
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation for
Pixel-wise Regression

Anton Baumann, Thomas Roßberg, Michael Schmitt
University of the Bundeswehr Munich

Neubiberg, Germany
{anton.baumann, thomas.rossberg, michael.schmitt}@unibw.de

Abstract

Uncertainty estimation in machine learning is
paramount for enhancing the reliability and inter-
pretability of predictive models, especially in high-stakes
real-world scenarios. Despite the availability of numerous
methods, they often pose a trade-off between the quality
of uncertainty estimation and computational efficiency.
Addressing this challenge, we present an adaptation of
the Multiple-Input Multiple-Output (MIMO) framework –
an approach exploiting the overparameterization of deep
neural networks – for pixel-wise regression tasks. Our
MIMO variant expands the applicability of the approach
from simple image classification to broader computer
vision domains. For that purpose, we adapted the U-Net
architecture to train multiple subnetworks within a single
model, harnessing the overparameterization in deep neural
networks. Additionally, we introduce a novel procedure for
synchronizing subnetwork performance within the MIMO
framework. Our comprehensive evaluations of the resulting
MIMO U-Net on two orthogonal datasets demonstrate
comparable accuracy to existing models, superior cali-
bration on in-distribution data, robust out-of-distribution
detection capabilities, and considerable improvements
in parameter size and inference time. Code available at
github.com/antonbaumann/MIMO-Unet.

1. Introduction

Uncertainty estimation plays a crucial role in machine

learning applications, enhancing the reliability and inter-

pretability of predictive models. When deploying machine

learning models in real-world scenarios, it is essential to be

aware of the trustworthiness of their predictions in different

contexts. Not only does uncertainty estimation give an in-

dication of the model’s confidence, but it also helps in the

evaluation of the possible risks associated with the model’s

output.

A variety of methods have been proposed to address

the challenge of uncertainty estimation in deep learning

models. Among them are Monte Carlo dropout [5, 10],

stochastic gradient Langevin dynamics [25], Deep Ensem-

bles [13, 3], and Evidential Regression [1]. Each of these

methods presents a delicate trade-off between the quality of

uncertainty estimation and the computational costs or infer-

ence time associated with it.

The Multiple-Input Multiple-Output (MIMO) frame-

work [8], a new methodology exploiting the over-

parametrization of deep neural networks [16], exhibits con-

siderable potential. This approach trains multiple subnet-

works within a single network, thus permitting the explo-

ration of numerous disconnected modes in weight space

without necessitating an increase in parameters or causing

inference delay [3, 8]. By countering the main challenges

associated with traditional ensemble models, the MIMO

framework signifies a notable development towards enhanc-

ing the efficiency and robustness of uncertainty estimation

methods.

Key contributions: The application of the MIMO

framework until now has been limited to image classifica-

tion. A significant gap exists in the application of MIMO

for pixel-wise regression tasks common in Computer Vision

and Earth Observation. In this paper, we adapt the MIMO

approach for these tasks, thereby extending its benefits to a

broader range of applications.

Additionally, we introduce a novel procedure for syn-

chronizing subnetwork performance within the MIMO

framework. This procedure is designed to ensure optimal

functionality of the overall network by preventing individ-

ual subnetworks from either underperforming or overpow-

ering the ensemble.

Finally, we undertake a comprehensive evaluation of our

MIMO variant’s ability to estimate epistemic uncertainty on

regression tasks in both computer vision and earth observa-

tion domains. The performance of our MIMO model is con-

trasted with that of state-of-the-art neural network uncer-

tainty estimation techniques. Through these comparisons,
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we aim to validate the efficacy and utility of MIMO U-Net

for uncertainty estimation in machine learning.

2. Related Work
Two main types of uncertainties often considered in

predictions are aleatoric uncertainty and epistemic uncer-
tainty. The former, arising from data randomness, is irre-

ducible, while the latter, resulting from knowledge gaps,

can diminish with more data or enhanced models [6].

Aleatoric uncertainty is often addressed with Maximum a

Posteriori (MAP) estimation [18], while epistemic uncer-

tainty is managed by employing a probability distribution

over model weights.

