estimations for FF
SMSs in general. Our analytical investigation of this function’s
properties shows that this shortcoming cannot be remedied by
artificially partitioning zones for which data is given into mul-
tiple smaller zones.

Fourth, in a computational study, we demonstrate that the
rental prediction accuracy of the novel functions in an FF SMS
is substantially higher than the benchmark function. This is be-
cause the novel matching functions adapt to the given circum-
stances, in particular to different zones sizes.

Fifth, in a case study based on real-life data, we integrate
one of the novel matching functions into an existing pricing
optimization framework and demonstrate significant profit in-
creases that can be ascribed solely to the more accurate match-
ing modeling.

Overall, this work primarily contributes to the literature on FF
SMS optimization from the operations research stream of litera-
ture. We build a bridge between the optimization of SB and FF
SMSs, in the sense that, by the approaches presented in this paper,
existing optimization approaches that were specifically designed
for SB SMSs can straightforwardly be generalized to make them
applicable for FF SMSs as well.

The remainder of the paper is structured as follows. In
Section 2, we review the related literature. Section 3 discusses the
novel as well as the benchmark matching functions. Section 4 con-
tains the numerical study considering the rentals prediction accu-
racy. In Section 5, we assess the importance of accurate matching
modeling in optimization problems by considering a pricing op-
timization case study. Section 6 covers managerial insights, con-
cludes the paper and gives an outlook.

2. Literature

The literature on SMS optimization is broad and covers deci-
sion making at strategic, tactical and operational levels (Laporte
et al., 2018). Various review papers on bike sharing (DeMaio, 2009;
Fishman, Washington, & Haworth, 2013; Ricci, 2015) and car shar-
ing (Brendel & Kolbe, 2017; Ferrero et al., 2015a; Ferrero, Per-
boli, Vesco, Musso, & Pacifici, 2015b; Golalikhani, Oliveira, Car-
ravilla, Oliveira, & Antunes, 2021a; Golalikhani, Oliveira, Carravilla,
Oliveira, & Pisinger, 2021b; Iligen & Hock, 2019; Jorge & Correia,
2013) summarize the literature. Our work contributes to the tacti-
cal (e.g. fleet sizing) and operational (e.g. relocation or pricing) lev-
els where matching functions are (implicitly) used and, as we will
see, more advanced matching functions are required for FF SMSs.

Until now, matching functions for SMSs and the necessity of
modeling FF SMSs differently than SB SMSs has not been dis-
cussed in the literature. On the contrary, the literature is divided
on whether any differences need to be made between optimiza-
tion models of SB and FF SMSs and we explore these views in
Section 2.1. In Section 2.2, we provide an overview on SMS opti-
mization problems with a focus on the wide spread approaches
formulated as time-expanded networks. These works are rele-

1196

European Journal of Operational Research 305 (2023) 1194-1214

vant because existing assumptions regarding matching can be con-
cluded from their optimization models and these works are the
ones where our novel matching functions can be integrated in. In
Section 2.3, we review the literature on matching functions from
macroeconomics. In Section 2.4, we briefly review two other re-
lated literature streams, namely agent-based FF SMS simulations
and empirical studies, as these works implicitly provide insights
regarding relevant parameters for matching functions.

Note that, as explained in Section 1, we do not consider
platform-based mobility offers like on-demand ride-hailing that as-
sign customer requests to vehicles (e.g. Boysen, Briskorn, & Schw-
erdfeger, 2019; Yan et al., 2020), because the nature of these prob-
lems differs fundamentally from those in the SMSs that we con-
sider (car sharing etc.).

2.1. Station-Based vs. free-floating shared mobility system
optimization

SB SMSs have a relatively long history in practice - the first
SB car sharing system was installed in 1948 in Switzerland (called
Sefage) (Shaheen, Sperling, & Wagner, 1998). In contrast, the con-
cept of FF SMSs, which today largely relies on the usage of mobile
phones and GPS tracking only became technically realizable much
later and arguably was first put into practice with an FF car sharing
system in 2008 in Germany (Ciari, Bock, & Balmer, 2014) (called
car2go which ten years later became Share Now). This temporal
delay of FF SMSs is reflected in the literature, where the major-
ity of papers consider SB SMSs. For example, in the general survey
paper on SMSs, Laporte, Meunier, & Wolfler Calvo (2015) entirely
focus on SB SMSs, while their updated survey a few years later ex-
plicitly differs between SB and FF SMSs (Laporte et al., 2018).

Regarding the optimization of these SMSs, there are different
views in the literature on whether SB and FF SMSs can be consid-
ered identical or not: Some authors state that SB and FF SMSs can
be treated identically. As stated in Section 1, this view is based on
the fact that the state-of-the-art approach in literature and prac-
tice regarding the modeling of FF SMSs is to discretize the oper-
ating area into zones (e.g. Neijmeijer et al., 2020; Weikl & Bogen-
berger, 2016). Thus, it is tempting to equate stations and zones.
For example, in their review paper on relocations in one-way car
sharing, Illgen & Hock (2019) argue that “free-floating operation ar-
eas are usually partitioned into smaller zones that serve as virtual
stations, such that the VReP [vehicle relocation problem] can be
applied perfectly for relocations that occur between those zones
instead of from station to station”. Similarly, Lu et al. (2021) who
consider combined relocation and pricing on the performance of
one-way car sharing systems, implicitly state that SB and FF SMSs
can be considered identically, as they use the decisive terms “sta-
tions” and “zones” interchangeably.

The only researchers we know of who represent a more differ-
entiated view are from Bogenberger’s group. Weikl & Bogenberger
(2015) e.g. consider relocation optimization for FF SMSs. On the
one hand, they state that from a technical viewpoint, SB SMS opti-
mization models can be transferred to FF SMSs by “dividing the
operating area into station-like zones.” On the other hand, they
state that “transferring the existing relocation models for station-
based systems to free-floating car sharing systems is however re-
stricted” and they give multiple reasons related to the considered
relocation problem (see also Weikl & Bogenberger, 2013). The au-
thors e.g. argue that zone-level relocation decisions are not specific
enough for FF SMSs because vehicles have specific positions. An-
other argument concerns the optimization model, since zones of FF
SMSs “do not have strict capacity limits” in contrast to stations in
SB SMSs. To address these issues, the authors define “macroscopic
zones” which are separated into “microscopic zones”. The reloca-
tion decisions on macroscopic level are determined by optimiza-
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tion while the decisions on microscopic level are rule-based. Note
that in the models of Weikl & Bogenberger (2013) and Weikl &
Bogenberger (2015), the issue of accurate matching modeling does
not arise, because the optimal number of vehicles per zone which
is affected by the relocation decisions is given and rentals are not
modeled endogenously (see also Section 2.2).

In our work, we demonstrate that SB and FF SMS optimiza-
tion models indeed need to differ. While Weikl & Bogenberger
(2015) focus on relocation, in this paper we address the essen-
tial issue of matching modeling, which is necessary for all opti-
mization models in which rentals are endogenously modeled. We
in particular show that once that data is collected on some de-
fined zone level, artificially subdividing this zone into multiple
sub-zones which correspond to stations of an SB SMS does not ad-
dress the issue of inaccurate rentals predictions (Section 3).

2.2. Network flow-based shared mobility system optimization models

The dynamically changing, imbalanced distribution between
available and demanded vehicles is a well-known challenge of
SMSs (Jorge & Correia, 2013; Lippoldt, Niels, & Bogenberger, 2019;
Molnar & Correia, 2019). Most tactical and operational optimization
approaches seek to address this problem in order to optimize for
the actual service- or monetary-related goal. To that end, the pro-
posed approaches typically consider the interaction of supply and
demand over the entire SMS by modeling the system with a time-
expanded network, where rentals and relocations are described
by flows. Note that not all network flow-based SMS models con-
sider rentals endogenously. For example, papers on relocation typ-
ically consider the desired number of vehicles at different spatio-
temporal network nodes as given, and model only the operator-
based vehicle movements (=relocations) to serve this demand as
network flows. The matching functions in this work determine the
user-based vehicle movements (=rentals) in dependence of supply,
demand and other parameters. Accordingly, they are only relevant
for optimization models with endogenous rentals which we focus
on in the following.

Among these works, we identify three groups. First, works that
consider SB SMSs (e.g. Haider et al., 2018; Jorge et al., 2015), sec-
ond, works that consider FF SMSs (e.g. Hardt & Bogenberger, 2021;
Lu et al., 2017; Lu et al, 2021), and third, works that consider
SMSs in general (e.g. Correia & Antunes, 2012; Soppert, Steinhardt,
Miiller, & Gonsch, 2022), by speaking of locations instead of stations
or zones. Among the first and second group, several works do not
use the term station-based or free-floating explicitly, but their prob-
lem description and modeling where they use the terms station or
zone allows to classify them.

To the best of our knowledge, the issue of supply and demand
matching in FF SMSs has not been addressed in any of these works,
or elsewhere in the literature. Still, the above works model the
relation between supply, demand, and rentals, such that assump-
tions regarding the matching modeling within a specific location-
period are implicitly revealed: All of the above-named works use
the concept that rentals are the minimum of demand and sup-
ply. Other parameters that may affect the matching are not con-
sidered. To the best of our knowledge, there are only two works
in the above-named groups (Hardt & Bogenberger, 2021; Soppert
et al., 2022) that explicitly model (expected) rentals to equal the
minimum of (expected) supply and (expected) demand (always
add “(expected)” in the following). All other works formulate con-
straints that only limit rentals to this minimum because they pro-
pose optimistic optimization models in the sense that the opera-
tor can deny a rental although there is supply and demand (see
Soppert et al., 2022 for further discussions).

To summarize the SMS literature regarding matching modeling,
one can conclude from the optimization models that it is current
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practice to (explicitly or implicitly) assume that rentals are deter-
mined by the minimum of supply and demand and this simplistic
assumption is applied to both SB and FF SMSs. With regard to the
three groups in the literature identified above, our contribution is
to develop matching functions that allow to apply SB SMS models
to FF SMS models (first group) and to improve FF and unspecified
SMS models (second and third group).

Even if supply and demand matching has not been considered
explicitly, the above works impose requirements on the match-
ing functions that we develop. For one thing, the matching func-
tions need to be compatible with a spatio-temporal discretiza-
tion and shall be seamlessly integratable into these SMS models.
More specifically, the matching functions’ in- and output need to
be compatible with the overall SMS models from literature. For
another, many approaches are formulated as linear optimization
problems. Therefore, linear matching functions that retain the lin-
earity of the overall model have an additional value for the gener-
alizability of existing literature.

2.3. Matching functions

Analytical formulations that describe the formation of new rela-
tionships, i.e. matches, from unmatched agents are denoted as (ag-
gregate) matching functions and have originally been discussed in
macroeconomics, often in the context of stylized (labor) markets.
The motivation to formulate these matching functions is to explain
“coordination failures” that e.g. “explain the existence of unem-
ployment” (despite job availability) through “the modeling of fric-
tions” which derive e.g. from “information imperfections” or “het-
erogeneities” (Petrongolo & Pissarides, 2001). In their survey paper
on matching functions, Petrongolo & Pissarides (2001) state that
for labor markets the simplest matching function m is of the form
M =m(U,V), where M is the number of jobs that result during a
given time interval in dependence of unemployed workers U and
vacant jobs V. Different underlying mechanisms of the matching
process, called microfoundations, are assumed that lead to differ-
ent matching functions. For example, the earliest works by Butters
(1977) and Hall (1979) formulate matches based on an urn-ball mi-
crofoundation, where (in labor market context) workers randomly
send applications (balls) to job vacancies (urns). Under the sim-
plest assumption that “U workers know exactly the location of
job V vacancies”, that workers “send one application each”, and
that “a vacancy [...] selects an applicant at random”, the result-
ing matching function becomes M =V - [1 — (1 — 1/V)V] which can
be approximated by M =V -[1 —e U/V] (Petrongolo & Pissarides,
2001).

