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An Efficient Way of Introducing Gender Into
Evolutionary Algorithms
Christian Kasten , Julian Fahr , and Markus Klein

Abstract—Evolutionary algorithms have been extensively used
for numerous optimization problems with great success in the
past years. They mimic nature’s process of evolution to find solu-
tions to a large range of mathematical problems. In this work
a new strategy is suggested to introduce gender, defined by a
characteristic of an individual, that is easy to implement in evo-
lutionary algorithms, as long as they are based on evaluating a
fitness function. The new method outperforms comparable evolu-
tionary approaches without gender for all standard test problems
considered. The present study shows that with increasing problem
complexity the performance of this gender variant increases to
more than double the success rates while keeping the computa-
tional effort at about the same level and still being clearly better
for easy problems. Additionally, in the mean, the new method
results in better fitness values for all presented cases.

Index Terms—Evolutionary algorithm, gender, gene expression
programming.

I. INTRODUCTION

AS THE basic idea of evolutionary algorithms (EA)
[1]–[3] is to copy the natural process of evolution [4]

many characteristics of biological evolution are already con-
sidered [5] and implemented in EA comparable to the biolog-
ical processes. With these mechanisms all kind of problems
have been tackled in the field of general engineering [6]–
[8], turbulence modeling [9]–[13], or health technologies [14].
Additionally, EAs have even been successfully used in arts and
music [15]–[17] or software engineering [18]–[20] to fix bugs
or to increase the performance of compilers.

The concept of gender on the chromosome level has been
known since the early 1900s [21]. It has been introduced in a
variety of creative ways in EA by different authors over the last
decades [22]–[24], but widely it has been ignored in produc-
tive codes due to small performance increases. The question
of gender is to some extent (but not exclusively) related to the
question of parent selection which has been discussed in the
literature by several authors: Świechowski [25] has analyzed
the complementary fitness based on splitting the decision tree.
Thierens and Bosman [26] discussed if substructures are avail-
able in different parents and changed the mating accordingly.
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Finally, Ryerkerk et al. [27] provided a good review on how
to ensure diversity.

Despite natures definition of gender by a genetic charac-
teristic, all evolutionary codes known to the authors that deal
with gender set the gender by random or at least not by an
individual’s attributes (e.g., [28]). Having in mind that most
of today’s successful species evolved with a genetic feature
to determine their gender it is of great interest that this con-
cept finds its way into the evolutionary computation. As a
matter of fact humankind has always tried to copy processes
from nature and to think ahead from there, which already
helped while developing the first aircraft by da Vinci or by
letting a neural net evolve like a brain evolved in nature [29].
While the concept of nature is to determine the gender by
the X- and Y-chromosomes this is not easy to imitate in
evolutionary computation. Adding these chromosomes to an
individuals DNA just leads to the questions when to assign two
X-chromosomes or one X- and one Y-chromosome to an indi-
vidual and what these chromosomes mean to an individual. On
a macroscopic level being male or female has always decided
about the behavior of individuals, their strengths and weak-
nesses, and their overall characteristics. From this point of
view, the gender of an individual in evolutionary computation
could be identified after its birth based on its characteristics
just like it was done in medicine before it was possible to
identify a fetus’ gender by genetic tests. Consequently, it is
suggested to determine the gender of an individual in the sense
of evolutionary computation by an individuals characteristic
instead of letting its characteristic be decided by its gender.
Obviously, an individual in terms of evolutionary computa-
tion has considerably less properties than most individuals in
real evolution. Additionally, it is desirable that the character-
istic that is chosen to determine the gender in the sense of
evolutionary computation should assist the convergence of the
evolutionary algorithm and should not increase the computa-
tional effort tremendously. In the authors opinion the sign of
the error satisfies these requirements in an ideal way. Beside
the fact that this information is already present in an evo-
lutionary algorithm it does not only divide a population in
two completely different groups but it is highly likely that
it also increases the convergence and the findings of superb
results. Taking this characteristic to determine the gender is the
main idea of this article besides splitting the population into
male and female which comes along with the adoption of the
selection process. After allowing reproduction only between
male and female with the different reproduction possibilities
there is always a chance that a negative and a positive error
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Fig. 1. Definition of male and female with positive (parent 1) and negative
(parent 2) error eventually combining to an offspring with smaller error.

partially compensate each other by letting a male with a posi-
tive error and a female with a negative error (or the other way
round) reproduce by combining their most influential features
like illustrated in Fig. 1. This idea can be easily combined
with other gender-based ideas like in [30], where different
selection schemes for males and females have been intro-
duced with different selection pressures, inspired by the idea
of male vigor and female choice. The concept that diversity is
increased by this idea should further benefit from the present
determination of gender based on an individuals characteris-
tics. Details regarding the implementation as well as “gender
specific” modifications of the original EA will be presented
and discussed next.

