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Unterstützung wäre diese Arbeit nicht möglich gewesen!
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Abstract

In this work, the boundary–layer stability of a blunted cone in different atmospheres
and under different free–stream Reynolds numbers will be investigated to examine
the influence of the Mars atmosphere on the laminar–turbulent transition. Therefore,
a blunted cone, experimentally investigated in a pure CO2 atmosphere to measure the
wall heat flux distribution, was chosen from literature and the linear stability theory
and the linear parabolized stability equations were applied for the investigations. To
perform the investigations, firstly, a new Navier–Stokes solver, named CONSST3D,
to calculate the laminar base–flow solution and a new boundary–layer stability solver,
named COSTAS, were developed and will be presented in this work containing the
governing equations, the thermodynamic models and the numerical implementation.
To validate the two solvers for the perfect gas and the thermo–chemical equilib-
rium gas regime, calculations were performed for the Stetson Mach 8 blunted cone
and a Mach 10 flat plate, respectively. With the successfully validated solvers, the
boundary–layer stability calculations were performed for the blunted cone in a pure
CO2 atmosphere, in the Mars atmosphere and in the Earth atmosphere requiring
similar free–stream conditions to examine the influence of the atmosphere on the
laminar–turbulent transition and to get first insights in the boundary–layer stability
of a blunted cone in the Mars atmosphere. The results showed a destabilizing effect
of the CO2 atmosphere and the Mars atmosphere compared to the Earth atmosphere
by applying a thermo–chemical equilibrium gas model. Further, the transition onset
N–factor was found to be in the typical range of values at the transition onset location
for the test case in the CO2 atmosphere. The comparison with the calculation in the
Mars atmosphere showed only small differences in the boundary–layer stability and
thus, test campaigns in a pure CO2 atmosphere were found to be a good approxima-
tion of the Mars atmosphere which contain a small additional amount of N2. Overall,
in comparison to the calculations in the Earth atmosphere, higher growth rates and
higher N–factors were found in the CO2 and Mars atmospheres at lower disturbance
frequencies. An additional calculation was performed in the CO2 atmosphere at a
different free–stream condition, where the Reynolds number was significantly higher
compared to the previous test case. In this case, the results showed a significantly
higher N–factor at the transition onset location, which is located further upstream
compared to the lower free–stream condition test case.
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Kurzfassung

In dieser Arbeit wird die Grenzschichtstabilität eines stumpfen Kegels in verschiede-
nen Atmosphären und unter verschiedenen Anströmreynoldszahlen untersucht, um
den Einfluss der Marsatmosphäre auf die laminar–turbulente Transition zu unter-
suchen. Hierfür wurde ein stumpfer Kegel aus der Literatur ausgewählt, welcher
experimentell in einer CO2–Atmosphäre untersucht wurde, um die Wandwärme-
stromverteilung zu messen, und die lineare Stabilitätstheorie und die linearen parabo-
lisierten Stabilitätsgleichungen wurden für die Untersuchungen angewendet. Um
die Untersuchungen durchzuführen, wurde zunächst ein neuer Navier–Stokes Löser,
CONSST3D genannt, entwickelt, um die laminare Basislösung zu berechnen, und
zusätzlich ein neuer Grenzschichtstabilitätslöser, COSTAS genannt, welche in dieser
Arbeit hinsichtlich der zu lösenden Gleichungen, der thermodynamischen Modelle
und der numerischen Implementierung vorgestellt werden. Um die beiden Löser für
den Bereich des perfekten Gases und des Gases im thermo–chemischen Gleichgewicht
zu validieren, wurden Berechnungen anhand des Stetson Mach 8 Kegels und einer
Mach 10 ebenen Platte durchgeführt. Mit den erfolgreich validierten Lösern wur-
den die Grenzschichtstabilitätsberechnungen für den stumpfen Kegel in einer reinen
CO2–Atmosphäre, in der Marsatmosphäre und in der Erdatmosphäre durchgeführt,
wobei ähnliche Anströmbedingungen gefordert wurden, um den Einfluss der Atmo-
sphäre auf die laminar–turbulente Transition zu untersuchen und um erste Einblicke
in die Grenzschichtstabilität eines stumpfen Kegels in der Marsatmosphäre zu sam-
meln. Die Ergebnisse zeigten einen destabilisierenden Effekt der CO2–Atmosphäre
und der Marsatmosphäre im Vergleich zu der Erdatmosphäre unter Verwendung eines
Gasmodels im thermo–chemischen Gleichgewicht. Weiterhin wurde der N–Faktor an
der Stelle des Beginns der Transition für den Testfall in der CO2–Atmosphäre im
typischen Bereich ermittelt. Der Vergleich mit der Berechnung in der Marsatmo-
sphäre zeigte nur kleine Unterschiede in der Grenzschichtstabilität, wodurch gezeigt
wurde, dass Testkampagnen in einer reinen CO2–Atmosphäre eine gute Näherung
für die Marsatmosphäre mit einem kleinen zusätzlichen Anteil an N2 sind. Insgesamt
wurden im Vergleich zu den Berechnungen in der Erdatmosphäre höhere Wachstums-
raten und N–Faktoren bei kleineren Störungsfrequenzen in der CO2–Atmosphäre
und der Marsatmosphäre ermittelt. Eine zusätzliche Berechnung wurde bei höheren
Anströmbedingungen in der CO2–Atmosphäre durchgeführt, wobei die Reynoldszahl
signifikant höher war als im vorherigen Testfall. In diesem Fall zeigten die Ergebnisse
einen signifikant höheren N–Faktor an der Stelle des Beginns der Transition, welcher
weiter stromauf lag als im Testfall mit den niedrigeren Anströmbedingungen.
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Nomenclature

Unless otherwise specified, SI units are used in this work. Thus, the nomenclature
does not contain the variable units.

Latin symbols

A Streamwise inviscid flux Jacobian
Av Streamwise viscous flux Jacobian
A
x
1 Base–flow matrix of disturbance equations containing x1 derivatives

A Disturbance amplitude
A0 Initial disturbance amplitude
a, b Coefficients for boundary–layer stability grid distribution
a0, a1, a2, al,i Coefficients for surface fitting method
B Spanwise inviscid flux Jacobian
Bv Spanwise viscous flux Jacobian
B
x
2 Base–flow matrix of disturbance equations containing x2 derivatives

B+

x
2 Positive normal base–flow matrix of disturbance equations

bζ Normal NSCBC source vector
C Normal inviscid flux Jacobian
Cv Normal viscous flux Jacobian
C
x
3 Base–flow matrix of disturbance equations containing x3 derivatives

c Speed of sound
c0, c1, c2, c3, c4 State surface interpolation coefficients
c0, cj, ck, cjmax

Coefficients for Chebyshev spectral collocation method
cp Specific heat capacity
cRK Runge–Kutta stage coefficients
cr Phase speed
cs Speed of sound in discretization direction
D Diagonal matrix
D0 Base–flow matrix of disturbance equations containing remaining terms
dζ Normal NSCBC characteristic vector
E Streamwise inviscid flux vector
ECheb Chebyshev spectral collocation method discretization matrix of first

derivative
Ev Streamwise viscous flux vector
E Disturbance kinetic energy

xv



xvi Nomenclature

e Total energy per unit volume
F Spanwise inviscid flux vector
Fv Spanwise viscous flux vector
f Frequency
fp Pressure function coefficient

fAUSM
p Pressure based weight function
G Normal inviscid flux vector
GCheb Chebyshev spectral collocation method discretization matrix of sec-

ond derivative
Gv Normal viscous flux vector√
g Metric determinant

gkm Covariant metric tensor
gkm Contravariant metric tensor
H Eigenvalue problem matrix containing remaining terms
H
x
2 Eigenvalue problem matrix containing x2 terms

H
x
2
x
2 Eigenvalue problem matrix containing x2x2 terms

Hα Eigenvalue problem matrix containing α terms
H
αx

2 Eigenvalue problem matrix containing αx2 terms

Hαα Eigenvalue problem matrix containing α2 terms
Ht Total enthalpy
h Enthalpy
hi Coefficient for the stretching function
I Identity matrix
Imag() Imaginary part of complex number
J−1 Determinant of the metric Jacobian
kζ Normal NSCBC metric derivative vector
L Lower triangular matrix
Lζ Normal wave amplitude vector
LΛ Left eigenvector of normal base–flow matrix of disturbance equations
L Length
M−1 Matrix describing the derivative of the primitive variables with re-

spect to the conservative variables
M̂ AUSM split Mach number
m AUSM numerical convective flux vector
N N–factor
n Normal coordinate
ns Shock distance
P AUSM split pressure
p AUSM numerical pressure flux vector
p Pressure
ps Pressure function
Q Conservative state vector
QF Conservative state vector from forward sweep
Q Heat flux



Nomenclature xvii

q Primitive state vector
Res Residuum vector
R Specific gas constant
Real() Real part of complex number
R1, R2 Distances for overset mesh generation
RN Nose radius
Rc Radius of curvature of bow shock
r Ratio of gradients
rl,i Distance for surface fitting method
s Arclength
Tt Base–flow matrix of disturbance equations containing time deriva-

tives
T Temperature
T0 Sutherland reference temperature
Ts Sutherland temperature
t time
U Upper triangular matrix
u Velocity component in x–direction
V
x
1
x
1 Base–flow matrix of disturbance equations containing x1x1 deriva-

tives
V
x
2
x
2 Base–flow matrix of disturbance equations containing x2x2 deriva-

tives
V
x
3
x
3 Base–flow matrix of disturbance equations containing x3x3 deriva-

tives
V
x
1
x
2 Base–flow matrix of disturbance equations containing x1x2 deriva-

tives
V
x
1
x
3 Base–flow matrix of disturbance equations containing x1x3 deriva-

tives
V
x
2
x
3 Base–flow matrix of disturbance equations containing x2x3 deriva-

tives
V Absolute velocity
v Velocity component in y–direction
vn Physical normal velocity component
vt Physical streamwise velocity component
vζ Computational normal velocity component
vη Computational spanwise velocity component
vξ Computational streamwise velocity component

v1 Computational contravariant streamwise velocity component
v2 Computational contravariant normal velocity component
v3 Computational contravariant spanwise velocity component
w Velocity component in z–direction
x x–coordinate
xa Axial distance from the virtual sharp nose
xn Physical normal distance



xviii Nomenclature

xζ Derivative of x–coordinate with respect to computational normal
coordinate

xη Derivative of x–coordinate with respect to computational spanwise
coordinate

xξ Derivative of x–coordinate with respect to computational streamwise
coordinate

x1 Computational contravariant streamwise coordinate
x2 Computational contravariant normal coordinate
x3 Computational contravariant spanwise coordinate
y y-coordinate
yζ Derivative of y–coordinate with respect to computational normal

coordinate
yη Derivative of y–coordinate with respect to computational spanwise

coordinate
yξ Derivative of y–coordinate with respect to computational streamwise

coordinate
z z–coordinate
zζ Derivative of z–coordinate with respect to computational normal co-

ordinate
zη Derivative of z–coordinate with respect to computational spanwise

coordinate
zξ Derivative of z–coordinate with respect to computational streamwise

coordinate

Greek symbols

α Physical streamwise wave–number
β Physical spanwise wave–number
βs Stretching factor
Γkmo Christoffel symbol of the second kind
γ Heat capacity ratio
∆ Difference
∆s Shock standoff distance
δ Boundary–layer thickness
δlm Kronecker tensor
ε Internal energy
εrad Emissivity coefficient
ξ Streamwise metric vector
ζ Computational normal coordinate
ζx Derivative of computational normal coordinate with respect to x–

coordinate
ζy Derivative of computational normal coordinate with respect to y–

coordinate
ζz Derivative of computational normal coordinate with respect to z–



Nomenclature xix

coordinate
η Computational spanwise coordinate
ηx Derivative of computational spanwise coordinate with respect to x–

coordinate
ηy Derivative of computational spanwise coordinate with respect to y–

coordinate
ηz Derivative of computational spanwise coordinate with respect to z–

coordinate
Θ Cone half angle
κ Thermal conductivity
Λ+ Positive eigenvalue matrix of normal base–flow matrix of disturbance

equations
λζ Normal eigenvalue vector
λ Eigenvalue
λs Second viscosity coefficient
λζ Normal eigenvalue
λη Spanwise eigenvalue
λξ Streamwise eigenvalue
µ Dynamic viscosity
µ0 Sutherland reference viscosity
ξ Computational streamwise coordinate
ξx Derivative of computational streamwise coordinate with respect to

x–coordinate
ξy Derivative of computational streamwise coordinate with respect to

y–coordinate
ξz Derivative of computational streamwise coordinate with respect to

z–coordinate
ρ Density
σ Growth rate
σSB Stefan–Boltzmann constant
Φ Phase function
φ Limiter function
ϕ Geometrical angle
Ψ Stretching function
ω Angular frequency
ωAUSM Pressure based weight function

Dimensionless numbers

CFL Courant–Friedrichs–Lewy number
M Mach number
M
x
1 Streamwise Mach number

Ec Eckert number
Pr Prandtl number



xx Nomenclature

Re Reynolds number
St Stanton number
Re∞,RN

Reynolds number with respect to free–stream and nose radius
Retrans,∞,s Transition Reynolds number with respect to free–stream and ar-

clength
Rex Local Reynolds number

Abbreviations

CEA Chemical Equilibrium with Applications
CONSST3D COmpressible Navier–Stokes STeady 3D
COSTAS COmpressible STAbility Solver
AUSM Advection Upstream Splitting Method
c.c. Complex conjugate
DNS Direct Numerical Simulation
DPLR Data-Parallel Line Relaxation
LAPACK Linear Algebra PACKage
LAURA Langley Upwind Aerothermodynamic Relaxation Algorithm
LPSE Linear Parabolized Stability Equations
LST Linear Stability Theory
LU–SGS Lower–Upper Symmetric–Gauß–Seidel
MUSCL Monotonic Upstream-Centered Scheme for Conservation Laws
NASA National Aeronautics and Space Administration
NSCBC Navier–Stokes Characteristic Boundary Conditions
PG Perfect Gas
PSE Parabolized Stability Equations
TCE Thermo–Chemical Equilibrium
TPS Thermal Protection Shield
TVD Total Variation Diminishing

Subscripts

∞ Free–stream variable
, Covariant derivative
cart Cartesian
eq Thermo–chemical equilibrium
i Grid point number in streamwise direction
j Grid point number in normal direction
k,m,o,p,r Indices
L Left flux vector
l Grid point number in spanwise direction
max Maximum value
n normal direction
new New variable



Nomenclature xxi

old Old variable
R Right flux vector
trans Transition
w Wall
δ Boundary–layer edge

Superscripts

∗ Dimensional variable
+ Positive flux vector
− Negative flux vector
† Complex conjugate
k,m,o,p,r Indices
S Shock variable

Accents

′ Disturbance variable
¯ Base–flow variable
˜ Amplitude function of disturbance variable





Chapter 1

Introduction

1.1 Motivation

In the mission planning and the design phase of re–entry maneuvers, the investigation,
evaluation and optimization of the laminar–turbulent transition have become crucial
design criteria over the last decades, especially with regard to the development and
design of the thermal protection shield (TPS). The main reason for the necessity of
investigations with regard to the laminar–turbulent transition is the difference in the
wall heat flux in a turbulent flow compared to a laminar one, where, in the turbulent
flow, the wall heat flux is significantly, respectively, several times, higher compared
to the wall heat flux in a laminar flow, see, e.g., [2]. Re–entry maneuvers into the
atmospheres of different planets usually take place at high speeds which are in the
order of several times the speed of sound. These high velocities result in a disconti-
nuity in the flow, namely, a bow shock, that forms in front of the geometry. Across
the bow shock, the flow–field changes significantly, e.g., the velocity decreases and
the pressure and temperature increase. Due to the high temperatures downstream
of the bow shock, the aforementioned TPS is mandatory in front of the re–entry
configuration to enable the safe descend from space to the planet surface avoiding
a burn up of the geometry and the payload, e.g., a planetary sample or astronauts.
To guarantee the safe re–entry, the TPS has to withstand these high thermal loads.
A conservative approach is to design the TPS to withstand the thermal loads of a
turbulent flow around the whole surface, respectively, the highest possible wall heat
flux. The drawback of this approach is the resulting high weight of the TPS, respec-
tively, the high costs of the overall space mission due to the additional weight that
has to be carried into space by the launcher. To lower the costs that arise due to the
weight of the TPS, the knowledge of the laminar–turublent transition onset location
is mandatory. Further, the spatial delay of this location around the geometry has a
cost reduction effect. This is the case because in a laminar flow a thinner TPS can be
used due to the lower wall heat flux. With regard to the outlined effects in re–entry
maneuvers, investigations and gaining knowledge of the laminar–turbulent transition
mechanism are crucial to effectively design the TPS and to reduce the costs of a space
mission.
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2 1. Introduction

Besides the general motivation for the investigation of the laminar–turbulent tran-
sition outlined before, the transition mechanisms occurring in re–entry maneuvers
into the Mars atmosphere gained a greater interest in the last years because of ex-
ploration missions of the planet, e.g., the Mars Science laboratory [22] and the Mars
2020 mission [16], and future human space flights to Mars, e.g. planned by NASA
[95]. Due to the different gas composition of the Mars atmosphere compared to the
Earth atmosphere, therefore, further investigations have to be performed on the in-
fluences of the Mars atmosphere on the laminar–turbulent transition to enable a safe
descent of the space configuration and to reduce the costs of Mars missions.

1.2 Laminar–Turbulent Transition

In this section, a brief summary of the laminar–turbulent transition process will be
given as a theoretical basis for the boundary–layer stability investigations in this work.
To outline this process, the stages a flow undergoes from a laminar to a turbulent
flow are presented for a flat plate, see Fig. 1.1, following [77]. Although different
paths to turbulence are possible, presented for example in [18], the stages associated
with the investigated hypersonic test cases in this work are outlined.

Figure 1.1: Sketch of the laminar–turbulent transition process [77].

Around the tip of the flat plate, represented by stage I, the flow–field is fully lami-
nar without any disturbances. Due to external influences, e.g., the surface roughness
or acoustic waves, small disturbances are introduced into the flow–field which can
either grow or decay with an increasing distance from the tip. This initial stage,
introducing the disturbances, is designated as the boundary–layer receptivity in the
literature [18]. If the introduced disturbances start to grow, firstly, two–dimensional
primary instabilities, e.g., Tollmien–Schlichting waves for subsonic flows [77] or first
and second Mack modes in supersonic flows [18], form in stage II. As these primary
instabilities grow further, due to secondary instabilities, three–dimensional distur-
bances occur in stage III, which are designated as Λ–vortices due to their typical
structure. Three types of Λ–vortices are distinguished. The K–type (Klebanoff)
Λ–vortices are aligned and show a peak/valley structure [39], whereas the H–type
(Herbert) Λ–vortices show a staggered structure [25] and the O–type (oblique) Λ–
vortices are staggered and overlap [9, 17]. In stage IV, the breakdown of the vortices
starts and turbulent spots arise which finally develop into a fully turbulent flow in
stage V, respectively, a significant increase in the boundary–layer thickness δ, the
wall heat flux and in the skin friction. In the outlined laminar–turbulent transi-
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tion process, it is mandatory that small disturbances are assumed. Otherwise, if
the amplitudes of the introduced disturbances exceed a specific limit, the primary
instabilities, which show a linear behavior, are bypassed and the initial disturbances
are secondary instabilities or turbulent spots. In this case, the linear stability theory
and the linear parabolized stability equations, applied in this work, are not valid and,
thus, this path to turbulence is not accounted for.

In this work, the boundary–layer stability of super– and hypersonic flows will be
investigated. Thus, in stage II, first and second Mack modes occur as the primary
instabilities. The first mode is similar to a Tollmien–Schlichting wave, whereas the
second and higher Mack modes are acoustic waves trapped inside the boundary–layer
[18]. Additional differences between these modes occur especially with respect to the
Mach number. In low supersonic flows, the first mode is the dominant mode leading
to the laminar–turbulent transition. At higher Mach numbers, e.g. M = 4 for a
flat plate [53], the second Mack mode becomes the dominant one. Further, the first
mode is an oblique mode. Thus, the maximum growth rate of the first mode appears
under a spanwise angle to the centerline of the geometry, where, in contrast, the
second mode is a two–dimensional mode and shows the maximum growth rate on the
centerline of the geometry [53].

Different methods can be found in the literature to investigate the laminar–
turbulent transition such as the DNS (Direct Numerical Simulation), the LST (Linear
Stability Theory) and the linear or nonlinear PSE (Parabolized Stability Equations).
Applying the DNS, due to solving the full Navier–Stokes equations and resolving
small length and time scales, all stages of the laminar–turbulent transition process
can be considered. However, due to the very fine mesh, required for these calculations,
the computational time exceeds a reasonable limit in a non-scientific environment.
Thus, to decrease the computational time for the boundary–layer stability calcula-
tions, firstly, the LST and thereafter the linear PSE were developed. These methods
allow for the computation of the linear stage II. To further consider the nonlinear
stages to the turbulent flow, the nonlinear terms were added to the PSE, resulting
in the nonlinear PSE. In this work, as a first step, the LST and the linear PSE were
implemented into the boundary–layer stability solver and the investigations will be
performed for the linear stage II. In the LST and LPSE, the main quantity to be
solved for to characterize the boundary–layer stability is the growth rate. This value
describes whether the introduced disturbance grow or decay. To decide if the flow
becomes turbulent the semi–empirical eN–method of Smith & Gamberoni [81] and
Van Ingen [97] will be used to calculate the N–factor, which describes the downstream
evolution of the disturbance amplitude. At a certain value for the N–factor, the flow
field becomes turbulent, where this value depends on several influence parameters,
e.g., the free–stream conditions and the geometry, outlined in the next section.

1.3 State of the Art

The initial overview of the laminar–turbulent transition process and of the past inves-
tigations on the boundary–layer stability was gained in the lecture series of Schneider
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[78]. With this comprehensive overview in mind, the literature review was performed
in this work and will be presented in the following.

The first investigations with regard to the boundary–layer stability in the super–
and hypersonic flow regime were performed with respect to the free–stream condi-
tions, especially considering the influence of the Mach number. Mack [53] found that,
besides the first mode, an additional mode arises at higher Mach numbers which is
the so–called second Mack mode. This second mode becomes the dominant mode at
Mach numbers above M = 4 for flat plates. Additionally, the results showed that
the first mode is an oblique mode, respectively, the maximum in the growth rate
appeared under an angle to the centerline of the geometry, whereas the second Mack
mode is a 2D–disturbance.