In the context of transportation, the matching between cus-
tomers and drivers in taxi systems has been analyzed by Bian
(2018), Buchholz (2019), Fréchette, Lizzeri, & Salz (2018) as well
as Ata, Barjesteh, & Kumar (2019). The matching functions of the
first two are based on the works named above, have the same
structural form, and are only slightly modified, e.g. by a “location
specific parameter” (Bian, 2018) that allows to calibrate to spa-
tial heterogeneities. A particular matching function that holds “in
the absence of frictions” is M = min(U, V) (Petrongolo & Pissarides,
2001), also denoted as “perfect matching” (Bian, 2018) or “friction-
less matching” (Buchholz, 2019), which in the latter is used to de-
scribe the search process by taxis for customers at airports.

In contrast, Fréchette et al. (2018) as well as Ata et al
(2019) use fundamentally different approaches to derive matching
functions for taxi systems. Fréchette et al. (2018) picture differ-
ent areas of a city where each area consists of a grid of locations
that represent street corners. A matching function is approximated
through a simulation in which customers and drivers appear ran-
domly on these locations. Customers wait for some time before
they leave and whenever a driver arrives at a location where a
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customer is waiting a match realizes. Ata et al. (2019) propose an
analytical approach in which they draw the number of customers
and drivers each from a Binomial distribution and then derive the
expected number of matches by taking the minimum of both val-
ues. To find a tractable approximation, the authors use the Nor-
mal distribution and linear approximations to obtain the eventual
matching function.

To the best of our knowledge, matching functions for FF SMSs
have not yet been discussed in the literature. In our work, we
fill this gap by deriving matching functions which are based on
FF SMSs specifics (microfoundations), such as zone sizes and cus-
tomers’ willingness-to-walk. These parts of our work contribute to
the matching functions literature. However, since we focus on FF
SMS optimization - during development of the functions as well as
in a pricing optimization case study - we overall see our contri-
bution with regard to the SMS optimization literature from opera-
tions research. E.g. other than in the matching function literature,
additional properties for the newly developed functions, like e.g.
the integrability into optimization models, are of particular inter-
est in our work. In Section 3, we establish the connection between
the developed matching functions and literature and e.g. discuss
under which conditions the frictionless matching mentioned above
can be applied to FF SMSs.

2.4. Further related literature streams

The first related literature stream uses agent-based simulations
to derive insights on SMSs. Typical applications are e.g. the evalu-
ation of SMSs within a multi-commodity transportation network
(Ciari, Balac, & Axhausen, 2016; Heilig, Mallig, Schroder, Kager-
bauer, & Vortisch, 2018; Li, Liao, Timmermans, Huang, & Zhou,
2018), the impact of specific (parking) pricing rules (Balac, Ciari,
& Axhausen, 2017; Ciari, Balac, & Balmer, 2015), or the inter-
play of competing SMS providers (Balac, Becker, Ciari, & Axhausen,
2019). Because of the system’s description on agent level, in-
cluding customer behavior and exact vehicle positioning, match-
ing is indeed considered in these simulations. However, an an-
alytical formalization of the matching, in particular on location-
period level, as required for the integration into network flow-
based optimization problems, is not given. Another application of
agent-based simulations is to serve as a heuristic solution ap-
proach for network flow optimization problems that we consider
in our work (see e.g. Cocca, Giordano, Mellia, & Vassio, 2019), but
also in this case no analytical formulations of the matching is
provided.

The second related literature stream deals with empirical stud-
ies on FF SMS. These works provide requirements for and rele-
vant parameters of suitable matching functions. From several stud-
ies one can conclude that matching functions have to consider
spatio-temporal differences of an SMS. For example, Reiss & Bo-
genberger (2016) simulate a bike sharing system based on empiri-
cal data and identify different demand patterns for weekdays and
weekends, as well as for different locations and times of the day.
Hardt (2018) also reports different spatio-temporal demand pat-
terns and furthermore identifies differences regarding the result-
ing rentals, drop-offs, and availabilities within the operating area.
Regarding relevant parameters on the customers’ decision for the
matching functions in FF SMSs, literature especially mentions the
distance/walking time to the vehicles as well as the pricing. For ex-
ample, Wu, Le Vine, Sivakumar, & Polak (2019) investigate the user
behavior with a stated-choice experiment considering for exam-
ple walking time, willingness to pay, and socio-demographical fea-
tures. Niels & Bogenberger (2017) analyze app openings and book-
ing data from a car sharing system. Among other results, they re-
port a high influence of the distance to available vehicles on the
customers’ decision.
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3. Modeling rentals in FF SMS optimization problems

In this section, we propose and discuss two novel analyti-
cal matching functions to model rentals in FF SMS optimiza-
tion problems. Further, we formalize a third one which reflects
the matching as it is currently assumed in the SMS optimiza-
tion literature and which will serve as a benchmark later in
the computational study. In Section 3.1, we begin by discussing
the required output as well as reasonable inputs for the match-
ing functions. Section 3.2 presents a generic stylized match-
ing process and a corresponding generic matching function on
which all specific matching functions are based. In Section 3.3,
we systematically derive the different functions, along with their
specific underlying assumptions. Section 3.4 discusses mathe-
matical properties and Section 3.5 the potential of being inte-
grated into linear optimization problems for each of the matching
functions.

3.1. Output and inputs

We begin by stating the output of the matching functions: As
discussed in Sections 1 and 2.2, SMS optimization models are typ-
ically formulated based on network flow formulations, consisting
of multiple locations and periods. In these SMS models, vehicle
movements, i.e. rentals and relocations, have a certain location-
period origin as well as a certain location-period destination. To fit
in these network flow SMS models, a compatible matching func-
tion’s output simply needs to quantify the (expected) number of
rentals r that originate in a certain location and period. Conversely,
it is not determined by the matching function how the rentals that
realize in a specific origin split into different destinations, as this
can be covered by other components of the overall SMS network
flow model (see Section 3.5).

We continue with stating reasonable inputs for the matching
functions: Clearly, the rentals depend on the number of available
vehicles and arriving customers in a given location and period.
Therefore, these quantities, which we denote as a and d, are in-
puts. However, when considering the realization of rentals in an FF
SMS, two additionally necessary parameters become immediately
apparent, namely the maximum distance that customers are will-
ing to walk and the size of the zone. With a maximum walking
distance in the order of several hundred meters (e.g. Herrmann
et al., 2014; Niels & Bogenberger, 2017), and a typical zone size
of several square kilometers (e.g. Miiller, Correia, & Bogenberger,
2017; Weikl & Bogenberger, 2016), it is clear that an available ve-
hicle is not necessarily within reach of a customer, even if the
customer and vehicle are in the same zone. In order to formalize
the matching functions based on these two additional parameters,
we define Ay, as the size of the area within walking distance and
A; as the size of the zone. The matching functions therewith be-
come a function of the discussed inputs and parameters, meaning
r=ra,4,(a d).

3.2. Preliminaries: Generic matching

3.2.1. Stylized matching process

As discussed above, matching functions for network flow-based
SMS optimization models require to describe the rentals r on
location-period level, given a and d. In contrast, the actual match-
ing process in reality is independent of the artificial spatio-
temporal discretization and underlies dynamics that take place
within the period. In this section, we therefore introduce a styl-
ized matching process that considers the requirements imposed
by the discretization in the SMS model as well as the intent
to formalize analytical functions that replicate the real match-
ing process as accurately as possible. We take the following as-
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sumptions for the stylized matching process on location-period
level:

o All vehicles a become available at the beginning and customers
d arrive sequentially during the period. More precisely, the a
vehicles are first distributed over the zone. Second, the d cus-
tomers arrive sequentially and potentially rent one of the ve-
hicles each. Both a and d have zero variance, meaning that
these are deterministic values in the matching process. We
assume homogeneity of the zone, such that the exact loca-
tions of vehicles and customers are drawn from a uniform dis-
tribution. To formalize the process and in particular its in-
termediate states, we denote the remaining customers to ar-
rive during a period as d and the remaining available vehicles
as d.

Each of the remaining available vehicles belongs to a corre-
sponding part of the zone, meaning that the vehicle would
be within reach for an arriving customer from this part. We
say that a vehicle covers a part of the zone area and we de-
note the size of the area that is covered by d vehicles all to-
gether as A;. The size of the marginally covered area by the
dath vehicle is denoted as AA;. The matching functions differ
in their assumption how the vehicles are spatially distributed
and how additional vehicles cover additional parts of the
zone.

Note that it is reasonable to define the marginal coverage of
a vehicle AA; in dependence of the walking area Ay of a cus-
tomer: As stated above, we assume homogeneity of a zone such
that the probability of any location within the zone to lie within
Ay is equal. Considering a situation with one available vehicle, the
probability that this vehicle is located within the reachable area of
the customer Ay is equivalent to the probability that the customer
arrival location lies within the area A,, which is covered by the ve-
hicle. The latter is in line with the assumption that vehicles are
available from the beginning of a period and that customers arrive
sequentially.

» For every arriving customer, there is a certain probability that
a rental realizes. Clearly, this probability depends on the re-
maining available vehicles @ in the zone, the customer’s walking
area Ay as well as the zone area size A,. Since d and therewith
A; may change over the matching process, also this match-
ing probability, which we denote by P4, 4,(d), generally differs
for each of the customers. We assume that a rental realizes if
the customer arrival position lies within the (currently) cov-
ered zone area A;. Considering the uniform distribution for a
customer’s exact arrival position, the probability of a match-
ing Py, 4,(@) therewith is equal to the proportion of the cov-

. - N Ag
ered area to the entire zone area, meaning Py, 4,(d) = - The
matching process ends if all customers have arrived or if all ve-

hicles have been rented.

Note that drawing exact positions from the uniform distribu-
tion corresponds to assuming homogeneity of the zone. We define
a zone as the smallest considered spatial unit within an FF SMS for
which data is aggregated or given. This implies that no information
on a more disaggregate level is available which would justify sep-
arating a (heterogeneous) zone into multiple (homogeneous) ones.
Later, in the numerical study, we vary the zone size which corre-
sponds to different given levels of spatial data aggregation and we
evaluate the matching functions with regard to their adaptability
to these different circumstances.