However, obtaining the full posterior distribution over

the parameters is computationally intractable [6]. To ap-

proximate this distribution, several techniques have been in-

troduced:

Monte Carlo Dropout (MC Dropout) [5, 10] is a

technique that approximates the posterior distribution over

model weights in Bayesian Neural Networks. It repurposes

dropout regularization [24], commonly employed to prevent

overfitting during model training, as a tool for uncertainty

estimation.

In the conventional use case, dropout is only imple-

mented during the training phase. However, MC Dropout

deviates from this approach by applying dropout in the test-

ing or inference phase as well. This results in a multitude of

”sub-models”, each with a different dropout configuration,

drawn from the approximate posterior.

It’s noteworthy that MC Dropout inherently provides an

approximation focused around a single mode of the dis-

tribution, capturing the peak uncertainty around the most

probable model weights [3]. Additionally, despite the need

for multiple forward passes during inference, leading to

slower prediction times, it is computationally efficient dur-

ing training as only a single model needs to be trained.

Deep Ensembles [13] is another strategy for epistemic

uncertainty estimation, leveraging multiple neural networks

with varying weight initializations. This method effectively

creates a diversified ensemble of independent deep mod-

els. Different initial weights, along with the randomness

of stochastic gradient descent, facilitate slightly different

input-output mappings for each model.

Each ensemble model offers unique predictions for a

given input, collectively approximating the predictive pos-

terior distribution. Deep Ensembles, unlike single-model

approaches like MC Dropout, can explore multiple distribu-

tion modes [3], providing a holistic uncertainty representa-

tion. However, this approach can be computationally costly

both in terms of the increased number of parameters, due to

multiple models, and inference delay caused by the need to

generate and aggregate predictions from all models in the

ensemble.

While ensembles have proven significantly effective, im-

provements to their performance are directed towards re-

ducing computational time and the number of necessary pa-

rameters. Innovations such as Batch Ensemble [26] and

Bayesian Neural Networks with Rank-1 Factors [2] have

optimized ensemble methods by sharing parameters across

members, significantly cutting memory demands. Nonethe-

less, the continued need for multiple forward passes leaves

room for further optimization.

Evidential Regression, as proposed by Amini et al. [1],

employs non-Bayesian neural networks to deliver estima-

tions for both a target and its associated evidence, enabling

the quantification of aleatoric and epistemic uncertainties.

This is accomplished by setting evidential priors over the

Gaussian likelihood function and instructing the network to

infer the hyperparameters of the evidential distribution. As

such, it offers a robust and efficient approach to uncertainty

representation without the requirement for sampling at

inference or training on out-of-distribution examples. One

of the key advantages of Evidential Regression is its com-

putational efficiency, as it necessitates training only a single

model and performing a single forward pass at inference.

However, it is crucial to note that this method offers only

a heuristic approximation of epistemic uncertainty, as

pointed out by Meinert et al. [15]. Moreover, the method

requires careful tuning of the regularization coefficient to

ensure well-calibrated estimations [1].

A key insight drawn from past research indicates that

a significant proportion of network parameters, specifi-

cally 70-80%, can be pruned without significant impact

on prediction performance [16]. This finding suggests

the possibility of latent capacity within networks that

can be harnessed to train multiple subnetworks within a

single network, a concept embodied in the Multiple-Input

Multiple-Output (MIMO) method, recently introduced by

Havasi et al. [8].

The MIMO framework [8] leverages the over-

parameterization inherent to deep neural networks [4, 16].

These studies suggest that many neural network connec-

tions can be pruned without significant performance loss,

indicating the possibility of multiple independent subnet-

works within a single network. MIMO extends this concept

by allowing these subnetworks, known as ”winning tick-

ets”, to be trained concurrently without explicit separation

[8]. This approach allows all subnetworks to be evaluated

concurrently in a single forward pass during testing. This

not only delivers the multi-mode exploration benefits typ-

ically offered by ensemble methods [8], but also provides

the efficiency advantage of a single forward pass.

