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ABSTRACT

Soil erosion and sediment transport are quite complex processes as they depend on physical, bio-

logical, mechanical, and chemical processes within a particular catchment. Di�erent soil erosion

and sediment transport models have been developed while taking into account site-speci�c con-

ditions. In Ethiopia, there is no commonly adopted soil erosion and sediment transport model.

This may be because of limited land use management and hydro-climatic data. Therefore, it

is highly essential to better explain engaged physical processes and means of accounting for

site-speci�c conditions, for soil loss and sediment yield estimation.

The objective of this Ph.D. dissertation is to propose regional equations of sediment yield estima-

tion. The speci�c tasks of this study include data preparation, review, and analysis; regionalizing

and improving the MUSLE; deriving a soil loss equation for sediment yield estimation; improving

the accuracy of a model, checking the performance of the original SWAT+ model; modifying the

SWAT+ model for sediment yield estimation, and proposing a method for deriving and solving

an accurate sediment rating equation.

The main reason behind regionalizing the MUSLE was the e�ect of the topographic factor of the

MUSLE on soil erosion and sediment yield is not clear. Except for the coe�cient, soil erodibility,

cover, and conservation practice factors of the MUSLE, an individual e�ect of the exponent and

topographic factor of the MUSLE on soil erosion and sediment yield can be seen by applying

the model at di�erent watersheds. Therefore, to regionalize the MUSLE we estimate the best

exponent and topographic factor of the MUSLE under the hydro-climatic conditions of Ethiopia.

For the sake of the evaluation procedure, the main factors of the MUSLE that directly a�ect the

soil erosion process, such as the cover, conservation practice, soil erodibility, and topographic

factors, are estimated based on past experiences from the literature and comparative approaches,

whereas the parameters that do not directly a�ect the erosion process or that have no direct

physical meaning (i.e., coe�cient a and exponent b) are estimated through calibration. The

main reason behind improving the MUSLE was our need to change the input data requirement

of the MUSLE for the calculation of its runo� factor for possible application in data-scarce

areas. Basically, the MUSLE was developed for a small agricultural watershed, where the extent

of erosion is from sheet to rill erosion, but we cannot exactly tell whether it considers gully

erosion or not. The underlying physical assumption to improve the MUSLE is that the amount

of potential energy of runo� is proportional to the shear stress for sediment transport from a

slope �eld and the kinetic energy of the runo� at the bottom of the slope �eld for gully formation.

As the MUSLE or improved MUSLE does not consider sediment deposition, deriving Soil Loss

Equations for Sediment Yield Estimation based on the improved MUSLE becomes important

to explain sediment transport and deposition processes. To derive the Soil Loss Equations for

Sediment Yield Estimation, we mainly considered physical concepts such as shear force, energy,

and work done. To modify the SWAT+ model for sediment yield estimation, we replace the best

exponent and the best equation of the topographic factor of the MUSLE in the source code, and

also we replace the improved MUSLE or the �rst revised version of the Soil Loss Equation for

Sediment Yield Estimation in place of the MUSLE in the source code.

The Soil Loss Equation for Sediment Yield Estimation and its revised versions showed the
best performance over the regionalized MUSLE or improved MUSLE. All types of the modi�ed
SWAT+ models showed better performance than the original SWAT+ model. This dissertation
also presents an iterative approach for deriving and solving an accurate sediment rating equation.

Keywords: USLE, RUSLE, MUSLE, SWAT+ model, potential energy, kinetic energy, work done, shear

force, regression equation, sediment rating curve, Ethiopia
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Kurzfassung

Bodenerosion und Sedimenttransport sind recht komplexe Prozesse, da sie von physikalis-
chen, biologischen, mechanischen und chemischen Vorgängen in einem bestimmten Einzugs-
gebiet abhängen. Es wurden verschiedene Modelle für die Bodenerosion und den Sedi-
menttransport entwickelt, die die standortspezi�schen Bedingungen berücksichtigen. In
Äthiopien gibt es kein allgemein angewandtes Bodenerosions- und Sedimenttransport-
modell. Der Grund dafür könnte in der begrenzten Landnutzung und dem geringen
Umfang hydroklimatischer Daten liegen. Daher ist es äuÿerst wichtig, die beteiligten
physikalischen Prozesse besser zu erklären und Mittel zur Berücksichtigung standort-
spezi�scher Bedingungen für die Abschätzung von Bodenverlust und Sedimentabtrag zu
�nden.

Ziel dieser Dissertation ist es, regionale Gleichungen für die Abschätzung des Sedimentab-
trags vorzuschlagen. Zu den spezi�schen Aufgaben dieser Studie gehören die Vorbere-
itung, Überprüfung und Analyse von Daten, die Regionalisierung und Verbesserung von
MUSLE, die Ableitung einer Gleichung für den Bodenverlust zur Schätzung der Sediment-
menge, die Verbesserung der Genauigkeit eines Modells, die Überprüfung der Leistung des
ursprünglichen SWAT+-Modells, die Modi�zierung des SWAT+-Modells zur Schätzung
der Sedimentmenge und der Vorschlag einer Methode zur Ableitung und Lösung einer
genauen Gleichung zur Sedimentbewertung.

Der Hauptgrund für die Regionalisierung des MUSLE-Modells war, dass die Auswirkung
des topogra�schen Faktors des MUSLE-Modells auf die Bodenerosion und den Sed-
imentabtrag nicht eindeutig ist. Abgesehen von den Koe�zienten der Bodenerodier-
barkeit, Bedeckung und Erhaltungsmaÿnahmen des MUSLE-Modells lässt sich bei An-
wendung des Modells in verschiedenen Wassereinzugsgebieten eine individuelle Wirkung
des Exponenten und des topogra�schen Faktors des MUSLE-Modells auf die Boden-
erosion und den Sedimentabtrag feststellen. Zur Regionalisierung des MUSLE-Modells
schätzen wir daher den besten Exponenten und topographischen Faktor des MUSLE-
Modells unter den hydroklimatischen Bedingungen Äthiopiens. Für das Bewertungsver-
fahren werden die wichtigsten Faktoren des MUSLE-Modells, die sich direkt auf den
Bodenerosionsprozess auswirken, wie z.B. die Bodenbedeckung, die Schutzmaÿnahmen,
die Erodierbarkeit des Bodens und die topographischen Faktoren, auf der Grundlage
von Erfahrungen aus der Literatur und vergleichenden Ansätzen geschätzt, während die
Parameter, die sich nicht direkt auf den Erosionsprozess auswirken oder die keine di-
rekte physikalische Bedeutung haben (d.h. Koe�zient a und Exponent b) durch Kalib-
rierung ermittelt werden. Der Hauptgrund für die Verbesserung des MUSLE-Modells
war die Notwendigkeit, die Anforderungen an die Eingabedaten für die Berechnung des
Ab�ussfaktors des MUSLE-Modells zu ändern, um eine Anwendung in Gebieten mit
geringer Datendichte zu ermöglichen. Grundsätzlich wurde das MUSLE-Modell für kleine
landwirtschaftliche Einzugsgebiete entwickelt, in dem das Ausmaÿ der Erosion von der
Blatterosion bis zur Rillenerosion reicht, aber wir können nicht genau sagen, ob es die
Gullyerosion berücksichtigt oder nicht. Die zugrundeliegende physikalische Annahme
zur Verbesserung des MUSLE-Modells ist, dass der Betrag der potenziellen Energie des
Ab�usses proportional zur Schubspannung für den Sedimenttransport aus einem Hangfeld
und zur kinetischen Energie des Ab�usses am Boden des Hangfeldes für die Rinnenbildung
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ist. Da das MUSLE-Modell bzw. das verbesserte MUSLE-Modell die Sedimentablagerung
nicht berücksichtigt, ist die Ableitung von Bodenverlustgleichungen für die Abschätzung
des Sedimentabtrags auf der Grundlage des verbesserten MUSLE-Modells wichtig, um
Sedimenttransport- und Ablagerungsprozesse zu erklären. Bei der Ableitung der Gle-
ichungen für Bodenverluste zur Schätzung des Sedimentabtrags haben wir hauptsäch-
lich physikalische Konzepte wie Scherkraft, Energie und geleistete Arbeit berücksichtigt.
Um das SWAT+-Modell für die Abschätzung des Sedimentabtrags zu modi�zieren, er-
setzen wir den besten Exponenten und die beste Gleichung des topogra�schen Fak-
tors des MUSLE-Modells im Quellcode, und wir ersetzen auch die des verbesserten
MUSLE-Modells oder die erste überarbeitete Version der Bodenverlustgleichung für die
Abschätzung des Sedimentabtrags anstelle des MUSLE-Modells im Quellcode.