3.2.2. Generic matching function
Given the above assumptions, the matching process within a
location-period combination can be formalized by the following
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generic matching function

Tawa (@, d) = Py, 4, (@) - (1 +1a,0,(@—1,d—1))

+ (1 =Py (@) 1a,n@d—1) Vi, d ez (1a)

Ta,.4,(4,0) =0 YiezZ (1b)

Tana,(0,d) = 0. VdeZ (1c)

The inter-dependencies between the possible rental realizations
and the changing zone coverages are formulated by a recursion
over the customer arrivals (1a). For every arriving customer, the
probability that a rental realizes is Py, 4,(d). In case of a match,
one rental is counted and the number of available vehicles is re-
duced by one. With probability ISAW.AZ (@) =1 — Py, 4,(d), no rental
takes place such that the subsequent customer (if existent) has the
same number of vehicles available, i.e. 4. Independent of the out-
come, the number of customers to come is reduced by one, ie.
d < d — 1. The boundary conditions (1b) and (1c) ensure that the
number of rentals is zero if either supply or demand are zero. Note
that (1) is a discrete function in @ and d but that its output of
expected rentals in general takes continuous values. In reality, of
course, realizations of supply, demand, and rentals are discrete but
since matching functions, meaning (1) as well as all introduced in
the following, are models that aim at replicating reality, continuous
outputs are reasonable or even desired if interpreted as expected
values (see Section 3.5).

In the context of an overall network flow SMS model, (1) would
then be integrated to calculate the resulting rentals for a specific
location-period combination with corresponding vehicle count a
and arriving customers d, i.e., by evaluating 4, 4, (a, d).

3.3. Derivation of matching functions

Based on the previously described generic matching process, we
derive three matching functions in this section. The decisive differ-
ence between the functions is the rate with which an additional
vehicle covers the area of the zone. Consequently, we denote the
three functions as

o degressive coverage rate matching function (DCR) (Section 3.3.1),

e constant coverage rate matching function (CCR) (Section 3.3.2),
and

« infinite coverage rate matching function (ICR) (Section 3.3.3).

The assumptions of the DCR come closest to the real matching
process, but also the other two functions, especially the CCR, have
a range of validity, and other advantages compared to the DCR.

3.3.1. The degressive coverage rate matching function (DCR)

The DCR results from the generic matching function (1) by
further specifying the matching probability Py, 4,(d). The under-
lying assumption of the DCR is that each part of the zone is
equally likely to belong to the area covered by a vehicle. Thus,
the area covered by an additional vehicle comprises a part that
is newly covered (marginally covered area) and a part that is al-
ready covered by the other vehicles (and wasted in this sense).
More formally, the DCR assumes that, for a given available ve-
hicle count 4, the additionally covered area AA,,; by one ad-
ditional vehicle, meaning by the (d+ 1) vehicle, is a fraction
of Aw. This fraction is the ratio of the not covered zone area
with @ vehicles A; =A; —A; to the entire zone area, meaning

A
Mgy =Aw- 42
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Fig. 1. Illustrative representation of coverage by matching functions.
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Fig. 2. Schematic iso-rental curves for different matching functions and a specific Aw, A, with A, < A,.

Proposition 1. Assuming AAz ;1 = Aw - ’}Tg, the matching probability
is Pa,,.a,(@) = (1 — (1-42)9) and the DCR is defined by

DCR: )k (@, d=01-01- ’%)ﬁ) S+ @-1.d-1))
v4

i

N (1 _ /ZW) % @d-1)  Vadez (2a)
r/lg‘sﬁz (4,0)=0 VieZ (2b)
2R (0,d) = 0. Vdez (20)

We prove Proposition 1 in Appendix B. Figure 1a illustrates the
marginal coverage of the DCR for a = 3 vehicles. The dth vehicle
additionally covers Ay - (1 — *f“—‘;”)ﬁ*]. In Fig. 2a, the DCR iso-rental
curves are schematically depicted, indicating which a,d combina-
tions lead to the same number of rentals. For every a, d combina-
tion, an increase of one of the quantities always results in a higher-
level curve, but the increase depends on the ratio of a and d. If a is
larger than d, an increase of a causes a smaller increase of rentals
r than if a and d are identical or if d is even larger than a, and vice
versa.

Remark. Note that for formal reasons Ay < A; is required such that
the matching probability does not exceed one. Naturally, Ay > 0
also holds. For Ay > A; the entire zone is always covered by the
remaining available vehicles such that every arriving customer re-
sults in a rental as long as at least one vehicle is available. In this
case, the matching process is rather trivial and, as we discuss later,
it is covered by the ICR, the state-of-the-art matching function.
This also holds for the following sections, in particular for the CCR
which is discussed next.
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3.3.2. The constant coverage rate matching function (CCR)

The CCR is derived from the generic matching function (1) in
two steps. The first step concerns the assumption regarding the
marginal coverage by an additional vehicle and, as the name sug-
gests, the CCR assumes a constant marginal coverage. More pre-
cisely, the marginal coverage for the (d+ 1)% vehicle is AAz ; =
min(A; — Az, Aw - A) with A € [0, 1], meaning that each additional
vehicle additionally covers the same fraction of the walking area
Ay - A until the residual of the zone’s covered area is smaller than
this Ay - A, such that the next vehicle covers this residual. The fac-
tor A allows to formulate a constant marginal coverage which im-
plicitly considers the potential overlap of the area covered by the
individual vehicles (as for the DCR). In Appendix C, we show that
for an expected number of available vehicles a, for example deter-
mined by historic data, A can be analytically approximated by

115
T A
A

A 3)

Qi =

With this assumption for AA;, ;, the covered area by d vehicles be-
comes A; = min(Az. A - 1 - @), and Py, 4, (@) = "2zAwl in (7).

In the second step to derive the CCR, the additional assumption
is taken that all customers have identical matching probabilities,
such that the former recursive formulation simplifies to

min(Az, Aw - A - - )
A,

Ta,.A; (@, d) = min ( -d,a, d), Va,deZ

(4)

with w € [0, 1]. The fraction in the first argument of the (outer)
min()-operator in (4) represents the average matching probability
for every of the d arriving customers. u allows to formulate the av-
erage covered area Ay - A - i -a, which is a fraction of Ay - A -a. In
the recursive formulations, the boundary conditions ensured that
rentals can not exceed a or d. In the explicit (4), this is ensured by
the second and third argument of the min()-operator. (4) can be
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simplified to the final CCR

CCR: 4R, (a.d) = min (1:‘” A a-d,a,d). Va,d ez (5)
'z

Clearly, u has to depend on the amount of customers arriving. We
show in Appendix C, that for an expected amount of customers d,
the parameter u can be analytically approximated by

Figure 1b illustrates the marginal coverage of the CCR for A = u =
1 and a = 3 vehicles. Every vehicle additionally covers Ay - A - u. In
Fig. 2b, the iso-rental curves of the CCR are schematically depicted.
In contrast to the DCR, for large values of a and/or d, an increase
of these quantities does not result in an increase of the rentals r.

- A

(6)

3.3.3. The infinite coverage rate matching function (ICR)

As the name suggests, the ICR assumes an infinite cover-
age by every additional vehicle (no friction). More precisely, the
marginal coverage for the (4+ 1)% vehicle is AA;,; = min(A; —
A;, Az), meaning that the entire zone is covered as long as there is
at least one vehicle available. With this assumption, Py, 4,(d) =1
for every arriving customer as long as there is at least one vehicle
available. Then, the ICR in dependence of a and d can be formal-
ized by

ICR: 1R

ks (a.d) =1"®(a, d) = min(a, d). (7)
Figure 1c illustrates the coverage of the zone according to the
ICR for a > 1 vehicles, showing that the entire zone is covered. In
Fig. 2c, the iso-rental curves of the ICR are schematically depicted.
If a is greater or equal to d, an increase of a does not result in
an increase of the rentals r, and vice versa. The iso-rental curves
demonstrate that the ICR follows the characteristics of a Leontief
production (Fandel, 1991, Chapter 4).

Regarding the relation between the matching functions, one can
state the following: When the first argument in the min()-operator
in (5) is not restrictive, the CCR (5) and the ICR (7) become iden-
tical. This first argument is not restrictive if A - - %VZV .a>1or A-

w- %VZV -d > 1. Further, the ICR is a special case of the DCR: When
Aw = Az, Py, 4,(@) =1 for every customer in the DCR (2) such that
rentals realize until all vehicles are taken, or all customers have
arrived - exactly as in the ICR (7). In the schematic depiction of
iso-rental curves of the DCR in Fig. 2a, the curves take the form
of the ICR in Fig. 2c if P, =1 for every customer. As stated in
Section 3.3.1, the DCR is not defined for A, > A;. Similarly, the
derivation of A and u for the CCR in Section 3.3.2 assumes Ay, < A;.
However, more general formulations of these two matching func-
tions that would also capture the case of Ay > A; would return
rentals as for Ay =A;, i.e. like the ICR, because A, = A; already
captures the case where the entire zone is covered by the avail-
able vehicles.

Va,d e Z

Remark. As discussed in Sections 1 and 2.2, it is current practice in
the SMS optimization literature to determine rentals for a specific
location-period combination by the minimum of the available ve-
hicles and arriving customers (also known as “perfect/frictionless
matching”, see Section 2.3). Literature applies this (implicit) as-
sumption to model both SB as well as FF SMSs. The ICR (7) is the
formalization of this assumption such that the ICR could be con-
sidered as the state-of-the-art matching function, even if not dis-
cussed as such in the SMS literature. Clearly, since the ICR does
not consider Ay and A, the ICR in general overestimates the actual
matching when applied to model an FF SMS for which A, < A;. In
the numerical studies in Section 4, we use the ICR as a benchmark
to evaluate the DCR and CCR.
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Note that in an SB SMS, where available vehicles and arriving
customers refer to a specific station, the issue of overestimating
rentals due to the neglection of spatial parameters A,, and A; de-
scribed above does not occur. Note further that the link between
SB and FF SMSs in the context of matching modeling can be es-
tablished by considering an extreme case of the zone area size: A
station of an SB SMS can be considered as a zone in an FF SMS of
infinitely small size - a point zone. In this point zone, the expected
rentals can be correctly described by the ICR (7).

3.4. Properties

In this section, we discuss mathematical properties of the three
matching functions r%v_AZ (a,d) with M € {DCR, CCR, ICR}. This anal-
ysis is common in the matching function literature, as it allows to
assess the plausibility of the derived functions by verifying desir-
able properties and to analytically derive limitations of the func-
tions’ applicability. Properties 1 and 2 can be considered as stan-
dard boundary conditions for matching functions. Properties 3 and
4 are related to the special case of “perfect/ frictionless” match-
ing (see Section 2.3) in FF SMSs. Properties 5 and 6 are specific for
matching functions in FF SMSs, while especially the latter also im-
pacts the formulation of overall optimization models for FF SMSs -
a particularly relevant aspect in our work (see also Section 3.5).

Property 1 - Zero rentals boundary conditions. If either demand
or supply are zero, no rentals realize. Formally, we have riﬁ”w’ A (a,d) =
Oifa=0ord=0.

This property verifies an intuitive boundary condition: The absence
of available vehicles or customers. Clearly, the DCR, the CCR, and
the ICR fulfill this property.

Property 2 - Supply and demand limits. If the number of avail-
able vehicles becomes infinitely large, the realized rentals equal de-
mand, and vice versa. Formally, we have rA}/’WYAZ (a,d) =d for a - oo
and r%vﬁz (a,d) = a for d — oo, respectively..

This property verifies an intuitive boundary condition in the abun-
dance of available vehicles or customers. Clearly, the CCR and the
ICR fulfill this property. For the DCR, consider that if a — oo, also
@ — oo and that the probability of a matching Py, 4,(d) = (1 — (1 —
1—‘;")&) — 1 in (2a), for realistic parameters where Ay, < A;. If this is
true for every arriving customer d, ™ = d. For d — oo, the recur-
sion in (2a) is executed until all vehicles a are taken because we
have Py, 4,(d) > 0Vd > 0.