In the optimization process, MIMO employs stochas-

tic gradient descent. During each training step, a subset

{(xi, yi)}i∈B of |B| samples is drawn and randomly per-
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muted by a permutation π(i) for each of the m sub-models,

ensuring the independence of model inputs. It is important

to note that these permutations are different for each train-

ing step.{
(xπ(1)(i), yπ(1)(i)), . . . , (xπ(m)(i), yπ(m)(i))

}
i∈B

(1)

At the input layer, the m inputs x1:m :=
xπ(1)(i), . . . ,xπ(m)(i) are concatenated, and

the network returns m predictive distributions

p(y1|x1:m,θ), . . . , p(ym|x1:m,θ) accordingly.

The network is trained similarly to traditional neural net-

works, with the loss function being the average of the neg-

ative log-likelihoods of the predictions and a regularization

term [14].

L(θ) = 1

m

[
m∑
i=1

− log p(yi|x1:m,θ)

]
+Rλ(θ) (2)

During evaluation, the unseen input x∗ is repeated m times,

s.t. x∗
1:m = x∗, . . . ,x∗, which independently approxi-

mates the predictive distribution

p(y∗i |x∗, . . . ,x∗,θ) ≈ p(y∗,x∗,θ), i = 1, . . . ,m.

The approximation of the predictive posterior distribution

aligns with the methodologies utilized in MC Dropout [5]

and Ensembles [13]:

p(y∗|x∗,x1:n, y1:n) ≈ 1

m

m∑
i=1

p(y∗i ,x
∗,θ) (3)

Input repetition The MIMO framework trains subnetworks

using independent examples to prevent feature sharing.

This works well with networks of ample capacity, but less

so when capacity is limited. To address this, Havasi et

al. [8] propose relaxing the independence between inputs.

Rather than independently sampling x1, . . . ,xm from the

training set, they may share the same value with a certain

probability ρ. Specifically, x1 is sampled from the training

set, and x2, . . . ,xm is set to be equal to x1 with probability

ρ or independently sampled with probability 1 − ρ. This

introduces a correlation in their joint distribution without

affecting their marginal distributions.

3. Adapting the MIMO Framework for Pixel-
wise Regression

In this study, we combine the Multiple-Input-Multiple-

Output (MIMO) paradigm [8] with the U-Net [20] archi-

tecture, resulting in a novel approach for uncertainty-aware

pixel-wise regression tasks. This fusion capitalizes on the

innate capability of the U-Net architecture for image trans-

lation tasks, enriched with the inherent strengths of the

MIMO framework in exploiting the over-parameterization

of deep neural networks.

3.1. MIMO U-Net

Our MIMO U-Net model (Fig. 1) comprises multiple

distinct subnetworks, with each embodying an individual

encoder-decoder pair (E(i),D(i)) that is bridged by skip

connections, a characteristic attribute of the U-Net archi-

tecture. The reasoning behind this design choice hinges

on managing the potential overshadowing influence of skip

connections. While skip connections are fundamental to the

U-Net architecture, enabling low-level details to bypass the

bottleneck and re-emerge in the decoder, they can inadver-

tently overpower the outcomes of other subnetworks. By

implementing individual encoder-decoder pairs, we are able

to prevent the overpowering influence of the skip connec-

tions from dominating the outcomes of the other subnet-

works. This design decision helps us to maintain the auton-

omy of each subnetwork, which in turn promotes the cre-

ation of varied and distinct mappings from the input to the

output images.

Figure 1. MIMO U-Net architecture with three submodels. Dashed

lines indicate skip-connections

An essential note on the modifications introduced in our

architecture relates to the initial and final layer of the tra-

ditional U-Net. In our MIMO U-Net model, the original

first layer of the U-Net is replaced by the encoders of the

subnetworks. Simultaneously, a similar restructuring oc-

curs at the other end of the architecture, where the original

U-Net’s final layer is replaced by the decoders of the sub-

networks. Despite this restructuring, we take care to ensure

that the combined encoders and decoders of all subnetworks

retain the same number of parameters as the first and last

layers of the original U-Net. By doing so, we uphold the

structural efficiency and computational economy of the U-

Net architecture, all while instilling our model with the di-

versified, ensemble-like functionality that characterizes the

MIMO framework.