Besides these first observations, numerous investigations on the boundary–layer
stability in the super– and hypersonic flow regime were performed, where an overview
will be given in the following to emphasize the research in this work. A first influ-
ence parameter on the boundary–layer stability, extensively investigated in the last
decades, is the nose radius. Famous examples of these investigations are the Stetson
Mach 8 cones [84, 85]. In these investigations Stetson et al. examined the differences
in the laminar–turbulent transition between a sharp cone and a blunted cone with a
small nose radius. The major finding was that blunted cones show significantly higher
critical Reynolds numbers and growth rates of the disturbances compared to sharp
cones. With regard to these experimental results, numerous numerical investigations
were performed on the Stetson blunted cone, e.g., by Esfahanian & Hejranfar [15],
Kufner [42], Malik et al. [57], Rosenboom et al. [76], Stilla [88] and Zhong & Ma
[105]. To show the influence of the nose radius and, consequently, the entropy–layer
swallowing point on the transition onset location, e.g., Kufner [42] performed calcu-
lations with respect to the nose radius, where the increase in the nose bluntness and,
consequently, a delay in the entropy–layer swallowing point resulted in a delay of the
transition onset location. This phenomenon was also observed for different test case
configurations considering small nose bluntnesses, e.g., [83]. In contrast, for large
nose bluntnesses the reverse effect can be observed, respectively, the transition onset
location moves upstream, e.g., described by Ericsson [13] and Softley et al. [82].

Due to differences in the results between the outlined numerical investigations
and the experiment of Stetson et al. [85], among other investigated influence param-
eters, the influence of the wall temperature condition was examined, respectively, an
isothermal wall was set in contrast to an adiabatic wall. One of these investigations
was performed by Liang et al. [49] on the blunted Stetson Mach 8 cone. The results
showed that a wall cooling results in a destabilizing effect on the second Mack mode
and a stabilizing effect on the first mode, where similar observations with regard
to the wall cooling were made by Kufner [42] and Mack [53] and in experimental
investigations by Stetson et al. [87].

With regard to the free–stream parameters, the Reynolds number is a crucial
influence parameter. Stetson et al. [86] observed that, with an increasing Reynolds
number in the free–stream, the most amplified disturbance frequency increase. Fur-
ther, Stainback [83] found that the transition onset location moves further upstream
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with an increasing free–stream Reynolds number.

One of the main goals in the laminar–turbulent transition analysis is the spa-
tial delay of the transition onset location. Therefore, the injection of CO2 into the
boundary–layer of a sharp cone was investigated by Leyva et al. [46], where two main
observations were made. Firstly, if a premixed test gas of CO2/N2 or CO2/Air was
used, a significant delay in the transition onset location was found in experiments.
Secondly, computations showed that the injection of CO2 into air can have a stabi-
lizing effect on the boundary-layer stability due to thermo–chemical non–equilibrium
effects of CO2 that absorb the acoustic energy, respectively, damp the second Mack
mode. Further studies based on these first numerical investigations have been per-
formed by Wagnild et al. [99]. In this study, it was found that the injection of cold
CO2 results in an immediate transition of the flow but by applying a pre–heated
injection and a longer transpiration interval, a delay in the transition was observed.
An additional investigation on this test case has been performed by Federov et al.
[19], where among other things an influence of the injection rate and the injector
shaping on the transition was found. Federov et al. found a stabilizing effect on the
boundary–layer transition by injecting air into air if low injection rates were used.
In this case, the near field around the injection is only slightly influenced by the
injection and a stabilizing effect can evolve in the mid and far field, where this effect
is assumed to be enhanced by the injection of CO2.

Another important influence parameter on the boundary–layer stability, which
gained greater interest in the research in the last years, is the thermodynamic model
applied in the numerical calculations, respectively, the consideration of chemical re-
actions and vibrational excitation. A first test case which takes into account the
thermo–chemical equilibrium gas model and to perform a comparison with the per-
fect gas model was the Mach 10 flat plate investigated by Malik & Anderson [56].
Several observations were made with regard to the thermodynamic model. Firstly,
a destabilizing effect on the second Mack mode was observed by applying the linear
stability theory considering a thermo–chemical equilibrium gas model in comparison
to the perfect gas model, where in addition the disturbance frequency shifts to lower
values. Secondly, an additional unstable Mack mode, the third mode, was found in
the thermo–chemical equilibrium model calculation for higher disturbance frequencies
which can not be observed in the perfect gas case. In addition to Malik & Anderson,
Marxen et al. [58] and Zanus et al. [104] performed investigations on the same flat
plate applying the thermo–chemical equilibrium gas model, where the former per-
formed direct numerical simulations to calculate the boundary–layer stability along
the plate and the results agreed well with the results of Malik & Anderson. The latter
applied the linear stability theory and the parabolized stability equations along the
plate, where also in this case the destabilizing effect of the second Mack mode was
shown with a slightly smaller maximum growth rate compared to Malik & Anderson.
Further, a stabilizing effect on the first Mack mode was found in their investigations.
Additional investigations on the influence of the thermodynamic model have been
performed on the same flat plate by Kline et al. [41], where in addition to the perfect
gas and the thermo–chemical equilibrium gas model, a finite rate chemistry model
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and a thermo–chemical non–equilibrium gas model were considered. In their work,
the same destabilizing effect on the second Mack mode in the equilibrium gas model
was observed. By applying a finite rate chemistry model, the destabilizing effect was
further increased. In contrast, by considering a thermo–chemical non–equilibrium
gas model, a reverse trend was found, respectively, the maximum growth rate shows
smaller values compared to the finite rate chemistry model. Further examples of
research on the thermodynamic model that can be found in the literature have been
performed by Chang et al. [12], Hudson et al. [31], Johnson & Candler [35] and
Stuckert & Reed [89] with the same observations on a flat plate.

To account for more realistic flight conditions that occur during re–entry maneu-
vers into the Earth atmosphere, respectively, high–hypersonic Mach numbers, numer-
ical investigations have been performed on the Re–entry F cone free flight experiment
[33] in the last years. Firstly, Malik [54] performed LST and PSE calculations apply-
ing a perfect gas, thermo–chemical equilibrium gas and finite rate chemistry model
to the Re–entry F configuration at an altitude of 30.48 km. The calculations showed
high transition onset N–factors applying the PSE of N = 7.3 for the perfect gas,
N = 9.8 for the thermo–chemical equilibrium gas and N = 9.5 by applying the finite
rate chemistry model. Additionally, for high disturbance frequencies an unstable
third mode was recognized in the N–factor distributions of the LST computation
which led to an additional increase in the N–factor distributions. Johnson & Candler
[34] performed PSE calculations around the Re–entry F cone at two altitudes during
the re–entry maneuver, 24.384 km and 30.48 km respectively. In contrast to Malik
[54], a thermo–chemical non–equilibrium gas model was applied in the calculations.
In this case an N–factor of N = 8.7 was found at the transition onset location for
an altitude of 30.48 km, respectively a stabilizing effect can be recognized compared
to the thermo–chemical equilibrium and finite rate chemistry results of Malik [54].
Further, in their work the effect of surface ablation, that occurred during the re–entry
maneuver, was considered at an altitude of 24.384 km, where, with a decreasing nose
radius, the transition onset location moved upstream similar to the observations made
for the Stetson cone. Similar to Johnson & Candler, Mortensen [62] and Mortensen
& Zhong [63] applied a thermo–chemical non–equilibrium model but to compute the
LST around the Re–entry F cone. Two different cases were considered in these works
applying a 5–species model and an 11–species model, where in the first an N–factor
of N = 7.8 and in the latter of N = 7.7 was found, respectively, smaller values
compared to the former presented PSE calculations.

Investigations of the boundary–layer stability in the Mars atmosphere are very
rare in the literature. One of these investigations was performed by Kline et al. [40]
who investigated the boundary–layer stability over a Mach 10 flat plate. In their
work, they performed a comparison between different thermodynamic models, re-
spectively, a finite rate chemistry model and a thermo–chemical non–equilibrium gas
model, applied to a 5–species air atmosphere and an 8–species Mars atmosphere. The
results of the LST computations showed that the Mars atmosphere has a destabilizing
effect on the maximum growth rate compared to air if a finite rate chemistry model
is applied but a stabilizing effect by applying a thermo–chemical non–equilibrium gas
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model. Thus, also in the N–factor distributions of the LST calculations, the laminar–
turbulent transition would occur further downstream in air compared to a Mars at-
mosphere by applying a finite rate chemistry model but the reverse trend occurs by
applying a thermo–chemical non–equilibrium gas model. Another work, found in the
literature, was performed by Hollis et al. [29]. In this work, experimental investi-
gations in a high-enthalpy shock tunnel were performed to determine the transition
onset location of the Mars Science Laboratory in a CO2 atmosphere. Further, a com-
parison with the NASA LAURA code was performed applying laminar, transitional
and turbulent flow models to reproduce the measured wall heat flux distributions.
The results considering a laminar reacting CO2 flow showed comparable heat flux
distributions along the geometry but the turbulent computations over–predicted the
experimental data. Further, Hollis et al. concluded that additional experimental
investigations are mandatory to get further insights in the transition of the Mars Sci-
ence Laboratory to validate their laminar–turbulent transition correlation. Further
experimental and numerical investigations with regard to the wall heat flux were
performed by Hollis et al. [28] around a sharp and a blunted cone under several
free–stream conditions in a CO2 atmosphere. Similar to the previous investigations,
different numerical calculations were performed with the NASA LAURA and DPLR
codes, applying laminar, transitional or turbulent flow models, to reproduce the heat
flux distributions of the experiments. In addition, first numerical calculations were
also performed for the Mars Science Laboratory test run of Hollis et al. [30]. In
the results of this work, similar distributions of the heat flux were observed between
the experiments and the numerical computations for the laminar and turbulent flow
test cases but the computations over–predicted the heat flux in the transitional test
cases. Besides these investigations, first boundary–layer stability calculations of the
Mars Science Laboratory Run 11 test case of Hollis et al. [29], by applying the LST
and the PSE, can be found in the work of Johnson et al. [36] but for air. In the
LST calculations an unstable first mode was detected around the stagnation point.
Further, their PSE calculations showed that this unstable first mode has a greater
growth rate compared to the second Mack mode and, thus, by assuming an N–factor
of N = 5, this first mode likely leads to the laminar–turbulent transition around the
measured transition onset location in the experiment. However, because LST and
PSE calculations considering a CO2 atmosphere were not performed in this work,
future investigations are necessary.

1.4 Research Topic and Outline of the Work

Due to the lack of investigations of the boundary–layer stability under Mars atmo-
sphere conditions, this work aims to gather first insights in the transition mechanisms
under these conditions. Therefore, stability calculations applying the linear stability
theory and the linear parabolized stability equations were performed around a blunted
cone. To investigate the influence of the atmosphere on the boundary–layer stabil-
ity, calculations in different atmospheres, a pure CO2, the Mars atmosphere and the
Earth atmosphere, were performed. Further, different free–stream conditions were
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set to examine their influence in the pure CO2 atmosphere.
To perform the investigations, firstly, a base–flow solver to calculate the laminar

base–flow solution and a boundary–layer stability solver to perform the boundary–
layer stability calculations were developed in this work, where the implementation of
the former will be presented in Sec. 2. In this section, an overview of the governing
equations, the thermodynamic models and the numerical implementation containing
the spatial and temporal discretization, the boundary conditions, the mesh adaption
to capture the shock accurately, the treatment of the singular line and the generation
of the grid and the initial solution will be given. Thereafter, the boundary–layer
stability solver will be presented in Sec. 3. Similar to the base–flow solver, the
governing equations, the thermodynamic models and the numerical implementation
will be outlined. The overview of the numerical implementation contains the spa-
tial discretization schemes, the methods applied to the linear stability theory and
the linear parabolized stability equations, the boundary conditions, the solution for
the step size restriction and the generation of the grid for the stability calculations
as well as the interpolation of the base–flow solution onto the new grid. Further,
the calculation of the growth rate of the disturbances and the resulting N–factor
calculation will be presented. In Sec. 4, validation calculations will be presented
which were performed to show the correct implementation of the solvers and the
accuracy of the results. To perform the validation of the solvers for the perfect gas
model and the thermo–chemical equilibrium gas model, two test cases were selected,
respectively, the Stetson Mach 8 cone and a Mach 10 flat plate. After the presen-
tation of the validation results, the boundary–layer transition investigations of the
pure CO2, the Mars, and the Earth atmospheres will be presented in Sec. 5. Firstly,
the investigations of the Shot 2 test case in the pure CO2 atmosphere of Hollis et
al. [28] will be presented. Secondly, the Shot 2 results will be compared with results
considering the same geometry and similar free–stream conditions but by assuming
the Mars atmosphere which contains a small amount of N2. Thirdly, an additional
comparison with regard to the Earth atmosphere will be presented to show the in-
fluence of the different gas compositions of the two planets. Lastly, to investigate
the influence of the free–stream parameters, the Shot 4 test case of Hollis et al. [28]
was calculated and the results will be compared to the Shot 2 results. The work will
be concluded by summarizing the observations and by giving an outlook for possible
future investigations.



Chapter 2

Base–Flow Solver

2.1 Governing Equations

The investigation of the boundary–layer stability requires an accurate laminar base–
flow solution. For this purpose, a parallelized finite–difference Navier–Stokes solver,
named CONSST3D (COmpressible Navier–Stokes STeady 3D), was developed in this
work [90]. The governing equations of this solver are the conservative, compressible
Navier-Stokes equations in general curvilinear coordinates. In the non–dimensional
form, based on the derivation in [71], these equations read
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In Eq. (2.4), k represents the curvilinear coordinate (k = ξ, η, ζ) of the respective
viscous flux. The non–dimensional flow variables are calculated by dividing the di-
mensional variable by the respective free–stream value, where the only exception is
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the pressure for which the dynamic pressure ρ∞V
2
∞ is used [71]. Further, the Prandtl

number and the Reynolds number with respect to the nose radius R∗N as the reference
length read

Pr∞ =
µ∗∞c

∗
p∞

κ∗∞
, Re∞ =

ρ∗∞V
∗
∞R

∗
N

µ∗∞
. (2.5)

In addition to solve the full Navier–Stokes equations, for high Reynolds number flows,
Eq. (2.1) can be simplified by neglecting the streamwise and spanwise viscous fluxes

Ev and Fv because they are of order 1/Re1/2
∞ or smaller [71]. This simplification

results in the so–called thin–layer Navier–Stokes equations.

The metric terms in Eq. (2.3) and (2.4) to apply the transformation between the
Cartesian coordinate system x, y and z and the equidistant computational curvilinear
coordinate system ξ, η and ζ, shown in Fig. 2.1, are calculated as follows. The
derivatives of the Cartesian coordinates with respect to the curvilinear coordinates,
e.g., ∂x

∂ξ
= xξ, are calculated by finite–differences of second order as

xξ =
−x(i−1,j,l) + x(i+1,j,l)

2∆ξ
=
−x(i−1,j,l) + x(i+1,j,l)

2
(2.6)

identical to the order of the spatial discretization scheme in Sec. 2.3.1 with ∆ξ = 1.
To apply Eq. (2.6) at the boundaries, ghost points outlined in Sec. 2.3.3 are used in
the solver. The inverse transformation is given by the matrix inversion of the before

Figure 2.1: Sketch of the Cartesian and the general curvilinear coordinate system
around a blunted cone including the bow shock (dashed line).
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calculated metric terms as

ξx = J(yζzη − yηzζ), ηx = J(yξzζ − yζzξ), ζx = J(yηzξ − yξzη),
ξy = J(zζxη − zηxζ), ηy = J(zξxζ − zζxξ), ζy = J(zηxξ − zξxη),
ξz = J(xζyη − xηyζ), ηz = J(xξyζ − xζyξ), ζz = J(xηyξ − xξyη),

J−1 = (yζzη − yηzζ)xξ + (zζxη − zηxζ)yξ + (xζyη − xηyζ)zξ, (2.7)

where the same nomenclature is used for the derivatives as ∂ξ
∂x

= ξx and, further,

J = 1/J−1. By applying the transformation relation, the resulting curvilinear velocity
components are

vk = kxu+ kyv + kzw (2.8)

with k = ξ, η, ζ [101]. Note that in Sec. 4 and Sec. 5 the physical curvilinear velocity
components are used for the figures and the results presentation which are given by,
e.g.,

vt(i,j,l) =
ξx(i,0,l)u(i,j,l) + ξy(i,0,l)v(i,j,l) + ξz(i,0,l)w(i,j,l)√

ξ2
x(i,0,l) + ξ2

y(i,0,l) + ξ2
z(i,0,l)

(2.9)

with the metric terms at the wall j = 0.

2.2 Thermodynamic Models

2.2.1 Perfect Gas Model

Two types of thermodynamic models are implemented into the solver for the different
gas compositions (Air, Mars atmosphere and pure CO2) investigated in this work.
The first one is the perfect gas model valid for moderate temperatures. In this case,
the non–dimensional temperature is calculated by

T = γM2
∞
p

ρ
, (2.10)

where the Mach number with the speed of sound as c∗∞ =
√
γR∗T ∗∞ reads

M∞ =
V ∗∞
c∗∞

. (2.11)

Further, for perfect gases, the assumption of a constant Prandtl number is made.
Thus, the non–dimensional thermal conductivity κ is equal to the non–dimensional
dynamic viscosity µ which is estimated via Sutherland’s law. In the dimensional
form, this equation reads

µ∗ = µ∗0

(
T ∗

T ∗0

) 3
2
(
T ∗0 + T ∗s
T ∗ + T ∗s

)
. (2.12)

The coefficients µ∗0, T ∗0 and T ∗s and the gas constants for the different gas compositions
can be found in Tab. 2.1 [59, 100, 105].
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Table 2.1: Sutherland coefficients and gas constants for the different gas compositions
[59, 100, 105].

Gas Pr γ R∗ [Nm kg-1K-1] µ∗0 [kg m-1s-1] T ∗0 [K] T ∗s [K]

Air 0.72 1.4 286.94 1.7894× 10−5 288 110.33

Mars 0.76165 1.291 192.161 1.38357762× 10−5 273 216.6709

CO2 0.76416 1.2885 188.924 1.370× 10−5 273 222

To close the system of equations in Sec. 2.1, a formulation for the total energy
per unit volume is required as

e = ρε+
1

2
ρ(u2 + v2 + w2) =

p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (2.13)

and for the total enthalpy as

Ht = h+
1

2
(u2 + v2 + w2) =

γ

γ − 1

p

ρ
+

1

2
(u2 + v2 + w2). (2.14)

With these equations, the system of equations is fully determined and the calculations
in the perfect gas regime can be performed.

2.2.2 Thermo–Chemical Equilibrium Gas Model

For high temperatures, effects such as vibrational excitation and chemical reactions
play a significant role. The vibrational energy becomes excited at T ∗ = 300 K in air
[26], where this effect plays a significant role at temperatures above approximately
T ∗ = 800 K [2]. At even higher temperatures, additionally, chemical reactions oc-
cur and have to be considered in the thermodynamic model [2]. Thus, the perfect
gas assumption is not valid anymore and, further, all thermodynamic and transport
properties become functions of two thermodynamic variables. Therefore, to take into
account these effects, a thermo–chemical equilibrium or non–equilibrium gas model
can be applied, where the former is implemented as the second thermodynamic model
in CONSST3D. In the thermo–chemical equilibrium model, in contrast to the thermo–
chemical non–equilibrium model, the assumptions are made that the thermal state
and the chemical reactions are in equilibrium. This is the case if the reaction time of
the chemical reactions and the relaxation time of the vibrational excitation is small
compared to the time of the fluid element movement in the flow–field [2].

Two approaches can be applied to account for the thermo–chemical equilibrium
model. The first one calculates the actual thermodynamic and transport properties at
each grid point in the flow–field by minimizing the Gibbs energy in each iteration step
during the calculation. The second approach, implemented in CONSST3D because
it significantly reduces the computational time compared to the first approach, uses
so–called state surfaces which are generated once in advance of the calculations [64].
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(a) Example of a state surface (b) Interpolation process on the state surfaces

Figure 2.2: Lagrange polynomial interpolation on the state surfaces.

Table 2.2: Gas compositions of the generated state surfaces [40].

Gas model Gas composition [vol. %] Considered species

Air 79 (N2), 21 (O2) N2, O2, NO, N, O
Mars 95.366 (CO2), 4.634 (N2) CO2, N2, O2, CO, NO, C, N, O
CO2 100 (CO2) CO2, O2, CO, C, O

These state surfaces describe the thermodynamic and transport properties of a spe-
cific gas composition with respect to two thermodynamic variables, e.g., cp = f(ρ,ε),
cp = f(p,T ), µ = f(ρ,ε), etc., for a domain of interest (see Fig. 2.2a). In this work,
the state surfaces are generated with the software CEA [21] for the different gas
compositions presented in Tab. 2.2.

Because the state surfaces are described by discrete points as shown in Fig. 2.2a,
an interpolation technique is necessary to calculate the thermodynamic and transport
properties for the grid points in the flow–field. In this work, a Lagrange polynomial
of fourth order is applied for this calculation, e.g., for cp = f(ρ,ε) as

cp =cp,0
ρ− ρ1

ρ0 − ρ1

ρ− ρ2

ρ0 − ρ2

ρ− ρ3

ρ0 − ρ3

ρ− ρ4

ρ0 − ρ4

+ cp,1
ρ− ρ0

ρ1 − ρ0

ρ− ρ2

ρ1 − ρ2

ρ− ρ3

ρ1 − ρ3

ρ− ρ4

ρ1 − ρ4

+

cp,2
ρ− ρ0

ρ2 − ρ0

ρ− ρ1

ρ2 − ρ1

ρ− ρ3

ρ2 − ρ3

ρ− ρ4

ρ2 − ρ4

+ cp,3
ρ− ρ0

ρ3 − ρ0

ρ− ρ1

ρ3 − ρ1

ρ− ρ2

ρ3 − ρ2

ρ− ρ4

ρ3 − ρ4

+

cp,4
ρ− ρ0

ρ4 − ρ0

ρ− ρ1

ρ4 − ρ1

ρ− ρ2

ρ4 − ρ2

ρ− ρ3

ρ4 − ρ3

. (2.15)

Due to the one–dimensional nature of Eq. (2.15), the interpolation is performed in
the two directions successively as shown in Fig. 2.2b. Firstly, the interpolation is
performed in the ρ–direction ( 1O) to calculate the variables at the points marked
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with a ◦. Secondly, the interpolation is performed in the ε-direction ( 2O) with the
before calculated variables to determine the thermodynamic or transport variable
at × corresponding to the density and the internal energy at the grid point in the
flow–field. To further increase the efficiency of the interpolation process, Eq. (2.15)
can be simplified for the first interpolation ( 1O) to

cp = c4ρ
4 + c3ρ

3 + c2ρ
2 + c1ρ+ c0, (2.16)

where c0–c4 are constants from the Lagrange polynomial. Nevertheless, the second
interpolation ( 2O) still requires Eq. (2.15) due to the unknown values of cp at the
intermediate points ◦ before the first interpolation is performed.