II. APPROACH

A. Basic Idea

This section first describes the enhancement of EA with
gender and subsequently the codebasis for the present work.
While the principle of this work can be applied to any EA that
provides a measure of an individuals success, such as a cost or
fitness function, a gene expression programming (GEP) algo-
rithm is used for illustration. GEP, developed by Ferreira [31],
combines the simplicity of chromosomes and their encoding
as introduced by Holland [1] with the functional complexity
achieved by expressing them as parse trees as suggested by
Koza [32]. The fundamental difference in GEP compared to
other EAs resides in the nature of the individuals [31]. GEP
genes are composed of a head and a tail and despite their
fixed length, each gene has the potential to code for expres-
sion trees of different sizes and shapes [31]. For a detailed
description of how GEP works and how a solution is repre-
sented in detail the reader is referred to [31] or the more recent
work by Schopplein et al. [9]. A central property of every GEP
is the definition of the fitness function. For the fitness case j
and Ct fitness cases and with Fj and C(i,j) as the target func-
tion values and the values returned by the chromosome of the
individual i, the fitness of individual i, fi is defined by

fi = 1

Ct

Ct∑

j=1

(
Fj − C(i,j)

)n
, with n = 2. (1)

Obviously, a variety of other fitness functions could be defined.
In the context of this work, based on the fitness function, it
should be possible to divide the population, or a subset of

it, into two groups with, e.g., positive and negative values.
In this analysis, the squared error was chosen as the fitness
function due to its simplicity and its wide use in engineering
applications. Additionally, to determine the gender as the sign
of the error it is required to sum (1) up for n = 1 (or another
odd number)

gi = 1

Ct

Ct∑

j=1

Fj − C(i,j). (2)

The main idea of this article is to add gender to EA by calcu-
lating the error gi with (2) and defining an individual i with
(where this convention is of course arbitrary)

gi > 0 as male

gi < 0 as female. (3)

This has to be done for all individuals while creating the ran-
dom initial population at the beginning and for all individuals
created during later generations. In summary, the proposed
method is to group the individuals according to whether they
overshoot or undershoot the target function. The intuition of
this mechanism is that by combining parts of the program
that create the opposite effects, the offspring can balance its
prediction. As a result of introducing gender, males only com-
pete with other males and females only compete with other
females for reproduction using any selection scheme. In the
case of tournament selection half the planned tournaments are
held for all the males and half are held for all the females.
Note, that it is also imaginable that different selection schemes
can be defined for both genders to introduce different selec-
tion pressures like for example proposed in [30]. After the
males and females that are allowed to reproduce are selected,
reproduction only takes place between male and female. For
the children created the gender is again calculated according
to (3).

For GEP and as well for GEP with gender, henceforth
denoted GGEP, it can happen that the fitness function can-
not be evaluated for example because a floating point error
occurs. In this case, the gender is specified randomly. But as
a matter of fact, from the computational point of view, it would
also be possible to always add individuals with an error of not
a number (NAN) to one specific gender. It could be observed
that there is no difference during the optimization between
the two options because individuals with an NAN error and
consequently with an NAN fitness are and should be removed
from the next generation anyways.

B. Codebase for Gene Expression Programming

The used code is a GEP [31] code called EVE written in
Python and described in detail in [33]. GEP can be seen as a
combination of Genetic Programming and Genetic Algorithms
whereby Genetic Programming was first introduced by
Cramer [34] and later further developed by Koza [32]. Genetic
Algorithms were established by Holland [1] and are accord-
ing to [35] becoming increasingly attractive for researchers
from various disciplines, such as operations research, computer
science, industrial engineering, electrical engineering, social
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Fig. 2. Workflow of GGEP.