Die Bodenverlustgleichung für die Abschätzung des Sedimentabtrags und ihre überarbeit-
eten Versionen zeigten die beste Leistung gegenüber des regionalisierten MUSLE-Modells
oder des verbesserten MUSLE-Modells. Alle Typen der modi�zierten SWAT+-Modelle
zeigten eine bessere Leistung als das ursprüngliche SWAT+-Modell. In dieser Dissertation
wird auch ein iterativer Ansatz zur Ableitung und Lösung einer genauen Sedimentbew-
ertungsgleichung vorgestellt.
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ABBREVIATIONS AND ACRONYMS

AGNPS Agricultural Non-Point Source Pollution model

ANSWERS Areal Nonpoint Source Watershed Environment Response Simula-
tion

APEX Agricultural Policy/Environmental eXtender Model

ArcSWAT ArcGIS-ArcView extension and interface for SWAT model

CREAMS Chemicals, Runo�, and Erosion from the Agricultural Manage-
ment Systems

CSLE Chinese Soil Loss Equation

DEM Digital Elevation Model

ET Evapotranspiration

EUROSEM European Soil Erosion Model

GIS Geographic Information System

GSSHA Gridded Surface/Subsurface Hydrologic Analysis

GUEST Gri�th University Erosion System Template

HEC-RAS Hydrologic Engineering Center-River Analysis system

HRU Hydrologic response Unit

HSPF Hydrological Simulation Program-Fortran

IPEAT+ Integrated Parameter Estimation and Uncertainty Analysis Tool
Plus

LISEM LImburg Soil Erosion Model

MAE Mean absolute error

MIKE SHE European Hydrological System Model

MIKE-11 One-dimensional river model

M-M-F-SEM Morgan-Morgan-Finney Soil Erosion Model

MUSLE Modi�ed Universal Soil Loss Equation

NDVI Normalized di�erence Vegetation Index

NSE Nash-Sutcli�e e�ciency

PBIAS Percentage of bias

PSR Root mean square to standard deviation ratio

QGIS Quantum Geographic Information System

QSWAT QGIS interface for SWAT model

RMSE Root mean square error

RUSLE Revised Universal Soil Loss Equation

SCS CN or CN Soil Conservation Service Curve Number or simply curve number
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SOBEK Hydraulic numerical model

SSE Sum of square error

SWAT Soil and Water Assessment Tool

SWAT-HS SWAT-hillslope model

SWATplus-CUP Calibration Uncertainty Program for the SWAT+ model

SWAT-VSA SWAT-Variable-Source-Area model

SWAT-WB SWAT-Water-Balance model

SWAT-wil SWAT-with-impermeable layer model

SWRRB Simulator for Water Resources in Rural Basins

tRIBS-Erosion Triangulated Irregular Network-based Real-time Integrated Basin
Simulator Soil Erosion Model

USLE Universal Soil Loss Equation

VE Volume error

WATEM/SEDEM Water and Tillage Erosion Model and Sediment Delivery Model

WEPP Water Erosion Prediction Project

R2 Coe�cient of determination
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1. INTRODUCTION

1.1 Background

The fate of soil erosion and sediment transport can be seen in di�erent ways. Sedi-
ment a�ects the water quantity and quality in rivers, lakes, and reservoirs (Msadala and
Basson, 2017). This is because, quantity issues of sediment dynamics concern morpho-
logical aspects along with prevailing hydraulics to a�ect the aquatic habitats as well as
the maintenance of �ood control, navigable waterways, and harbors, as well as coastal
protection (Noack et al., 2015). In addition, quality issues relate to nutrients and hy-
drophobic pollutants associated with �ne sediments to in�uence water quality, freshwater
ecosystem services, human health, and management options such as dredging or dumping
sediments (Noack et al., 2015). Soil erosion and sediment transport can have a negative
impact on poverty reduction and sustainable development. For example, it results in
crop yield reduction in Sub-Saharan Africa (Tully et al., 2015). If we particularly con-
sider Ethiopia, soil erosion and sediment transport are some of the key problems for the
sustainable development of the country. For example, it results in the sedimentation of
water supply, irrigation, and hydroelectric power reservoirs. Some of these sediment af-
fected reservoirs are Koka Hydroelectric Power Reservoir (Tadesse and Dai, 2019), Gilgel
Gibe 1 Hydroelectric Power Reservoir (Devi et al., 2008), Angereb Water Supply Reser-
voir (Haregeweyn et al., 2012), Selamko and Shina Irrigation Reservoirs (Moges et al.,
2018) and many more (Haregeweyn et al., 2006; Tamene et al., 2006). Furthermore, soil
erosion leads to crop production reduction (Hurni et al., 2015), lowers groundwater table
(Tilahun et al., 2016), natural lake sedimentation (Aga et al., 2018; Degife et al., 2021;
Lemma et al., 2020) and economic loss (Hurni et al., 2015; World Bank Group, 2007) in
Ethiopia.

Sediment yield can be determined by direct measurements from reservoir sediment deposit
surveys or river-suspended sediment sampling. We can also estimate sediment yield using
indirect methods such as statistical or probabilistic, and empirical or physically based
models, which take di�erent approaches in modeling the process. For example, shear
stress, concentration, stream power, mass, energy, and momentum balance are some
physical approaches to modeling sediment yield. Some models which have been used
to estimate soil erosion or sediment transport in a catchment are the USLE, RUSLE,
MUSLE, SWAT model, AGNPS (Young et al., 1987), HSPF (Donigian et al., 1995),
SWRRB (Williams et al., 1985), ANSWERS (Beasley et al., 1980), CREAMS (Knisel,
1980), MIKE SHE (Refsgaard and Storm, 1995), WEPP (Flanagan and Nearing, 1995),
GUEST (Hairsine and Rose, 1992a, 1992b; Rose et al., 1983) as cited by Tan et al. (2018),
M-M-F-SEM (Morgan and Duzant, 2008), tRIBS-Erosion model (Francipane et al., 2012),
Pelletier's model (Pelletier, 2012), Patil's model (Patil et al., 2012), WATEM/SEDEM,
EUROSEM (Morgan et al., 1998), LISEM (Ad et al., 1998), GSSHA (Ogden et al., 2003),
and APEX. Some models for the study of sediment transport in river channels are the
HEC-RAS, MIKE-11, SOBEK, and other Hydromorphodynamic models. The advantage
and/or limitations of some above models are discussed by Adu and Kumarasamy (2018);
Betrie et al. (2011); Devi et al. (2015); Tan et al. (2018).
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The suitability of these and other models for a particular location, and their accuracy
level of estimation depend on the limitations of the models and the basic assumptions
they follow. In addition, model calibration, and validation depend on observed data
quantity and quality.

1.2 Statement of Problems

Most of the tropical countries in the Eastern, Central, and Southern Africa have no
appropriate and accurate soil erosion models as reviewed and pointed out by Ndomba
(2010). In Ethiopia, there is no commonly adopted soil erosion and sediment transport
model (Fenta et al., 2021; Haregeweyn et al., 2017; Tamene et al., 2006). This may be
because of limited hydro-climatic and watershed management data.