The program CEA is capable of calculating the thermodynamic and transport
properties from T ∗ = 200 K to T ∗ = 20000 K [21]. Thus, a model has to be imple-
mented for temperatures below this lower limit to deal with low temperatures in the
thermo–chemical equilibrium model. In case of CONSST3D, the perfect gas model of
Sec. 2.2.1 is applied at temperatures below T ∗ = 300 K. A slightly higher temperature
than the lower limit of CEA is used because at this temperature, nearly the standard
temperature, the thermodynamic and transport properties can be calculated without
a great discontinuity at the boundary to the thermo–chemical equilibrium model.

To solve Eq. (2.1), the process outlined in this section is performed for each
thermodynamic and transport variable to close the system of equations.

2.3 Numerical Implementation

2.3.1 Spatial Discretization

The governing equations of Sec. 2.1 require adequate spatial and temporal discretiza-
tion schemes and boundary conditions. To perform the spatial disretization, a flux
splitting scheme is applied to the inviscid fluxes E, F and G and a central finite–
difference scheme to the viscous fluxes Ev, Fv andGv. The flux splitting schemes im-
plemented in CONSST3D are the AUSM+ [51], AUSM+–up [50] and the AUSMPW+
[38] flux splitting schemes, where the latter was applied in this work due to two main
advantages compared to the original AUSM+ flux splitting scheme. Firstly, over-
shoots and oscillations of the flow variables are eliminated at shocks and, secondly,
the presence of flow variable oscillations at the wall is removed [38].

In the following, the equations of the AUSMPW+ flux splitting scheme are pre-
sented in the streamwise direction with respect to Fig. 2.3 following the derivation in
[38]. For simplicity and readability reasons, only the subscript i for the streamwise
direction is used in the following equations of this section. In the normal and span-
wise direction, similar equations can be derived by replacing the respective metric
terms and by performing the calculation in the respective spatial direction. In general
curvilinear coordinates, the inviscid fluxes at i± 1/2, respectively, between two grid
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Figure 2.3: Sketch of the flux splitting scheme.

points, are calculated by

E(i±1/2) =J−1
(i±1/2)|∇ξ(i±1/2)|

(
M̂+
L(i±1/2)mL(i±1/2)c(i±1/2) + M̂−R(i±1/2)mR(i±1/2)c(i±1/2)

)
+J−1

(i±1/2)ξ(i±1/2)

(
P+
L(i±1/2)pL(i±1/2) + P−R(i±1/2)pR(i±1/2)

)
(2.17)

with m = [ρ, ρu, ρv, ρw, ρHt]
T , p = [0,p,p,p,0]T , ξ = [0,ξx,ξy,ξz,0]T and |∇ξ| =√

ξ2
x + ξ2

y + ξ2
z . The metric terms J−1, ξx, ξy and ξz at i± 1/2 are calculated by the

local average of the neighboring grid points [42]. In Eq. (2.17), the Mach numbers
M̂±L,R(i±1/2) are defined as

M̂+
L(i±1/2) = M+

L(i±1/2) + M−R(i±1/2)[(1− ω
AUSM
(i±1/2))(1 + fAUSM

R(i±1/2))− fAUSM
L(i±1/2)], (2.18)

M̂−R(i±1/2) = M−R(i±1/2)ω
AUSM
(i±1/2)(1 + fAUSM

R(i±1/2)), (2.19)

for M+
L(i±1/2) + M−R(i±1/2) ≥ 0, and as

M̂+
L(i±1/2) = M+

L(i±1/2)ω
AUSM
(i±1/2)(1 + fAUSM

L(i±1/2)), (2.20)

M̂−R(i±1/2) = M−R(i±1/2) + M+
L(i±1/2)[(1− ω

AUSM
(i±1/2))(1 + fAUSM

L(i±1/2))− fAUSM
R(i±1/2)], (2.21)

for M+
L(i±1/2) + M−R(i±1/2) < 0, with

ωAUSM
(i±1/2) = 1−min

(
pL
pR
,
pR
pL

)3

(i±1/2)

(2.22)

and

fAUSM
L,R(i±1/2) =


(
pL,R(i±1/2)

ps(i±1/2)

− 1

)
min

(
1,

min(pk,L,pk,R)

min(pL,pR)

)2

(i±1/2)

, for ps(i±1/2) 6= 0

0 , for ps(i±1/2) = 0

.

(2.23)
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In Eq. (2.23), the pressure terms pk,L,R are reconstructed from the surrounding
grid points of the discretized grid point shown in Fig. 2.3 for a two–dimensional case
marked with the two circle symbols for the flux E(i−1/2) and the two diamond symbols

for the flux E(i+1/2). Further, in Eq. (2.23) ps is defined as ps = P+
L pL + P−R pR. The

Mach number splitting functions in the previous equations are calculated by

M±L,R(i±1/2) =


1

2
(ML,R(i±1/2) ± |ML,R(i±1/2)|) , if |ML,R(i±1/2)| > 1

±1

4
(ML,R(i±1/2) ± 1)2 , if |ML,R(i±1/2)| ≤ 1

(2.24)

and the pressure splitting functions by

P±L,R(i±1/2) =


1

2
(1± sign(ML,R(i±1/2))) , if |ML,R(i±1/2)| > 1

1

4
(ML,R(i±1/2) ± 1)2(2∓ML,R(i±1/2))

± 3
16

ML,R(i±1/2)(M
2
L,R(i±1/2) − 1)2 , if |ML,R(i±1/2)| ≤ 1

.

(2.25)

The speed of sound that is used in Eq. (2.17) and for calculating the streamwise
Mach number M±L,R(i±1/2) = vξ,L,R(i±1/2)/|∇ξ|/c(i±1/2) is

c(i±1/2) =
c2
s(i±1/2)

max(|vξ,L(i±1/2)/|∇ξ||, cs(i±1/2))
, for

1

2
(vξ,L(i±1/2) + vξ,R(i±1/2)) > 0

c(i±1/2) =
c2
s(i±1/2)

max(|vξ,R(i±1/2)/|∇ξ||, cs(i±1/2))
, for

1

2
(vξ,L(i±1/2) + vξ,R(i±1/2)) ≤ 0

,

(2.26)
where cs for the perfect gas regime is calculated by the normal total enthalpy as

cs =
√

2(γ − 1)/(γ + 1)Ht,n, (2.27)

where the normal direction is the actual direction of discretization. This normal total
enthalpy reads

Ht,n =
1

2
(Ht,n,L +Ht,n,R) (2.28)

with

Ht,n,L,R =
γ

γ − 1

pL,R
ρL,R

+
1

2

vξ,L,R
|∇ξ|

= hL,R +
1

2

vξ,L,R
|∇ξ|

. (2.29)

In the case of calculations in thermo–chemical equilibrium, the calculation of the
speed of sound to perform the flux splitting has to be modified. In [38] a possible
modification of Eq. (2.27) is given by

cs =

(
2Htn

(γeq,L − 1)/γeq,LρL − (γeq,R − 1)/γeq,RρR
(γeq,R + 1)/γeq,RρL − (γeq,L + 1)/γeq,LρR

)0.5

, (2.30)
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where γeq is the specific heat capacity ratio of the actual gas composition in thermo–
chemical equilibrium. This modification results in an indefinite speed of sound if
the left and right states are equal which is especially the case using ghost points in
combination with mirror conditions and in the free–stream, where the flow variables
are constant. Thus, to avoid this issue in this work, the speed of sound for the flux
splitting is calculated differently by

cs =

√
2

(
γeq,L + γeq,R

2
− 1

)
/

(
γeq,L + γeq,R

2
+ 1

)
Ht,n. (2.31)

To apply the flux splitting scheme, the primitive flow variables q = [ρ,u,v,w,p]T

have to be reconstructed for the left and right states at i ± 1/2. Therefore, a fully
upwind MUSCL–reconstruction (Monotonic Upstream-Centered Scheme for Conser-
vation Laws) of second order is used. In the streamwise direction, the respective
equations are

qR(i+1/2) = q(i+1) − 0.5φ(i+1)(q(i+2) − q(i+1)) (2.32)

qL(i+1/2) = q(i) + 0.5φ(i)(q(i+1) − q(i)) (2.33)

qR(i−1/2) = q(i) − 0.5φ(i)(q(i+1) − q(i)) (2.34)

qL(i−1/2) = q(i−1) + 0.5φ(i−1)(q(i) − q(i−1)) (2.35)

[102]. Beside the van Leer, the minmod and the superbee limiters [37, 75], the van
Albada limiter

φi =
r2

(i) + r(i)

r2
(i) + 1

with r(i) =
q(i) − q(i−1)

q(i+1) − q(i)

(2.36)

[37, 96] is implemented in CONSST3D and applied in this work to accomplish a TVD–
character (Total Variation Diminishing). Lastly, the discretization of the inviscid
fluxes is performed by (

∂E

∂ξ

)
(i)

= −E(i−1/2) +E(i+1/2). (2.37)

As mentioned earlier in this section, the discretization of the viscous fluxes is
performed by a central finite–difference scheme, in this case of second order to retain
the same spatial accuracy as for the inviscid fluxes. Thus, the discretization in the
streamwise direction is performed by(

∂Ev
∂ξ

)
(i)

=
−Ev(i−1) +Ev(i+1)

2
. (2.38)

Analogous to the inviscid fluxes, the viscous fluxes in the normal and spanwise di-
rections are discretized in a similar way.
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2.3.2 Temporal Discretization

Two types of temporal discretization schemes are implemented in CONSST3D. The
first one is an explicit four-stage low-storage Runge–Kutta method to solve Eq. (2.1)
as

∆Q = − ∆t

J−1

(
∂E

∂ξ
+
∂F

∂η
+
∂G

∂ζ
− 1

Re∞

(
∂Ev
∂ξ

+
∂Fv
∂η

+
∂Gv

∂ζ

))
= − ∆t

J−1 Res

(2.39)
by

Qk = Q0 − ckRK

∆t

J−1 Resk−1 (2.40)

with k representing the current stage and ckRK are the stage coefficients which can
be found in [6]. This method, implemented in combination with a second–order
spatial upwind scheme, is theoretically stable up to a CFL number of CFL=0.92
[6]. Thus, to further increase the possible CFL number, respectively, decreasing the
computational time necessary to achieve the convergence to steady state, the second
scheme, an implicit backward Euler method applying the LU-SGS (Lower–Upper
Symmetric–Gauß–Seidel) method, originally developed by Yoon & Jameson [103], is
used in this work. This method has the advantage to be theoretically unconditionally
stable (CFL = ∞) [103], significantly increasing the efficiency of the calculation. In
this scheme, Eq. (2.39) is written in the form

∆Q = Qk+1 −Qk = − ∆t

J−1 Resk+1. (2.41)

Because Resk+1 is unknown at the current time step k, a linearization is performed
around the current time step by applying a first–order Taylor–series expansion as

Resk+1 = Resk +
∂Resk

∂Q
∆Qk. (2.42)

Inserting Eq. (2.42) into (2.41), the equation to be solved becomes(
J−1

∆t
I +

∂

∂ξ

(
∂E

∂Q

)
+

∂

∂η

(
∂F

∂Q

)
+

∂

∂ζ

(
∂G

∂Q

)
− 1

Re∞

(
∂

∂ξ

(
∂Ev
∂Q

)
+

∂

∂η

(
∂Fv
∂Q

)
+

∂

∂ζ

(
∂Gv

∂Q

)))
∆Q

=

(
J−1

∆t
I +

∂A

∂ξ
+
∂B

∂η
+
∂C

∂ζ
− 1

Re∞

(
∂Av

∂ξ
+
∂Bv

∂η
+
∂Cv
∂ζ

))
∆Q = −Resk,

(2.43)

where I is the identity matrix and A, B and C are the inviscid flux Jacobians in the
respective spatial direction, which can be found in appendix A.1 for a perfect gas [42].
Further, the terms Av, Bv and Cv are the viscous flux Jacobians in the respective
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spatial direction given by a scalar representation [65]. Applying a flux splitting and
a lower upper decomposition the system of equations becomes

D =
J−1

∆t
I

+
(
A+

(i+1/2,j,l) −A
−
(i−1/2,j,l) +B+

(i,j+1/2,l) −B
−
(i,j−1/2,l) +C+

(i,j,l+1/2) −C
−
(i,j,l−1/2)

)
+

1

2

(
λ(Av)(i+1,j,l) − λ(Av)(i−1,j,l) + λ(Bv)(i,j+1,l) − λ(Bv)(i,j−1,l)

+λ(Cv)(i,j,l+1) − λ(Cv)(i,j,l−1)

)
I

=
J−1

∆t
I + (λ(A) + λ(B) + λ(C))(i,j,l) I +

1

2

(
λ(Av)(i+1,j,l) − λ(Av)(i−1,j,l)

+λ(Bv)(i,j+1,l) − λ(Bv)(i,j−1,l) + λ(Cv)(i,j,l+1) − λ(Cv)(i,j,l−1)

)
I, (2.44)

L =
(
−A+

(i−1/2,j,l) −B
+
(i,j−1/2,l) −C

+
(i,j,l−1/2)

)
+

1

2

(
λ(Av)(i−1,j,l) + λ(Bv)(i,j−1,l) + λ(Cv)(i,j,l−1)

)
I, (2.45)

U =
(
A−(i+1/2,j,l) +B−(i,j+1/2,l) +C−(i,j,l+1/2)

)
− 1

2

(
λ(Av)(i+1,j,l) + λ(Bv)(i,j+1,l) + λ(Cv)(i,j,l+1)

)
I (2.46)

with the inviscid implicit terms which are split by the maximum eigenvalue of the
inviscid Jacobian matrices as

A±(i∓1/2,j,l) =
1

2

(
A(i∓1,j,l) ± λ(A)(i∓1,j,l)I

)
,

B±(i,j∓1/2,l) =
1

2

(
B(i,j∓1,l) ± λ(B)(i,j∓1,l)I

)
, (2.47)

C±(i,j,l∓1/2) =
1

2

(
C(i,j,l∓1) ± λ(C)(i,j,l∓1)I

)
,

where the maximum eigenvalues are

λ(A)(i∓1,j,l) = J−1
(i∓1/2,j,l)(|vξ(i∓1,j,l)|+ |∇ξ(i∓1/2,j,l)|c(i∓1,j,l)),

λ(B)(i,j∓1,l) = J−1
(i,j∓1/2,l)(|vζ(i,j∓1,l)|+ |∇ζ(i,j∓1/2,l)|c(i,j∓1,l)), (2.48)

λ(C)(i,j,l∓1) = J−1
(i,j,l∓1/2)(|vη(i,j,l∓1)|+ |∇η(i,j,l∓1/2)|c(i,j,l∓1))

[103]. Further, the scalar representations for the viscous implicit terms are given by

λ(Av)(i∓1,j,l) = ∓J−1
(i∓1,j,l)|∇ξ(i∓1,j,l)|2

µ(i∓1,j,l)

ρ(i∓1,j,l)Re∞
,

λ(Bv)(i,j∓1,l) = ∓J−1
(i,j∓1,l)|∇ζ(i,j∓1,l)|2

µ(i,j∓1,l)

ρ(i,j∓1,l)Re∞
, (2.49)

λ(Cv)(i,j,l∓1) = ∓J−1
(i,j,l∓1)|∇η(i,j,l∓1)|2

µ(i,j,l∓1)

ρ(i,j,l∓1)Re∞
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[65]. This resulting system of equations can be solved by a Gauß–Seidel algorithm,
firstly, applying a forward sweep as

(D +L)∆QF = −Res (2.50)

and, secondly, applying a backward sweep as [52]

(D +U)∆Q = D∆QF . (2.51)

To apply the LU-SGS scheme to the calculations considering the thermo–chemical
equilibrium gas model, the inviscid flux Jacobians of the implicit terms are modified
similar to [60], which is presented in appendix A.2. Further, the viscous terms remain
the same as for the perfect gas assumption but by applying the state surfaces of Sec.
2.2.2 to calculate the thermodynamic and transport properties.

In both time discretization schemes, a local time stepping is applied to further im-
prove the computational efficiency. The local time step is calculated at each stream-
wise location along the geometry, respectively, constant along a wall normal and in
the spanwise direction, for an equidistant grid with ∆ξ = ∆η = ∆ζ = 1 by

∆t =
CFL

max(|λξ|, |λζ |, |λη|)
, (2.52)

where |λξ|, |λζ | and |λη| are the absolute values of the maximum eigenvalues of the
inviscid Jacobian matrices in the respective direction, e.g., |λξ| = |vξ|+ |∇ξ|c [7].

2.3.3 Boundary Conditions

Appropriate boundary conditions are required to solve the Navier–Stokes or the thin–
layer Navier–Stokes equations in this work. At the wall, the no–slip condition is
applied. This boundary condition is accomplished by setting a zero velocity at the
wall, vξ = 0, vη = 0 and vζ = 0, respectively. Additionally, a boundary condition
for the pressure at the wall grid points is necessary. Several methods are available to
prescribe these boundary conditions. In this work, the Navier–Stokes characteristic
boundary conditions (NSCBC), based on the fundamentals of Thompson [93] and
derived by Poinsot & Lele [72], are implemented. Following the curvilinear primitive
variable representation described by Landmann et al. [44], firstly, a characteristic
decomposition is performed for the Navier-Stokes equations in the primitive form.
The resulting system of equations is

∂q

∂t
+ dζ + JM−1

(
kζ +

∂E

∂ξ
+
∂F

∂η
− 1

Re∞

(
∂Ev
∂ξ

+
∂Fv
∂η

+
∂Gv

∂ζ

))
=
∂q

∂t
+ dζ + bζ = 0, (2.53)

where kζ considers the partial derivatives of the metric terms with respect to the
ζ–direction by

kζ = Ecart

∂

∂ζ
(
ζx
J

) + Fcart

∂

∂ζ
(
ζz
J

) +Gcart

∂

∂ζ
(
ζy
J

) (2.54)
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with the fluxes in Cartesian coordinates denoted by the subscript ”cart” and M−1

is the transformation matrix that describes the transformation of the conservative
variables to the primitive variables. This transformation matrix can be found in
appendix B. The boundary conditions are specified in dζ which is

dζ =



ρ√
2c

(Lζ,4 +Lζ,5)
ζx/|∇ζ|√

2
(Lζ,4 −Lζ,5)

ζy/|∇ζ|√
2

(Lζ,4 −Lζ,5)
ζz/|∇ζ|√

2
(Lζ,4 −Lζ,5)

cρ√
2
(Lζ,4 +Lζ,5)

 (2.55)

at the wall, where

Lζ =


0
0
0

Lζ,5 −
√

2(ζx/|∇ζ|bζ,2+ζy/|∇ζ|bζ,3+ζz/|∇ζ|bζ,4)

|∇ζ|
λζ,5√

2
(∂p/∂ζ

cρ
− ζx/|∇ζ|∂u/∂ζ − ζy/|∇ζ|∂v/∂ζ − ζz/|∇ζ|∂w/∂ζ)

 (2.56)

with the eigenvalue λζ,5 = vζ−c|∇ζ| and |∇ζ| =
√
ζ2
x + ζ2

y + ζ2
z . Thus, the time rate

change of the pressure is calculated by

∂p

∂t
+

cρ√
2

(Lζ,4 +Lζ,5) + bζ,5 = 0 (2.57)

and, additionally, for the no–slip boundary condition, the velocities at the wall are
set to zero.

Further, an additional boundary condition for the thermal state of the wall is
necessary. Either an isothermal, by setting a specific wall temperature Tw = const,
or an adiabatic wall boundary condition can be chosen in the solver. The latter
condition in curvilinear coordinates reads

0 =
∂T

∂n
=

1√
ζ2
x + ζ2

y + ζ2
z

[
(ξxζx + ξyζy + ξzζz)

∂T

∂ξ

+(ηxζx + ηyζy + ηzζz)
∂T

∂η

+(ζxζx + ζyζy + ζzζz)
∂T

∂ζ

]
.

(2.58)

In addition to these two thermal states at the wall, also a radiation–adiabatic wall
boundary condition can be prescribed. This boundary condition reads

Qw = 0 = − κ

Re∞Pr∞Ec∞

∂T

∂n
+
εradσ

∗
SBT

∗4
∞

ρ∗∞V
∗3
∞

T 4 (2.59)
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with ∂T/∂n defined by Eq. (2.58) without setting the gradient to zero and

Ec∞ = (γ − 1)M2
∞, Ec∞ =

V ∗2
∞

c∗p∞T
∗
∞

(2.60)

for the perfect gas model or the thermo–chemical equilibrium gas model, respectively.
The equation is solved by a Newton iteration as

Tnew = Told −
Qw

(∂Qw/∂T )old

(2.61)

with the derivative of the heat flux with respect to the temperature Told as(
∂Qw

∂T

)
old

=
κ

Re∞Pr∞Ec∞

3

2

√
ζ2
x + ζ2

y + ζ2
z +

4εradσ
∗
SBT

∗4
∞

ρ∗∞V
∗3
∞

T 3
old (2.62)

if a one–sided finite–difference of second order is applied in the ζ–direction in Eq.
(2.58). The thermal conductivity κ is recalculated in each iteration step and the
Newton iteration is performed until |Tnew − Told| < ∆, where ∆ is a small number.
[74]

Additional boundary conditions are required for the free–stream, the outflow, in
the spanwise direction and at the symmetry line. To set these boundary conditions,
ghost points are placed in these regions. Additionally, ghost points are also placed
inside the wall to sustain the spatial second–order accuracy of the calculation at the
grid point aside of the wall (j = 1). The flow variables at the ghost points around
the computational domain are set as follows. In the free–stream, the free–stream
flow conditions are specified. Inside the wall, the primitive flow variables q at the
ghost points are calculated by a second–order extrapolation from inside of the flow–
field. In the outflow, either the same second–order extrapolation is applied requiring
∂2q/∂ξ2 = 0 or the variables are prescribed requiring ∂q/∂ξ = 0 [42] depending on
the numerical stability of the boundary condition for the actual test case, where the

(a) 2D–planar (b) 2D-axisymmetric

Figure 2.4: Ghost point placement for the boundary conditions in the spanwise di-
rection.
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first boundary condition is preferred due to the more physical representation of the
outflow. In the spanwise direction, the boundary conditions are applied depending
on the test case dimension (2D, 2D–axisymmetric or 3D), where in all cases the 3D
governing equations Eq. (2.1) are solved without simplifications. In the 2D case and
the 2D–axisymmetric case, the pressure, density and curvilinear velocity components
remain the same at the ghost points in the spanwise direction (dashed lines in Fig.
2.4) as on the calculation plane (solid lines in Fig. 2.4). The difference between
these two flow cases is achieved by the different generation of the ghost points in
the spanwise direction. For 2D cases, the ghost points are placed by a translation
of the grid points in the z–direction (see Fig. 2.4a). For the 2D–axisymmetric case,
the ghost points are set by a rotation of the grid points around the x–axis (see
Fig. 2.4b). In the 3D case, where in case of CONSST3D half of the geometry is
calculated, the flow variables are mirrored around the x/y–plane. At the symmetry
line, the distinction between the cases is also made. In the 2D/2D–axisymmetric
case, all flow variables are mirrored around the symmetry line except v−1,j,l = −v1,j,l.
For 3D calculations, the flow variables are exchanged between the upper and the
lower part of the computed geometry. [90]

2.3.4 Mesh Adaption

In super– and hypersonic flows, investigated in this work, a bow shock arises in front
of the geometries (see Fig. 2.1). Bow shocks are a discontinuity in the flow–field
and require a special treatment to accurately calculate the flow variables behind the
shock. Mainly, two approaches are available in the literature to adequately treat
this discontinuity. The first approach is the shock–fitting method. In this method,
the shock is the outer boundary of the computational domain and the unsteady
Rankine-Hugoniot relations are solved at this location [61, 68]. The advantages of
the shock–fitting method are the reduced computational domain because the free–
stream can be excluded from the calculation and, additionally, no clustering of the
grid points at the shock is necessary [61]. Nevertheless, issues arise in computing long
slender geometries with regard to the stability of the calculation due to the moving
mesh [42]. To overcome these stability issues, another approach is applied in this
work. This second approach is the shock–capturing method in which the shock lies
inside the computational domain and is treated by the same governing equations Eq.
(2.1) as the interior points. Typically, the bow shock is resolved by three grid points
[42] and, thus, to adequately capture the shock in this approach, the mesh needs to
be aligned with and refined at the shock.

