Patch-wise Integration of Trimmed Surfaces

Michael Loibl¹

Leonardo Leonetti², Alessandro Reali³ and Josef Kiendl¹

¹Universität der Bundeswehr München

²Università della Calabria

³Università di Pavia

November 7, 2022

Motivation

How can we **efficiently** simulate **free-form design**?

Patch-wise integration of arbitrarily trimmed structures!

Image from 'Wikipedia'

Outline

- 1. Patch-wise Integration
- 2. Gauss Integration of Trimmed Elements
- Method for Patch-wise Integration of Trimmed Surfaces
- 4. Numerical Results
- 5. Summary
- 6. Outlook

Derivation of Patch-wise Integration

- Patch-wise quadrature rules reduce the number of integration points considering the high smoothness of NURBS basis functions
- Numerical integration

$$\mathbb{Q} = \sum_{i=1}^{n_{quad}} w_i f(\xi_i) := \int_{\Omega} f(x) d\xi$$
 where
$$f \quad \dots \text{ function which should be integrated}$$

$$\xi \quad \dots \text{ positions of } n_{quad} \text{ integration points}$$

$$w \quad \dots \text{ weights of } n_{quad} \text{ integration points}$$

Optimal integration points by optimizing positions and weights

Dependency of Patch-wise Rule on Integrand

Integration of stiffness matrices

$$\int_{\Omega} \nabla R_i(\boldsymbol{\xi}) \nabla R_j(\boldsymbol{\xi}) d\Omega$$
$$\int_{\Omega} \Delta R_i(\boldsymbol{\xi}) \Delta R_j(\boldsymbol{\xi}) d\Omega$$

2D-plane element

Kirchhoff-Love shell element

where

R ... basis function

 ξ ... parametric coordinates

 Ω ... domain of the structure

Less Integration Points with Patch-wise Rule

- Patch-wise integration rules overcome element-wise thinking
- Example of patch-wise integration points for 2D-plane element and Kirchhoff-Love shell element:

$$\begin{aligned} p &= 3 \\ \Xi &= \{0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1\} \end{aligned}$$

Trimming contradicts Patch-wise Integration

Conventionally, trimmed elements integrated by mapped Gauss points

 Tensor-product structure of NURBS patches and of patch-wise quadrature rules violated by trimming

→ Goal: Patch-wise integration also for trimmed structures!

Method for Patch-wise Integration of Trimmed Surfaces

Example: Infinite plate with circular hole

Distinction of Elements in case of Trimming

- Active-untrimmed
- Trimmed
- Inactive

Distinction of Basis Functions

Choice of Integration Schemes

- Inactive (ia) → no integration
- Trimmed (t) → mapped Gauss integration
- Transition (tra) → mixed integration
- Patch-wise (pw) → patch-wise integration

pw	pw	pw	pw	pw	pw	pw	pw
pw	pw	pw	pw	pw	pw	pw	pw
pw	pw	pw	pw	pw	pw	pw	pw
pw	pw	pw	pw	pw	pw	pw	pw
pw	pw	pw	pw	tra	tra	tra	tra
pw pw	pw pw	pw pw		tra tra	tra tra	tra tra	tra tra
	_				,	,	,

Mixed Integration of Transition Elements (tra)

- (1) Untrimmed basis functions → patch-wise integration
- (2) Trimmed basis functions → Gauss integration
- (3) Combinations of trimmed and untrimmed basis function → Gauss integration

Consider a short **example** with:

- 3 basis functions (BF) with one degree of freedom per control point
- where basis function 3 is trimmed

$$\begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} = \underbrace{ \begin{bmatrix} K_{11}^{pw} & K_{12}^{pw} & 0 \\ K_{21}^{pw} & K_{22}^{pw} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{(1) \text{ untrimmed BF}} + \underbrace{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & K_{33}^{gauss} \end{bmatrix}}_{(2) \text{ trimmed BF}} + \underbrace{ \begin{bmatrix} 0 & 0 & K_{13}^{gauss} \\ 0 & 0 & K_{23}^{gauss} \\ K_{31}^{gauss} & K_{32}^{gauss} & 0 \end{bmatrix}}_{(3) \text{ trimmed and untrimmed BF}}$$

Infinite Plate with Circular Hole

Matching results from a standard trimming and the proposed integration method

Numerical Results 13

Infinite Plate with Circular Hole

- Matching results from a standard trimming and the proposed integration method
- Clear reduction of number of integration points

Numerical Results 14

10

20

 $\sqrt{n_{ele}}$

30

Numerical Results 15

4.1e-01

0.3

- 0.2

-0.1

- 0.0e+00

 $\sqrt{n_{ele}}$

Numerical Results 16

4.1e-01

0.3

- 0.2

-0.1

0.0e+00

Numerical Results

17

Numerical Results 18

Summary

- Patch-wise quadrature rules based on a tensor-product structure
- Tensor-product structure destroyed by trimming
- Proposed method extends patch-wise rules to trimmed surfaces

Outlook

- Comparison to weighted quadrature
- Optimized integration points in transition zone

Extension to trimmed volumes

Thank you for your attention!

Contact: michael.loibl@unibw.de