However, soil erosion, sediment transport, deposition, consolidation, and re-suspension
are quite complex processes as they depend on physical, biological, mechanical, and
chemical processes within a particular catchment. Thus, the sedimentation processes are
a�ected by weather and hydrological conditions, the temporal and spatial distribution
of rainfall, rainfall intensity, hydraulics of �ow, topography, density and patterns of land
cover, the impact of land use change (Jeloudar et al., 2018), stream network, type and
extent of soil conservation and �ood protection works, the temporal and spatial variation
of soil physical properties, chemical properties, and mineralogical constituents, biological
properties and constituents, and soil mechanical properties. Some of these properties and
constituents that a�ect soil erosion and sediment transport are soil texture (Li et al., 2020;
Wischmeier and Smith, 1978), soil structure (Wischmeier and Smith, 1978), particle den-
sity and volume fraction (Razavian et al., 1997), pore size distribution (Dlapa et al., 2020),
viscosity (Lee et al., 2016), bulk density (Jepsen et al., 1997), settling velocity (Jing et al.,
2018), consistence (Boekel and Peerlkamp, 1956), permeability (Wischmeier and Smith,
1978), particle size distribution (Razavian et al., 1997), soil moisture (Wei et al., 2007),
gravel content (Li et al., 2020), bed roughness (Torri et al., 2012), history of sediment
bed formation and consolidation (Sanford, 2008), cohesion (Jain and Kothyari, 2009),
soil shear strength (Brunori et al., 1989), compaction (Rousseva et al., 2002), gypsum
content (Kuttah and Sato, 2015), calcium carbonate content (Rimmeri and Greenland,
1976), soil salinity (Neave and Rayburg, 2006), organic carbon content (Blanco-Canqui
and Benjamin, 2013), soil hydrogen ion concentration (pH) (Matsumoto et al., 2018),
cation exchange capacity (Fang et al., 2017), soil base saturation (Kaba¿a and ¿ABAZ,
2018), potassium, nitrogen and phosphorus fertilizers (Belay et al., 2002), organic matter
content (Ekwue, 1990), Bioturbation (Gabet et al., 2003), presence of micro-organisms
like microphytobenthos (Hope et al., 2020), soil microbial biomass (Powlson et al., 2001),
macrofaunal species (Sofo et al., 2020), bio�lm formation (Cai et al., 2019), biochar (Jien
and Wang, 2013), glomalin (Vaidya et al., 2011), antibiotics in soil (Cyco n et al., 2019),
soil management (Stanchi et al., 2021), etc.

Therefore, it is highly essential to better explain engaged physical processes and means
of accounting for site-speci�c conditions, and the best accurate representation of the
processes, for soil loss and sediment yield estimation. Therefore, we propose regional
equations of sediment yield under constrain of site-speci�c conditions and the quite com-
plex nature of soil erosion and sediment transport. To propose the equations, we mainly
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focus on commonly used soil erosion models such as the USLE, RUSLE, MUSLE, and
SWAT model. We also focus on regression techniques to propose a regression method for
sediment rating.

1.3 Objective of Studies

1.3.1 General Objective

The general objective of this study is to propose regional equations of sediment yield
estimation.

1.3.2 Speci�c Objectives

The speci�c objectives of this study are:

1. Data preparation, review, and analysis

2. Regionalizing the MUSLE under the hydro-climatic conditions of Ethiopia

3. Improving the MUSLE by physical interpretation of its factors

4. Deriving soil loss equations for sediment yield estimation

5. Improving the accuracy of a model by modifying its mathematical form

6. Checking the performance of the original SWAT+ model

7. Modifying the SWAT+ model in three di�erent types for sediment yield estimation,
and compiling the SWAT+ Editor

8. Proposing a method for deriving and solving an accurate sediment rating equation
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2. LITERATURE REVIEW

2.1 Erosion Models

Commonly used soil erosion models are the USLE (Wischmeier and Smith, 1978), RUSLE
(Renard et al., 1997) and MUSLE. In connection to these models, similar erosion mod-
els are the RUSLE1, RUSLE2 (http://www.ars.usda.gov/Research/docs.htm?docid=
6010 accessed on 20.01.2020) and CSLE (Baoyuan et al., 2002).

2.1.1 The USLE and RUSLE

The USLE is the foundation for others; it is used to estimate the annual soil loss from
a �eld area, where the extent of erosion from sheet to rill erosion. However, it does not
consider gully erosion, streambank erosion, streambed erosion, mud�ow, massive land
movement due to landslides or slumps. In fact, the USLE is an empirical soil loss model,
is given by Wischmeier and Smith (1978):

A = RKLSCP (2.1)

where, where A is soil loss in tons per acre per year, R is the rainfall erosivity factor
in hundreds of foot-tons inches per acre per hour, K is the soil erodibility factor (in
0.01 ∗ tons ∗ acre ∗ hour/acre ∗ year ∗ foot ∗ tons ∗ inch), L is the slope length factor, S
is the slope steepness factor or LS is the topographic factor, C is the cover factor, and P
is the soil conservation practice factor. The USLE was originally developed at the plot
scale (unit plot of 72.6 ft long, with a uniform lengthwise slope of 9 percent, in continuous
fallow, tilled up and down the slope (Wischmeier and Smith, 1978). As a consequence of
this, the USLE model operates mathematically in two steps; the �rst step is to predict
soil loss from the unit plot (A1), A1 = R ∗K where L, S, C, and P all have values of 1.0,
and the second step modi�es that value to take account of the conditions that vary from
the unit plot; A2 = A1 ∗ L ∗ S ∗ C ∗ P (Kinnell, 2019).

An updated form of USLE (RUSLE) was published to include new rainfall erosivity
maps for the United States of America and improvements to the method of calculating
the di�erent USLE factors (Renard et al., 1997) as cited by Benavidez et al. (2018). The
RUSLE added changes in soil erodibility due to freeze�thaw and soil moisture, a method
for calculating cover and management factors, changes to how the in�uence of topography
is incorporated into the model, and updated values to represent soil conservation practices
(Renard and Freimund, 1994) as cited by Benavidez et al. (2018).

The USLE or RUSLE is widely used with a combined sediment delivery ratio to calculate
sediment yield at the outlet of a watershed. It has been observed that the delivery ratios
to determine the sediment yield from the USLE can be predicted accurately but varies
considerably (Pandey et al., 2009). The sediment delivery ratio varies with storms; the
assumption of a constant sediment delivery ratio adds another source of error to the
estimates as reviewed and reported by Sadeghi et al. (2014). The reason for this may
be due to the variation in rainfall distribution over time, from year to year (Pandey
et al., 2009). The USLE is more accurate for soils with medium texture and slopes

4



of less than 400 ft in length with a gradient ranging between 3% and 18%, and it is
managed with consistent cropping practices that are well represented in a plot scale
erosion studies (Wischmeier and Smith, 1978). It is also warned that the farther these
limits are exceeded, the greater will be the probability of signi�cant extrapolation error
(Wischmeier and Smith, 1978). For further reference, other problems connected to the
USLE or RUSLE are discussed by Kinnell (2005).

As part of evaluations of the models, some important considerations are the physical
explanation behind the models, the physical connection between factors, the suitability
of the models toward a speci�c location, and the experiences of some other authors about
the behavior of the models.

Regards to the physical explanation behind the USLE or RUSLE, they depend on rainfall
impact energy, and we expect soil detachment due to the rainfall impact. However, the
rainfall impact or hammering also contributes to subsoil compaction, and it may reduce
subsoil erosion. Yes, of course, we expect soil detachment due to the rainfall impact,
however, we can not exactly tell in which direction a soil particle jumps or moves, where
it reaches, or where measurement can be taken. Furthermore, the rainfall impact does
not tell us how much energy is required to detach soil particles (soil strength or resistance
against the rainfall impact energy). If the particle jumping due to the rainfall impact is
not considered, it is the combined action of rainfall and runo� that causes soil erosion
and sediment transport from a slope �eld, therefore, it is based on this principle that the
amount of soil loss from the �eld can be measured at the bottom of the slope �eld. This is
because, in the beginning of rain, more soil erosion due to the impact of rainfall and less
sediment transport is expected. At the latter time, less soil erosion due to compaction
but more sediment transport by runo� is expected. This can be a case particularly in
the tropics where heavy rainfall compacts soil, in�ltration decreases, runo� dominates
quickly, and subsequently, more erosion in the beginning of rain is expected. As we said
above the USLE/RUSLE/RUSLE2/CSLE considers the rainfall impact energy for soil
detachment but it does not consider energy for sediment transport. The rainfall impact
leads to sheet to rill erosion which mainly erodes topsoil. However, runo� concentration
leads to gully formation (which erodes subsoil), riverbank erosion, and bedload transport.