Fig. 3. Workflow of GEP.

science, and economics. The EVE code has been expanded
with gender as described in the previous section. The code has
the possibility to define different probabilities for crossovers
and mutation, is easy to expand and can be used in various
engineering and academic problems. After the initialization of
the (quasi) random initial population the steps shown in Fig. 2
are repeated for GGEP until a predefined fitness level or the
maximum number of generations is reached. The workflow for
conventional GEP is shown in Fig. 3. Note that the difference
between the workflow of GGEP in Fig. 2 and GEP in Fig. 3
can be seen in steps 1, 2, 4, 5, and 7.

Additionally, EVE uses a diversity mechanism called flood
where the standard deviation and mean values of all fitness
values of the current population are calculated and if the stan-
dard deviation undercuts a configured percentage of the mean

value the flood replaces a part of the population with ran-
domly created individuals. For GGEP this procedure is done
separately for males and females.

Furthermore, the selection scheme is another important
property that impacts the sequence of the optimization. In the
current analysis, a tournament selection with elitism was used
with the tournament size tsize defining how big the tournaments
are and the mating size msize defining how many tournaments
are held in every generation. To have a fair comparison the
same amount of individuals has to be sampled every genera-
tion for GEP and GGEP. Therefore, the GGEP code always
holds half the mating size tournaments for male and half the
mating size tournaments for female individuals.

The amount of available genetic operators is kept low to
minimize the impact of other effects while comparing GEP
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TABLE I
PROPERTIES OF GEP/GGEP FOR THE DIFFERENT BENCHMARK PROBLEMS

with GGEP. Consequently, only mutation, one-point-crossover,
and two-point-crossover are used for reproduction and their
probabilities and further properties can be seen in Table I for
the different problems described in the test problem description
section.

Note that the differences of success rates between the
presented results here and the work of Ferreira [31] for GEP
can be lead back to small configuration differences like the
absence of insertion methods in this work. This can be espe-
cially seen for problem 2, but the focus of this work lies in the
comparison between GEP and GGEP. Beside that, the prop-
erty definition mostly follows the work of Ferreira [31] and has
been optimized for GEP to avoid any efficiency bias toward
the new method. Moreover, it was found that for most set ups
the optimal values of GGEP were close to the optimal values
for GEP. One big difference occurs for increasing population
sizes. Whereas GEP benefits unremarkably from increasing
population size GGEP improves considerably. If one is will-
ing to invest the computational power this is especially useful
because GGEP offers the opportunity to get superb results for
increasing population sizes as will be demonstrated later on.

C. Selection and Balance Between Male and Female

Two unbalanced populations represent a clear disadvantage
for GGEP. Per se there is no evidence that the error has a
higher probability to be negative or positive and consequently
an individual has about the same chances to become male
or female. But especially for small populations (in the cur-
rent analysis small means ≤ 20) it sometimes happens due
to the small amount of individuals that one gender dominates
immensely and this leads to a worse convergence for the fol-
lowing generations. The scenarios where this can happen can
be divided into two cases.

1) While creating the random initial population.
2) In every generation while creating the offspring.

For both cases, a different strategy has been selected to
maintain the balance. For the creation of the random ini-
tial population it is recommended to balance them directly
at the beginning which increases the convergence over the
following generations. Manipulating the initial population has
already been shown to increase diversity in the past [36]. The
additional computational cost to balance the initial population

gender wise at the beginning is marginal compared to the com-
putational effort over the whole optimization. Consequently
if the random initial population is unbalanced, for exam-
ple consisting of 90% male, a fixed amount of them should
be removed and replaced with new random individuals until
the population is balanced. Such an adequate starting point
supports the handling of a potential unbalance during the off-
spring creation in later generations. The easiest thing is to
replace individuals of the dominating gender during repro-
duction instead of replacing individuals independent of their
gender. To be more specific, if the selection scheme decides to
replace the losers of both genders’ tournaments and males are
currently dominating, the selection scheme could be adjusted
to replace the loser and the second last male of the male tour-
naments and therefore does not replace the losers of the female
tournaments which is the suggested strategy for case 2. Note
that this has to be done for all tournaments held and conse-
quently multiple individuals get replaced. This procedure can
be transferred to other selection mechanisms as well.