To place the grid points at the shock, the shock location has to be determined
and the mesh has to be aligned with the shock. Therefore, a mesh adaption is
implemented in the solver as follows. The shock condition{

Mn ≥ 1 upstream of the shock

Mn < 1 downstream of the shock
(2.63)
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Figure 2.5: Schematic sketch of the mesh adaption.

with the shock normal Mach number

Mn =
(uζS

x + vζS
y + wζS

z )/

√
ζS

2

x + ζS
2

y + ζS
2

z

c
(2.64)

is used to detect the grid points next to the shock (◦ in Fig. 2.5). The required
shock metric terms ζS

x , ζS
y and ζS

z of Eq. (2.64) can be calculated by transforming
the streamwise metric derivatives as described in [73]. In a next step, a linear in-
terpolation in the ζ–direction is performed to determine the exact shock location by
requiring Mn = 1 (× in Fig. 2.5). This process results in the shock shape represented
by the dashed line. Next, the smoothing procedure found in [42] is applied to the
determined shock distance from the wall in the streamwise direction as

ns(i,j,l) =
1

4
(ns(i−1,j,l) + 2ns(i,j,l) + ns(i+1,j,l)) (2.65)

to remove numerical inaccuracies/oscillations from the shock shape to get the shock
shape for the further calculations represented by the solid line. Note that this smooth-
ing procedure is additionally performed in the spanwise direction for 3D calculations.
In a last step, the new mesh is aligned with the previous estimated shock shape and
the flow variables are interpolated onto the new mesh by a linear interpolation. [90]

2.3.5 Treatment of the Singular Line

Due to the discretization with finite–differences in general curvilinear coordinates, a
metric singularity arises at the symmetry line of blunt bodies [66] (red line in Fig.
2.6). This singularity is caused by the transformation of the Cartesian coordinates to
the general curvilinear coordinates and, thus, is of a non–physical nature. Because
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Figure 2.6: ”Metric singularity (red line) at the nose of a blunt body configuration
on the body-orientated mesh” adapted from [90] is licensed under CC BY 4.0 http:

//creativecommons.org/licenses/by/4.0/.

the spatial derivatives of the Cartesian coordinates x, y and z with respect to the
spanwise curvilinear coordinate η vanish due to the collapse of all grid lines at the
symmetry line shown in Fig. 2.6, the determinant of the metric Jacobian J−1 becomes
zero (see Eq. (2.7)). In consequence, the discretization of Eq. (2.1) is impossible at

(a) Detailed view of Fig. 2.6 (b) Illustration of the overset mesh
generation

Figure 2.7: ”Overset mesh at the symmetry line for 2D-axisymmetric calculations:
Body-orientated mesh (red lines), Overset mesh (black lines)” adapted from [90] is
licensed under CC BY 4.0 http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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the symmetry line in this coordinate system because the curvilinear state vector J−1Q
becomes zero which is non–physical. To overcome this issue, the fully conservative
overset mesh method of Teschner & Mundt [90] is implemented in CONSST3D and
will be outlined in the following. The overset mesh is generated by avoiding the
collapse of the grid lines. Therefore, a hexahedral structure is used which is presented
for two grid surfaces in the ζ–direction in black color in Fig. 2.7a. Further, a
coincidence is required between the grid points of the body–orientated mesh (red
lines in Fig. 2.7b) and the grid points of the overset mesh (black lines in Fig. 2.7b).
This requirement enables the conservation of the flow variables because the flow
variables can be interchanged between the meshes without applying interpolation
techniques. To ensure this coincidence, the grid points are placed as follows. The
coordinates of the calculation points (green ◦) on the overset mesh are equal to the
respective coordinates of the grid points on the body–orientated mesh. Further, the
grid points to apply the boundary conditions (black ◦) are calculated by rotating
the calculation points around the symmetry line ((0,0)) by ϕ = 90◦, 180◦ and 270◦.
Lastly, the metric points (black ×), that are required to calculate the metric terms at
the calculation and boundary condition points, are placed as follows. As an example,
due to the placement of the overset mesh, the y–coordinate of point 3O equals the
y–coordinate of point 1O and the z–coordinate of point 3O equals the z–coordinate of
point 2O. With these coordinates, the respective x–coordinates of the metric points
are calculated by

x =
R1 − y(i)

y(i+1) − y(i)

(x(i+1) − x(i)) + x(i), (2.66)

where

R1 = R2, with R2 =

√
y2 + z2 (2.67)

which is valid for 2D-axisymmetric flows, where the shock distance remains constant
in the spanwise direction. The exchange of the flow variables between the two meshes
is performed in the following way. The flow variables at the calculation points are
equal on both meshes and, thus, the overset mesh can receive the variables directly
from the body–orientated mesh. The flow variables at the boundary condition points
on the overset mesh are calculated by the boundary condition in the spanwise direc-
tion for 2D–axisymmetric calculations in Sec. 2.3.3. Lastly, the flow variables at the
symmetry line on the body–orientated mesh can be received directly from the overset
mesh because the mesh points coincide.

Additionally, due to the indefinite metric at the singular line and the local av-
eraging of the metric terms for the flux reconstruction (see Sec. 2.3.1), the metric
calculation on the body–orientated mesh has to be modified for the discretization
of the first point downstream of the symmetry line (i = 1). Therefore, firstly, the
metric terms describing the derivative of the Cartesian coordinates with respect to
the curvilinear coordinates, e.g., xξ, are averaged between i = 0 and i = 1 to get
the values at i = 1/2. Secondly, due to the resulting definite metric, the inversion to
calculate the inverse transformation, e.g., ξx, is performed at i = 1/2 to enable the
flux reconstruction at i = 1.
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(a) ”Overset Mesh for the discretization of the
governing equations” adapted from [90] is licensed
under CC BY 4.0
http://creativecommons.org/licenses/by/4.0/

(b) ”Surface fitting method for one grid surface
in the ζ–direction” adapted from [90] is licensed
under CC BY 4.0 http://creativecommons.org/

licenses/by/4.0/

Figure 2.8: Overset mesh generation for 3D calculations.

In case of 3D calculations, where the assumption of a constant shock distance in
the spanwise direction is not valid anymore, the overset mesh presented in red color
in Fig. 2.8a is generated as follows. To calculate the coordinates, each grid plane
in the ζ–direction, by choosing 10 grid points on each spanwise grid line l (see Fig.
2.8b), is treated separately. Firstly, the grid points of the body–orientated mesh of
half of the geometry are mirrored around the x/y–plane (blue lines in Fig. 2.8b).
Thereafter, the coefficients a0, a1, a2 and al,i for the surface fitting method developed
by Harder and Desmarais [23] as

x = a0 + a1y + a2z +

lmax−1∑
l=0

imax−1∑
i=0

a(l,i)r
2
(l,i)lnr

2
(l,i) (2.68)

with r2
(l,i) = (y − y(l,i))

2 + (z − z(l,i))
2 are calculated on each of these grid planes.

Knowing the coefficients, the x–coordinates of the calculation points, boundary con-
dition points and metric points can be calculated by Eq. (2.68), where the y– and
z–coordinates can be determined as explained for the 2D–axisymmetric case. The
interchange of the flow variables is performed as follows. The flow variables on the
overset mesh at the calculation points and the boundary condition points can be
received directly from the body–orientated mesh at ϕ = 0◦, 90◦ and 180◦ and at
ϕ = 270◦ by mirroring the flow variables around the x/y–axis as explained in Sec.
2.3.3. Similar to the 2D–axisymmetric case, the flow variables at the symmetry line

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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on the body–orientated mesh are received directly from the overset mesh. Further,
the metric terms for the discretization of the first point downstream of the singu-
larity are calculated analogous to the 2D–axisymmetric case but for each grid line
in the spanwise direction. Note, that in both cases, 2D–axisymmetric and 3D, the
same governing equations Eq. (2.1) are solved on the two meshes with the respective
metric terms.

2.3.6 Computational Grid Generation and Flow–Field Ini-
tialization

The generation of the computational grid is performed in different ways depending
on whether flat plates or blunted geometries, e.g., blunted cones or cylinder wedges,
are calculated. In the streamwise direction, for both cases, a stretching function as

Ψi = 1 + βs
1−

(
βs+1
βs−1

)1−hi

1 +
(
βs+1
βs−1

)1−hi
(2.69)

with the stretching factor βs and

hi =
i− 1

imax − 1
, with i = 2, ..., imax − 1 (2.70)

is applied to enable a clustering at the front tip of flat plates or the nose part of
blunted geometries [42]. This stretching function is applied in different ways to the
calculation of the grid points at the wall. For the flat plate case, it is directly applied
to calculate the x–coordinates of the grid points, where the y–coordinate is held
constant (y∗ = 0). For blunted geometries, the stretching function is applied to the
arclength s to thereafter calculate the x–coordinates by

x∗ =

{
(−cos(s))R∗N for s ≤ 1

2
π −Θ

((s− 1
2
π + Θ)cosΘ− sinΘ)R∗N for s > 1

2
π −Θ

(2.71)

[105]. Subsequently, the y–coordinates along the wall can be calculated by the geo-
metrical relations of a circle or a line for the nose part and the straight part, respec-
tively.

The main difference between the two cases arise at the outer boundary of the
computational domain and the grid distribution in the wall normal direction. For
blunted geometries, the outer boundary of the computational domain is initialized
by the intersection points of the wall normal grid lines with Billig’s correlation given
by

x∗ = R∗N + ∆∗s −R∗ccotan2Θ

[(
1 +

y∗2tan2Θ

R∗2c

)1/2

− 1

]
, (2.72)
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with

∆∗s = 0.143exp
(
3.24/M2

∞
)
R∗N , (2.73)

R∗c = 1.143exp
(
0.54/(M∞ − 1)1.2

)
R∗N (2.74)

for blunted cones and

∆∗s = 0.386exp
(
4.67/M2

∞
)
R∗N , (2.75)

R∗c = 1.386exp
(
1.8/(M∞ − 1)0.75

)
R∗N (2.76)

for cylinder wedges [5]. Thereafter, the grid point distribution in the wall normal di-
rection between the wall and the shock is generated by the one–dimensional stretching
function of Vinokur [98]. By applying this stretching function, a clustering of the
grid points at the wall and at the shock can be achieved without discontinuities in
the distribution. Further, in this work 20 of the wall normal grid points are mirrored
at the shock for the free–stream, comparable to Kufner et al. [43]. For flat plates, a
constant distance from the wall y∗ = const is used as the outer boundary, where care
must be taken that the shock is inside the computational domain. Additionally, the
grid points are only clustered at the wall using the same stretching function as for
the blunted geometries but without a clustering at the outer boundary. This is the
case because no alignment of the grid with the shock is possible in this case due to
the resulting collapse of all grid lines at the front tip of the flat plate. Note that in
case of 3D calculations of blunted cones, respectively, considering an angle of attack,
the initial grid distribution is rotated around the x–axis to generate the mesh for
half of the geometry (0◦ - 180◦). Further, the outer boundary of the computational
domain, calculated by Billig’s correlation, can be multiplied by a prescribed factor
to take into account the 3D effects on the shock location, respectively, guaranteeing
that the shock lies inside the computational domain before the first mesh adaption
is applied.

(a) Mesh with discontinuity (b) Adjusted mesh without discontinuity

Figure 2.9: Mesh discontinuity for blunted geometries.
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In case of blunted geometries, a mesh discontinuity (see Fig. 2.9a), which results in
inaccuracies in the flow–field, arises at the junction between the nose and the straight
part by using wall normal grid lines. These flow–field inaccuracies arise because the
increment between the mesh distances ∆1 and ∆2 exceed 10 % [42]. Thus, to improve
the grid quality at this location, the wall normal grid lines are manually adjusted by
a small angle ϕ, see Fig. 2.9b, to enable a smooth transition of the grid lines from
the nose to the straight part. This adjustment angle is restricted to be below 10◦ to
maintain the thin–layer Navier–Stokes approximation [42].

Two approaches are available to initialize the flow variables. In the first ap-
proach, the flow–field is initialized by prescribing the free–stream flow variables in
the whole computational domain, whereas, in the second approach, the Rankine–
Hugoniot shock relations are applied. For the latter, the shock metrics, see Sec.
2.3.4, and the free–stream values are used to calculate the flow variables downstream
of the shock inside the shock–layer. These calculated values are prescribed constant
along each wall normal grid line. Upstream of the shock, the free–stream values
are set. The advantage of this approach is a decrease of the computational time to
steady state as the initial flow–field inside the shock–layer resembles the steady state
flow–field more likely.



Chapter 3

Boundary-Layer Stability Solver

3.1 Governing Equations

The second solver, developed in this work, is a boundary–layer stability solver, named
COSTAS (COmpressible STAbility Solver) [92]. The governing equations of this
solver are derived from the compressible Navier–Stokes equations in the primitive
form as

0 =
∂ρ

∂t
+ (ρvk),k (k = 1,2,3), (3.1)

0 =ρ
∂vk

∂t
+ ρvmvk,m + p,mg

km − 1

Re∞

(
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∂

∂xm

(
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1
√
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∂xo
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√
g)

)
+

1
√
g

∂

∂xm
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µ
√
g
(
gkpvm,p + gmrvk,r

))
+ Γkmoµ
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gmpvo,p + gorvm,r
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(k = 1 ∨ 2 ∨ 3), (m,o,p,r = 1,2,3), (3.2)
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(√
gκgkmT,m

))
−Ec∞

Re∞
gko
(
λsv

p
,pg

om + µ
(
gopvm,p + gmrvo,r

))
vk,m (k,m,o,p,r = 1,2,3) (3.3)

[45, 67, 70]. These equations are written in the non–dimensional form in general
curvilinear coordinates in tensor notation, where the Einstein summation convention
is used. The energy equation Eq. (3.3) will be applied unchanged in the case of
calculations in thermo–chemical equilibrium. In case of considering a perfect gas, the
enthalpy h = cpT is replaced by T because of the constant heat capacity, respectively,
cp = 1. Note that the curvilinear coordinates and velocity components in this section

correspond to the respective counterparts in Fig. 2.1, respectively, x1 = ξ, x2 = ζ,
x3 = η, v1 = vξ, v

2 = vζ and v3 = vη.

For the calculation of the metric tensors gkm and gkm and the Christoffel symbols
of the second kind Γkmo, the derivatives of the Cartesian coordinates with respect to

31
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the curvilinear coordinates, e.g., ∂x/∂x2, can be calculated by finite–differences of
fourth–order or a Chebyshev spectral collocation method depending on the applied
spatial discretization scheme in the respective direction explained in Sec. 3.3.1. With
these derivatives, the covariant metric tensors are calculated by

gkm =
∂x

∂xk
∂x

∂xm
+

∂y

∂xk
∂y

∂xm
+

∂z

∂xk
∂z

∂xm
. (3.4)

With the orthogonality relation gkmg
kl = δlm with the Kronecker tensor δlm, the

contravariant metric tensor is

gkl =
1

g
(gmpgor − gmrgop) (3.5)

with g being the determinant of the metric tensor and the indices (k, m, o) and (l,
p, r) are cyclic. Lastly, the Christoffel symbols of the second kind are defined by

Γokm =
1

2
glo
(
∂gml

∂xk
+
∂gkl
∂xm

− ∂gkm

∂xl

)
(3.6)

[4, 27, 45]. Note that in Sec. 4 and Sec. 5 the physical velocity components are
presented which are given by, e.g., vt = v1√g11.

The non–dimensionalization is performed in the same way as for CONSST3D,
explained in Sec. 2.1, but with the Blasius length scale as the reference length. This
length and the other non–dimensional parameters are

L∗∞ =

√
µ∗∞s

∗

ρ∗∞V
∗
∞
, M∞ =

V ∗∞
c∗∞

, Re∞ =
ρ∗∞V

∗
∞L
∗
∞

µ∗∞
, Pr∞ =

µ∗∞c
∗
p∞

κ∗∞
(3.7)

with a distinction of the Eckert number between the perfect gas case (PG) and the
thermo–chemical equilibrium gas case (TCE) as

Ec∞ = (γ − 1)M2
∞ (PG), Ec∞ =

V ∗2∞
c∗p∞T

∗
∞

(TCE) (3.8)

[56, 104]. Note that in the LST, the non–dimensionalization is performed with the
reference length at the respective surface location, whereas in case of the LPSE the
reference length at the initial location is used [104]. Thus, in case of LST calculations
along the surface of the geometry, the non–dimensional coordinates, the metric terms,
the curvilinear velocities and the non–dimensional spatial derivatives of the flow
variables have to be recomputed for the calculation at each streamwise location.

To derive the stability equations, firstly, a disturbance part, which is assumed to
be small with respect to the base–flow variables, is added to the velocity components,
the thermodynamic variables as well as to the transport variables. Thus, the flow
variables are replaced by

q(x1,x2,x3,t) = q̄(x1,x2,x3) + q′(x1,x2,x3,t) (3.9)
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with the laminar base–flow variables q̄ from CONSST3D and the disturbance flow
variables q′. These variables are inserted into Eq. (3.1) – (3.3), the laminar base–flow
is subtracted from the equations and the resulting equations are linearized to get the
linearized disturbance equations as

T̄t
∂q′

∂t
+ Ā

x
1

∂q′

∂x1 + B̄
x
2

∂q′

∂x2 + C̄
x
3

∂q′

∂x3 + D̄0q
′

=V̄
x
1
x
1

∂2q′

∂x1x1 + V̄
x
2
x
2

∂2q′

∂x2x2 + V̄
x
3
x
3

∂2q′

∂x3x3

+V̄
x
1
x
2

∂2q′

∂x1x2 + V̄
x
1
x
3

∂2q′

∂x1x3 + V̄
x
2
x
3

∂2q′

∂x2x3 . (3.10)

A wave–like ansatz as

q′(x1,x2,x3,t) = q̃(x1,x2)ei(Φ(x
1
,x

3
,t)) + c.c. (3.11)

with
∂Φ

∂t
= −ω, ∂Φ

∂x1 =
α
√
g11

,
∂Φ

∂x3 =
β
√
g33

(3.12)

is applied to Eq. (3.10), where the non–dimensional angular disturbance frequency
and streamwise and spanwise wave–numbers are

ω =
f ∗2πL∗∞
V ∗∞

, α = α∗L∗∞, β = β∗L∗∞. (3.13)

Note that the metric tensors in Eq. (3.12) appear due to the physical representation
of the wave–numbers in COSTAS. Further, in this work, the spatial theory is applied,
where the angular frequency ω and the spanwise wave–number β are real numbers,
whereas the streamwise wave–number α is a complex number. Additionally, only
two–dimensional disturbances on the centerline of the geometries will be investigated
in this work, respectively, β = 0. The resulting system of equations is

A
x
1

∂q̃

∂x1 +B
x
2

∂q̃

∂x2 +D0q̃ = V
x
2
x
2

∂2q̃

∂x2x2 (3.14)

with

A
x
1 = Ā

x
1 − 2i

α
√
g11

V̄
x
1
x
1 − i β

√
g33

V̄
x
1
x
3 (3.15)

B
x
2 = B̄

x
2 − i α

√
g11

V̄
x
1
x
2 − i β

√
g33

V̄
x
2
x
3 (3.16)

D0 = −iωT̄t + i
α
√
g11

Ā
x
1 + i

β
√
g33

C̄
x
3 + D̄0 +

α2

g11

V̄
x
1
x
1 +

α
√
g11

β
√
g33

V̄
x
1
x
3

+
β2

g33

V̄
x
3
x
3 − i 1

√
g11

∂α

∂x1 V̄x1
x
1 (3.17)

V
x
2
x
2 = V̄

x
2
x
2 (3.18)
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which represents the linear parabolized stability equations (LPSE). By assuming a
locally parallel flow, respectively, v̄2 = 0, ∂q̄/∂x1 = 0 and ∂q̃/∂x1 = 0, the system of
equations reduces to the linear stability theory (LST), which excludes the downstream
evolution of the disturbances. [20, 42, 55]

3.2 Thermodynamic Models

3.2.1 Perfect Gas Model

The assumptions made for the perfect gas model in the Navier-Stokes solver, see Sec.
2.2.1, are also applied to COSTAS. Further, to reduce the set of equations in the
stability calculations, the perfect gas equation is rewritten in the disturbance form
as

p̃ =
ρ̄T̃ + ρ̃T̄

γM2
∞

(3.19)

to replace the pressure in Eq. (3.1)–(3.3) [80]. Additionally, the transport properties
are replaced by a Taylor–series expansion which reads for the viscosity, the thermal
conductivity and the second coefficient of the viscosity as

µ̃ =
∂µ̄

∂T̄
T̃ , κ̃ =

∂κ̄

∂T̄
T̃ , λ̃s =

∂λ̄s
∂T̄

T̃ (3.20)

[55]. Thus, the resulting solution vector becomes q̃ = [ρ̃,ṽ1,ṽ2,ṽ3,T̃ ]T .