Regards to the physical connection between factors, as far as we are talking about the
rainfall impact energy for soil detachment; the physical connection between the rainfall
erosivity, soil erodibility, topographic, cover, and conservation practice factors of the
USLE or RUSLE is not convincing. One evidence for this is that, for instance, the soil
cover factor reduces rainfall impact energy but the soil conservation practice factor does
not reduce the impact energy of the rainfall.

Regards to the suitability of the models toward speci�c conditions or locations, in tropi-
cal Africa, the USLE and RUSLE are di�cult to apply. This may be because unrealistic
values were obtained for tropical soils from the equation's erodibility nomograph (Mu-
lengera and Payton, 1999; Ndomba, 2007) as cited by Adegede and Mbajiorgu (2019).
It has also been observed that the table that was developed for estimating crop and soil
management factors in the USA is inconsistent with farming practices in tropical Africa
(Mulengera and Payton, 1999) as cited by Adegede and Mbajiorgu (2019).

Regards to the data requirement and data availability, the USLE/RUSLE requires less
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than 30 minutes maximum rainfall intensity for its rainfall erosivity factor. We have
daily rainfall data but we do not have 30 min rainfall data to test the USLE/RUSLE
using its original data requirement; therefore, we can not minimize uncertainty. It is also
required that the temporal and spatial distributions of rainfall should be captured at
di�erent points in a large watershed. This leads us to check whether the existing gauging
stations are enough or not to capture the rainfall distributions of the watersheds under
our consideration. In addition to several missing climatic data, the spatial distribution
and density of the gauging stations are in question for the large watersheds of Ethiopia.
Practically, it is not easy to test the USLE/RUSLE/ at the large watersheds in Ethiopia.
However, the USLE/RUSLE was applied at di�erent parts of Ethiopia following similar or
di�erent approaches to estimate any of its factors (e.g, Balabathina et al. (2020); Bekele
and Gemi (2021); Degife et al. (2021); Gashaw et al. (2017); Gelagay and Minale (2016);
Haile and Fetene (2012); Haregeweyn et al. (2017); Kidane et al. (2019); Moges et al.
(2018); Tadesse et al. (2017); Tessema et al. (2020); Wagari and Tamiru (2021); Wolka
et al. (2015); Yesuph and Dagnew (2019)).

2.1.2 The MUSLE

In the same family of the USLE or RUSLE, another type of soil erosion model is the
MUSLE. Williams (1975) developed the MUSLE using 778 storm-runo� events collected
from 18 small watersheds (Williams, 1977, 1975), with areas varying from 15 to 1500 ha,
slopes from 0.9 to 5.9%, and slope lengths of 78.64 to 173.74 m (Hann et al.1994) as cited
by Sadeghi et al. (2014). The MUSLE is given by.

y = a(Qq)bKLSCP (2.2)

where y is the sediment yield in metric tons, a is the coe�cient and b is the exponent
(a = 11.8 and b = 0.56 for USA, where the MUSLE was originally developed), Q is the
runo� volume in m3,q is the peak runo� rate in m3s−1, K is the soil erodibility factor in
0.01 ∗ tons ∗ acre ∗ hour ∗ acre−1 ∗ year−1 ∗ foot−1 ∗ tons−1 ∗ inch−1, L is the slope length
factor, S is the slope steepness factor, C is the cover factor, P is the soil conservation
practice factor. Essentially, the MUSLE was developed for a small agricultural watershed,
where the extent of erosion is from sheet to rill erosion.

However, we cannot exactly tell whether it considers gully erosion or not. To apply the
MUSLE for a large watershed, one approach that was proposed is using the MUSLE in
the SWAT model environment.

This may be because the sediment yield can be more accurately estimated if the large
watershed is divided into subwatersheds (area < 2590 ha) to compensate for nonuniformly
distributed sediment sources; the e�ect of watershed hydraulics and sediment particle size
can be included by routing the sediment yield from subwatersheds to the large water-
shed (Williams, 1975). As part of the evaluation of the model, we considered the speci�c
behavior of the MUSLE, the experiences of other authors, the physical connection be-
tween factors of the MUSLE, and the suitability of the model toward a speci�c location.

If we consider the speci�c behavior of the MUSLE, we found that the MUSLE showed
better performance in the case of directly measured �ow data rather than indirectly
obtained �ow data using indirect methods (Sadeghi et al., 2014). The model also provides
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appropriate estimates at a watershed rather than an experimental plot as was reviewed
and reported by Sadeghi et al. (2014). In this connection, if we consider the SWAT
model, the SWAT model uses an indirect method (such as the Soil Conservation Service
Curve Number) to generate runo�, then it uses the MUSLE to estimate the soil loss from
a HRU (which is similar to a plot scale), then the SWAT model routes sediment output
in channels to the outlet of a large watershed. However, this also leads to accumulative
error at the end due to uncertainty in the de�nition of a channel, channel depth, and
width in the SWAT model environment.

If we consider the experiences of some other authors, the MUSLE is unsuitable for the pre-
diction of the sediment yield for small storms (Sadeghi et al., 2007). However, the slight
variation in hydrological response of a watershed in terms of the sediment yield might be
changing in the antecedent hydrological conditions, the spatial and temporal distribution
of rainfall, availability of eroded sediment throughout the watershed, which is not taken
into account by the MUSLE as for many other lumped models (Sadeghi et al., 2007).

If we consider the physical connection between factors of the MUSLE, as far as the runo�
energy for soil detachment and sediment transport is concerned; the physical connection
between the runo�, soil erodibility, topographic, cover, and soil conservation practice
factors is convincing; however, further re�ning the physical connection between the factors
may become necessary.

For instance, the cover and soil conservation factors play a role to break runo� energy
so as to protect soil loss due to runo�. As the slope length becomes increasingly larger,
there is a possibility that erosion from the upper part of the slope becomes deposited at
the lower part of the slope (for instance, if we consider the last runo� from the slope-�eld
after the end of rainfall). This is because, depending on the magnitude of the runo�
and its sediment transport capacity, the runo� takes up more soil particles and becomes
concentrated on its way to the bottom of the slope. In other words, the energy of the
runo� decreases as resistance against �ow increases along the length of the slope, and its
shear force decreases.

If we consider the suitability of the model toward a speci�c location, the MUSLE has
been observed to give good results in various applications in some parts of tropical Africa
(Ndomba, 2007) as cited by Adegede and Mbajiorgu (2019), and it has been successfully
demonstrated in sub-Saharan Africa (Adegede and Mbajiorgu, 2019). As per the exper-
imental plot result of sheet erosion at Enerta study site in Ethiopia, the MUSLE was
better at estimating soil loss from a cultivated �eld than the USLE (Muche et al., 2013).