Property 3 - Matching with certainty for entire zone cover-
age. If the vehicles cover the entire zone area, the next arriving cus-
tomer certainly finds a vehicle and a rental results. Formally, we have
S (@ d)=11ifAg=A,

This intuitive property covers constellations in which matching in
an FF SMS works as matching in SB SMS. For the DCR, A; = A, re-
quires the special case that A; = Ay, and in this case, Py, 4,(a) =1
for every arriving customer, as long as there is at least one vehicle
available. For the CCR, A; = A; means that Ay -A - -a=A; such
that the first argument of the min()-operator is not restrictive and
an additional demand results in an additional rental. The ICR ful-
fills this property by definition.

Property 4 - No matching for zero zone coverage. If the vehicles
cover an infinitely small zone area or the zone area grows to infinity,
there is no matching. More precisely, every additional customer re-
sults in zero additional rentals. Formally, we have %r%W.Az (a,d)=0
for Ag — 0 or A; — oo.

This property is the opposite of the aforementioned one. Compared
to the walking distance, distances are so long that there are no
rentals.
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For the DCR, both of the extreme cases result in Py, 4,(a) — 0
such that an additional customer does not increase the expected
rentals. For the CCR, the first argument of the min()-operator be-
comes zero such this property is fulfilled. The ICR does not fulfill
this property and in contrast predicts an additional rental for every
customer, given an available vehicle, no matter what sizes A, and
A; take.

Property 5 - Supply and demand symmetry. The matching func-
tion is symmetric regarding supply and demand. Formally, we have
2@ d) = rM 2, (d Q).
Obv10usly, the CCR and the ICR both fulfill this property. We prove
symmetry of the DCR in Appendix D.
It follows from the proof, that the DCR can be formulated by
interchanging d and d in (2) which yields

2R (d.d) = (1 (1 ﬂ)% A+ d-1.a-1)
+(1_7)d (d i-1) Vadez (8a)

PR (d.0) = vdez (8b)

2R (0,d) = VieZ (8¢c)

The intuition of this alternative DCR formulation (8) is exactly
inverse to the one described in Section 3.2.1: A customer covers a
certain fraction of the zone and every part of the zone is equally
likely to belong to the marginally covered area by an additional
customer. The positions where the available vehicles are located
are sequentially drawn at random from a uniform distribution. For
each drawn vehicle, the probability that it is rented is determined
by the respective proportion of the covered zone at the time it is
drawn. As for the DCR formulation (2), the process ends if either
the rentals realized equal the initial customer count, or if all vehi-
cle appearances were drawn.

Property 6 - Independence to zone partitioning. For the ICR, the
expected number of rentals does not change if a homogeneous zone
is artificially sub-divided into multiple sub-zones. Formally, if a zone
of zone area size A, is partitioned into Z sub-zones, r/’qcm’fAz (a,d) =
R (4, 9) holds.

Mawziz\Z

Property 6 states that artificially partitioning a zone into multiple
sub-zones does not change the overall expected number of rentals
for the ICR. Consider that the collected data on the zone level is
given by a, d, and A,. A, is also given. When data is collected on
this zone level, the only reasonable assumption is that this zone
is homogeneous, such that a and d would be divided proportion-
ally to obtain the respective quantities for the Z smaller sub-zones,
ie ¢ and %. Consequently, the resulting rentals for the ICR in each
sub-zone are the rentals of the original zone divided by Z. Since
there are Z of these sub-zones, overall, the amount of rentals re-
mains the same.

This property is the reason for the fact that the issue of inaccu-
rate matching modeling cannot be simply solved by partitioning a
zone artificially into multiple smaller sub-zones of the 'right’ size
for the ICR (see the corresponding statement in Section 1). This
property is illustrated with a numerical example in Appendix I.
Note that an analogous property holds for the DCR and CCR, which
considers the probabilities of all combinations of possible discrete
distributions of a and d over the sub-zones and then applies the
matching functions on these sub-zones.

3.5. Integration in linear optimization problems

As described in Sections 1 and 2.2, a lot of work has been done
in the literature to cover the various SMS optimization problems
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based on network flow modeling. Mostly, the resulting formula-
tions are mixed-integer linear programs (MILP). As explained, our
work particularly focuses on the optimization models of FF SMSss
and in this section, we therefore discuss whether the introduced
matching functions can be linearized losslessly, such that an exact
integration in a typical MILP is possible.

The decisive characteristic of spatio-temporal network flow for-
mulations, illustrated in Figure 14 in Appendix A, is a set of con-
straints that describe the flow conservation in the network. With
discrete locations i, j, k € Z, and periods t € T, the flow conserva-
tion constraints can be formulated as

D _Tije +Sje = DTkt + i+ Viez.teT, )

ieZ kez

where r;;; describe the rentals from location i to j in period t, and
sjr describe the vehicles that remain unused at location j in pe-
riod t. Now, the number of rentals originating at a location i, given
by ri = 3 jez Tije, are assumend to realize according to a specific
matching function, depending on the number of available vehicles
a; and the arriving customers dy = }_jc 7 d;j;. Therefore, the logic
of the matching functions to determine r; has to be formulated
by means of additional constraints within the MILP formulation.
Note that additional constraints are required to derive the i-j-t-
specific rentals r;j; from the ry-values, but this is out of scope of
the matching itself.

Note further that, in contrast to d;, the quantities r; and a;
are decision variables in the MILP. In certainty equivalent formu-
lations (based on expected values), these decision variables are
continuous, meaning a;, iy € R Vie Z,t € T. In the following, we
therefore discuss for each of the initial matching functions from
Section 3.3, whether the range of values Z for a; and d;; can be
replaced by RT, how the functions are formulated for a specific
i-t-combination, and whether a lossless integration in a MILP for-
mulation is possible.

3.5.1. DCR
For a specific i-t combination, the DCR (2) becomes
PR (@, di) = (1= (1 - )“n) A+ 2%, @ —1,d — 1))
Aw.a, .

+(1- A*W)a" ~T35§2W.Az(au, ii—1) Vi, diy € Z (10a)
Z

R A G, 0) = Vé e Z (10b)

e 0. di) = Vd, < Z (10¢)

Due to the recursive formulation of the DCR (10) which is only
defined for discrete values Gy, d;; € Z, the range of values for d;
and (f,-f, and therewith also for rgﬁfw_ A, (Gje, Ciit), cannot be replaced
by the continuous range ]Ra’. Figure 3a depicts (10) schematically
(for Aw < A;). For a given demand level d, it illustrates how the
realized rentals r%f . (. d;) depend on the number of initially
available vehicles a;. Every additional vehicle increases the ex-
pected rentals with decreasing margin such that the demand is the
limit of the function.

Clearly, since for a given a;, d;, (10) is a discrete function in
a;y € ZVie Z,t € T, the DCR can not be losslessly linearized and
integrated in a MILP formulation. Note, however, that the DCR
may find application in (non-linear) optimization approaches with
discrete a;; € Z, such as for example in an approach based on a
Markov decision process (MDP).

As for any function, an approximate linearization is possible in
principle also for the DCR. However, the question is how accurate
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Fig. 3. Schematic representation of matching functions.

such a linearization is and, in the context of a MILP, how this im-
pacts the number of decision variables and constraints. A reason-
able way to linearize the DCR would be to define a piecewise lin-
ear function with supporting points for every a; < Z, for which the
exact r;; is known. This would correspond to a function that con-
nects the dots in Fig. 3a. While this is possible in theory, it would
require a large number of additional auxiliary variables in a MILP
in order to determine which piece of this function is active. Thus,
we do not see this as a promising path.

3.5.2. CCR
In the CCR (5), the range of values for a, d, and rgngz (a,d) can

be replaced by R{. For a specific i-t combination, the CCR becomes

. A
T, a, (@ic, dig) = min(d - - TW “dig - G, G, dig). Vai, dip € RE
'z
(11)

Since A, u,Aw,A; and d; are parameters, one can pre-compute
whether the first or the second argument of the min()-operator
is smaller. We define this i-t-specific pre-computed parameter as

. A
Vi =min(h - 20 di 1) (12)
'z
and therewith obtain
rﬁi’fwﬁz (ai, dig) = min(Yy - ai, dit), Yai, di € RH (13)

which is schematically depicted in Fig. 3b. It illustrates that for the

CCR (13), the number of expected rentals r{X . (a;, di;) is a piece-

wise linear function of a; with two pieces, where d;; determines
it

the height of the horizontal second piece. As long as a; < i+ an
increase of a; results in the same marginal increase of rentals. This
marginal increase is determined by the slope parameter y;, deter-
mined with (12) or tuned (based on simulations or the DCR) to
obtain an overall good fit for a certain range of expected a;, dj.
For a;; > d?, an increase of a;; does not increase r{% , (ai. di).

The CCR (13) can be losslessly linearized and integrated in a
MILP formulation with a set of auxiliary variables and correspond-
ing constraints. Depending on the actual a;, these constraints de-
termine which part of the piecewise linear function needs to be
active. The model (44)-(58) in Appendix F that we apply in the
case study in Section 5 is an example of a CCR integrated into a
MILP for a differentiated pricing optimization problem.

3.53. ICR
In the ICR (7), the range of values for a, d, and rR(a, d) can be
replaced by R} For a specific i-t combination, the ICR (7) becomes

(14)

which is schematically depicted in Fig. 3c. Like for the CCR, the
number of expected rentals ri®(a;. d;) in the ICR is a piecewise

rl!fCR (ai, dir) = min(ay, dy), Yai, di € Rar

1203

linear function of the initially available vehicles count a; with two
pieces where d;; determines the height of the horizontal second
piece. In contrast to the CCR, the slope of the first piece is y; = 1
such that every additional a; results in a rental, as long as a;; < d;.

Analogously to the CCR, a set of auxiliary variables and cor-
responding constraints enables a lossless integration of (14) in a
MILP. Examples for the integration of the ICR in SMS optimiza-
tion problems are Hardt & Bogenberger (2021) for relocation and
Soppert et al. (2022) for pricing.

4. Computational study

In this section, we evaluate the rental prediction accuracy of
the three matching functions DCR, CCR, and ICR introduced in
Section 3.3. We consider two general settings, i.e. the single zone
single period setting and the multiple zones multiple periods setting,
discussed in Section 4.1 and 4.2, respectively. The subsections for
each setting are organized as follows. We begin with an introduc-
tion of the setting (4.1.1 resp. 4.2.1), followed by the description
of a simulation which serves as a benchmark (4.1.2 resp. 4.2.2),
the parameter configurations (4.1.3 resp. 4.2.3), and the evaluation
metrics (4.1.4 resp. 4.2.4). The last subsections discuss the results
(4.1.5 resp. 4.2.5).

4.1. Single zone single period setting

4.1.1. Setting

The single zone single period (SZSP) setting is a stylized setting
where the FF SMS, as the name suggests, consists of one single
zone and one single period. The purpose of this setting is to isolate
the assessment of the rental prediction accuracy, and to eliminate
potential effects that would result from replicating a real FF SMS
consisting of more than one zone and multiple periods. For each
considered parameter configuration, characterized by a given num-
ber of available vehicles a at the beginning of the period, a given
number of customers to arrive d, and a specific choice of walk-
ing area Ay and zone area A; size, rlﬁ"’MZ (a,d) is evaluated for the
different matching functions M e {DCR, CCR, ICR}. The outputs are
compared to a benchmark from a stochastic dynamic simulation,
described next.