3.2.2 Thermo–Chemical Equilibrium Gas Model

Similar to the perfect gas case, the thermo–chemical equilibrium gas model of the
Navier–Stokes solver, see Sec. 2.2.2, is implemented in COSTAS. Besides including
the state surfaces, the representations of the disturbance variables of the thermody-
namic and transport variables has to be modified. The transport variables are again
estimated by a Taylor–series expansion but in this case with respect to two variables
[56, 70]. In case of COSTAS, the temperature and the density are used resulting in

µ̃ =
∂µ̄

∂T̄
T̃ +

∂µ̄

∂ρ̄
ρ̃, κ̃ =

∂κ̄

∂T̄
T̃ +

∂κ̄

∂ρ̄
ρ̃, λ̃s =

∂λ̄s
∂T̄

T̃ +
∂λ̄s
∂ρ̄

ρ̃. (3.21)

Further, because Eq. (3.19) is not valid anymore, the pressure and in addition, to
solve for the same solution vector q̃ as for the perfect gas case, the enthalpy are also
approximated by a Taylor–series expansion as

p̃ =
∂p̄

∂T̄
T̃ +

∂p̄

∂ρ̄
ρ̃, h̃ =

∂h̄

∂T̄
T̃ +

∂h̄

∂ρ̄
ρ̃ (3.22)

[92].
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3.3 Numerical Implementation

3.3.1 Spatial Discretization

The spatial discretization of the governing equations Eq. (3.14) is performed in
different ways dependent on the spatial direction. Firstly, the wall normal direction
will be treated in this section. Two types of discretization schemes are available
in this direction, a fourth-order finite–difference scheme and a Chebyshev spectral
collocation method. In the fourth–order finite–difference scheme, the discretization
of the first derivatives at the interior points is performed with a central scheme for
an equidistant computational grid as

∂q̃(i,j,l)

∂x2 =
q̃(i,j−2,l) − 8q̃(i,j−1,l) + 8q̃(i,j+1,l) − q̃(i,j+2,l)

12∆x2 . (3.23)

To account for the boundaries, the scheme is modified to

∂q̃(i,j,l)

∂x2 =
−3q̃(i,j−1,l) − 10q̃(i,j,l) + 18q̃(i,j+1,l) − 6q̃(i,j+2,l) + 1q̃(i,j+3,l)

12∆x2 , (3.24)

∂q̃(i,j,l)

∂x2 =
−1q̃(i,j−3,l) + 6q̃(i,j−2,l) − 18q̃(i,j−1,l) + 10q̃(i,j,l) + 3q̃(i,j+1,l)

12∆x2 (3.25)

for the point aside of the wall and the point aside of the outer boundary, respectively,
and to

∂q̃(i,j,l)

∂x2 =
−25q̃(i,j,l) + 48q̃(i,j+1,l) − 36q̃(i,j+2,l) + 16q̃(i,j+3,l) − 3q̃(i,j+4,l)

12∆x2 , (3.26)

∂q̃(i,j,l)

∂x2 =
3q̃(i,j−4,l) − 16q̃(i,j−3,l) + 36q̃(i,j−2,l) − 48q̃(i,j−1,l) + 25q̃(i,j,l)

12∆x2 (3.27)

directly at the wall and at the outer boundary. For the discretization of the second
derivatives, the scheme is reduced to a third–order finite-difference defined as

∂2q̃(i,j,l)

∂x2
2 =

−q̃(i,j−2,l) + 16q̃(i,j−1,l) − 30q̃(i,j,l) + 16q̃(i,j+1,l) − q̃(i,j+2,l)

12∆x2
2 (3.28)

for the interior points. Analogous to the first derivatives, the scheme is modified at
the point next to the wall and next to the outer boundary to

∂2q̃(i,j,l)

∂x2
2 =

11q̃(i,j−1,l) − 20q̃(i,j,l) + 6q̃(i,j+1,l) + 4q̃(i,j+2,l) − 1q̃(i,j+3,l)

12∆x2
2 , (3.29)

∂2q̃(i,j,l)

∂x2
2 =

−1q̃(i,j−3,l) + 4q̃(i,j−2,l) + 6q̃(i,j−1,l) − 20q̃(i,j,l) + 11q̃(i,j+1,l)

12∆x2
2 (3.30)

and directly at the wall and at the outer boundary to

∂2q̃(i,j,l)

∂x2
2 =

35q̃(i,j,l) − 104q̃(i,j+1,l) + 114q̃(i,j+2,l) − 56q̃(i,j+3,l) + 11q̃(i,j+4,l)

12∆x2
2 , (3.31)

∂2q̃(i,j,l)

∂x2
2 =

11q̃(i,j−4,l) − 56q̃(i,j−3,l) + 114q̃(i,j−2,l) − 104q̃(i,j−1,l) + 35q̃(i,j,l)

12∆x2
2 . (3.32)
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Note that in this work the equidistant grid is generated with ∆x2 = 1.
A second, more accurate, approach found in the literature is the Chebyshev spec-

tral collocation method. Following Malik [55], the method is applied in COSTAS
as follows. To perform the discretization, firstly, the collocation points in the wall
normal direction are determined by

x2
(i,j,l) = cos

πj

jmax

, with j = 0, ..., jmax. (3.33)

With these collocation points, secondly, the discretization stencils of the first deriva-
tives are calculated by

ECheb(jk) =
cj
ck

(−1)k+j

x2
(i,j,l) − x2

(i,k,l)

, forj 6= k,

ECheb(jj) = −
x2

(i,j,l)

2(1− x2
2

(i,j,l))
, (3.34)

ECheb(00) = −ECheb(jmaxjmax) =
2j2

max + 1

6

with cj = 1, ck = 1 and c0 = cjmax
= 2. Further, by applying the relation

GCheb(jk) = ECheb(jm)ECheb(mk), (3.35)

the discretization stencils of the second derivatives can be determined. [55] As both
schemes, the fourth–order finite–difference scheme and the Chebyshev spectral collo-
cation method, are written in matrix form in COSTAS, only the calculation of the
discretization stencils has to be modified to change the scheme.

To perform the discretization in the streamwise direction for the LPSE, a first–
order backward finite–difference scheme as

∂q̃(i,j,l)

∂x1 =
−q̃(i−1,j,l) + q̃(i,j,l)

∆x1 (3.36)

is applied for the first point downstream of the initial location of the calculation. For
the points further downstream, the scheme is modified to a second–order backward
finite–difference scheme which reads

∂q̃(i,j,l)

∂x1 =
q̃(i−2,j,l) − 4q̃(i−1,j,l) + 3q̃(i,j,l)

2∆x1 , (3.37)

where also in the streamwise direction the equidistant grid is generated with ∆x1 = 1
in this work. [92]

3.3.2 Solution Methods for the LST and LPSE

Different schemes are applied to solve the LST or the LPSE. In the LST, two ap-
proaches are available in COSTAS to solve Eq. (3.14) with the locally parallel flow



3.3. Numerical Implementation 37

assumption. The first approach is to solve a quadratic eigenvalue problem that is
generated by rearranging Eq. (3.14) to

(α2 1

g11

Hαα + α
1
√
g11

Hα +H)q̃ = 0, (3.38)

where Hαα contains all terms with α2, Hα all terms with α and H the remaining
terms [20]. To solve the system of equations Eq. (3.38), the quadratic eigenvalue
problem is linearized which results in[

H +H
x
2
∂

∂x
2 +H

x
2
x
2
∂
2

∂x
2
2 0

0 1√
g11
I

][
q̃
αq̃

]
(3.39)

= α
1
√
g11

[
−Hα −Hαx

2
∂

∂x
2 − 1√

g11
Hαα

I 0

] [
q̃
αq̃

]
(3.40)

with I being the identity matrix and the matrices with the subscript x2 contain
the terms with the first derivatives in the wall normal direction and with x2x2 the
second derivatives [94]. This generalized complex eigenvalue problem is solved by the
QZ–algorithm of LAPACK [1].

In the second approach, a Newton iteration is applied to solve the governing
equations. To perform this calculation, firstly, an initial guess is required for the
streamwise wave–number α. Therefore, the most amplified eigenvalue in the eigen-
value spectrum of the previously outlined generalized complex eigenvalue problem is
chosen. With this initial guess, the higher–order Newton iteration of [55] with

αnew = αold − ṽ1
(i,0,l)/

(
∂ṽ1

(i,0,l)

∂α

)
− ṽ1

2

(i,0,l)

(
∂2ṽ1

(i,0,l)

∂α2

)
/2

(
∂ṽ1

(i,0,l)

∂α

)3

(3.41)

is performed until the solution converges, where the convergence criterion is given in
Sec. 3.3.3.

In the computation of the LPSE, Eq. (3.14) is solved without simplifications.
An initial solution is required due to the discretization in the x1–direction which
is determined by the LST by applying the Newton iteration at an initial location
upstream of the neutral point (σ = 0) of the investigated disturbance. Thereafter, the
LPSE are solved moving downstream along the surface. Due to the x1–dependency
of the governing equations, an additional condition to close the system of equations
is required. Several approaches can be found in the literature, where in this work the
normalization condition based on the disturbance kinetic energy E is applied as

αnew = αold − i
1

E

∫ x
2
max

x
2
=0

ρ̄
√
g11

(
ṽ1
† ∂ṽ1

∂x1 + ṽ2
† ∂ṽ2

∂x1 + ṽ3
† ∂ṽ3

∂x1

)
dx2, (3.42)

with E =
∫ x2max

x
2
=0
ρ̄(|ṽ1|2 + |ṽ2|2 + |ṽ3|2)dx2 [35].
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3.3.3 Boundary Conditions

The system of equations Eq. (3.14), requires adequate boundary conditions at the
wall (x2 = 0) and at the outer boundary (x2

max). At the wall, the no–slip boundary
condition and a condition for the disturbance temperature are applied. Due to the
several times larger disturbance frequencies compared to the thermal response time
of the wall, the disturbance wall temperature remains zero [42]. Thus, the boundary
conditions at the wall read

ṽ1 = ṽ2 = ṽ3 = T̃ = 0, at x2 = 0. (3.43)

If applying the Newton–iteration of Sec. 3.3.2 in the LST, the boundary conditions
have to be modified. To avoid the trivial solution of a zero disturbance eigenfunction,
the wall boundary condition for the streamwise velocity component is replaced by
ρ̃ = 1. Thus, the system of equations is solved until ṽ1 < ∆ with ∆ = 1 × 10−8 as
the convergence criterion mentioned in Sec. 3.3.2.

At the outer boundary of the computational domain (x2
max) inside the shock layer,

respectively, on the high pressure side of the bow shock, three types of boundary

Figure 3.1: Computational domains in the boundary–layer stability solver to pre-
scribe the boundary conditions at the outer boundary.
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conditions can be prescribed. The first one requires the disturbances to vanish com-
pletely. This requirement can be found sufficiently far away from the wall ( 1O in Fig.
3.1), usually several times the boundary–layer thickness δ. Thus, at this location all
disturbance quantities are set to zero as [12]

ρ̃ = ṽ1 = ṽ2 = ṽ3 = T̃ = 0, at x2
max. (3.44)

If, due to a small bow shock distance, the outer boundary lies closer to the wall,
a non–reflecting boundary condition has to be applied because the disturbances do
not vanish completely and oscillations would occur in the disturbance eigenfunctions
[79] ( 2O in Fig. 3.1). By applying a characteristic decomposition to the governing
equations and using the outgoing characteristics, this second boundary condition,
found in [8, 41], results in a system of equations at the outer boundary as

T̄t
∂q′

∂t
+ Ā

x
1

∂q′

∂x1 + B̄+

x
2

∂q′

∂x2 + C̄
x
3

∂q′

∂x3 + D̄0q
′ = 0, (3.45)

where the matrix B̄+

x
2 is calculated by the maximum positive eigenvalue Λ+ =

diag(max(0,λk)) of T̄−1
0 B̄

x
2 and the left eigenvetor LΛ as

B̄+

x
2 = T̄0(LΛΛ+L−1

Λ ). (3.46)

For the determination of this boundary condition, the inviscid disturbance equations
are used because at the outer boundary, outside the boundary–layer, the viscous
effects can be neglected. [8, 41]

The third boundary condition, implemented in COSTAS, considers the bow shock
as the outer boundary ( 3O in Fig. 3.1). In this case, the unsteady Rankine–Hugoniot
shock relations are solved at the first grid point next to the shock on the high pressure
side. Following the derivation in [11, 69], the unsteady Rankine–Hugoniot relations
in the disturbance form read

(iα(Ē∞ − Ē) + iβ(F̄∞ − F̄ )− iω(Q̄∞ − Q̄))ñS +
∂n̄S

∂x1 Ẽ − G̃, (3.47)

where E, F , G are the inviscid fluxes in general curvilinear coordinates in tensor
notation to account for the coordinate system in the current work and nS is the
normal shock distance. Further, the vectors with the subscript ”∞” are the fluxes
and the state vector in the free–stream, whereas the vectors without a subscript
denote the fluxes and the state vector at the first grid point next to the shock on
the high pressure side. [11, 69] The additional variable to be solved for is the shock
distance ñS that arises due to the disturbance formulation nS = n̄S + ñS. Due to
this additional unknown variable, an additional boundary condition is required to
solve Eq. 3.47. Therefore, because currently only 2D–axisymmetric disturbances are
considered in COSTAS, the spanwise disturbance velocity is set to zero at the shock,
respectively, ṽ3 = 0.
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3.3.4 Step Size Restriction

As the parabolized stability equations are only nearly parabolic in space because
only the second derivatives in the streamwise direction are neglected, an upstream
propagation of the information is still present [24]. Thus, similar to the parabolized
Navier–Stokes equations, a limitation of the step size in the streamwise direction
exists to achieve a convergence of the solution [3]. Applying the parabolized stability
equations, this step size limitation in the streamwise direction was found to be

∆s >
1

|Real(α)|
(3.48)

by Li & Malik [47, 48]. Therefore, to overcome this limitation, respectively, to enable
a smaller step size, the disturbance pressure gradient term is manipulated. This
manipulation is performed in the streamwise derivative of the disturbance pressure
as

∂p′

∂x1 =

(
iαp̃+ fp

∂p̃

∂x1

)
ei(Φ(x

1
,x

3
,t)) (3.49)

with

fp =
γM2

x
1

1 + (γ − 1)M2

x
1

, for M
x
1 < 1, (3.50)

fp = 1, for M
x
1 ≥ 1, (3.51)

where M
x
1 is the streamwise Mach number [10, 24].

In case of calculations in thermo-chemical equilibrium, γ in Eq. (3.50) is replaced
by the specific heat capacity ratio of the actual gas composition in thermo–chemical
equilibrium γeq. Further, due to the representation of the governing equations in
terms of the density, Eq. (3.49) has to be rewritten with Eq. (3.19) or Eq. (3.22)
depending on the thermodynamic model to apply the manipulation in Eq. (3.49) to
the density and the temperature.

3.3.5 Computational Grid and Interpolation

To perform the boundary–layer stability calculations, a grid aligned with the boundary–
layer edge xn,δ is required, where, at this location, the disturbance amplitudes expo-
nentially decay [42, 55]. To generate this grid, firstly, the boundary–layer thickness
has to be determined. Therefore, the value of the total enthalpy is used in COSTAS
as the criterion. Two approaches are applied depending on whether an adiabatic or
an isothermal wall was set in the laminar base–flow calculation. For an adiabatic
wall, the grid point with the maximum total enthaply along each surface normal
grid line characterizes the outer edge of the boundary–layer [32], whereas in case
of an isothermal wall, the grid point with 99% of the free–stream total enthaply
corresponds to the boundary–layer edge. As a distinct grid point is found with this
procedure but the real boundary–layer edge location can be located between two grid
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points, thereafter, the interpolation and smoothing procedure of the mesh adaption
in Sec. 2.3.4 is performed to determine this location. In a last step, to prescribe the
boundary conditions, explained in Sec. 3.3.3, the outer boundary of the calculation
domain xn,max is placed at several times the determined boundary–layer thickness but
with the restriction to not exceed the shock layer thickness. Besides the alignment
of the grid with the boundary–layer edge, for the shock boundary condition in Sec.
3.3.3, the shock location determined in Sec. 2.3.4 is used as the outer boundary of
the computational domain.

For the generation of the new grid point distribution in the wall normal direction,
two approaches presented by Malik [55] can be used. For the discretization with
finite–differences of fourth order, the wall clustered grid given by

xn =
ax2/x2

max

b− x2/x2
max

(3.52)

is used, where a = (xn,maxxn,δ)/(xn,max − 2xn,δ) and b = 1 + a/xn,max. For the
discretization with the Chebyshev spectral collocation method

xn = a
1 + x2

b− x2 (3.53)

is applied with a = (xn,maxxn,δ)/(xn,max − 2xn,δ) and b = 1 + 2a/xn,max and with the

collocation points calculated by Eq. (3.33). In both cases x2 runs from zero to the
maximum grid point number.

The new mesh requires an accurate interpolation of the flow variables from the
base–flow solution mesh onto the stability grid. Two approaches were tested in this
work to perform this interpolation. One approach is the interpolation of the flow
variables onto the new mesh and the calculation of the spatial derivatives on the sta-
bility grid. The other approach is the simultaneous interpolation of the flow variables
and their spatial derivatives onto the new mesh similar to Johnson & Candler [34].
By applying the first approach, it was found that the first and second derivatives
in the wall normal direction show oscillations if a very fine stability grid was used.
In contrast, by applying the second approach, the spatial derivatives remain smooth
even on very fine grids. To apply the second approach, firstly, the derivatives of the
flow variables in the Cartesian reference frame with respect to the physical normal
direction, e.g.,

∂u

∂xn
,

∂2u

∂x2
n

,
∂T

∂xn
(3.54)

are calculated by a fourth–order finite–difference scheme irrespective of the applied
discretization scheme. This is the case because the calculation is performed in the
physical coordinate system, respectively, no calculation on the Chebyshev collocation
points is possible. Further, the calculation is performed with respect to the Cartesian
coordinates and velocities due to the different metric terms for the transformation
into the curvilinear coordinate system before and after the interpolation. Thus, the
interpolation can not be performed with the curvilinear velocities due to incompatible
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transformations. In a second step, the flow variables and their spatial derivatives
need to be interpolated adequately onto the new mesh of Eq. (3.52) or Eq. (3.53)
for which a Lagrange polynomial of fourth order is used. In a last step, the new
flow variables and the spatial derivatives are transformed into the general curvilinear
coordinate system. Therefore, the transformations of the first and second derivatives
with respect to xn into the derivatives with respect to the computational curvilinear
normal coordinate are performed by, e.g.,

∂u

∂x2 =
∂u

∂xn

∂xn

∂x2 ,
∂2u

∂x2
2 =

∂2u

∂x2
n

(
∂xn

∂x2

)2

+
∂u

∂xn

∂2xn

∂x2
2 . (3.55)

Further, the transformations of the Cartesian velocities and their derivatives into the
curvilinear velocities are defined by, e.g.,

v1 = u
∂x1

∂x
+ v

∂x1

∂y
+ w

∂x1

∂z
, (3.56)
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Similar transformation relations are applied to the other velocity components. For
the calculation of the base–flow derivatives in the streamwise and the spanwise direc-
tion as well as for the mixed derivatives, the fourth–order finite–difference scheme is
applied in the curvilinear reference frame because a finite–difference scheme is used
in this direction for the discretization. Further, no interpolation of the flow variables
is performed because the grid remains the same in these directions between the two
solvers.

3.4 Growth Rate and N-Factor

The criterion for the laminar–turbulent transition in the LST and LPSE is the N–
factor. To calculate this quantity, the growth rate is required which is calculated in
different ways for the LST and the LPSE. In the LST, the growth rate is the negative
imaginary part of the wave–number σ = −Imag(α) [105]. In contrast, the growth
rate for the LPSE is calculated by

σ = −Imag(α) +
1

2E

∂E

∂x1 (3.59)
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with the disturbance kinetic energy defined in Sec. 3.3.2 [35]. By integrating the
growth rate along the surface of the geometry as

N(x1) = ln
A

A0

=

∫ x
1
max

x
1
=0

√
g11σdx

1 (3.60)

the N–factor distribution is determined [35], where x1 = 0 is the surface location of
the neutral point σ = 0 and x1

max the end of the geometry.





Chapter 4

Validation of the Solvers

4.1 Stetson Mach 8 Cone

4.1.1 Laminar Base–Flow Results

To validate the Navier–Stokes solver (CONSST3D) and the boundary–layer stability
solver (COSTAS) for the perfect gas regime, the Stetson Mach 8 cone [85] was chosen
because of the several results by other researchers that can be found in the literature.
The results which were published in [92] will be presented in the following containing
additional results which were not presented in [92]. Firstly, the laminar base–flow
calculations were performed with the following test case parameters. The geometry
consists of a blunted cone with a nose radius of R∗N = 3.81 mm, a cone half angle
of Θ = 7◦ and an overall length of L∗ = 1.016 m [85]. The free–stream parameters,
including the Reynolds number with respect to the nose radius R∗N , can be found in
Tab. 4.1 [105]. Due to the moderate stagnation point temperature of T̄ ∗ = 750 K
[105], the perfect gas model of Sec. 2.2.1 with the respective constants for air was
applied. Further, due to the high Reynolds number, the thin–layer Navier–Stokes
equations were solved and an adiabatic wall temperature condition was set similar to
[105]. A 2D–axisymmetric calculation was performed with a grid distribution of 300
points in the streamwise direction. In the wall normal direction 300/350/400 grid
points were prescribed to perform a mesh independence study with a clustering of
the grid points at the wall and at the shock as explained in Sec. 2.3.6.

Firstly, the contour plots of the Mach number and the temperature at the nose
part of the investigated geometry are shown in Fig. 4.1. The contour plot of the Mach
number illustrates the mesh adaption of Sec. 2.3.4. Firstly, an alignment of the grid
with the bow shock can be recognized and secondly the free–stream (M̄ = 7.99)

Table 4.1: Free-stream parameters for the Stetson Mach 8 cone [105].

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K]

7.99 33630 413.685 54.348

45
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(a) Mach number (b) Temperature

Figure 4.1: Contour plots at the nose part of the Stetson Mach 8 cone.