2.1.2.1 The Factors of the MUSLE

The factors of the MUSLE are the runo� factor, soil erodibility factor, soil cover factor,
soil conservation practice factor, and topographic factors. The descriptions of each of
these factors are given below.

a) The Runo� factor

In the MUSLE, the runo� factor is the product of the total runo� volume and peak
runo� rate. Pongsai et al. (2010) reviewed that the runo� factor represents the energy
used in transporting as well as in detaching sediment, which acts as the best indicator
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for predicting sediment yield for the individual storm event.

b) The Soil Erodibility Factor (K-Factor)

Wischmeier and Smith (1978) de�ned the soil erodibility factor as the soil loss rate per
erosion index unit for a speci�ed soil as measured on a unit plot; the unit plot is de�ned as
a 72.6 ft length of uniform 9% slope continuously in clean-tilled fallow; it is the continuous
fallow tilled up and down the slope. The soil erodibility factor is given by (Wischmeier
and Smith, 1978):

K =

∑N
n=1 (A)n∑N

n=1 (EI30)n
(2.3)

where A is the event soil loss from the unit plot in tons/acre/year, E is the storm kinetic
energy in 100 foot-tons/acre, I30 is the maximum 30 min intensity in inch per hour, and
K is the soil erodibility factor in 0.01 ∗ tons ∗ acre ∗ hour ∗ acre−1 ∗ year−1 ∗ foot−1 ∗
tons−1 ∗ inch−1. It is important to note that the soil erodibility factor represents the
worst or the maximum possible erosion from the unit plot with the speci�ed �eld slope
and length.

At the same rainfall impact pressure, less soil erosion condition that is di�erent from the
worst condition considers the soil cover and conservation practices on the same �eld slope
and length. On the unit plot, or any unit plot for that matter, the temporal and spatial
variation of the soil erodibility depend on the types of soil; the quite complex interaction
of physical, biological, chemical, and mechanical processes.

From the soil erodibility table and equations (see �gure 3.28), we can reveal that the
soil erodibility factor varies from 0 to 1, where 0 indicates the soil that is hard to erode,
whereas 1 represents easily erodible soil by the same rainfall impact pressure under oth-
erwise similar soil erosion conditions. From this range of the soil erodibility factor, we
can conclude that soil erodibility refers to the degree of being easy to erode a given soil.

The soil erodibility factor (K-factor) can be estimated by direct �eld measurement or by
using di�erent empirical equations or a soil erodibility nomograph.

1. The K-factor that was originally developed for the soil conditions of the USA (Wis-
chmeier and Smith, 1978):

K =

{[
2.1M1.14 (12− a) ∗ 10−4

]
+ 3.25 (b− 2) + 2.5 (c− 3)

}
100

(2.4)

whereK = the soil erodibility in 0.01∗tons∗acre∗hour/acre∗year∗foot∗tons∗inch;
M = (%silt + %very �ne sand) ∗ (100 − %clay), M =Particle-size parameter, silt
(%) = percentage of silt, % very �ne sand = percentage of very �ne sand (0.1 to
0.05 mm), clay (%) = percentage of clay, a = percentage of organic matter, b = soil
structure code used in soil classi�cation, and c = pro�le permeability class. For soils
containing less than 70 percent silt and very �ne sand, the nomograph (Wischmeier
and Smith, 1978) is used to solve the above equation.

Some comments on this equation: we do not have a percentage of very �ne sand in
our database to test the equation. Our source of data is the harmonized world soil
data, which includes the texture, reference soil depth, drainage class, available water
capacity, sand, silt and clay fraction, bulk density, gravel content, organic carbon
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content, pH, cation exchange capacity, base saturation, total exchangeable bases,
calcium carbonate content, gypsum content, sodicity, and salinity content. As land
tillage and mechanical compaction (due to rainfall impact) change the structure
of the soil; the structure of tilled, bare, or compacted soil varies at temporal and
spatial scales. As soil permeability depends on soil texture and organic matter,
their relationship should be explicitly shown. Unrealistic values were obtained for
tropical soils from the equation's erodibility nomograph (Mulengera and Payton,
1999; Ndomba, 2007) as cited by Adegede and Mbajiorgu (2019).

2. The K-factor (Williams and Renard, 1983) as cited by Chen et al. (2011) and
similar equation is shown by Cole et al. (1990); Kruk (2021).

K =

(
0.2 + 0.3 exp

(
−0.0256Sa ∗ (1−

Si

100
)

))
∗
(

Si

cL + Si

)0.3

∗(
1− 0.25c

c+ exp(3.72− 2.95c)

)
∗
(
1− 0.7SN

SN + exp(−5.51 + 22.9SN)

) (2.5)

where Sa = sand (%); Si = silt (%); CL = clay (%); SN = 1 − (Sa/100); C =
organic carbon

3. The K-factor that was tested in the soil conditions of the Philippines (David, 1988):

K =

[
0.043 ∗ pH +

0.62

OM
+ 0.0082S − 0.0062C

]
∗ Si (2.6)

where pH = pH of the soil, OM = organic matter (%), S = sand content (%), C
= clay ratio =% clay / (% sand + % silt), and Si = silt content = % silt /100.

4. The K-factor that was originally developed for the volcanic soil of Hawaii, USA
(El-Swaify and Dangler, 1976) as cited by Renard et al. (1997):

K = −0.03970+0.00311x1+0.00043x2+0.00185x3+0.00258x4−0.00823x5 (2.7)

where x1 = unstable aggregate size fraction (< 0.250 mm)(%), x2 = modi�ed silt
(0.002�0.1 mm) (%) * modi�ed sand (0.1�2 mm) (%), x3: % base saturation, x4 =
silt fraction (0.002�0.050 mm) (%), and x5 = modi�ed sand fraction (0.1�2 mm)
(%).
We do not have unstable aggregate size fraction or modi�ed silt and sand data in
our database to test the equation.

5. Williams (1995) proposed the following K-factor as cited by Wawer et al. (2005):

K = fcsand ∗ fcl−si ∗ forgC ∗ fhisand (2.8)

fcsand = 0.2 + 0.3 exp[−0.256ms(1−
msilt

100
)] (2.9)

fcl−si = (
msilt

mc −msilt

)0.3 (2.10)

forgC = 1− 0.25 ∗ orgC
orgC + exp[3.72− 2.95 ∗ orgC]

(2.11)

fhisand = 1−
0.7(1− ms

100
)

1− ms

100
+ exp[−5.51 + 22.9(1− ms

100
)]

(2.12)
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where ms is the percent sand content; msilt is the percent silt content; mc is the
percent clay content; orgC is the percent carbon content

6. Other soil erodibility equations are mentioned by Kruk (2021); Liu et al. (2020);
Panagos et al. (2014); Renard et al. (1997); van der Knij� et al. (2000); Wang et al.
(2016); Wawer et al. (2005); Wischmeier and Mannering (1969).

c) The Slope Steepness and Slope Length Factors

The slope steepness factor (S) is the ratio of soil loss from a �eld slope gradient to soil
loss from the 9% slope under otherwise identical conditions (Ganasri and Ramesh, 2016).
A high rate of soil loss is associated with steep slopes (Gwapedza et al., 2018; Renard
et al., 2011), and soil-loss prediction is more sensitive to the slope steepness than slope
length (Moore and Wilson, 1992). Slope length is de�ned as the distance from the point
of origin of overland �ow to the point where either the slope gradient decreases enough
that deposition begins or the runo� water enters a well-de�ned channel that may be part
of a drainage network or a constructed channel (Wischmeier and Smith, 1978). It is
important to note that the de�nition of the slope length relies on the conditions at which
the unit plot was constructed by Wischmeier and Smith (1978); the unit plot represents
the worst condition for the maximum soil erosion case.

Therefore, for the worst condition for the maximum erosion case, the slope length is the
shortest distance from the origin of overland �ow to the point where deposition takes place
or enters stream channels. The slope lengths would rarely have a constant gradient along
their entire length, and the slope irregularities would a�ect the amount of soil movement
to the foot of the slope (Wischmeier and Smith, 1978). The slope length factor is given
by (Wischmeier and Smith, 1978):

L =

(
λ

λo

)m

(2.13)

where λ is the slope length, and λ0 is the unit plot length = 72.6 ft = 22.13 m. λ0

is also de�ned as the horizontal projection of the slope length (e.g., Fagbohun et al.
(2016); Kinnell (2010); Mitasova et al. (1996); Renard et al. (2011)). In one term, the
slope steepness factor (S) and slope length factor (L) together are called the topographic
factor (LS-factor). The topographic factor is the ratio of soil loss per unit area from a
�eld slope length and gradient to that from the 22.1 m length of uniform 9% slope under
otherwise identical conditions (Wischmeier and Smith, 1978). Di�erent equations have
been suggested at di�erent locations to estimate the topographic factor while taking into
account site-speci�c conditions.