D. Dealing With the Additional Calculation to Determine
the Gender

Python is a widely used programming language in AI and
it is known that for mathematical costly functions libraries
written in C are used. For large data sets, the evalua-
tion of the fitness function can become relatively expen-
sive. In the context of GGEP the “cost function” has to
be evaluated twice. For example n = 2 [see (1)] would
be a standard choice for the fitness (or alternatively the
magnitude of the error) while n = 1 [see (2)] would
be needed to determine gender. To improve efficiency it
is recommended to include both evaluations into one sin-
gle loop by writing a user-defined C-library, as explained
in https://docs.python.org/3/extending/extending.html. In this
way calculating both values for a big amount of data points
does not take any appreciable additional amount of time.

III. RESULTS

In order to describe the results first the test problems
considered here are introduced in the following section.
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A. Test Problem Description

Three different symbolic regression problems with increas-
ing complexity were chosen, where the success of an individ-
ual can be easily measured. The first two of them represent 1-D
symbolic regression problems of Ferreira’s paper [31] where
GEP was first introduced and the third one is a 2-D problem
which is used as an introductory example in the GEP code
developed by Weatheritt and Sandberg [33]

z = x4 + x3 + x2 + x, for x ∈ [2, 20] (4)

z = 5x4 + 4x3 + 3x2 + 2x + 1, for x ∈ [1, 10] (5)

z = x2 + xy − 2y2, for x, y ∈ [−1, 1]. (6)

With increasing problem complexity it can be observed that
the introduction of gender increases the performance of the
GEP code. The same phenomenon has been observed for other,
more complex, optimization problems not discussed in this
work which serves as an introduction of GGEP. While the
first two problems consist of ten data points to be as com-
parable as possible to Ferreira’s paper the third problem has
625 data points. Moreover, it will be shown that GGEP works
increasingly better with an increasing population but also is
superior with populations as small as 20. Additionally, this
work shows that GGEP finds solutions in much earlier gener-
ations. To prove the supremacy of GGEP over GEP important
factors to compare are:

1) the success rate;
2) the computational effort;
3) the ability to find solutions in early generations;
4) the ability to find good solutions in problems where an

exact match does not exist in the function space available
to GEP.

Here, the dominance of GGEP in regards of the first three
factors will be demonstrated in detail using problems 1 to 3.
The fourth criterion will be relevant for much more com-
plex optimization problems, such as turbulent heat transfer
or combustion modeling in the field of computational fluid
dynamics [37], [38].

The success rate is defined as the percentage of runs in
which the algorithm is able to undercut the fitness tolerance
of this problem during a predefined number of generations. To
compare both methods for one setup, both algorithms were run
with 100 different random initial populations and the number
of populations that end with an individual i in a population p
with a fitness smaller than the fitness tolerance T consequently
is the success rate. Another measure denoted as success speed
includes the run time to compare the methods while giving
respect to the time they need to come to a result

success rate =
100∑

k=1

s(k)

success speed = success rate

run time

with s(k) =
{

0, for min(fi) > T ∀i ∈ p

1, for min(fi) ≤ T ∀i ∈ p.
(7)

The three problems have largely different function values and
hence for the same relative error to be obtained a largely

different target absolute error has to be chosen. The T values
were chosen roughly in such a way that comparable relative
errors will be achieved. A too high tolerance level would force
the algorithm to stop too early without even coming close
to a maximum, while a too stringent criterion could poten-
tially force the algorithm to run forever. The present T values
have been chosen as a compromise in terms of the relative
error. These 100 initial populations evolve over many gen-
erations and due to the lack of a better word this will be
referred to as 100 creations subsequently. Additionally, the
run time is tracked and compared for both variants. It is to
be expected that GGEP needs additional time to calculate and
organize gender. All comparisons presented in the next section
can possibly differ while changing the setups. But as a matter
of fact most of the configuration parameters had statistically
no or little influence on the dominance of GGEP over GEP.
As an example, both algorithms have the same optimal value
for the tournament size. On the contrary the population size,
like mentioned before, seems to be an important factor and is
consequently analyzed separately.