In the first phase, each subnetwork processes the input

image independently through its respective encoder, gener-

ating unique feature representations.

E(i)(xi,θ) = hi for i = 1, . . . ,m (4)

These representations are subsequently stacked and intro-

duced to the core component of the U-Net architecture. This
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U-Net core C, which maintains its own set of weights and

parameters, generates a unified feature representation that

is a confluence of the diverse learned features from all sub-

networks.

C(stack(h1, . . . , hm),θ) = g (5)

The second phase involves the relay of this unified feature

representation to each of the subnetworks’ decoders. Each

decoder, in turn, upscales the unified feature representations

from the U-Net core and reconstructs the output image.

D(i)(g,θ) =

[
f1(xi,θ)
f2(xi,θ)

]
for i = 1, . . . ,m (6)

This design ensures that each subnetwork decoder receives

the unified feature representation from the core. The dis-

tinct processing pathways that each subnetwork’s encoder-

decoder pair creates results in an array of diverse predic-

tions. This ensemble-like behavior of the MIMO U-Net

framework encapsulates model uncertainty and provides a

broader spectrum of plausible pixel-wise regression maps

for a given input.

3.2. Training Criterion for Regression

In regression problems, neural networks typically gener-

ate a single output, referred to as μ(x,θ) and the parameters

are optimized by minimizing the mean squared error (MSE)

on the training set. However, this modelling choice does not

allow us to capture predictive uncertainty. Following [18],

we assume yi,j |xi,θ to be Laplace distributed (i specifying

the subnetwork and j the pixel index) and utilize the two

outputs per submodule f1 and f2 to predict the distribution

parameters:

μ̂i := μ(xi,θ) := f1(xi,θ) (7)

b̂i := b(xi,θ) := exp(f2(xi,θ)) (8)

We opted for the Laplace distribution over the Gaussian

likelihood because it typically outperforms L2 loss in vi-

sion [10] and provides improved differentiation of uncer-

tainty for out-of-distribution data, as documented in [17].

With this, our model can be trained by optimizing

L(θ) = 1

m

m∑
i=1

⎡
⎣1

d

d∑
j=1

log b̂i,j +
|yi,j − μ̂i,j |

b̂i,j

⎤
⎦+Rλ(θ)

(9)

with the number of pixels d.

3.3. Aleatoric and Epistemic Variance

Using the predictions μ̂i and b̂i as described in (8), we

can estimate the mean of our predictive posterior as follows:

μ̄(x∗) := E[y∗|x∗,x1:n,y1:n] ≈ 1

m

m∑
i=1

μ̂i (10)

Furthermore, by equating σ̂2
i,j = 2b̂

2

i,j [11], we can esti-

mate the aleatoric variance and epistemic variance in our

predictions [10]:

Var [y∗|x∗,x1:n,y1:n]

=
1

m

m∑
i=1

σ̂2
i︸ ︷︷ ︸

aleatoric uncertainty

+
1

m− 1

m∑
i=1

[μ̂i − μ̄(x∗)]

︸ ︷︷ ︸
epistemic uncertainty

(11)

3.4. Submodel Synchronization

A key aspect of training multiple subnetworks within a

single network, as in the MIMO framework, is the inherent

diversity in learning trajectories across subnetworks. This

diversity, influenced by differences in initialization and gra-

dient updates, often leads to subnetworks learning at varied

rates. The manifestation of this phenomenon is clear in Fig-

ure 2, where loss trajectories with and without subnetwork

synchronization are depicted. In the absence of synchro-

nization, the progression of learning rates is distinctly un-

even. Recognizing this variability as an opportunity for im-

Figure 2. The negative log-likelihood of the test set for each epoch.

The learning of individual subnetworks is uneven without subnet-

work synchronization.

provement, we introduce a synchronization mechanism that

harmonizes the learning across subnetworks. This mech-

anism monitors the losses of the last k training steps for

each subnetwork and assigns weights to the current loss,

thereby facilitating synchronization in training progress.