1. The topographic factor that was proposed at the topographic condition of USA (Wis-
chmeier and Smith, 1978):

LS =

(
λ

72.6

)m (
65.41sin2θ + 4.56sinθ + 0.065

)
(2.14)

where λ = slope length in feet, θ = angle of the slope, and m = dependent on the
slope (0.5 if the slope > 5%, 0.4 if the slope is between 3.5% and 4.5% , 0.3 if the
slope is between 1% and 3%, and 0.2 if the slope is less than 1%).

2. McCool et al. (1987) improved the LS-factor from classic USLE for use in terrain
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with steeper slopes as cited by Pongsai et al. (2010) for use in RUSLE (Renard
et al., 2011):

L =

(
λ

22.13

)m

(2.15)

m =
sin θ

sin θ + 0.269 (sin θ)0.8 + 0.05
(2.16)

S = 3.0 (sin θ)0.8 + 0.56 for λ < 4m (2.17)

S = 10.8 ∗ sin θ + 0.03 for λ > 4m and s < 9% (2.18)

S = 16.8 sin θ − 0.50 for λ > 4m and s > 9% (2.19)

where λ is the slope length in meters, m is the dimensionless parameter, θ is the
angle of �eld slope in degrees = tan−1 (s/100), and s is the �eld slope as a percent-
age.

3. Foster et al., (1977) and McCool et al., (1987, 1989) proposed the following equa-
tions for the calculation of the LS-factors as cited by Renard et al. (1997):

L =

(
λ

22.13

)m

(2.20)

m =
β

1 + β
(2.21)

β =
sin θ
0.0896

3 (sin θ)0.8 + 0.56
(2.22)

S = 10.8 sin θ + 0.03 if the slope (s) is less than 9% (2.23)

S = 16.8sinθ − 0.5 if the slope is greater than or equal to 9% (2.24)

S = 3 (sin θ)0.8 + 0.56 if the slope length is shorter than 4.6 m (2.25)

where θ is the angle of the slope, s and θ are de�ned above
Equation 2.21 was given by Foster et al., 1977 as cited in (Renard et al., 1997).
Equations 2.22 � 2.25 were given by McCool et al., 1989 as cited in (Renard et al.,
1997). Equation 2.25 was given for the condition where water drains freely from
slope end, and it is assumed that inter-rill erosion is insigni�cant on slopes shorter
than 4.6 m (Renard et al., 2011).

As a remark, when conditions favor more inter-rill and less rill erosion, as in cases of
consolidated soils, such as those found in no-till agriculture, m should be decreased
by halving the β value, where a low rill to inter-rill erosion ratio is typical of the
conditions on rangelands (Renard et al., 2011). With thawing, and cultivated soils
dominated by surface �ow, a constant value of 0.5 should be used (McCool et al.,
1989, 1993) as cited by Renard et al. (2011). When freshly tilled soil is thawing,
in a weakened state and primarily subjected to surface �ow, we use the following
equation (McCool et al., 1993) as cited by Renard et al. (2011).
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S = 10.8 sin θ + 0.03 if s < 9% (2.26)

S =

(
sin θ

0.0896

)0.6

if s > 9% (2.27)

where s is the slope steepness in percent

4. The slope factor that is approximately equal to the LS-factor at the topographic
condition of the Philippines (David, 1988):

S = a+ b ∗ SL
4/3 (2.28)

where S is the slope factor, a = 0.1, and b = 0.21; SL is the slope in percent.

5. The LS-factor was developed for the the topographic condition of Britain (Morgan,
2005):

LS =

(
λ

22

)0.50

∗
(
0.065 + 0.045s+ 0.0065s2

)
(2.29)

where λ is the slope length (m), and s is the slope steepness (%). Apart from the LS-
factor of the USLE or RUSLE, the CSLE (Baoyuan et al., 2002) was developed while
taking into consideration the Chinese soil environment and topographic conditions
(including the modi�ed equation that can calculate LS-factor in >10° conditions)
(Zhang et al., 2017). In the CSLE, the LS-factor is calculated by (Zhang et al.,
2017):

L =

(
λ

22.1

)m

(2.30)

m = 0.2 for θ ≤ 1.7% (2.31)

m = 0.3 for 1.7% < θ ≤ 5.2% (2.32)

m = 0.4 for 5.2% < θ ≤ 9% (2.33)

m = 0.5 for θ > 9% (2.34)

S = 10.8 sin θ + 0.03 for θ < 9% (2.35)

S = 16.8 sin θ − 0.05 for 9% ≤ θ < 17.6% (2.36)

S = 21.9 sin θ − 0.96 for θ ≥ 17.6% (2.37)

where λ is the slope length (m), m is the variable slope-length exponent, and θ is
the slope angle (°).

6. Other equations of the slope or slope length factor are mentioned by Baoyuan et al.
(2002); Benavidez et al. (2018); Moore and Wilson (1992); Pongsai et al. (2010);
Schmidt et al. (2019); Wang and Liu (2014); Zhang et al. (2017).

USLE and RUSLE were originally developed for gently sloping cropland and the topogra-
phy factor (LS) was one dimension (Zhang et al., 2017). In other word, the USLE/RUSLE
is primarily designed to predict erosion on straight slope sections. When applying USLE
or RUSLE equation to calculate the average annual sheet and rill erosion per unit area at
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watershed or even larger scales, however, topography becomes two-dimensional and LS
is more di�cult to estimate than other terms in the equation (Van Remortel et al., 2004)
as cited in (Zhang et al., 2017).

Foster and Wischmeier (1974) were the �rst to develop a procedure to calculate the av-
erage soil loss on complex slope pro�les by dividing an irregular slope into a limited
number of uniform segments as cited by Desmet and Govers (1996). According to liter-
ature review report by Desmet and Govers (1996), slope length was replaced by a unit
contributing area for a two-dimensional situation. The unit contributing area is to mean
an upslope drainage area per unit of contour length, where contour length is length of
line through the grid cell center and perpendicular to the aspect direction. In a grid-
based DEM (meaning; DEM in grid data format but it can be presented in di�erent data
format like contour or triangular irregular network (TIN), the unit contributing area is
contributing area of cell divided by e�ective contour length (Desmet and Govers, 1996).
The unit contributing area may di�er considerably from slope length, as it is a�ected by
�ow convergence and/or divergence (Desmet and Govers, 1996).

According to literature review report by Benavidez et al. (2018), the following LS factor
was provided based on the contributing area at topographic condition of USA.

LS = (m+ 1)

(
U

Lo

)m (
sin θ

S0

)n

(2.38)

where U is the upslope contributing area per unit width as a proxy for discharge; U =
�ow accumulation * cell size; L0 is the length of the unit plot (22.1); S0 is the slope of
unit plot (0.09); θ is the slope; m (sheet) and n (rill) depend on the prevailing type of
erosion (m = 0.4 to 0.6) and n (1.0 to 1.3).

Moore and Wilson (1992) presented a simpli�ed equation using unit contributing area
(UCA) to calculate LS for three-dimensional terrain.

LS =

(
As

22.13

)m (
sin θ

0.0896

)n

(2.39)

where As is the unit contributing area (m) (Zhang et al., 2017), θ is the slope in radians,
and m (0.4�0.56) and n (1.2�1.3) are exponents.

With support of GIS, the concept of unit contributing can be applied to calculate the
topographic factor of the USLE (Gwapedza et al., 2018; Zhang et al., 2017).

d) The Cover Factor (C-Factor)

The C-factor is the ratio of soil loss from a �eld with speci�ed cropping to that from clean-
tilled, continuous fallow under otherwise similar conditions. These similar conditions are
no soil conservation works (land is tilled up and down the slope), soil, slope steepness,
slope length, and the rainfall impact pressure is the same for both cropped �eld and fallow
area. The C-factor is related to the land use and land cover, and it is the reduction factor
for soil erosion vulnerability (Arekhi et al., 2012).