(a) Wall temperature (b) Wall pressure

Figure 4.2: Wall distributions along the arclength of the Stetson Mach 8 cone [92].

containing 20 grid points explained in Sec. 2.3.6 can be observed. The contour
plot of the temperature shows that the maximum temperatures, that appear at the
stagnation point, are below the perfect gas limit of T̄ ∗ = 800 K given in Sec. 2.2.2
and, thus, justifies the application of the perfect gas model for this test case.

In Fig. 4.2, the non–dimensional wall temperature and wall pressure are pre-
sented along the cone arclength. Besides a validation against the numerical results of
Esfahanian & Hejranfar [15], the results of Zhong & Ma [105] and the experimental
data of Stetson et al. [85], a mesh independence study was performed with regard to
the temperature. Firstly, the current temperature distributions of the different grid
point distributions in Fig. 4.2a show only slight differences at the junction between
the nose and the cone part which can be seen in the zoomed portion in the figure.
Downstream of this location, the temperature shows similar distributions indepen-
dent of the number of grid points. Due to these similar distributions, the result
containing 300 grid points in the wall normal direction was chosen as the base–flow
solution for the boundary–layer stability calculations and for the further validation
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in this section. Comparing the current temperature distributions with the other
numerical results a good agreement can be observed along the entire cone. The ex-
perimental results of Stetson et al. in contrast show lower values at the measurement
locations. As the same observations were made by the other researchers applying
an adiabatic wall boundary condition, Zhong & Ma suggested that the adiabatic

(a) Wall normal temperature distribution (b) Wall normal pressure distribution

Figure 4.3: Wall normal distributions at s = 54 of the Stetson Mach 8 cone.

(a) Wall normal derivative of the physical
streamwise velocity

(b) Wall normal derivative of the
temperature

(c) Wall normal second derivative of the
physical streamwise velocity

(d) Wall normal second derivative of the
temperature

Figure 4.4: Wall normal distributions at s = 175 of the Stetson Mach 8 cone.
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boundary condition does not reflect the real experimental conditions [105]. Lastly,
the pressure distributions are compared with each other in Fig. 4.2b. In this case,
the current results agree well with the referenced numerical results as well as with
the experimental results.

In the calculation of the boundary layer stability, an adequate base–flow solution
is required. Therefore, to examine accuracy of the current base–flow solution, selected
wall normal profiles of the flow variables and their spatial derivatives will be presented
in the following. In Fig. 4.3, the non–dimensional wall normal temperature and
pressure distributions at s = 54 are presented and compared to the distributions of
Zhong & Ma [105] along the non-dimensional wall normal distance. In both cases,
a good agreement can be observed between the distributions along the whole wall
normal distance, respectively, inside the boundary–layer and in the inviscid region.
The first and second spatial derivatives of the non–dimensional physical streamwise
velocity component and the temperature with respect to the non–dimensional wall
normal distance are compared to the profiles of Esfahanian [14] in Fig. 4.4 at a
surface location of s = 175. Similar to the other base–flow validation results, a
good agreement between the current results and the results of Esfahanian [14] can
be observed.

4.1.2 Boundary–Layer Stability Results

The base–flow results, presented in Sec. 4.1.1, were used for the validation with
regard to the boundary–layer stability, where the linear stability theory and the
linear parabolized stability equations were applied for the calculations. In both cases,
the Chebyshev spectral collocation method in combination with the non–reflecting
boundary condition at the outer boundary was applied. Firstly, the linear stability
theory was validated against the other numerical and experimental results from the
previous section at the surface location of s = 175. For this purpose, the growth rate
and the phase speed for multiple disturbance frequencies from the LST are presented,
where the growth rate is shown for different number of grid points to perform the

(a) Growth rate versus disturbance
frequency [92]

(b) Phase speed versus angular disturbance
frequency

Figure 4.5: LST results at s = 175 of the Stetson Mach 8 cone.
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mesh independence study for the stability calculations as well. For this purpose,
250/300/350/400 grid points were prescribed in the wall normal direction.

The current growth rate distributions versus the frequency show equal results
in Fig. 4.5a for the different number of grid points. Thus a number of 300 grid
points was chosen for the further investigations. Comparable to the other numerical

(a) Real part of disturbance temperature
eigenfunction

(b) Imaginary part of disturbance
temperature eigenfunction

(c) Real part of physical streamwise
contravariant disturbance velocity

eigenfunction

(d) Imaginary part of physical streamwise
contravariant disturbance velocity

eigenfunction

(e) Real part of physical normal
contravariant disturbance velocity

eigenfunction

(f) Imaginary part of physical normal
contravariant disturbance velocity

eigenfunction

Figure 4.6: Disturbance eigenfunctions at s = 175 of the Stetson Mach 8 cone.
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results, a first and a second Mack mode can be recognized in the current growth
rate distributions. The unstable first mode shows only small growth rates at low
frequencies from f ∗ = 35 kHz to f ∗ = 75 kHz comparable to the results of Zhong
& Ma [105]. Further, the second Mack mode becomes unstable at frequencies from
f ∗ = 115 kHz to f ∗ = 160 kHz, where comparable values can be found in [15] and
[105]. In contrast to the other results, the maximum of the current growth rate shows
a slightly lower value of −Imag(α) = 3.8515 × 10−3 at a slightly higher disturbance
frequency of f ∗ = 133.87 kHz. With respect to the experimental results of Stetson
et al. [85], the current growth rate is over–predicted and the maximum occurs at a
lower disturbance frequency. This trend can also be observed in the other numerical
results.

In Fig. 4.5b, the current phase speed is compared to the one of Zhong & Ma [105].
The Mack mode shows a similar distribution along the angular disturbance frequency
and the intersection point of the Mack mode and the Mode F, where the first mode
converts to a second mode, can be found at ω = 0.1879, respectively, slightly higher
compared to ω = 0.1825 in [105].

Additionally, a comparison of the disturbance eigenfunctions corresponding to a
disturbance frequency of f ∗ = 127.562 kHz with the results of Esfahanian [14] is
performed. Therefore, the real and imaginary parts of the temperature eigenfunction
and the physical streamwise and normal contravariant velocity eigenfunctions are
presented along the non-dimensional wall normal distance in Fig. 4.6. Note that
the eigenfunctions are scaled with respect to the maximum of the real part of the
temperature eigenfunction of [14]. Comparing the resulting eigenfunctions, overall a
good agreement can be observed for all variables, respectively, the distribution along
the wall normal distance and the location of the maxima, with only small differences
especially in the physical normal contravariant disturbance velocity eigenfunction.
The slight differences between the eigenfunctions can be caused by the smaller number
of grid points of 100 and 200 points in the wall normal direction and the Rankine-
Hugoniot shock boundary condition applied for the computation in [14] compared to

(a) N–factor distributions of the LST along
the arclength

(b) N–factor distributions of the LPSE
along the arclength [92]

Figure 4.7: N–factor distributions of the Stetson Mach 8 cone.
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300 grid points and a non–reflecting boundary condition for the current computation.
Additionally, the numerical schemes which are implemented in COSTAS could have
a higher numerical dissipation compared to the schemes in [14].

Lastly, the N–factor distributions of the LST and LPSE along the cone arclength
are presented in Fig. 4.7 for multiple disturbance frequencies. Comparing the N–
factor distributions of the LST in Fig. 4.7a with the current N–factor distributions of
the LPSE in Fig. 4.7b, the results of the LST show smaller N–factors along the cone
and the neutral points σ = −Imag(α) = 0 appear slightly further downstream. The
current results of the LPSE are compared to the results of Esfahanian & Hejranfar
[15] and Malik et al. [57] by applying the same N–factor of N = 5.5 as the criterion
for the transition onset location. Thus, the transition onset location was found for a
disturbance frequency of f ∗ = 133.87 kHz at s∗trans = 0.8928 m. This surface location

corresponds to a transition Reynolds number of Retrans,∞,s =
√

(Re∞,RN
s∗trans)/R

∗
N =

2807. Compared to the values of Retrans,∞,s = 2865/2825 found by Esfahanian &
Hejranfar [15] and Retrans,∞,s = 2800 by Malik et al. [57], a good agreement was
found in the current results. Additionally, a good agreement can be observed in the
transition arclength compared to s∗trans = 0.9 m found by Rosenboom et al. [76].
With respect to the presented base–flow results and the results of the LST and the
LPSE, the base–flow solver and the boundary layer–stability solver are successfully
validated for the perfect gas regime.

4.2 Mach 10 Flat Plate

4.2.1 Laminar Base–Flow Results

A second test case was chosen to validate the capability of the solvers to accurately
calculate the base–flow and the boundary–layer stability in the thermo–chemical
equilibrium gas regime, where the results, published in [92], will be presented in
the following, which contain additional results which were not presented in [92]. To
perform the validation, a Mach 10 flat plate was chosen, where the free–stream values
can be found in Tab. 4.2 [56, 58]. For this test case, the Reynolds number Re∞ is
given with respect to the overall length L∗ = 1 m chosen in the current calculations.
Similar to the Stetson Mach 8 cone, the thin–layer Navier–Stokes equations were
solved with an adiabatic wall boundary condition. Further, the thermo–chemical
equilibrium gas model of Sec. 2.2.2 for air was applied. The mesh consisted of 300
grid points in the streamwise direction and 300/350/400/450 grid points in the wall
normal direction to perform the mesh independence study with a clustering of the

Table 4.2: Free-stream parameters for the Mach 10 flat plate [56, 58].

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K]

10 6.3922× 106 3596 350
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(a) Mach number (b) Temperature

Figure 4.8: Contour plots at the front part of the Mach 10 flat plate.

grid points at the wall.

In Fig. 4.8, contour plots of the Mach number and the temperature are presented.
Fig. 4.8a illustrates the issue in the clustering of the grid points around the shock
in a structured grid approach for flat plates mentioned in Sec. 2.3.6. As the shock
arises at the tip of the flat plate (x∗ = 0 mm), all grid lines would collapse at this
position if aligning the mesh with the shock shape and a calculation of the governing
equations would become impossible. Thus, because the grid alignment cannot be
performed, a clustering of the grid points around the shock on a structured grid
cannot be achieved. In Fig. 4.8b, the observed high temperature of T̄ ∗ = 3200 K
justifies the application of the thermo–chemical equilibrium gas model because the
temperatures exceed the temperature limit of T̄ ∗ = 800 K for the application of the
perfect gas model.

To perform the mesh independence study and to validate the base–flow solution
in the thermo–chemical equilibrium gas regime, the results along the wall and along
the wall normal distance at a surface location of Rex =

√
Re∞x = 2000 are shown

in Fig. 4.9. The non–dimensional temperature distributions along the wall in Fig.
4.9a show oscillatory behaviors at the tip of the flat plate (Rex = 0). By increasing
the number of grid points in the wall normal direction, the oscillations damp but
small oscillations remain in the temperature distributions. These oscillations arise
due to the attached shock at the tip of the flat plate and, thus, due to the former
explained issue in aligning the mesh with the shock. Thus, an adequate grid point
distribution at this location is difficult to achieve. Nevertheless, further downstream,
the temperature distributions are in good agreement for 350 to 450 points in the wall
normal direction.

As the validation of the boundary–layer stability solver is performed at a surface
location of Rex = 2000, the current non–dimensional wall normal temperature and
physical streamwise velocity distributions are presented in Fig. 4.9b along the wall
normal distance. Firstly, the trend observed along the wall can be recognized in
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(a) Wall temperature distribution versus the
Reynolds number along the flat plate

(b) Temperature and physical streamwise
velocity distribution along the wall normal

distance at Rex = 2000 [92]

Figure 4.9: Base–flow results of the Mach 10 flat plate.

the wall normal temperature distributions as well, namely, the comparable results
for the number of grid points from 350 to 450 points. Thus, the result from the
grid containing 400 points in the wall normal direction was used for the further
investigations. Comparing the current temperature as well as the physical streamwise
velocity profiles with Malik & Anderson [56], similar results can be observed, where
only slight differences in the temperature distributions can be found. These small
differences are likely due to differences in the thermo–chemical equilibrium gas models
and because Malik & Anderson calculated the flow–field using the boundary-layer
theory. Nevertheless, due to the overall good agreement between the two results, the
validation of the boundary–layer stability solver is performed in the next section with
the current result.

4.2.2 Boundary–Layer Stability Results

The validation of the boundary–layer stability solver by applying the thermo–chemical
equilibrium gas model was performed by LST calculations at a surface location of
Rex = 2000 with a grid containing 300/400/500 wall normal grid points. Also in
this case, the Chebyshev spectral collocation method in combination with the non–
reflecting boundary condition at the outer boundary was applied.

The growth rate and the phase speed are shown in Fig. 4.10 versus the angular
disturbance frequency, where the growth rate is presented for the different number
of grid points along the wall normal direction in the LST calculations. The current
growth rates in Fig. 4.10a show equal distributions for all numbers of grid points.
Thus, the grid with 300 points in the wall normal direction was chosen for the up-
coming discussions. Similar to the results of Malik & Anderson [56], a second and
a third Mack mode can be observed in the current results with their maxima at
the same angular disturbance frequencies. In addition, in the current results, a first
mode is detected for the small frequencies which was not observed in the result of
Malik & Anderson. The maximum growth rate of the second mode can be found
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(a) Growth rate versus angular frequency
[92]

(b) Phase speed versus angular frequency

Figure 4.10: LST results at Rex = 2000 of the Mach 10 flat plate.

at ω = 6.795 × 10−2 with −Imag(α) = 1.673 × 10−3 and for the third mode at
ω = 1.646× 10−1 with −Imag(α) = 7.569× 10−5 in the current results. Comparing
the value of the second mode maximum growth rate with −Imag(α) = 2.009× 10−3

of Malik & Anderson, the current solver under–predicts the growth rate but, with
respect to −Imag(α) = 1.211 × 10−3 of Zanus et al. [104], the current solver over–
predicts the growth rate. Additionally, the detected third mode in the current results
shows a smaller maximum growth rate compared to −Imag(α) = 4.307×10−4 in [56].
Nevertheless, the current growth rate shows a similar distribution and the maximum
growth rate of the second mode can be found between the two referenced values.

Lastly, the phase speed along the angular disturbance frequency is compared to
the results of Malik & Anderson [56] in Fig. 4.10b. The current values show a
qualitatively similar distribution along the whole presented angular frequency range
but the values are slightly under–predicted. Additionally, the intersection points of
the Mack mode with the fast modes (Mode F) are shown in this figure. The conversion
from the first mode to the second mode arises at ω = 6.320×10−2 and the conversion
from the second to the third mode arises at ω = 1.640× 10−1. The slight differences
in the growth rate as well as in the phase speed can be caused by differences in the
thermo–chemical equilibrium gas model and in the different methods to calculate
the base–flow solution mentioned in Sec. 4.2.1. Overall, the validation shows that
the solvers are also capable of accurately calculating the base–flow solution and the
boundary–layer stability solution in the thermo–chemical equilibrium gas regime.



Chapter 5

Results

5.1 Shot 2 in CO2 Atmosphere

5.1.1 Laminar Base–Flow Results

The first test case, to investigate the influence of the atmospheres on the boundary–
layer stability in this work, where parts of the results were published in [91], is the
blunted cone of Hollis et al. [28] with a nose radius of R∗N = 2.5 mm. Further, the
geometry of the cone is defined by a cone half angle of Θ = 7◦ and an overall length of
L∗ = 1.12 m. In the high–enthalpy expansion tunnel test runs of Hollis et al., several
test conditions were set to examine the influence of the free-stream conditions. In this
section, the Shot 2 conditions were chosen due to the measured laminar–turbulent
transition with the free-stream conditions presented in Tab. 5.1 [28].

Table 5.1: Free-stream conditions for the blunted cone of Hollis et al. under the Shot
2 conditions [28].

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K] ρ∗∞ [kg/m3]

9.99 6874 1589 452 0.01861

Similar to the validation test cases in the current work, different number of grid
points were set in the wall normal direction to perform a mesh independence study
for the base–flow computation. For this purpose, 300 points were chosen in the
streamwise direction and 200/300/400 grid points were placed in the wall normal
direction, where the grid points were clustered at the wall and around the shock.
For the calculations, an axisymmetric laminar flow was assumed and the thin–layer
Navier–Stokes equations were solved with an isothermal wall by setting T̄ ∗w = 300 K.
Additionally, the thermo–chemical equilibrium gas model of Sec. 2.2.2 was applied in
the calculations because of the high temperatures in the flow–field, containing pure
CO2 similar to the test gas in the experiment. In the following investigations, the axial
distance from the virtual sharp nose x∗a will be used for several figures. Therefore,
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Figure 5.1: Sketch of the axial distance from the virtual sharp nose x∗a.

note that this distance is the distance if the blunted cone would be prolonged to a
sharp cone as shown in Fig. 5.1.

The current results along the before defined distance x∗a are presented in Fig. 5.2
and are compared with the numerical and experimental results of Hollis et al. [28].
The wall pressure in Fig. 5.2a is presented for the different number of grid points,
where no significant difference between the results can be observed. Comparing the
wall pressure distributions with the numerical result of Hollis et al., a good agreement
is observed. Additionally, comparing the current results with the experimentally mea-
sured ones, a good agreement can be found as well at the two points of measurement.
In Fig. 5.2b, the wall heat flux along x∗a is presented. Comparable to the pressure,
the current results of the different number of grid points show similar distributions
except at the junction between the blunt nose and the straight cone part. Thus,
because the wall heat flux show similar distributions downstream of the nose–cone
junction and with respect to the wall pressure, the result of the grid containing 400
grid points in the wall normal direction was selected for the further investigations and
the boundary–layer stability calculations. In comparison to the experimental result
of Hollis et al., the current result under–predicts the wall heat flux for several reasons.
Firstly, at a location of x∗a = 0.5325 m, due to the rise in the experimental measured
wall heat flux, the laminar–turbulent transition onset location can be found. Thus,
the wall heat flux in the experiment shows higher values downstream of this location
compared to the current results because a laminar flow was assumed in the base–
flow calculation. The same trend can also be observed in the numerical result of

(a) Wall pressure distribution (b) Wall heat flux distribution

Figure 5.2: Wall distributions along x∗a of the Shot 2 blunted cone [91].
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(a) Temperature and density (b) Physical streamwise velocity component

Figure 5.3: Wall normal distributions along the wall normal distance of the Shot 2
blunted cone at x∗a = 0.576 m.

Hollis et al., respectively, the under–prediction due to the laminar flow assumption,
where this result shows a slightly higher wall heat flux compared to the current re-
sult. Upstream of the transition location, the under–prediction is likely caused by
the thermodynamic model. As the numerical result of Hollis et al., by applying a
thermo–chemical non–equilibrium gas model matches the experimental results, it ap-
pears that the equilibrium assumption does not match the real physical conditions of
the experiment. Because both the chemical reactions and the vibrational excitation
are assumed to be in equilibrium, the temperature in the flow–field is lower. This
is the case because parts of the energy are stored in the chemical reactions and the
vibrational excitation, where, in contrast to the non–equilibrium model, where ongo-
ing chemical reactions and vibrational excitation occur, these parts of the energy are
greater. Thus, because of the lower temperatures in the flow–field, the wall heat flux
is under–predicted. Nevertheless, this result is used for the boundary–layer stability
calculations in the next section because in both solvers, CONSST3D and COSTAS,
currently no thermo–chemical non–equilibrium gas model is implemented.

As the boundary–layer stability calculations require an adequate base–flow so-
lution, the non–dimensional wall normal distributions of the temperature and the
density in Fig. 5.3a and of the physical streamwise velocity component in Fig. 5.3b
are presented along the non–dimensional wall normal distance at x∗a = 0.576 m, re-
spectively, approximately at the transition onset location. It can be recognized that
all distributions are smooth without any oscillations in the wall normal direction.
Thus, with regard to the validation of the wall distributions and the non–oscillatory
wall normal distributions, the boundary–layer stability calculations were performed
with the current result as the base–flow solution.

5.1.2 Boundary–Layer Stability Results

The boundary–layer stability calculations were firstly performed approximately at
the laminar–turbulent transition onset location at x∗a = 0.576 m by applying the
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LST to detect the first and second or higher Mack modes. The calculations were
performed with different grid point distributions in the wall normal direction, respec-
tively, 350/400/450/500 grid points. Further, the non–reflecting boundary condition
was prescribed at the outer boundary and the spectral Chebyshev collocation method
was used for the discretization.

In Fig. 5.4, the current results of the LST calculations are presented versus
the disturbance frequency. With respect to the growth rate results of the different
number of grid points, in Fig. 5.4a, equal distributions can be observed. Thus, the
result containing 400 grid points was used for the further investigations. Comparing
the current result with the results of the Stetson cone in the Earth atmosphere in
Sec. 4.1.2, similar qualitative growth rate distributions can be observed versus the
disturbance frequency but with some slight differences. Firstly, in the current result
a second Mack mode can be detected with a maximum growth rate σ∗ = 33.29 1/m
for a disturbance frequency of f ∗ = 405 kHz. Secondly, the growth rate decreases
with lower disturbance frequencies but in contrast to the Stetson cone no unstable
first mode can be detected. Additionally, for higher disturbance frequencies, the
growth rate decreases but in contrast to the Stetson cone the growth rate remains
unstable. This unstable behavior can be found up to high disturbance frequencies of
f ∗ = 1000 kHz. To distinguish the eigenmodes, the phase speed of the Mack mode
and the fast mode are shown versus the disturbance frequency in Fig. 5.4b. The
first mode (Mack mode), arising from the slow acoustic spectrum, synchronizes with
the fast mode (Mode F) at a disturbance frequency of f ∗ = 451.5 kHz with a phase
speed of cr = 0.8618 and, thus, converts to a second Mack mode. Even though the
growth rate remains unstable up to very high disturbance frequencies, no conversion
to a third mode can be found in the phase speed unlike for the flat plate validation
case in Sec. 4.2.2 because no additional synchronization point with a fast mode was
found.

For completeness of the LST computation, the absolute values of the eigenfunc-
tions |q̃| = (Real(q̃)2 + Imag(q̃)2)1/2 of the temperature, density and the physical
streamwise and normal velocity components for a disturbance frequency of f ∗ =

(a) Growth rate distribution versus the
disturbance frequency

(b) Phase speed distribution versus the
disturbance frequency

Figure 5.4: LST calculations at x∗a = 0.576 m of the Shot 2 blunted cone [91].
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(a) Temperature and density (b) Physical streamwise and normal velocity

Figure 5.5: Absolute values of the eigenfunctions along the wall normal distance of
the Shot 2 test case at x∗a = 0.576 m.

405 kHz are shown along the wall normal distance in Fig. 5.5. In these figures,
the oscillatory behavior of a second Mack mode inside the boundary–layer and the
asymptotic decay in the inviscid region of the flow–field can be recognized.