The weight for each of the m submodels, denoted as wi,

is determined by:

wi =
m exp (l̄i/τ)∑m
j=1 exp (

l̄j/τ)
(12)

In this formulation, l̄i denotes the mean losses of the last

k steps for submodel i, while τ regulates the weight concen-

tration through a temperature parameter. Multiplying the

softmax result by m maintains the overall learning rate.

4. Experiments
We present our experiments applying pixelwise regres-

sion to two orthogonal tasks: monocular depth estimation,
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representing high-resolution, horizontally captured photos

in computer vision, and NDVI score prediction in earth ob-

servation, using overhead Synthetic Aperture Radar (SAR)

data with radar backscatter measurements. The datasets

used for these tasks are NYU Depth v2 [22] and SEN12TP

[21], respectively. The orthogonality of these tasks lies in

their distinct nature and operational environments. Monoc-

ular depth estimation involves processing traditional, high-

resolution photography, while NDVI score prediction deals

with SAR data, exhibiting vastly different data characteris-

tics and challenges.

We test the scalability and versatility of MIMO U-Net

against commonly used methods like Deep Ensembles [13],

MC Dropout [5], and Deep Evidential Regression [1] un-

der various sample frequencies m. Performance on unseen

data, both in-distribution and out-of-distribution, is evalu-

ated based on accuracy and predictive uncertainty. Metrics

reported include MAE, RMSE, NLL, ECE [12], number of

parameters, and inference speed.

4.1. Monocular Depth Estimation

Figure 3. Calibration plots [12] for various adversarial perturba-

tions intensities ε using the Fast Gradient Sign Method. MIMO

has best calibration on unperturbed data. Bottom right: Precision-

recall plot for different methods on unperturbed data

In our initial experiments, we used MIMO U-Net for pix-

elwise regression on the NYU Depth v2 dataset for depth

estimation. This dataset by Silberman et al. [22] includes

27k+ RGB image samples from various indoor scenes with

associated depth maps (160, 128). Dataset details and pre-

processing can be found in [1]. The ApolloScape dataset [9]

was used to assess our model’s out-of-distribution detec-

tion.

In training, the MIMO U-Net had 42 base channels, split

across two subnetworks. A single subnetwork with 0.1

dropout probability mirrored the U-Net architecture for spa-

tial dropout. For the ensemble setup, five unique U-Net

models were used, all trained without dropout. For Eviden-

tial Regression, we utilized the PyTorch [19] implementa-

tion of the loss function from [23]. All models were trained

over 100 epochs, utilizing the Adam optimizer with a learn-

ing rate of 1e−4 and a decay policy in place. The learning

rate decay was characterized by a gamma value of 0.5 and

a step size of 20. For computing predictions and uncer-

tainty estimations, we used Eq. 10 and Eq. 11 respectively.

The subnetworks were synchronized by tracking the k = 10
most recent loss values and setting the temperature τ = 0.3.

A comparative review of the metrics reveals that the

MIMO U-Net model, without input repetition, achieves re-

sults comparable to the MC Dropout model in terms of both

MAE and RMSE. Furthermore, the MIMO U-Net model

exhibits a better NLL than the dropout model and nearly

perfect calibration, as indicated by the ECE score and the

calibration plot in Fig. 3.

A crucial advantage of the MIMO U-Net over the MC

Dropout and Ensemble method is the inference speed. Due

to the structure of MIMO U-Net, it requires only a single

forward pass to generate predictions, significantly enhanc-

ing computational efficiency while maintaining an equal

number of parameters to the MC Dropout model.

The results of this experimental setup are summarized in

Tab. 1 and Fig. 3.

model m #Params Inf. Speed ↓ MAE ↓ RMSE ↓ NLL ↓ ECE

MIMO U-Net 2 7.38 M 4 ms 0.020 0.041 -3.386 0.008

MC Dropout 5 7.44 M 14 ms 0.020 0.038 -3.133 0.047

MC Dropout 10 7.44 M 27 ms 0.019 0.037 -3.134 0.078

Ensembles 5 37.20 M 14 ms 0.012 0.031 -4.040 0.030

Evidential 1 7.44 M 4 ms 0.019 0.037 -3.165 0.047

Table 1. NYU Depth v2 dataset results: m denotes submodule

count for MIMO or sample count for Dropout, Ensembles.