4.1.2. Simulation benchmark

The simulation of the SZSP-setting is consistent with the
generic matching process described in Section 3.2, i.e. vehicles are
available at the beginning of the considered period, while cus-
tomers arrive sequentially during the period. For each considered
parameter configuration, we derive the benchmark by perform-
ing multiple simulation runs n e N ={1,2,..., N} that each yield
a rental observation ry,.

At the beginning of each simulation run n, a given number of
available vehicles a is distributed within a squared zone of size A;.
In line with the assumptions from Section 3.2.1, a zone is homo-
geneous and consequently, the location of each vehicle is drawn
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Fig. 4. Run of SZSP-scenario with A, =1 km? in retrospective (a = 10, d = 10).

from a uniform distribution. A given number of customers then ar-
rive sequentially and their respective point of appearance is drawn
from a uniform distribution as well. The customers have a max-
imum walking distance (corresponding to A, ) and the assump-
tion is that if there is at least one vehicle within reach, the clos-
est one is rented. This vehicle is then removed and the rental is
recorded. Independent of the actual rental outcome, the number of
customers to come is reduced by one and the process is repeated
until all d customers have arrived. The simulation process for one
simulation run is summarized as pseudo code in Algorithm 2 in
Appendix E.

To clarify the setup, consider Fig. 4 that depicts a single sim-
ulation run of the SZSP-setting with A, =1 km? in retrospective.
The a = 10 initially available vehicles are represented as blue tri-
angles, and the d = 10 customers, that arrived sequentially during
the run, are represented by red dots with their respective walking
area, depicted as red circles. One of the vehicles, the one in the
lower left corner of the zone, was out of reach for all customers.
Consequently, this vehicle has not been rented in this simulation
run. Note, however, that even though all other vehicles lay within
at least one of the red circles, they were not necessarily rented, be-
cause the respective customer might have taken a different vehicle.
Since Fig. 4 does not show the temporal sequence of the run, some
of the vehicles depicted have not been available for the customers
that arrived rather late. In fact, only r,, = 6 rentals realized in this
particular run.

Note that Fig. 4 shows that parts of the walking area may lay
outside of the zone. The actual area of the zone which is within
reach of a customer therewith is smaller than the walking area.
For the benchmark simulation, we exclude this effect by the fol-
lowing mechanism: Whenever a part of the walking area protrudes
beyond the zone boundary, this part is displaced to the other side
of the zone. The effect is that the entire walking area actually lies
within the zone. Thus, our zone has a limited size, but effectively
no border, like the surface of a sphere.

4.1.3. Parameter configurations and scenarios

We consider the following parameter settings, with every po-
tential combination of values defining a valid parameter configura-
tion:

e Available vehicles (Vszsp): a is selected from the discrete set

Vszsp = {0, 1, ..., 10}.

Arriving customers (Dszsp): d is selected from the discrete set

Dszsp = {0,1, ..., 10}

Walking area size (Aw): Aw is kept constant at Ay =7 -

(0.3km)2 = 0.28 km?. The radius of 0.3 km represents a real-

istic maximum walking distance (Herrmann et al., 2014).

e Zone area size (A;): A; is selected from the discrete set A; =
{0.5 km?, 1 km?,2 km?, 4 kmz}, representing the typical range
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of zone size values from literature (e.g. Miiller et al., 2017;
Weikl & Bogenberger, 2016) and practice.

We use the term SZSP-scenario to refer to parameter settings
having the same value of A, i.e., we group all resulting parameter
configurations for a specific A; to belong to one scenario. Note that
in this stylized setting there is no supply or demand uncertainty,
meaning that a and d have no variance within a scenario but are
deterministic values. We perform N = 100 simulation runs for ev-
ery parameter setting.

4.1.4. Evaluation metrics
We use the following metrics to assess the rentals prediction
accuracy:

o Rentals (RT): The expected absolute rentals RT predicted by
the matching functions are simply f:r%v,Az(a, d) with M e
{DCR, CCR, ICR}. With regard to the simulation benchmark, the
corresponding value is obtained from averaging over the simu-
lations runs, i.e., iy = § Y pen -

« Rentals’ mean error (RTME): The mean absolute error RTME be-
tween the expected rentals 7 predicted by a matching func-
tion and the N observations of the simulation benchmark r;, is
RTME — 7 _ 7y,

« Rentals’ mean relative error (RTMRE) [%]: The mean relative er-
ror RTMRE between the expected rentals 7 predicted by a match-
ing function and the N observations of the simulation bench-
mark r,, is RTMRE — (¥ — 7y) /7y - 100.

4.1.5. Results

We begin by investigating the predicted and observed abso-
lute rentals RT on an aggregate level. Therefore, we consider Fig. 5
which provides a first impression of how the different matching
functions predict rentals and how the rentals observed in the sim-
ulation benchmark depend on supply, on demand, as well as on
the zone area size. In each of the subfigures, the vertical axis of the
surface plot represents expected and observed rentals RT for the
matching functions and the simulation benchmark, respectively.
The horizontal axes represent a € Vszsp and d € Vgzpz, respectively.
The two rows depict the results of the SZSP-scenarios A; = 1 km?
and A, = 2 km?. The respective graphs for all scenarios, i.e. for all
A; € Az, are depicted in Figure 16 in Appendix G. The columns
depict the mean of the simulation benchmark (SIM), and the ex-
pected rentals predicted by DCR, CCR, and ICR. From considering
Fig. 5, the following observations can be made, which partly relate
to the properties discussed in Section 3.4.:

e For all matching functions, the surfaces are bounded to RT =
0 for all a-d combinations where a =0 or d =0 (see Property
1). All graphs increase monotonically in a and in d, which is
reasonable, since additional vehicles/ additional customers can
never, ceteris paribus, decrease but may increase the (expected)
rentals.

o While the surfaces of the DCR resemble the SIM benchmarks in
their general shape of being strictly concave in a and d, espe-
cially the ICR but also the CCR differ as they both run into satu-
ration if one of the inputs is fixed and the other increased (see
Property 2). The ICR has the characteristic shape of a Leontief
production, consisting of two planes that intersect on the diag-
onal between a- and d-axis. The CCR takes this shape for large
values of a and d. On this a-d-diagonal, the surface of SIM and
DCR is strictly concave. The ICR grows linearly on this diagonal
and for the CCR, the first part of the diagonal is strictly convex
and then grows linearly from some point on. For all matching
functions, the surfaces are symmetric on the diagonal between
a- and d-axis (see Property 5).
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(b) A, = 2 km?

o Comparing the respective observed and predicted rentals for
a =10 and d = 10 reveals, that all matching functions overesti-
mate the SIM results at this point, but that the DCR prediction
is better than the ICR and CCR. Considering the surfaces overall,
as well as the concave and convex shapes of the surfaces on the
diagonal discussed above, indicates that the DCR approximates
the SIM best, followed by the CCR and then the ICR.

We continue the discussion of results by comparing the rental
curves RT for specific values of the demand d, depicted in Fig. 6.
These graphs which are common to depict matching functions can
be thought of as corresponding vertical cuts through the surface
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plots in Fig. 5. Again, the two rows depict the SZSP-scenarios with
A; =1 km? and A; = 2 km?. The respective graphs for all A; € A,
are depicted in Figure 17 in Appendix G. The columns correspond
to different demands d. The simulation (SIM) results are depicted
by a black solid line, the results of ICR in dashed blue, CCR in dot-
ted red, and DCR in dotdashed green. The following observations

can be made:

e As illustrated in Fig. 3 in Section 3.5, the DCR is strictly concave
in a, while both ICR and CCR take the form of a piecewise linear
function with a positive slope piece anchored at the origin and

a second horizontal piece.
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Fig. 7. Exemplary mean absolute error RTME in two SZSP-scenarios.

o The expected rentals predicted by the DCR are almost identi-
cal to the average SIM results, for all a-d combinations and all
A;. The characteristic strictly concave shape of SIM is perfectly
modeled by the DCR. The CCR underestimates SIM for small
values of a and d. For large values, it overestimates this bench-
mark. As above, for large a and d, the CCR and the ICR do not
differ (see Figures 17(a2)-17(a4) in Appendix G).

The ICR overestimates the SIM rentals for all a-d combinations.
The difference grows in the size of the zone A, and for a cer-
tain A, it reaches its maximum at a = d. Moreover, this max-
imum difference grows in d. This can be explained as follows:
The ICR assumes a perfect matching, which is appropriate if the
zone size A, equals the walking area. However, when the zone
becomes larger, the probability that an available vehicle is actu-
ally in walking distance to a customer decreases. The maximum
is at a = d because at this value, each customer needs to find a
vehicle for the ICR to be exact. By contrast, imagine d =a+1,
then we have an additional customer and the ICR prediction is
still realized if one customer cannot reach a vehicle.

In the following, we discuss the results based on the introduced
metrics. Figure 7 and Table 3 in Appendix G contains the values of
RTME for the DCR, CCR, and ICR for all parameter configurations,
grouped by SZSP-scenarios A; € A;. The corresponding RTMRE are
depicted in Fig. 8 and Table 4 in Appendix G.

o For the DCR, RTME takes both positive and negative values.
The minimum RTME is between -0.06 (A, = 0.5 km?) and -0.20
(A; = 2 km?), i.e. -3.8% and -1.0% RTMRE. The maximum RTME
is between 0.19 (A; =0.5 km2) and 040 (A, =1 1<m2), i.e. 2.9%
and 5.6% RTMRE,

For the CCR, RTME also takes both positive and negative values.
The minimum RTME is between -0.06 (A, = 0.5 km?) and -0.80
(A; = 1 km?), i.e. -13.7% and -32.0% RTMRE_ The maximum RTME
is between 0.85 (A; = 0.5 km2) and 2.20 (A, =1 kmz). i.e. 11.9%
and 28.2% RTMRE,

For the ICR, RTME only takes values greater or equal to zero.
The maximum RTME is 0.85 (A, = 0.5 km?) and it grows to 5.75
(A; = 4 km?), i.e. to 11.9% and 135.3% RTMRE,
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The above results demonstrate that in general, the ICR matching
function is not suitable to predict rentals accurately in the stylized
SZSP-setting that only considers one zone. In particular, they show
that only the novel matching functions are capable to adapt to dif-
ferent zone area sizes. While the prediction error diminishes when
the zone area size equals the walking area size and might be ac-
ceptable in our scenarios with ratios of walking area and zone area
in the approximate range ﬁ—‘g > % the ICR overestimates the ob-

served rentals in the SIM benchmark substantially for smaller /}TW
Since larger zone areas are commonly used in literature as well as
practice and since using multiple smaller zones comes with sev-
eral disadvantages (see Section 1), the ICR’s applicability is limited.
In contrast, the CCR considers A, and A; in the matching predic-
tion and therewith is capable of predicting the rentals in the SZSP-
setting much more accurately, especially for smaller ratios of ’)‘—VZV.
The DCR predicts the rentals best in the SZSP-setting and in par-
ticular performs better than the CCR for ratios of around AW = %
Overall, the adaptability of CCR and DCR to different zone 51zes is
the key advantage over the ICR. As discussed in Section 3.5, the de-
cisive disadvantage of the DCR is that it can not be losslessly inte-
grated in a linear network flow SMS model, such that the DCR can
not be considered in the following numerical results of the MZMP-
setting.