B. Comparison of GEP With GGEP

This section compares GEP and GGEP for the three test
problems outlined before, for a range of parameters. Fig. 4
shows the success rate of both algorithms versus the population
size for four different numbers of generations (i.e., 50, 100,
200, and 300). Whereas for problem 1 both GEP variants reach
a 100% success rate (see Fig. 4) if the population size is big
enough it can be clearly seen that for the more complex prob-
lems 2 and 3 GGEP outperforms GEP notably. Fig. 4 indicates
that GGEP reaches higher success rates for all test problems.
This trend increases with increasing test problem complexity
and increasing population sizes. The only exception can be
seen for problem 2 when using 50 generations where GGEP
has a comparable or worse performance for smaller population
sizes, whereas for population sizes reaching 200, GGEP again
outperforms GEP. For 300 generations GGEP reaches nearly
90% success rate for big population sizes, whereas GEP peaks
at about 70%. For the 2-D problem 3 the success rate of GGEP
ends up being nearly twice the success rate of GEP for all
numbers of generations. For problem 3 the results for GGEP
after 50 generations are already slightly better than for GEP
after 100 generations and GEP after 300 generations is broadly
outperformed by GGEP after 200 generations and even more
by GGEP after 300 generations overall population sizes.

A similar conclusion can be drawn for an increasing number
of generations with fixed population sizes (60, 80, 140, 200)
as shown in Fig. 5. Comparing the algorithms for problem
1 it can be seen that GGEP reaches a 100% success rate
independent of the population size. On the contrary GEP
peaks at a smaller success rate for all populations smaller
than 200 and only reaches the 100% value for a popula-
tion size of 200 (and bigger, but not shown). For problems
2 and 3, where the 100% cannot be reached it still can clearly
be seen that GGEP reaches much higher success rates than
GEP does. After about 100 generations the success rate of
GGEP for a population size of 80 outperforms the success
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Fig. 4. Success rate of GEP and GGEP for problems 1 [left], 2 [middle], and 3 [right] for different number of generations over population size. Note the
axes are adjusted for the different problems and do not have the same ranges for all three problems.

rate of GEP for a population size of 200 for problem 3.
For problem 2 GGEP already reaches better results for a
population size of 60 than GEP does for any of the shown pop-
ulation sizes. Additionally, it can be seen that the performance
difference between the two algorithms increases with the
increasing number of generations which suggests that GGEP
can reach even better success rates for increasing numbers of
generations.

Finally, in Fig. 6 the success speed of GGEP is divided by
the success speed of GEP. It is expected that GGEP has, for
the same problem, a higher run time than GEP due to the
additional organization of gender. It can be seen in Fig. 6 that
for all three problems GGEP reaches a higher success speed
peaking at 1.5, 3.0, and 6.0 times the success speed of
GEP for problems 1, 2, and 3, respectively. Additionally,
GGEP reaches a higher success speed for the majority of the
presented combinations of population sizes and generations.
Only for problem 1 a bigger area occurs for small population
sizes and generations, where GEP reaches a slightly higher
success speed than GGEP does. For the more complex prob-
lems 2 and 3 GGEP outperforms GEP for the wast majority of
configurations. For problem 2 (problem 3) GGEP reaches up to
a three (six) times higher success speed than GEP does while
it reaches about 1.5 (twice) the success speed for the major-
ity of the shown configurations. Finally, note that the regions
where GGEP outperforms GEP vary from 1 to 6 green indi-
cating that the difference can be significant. On the contrary,
the regions where GEP outperforms GGEP in all three prob-
lems only reaches values between 1 and 0.75 which indicates
a more insignificant difference.

As a conclusion from analyzing Figs. 4–6 it is evi-
dent that GGEP outperforms GEP for all problems con-
sidered here, based on the success rate for a wide

range of the number of generations and population
sizes.