Submodel Synchronization The effectiveness of sub-

model synchronization was evaluated by performing an ab-

lation study on the synchronization parameters, specifically

the temperature (τ ) and the number of steps (k). Optimal

performance was identified at τ = 0.3 and k = 10. Ta-

ble 2 clearly illustrates the substantial improvements in all

metrics when the synchronization process is utilized.

dataset sync. ↓ MAE ↓ RMSE ↓ NLL ↓ ECE

NYUv2 no 0.026 0.047 -3.021 0.029

NYUv2 yes 0.020 0.041 -3.386 0.008

Table 2. Results on NYU Depth v2 dataset with and without sub-

model synchronization.
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Assessment of Out-of-Distribution Testing A robust

machine learning model must discern out-of-distribution

(OOD) test data, deviating from training instances—a key

facet of model uncertainty. This study evaluates the MIMO

U-Net model’s capacity to amplify predictive uncertainty

upon encountering OOD data.

Our experimentation was carried out using two distinct

datasets. The first, the NYU Depth v2 test set [22], serves as

an in-distribution (ID) data representative, consisting of in-

stances the model should be familiar with, as it was trained

on data from the same distribution. The second dataset, the

ApolloScape dataset [9], containing a diverse range of com-

plex and realistic driving scenarios, was chosen for its con-

trasting properties to the ID data and represents the OOD

data.

Given the contrast between the two datasets, we expected

the model to demonstrate a higher degree of uncertainty

when encountering the OOD data. Our hypothesis was cor-

roborated by the following empirical results. A notable in-

crease (comparable to the behavior of the ensemble) in the

level of uncertainty can be observed when the model is ex-

posed to the OOD data. Particularly, as depicted in Fig. 5,

Evidential Regression exhibits only modest differentiation

between ID and OOD. This observation aligns with the dis-

coveries detailed in [17]. Fig. 4, which represents entropy

distributions of the total model uncertainty, illustrates this

shift in uncertainty between ID and OOD data.

Figure 4. Distribution of combined entropy: All methods estimate

low uncertainty (entropy) on in-distribution (ID) data and inflate

uncertainty on out-of-distribution (OOD) data.

Robustness to Adversarial Samples Here, we focussed

on Out-Of-Distribution detection when inputs are adver-

sarially perturbed using the Fast Gradient Sign Method

(FGSM) [7]. As shown in Fig. 7, increasing adversarial per-

turbation parameter ε shifts the MIMO U-Net’s epistemic

entropy distribution and amplifies MIMO’s prediction error

(0.01, 0.08, 0.11 for ε = 0, 0.02, 0.04), correlating with ris-

ing uncertainty. Here, the predictive epistemic uncertainty

rises with the increase in noise, while maintaining a strong

correlation with the error in terms of the spatial distribution

within the image. Evidential Regression’s increasing MAE

(0.02, 0.07, 0.09) shows no marked shift in predictive un-

certainties.

Effect of Input Repetition on Epistemic Uncertainty
As we increase the input repetition probability ρ, the MIMO

U-Net’s performance in terms of MAE, RMSE, and NLL

gradually approaches the performance of the ensemble

(cf. Tab. 3). However, it’s important to note that as ρ in-

creases, the variance in the model’s predictions decreases,

which results in the underestimation of the model’s epis-

temic uncertainty (cf. Fig. 5). This suggests that higher

probabilities of input repetition are likely to degrade the cal-

ibration on OOD data.

Despite this, as visualized in Fig. 6, the MIMO approach

still manifests significant epistemic uncertainties at identi-

cal positions to the ensemble method. Intriguingly, when

subjected to high input repetitions, the resultant epistemic

uncertainty remains semantically sensible, hinting at the

possibility of calibrating epistemic uncertainties for future

research.