Therefore, the C-factor lies between 0 and 1, which describes the extent of vegetation
cover to protect soil from erosion in a given catchment. Its value closer to 0 indicates
dense vegetation cover, whereas its value closer to 1 indicates poor vegetation cover.
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Essentially, surface cover or canopy protects soil erosion by decreasing rainfall impact
energy; however, it may have less importance to protect sediment transport from a �eld.

To some extent, we can say that surface cover a�ects soil erosion by reducing the transport
capacity of the runo� water (Foster, 1982) and by causing deposition in ponded areas
(La�en, 1983) as cited by Renard et al. (1997) and also by decreasing the surface area
susceptible to raindrop impact (Renard et al., 1997).

In addition, the plant-root depth and distribution and porosity increase the in�ltra-
tion rate of rainfall water into the soil, and thus they play a role in reducing soil loss
(Jeong et al. 2012) as cited by Jang et al. (2015).

Although the C-factor value can be taken from the literature or determined in situ,
an extensive literature review compiling the potential soil loss rates of di�erent crop and
forest covers compared to likely soil loss rates of bare soil can be used to determine likely
C-factor values of a particular site (Benavidez et al., 2018). The published guidelines (Re-
nard et al., 2011; Wischmeier and Smith, 1978), the revised C-factor (Cai et al., 2000)
as cited by Luo et al. (2016) and the Normalized Di�erence Vegetation Index (Liu et al.,
2020; van der Knij� et al., 2000) can be used to compute the C-factor.

e) The Soil Conservation or Erosion Control Practice Factor (P -Factor)

The P -factor is the ratio of soil loss associated with a speci�c support practice to the
corresponding soil loss when cultivation is done up and down the slope (Renard et al.,
1997) under otherwise similar conditions. The P -factor describes the e�ects of practices,
such as contouring, strip cropping, concave slopes, terraces, grass hedges, silt fences,
straw bales, and subsurface drainage (Arekhi et al., 2012).

These conservation practices change the direction and speed of runo� (Renard et al.,
2011); it mainly reduces the transport of soil particles by blocking runo� and breaking its
speed; however, it does not reduce rainfall impact energy to reduce soil erosion. Therefore,
the P -factor ranges from 0 to 1, where 0 represents the strong conservation practice
(no soil loss from a �eld is expected), whereas 1 represents the worst condition for the
maximum erosion due to lack of conservation practice and when land is tilled up and
down the slope, and runo� takes the shortest well-de�ned channel or route in the �eld.

The di�culty of accurately mapping support practice factors or not observing support
practices leads to many studies ignoring it by giving their P -factor a value of 1.0 (Be-
navidez et al., 2018). Some P -factors can be ignored if some C- factors already account
for the presence of a support factor, such as intercropping or contouring (Benavidez et al.,
2018). All non-agricultural lands were also assigned a value of 1 if no feasible conservation
measures were applied (Gwapedza et al., 2018; Jang et al., 2015; Luo et al., 2016).

At suitably detailed scales and with enough knowledge of farming practices, using the
P -factor may lead to a more accurate estimation of soil loss (Benavidez et al., 2018).
Sadeghi et al. (2014) reviewed that considering the temporal variation of the P -factor
could signi�cantly improve the performance of the MUSLE, although it has been rarely
taken into account.
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2.2 Description of the SWAT Model

The SWAT model is a continuous-time, semi-distributed, process-based river basin model.
The model is called the semi-distributed model because it subdivides the entire basin
spatially into sub-basins, then further divides each sub-basin into several smaller het-
erogeneous, lumped, non-spatial sub-units (HRU) based on the land use, soil type, and
slope. The model does so to simulate sediment, water �ow, nutrient, or pesticides at the
HRU and routes it to channels, then to an outlet of a large watershed. The model is
called the continuous-time (long period) model because it gives us daily sediment yield,
�ow and nutrients at the outlet of the watershed, but it does not give us an instantaneous
sediment yield or �ow from the watershed. The model is called the process-based model
because it relies on water balance for the simulation of the hydrological processes. The
water balance equation of the model is given by

SWt = SWo +
t∑

i=1

(Rday −Qsurf − Ea −Wseep −Qgw) (2.40)

where, SWt is the �nal soil water content (mm), SWo is the initial soil water content
(mm) on day i (mm), t is the time (days), Rday is the amount of precipitation on day
i (mm), Qsurf is the amount of surface runo� on day i (mm), Ea is the amount of
evapotransportation on day i (mm), Wseep is the amount of water entering the vadose
zone from the soil pro�le on day i (mm), Qgw is the amount of return �ow on day i (mm).

Subsequent revisions of the SWATmodel have been made from the �rst version SWAT94.2
(Arnold et al., 2012) to the latest SWAT+. Commonly known versions are the ArcSWAT
and QSWAT models. The QSWAT model performs similar functions to the ArcSWAT
model with additional enhanced features such as merging small sub-basins and static and
dynamic visualization of outputs (Dile et al., 2016). Another version of the SWAT model
is the MWSWAT model (SWAT2012 interface for version 4.8.8 of MapWindow), which
was not updated and has been replaced by the QSWAT model (https://swat.tamu.
edu/software/ accessed on 2 December 2019).

The QSWAT+ or simply the SWAT+ model is a completely revised version of the SWAT
model. It provides a more �exible spatial representation of interactions and processes
within a watershed (https://swat.tamu.edu/software/plus accessed on 3 December
2019). In the SWAT+ model, the HRU can be categorized into two landscape units such
as upslope and �oodplain. This may facilitate making a distinction between upslope
and �oodplain processes. The basic algorithms used to calculate the processes in the
model have not changed, and the structure and organization of both the code (object-
based) and the input �les (relational-based) have undergone considerable modi�cation
(https://swat.tamu.edu/software/plus accessed on 3 December 2019).

The primary contribution of the SWAT+ model is that the model has been reconstructed
as independent modules (objects) so that it's a lot easier in terms of model maintenance
and the corresponding development as well (Yen et al., 2019). In addition to modular-
ization, there are also some key developments to enhance the performance of the model
(for example, new functionalities of aquifers and reservoir operation rules are available in
the SWAT+ model) (Yen et al., 2019).
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Both the QSWAT and QSWAT+ models were demonstrated at Robit watershed in the
Lake Tana basin of Ethiopia. As compared with the SWAT model, the SWAT+ model is
more versatile than the SWAT model in modeling in hilly watersheds (Steenhuis et al.,
2019). The other advantages of the SWAT+ model over the SWAT model are discussed
by Bieger et al. (2017); Yen et al. (2019).

2.2.1 Modeling Approaches, Limitations and Improvements of

the SWAT Model

The estimation of soil loss depends on other interrelated hydrological processes such as
in�ltration, evapotranspiration, and surface runo�. The SWAT model uses empirical
equations to estimate each of these processes. For example, the model uses the Modi�ed
Universal Soil Loss Equation in the following form to estimate soil loss from a catchment.

y = 11.8(QqA)0.56KCPLSf (2.41)

where y is the sediment yield on a given day (metric tons), Q is the surface runo� volume
(mm ha−1), q is the peak runo� rate (m3s−1), A is the area of the HRU (ha), K is the
soil erodibility factor, C is the soil cover factor, P is the support practice factor, L is the
slope length factor, S is the slope steepness factor, and f is the rock or coarse fragment
factor. The rock or coarse fragment factor is calculated by

f = e−0.053∗rock (2.42)

where rock is the percent rock in the �rst soil layer

In connection to the soil loss or sediment yield estimation, the limitations and improve-
ment of the SWAT modelling approaches which directly or indirectly linked to the soil
loss or sediment yield are presented below.

As the SWAT model is the continuous (i.e., long-term) model with limited applicability
toward simulating instantaneous hydrologic responses, Yu et al. (2018) improved the
SWAT model for event-based �ood simulation on a sub-daily timescale.