4.2. Multiple zones multiple periods setting

4.2.1. Setting

The multiple zones multiple periods (MZMP) setting replicates an
entire FF SMS with Z =59 zones 2 ={1,2,...,Z} and T =48 pe-
riods 7 ={0,1,...,T — 1} of 30 min each which together replicate
one day. The purpose of this MZMP-setting is to assess how dif-
ferent matching functions affect the overall rental prediction ac-
curacy when supply and demand interact in an entire FF SMS. In
this setting, only the size of the zones A; changes over the parame-
ter configurations, replicating multiple FF SMSs with identical zone
number but with different sizes of the operating area. Think of
cities with the same number of inhabitants, but spread over areas
of different sizes, i.e. with different densities. The MZMP-setting is
based on a real-life FF SMS: The vehicle fleet is initially distributed
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over the zones in line with historical data from Share Now. Cus-
tomers arrive according to a demand pattern over the different
zones and periods, which is obtained from historical data as well.
More precisely, for every zone i € Z, 4, defines the initial vehicle
count and for every zone-zone-period combination (i-j-t combina-
tion with i, j € Z,t € T), the demand d;j; is given.

Due to the non-disclosure agreement with our practice part-
ner, we do not state these parameters above explicitly. However,
the following general statements regarding the data used can be
made. Data sources for estimating the demand are primarily the
realized app openings as well as the realized rentals. Every data
point of an app opening contains information regarding location
and time. Clearly, not every single app opening can be counted
as an individual demand, e.g. because a customer might simply
check a payment history or might check vehicle availability mul-
tiple times before the actual booking. However, with much data
and experience, the provider can estimate the actual demand from
these app openings. These data points are then mapped to a given
discretization scheme, meaning to zone-period combinations. Aver-
age values over multiple identical days can then be derived. To ob-
tain the demand data for every zone-zone-period combination, i.e.
the expected destinations for the demand originating at a certain
zone-period, the proportions of rentals that realize can be used as
a proxy for the demand proportions. Clearly, rentals only reflect the
served (constrained) demand, which is why unconstraining tech-
niques can come into place (see e.g. Talluri & van Ryzin, 2004,
Chapter 9.4). Similar to the demand on zone-period level, the ini-
tial vehicle count can be obtained by mapping and averaging data
points of available vehicles to the respective zone-period.

As in the SZSP-setting, the benchmark in the MZMP-setting
stems from a stochastic dynamic simulation, with the difference
that the rentals that evolve over one entire day throughout the
entire SMS are considered. The latter also implies that, in con-
trast to the SZSP-setting, the matching functions can no longer be
directly evaluated for a given parameter configuration. Therefore,
to evaluate the matching functions, we integrate the two func-
tions which can be losslessly linearized - the CCR and the ICR -
in an FF SMS model that is based on a linear network flow for-
mulation, as described in Section 3.5. In each zone-period com-
bination, the rentals realize according to the respective match-
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ing function rl.ctgfw‘ 4, (@i, dir) and rﬂw 4, (@it di). The constraints of
the network flow formulation ensure that these rentals r{‘t” with
M e {CCR. ICR} split into the different rf‘]/.’t in proportion to the given
demand pattern, meaning r}‘J/’.t =4 M Vi, je Z.t e T. Therewith,
the rentals that realize over all zones and periods according to a
specific matching function can be derived.

dije

4.2.2. Simulation benchmark

For a specific parameter configuration of the MZMP-setting, we
derive the respective benchmark by performing multiple simula-
tion runs n e N = {1,2, ..., N} that each yield a rental observation
rijt,n for every zone-zone-period combination (i-j-t combination
with i, j € Z,t € T). Primarily, we consider the observed rentals on
the period-level, meaning ren = 3 jcz > jcz Tijen-

At the beginning of each run, the vehicle fleet is initialized ac-
cording to the initial spatial vehicle distribution ay = [dj]z.1. Each
zone then exactly contains the number of vehicles as defined in ag,
and the precise location within a zone for each of the vehicles is
randomly determined from the uniform distribution. The customer
arrival process follows a Poisson process P, in which the intensity
At varies for the periods and equals the demand in the respec-
tive period, meaning Ar = Y icz 3 ;. z dijr/30 (unit of A is [1/min]).
The inter-arrival time At until a new customer arrives is sam-
pled from the exponential distribution At ~ Exp(A¢). Whenever a
customer arrives in period t, the customer’s origin zone i is deter-
mined by roulette wheel selection, i.e. the probability for arrival in
iis Py =Y .z dije/ Yiez X jez dije (see previous section for de-
mand pattern d;;;). The customer’s exact origin location is deter-
mined by uniform distribution of positions within the origin zone.
All available vehicles within the walking distance of 0.3 km are
determined and, if there is at least one vehicle within reach, the
customer chooses the closest one for rental. Note that, in contrast
to the assumptions in the SZSP-setting (end of Section 4.1.2), cus-
tomers may now cross the border of a zone and take a vehicle
from a neighboring one. If there is no vehicle within reach, the
customer leaves the system without further consideration. In case
of a rental that originates at a certain i-t-combination, the destina-
tion zone is again determined by roulette wheel selection, i.e. the
probability for destination zone j is P4eSmatiOn — dyje/ 37y dyy. All
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Fig. 9. Scenario with MZMP and Z = 59, A, = 1 km?, A, = 59 km?.

rentals have a duration of 15min and immediately become avail-
able as soon as a rental is terminated. Note that here, in con-
trast to the SZSP-simulation, not all vehicles are necessarily avail-
able at the beginning of a period. The customer’s exact destina-
tion location is determined by uniform distribution of positions
within the destination zone. This process of customer arrival sam-
pling and potential rental determination is executed until the cu-
mulated arrival time over all customers exceeds the considered day
Tmax = 48 - 30 min. One simulation run is depicted as pseudo code
in Algorithm 1.

Algorithm 1 MZMP simulation (one run n € \).
initialize simulation time 7 =0
initialize rental count r; , =0Vt € T
distribute vehicles randomly according to &,
initialize set of available vehicles yavailable with all vehicles
initialize set of currently rented vehicles yrented — ¢
while 7 < T2 do
- draw inter-arrival time At from exponential distribution
AT ~ Exp(A¢)
- update simulation time 7 < T + AT
if vehicles in Vrened have arrival time < 7 then
- remove respective vehicles from prented
- add respective vehicles to yavailable
end if
- determine current period t
- determine customer’s origin zone i with probabilities
Pi‘t’”g’" VieZ
- determine customer’s exact origin location within origin
zone i by uniform distribution
- determine distances to vehicles in yeveilable
if at least one vehicle in walking distance then
choose closest vehicle from yavailable
remove chosen vehicle from yavailable
add chosen vehicle to yrented
record rental: 1y < 1ep+ 1
determine destination
pjd[estmanon Vj cZ
- determine customer’s exact destination location within j
destination zone by uniform distribution
end if
end while

zone j with probabilities

To clarify the setup, consider Fig. 9a that depicts a snapshot of
a single simulation run. In the simulation, the zones are squares
of the same size and in this particular parameter configuration,

A =1 km? for all zones. Note that since the considered FF SMS
consists of 59 zones, the five zones represented in the top row on
the right are out of the simulation’s scope. The vehicles are repre-
sented as blue triangles, and the currently rented vehicles are de-
picted at the rental origin with a dotted line that ends at the rental
destination. One customer arrived in the considered instance, rep-
resented by the red dot with walking area, depicted as red cir-
cle. For this particular customer, no available vehicle was within
reach. Figure 9b depicts the demand and the resulting rentals av-
eraged over all N runs in the course of the day. More specifically,
the dotted black curve represents the aggregate demand over all
zones for every single period ¢ € 7, meaning dr = Y.z 3 jc z diji-
The solid black curve represents the mean aggregate rentals over
all zones for every single period t € 7, meaning 7 y = %Zne_v Tt.N-
This rentals curve for various parameter configurations serves as a
benchmark to evaluate the rentals prediction of the matching func-
tions qualitatively.

4.2.3. Parameter configurations and scenarios
We consider the following parameter values:

Available vehicles (Vyzyp): The initial fleet distribution Vyzyp
remains constant over all studies and it is chosen according to
real-life data. The overall fleet size is 3~ ; djo = 201 and for the
individual zones, the initial vehicle count lays in the interval
ﬁ,-o € [0, 10] \7’1 e Z.

Arriving customers (Vyzyp): The pattern of arriving customers
Vyvzmp Temains constant over all studies and it is chosen ac-
cording to real-life data. The d;; values vary in the interval
dij[ € [0, 18]Vl,] eZ,teT.

Walking area size (Aw): As in the SZSP-setting, the size of
the reachable area by walking is kept constant at Ay = -
(0.3km)?2 = 0.28 km?.

Zone area size (Az): We obtain four scenarios by considering
the sizes of the zone area A, = {0.5 km?, 1 km?,2 km?, 4 kmz}.
This can be considered as different cities with the same fleet
and demand, but spread over operating areas of different size,
ie. Ap =295 km? to Ao =236 km?. Note that the number of
zones remains identical in each scenario. In Appendix I, in con-
trast, we consider a setting in which a given operating area is
partitioned into a different number of multiple zones.

We perform N = 100 simulation runs for every variant, meaning
for every matching function in each parameter configuration (here
equivalent to scenario).
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4.2.4. Evaluation metrics

Analogous to the SZSP-setting, we use several metrics to assess
the rentals prediction accuracy. Different from above, all metrics
here are time-specific:

e Rentals (RT;): The period-specific absolute rentals RT; are de-
termined as follows for the simulation and the matching func-
tions. The mean observed rentals in the simulation for a
specific period t are ft_N:%ZnEN Yicz X jez Tije.n- The pre-
dicted rentals by the network flow-based model with integrated
matching function for a specific period t are 7t = 3z > ez Tije-

« Rentals mean error (RTME): The period-specific mean abso-

lute error RTtME between the predicted rentals by the network

flow-based model with integrated matching function 7; and the

mean observed rentals in the simulation 7; y is RTME = 7 — 7 y.

Rentals mean relative error (RTMRE) [%]: The period-specific

mean relative error RTMRE between the predicted rentals by

the network flow-based model with integrated matching func-
tion 7 and the mean observed rentals in the simulation 7y is

RTMRE — (F, — T, N)/Te.n - 100.

4.2.5. Results

Figure 10 depicts the mean rentals RT; for the simulation bench-
mark (SIM) and the predicted rentals by the two linear network
flow formulations with CCR and ICR in the course of the day
for the four MZMP-scenarios with A; = 0.5 km?, 1 km?,2 km?, and
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4 km?. In Figs. 11, 12 and Tables 5, 6 in Appendix H, the corre-
sponding mean errors RTME and mean relative errors RTMRE are
depicted. The most relevant results can be summarized as follows:

The rental curves follow the typical demand pattern with two
peaks around 8:00 and 19:00.

Despite the identical demand pattern in all scenarios, the SIM
benchmark of RT; (solid black) varies substantially. As the city
considered becomes less dense (mimicked by increasing c.p.
A7), the number of rentals quickly decreases (by a factor of
more than 10) from A; = 0.5 km?2 to A; = 4 km?2. This can be ex-
plained as follows: For small A; (dense cities), customers’ walk-
ing area is comparatively larger. This increases the matching
probability because - given the same number of vehicles in the
operating area - they can walk to more vehicles. By contrast,
with large A; (low density), the available vehicles are spread
over large distances and customers more often do not find a
vehicle in their walking distance.