Figure 5. Epistemic entropy distribution: Input repetition probabil-

ity increase leads to a decrease in subnetworks prediction diversity.

Figure 6. Epistemic Uncertainty estimation semantically aligns

with ensemble and dropout estimations

model ρ m ↓ MAE ↓ RMSE ↓ NLL ↓ ECE

MIMO U-Net 0.0 2 0.020 0.041 -3.386 0.008

MIMO U-Net 0.1 2 0.018 0.040 -3.542 0.009

MIMO U-Net 0.3 2 0.017 0.038 -3.593 0.056

MIMO U-Net 0.5 2 0.015 0.036 -3.696 0.044

MIMO U-Net 0.7 2 0.014 0.034 -3.805 0.047

Table 3. Results on NYU Depth v2 dataset: ρ denotes the input

repetition probability and m the submodel count.
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Figure 7. Left: Entropy distributions for methods against rising adversarial perturbations ε. Right: MIMO U-Net’s test prediction with

increasing ε. MIMO shows resilience to adversarial noise, with its uncertainty estimates mirroring prediction error. Significant epistemic

entropy shifts occur in MIMO and Ensemble under amplified perturbation.

4.2. NDVI Estimation from Radar Backscatter

In earth observation, the normalized difference vegeta-

tion index (NDVI) is commonly used for vegetation moni-

toring. It is calculated from red (R) and infrared (IR) spec-

tral bands of optical data using NDV I = (IR−R)
(IR+R) and rep-

resents vegetation health as a scalar value in [−1, 1]. As

the NDVI relies on optical data, clouds pose a problem

because they obstruct the view of the earth’s surface from

space. One solution to the problem of cloud coverage is to

use synthetic aperture radar (SAR) data, which can pene-

trate clouds. However, the vastly different data character-

istics require a complex, nonlinear transformation of SAR

backscatter into NDVI values.

To translate SAR images to NDVI images, we use the

SEN12TP dataset [21] and perform a pixelwise regression

of the two channels of the SAR data (resulting from receiv-

ing the backscattered signal at two different polarizations)

to the NDVI values derived from an optical sensor. Train-

ing our models, we followed earlier configurations (4.1),

but limited the training period to 40 epochs and employed a

MIMO U-Net model with 60 base channels.

Figure 8. Left: Precision-recall plot for different methods on un-

seen test data. Right: Calibration plot: all method show almost

perfect calibration

In our assessment of MIMO U-Net, MC Dropout, En-

sembles, and Evidential Regression for the outlined task,

the MIMO U-Net model emerged as notably effective in its

performance. The MAE, RMSE, and NLL of each method

were similar, with MIMO U-Net outperforming in terms of

inference speed and presenting the lowest Expected Cali-

bration Error (ECE) for 2 and 4 subnetworks. Notably, in

relation to inference speed and parameter count, these find-

ings are consistent with those obtained from the NYU Depth

v2 dataset (see Tab. 1).