To determine the N–factor at the laminar–turbulent transition onset location,
firstly, the LST was applied along the cone geometry. The resulting growth rate
distributions are shown in Fig. 5.6a along the arclength for disturbance frequencies
from f ∗ = 300 kHz up to f ∗ = 520 kHz with ∆f ∗ = 20 kHz. It can be recognized that
the maximum growth rate increases with an increase in the disturbance frequency
and, additionally, the neutral point moves upstream. Further, a decaying growth
rate downstream of the maximum location can be observed, where the growth rate
remains unstable along the entire cone. Applying Eq. (3.60) for the calculation of
the N–factor, the distributions versus the arclength in Fig. 5.6b were found. The
unstable behavior of the growth rate along the entire cone can also be recognized
in this figure as the N–factor continues to rise up to the end of the geometry for
all disturbance frequencies. Lastly, the N–factor as the criterion for the laminar–

(a) Growth rate distributions (b) N–factor distributions

Figure 5.6: LST calculations along the arclength of the Shot 2 blunted cone [91].
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(a) Growth rate distributions (b) N–factor distributions

Figure 5.7: LPSE calculations along the arclength of the Shot 2 blunted cone [91].

turbulent transition onset was found with N = 6.15 for a disturbance frequency of
f ∗ = 480 kHz at the laminar–turbulent transition onset location x∗a = 0.5325 m,
respectively, s∗ = 0.51772 m.

A second calculation was performed, applying the LPSE, to account for the down-
stream propagation of the disturbances. The growth rate distributions along the
arclength are presented in Fig. 5.7a for disturbance frequencies from f ∗ = 300 kHz
up to f ∗ = 560 kHz with ∆f ∗ = 20 kHz. Similar to the LST computations, the
maximum growth rate increases with an increasing disturbance frequency and the
neutral point moves further upstream. Overall greater growth rates were observed
and the neutral point moves further upstream compared to the LST. Downstream
of the maximum, the growth rate decreases and for the higher disturbance frequen-
cies the growth rate becomes stable in contrast to the LST computations. Further,
an oscillatory behavior can be observed which likely arises due to difficulties in the
tracking of the second Mack mode because of the appearance of additional unstable
modes also observed by Chang et al. [12] and Zanus et al. [104]. In Fig. 5.7b, the re-
sulting N–factor distributions, calculated with Eq. (3.60), along the arclength of the
cone are shown. Firstly, the stable behavior of the growth rate for high disturbance
frequencies can also be observed in these results, respectively, a decaying N–factor.
Secondly, the N–factor at the laminar–turbulent transition onset location was found
with N = 7.88 for f ∗ = 540 kHz, respectively, a higher N–factor at a higher distur-
bance frequency compared to the LST. Overall, in both calculations, typical values
for the N–factor were found at the laminar–turbulent transition onset location.

5.2 Shot 2 in Mars Atmosphere

5.2.1 Laminar Base–Flow Results

The second test case to investigate the influence of the atmospheres on the boundary–
layer stability in this work is the blunted cone of the previous section but a Mars
atmosphere was assumed. Therefore, to differentiate the test cases, the test case
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of the previous section in the pure CO2 atmosphere will be labeled as Shot 2 in
the following. Different to the pure CO2 atmosphere, additionally, N2 is considered
in this atmosphere, where the gas composition and the considered species for the
thermo–chemical equilibrium gas model can be found in Tab. 2.2. To enable a
comparison between the current test case and the Shot 2 test case of Sec. 5.1, the
same Mach number, Reynolds number and temperature were chosen similar to Kline
et al. [40] who chose the same variables to perform their comparisons on a flat plate.
The resulting free–stream parameters can be found in Tab. 5.2. Further, also in
this case the thin–layer Navier–Stokes equations were solved with a prescribed wall
temperature of T̄ ∗w = 300 K and with an axisymmetric laminar flow assumption.
Additionally, the number of grid points was kept the same, respectively, 300 grid
points in the streamwise direction and 200/300/400 in the wall normal direction.

Table 5.2: Free-stream conditions for the blunted cone assuming a Mars atmosphere.

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K] ρ∗∞ [kg/m3]

9.99 6874 1614.5 452 0.01859

In Fig. 5.8, the current distributions of the non–dimensional wall pressure and the
Stanton number along x∗a are compared to the Shot 2 results. The non–dimensional
values are chosen for these figures to exclude the effects of the different static free–
stream values such as the free–stream pressure and density. Further, note that the
wall pressure is made non-dimensional with the static free–stream pressure. Com-
paring the results of the different number of grid points overall a good agreement can
be observed. Similar to the Shot 2 test case, the pressure distributions in Fig. 5.8a
matches well between the different grid resolutions and the Stanton number show
only small differences at the junction between the nose and the cone part. Further
downstream, the Stanton numbers are comparable and, thus, the same number of
grid points as for the Shot 2 test case, respectively, 400 grid points in the wall normal

(a) Wall pressure distribution (b) Wall heat flux distribution

Figure 5.8: Wall distributions along x∗a of the the blunted cone assuming a Mars
atmosphere.



62 5. Results

(a) Temperature and density (b) Physical streamwise velocity component

Figure 5.9: Wall normal distributions along the wall normal distance of the blunted
cone assuming a Mars atmosphere at x∗a = 0.576 m.

direction, was used for the further investigations and the boundary–layer stability
calculations. Comparing the current pressure distribution with the pressure distri-
bution of the Shot 2 test case in Fig. 5.8a, no significant difference can be observed
between the results. Similar observations can be made for the Stanton number in
Fig. 5.8b, respectively, the current values are comparable to the values of the Shot
2 test case. Thus, due to the same grid point distributions and the similarity in the
free-stream parameters between the two cases, the additional consideration of N2 in
the atmosphere has no significant influence on the non–dimensional base–flow results.

In Fig. 5.9, the wall normal distributions of the flow variables are presented at
x∗a = 0.576 m. The distributions of the non–dimensional temperature and density
in Fig. 5.9a and of the physical streamwise velocity in Fig. 5.9b along the non–
dimensional wall normal distance show smooth profiles without oscillations similar
to the results of the Shot 2 test case. Thus, the current base–flow solution was used to
perform the boundary–layer stability calculations, where the results will be presented
in the following section.

5.2.2 Boundary–Layer Stability Results

With the previously calculated base–flow result, firstly, the LST was applied at the
same location of x∗a = 0.576 m as for the Shot 2 test case to enable a comparison
between the results. The calculation was performed for different number of grid points
in the wall normal direction, respectively, 350/400/450/500 grid points. To enable a
comparison with the Shot 2 boundary–layer stability calculations, also in this case
the non–reflecting boundary conditions were chosen at the outer boundary and the
Chebyshev spectral collocation method was applied in the wall normal direction.

In Fig. 5.10, the resulting growth rate and the phase speed distributions versus
the disturbance frequency are shown, where the growth rate is presented for the
different number of grid points. Similar to the Shot 2 result, also in this case no
significant differences can be observed between the growth rates of the different grid
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(a) Growth rate distribution versus the
disturbance frequency

(b) Phase speed distribution versus the
disturbance frequency

Figure 5.10: LST calculations at xa = 0.576 m of the blunted cone assuming a Mars
atmosphere.

(a) Temperature and density (b) Physical streamwise and normal velocity

Figure 5.11: Absolute values of the eigenfunctions along the wall normal distance of
the blunted cone assuming a Mars atmosphere at x∗a = 0.576 m.

distributions. Thus, to enable a comparison between the current result and the Shot
2 result, the same number of grid points as for the Shot 2 test case was chosen,
respectively, 400 points in the wall normal direction. The growth rate in Fig. 5.10a
shows a qualitatively similar result compared to the result of the Shot 2 test case,
respectively, an unstable second Mack mode, a stable first mode and an unstable
behavior up to high frequencies. The current maximum growth rate of the second
Mack mode can be found at a frequency of f ∗ = 410 kHz with σ∗ = 33.06 1/m. To
verify the second Mack mode appearance, the phase speed is shown in Fig. 5.10b
along the disturbance frequency, where the synchronization point between the fast
mode (Mode F) and the Mack mode, respectively, the conversion from the first to the
second mode, was found at f ∗ = 453.3 kHz with cr = 0.8619. For higher disturbance
frequencies, also in this case no conversion to a third mode can be observed.

Lastly, in the LST investigations at x∗a = 0.576 m, the eigenfunctions of the abso-
lute disturbance temperature and density are shown in Fig. 5.11a and the absolute
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disturbance velocity components in Fig. 5.11b. Both figures show the eigenfunctions
along the non–dimensional wall normal distance for the disturbance frequency of the
maximum growth rate f ∗ = 410 kHz including the location of the boundary–layer
edge. Similar profiles can be observed compared to the Shot 2 eigenfunctions with
an oscillatory behavior inside the boundary–layer and an asymptotic decay in the
inviscid region.

In the following, the LST and LPSE results along the cone are presented. The
LST results are shown in Fig. 5.12, where the growth rate distributions are presented
in Fig. 5.12a and the N–factor distributions in Fig. 5.12b along the cone arclength.
In both figures, the distributions are shown for disturbance frequencies from f ∗ =
300 kHz to f ∗ = 520 kHz with ∆f ∗ = 20 kHz. Similar to the other results in this
section, qualitatively comparable results to the Shot 2 test case can be observed in
the growth rate distributions but the growth rates show slightly higher values and
the neutral points can be found slightly upstream compared to the Shot 2 test case.
Downstream of the maximum of the growth rates, the growth rates decay but an
unstable behavior can be observed for all presented disturbance frequencies up to
the end of the cone. In case of the LST calculations in the Mars atmosphere, an
N-factor of N = 6.22 was found for a disturbance frequency of f ∗ = 480 kHz at
the laminar–turbulent transition onset location s∗ = 0.51772 m of the Shot 2 test
case. Respectively, by assuming a Mars atmosphere and the same laminar–turbulent
transition onset location of the Shot 2 test case, a slightly higher N–factor at the
same disturbance frequency can be found.

To examine the influence of the different atmosphere on the LPSE, the results of
these calculations are presented in Fig. 5.13 for disturbance frequencies from f ∗ =
300 kHz to f ∗ = 560 kHz with ∆f ∗ = 20 kHz. The growth rate distributions along
the cone arclength, shown in Fig. 5.13a, again show qualitatively similar distributions
to the Shot 2 test case but the maximum growth rates show higher values and the
neutral points can be found slightly upstream compared to the Shot 2 test case.
Further, also in this case an oscillatory behavior can be recognized downstream of

(a) Growth rate distributions (b) N–factor distributions

Figure 5.12: LST calculations along the arclength of the blunted cone assuming a
Mars atmosphere.
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(a) Growth rate distributions (b) N–factor distributions

Figure 5.13: LPSE calculations along the arclength of the blunted cone assuming a
Mars atmosphere.

the maximum of the growth rates which also likely appears due the occurrence of
additional unstable modes beside the second Mack mode. Additionally, also in this
case, a stable behavior of the growth rate was found for high disturbance frequencies.
In case of the current LPSE calculations, the N–factor at the Shot 2 laminar–turbulent
transition onset location s∗ = 0.51772 m was found for a disturbance frequency of
f ∗ = 540 kHz with N = 7.93. Respectively, in case of the LPSE calculations, the
N–factor is also found to be slightly higher compared to the Shot 2 result for the
same disturbance frequency.

5.3 Shot 2 in Earth Atmosphere

5.3.1 Laminar Base–Flow Results

The last test case in this work to examine the influence of the atmosphere on
the boundary–layer stability is the blunted cone but by assuming an Earth atmo-
sphere, respectively, air, where the gas composition and the considered species for
the thermo–chemical equilibrium gas model can be found in Tab. 2.2. The calcula-
tions were performed similar to the Mars atmosphere test case by requiring the same
Mach number, Reynolds number and temperature as in the Shot 2 test case in Sec.
5.1. This requirement results in the free–stream conditions that can be found in Tab.
5.3.

Table 5.3: Free-stream conditions for the blunted cone assuming an Earth atmo-
sphere.

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K] ρ∗∞ [kg/m3]

9.99 6874 2124.4 452 0.01631

Analogous to the test cases in the last sections, the calculations were performed
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(a) Wall pressure distribution (b) Wall heat flux distribution

Figure 5.14: Wall distributions along x∗a of the the blunted cone assuming an Earth
atmosphere.

applying the thin–layer Navier–Stokes equations requiring an axisymmetric laminar
flow and assuming an isothermal wall with T̄ ∗w = 300 K. Further, 300 grid points were
prescribed in the streamwise direction and 200/300/400 in the wall normal direction.

The resulting base–flow solutions of the different grid distributions are presented
in Fig. 5.14 and a comparison to the Shot 2 test case is made. Therefore, again the
non–dimensional wall pressure and the Stanton number are presented to exclude the
effects of the different static free-stream variables. Firstly, it can be recognized that
the non–dimensional wall pressure for the different grid distributions along x∗a in Fig.
5.14a show similar distributions analogous to the previous test cases. Secondly, by
comparing the results with the Shot 2 test case, the wall pressure shows greater values
due to the different atmosphere which will be explained later in this section. Similar
to the wall pressure distributions, the Stanton number in Fig. 5.14b shows the same
trend in the comparison to the Shot 2 test case. Firstly, the different number of grid
points show similar results and, secondly, the Stanton number is higher compared
to the Shot 2 test case which is caused by higher temperatures in the flow–field due
to the different atmosphere. Therefore, with regard to the results of the different
grid distributions, also in the current test case the result with 400 points in the wall
normal direction was chosen for the further investigations and the boundary–layer
stability calculations.

As mentioned before, the difference in the wall distributions arises due to the
different atmospheres in the calculations because a similarity is required in the free–
stream. The Earth atmosphere model in this work considers diatomic molecules, e.g.,
N2 and O2. In contrast, for the Shot 2 test case, CO2 was included which is a triatomic
molecule. The difference in the flow–field, thus, is caused by the isentropic coefficient
which is lower in case of CO2. In consequence, by applying the normal shock relations
for a perfect gas as a first approximation, the pressure and the temperature ratios
over the bow shock are higher in the Earth atmosphere case compared to the CO2

case. Respectively, the temperature and the pressure in the entire flow–field are
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(a) Temperature and density (b) Physical streamwise velocity component

Figure 5.15: Wall normal distributions along the wall normal distance of the blunted
cone assuming an Earth atmosphere at x∗a = 0.576 m.

higher by assuming air. This higher temperature can be recognized as an example in
Fig. 5.15a along the non–dimensional wall normal distance at x∗a = 0.576 m. Further,
by considering the Earth atmosphere, different chemical reactions occur compared to
the pure CO2 atmosphere which has an additional effect on the wall distributions.

For completeness of the results, the non–dimensional density and temperature
distributions are shown in Fig. 5.15a and the non–dimensional physical streamwise
velocity component is presented in Fig. 5.15b. All of these profiles, similar to the
previous results, show non–oscillatory distributions and, thus, the current result was
used to perform the boundary–layer stability calculations.

5.3.2 Boundary–Layer Stability Results

With the previously calculated base–flow solution, firstly, the LST computations were
performed at the same location x∗a = 0.576 m as for the previous test cases. Addi-
tionally, the same number of grid points was prescribed in the wall normal direction,
respectively, 350/400/450/500 grid points. Further, the non–reflecting boundary con-
dition was set at the outer boundary and the Chebyshev spectral collocation method
was applied for the discretization in the wall normal direction.

The results of these calculations are presented in Fig. 5.16 along the disturbance
frequency. Also in this case, no significant difference can be observed between the
growth rate results of the different grid distributions and, thus, the result with 400
grid points was chosen for the following investigations. Comparable to the Shot
2 test case, in the growth rate distribution in Fig. 5.16a, no unstable first mode
can be recognized but, for higher disturbance frequencies, the results show different
distributions. In contrast to the previous two test cases, firstly, the maximum of the
growth rate of the second Mack mode shows a smaller value with σ∗ = 24.39 1/m at
a higher disturbance frequency of f ∗ = 535 kHz. Secondly, the growth rate decreases
for higher disturbance frequencies and the Mack mode becomes and remains stable
up to high disturbance frequencies. In Fig. 5.16b, the phase speed distributions along
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(a) Growth rate distribution versus the
disturbance frequency

(b) Phase speed distribution versus the
disturbance frequency

Figure 5.16: LST calculations at xa = 0.576 m for the blunted cone assuming an
Earth atmosphere.

the disturbance frequency show a qualitatively similar distribution compared to the
other test cases but the synchronization point between the fast mode (Mode F) and
the Mack mode, respectively, the conversion from the first to the second mode, can
be found at a higher disturbance frequency of f ∗ = 580.29 kHz with cr = 0.8821.
Further, also in the current result no conversion to a third mode can be recognized.

Lastly, for the LST calculations approximately at the transition onset location,
the eigenfunctions are presented along the non–dimensional wall normal distance in
Fig. 5.17. The absolute values of the density and the temperature in Fig. 5.17a as
well as the absolute values of the velocity components in Fig.5.17b show qualitatively
similar distributions compared the the previous results with the oscillatory behavior
inside the boundary–layer and the asymptotic decay in the inviscid region.

The LST and LPSE calculations along the cone surface are performed also for this
test case and are presented in the following. Firstly, the results of the LST are shown

(a) Temperature and density (b) Physical streamwise and normal velocity

Figure 5.17: Absolute values of the eigenfunctions along the wall normal distance of
the blunted cone assuming an Earth atmosphere at x∗a = 0.576 m.
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(a) Growth rate distributions (b) N–factor distributions

Figure 5.18: LST calculations along the arclength of the blunted cone assuming an
Earth atmosphere.

along the cone surface arclength for disturbance frequencies from f ∗ = 420 kHz to
f ∗ = 640 kHz with ∆f ∗ = 20 kHz, where the growth rate distributions are shown in
Fig. 5.18a and the N–factor distributions in Fig. 5.18b. Compared to the previous
test cases, the growth rate distributions along the cone surface show smaller maxi-
mum values and, in addition, the second Mack mode becomes stable at some location
downstream of the maximum of the growth rates of the different disturbance frequen-
cies. Therefore, a decaying behavior can be observed in the N–factor distributions
downstream of the maximum. Lastly, the N–factor at the transition onset location
of s∗ = 0.51772 m was found with N = 3.61 for f ∗ = 620 kHz. Therefore, compared
to the Mars and pure CO2 atmospheres, a smaller N–factor at a higher disturbance
frequency can be observed.

In the LPSE calculations, presented in Fig. 5.19, similar observations as for the
LST can be made. With regard to the growth rate distributions for disturbance fre-
quencies from f ∗ = 420 kHz to f ∗ = 640 kHz with ∆f ∗ = 20 kHz along the cone

(a) Growth rate distributions (b) N–factor distributions

Figure 5.19: LPSE calculations along the arclength of the blunted cone assuming an
Earth atmosphere.
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surface, firstly, higher values compared to the current LST calculations are found
and the neutral points move slightly upstream. Secondly, in contrast to the other
atmospheres, smaller growth rates are found which show a decreasing behavior for all
disturbance frequencies downstream of the maximum. Similar to the previous test
cases, also in the current results an oscillatory behavior can be observed downstream
of the maximum growth rate. In the N–factor distributions in Fig. 5.19b, the stable
behavior of the instabilities can also be recognized downstream of the maximum. Fur-
ther, in the current test case an N–factor of N = 4.78 can be found for a disturbance
frequency of f ∗ = 620 at the Shot 2 laminar–turbulent transition onset location.
Respectively, a greater N–factor compared to the current LST results is observed but
a smaller one compared to the test cases considering the other atmospheres.

5.4 Influence of the Atmosphere on the Boundary–

Layer Stability

To investigate the influence of the different atmospheres on the boundary–layer stabil-
ity, in this section, the previously presented results will be compared with each other
and a discussion on the differences will be made. Firstly, a side by side comparison
of the growth rates from the different LST calculations at x∗a = 0.576 m is shown
in Fig. 5.20. In Fig. 5.20a, the dimensional growth rate distributions versus the
dimensional disturbance frequency are presented for the three different atmospheres,
whereas, in Fig. 5.20b, the same values are shown but in the non–dimensional form.
In the former, it can be seen that the CO2 and the Mars atmosphere show similar
distributions over the whole disturbance frequency range. Thus, as mentioned before,
the consideration of the small amount of 4.634 vol % N2 in the atmosphere has no
significant influence on the LST calculations. In consequence, with respect to the
current LST results, the experimental test runs of Hollis et al. [28], considering pure

(a) Growth rate distribution versus the
disturbance frequency

(b) Non–dimensional growth rate
distribution versus the non–dimensional

angular disturbance frequency

Figure 5.20: Comparison of the LST growth rates of the different atmospheres.
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CO2, are a good approximation of the Mars atmosphere conditions. Comparing the
growth rate considering the CO2 atmosphere with the result considering the Earth
atmosphere, significant differences can be observed. Firstly, the Earth atmosphere
shows a stabilizing effect on the second Mack mode, respectively, a significantly lower
growth rate. This observation is contrary to the thermo–chemical non–equilibrium
stabilizing effects of the injection of CO2 into air outlined in Sec. 1.3 and observed by
Kline et al. [40] applying a thermo–chemical non–equilibrium gas model but agree
with the observations made by Kline et al. [40] applying a finite rate chemistry
model. Secondly, the maximum in the growth rate can be found at a higher distur-
bance frequency in the Earth atmosphere compared to the other atmospheres in this
work. Additionally, in contrast to the other atmospheres, a stable Mack mode can be
recognized in the Earth atmosphere at high disturbance frequencies. In Fig. 5.20b,
the non–dimensional values are presented to exclude the influence of the free–stream
variables in the LST and to enable the comparison with regard to the atmosphere
only. In this case, the growth rates of the CO2 and the Mars atmosphere also show
similar distributions along the complete disturbance frequency range. Comparing
the growth rate of the Earth atmosphere with the other atmospheres, again the sta-
bilizing effect of air can be seen. In contrast to the dimensional representation in
Fig. 5.20a, the non–dimensional angular frequency at the maximum growth rate of
the Earth atmosphere shows only a small shift to higher values with ω = 0.3581
compared to ω = 0.3545 in the CO2 and ω = 0.3553 in the Mars atmosphere. Thus,
in the non–dimensional form, the maximum of the second Mack mode growth rate
appears at nearly the same non–dimensional angular disturbance frequencies.