The predicted ICR rentals are identical in all scenarios, because
the ICR is independent of A; (see (7)). While for A; = 0.5 km?,
the overall rental curve incidentally resembles the SIM bench-
mark, it increasingly overestimates the benchmark with grow-
ing A;. Already for A, = 1 km?, the ICR rental predictions are far
from the SIM benchmark. The mean error RTME lies between
[-17.7, 10.7] for A, = 0.5 km?, [15, 48.2] for A, = 1 km?, [4.7,
86.3] for A, = 2 km?, and [6.0, 105.2] for A, = 4 km?. In the pe-
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riods between morning and evening peak, the mean relative er-
ror RTMEE lies in the range of [-19.3%, 14.0%] for A, = 0.5 km?,
[18.9%, 92.9%] for A, = 1 km?, [21.7%, 478.7%] for A, = 2 km?,
and [870.8%, 2199.6%] for A, = 4 km?.

The CCR rentals curve resembles the the SIM benchmark for
all A; (densities). The mean error RTME lies between [-17.2,
8.7] for A, =0.5 km?, [-8.7, 41.0] for A, =1 km?, [-2.9, 4.2]
for A, =2 km?, and [-3.1, 1.0] for A, =4 km?. In the periods
between morning and evening peak, the mean relative error
RTMEE [ies in the range of [-19.2%, 11.2%] for A, = 0.5 km?, [-
13.7%, 2.2%] for A, = 1 km?, [-11.3%, 30.5%] for A, = 2 km?, and
[-32.9%, 24.1%] for A, =4 km?. In comparison to the ICR, the
curve changes with varying zone size A;, demonstrating the
CCR’s capability to adapt to scenarios with high and low den-
sity also in the MZMP-setting.

As in the SZSP-setting, also the above results in the MZMP-
setting demonstrate that the ICR in general is not suitable to pre-
dict rentals accurately and that the CCR in contrast is capable of
adapting to different densities. For the A; = 0.5 km? scenario (high
density), both ICR and CCR provide good rentals predictions. For
larger A; (low density), however, the ICR substantially overesti-
mates the SIM benchmark by a factor of approximately 2 in the
A, = 1 km? scenario and up to a factor of approximately 20 in the
A, = 4 km? scenario, while the error RTMRE of CCR remains in a
relatively narrow range of up to approximately 30% at the most.
It may be tempting to wrongly think that A, =0.5 km? always,
meaning for all possible instances, is a good value for the ICR.
Certainly, the results (SZSP- and MZMP-setting) show that smaller
zones which are closer to the walking area are favorable over
larger zones with regard to the overall rental prediction accuracy
that can be obtained when applying the ICR. However, since cus-
tomers and vehicles in neighboring zones do not match in network
flow formulations with discrete zones (as in the MZMP-setting),
rentals that realize in reality are increasingly neglected when hav-
ing multiple smaller zones. This means that the increased accuracy
within a zone might be overcompensated by a reduced accuracy
across zones. The specific results depend on the actual homogene-
ity of the zones and whether they can in fact be considered as
disjunct zones for which there are indeed no customers crossing
the borders.

5. Pricing optimization case study

In this section, we evaluate the performance of the CCR and
ICR matching functions in an FF SMS optimization problem. To
that end, we present a pricing optimization case study based on
Share Now data and assess whether more accurate rental predic-
tions can result in better pricing decisions and eventually higher
profits (more precisely contribution margin). The problem that we
consider is a differentiated pricing problem for SMS that was dis-
cussed in Soppert et al. (2022) and for which a MILP, based on
a network flow formulation, with ICR matching function was pro-
posed. We adapt the MILP formulation by integrating the CCR. For
the different instances considered in this case study, we derive
pricing solutions with both of the MILP models and evaluate them
in a simulation study.

The differentiated pricing problem and its original as well as
the adapted mathematical modeling are introduced in Section 5.1.
Section 5.2 discusses the setup of the simulation study we use to
evaluate the different pricing solutions. In Section 5.3, we intro-
duce the considered parameter configurations as well as the met-
rics we use. Section 5.4 discusses the obtained results.
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5.1. Problem statement and mathematical modeling

The origin-based differentiated pricing problem (OBDPP) in SMSs,
as defined in Soppert et al. (2022), is a pricing problem in which
spatially and temporally differentiated minute prices have to be
determined, to maximize the contribution margin of an SMS.
More precisely, an SMS is discretized into Z different locations
Z={1,2,...,Z} and the considered time span of one day is dis-
cretized into T periods 7 ={0,1,..., T — 1}. For every i-t combi-
nation with i e Z,t € 7, a minute price p; is to be chosen from
a given price set P = {p!, p',..., pM} with corresponding price in-
dices M = {1, 2, ..., M}. Origin-based refers to the fact that, in con-
trast to a trip-based pricing mechanism for example, all rentals
that begin in a certain i-t combination, are charged with the same
minute price p;. Note that differentiated (=static), in contrast to
dynamic (see Agatz, Campbell, Fleischmann, Van Nunen, & Savels-
bergh, 2013), refers to a pricing approach where prices do not de-
pend on components of the current state of the system that are
unobservable by the clients, such as current fleet distribution, but
can be pre-computed and pre-published. The OBDPP assumes sup-
ply and demand matching according to the ICR.

The OBDPP can be modeled by a MILP which is based on a
deterministic network flow formulation where expected vehicle
movements are represented by flows in a spatio-temporal network,
as depicted in Figure 14. Vehicle flows consist of actual rentals rl.';'t
from location i € Z to j e Z in period t € T and at price p™ with
index m € M (solid arcs), or unused vehicles s; that remain in the
same location i € Z at period t € 7 (dashed arcs). For every i-j-t
combination, the respective basic demand d;j; is assumed to scale
with the i-j-t-specific sensitivity factor l']”t depending on the price
p™, to the actual demand dgﬁ‘[ = d;jr fl’]"t The main components of
the OBDPP MILP formulation are as follows:

e An objective function that maximizes the contribution mar-
gin from rentals that realize at different prices over the en-
tire spatio-temporal network, meaning »=; jcz > te7 > mem r,'.}?t .
lij- (p™ —¢), where [;; is the average rental duration and c is
variable cost per minute.

Flow conservation constraints of the form (9) as described in
Section 3.5 which ensure that the fleet of vehicles remains con-
stant in every period and that, for a certain i — t-combination,
the available vehicles either remain unused or get rented.
Constraints ensuring that for p;; exactly one of the prices from
the price list P is chosen for every i-t-combination. If price p™
is chosen, the respective binary variable yi is one.

A set of constraints that determines the realization of rentals.
The overall rentals for every i-t combination are determined
according to the ICR. These rentals split into the i-j-t-specific
rentals, proportionally according to the demand, as described
in Appendix F.

The constraints in the OBDPP MILP formulation that ensure
rentals realization according to the ICR can easily be replaced by
corresponding constraints for the CCR. We state the resulting full
MILP formulation in Appendix F. The constraints that are new com-
pared to Soppert et al. (2022) are (49)-(54). To differentiate in the
following, we denote the original problem by OBDPP-ICR and the
adapted with CCR matching function by OBDPP-CCR. For solving
the OBDPP-CCR, we use the decomposition solution approach de-
scribed in Soppert et al. (2022) which builds on the idea to solve
multiple smaller MILPs instead of the original one. The algorithm is
implemented in Python 3.7 and all MILPs are solved with Gurobi
9.0.2. As in the original paper, the algorithm runs for 48 h. The
simulation evaluation takes approximately 8 h without any paral-
lelization. Given that the considered pricing problem (in Soppert
et al., 2022 and, thus in this case study) is a differentiated (=static)
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pricing problem, these computation times do not pose a restriction
for application in practice.

5.2. Simulation evaluation

To evaluate and compare the performance of the optimization
results, i.e., of the prices obtained from either optimizing using
OBDPP-ICR or OBDPP-CCR, we perform a simulation study. Each
run of the simulation reflects a potential real-world evolvement
of the system over the considered day given the calculated pric-
ing solutions. In essence, the simulation is in line with the one
we used to calculate the simulation benchmarks for the MZMP-
setting in Section 4.2.2. We only need to adapt it to allow for dif-
ferent prices and their effect on the demand. As described, the
customer arrival process in the MZMP simulation follows a Pois-
son process P, with intensity A; that depends on the demand
in the respective period. According to the assumption in the OB-
DPP, described in Section 5.1, the demand now depends on the
chosen prices. Therefore, A; has to be calculated according to
the pricing solution, meaning At = 37z 3 iz d{}?t/30, where dg?t =
dije f,'?t and umr depends on the price p; (see Section 4.2.1 for
demand pattern d;;;). Accordingly, the probability for an arriving
customer in period t to arrive in zone i has to be updated to
P =3 ez ) Yiez Yjez dff- In case of a rental originating in
a certain i-t-combination, the probability to have target zone j is
pdestination dff/ Yz dify- Every pricing solution is evaluated with
N = 100 simulation runs.

5.3. Parameter configurations, scenarios, and evaluation metrics

The case study builds on the MZMP-setting introduced in
Section 4.2.1. The number of zones and periods, the initial vehi-
cle distribution, and the overall demand pattern are chosen as in
the MZMP-setting. Again, we consider the two scenarios with A; €
{0.5 km?, 1 km?, 2 km?, 4 km?} (high to low density with operat-
ing area sizes of A, =29.5 km? to Ao =236 kmz). The additional
parameters are chosen according to Soppert et al. (2022), that is,
prices of p! =24 cent/min, p? =30 cent/min, p> =36 cent/min,
denoted as low, base, and high price. The corresponding price sen-
sitivities are ff]t =1.25, 51 =1, fSt =0.75Vi,je Z,t e T (derived
from a conjoint analysis and A/B tests). Variable costs of c=7.5
cent/min make up 25% of the base price. The rental time is [;; = 15
min. Note that for these parameters, one rental realizes a contri-
bution margin per minute of 20.625 cent/min for price p', 22.5
cent/min for price p2, and 21.375 cent/min for price p3. Thus, in
a myopic optimization when there is enough supply to serve the
demand, the base price p? would be chosen.

The results obtained by a uniform pricing with the base price,
that is, without price differentiation, (BASE) serve as a benchmark
for the ones by a price optimization (OPT) with OBDPP-ICR or
OBDPP-CCR. In addition to the metrics defined in Section 4.2.4, we
consider the following metrics:

Relative rentals increase (RT™[%]): The RT™ between rental
observations with optimized pricing RT?’T and the rental
observations with base pricing RTPASE is defined as RT™ =
(Cne RTOPT — S0 RTEASE) /5oL RTPASE - 100,

Relative revenue increase (RV'®[%]): The RV between rev-
enue observations with optimized pricing RV'T and revenue
observations with base pricing RVPASE is defined as RV™® =
(N RVOPT — S04 RVEASE) S I1  RVBASE . 100.