Besides success rates the mean fitness value after a defined
number of generations for different population sizes is an
important performance indicator and is shown in Fig. 7, where
the mean value is taken from 100 runs/creations with different
random initial populations of the GEP/GGEP codes. The mean
value M is calculated based on the best (smallest) fitness f of
all individuals i found in each creation k

M = 1

100

100∑

k=1

min(fi). (8)

As in this analysis, the error is being minimized in the con-
text of survival of the fittest it is obvious that a smaller fitness
value dominates a bigger one. Note that in Fig. 7 the y-axis
for problems 1 and 2 is shown in a logarithmic scale to be
able to recognize the wide range of fitness values reached by
GEP. In Fig. 7 it can be especially seen that for problem 1
GGEP has always a mean value close to zero even if it has
not a success rate of 100%, whereas GEP only reaches such
small values in runs with a 100% success rate. This means
that GGEP finds still good solutions in cases where it does
not succeed. At the same time, GEP still finds solutions that
are really far away from an optimal solution and therefore
have a much higher mean fitness. While comparing the mean
fitness values for problems 2 and 3 for GEP and GGEP it can
be seen that the introduction of gender decreases the mean fit-
ness values considerably. This reaches a level where the mean
fitness of GGEP is a half (quarter) of the mean fitness value of
GEP for a population of 500 (800). This is further illustrated
in Table II in the columns best/worst mean fitness, where the
best mean fitness value after 300 generations for a popula-
tion size of 800 for problem 3 is 0.033 for GEP and 0.008
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Fig. 5. Success rate of GEP and GGEP for problems 1 [left], 2 [middle], and 3 [right] for different population sizes over number of generations. Note the
y-axis is adjusted for the different problems and does not have the same range for all three problems.

Fig. 6. success speed (GGEP)/success speed (GEP) for different generations and population sizes. Values in green bigger than 1 (red smaller than 1) indicate
GGEP (GEP) has a higher success speed. Note the color bar range is adjusted for the different problems as well as the range of the population size. White
values indicate that success speed(GEP)=0 and white ones that both methods have zero successes.

for GGEP. This trend again increases with increasing popu-
lation size. Comparing the row best mean fitness of Table II
this trend peaks at 3 to 4 times better mean fitness values
at a population of 800 for problem 3 or even a 5000 times
better mean fitness for problem 2. Table II summarizes impor-
tant results of the comparison for all three problems. A not
yet mentioned criterion that is presented in Table II is the
calculation time increase for GGEP versus GEP. This value
fluctuates for different population sizes, number of genera-
tions, test problems, and different random initial populations.
Therefore, the range of the mean values over 100 creations
for a given problem for the different configurations is shown.
Note that the highest absolute additional run time was found to
be 10 s for problem 2. The highest relative run time increase
is seen for problem 1 from 4 to 7 s for GGEP which still
can be considered as a small overhead given the performance
increase of GGEP. For problem 3, where due to the increased
data points the computational cost of the fitness evalua-
tion increases, the additional run time becomes insignificant

especially for big population sizes and the number of
generations.

IV. DISCUSSION

The previous results suggest that GGEP is able to reach
higher success rates for relatively easy symbolic regression
problems. However, it is very important that any evolution-
ary algorithm used in production should be able to find as
good solutions as possible in real engineering problems as
well. Preliminary tests in the field of turbulent combustion
modeling [37], [38], not shown here, indicate that GGEP pro-
vides models that are at least 20% better error wise than
those from GEP, which can be considered a strong indica-
tion that GGEP is ready to be used in productive applications.
The question remains why GGEP reaches such high levels
of performance and effectiveness. One obvious assumption
is that the diversity is increased by splitting the population
into male and female. Drezner and Drezner [28] mentioned in
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Fig. 7. Mean fitness values of 100 creations after 300 generations of GEP and GGEP for problems 1 [left], 2 [middle], and 3 [right] over populations. Note
that for problems 1 and 2 the y-axis is presented in a logarithmic scale.

TABLE II
SUMMARY OF THE MAIN RESULTS FOR THE THREE STANDARD PROBLEMS. IF RANGES ARE DISPLAYED THEY ARE FROM THE WORST TO THE BEST

CASE MEANING POPULATION 20 TO 800 FOR 300 GENERATIONS. NOTE THAT IN THIS ANALYSIS THE FITNESS IS MINIMIZED MEANING SMALLER

VALUES ARE BETTER IN THIS FITNESS CONTEXT

this regard “it is clear that the gender-specific algorithm slows
down the homogenizing process and maintains more diverse
populations” where they added gender by random. This should
increase the diversity less than adding gender by the sign of
the error, because first, GGEP tries to balance the percentage
of males and females in the population and this consequently
leads to a balance of individuals with positive and negative
errors (as explained in detail in Section II). Second, by cross-
ing an individual with a positive and one with a negative error
it should be clear that the combination of these two possibly
comes closer to the exact solution. This already happens in
a classical EA where two good solutions with good fitness
values reproduce. But with the introduction of the gender via
the sign of the error this effect increases because the most
influential features differ more substantially.