Further comparisons are made with regard to the phase speed and the eigenfunc-
tions in the following, where, firstly, the phase speeds along the non–dimensional
angular frequency are shown in Fig. 5.21a. Similar to the growth rates, the phase
speed shows comparable distributions between the CO2 and the Mars atmosphere.
Comparing these distributions with the phase speed of the Earth atmosphere test
case, qualitatively similar distributions can be observed for the lower disturbance
frequencies but at high frequencies differences occur between the results. Until the
maximum of the phase speeds, qualitatively similar distributions can be observed
between the test cases. Thereafter, the phase speeds of the CO2 and the Mars atmo-
sphere decrease and remain below the slow acoustic branch 1 − 1/M∞, whereas the
phase speed of the Earth atmosphere decreases and, thereafter, rises again and the
phase speed crosses the slow acoustic branch again.

Lastly, the absolute values of the eigenfunctions are compared with each other.
Therefore, all eigenfunctions are scaled so that the maximum values of the temper-
ature eigenfunctions match with the maximum of the CO2 atmosphere temperature
eigenfunction. The resulting eigenfunctions for the temperature, physical stream-
wise velocity and normal velocity are presented in Fig. 5.21b – 5.21d. Overall,
qualitatively similar distributions can be observed between the different cases for all
presented eigenfunctions. By comparing the CO2 and the Mars atmosphere with each
other, the eigenfunctions also show a quantitatively good agreement. This behavior
corresponds to the previous observations, respectively, that the small amount of N2
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(a) Phase speed distributions versus the
non–dimensional angular disturbance

frequency

(b) Absolute values of the temperature
eigenfunctions along the wall normal

distance

(c) Absolute values of the physical
streamwise velocity eigenfunctions along the

wall normal distance

(d) Absolute values of the physical normal
velocity eigenfunctions along the wall

normal distance

Figure 5.21: Comparison of the LST phase speeds and eigenfunctions of the different
atmospheres.

in the atmosphere has only a small effect on the result. In contrast, the eigenfunc-
tions for the Earth atmosphere show different values along the wall normal distance.
Additionally, it can be recognized that the asymptotic decay of the eigenfunctions in
the Earth atmosphere arise at a greater distance from the wall which is caused by
the greater boundary–layer thickness, where the values can be found in Tab. 5.4.

In Tab. 5.5, the N–factors of the LST and LPSE calculations considering the
three different atmospheres are presented. Firstly, it can be recognized that the
disturbance frequencies at the laminar–turbulent transition onset location show the

Table 5.4: Boundary–layer thicknesses for the different atmospheres at x∗a = 0.576 m.

Atmosphere δ∗/L∗∞ [-] δ∗ [mm]

CO2 3.2462 1.4697
Mars 3.2812 1.4857
Earth 3.9244 1.7768
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Table 5.5: N–factors at the laminar–turbulent transition onset location x∗a = 0.5325 m
for the different atmospheres.

LST LST LPSE LPSE
Atmosphere f ∗ [kHz] N [-] f ∗ [kHz] N [-]

CO2 480 6.15 540 7.88
Mars 480 6.22 540 7.93
Earth 620 3.61 620 4.78

same values for the CO2 and Mars calculations. In contrast, in case of considering
the Earth atmosphere, the disturbance frequency is larger. This trend can be rec-
ognized in both, the LST and the LPSE, calculations. Further, it can be recognized
that the disturbance frequencies show higher values comparing the LPSE with the
LST calculations in the CO2 and Mars case, whereas, in the Earth atmosphere, the
disturbance frequency remains the same. By comparing the N–factors of the CO2

and the Mars atmosphere, which show similar values, again it can be noticed that
the experimental investigation of Hollis et al. under CO2 atmosphere conditions is
a good representation of the Mars atmosphere. Lastly, the stabilizing effect of the
Earth atmosphere compared to the CO2 and the Mars atmosphere can be recognized
also in the N–factors at the transition onset location. Thus, requiring the same Mach
number, Reynolds number and temperature in the free–stream and the transition
N–factor of the CO2 atmosphere, the laminar–turbulent transition occurs further up-
stream in the CO2 and the Mars atmosphere compared to the Earth atmosphere by
applying a thermo–chemical equilibrium gas model.

5.5 Shot 4 in CO2 Atmosphere

5.5.1 Laminar Base–Flow Results

To examine the influence of the free–stream Reynolds number on the same blunted
cone geometry, in this section, the Shot 4 condition of Hollis et al. [28] will be investi-
gated. The geometry consists of the same geometrical parameters as for the previous
test cases but with the free–stream parameters in Tab. 5.6. It can be recognized that
this test case is characterized by a significantly higher Reynolds number compared to
the Shot 2 conditions, whereas only moderate differences occur in the Mach number

Table 5.6: Free-stream conditions for the blunted cone of Hollis et al. under the Shot
4 conditions [28].

M∞ Re∞ p∗∞ [Pa] T ∗∞ [K] ρ∗∞ [kg/m3]

9.59 13167 3433 478 0.03802
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(a) Wall pressure distribution (b) Wall heat flux distribution

Figure 5.22: Wall distributions along x∗a of the Shot 4 blunted cone.

and the temperature. In the calculations, analogous to the previous test cases, the
thin–layer Navier–Stokes equations were solved with an isothermal wall temperature
of T̄ ∗w = 300K. Further, the thermo–chemical equilibrium gas model for pure CO2 was
applied and a laminar axisymmetric flow was assumed. Additionally, the same grid
distributions, consisting of 300 points in the streamwise direction and 300/350/400
grid points in the wall normal direction, were used.

In Fig. 5.22, the base–flow results are compared to the experimental and numer-
ical results, computed with LAURA, of [28]. Additionally, the current results of the
different grid distributions are compared with each other. The wall pressure distri-
butions along x∗a, presented in Fig. 5.22a, show similar distributions for the different
number of grid points. Further, comparing the results with the referenced exper-
imental and numerical results, a good agreement was found along the entire cone
surface. In case of the heat flux at the wall, presented in Fig. 5.22b along x∗a, again
similar results with respect to the different grid point distributions are observed with
only small differences at the nose–cone junction. Thus, the result containing 400 grid

(a) Temperature and density (b) Physical streamwise velocity component

Figure 5.23: Wall normal distributions along the wall normal distance of the Shot 4
blunted cone at x∗a = 0.372 m.
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points in the wall normal direction was used for the further investigations and the
following boundary–layer stability calculations. In comparison with the referenced
experimental and numerical results, similar observations can be made as for the Shot
2 test case. Respectively, the wall heat flux is under–predicted in the current com-
putation which is caused by the thermo–chemical equilibrium gas model, where the
explanation of the phenomenon was given in Sec. 5.1.1. Nevertheless, the result is
used for the boundary–layer stability calculations due to the currently unavailable
thermo–chemical non–equilibrium gas model in the solvers.

Lastly, in Fig. 5.23, the non–dimensional wall normal profiles of the base–flow
solution at x∗a = 0.372 m, used for the LST computations in the next section, are
presented. The temperature and density distributions in Fig. 5.23a as well as the
physical streamwise velocity distribution in Fig. 5.23b show non–oscillatory profiles
and, thus, the LST computations were performed with this base–flow result and the
results are presented in the following.

5.5.2 Boundary–Layer Stability Results

The boundary–layer stability calculations of the Shot 4 test case were firstly per-
formed at x∗a = 0.372 m, approximately at the laminar–turbulent transition onset
location, applying the LST, where the Chebyshev spectral collocation method and
the non–reflecting boundary condition at the outer boundary were applied. Further,
the stability grid consisted of 350/400/450/500 grid points in the wall normal di-
rection. The calculations were performed upstream of the location of the Shot 2
test case because the laminar–turbulent transition onset location can be found fur-
ther upstream. In Fig. 5.22b, the rise in the heat flux was found at x∗a = 0.353 m,
respectively at s∗ = 0.33687 m.

Comparing the growth rate distributions versus the disturbance frequency for the
different number of grid points in Fig. 5.24a, a good agreement can be observed
between the results. Thus, similar to the other test cases, a grid point distribution
containing 400 grid points in the wall normal direction was chosen for the further

(a) Growth rate distribution versus the
disturbance frequency

(b) Phase speed distribution versus the
disturbance frequency

Figure 5.24: LST calculations at xa = 0.372 m for the Shot 4 blunted cone.
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(a) Temperature and density (b) Physical streamwise and normal velocity

Figure 5.25: Absolute values of the eigenfunctions along the wall normal distance of
the Shot 4 test case at x∗a = 0.353 m.

investigations. The overall distribution of the growth rate, further, is qualitatively
comparable to the Shot 2 test case but with a shift to higher disturbance frequencies
and with greater values for the growth rate. In the distribution, the second Mack
mode can be found with a maximum of σ∗ = 56.191/m at f ∗ = 690 kHz. For lower
disturbance frequencies, the growth rate becomes stable, respectively, no unstable
first mode can be found. For higher disturbance frequencies, also in this case, the
growth rate decreases but remains unstable up to high disturbance frequencies. The
phase speed distribution versus the disturbance frequency in Fig. 5.24b also shows
a qualitatively similar distribution compared to the Shot 2 test case but also with a
shift to higher frequencies. The Mack mode, arising from the slow acoustic spectrum,
converts from a first mode to a second mode at the synchronization point with the fast
mode (Mode F) at f ∗ = 777 kHz with cr = 0.8609. With an increasing disturbance
frequency, the values of the phase speed remain below the acoustic branch as observed
for the Shot 2 test case.

Lastly, in Fig. 5.25, the absolute values of the eigenfunctions are presented along
the non–dimensional wall normal distance. Comparable to the Shot 2 test case,
the oscillatory behavior inside the boundary–layer of the density and temperature
distributions in Fig. 5.25a and of the physical velocity component distributions in
Fig. 5.25b can be observed along with the asymptotic decay in the inviscid region.

To investigate the evolution of the instabilities along the blunted cone under the
Shot 4 test conditions, LST calculations were performed along the geometry. The
resulting growth rates and the N–factors along the cone arclength are presented in
Fig. 5.26 for disturbance frequencies from f ∗ = 620 kHz to f ∗ = 840 kHz with
∆f ∗ = 20 kHz. The growth rates in Fig. 5.26a again show qualitatively similar
distributions compared to the Shot 2 test case with an unstable behavior up to the
end of the geometry for all disturbance frequencies. Nevertheless, the growth rates
are greater and the neutral points move upstream with respect to the Shot 2 test
case. Due to the unstable growth rate along the entire geometry, the calculated N–
factor distributions along the cone surface in Fig. 5.26b grow up to the end of the
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(a) Growth rate distributions (b) N–factor distributions

Figure 5.26: LST calculations along the arclength of the Shot 4 blunted cone.

geometry. Finally, at the laminar–turbulent transition onset location x∗a = 0.353 m,
an N–factor of N = 7.86 for a frequency of f ∗ = 800 kHz was found.

Lastly, LPSE calculations were performed for this test case but no satisfactory
results were calculated, respectively, non–physically high N–factors were determined
for the high disturbance frequencies. This issue likely arose due to the neutral point
location close to the blunt nose in the current test case. In case of the LPSE, this
neutral point location moves further upstream compared to the LST and, thus, small
inaccuracies in the base–flow solution at the junction between the nose and the cone
could lead to inaccurate LPSE calculations. Due to this issue, the LPSE results
are not presented in this work. Therefore, the comparison with respect to the free–
stream Reynolds number in the next section will only be made with regard to the
LST results.

5.6 Influence of the Free–Stream Reynolds num-

ber on the Boundary–Layer Stability

In this section a comparison between the boundary–layer stability results of the Shot
2 test case in Sec. 5.1 and the Shot 4 test case will be made. Due to the LST
calculations at different locations and the absence of a LPSE calculation of the Shot
4 test case, only the LST calculations along the geometry are compared. In Tab. 5.7,
the laminar–turbulent transition onset locations, the disturbance frequencies of the
most amplified disturbance and the N–factors are shown for the two cases. It can be
seen that the N–factor shows a higher value in the Shot 4 test case compared to the
Shot 2 case, respectively, for the higher free–stream Reynolds number and nearly the
same Mach number and free–stream temperature, at the transition onset location
which can be found further upstream compared to the Shot 2 test case. Further, the
disturbance frequency also shows a higher value in the Shot 4 case. These greater
values are, due to the same geometry and gas model, mainly caused by the higher
Reynolds number of the Shot 4 test case which corresponds with the observations of
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[83] and [86] outlined in the introduction, namely, the higher disturbance frequencies
for the most amplified disturbance and the upstream movement of the transition
onset location with an increase of the Reynolds number.

Table 5.7: N–factors at the laminar–turbulent transition onset location for the Shot
2 and Shot 4 test case.

Test case x∗a of transition onset [m] f ∗ [kHz] N [-]

Shot 2 0.5325 480 6.15
Shot 4 0.353 800 7.86



Chapter 6

Conclusion and Outlook

The aim of this work was to perform first investigations of the laminar–turbulent
transition of a blunted cone in the Mars atmosphere. To perform a comparison and
to investigate the influence of the atmosphere on the transition, the calculations
were performed in a pure CO2 environment, in the Mars atmosphere and the Earth
atmosphere. Further, a first calculation and investigation on the influence of the
free–stream conditions was performed.

To enable the investigations, two solvers were developed and implemented in this
work. The first solver is the compressible Navier–Stokes solver CONSST3D. This
solver was developed to calculate the laminar base–flow solution which serves as the
input flow–field for the boundary–layer stability calculations. As the boundary–layer
stability calculations require an adequate base–flow solution with respect not only to
the flow variables but also with respect to their spatial first and second derivatives,
the focus in the laminar base–flow solver development was in the numerical methods
selection and the adequate flow–field calculation. To perform the boundary–layer sta-
bility calculations, the second solver COSTAS was developed and implemented. This
solver is capable of solving the linear stability theory and the linear parabolized sta-
bility equations. Analogous to CONSST3D, the perfect gas and the thermo–chemical
equilibrium gas model were implemented into the solver. The latter was additionally
implemented, in contrast to, e.g., [24] and [42], to account for the high temperature
thermo–chemical effects which have a significant influence in the investigated test
cases.

After the successful implementation of the two solvers, two test cases were selected
for validation purposes to show the capability of the solvers to accurately calculate
the laminar base–flow and the boundary–layer stability. The first test case was the
Stetson Mach 8 blunted cone which was chosen for the validation of the solvers in the
perfect gas regime. By comparing the current results with results found in literature,
a good agreement was observed between the base–flow solutions and the boundary–
layer stability results. The second test case for the validation in the thermo–chemical
equilibrium gas regime was a Mach 10 flat plate. Also in this case, the base–flow result
and the boundary–layer stability result were in good agreement with the numerical
results found in literature.

79
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With the validated solvers, thereafter, the boundary–layer stability investigations
and comparisons between different atmospheres and free–stream conditions, assuming
a gas in thermo–chemical equilibrium, were performed. Therefore, the experimen-
tally and numerically investigated blunted cone in a pure CO2 atmosphere under the
Shot 2 test conditions of Hollis et al. [28] was chosen and calculations in a CO2

atmosphere, the Mars atmosphere and the Earth atmosphere were performed by re-
quiring similar free-stream conditions. By comparing the base–flow result in the CO2

atmosphere of this work with the experimental and numerical results of Hollis et al.
[28], it was found that the thermo–chemical equilibrium gas model in the current
investigations did not reflect the real thermo–chemical effects of the experiment due
to the under–prediction of the wall heat flux in the current results. Nevertheless,
because a good agreement between the wall pressure distributions along the cone
was observed and because currently no thermo–chemical non–equilibrium gas model
is implemented in CONSST3D and COSTAS, the investigations in this work were
performed with the current numerical implementation of the solvers. Two main ob-
servations were made with regard to the base–flow results in this work by comparing
the base–flow results in the Mars atmosphere and the Earth atmosphere with the re-
sult in the CO2 atmosphere. Firstly, the additional consideration of the small amount
of N2 in the Mars atmosphere had no significant influence on the non–dimensional
wall distributions. Secondly, it was found that the Earth atmosphere significantly
increases the non–dimensional wall heat flux and pressure which was concluded to be
mainly caused by the consideration of only diatomic gases in the Earth atmosphere
in contrast to the additional triatomic CO2 in the CO2 atmosphere and the Mars
atmosphere. With these calculated base–flow solutions, firstly, the boundary–layer
stability calculations were performed by applying the LST around the experimentally
measured transition onset location. The results in the CO2 atmosphere showed an
unstable second Mack mode and a stable first mode. Further, an unstable behavior
of the disturbances up to high frequencies was found without a conversion to a third
mode which could not be observed in the validation test cases. Similar observations
with regard to the growth rate were made in the Mars atmosphere test case, whereas
the results in the Earth atmosphere showed a different behavior, namely, the growth
rate becomes and remains stable for high frequencies. Finally, by comparing the
non–dimensional growth rates over the non–dimensional angular frequency at the
transition onset location, it was observed that the maximum of the growth rates in
the different atmospheres occurred at nearly the same non–dimensional angular fre-
quency. Only the non–dimensional growth rates differ, where the maximum growth
rates in the CO2 atmosphere and the Mars atmosphere showed similar values with
a slightly smaller value in the Mars atmosphere but the Earth atmosphere showed
a significantly smaller value compared to the other two atmospheres. To investigate
the downstream evolution of the disturbances, LST and LPSE calculations were per-
formed along the cone in the different atmospheres. Similar observations compared
to the observations of the LST at the transition onset location were made. Firstly,
the N–factor at the transition onset location shows similar values for the CO2 and the
Mars atmosphere for the same disturbance frequency of the most amplified distur-
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bance, where in this case the CO2 atmosphere showed slightly smaller values. This
is contrary to the values of the growth rate in the LST calculations at the transition
onset location and could be caused by small inaccuracies in the base–flow solutions.
Secondly, compared to the two other atmospheres, the N–factor of the result in the
Earth atmosphere is smaller in the LST and LPSE at a higher disturbance frequency
of the most amplified disturbance. Thus, with respect to the boundary–layer stability
results, two main conclusions can be formulated. Firstly, due to the similar results
in the CO2 atmosphere and the Mars atmosphere, the experimental investigations of
Hollis et al. [28], considering pure CO2, match the conditions in the Mars atmosphere
well. Secondly, the destabilizing effect of the CO2 atmosphere and the Mars atmo-
sphere compared to the Earth atmosphere by assuming gases in thermo–chemical
equilibrium was observed which corresponds to studies found in literature.

Lastly, an investigation on the influence of the free–stream conditions on the
boundary–layer stability was performed by calculating the same blunted cone ge-
ometry under the Shot 4 free–stream conditions of Hollis et al. [28] in the CO2

atmosphere. By comparing the LST result with result of the Shot 2 test case, it
was found that the maximum value of the disturbance growth rate at approximately
the experimentally measured transition onset location showed significantly greater
values for the second Mack mode at a higher disturbance frequency. Additionally,
in the LST calculations along the cone, a higher N–factor compared to the Shot 2
test case was determined at the transition onset location. The LPSE calculations
were not presented in this work because of the unsatisfactory results, respectively,
non–physically high N–factors, which likely arose due to the transition onset location
close to the nose of the computed geometry and possible small inaccuracies in the
flow field at the nose–cone junction. Overall, by comparing these results to the Shot
2 test case, the higher free–stream conditions, mainly the Reynolds number, resulted
in higher growth rates and a higher transition onset N–factor, in agreement with
observations made by other researchers for the Earth atmosphere.

With respect to the results presented in this work, further investigations can be
performed on the current test cases and additional influences can be considered in
further studies. Firstly, to validate the appearance of the unstable behavior of the
Mack mode up to high frequencies in the pure CO2 test case and the test case consid-
ering the Mars atmosphere, the calculations should be performed with an additional
boundary–layer stability solver. Secondly, the test cases in this work could be cal-
culated with a thermo–chemical non–equilibrium gas model to better represent the
thermo–chemical effects of the experimental results. Besides further investigations on
the actual test case, investigations on the influence parameters of the boundary–layer
transition, as outlined in the introduction, could be performed. These investigations
could consist of further calculations on the influence of the free–stream parameters, as
well as on the nose bluntness, the wall cooling and the angle of attack. Further, the in-
vestigations on different free–stream parameters should contain real flight conditions
that appear during re–entry maneuvers into the Mars atmosphere. Additionally, the
non–linear terms in the parabolized stability equations could be considered in further
studies to account for the non–linear effects in the boundary–layer transition.
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Appendix A

Inviscid Flux Jacobians

A.1 Perfect Gas

The inviscid flux Jacobians in the perfect gas case for the implicit terms of the LU-
SGS scheme are defined by

A,B,C = J−1


0 kx

kx
γ−1

2
|V |2 − uvk kx(2− γ)u+ vk

ky
γ−1

2
|V |2 − vvk kxv − ky(γ − 1)u

kz
γ−1

2
|V |2 − wvk kxw − kz(γ − 1)u(

2γ−1
2
|V |2 − γe

ρ

)
vk kx

(
γe
ρ
− γ−1

2
|V |2

)
− (γ − 1)uvk

ky kz 0
kyu− kx(γ − 1)v kzu− kx(γ − 1)w kx(γ − 1)
ky(2− γ)v + vk kzv − ky(γ − 1)w ky(γ − 1)
kyw − kz(γ − 1)v kz(2− γ)w + vk kz(γ − 1)

ky

(
γe
ρ
− γ−1

2
|V |2

)
− (γ − 1)vvk kz

(
γe
ρ
− γ−1

2
|V |2

)
− (γ − 1)wvk γvk

 ,
(A.1)

where |V |2 = u2 + v2 + w2, vk = kxu + kyv + kzw and k = ξ, ζ, η depending on the
respective flux [101].

A.2 Thermo-Chemical Equilibrium

In case of calculations in thermo–chemical equilibrium, the inviscid flux Jacobians
for the implicit terms of the LU-SGS scheme read
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A,B,C = J−1
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, (A.2)

where |V |2 = u2 + v2 + w2, vk = kxu + kyv + kzw and k = ξ, ζ, η depending on the
respective flux [60].



Appendix B

Transformation Matrices between
the Conservative and the Primitive
State Vector

B.1 Perfect Gas

In case of a perfect gas, the matrix describing the derivative of the primitive variables
with respect to the conservative variables is given by

M−1 =
∂q

∂Q


1 0 0 0 0
−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0
γ−1

2
|V |2 −(γ − 1)u −(γ − 1)v −(γ − 1)w γ − 1

 (B.1)

[44].

B.2 Thermo-Chemical Equilibrium

In case of calculations considering a thermo–chemical equilibrium gas model the
matrix is given by

M−1 =
∂q

∂Q


1 0 0 0 0
−u
ρ

1
ρ

0 0 0

−v
ρ

0 1
ρ

0 0

−w
ρ

0 0 1
ρ

0
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(|V |2 −Ht) −∂p/∂ε
ρ
u −∂p/∂ε

ρ
v −∂p/∂ε

ρ
w ∂p/∂ε

ρ

 (B.2)

[60]. In both cases |V |2 = u2 + v2 + w2.
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