Relative contribution margin increase (CM'™[%]): The CM™
between contribution margin observations with optimized
pricing CMT and the contribution margin observations
with base pricing CMBASE is defined asCM'® = (Y°N_, cMOPT —
Yoh1 CMEASE) /52 CMEASE - 100.
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Table 1
Simulation results of pricing solutions from OBDPP-ICR and -CCR with different
A e A,

PRETOP change w.r.t. BASE
A[km?] OBDPP- -

low base high RT'™! Ry M

0.5 ICR 17.1%  62.8%  20.1% -43% -0.1% 1.2%
CCR 19.9% 61.1% 19.0% -3.7%  0.6% 2.1%

1 ICR 17.1% 62.8%  20.1% -34%  0.4% 1.6%
CCR 34.1% 54.0% 11.1% 1.8% 3.6% 4.2%

2 ICR 17.1%  62.8% 20.1% -3.2%  0.6% 1.8%
CCR 16.3%  80.3% 3.5% 3.5% 4.3% 4.6%
4 ICR 171%  62.8% 20.1% -5.7% -19% -0.6%
CCR 0.0% 98.9% 1.1% -1.3%  0.7% 1.4%

« Proportion of prices (PRE°P[%]): For a particular price p™, the
PRITP defines the proportion of this price to all prices of a cer-
tain pricing solutions, i.e., PRy = Y2 | Y[ ym/(Z-T) - 100.
Note that RTn('), RV,,('), and CM,(;) denote the respective quantity

observed in one entire simulation run, meaning the sum over all
zones and periods.

5.4. Results

In Table 1, the results for the evaluated pricing solutions, gen-
erated by OBDPP-ICR and OBDPP-CCR for MZMP-scenarios with
A, =05 km2, 1 kmz, 2 1<m2, 4 km? are summarized. Table 7 in Ap-
pendix H additionally depicts the corresponding confidence inter-
vals that demonstrate the statistical significance of the respective
CM'! results.

 The PREP results for all scenarios demonstrate, that the prices
in the solution obtained with the OBDPP-ICR are higher on
average than those obtained with the OBDPP-CCR. For A; =
0.5 km?, the difference in the price levels is smaller than 2
percentage points, but it grows with increasing A; up to al-
most 20 percentage points for A, = 4 km?. Exemplary, the two
pricing solutions of OBDPP-ICR and OBDPP-CCR for A, = 2 km?
are depicted in Fig. 13. Clearly, the OBDPP-ICR solution con-
tains more high prices around the morning and evening de-
mand peak, meaning around the periods 16 and 36. Only few
of the zones, for example zone 7 and zone 49 have relatively
many high prices in both solutions.

As a consequence of the higher prices in the OBDPP-ICR so-
lution, fewer rentals (RT™) realize in the simulation. The de-
crease in rentals depends on the scenario and lies between 0.6
percentage points for A, = 0.5 km? and to 6.7 percentage points
for A, =2 km?.

o The revenue (RV'™) obtained by the OBDPP-CCR solution is
higher than the one resulting from the OBDPP-ICR in all sce-
narios. The gap lies in the range of 0.7 percentage points for
A, = 0.5 km? and 3.7 percentage points for A, =2 km?.

Most importantly, the contribution margin CM™, which is the
objective of the pricing optimization, is significantly higher
with the OBDPP-CCR pricing solution than with the OBDPP-
ICR. The difference lies between 0.9 percentage points (A; =
0.5 km2) and 2.8 (A;=2 km2) percentage points. Remember
that for A, = 0.5 km?, the overall rentals prediction of ICR was
very accurate. The fact that even here an increase of 0.9 per-
centage points by using the CCR is possible shows that this
coincidental overall accuracy does not necessarily translate to
good decisions. First, errors at the zone level may cancel out.
Second, supply and demand are endogeneous in the optimiza-
tion model, and, thus, zones which have the “appropriate” pa-
rameter combination in the ICR may no longer have in the op-
timal solution.
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Fig. 13. Low (L), base (B), and high (H) prices in case study scenario with A, =2 km?.

To summarize the results of the case study, the OBDPP-CCR
with improved matching modeling compared to the OBDPP-ICR
yields pricing solutions that generate significantly higher contribu-
tion margins. The overestimation of rentals by the ICR causes the
OBDPP-ICR to predict too many rentals in general and therewith
also too many rentals when high prices are set. The optimal pric-
ing solution according to the OBDPP-ICR therefore sets too many
high prices which cause a reduction of rentals and a decrease in
contribution margin when compared to the optimal pricing solu-
tion according to the OBDPP-CCR. These results demonstrate that
an accurate matching modeling that considers the specific charac-
teristics of FF SMS is highly relevant for optimizing operations. Cer-
tainly, the specific results of an instance depend on the many pa-
rameters (demand pattern, price sensitivities, etc.) but considering
the results obtained in the SZSP-setting (Section 4.1), the MZMP-
setting (Section 4.2) and in this case study, it seems clear that the
overestimation of rentals with the OBDPP-ICR is the root cause of
too high prices and the reduced profit.

6. Managerial insights and conclusion

In this paper, motivated by the insights gained in a close col-
laboration with Europe’s largest FF car sharing provider Share Now,
we examined the modeling of supply and demand matching in FF
SMSs. Despite the fact that the realization of rentals is central to
the accuracy of an SMS model, matching functions for SMSs have
not been discussed in the literature yet and as a consequence, op-
timization models for SB and FF SMSs have been identical in this
regard. With the development of matching functions that consider
the central influencing factors specifically relevant for FF SMSs,

such as customers’ maximum walking distance and zone sizes, our
work builds a bridge between the optimization models for SB and
those for FF SMSs. This allows to adapt optimization models de-
signed for SB to FF SMSs.

In the following, we structure the conclusions from our find-
ings and the related managerial insights according to two central
aspects, namely (1) the development and the analytical as well as
computational assessment of accurate matching functions for FF
SMSs and (2) the integration of the functions into FF SMS opti-
mization approaches and the investigation of benefits that result
from that.

With regard to (1), the methodological approach of develop-
ing accurate matching functions for FF SMSs was to formalize a
generic, stylized matching process first and, based upon this, to
systematically derive three matching functions in a second step.
According to their assumptions regarding how vehicles cover the
zone area, we termed the matching functions degressive, constant,
and infinite coverage rate matching function (DCR, CCR, and ICR).
While the DCR and CCR are novel matching functions, the ICR
with its extremely simplified assumptions can be considered as the
state-of-the-art matching function, even if not explicitly discussed
as such in the SMS literature. In an extensive computational study,
we compared the rental prediction accuracy by the matching func-
tions in two settings — the first considering the rentals realization
process isolated in a single zone and single period, and the second
covering an entire FF SMS network consisting of multiple zones
and periods.

The numerical results in the single zone single period setting
revealed that the ICR in general overestimates rental: The maxi-
mum relative rental prediction errors lie in the range of 10% to
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more than 100%, depending on the zone size. With the CCR and
DCR, the rentals prediction is a lot more accurate: For the CCR, the
relative rental prediction errors lie in the range of -30% to 30% and
for the DCR in the range of -5% to 5%. In the setting with multi-
ple zones and multiple periods, the relative rental prediction er-
ror with the ICR can (in one period) grow up to 100%-500% for
medium sized and above 2000% for larger zones. For the CCR, the
maximum relative rental prediction error in the relevant periods
where many vehicles move lies between -15% and 30% for medium
sized and between -30% and 25% for larger zones. These results
support the finding that the ICR cannot accurately describe match-
ing in an FF SMS in general and that novel matching functions, like
the CCR and DCR are required.

Besides the numerical analyses, we also investigated the match-
ing functions analytically. Most importantly, we demonstrated that
only the CCR and DCR have a rentals limit value of zero when the
walking distance approaches zero or the zone area grows infinitely
large. This demonstrates mathematically that these two functions
behave meaningfully with regard to the spatial parameters relevant
in FF SMS. Among other theoretical results, we also showed analyt-
ically that the ICR is a special case of the CCR and DCR for extreme
cases of large walking distance and/or small zone area size, mean-
ing that in such situations, even the ICR could have some validity
for FF SMS.

Several important insights can be concluded from these numer-
ical and analytical results. First, to accurately describe the match-
ing between supply and demand in an FF SMS, multiple relevant
parameters have to be considered. Besides the sheer number of
available vehicles and arriving customers, the zone size, the cus-
tomers’ maximum willingness-to-walk, successively arriving cus-
tomers as well as the decreasing marginal zone coverage by ad-
ditional vehicles play a decisive role. Second, the results show that
only the DCR and CCR are suitable for modeling FF SMSs in gen-
eral, because they do consider all of the above parameters explic-
itly or implicitly. The ICR in contrast has the structural problem
to neglect these additionally relevant parameters and to severely
overestimate rentals. Third, the necessity for more comprehensive
matching functions depends on the zone sizes and the area within
walking distance of the customers. All of the above insights reveal
that the previously mentioned and so far unconsidered aspect of
matching modeling is indeed central for managing FF SMSs and
that matching modeling needs to be considered in the modeling
and control of FF SMSs.

Regarding the second central aspect of our work, (2) the inte-
gration of the matching functions into FF SMS optimization ap-
proaches and the investigation of resulting benefits, we demon-
strated that the CCR, opposed to the DCR, can easily be losslessly
linearized. Given the vast literature on SMS optimization that use
linear network flow-based formulations, this allows the adaptation
of the many existing optimization approaches to be generalized
such that they can be applied to both SB as well as FF SMSs. To
analyze the potential benefits resulting from that, as an example,
we considered a pricing optimization approach from literature in a
case study based on real data from Share Now.

The numerical results from the case study show that, compared
to the pricing solution with the ICR, in the pricing solution from
the CCR model high prices are chosen a lot less frequently, i.e. by
a factor of 20. Low prices are chosen a lot more frequently, i.e. by
a factor of 2 in the CCR pricing solution, such that the different
matching functions do actually impact the decision making. The
better pricing decisions with the CCR cause significant contribu-
tion margin gains over the overall too high prices caused by the
overestimation of rentals in the ICR pricing solution. The difference
in the resulting contribution margin increase with respect to the
base price benchmark was up to 3 percentage points (correspond-
ing to an increase by factors of 1.8 to 2.6) with the pricing solution
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obtained by the CCR, compared to the ICR - an effect than can
be solely ascribed to the more accurate matching modeling (and,
thus, in a sense comes for free, compared to marketing or a fleet
increase).

The main insight to derive from the pricing optimization case
study is that the more accurate matching modeling of the CCR also
effects the decision making in a way that benefits the overall ob-
jective. Since other FF SMS optimization problems, such as reloca-
tion or fleet sizing problems, also rely on accurate rental predic-
tions, it is clear that they would also be affected by an overesti-
mation of rentals. Therefore, it is a managerial task to assess the
potential problem of rental overestimation based on the findings
in this work and to initiate the recommended adaptations if nec-
essary.

Taking the presented results and insights with regard to (1) and
(2) into account, we believe that there are promising directions
for future work. First, the consideration of inter-zone movements by
customers as well as boundary effects at the borders of an oper-
ating area might yield improvement potential when considered in
the matching modeling. Second, an empirical study that focuses on
matching in FF SMS would have the potential to identify additional
relevant factors, such as for example zone-specific characteristics
like its shape or its street network. Third, it would be insightful to
investigate how FF SMSs could be modeled accurately in a spatially
(and temporally) continuous manner, with the intention to circum-
vent the limitations that inevitably come with the current state-of-
the-art approach of spatial (and temporal) discretization. For the
latter, continuous optimization techniques might be suitable. Fi-
nally, while we considered specific discretization schemes as given
in our work, the complex question regarding the discretization it-
self is an important topic for future research.
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