Moreover, GGEP, in a certain sense, has some elements of a
multiobjective optimization. A population that wants to survive
the evolution not only needs to evolve individuals with good
fitness values but finally needs to keep individuals from both
genders alive. Therefore, one gender needs to make room for
the other if the population is unbalanced. This leads to weaker
individuals having a possibility to survive because they just

have to compete with individuals of their gender. As a result, it
is possible to have a high selection pressure for one gender but
at the same time a higher diversity and more genetic material.

V. CONCLUSION

In this work, an efficient way of introducing gender into evo-
lutionary algorithms has been proposed and applied to three
benchmark problems with an increasing level of complexity
on the example of GEP. Gender has been defined via the
sign of the error as a property of an individual rather than
introducing it via the genome or by random. With this def-
inition, evolutionary computation is not only brought closer
to real evolution but it has been also demonstrated, that with
the same setups GGEP outperforms GEP overall concerning
the success rate, the fitness of the best individuals, and the
mean fitness values while keeping the additional computational
effort low. This trend increases with increasing problem com-
plexity and increasing population and generation sizes. It has
been argued that the performance increase is caused primarily
by two mechanisms. At first, by dividing the population into
male and female an overall higher diversity is maintained and
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second the error is minimized faster by combining individuals
with a positive and a negative error during the creation of the
offspring. Although, the first results are very promising future
work has to confirm the benefit of using gender in EAs when
applied to more complex engineering optimization problems.

Furthermore, the introduction of gender in this analy-
sis is not yet brought to its limits and leaves space for
additional enhancements that possibly make it even more
similar to nature’s evolution. An example that leaves room for
improvements is how tournament-winning males and females
choose their mating partner. Currently there is no particu-
lar mechanism which tournament-winning female reproduces
with which tournament-winning male. Although this is some-
thing that can happen, as a matter of fact in nature mostly the
most dominant male or female can choose his or her partner.
Alternatively, the algorithm could be changed in a way that
the most dominant female or male chooses the partner that
fits itself best concerning the value of the error. Therefore,
not only the sign of an individual’s error would influence the
reproduction but also its magnitude. Another idea could be to
increase the dimension of gender by splitting the domain in
half and calculating the sign of the error in each half of the
domain leading to four genders (+,+), (+,−), (−,+), and
(−,−) and match them accordingly. The dimension of gen-
der could also be increased by splitting the domain in more
than two sections but the computational effort to organize and
balance more genders increases with an increasing dimension.
Apparently, testing these ideas will need further analysis.

ACKNOWLEDGMENT

The authors thank R.D. Sandberg for providing the EVE
code.

REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An
Introductory Analysis With Applications to Biology, Control, and
Artificial Intelligence (A Bradford Book). Cambridge, MA, USA: MIT
Press, 1992.

[2] S. Forrest, “Genetic algorithms: principles of natural selection applied
to computation,” Science, vol. 261, no. 5123, pp. 872–878, 1993.

[3] H. Pohlheim, Evolutionäre Algorithmen: Verfahren, Operatoren und
Hinweise für die Praxis. Heidelberg, Germany: Springer, 1999.

[4] J. H. Holland, “Genetic algorithms,” Sci. Amer., vol. 267, no. 1,
pp. 66–73, 1992.

[5] R. Miikkulainen and S. Forrest, “A biological perspective on evolution-
ary computation,” Nat. Mach. Intell., vol. 3, pp. 9–15, Jan. 2021.

[6] D. Greiner, J. Periaux, D. Quagliarella, J. Magalhaes-Mendes, and
B. Galván, “Evolutionary algorithms and metaheuristics: Applications in
engineering design and optimization,” Math. Problems Eng., vol. 2018,
Jan. 2018, Art. no. 2793762.