model m ↓ #Params Inf. Speed ↓ MAE ↓ RMSE ↓ NLL ↓ ECE

MIMO U-Net 2 15.06 M 11 ms 0.121 0.179 -1.236 0.030

MIMO U-Net 3 15.04 M 12 ms 0.124 0.181 -1.202 0.110

MIMO U-Net 4 15.03 M 15 ms 0.129 0.186 -1.147 0.023

MC Dropout 2 15.19 M 20 ms 0.124 0.180 -1.199 0.075

MC Dropout 10 15.19 M 65 ms 0.122 0.177 -1.219 0.067

MC Dropout 30 15.19 M 171 ms 0.122 0.178 -1.216 0.051

Ensembles 2 30.38 M 20 ms 0.122 0.179 -1.220 0.153

Ensembles 5 75.88 M 41 ms 0.120 0.175 -1.248 0.175

Evidential 1 15.19 M 11 ms 0.132 0.187 -1.102 0.352

Table 4. Results on SEN12TP dataset

Our trained model highlights various influences on error

and uncertainty. Of particular note, water surfaces gener-

ate an aleatoric variance of 0.103 , which substantially sur-

passes the 0.036 from non-water surfaces (Tab. 5). This

discrepancy originates from the electromagnetic spectrum

properties unique to SAR sensors: their emitted radar sig-

nals, incapable of water penetration, are reflected at the sur-

face, thereby excluding under-water features from the cap-

tured data. Conversely, visible light, used by optical sen-

sors, can penetrate water to some extent, allowing data ac-

quisition from the topmost water layers. Therefore, the

model’s inability to learn an accurate mapping between

4504



error aleatoric var epistemic var combined var

water 0.272 0.103 0.0034 0.106
non water 0.117 0.036 0.0024 0.038

Table 5. Comparison of error and uncertainty for different water

and non-water land cover surfaces.

SAR inputs and outputs results in heightened aleatoric un-

certainty for aquatic regions, as exemplified by the river

in Fig. 9.

Figure 9. Results for one area with a river contained in the top-left

corner. For the water surface, a high aleatoric uncertainty can be

seen, whereas the epistemic uncertainty is fairly homogeneous.

SAR imagery can occasionally exhibit artifacts resulting

from radio frequency interferences. These interferences oc-

cur when the SAR sensor picks up signals from other trans-

mitters operating within the same frequency band. An ex-

emplar case was observed in SAR data acquired over Dubai

(United Arab Emirates) on 8th July 2019, which showed

significant corruption due to these interferences. Upon ap-

plying our model to this affected data, we noticed an ele-

vated epistemic uncertainty across all regions presenting ar-

tifacts. This pronounced increase in epistemic uncertainty

across artifact-affected regions underscores the model’s

practical utility in detecting out-of-distribution data, as de-

picted in Fig. 10.

Figure 10. Radio wave interferences result in artifacts in the SAR

image (bright yellow-greenish squares). This results in a high error

and epistemic uncertainty of the model prediction.

Clouds in the optical images result in errors in our

use case because the vegetation on the ground is oc-

cluded. When the model prediction is compared to cloud-

contaminated optical imagery, a high error between pre-

dicted and optical NDVI occurs. The model still predicts

a low uncertainty for these areas because clouds do not

change what information is acquired by the SAR sensor.

This is apparent in Fig. 11.

Finally, to investigate the behavior of our model with

respect to unseen landcover classes, we conducted an ad-

ditional experiment where we masked all surfaces except

for water, herbaceous wetland, and ice during training.

Figure 11. Image area where the optical data is cloud-

contaminated, resulting in misleading NDVI values. This results

in a high error between optical and predicted NDVI, even though

the model predicts a low uncertainty.

Figure 12. Significantly higher epistemic uncertainty on landcover

classes that were excluded during training. Only pixels from the

first three classes (water, wetland, ice) were included.

Upon evaluation and comparison with the model trained

on the complete SEN12TP dataset, we observed a pro-

nounced increase in epistemic variance in the masked land-

cover classes for the landcover-masked model. The diver-

gence in aleatoric variance between both models was less

significant, as depicted in Fig. 12.

5. Summary & Conclusion

In this study, we successfully expanded the scope of the

MIMO approach by adapting it for pixel-wise regression

tasks, thereby broadening its relevance in the computer vi-

sion domain. A novel submodel synchronization procedure

was introduced as a key contribution, optimized to maintain

the balance within the overarching network by mitigating

the possibility of any individual subnetwork underperform-

ing or overpowering the ensemble. We validated this ap-

proach with exhaustive evaluations on the MIMO U-Net us-

ing two orthogonal datasets from computer vision and earth

observation fields. Our empirical results revealed compa-

rable accuracy to established models, exceptional calibra-

tion on in-distribution data, and convincing demonstration

of its robust out-of-distribution detection capabilities, all

while exhibiting significant improvements in parameter size

and inference time. Therefore, this study paves the way

for the implementation of MIMO in the broader computer

vision realm, exhibiting potential for resource-optimized,

high-accuracy tasks while maintaining a desirable trade-off

between performance and computational load.
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