[7] I. Parmee, Evolutionary and Adaptive Computing in Engineering
Design. London, U.K.: Springer, 2012.

[8] A. J. Johnson, E. Meyerson, J. de la Parra, T. L. Savas, R. Miikkulainen,
and C. B. Harper, “Flavor-cyber-agriculture: Optimization of plant
metabolites in an open-source control environment through surrogate
modeling,” PLoS One, vol. 14, no. 4, 2019, Art. no. e0213918.

[9] M. Schoepplein, J. Weatheritt, R. Sandberg, M. Talei, and M. Klein,
“Application of an evolutionary algorithm to les modelling of tur-
bulent transport in premixed flames,” J. Comput. Phys., vol. 374,
pp. 1166–1179, Dec. 2018.

[10] Y. Zhao, H. D. Akolekar, J. Weatheritt, V. Michelassi, and
R. D. Sandberg, “RANS turbulence model development using CFD-
driven machine learning,” J. Comput. Phys., vol. 411, Jun. 2020,
Art. no. 109413.

[11] J. Weatheritt, R. Pichler, R. D. Sandberg, G. Laskowski, and
V. Michelassi, “Machine learning for turbulence model development
using a high-fidelity HPT cascade simulation,” in Proc. Turbo Expo
Power Land, Sea, Air, vol. 2B, 2017, Art. no. V02BT41A015.

[12] R. D. Sandberg et al., “Applying machine learnt explicit algebraic
stress and scalar flux models to a fundamental trailing edge slot,” J.
Turbomach., vol. 140, no. 10, 2018, Art. no. 101008.

[13] M. Reissmann, J. Hasslberger, R. D. Sandberg, and M. Klein,
“Application of gene expression programming to a-posteriori LES
modeling of a Taylor Green Vortex,” J. Comput. Phys., vol. 424, Jan.
2021, Art. no. 109859.

[14] S. H. Ling and H. K. Lam, “Evolutionary algorithms in health technolo-
gies,” Algorithms, vol. 12, no. 10, p. 202, 2019.

[15] J. Secretan et al., “Picbreeder: A case study in collaborative evolutionary
exploration of design space,” Evol. Comput., vol. 19, no. 3, pp. 373–403,
2011.

[16] J. Lehman et al., “The surprising creativity of digital evolution: A col-
lection of anecdotes from the evolutionary computation and artificial life
research communities,” Artif. Life, vol. 26, no. 2, pp. 274–306, 2020.

[17] D. M. Hofmann, “A genetic programming approach to generating musi-
cal compositions,” in Evolutionary and Biologically Inspired Music,
ound, Art and Design, C. Johnson, A. Carballal, and J. Correia, Eds.
Cham, Switzerland: Springer Int., 2015, pp. 89–100.

[18] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in Proc. IEEE Congr. Evol. Comput. IEEE World
Congr. Comput. Intell., 2008, pp. 162–168.

[19] A. Arcuri, “On the automation of fixing software bugs,” in Proc.
Compan. 30th Int. Conf. Softw. Eng., 2008, pp. 1003–1006.

[20] P. A. Ballal, H. Sarojadevi, and P. Harsha, “Compiler optimization: A
genetic algorithm approach,” Int. J. Comput. Appl., vol. 112, no. 10,
pp. 9–13, 2015.

[21] N. M. Stevens, “A study of the germ cells of Aphis rosæ and Aphis
ænotheræ,” J. Exp. Zool., vol. 2, no. 3, pp. 313–333, 1905.

[22] M. Zhang, S. Zhao, and X. Wang, “A hybrid self-adaptive genetic
algorithm based on sexual reproduction and baldwin effect for
global optimization,” in Proc. IEEE Congr. Evol. Comput., 2009,
pp. 3087–3094.

[23] J. Lis and A. Eiben, “A multi-sexual genetic algorithm for multiobjective
optimization,” in Proc. IEEE Int. Conf. Evol. Comput., 1997, pp. 59–64.

[24] S. Sodsee, P. Meesad, Z. Li, and W. Halang, “A networking requirement
application by multi-objective genetic algorithms with sexual selec-
tion,” in Proc. 3rd Int. Conf. Intell. Syst. Knowl. Eng., vol. 1, 2008,
pp. 513–518.
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