To provide necessary variability in land use and land cover, the entire simulation period
can be divided into two or more parts and can be performed interval simulations using
the corresponding land use and land cover data. This may complicate the simulation
processes and fail to re�ect year-to-year changes in land use and land cover (Jin et al.,
2019). To address this problem, Jin et al. (2019) developed the modi�ed SWAT model
(LU-SWAT) that incorporates annual land use and land cover data to simulate land use
and land cover change e�ects on hydrological processes under di�erent climatic conditions.

The SWAT model uses the SCS CN method to generate overland �ow when the saturated
hydraulic conductivity is less than rainfall intensity. A series of modi�ed SWAT models
that simulate saturation excess overload �ow with some progress of improvement (Steen-
huis et al., 2019) are SWAT-VSA model (Easton et al., 2008), SWAT-WB model (White
et al., 2011), SWAT-HS model (Hoang et al., 2017) and SWAT-wil model (Steenhuis
et al., 2019). The SWAT-WB and SWAT-VSA models increased the surface runo�, but
since the SWAT model subsurface �ow component was not changed, the increased runo�
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resulted in less water being available for evapotranspiration (Steenhuis et al., 2019). Al-
though the SWAT-HS model represented the hillslope processes more realistically than
the SWAT-2012 model, major modi�cations in the SWAT model code were required,
making wider application di�cult (Steenhuis et al., 2019). In the SWAT-wil model, the
saturation levels in the valley bottom areas were increased by restricting both the lat-
eral �ow and percolation (Steenhuis et al., 2019). The SWAT-wil model can be used
with the SWAT+ model which has the functionality to group HRU into laterally con-
nected landscape elements that can pass water along various pathways (overland, lateral,
groundwater) from upslope to downslope (Steenhuis et al., 2019).

The di�erent versions of the original SWAT models have been modi�ed for sediment yield
estimations. The modi�ed SWAT (SWAT-TUSLE) uses Taiwan Universal Soil Loss Equa-
tion (Chen et al., 2009), which calculates the Cover factor based on NDVI and slope length
factor based on slope (Lu and Chiang, 2019). The modi�ed SWAT664 (SWAT-Twn) (Lu
and Chiang, 2019) uses Taiwan Universal Soil Loss Equation (Chen et al., 2009) and
landslide volume. The sediment transport capacity algorithm was included in the source
code of the SWAT model (version 2009) (Bonumá et al., 2014). Since in some instances,
SWAT-simulated results are greatly a�ected by the watershed delineation and DEM cell
size (Kim et al., 2009), the SWAT ArcView GIS Patch II was developed for steep sloping
watersheds, and its performance was evaluated for various threshold values and DEM cell
size scenarios when delineating subwatersheds using the SWAT model (Kim et al., 2009).

2.2.2 Overview of the SWAT Model Calibration

The SWAT model requires a large number of input parameters, which complicates the
model parameterization and calibration (Arnold et al., 2012). Like the SWAT model,
the SWAT+ model has a lot of calibration parameters (i.e., more than one hundred
eighty six calibration parameters). The calibration parameters of the SWAT+ model are
stored in cal_parms.cal �le. Not all parameters of the SWAT+ model are clearly de�ned.
The SWAT+ Editor 2.1.4, SWAT+ Toolbox v1.0, and open source code of the SWAT+
rev.60.5.4 model de�ne some of the calibration parameters.

Table 2.1: Flow calibration parameters.

Parameters Symbol in
cal_parms.cal
�le

Recommended
range

Units

Leaf area index at which no evapo-
ration occurs from water surface

evlai 0 � 10 m2/m2

Calibration coe�cient used to con-
trol impact of the storage time
constant for low �ow (where low
�ow is when river is at 0.1 bankfull
depth) upon the km value calcu-
lated for the reach

msk_co2 0 � 10 null

17



Weighting factor control relative
importance of in�ow rate and out-
�ow rate in determining storage on
reach

msk_x 0 � 0.3 null

Calibration coe�cient to control
impact of the storage time constant
for the reach at bankfull depth

msk_co1 0 � 10 null

Surface runo� lag coe�cient surlag 1 � 24 hrs

Soil evaporation compensation fac-
tor

esco 0 � 1 null

Plant water uptake compensation
factor

epco 0 � 1 null

Soil water at CN3: 0=fc, 0.99=near
saturation

cn3_swf 0 � 1 null

Percolation coe�cient; adjusts soil
moisture for perc to occur (1.0 =
fc)

perco 0 � 1 null

Plant ET curve number coe�cient latq_co 0 � 1 null

Slope length for lateral subsurface
�ow

lat_len 1 � 150 m

Maximum canopy storage canmx 0 � 100 mm/H20

Reach evaporation adjustment fac-
tor

evrch 0.5 � 1 null

Initial soil water storage expressed
as a fraction of �eld capacity water
content

�cb 0 � 1 mm

The SCS curve number cn2 35 � 95 null

Manning coe�cient for overland
�ow

ovn 0.01 � 30 m1/3s

Available water capacity of the soil
layer

awc 0.01 � 1 mm_H20/mm

Base�ow alpha factor alpha 0 � 1 null

Minimum aquifer storage to allow
return �ow

�o_min 0 � 50 m

Saturated hydraulic conductivity of
soil layer

k 0 � 2000 mm/hr

Channel slope chs -0.001 � 10 m/m

Manning coe�cient in channel chn -0.01 � 0.3 s/m1/3

Channel hydraulic conductivity chk -0.01 � 500 mm/hr

Floodplain slope fps 1.1 � 1.9 m/m

18



Floodplain Manning's n fpn 0.01 � 0.5 s/m1/3

Equilibrium channel slope � � m/m

Channel side slope � � m/m

Channel width chw 0 � 1000 m

Channel depth chd 0 � 30 m

Channel length chl -0.05 � 500 km

Width-depth ratio wd_rto 0.5 � 20 m/m

Concentration coe�cient for tile
�ow and leach from bottom layer

� 0 � 1 �

Channel storage coe�cient � 0 � 1 null

Parameter for frozen soil adjust-
ment on in�ltration/runo�

� � �

Maximum initial abstraction for
urban areas when using Green and
Ampt

� 0 � 1 mm

PET adjustment fraction for
Penman-Montieth and Priestly-
Taylor methods

� 0 � 1 null

Exponential coe�cient for overland
�ow

� 1 � 3 null

Coe�cient related to radiation used
in Hargreaves equation

� � null

Table 2.2: Sediment calibration parameters.

Parameters Symbol in
cal_parms.cal
�le

Recommended
range

Units

Sediment concentration in lat-
eral �ow

lat_sed 0 � 5000 g/L

Average slope steepness in HRU slope 0.0001 � 0.9 m/m

Average slope length for erosion slope_len 10 � 150 m

Average distance to stream dis_stream 0 � 100000 m

Median particle diameter of
main channel

d50 0.00001 �
1000

mm

Linear parameter for calculating
the maximum amount of sed-
iment that can be reentrained
during channel sediment routing

spcon 0.0001 � 0.01 null
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Exponent parameter for calcu-
lating sediment reentrained in
channel sediment routing

spexp 1 � 1.5 null

Peak rate adjustment factor for
sediment routing in the main
channel

prf 0 � 2 null

Peak rate adjustment factor for
sediment routing in the subbasin
(tributary channels)

adj_pkr 0.5 � 2 null

USLE support practice factor usle_p 0 � 1 null

USLE soil erodibility factor usle_k 0 � 0.65 0.01∗
tons∗
acre∗
hour/acre∗
year∗
foot∗
tons∗
inch

Clay content clay 0 � 100 %

Silt content silt 0 � 100 %

Sand content sand 0 � 100 %

Rock fragment content rock 0 � 100 %

Soil bulk density bd 0.9 � 2.5 mg/m3

Organic carbon content cbn 0.05 � 10 %

Median sediment size d50 0.00001 �
1000

mm

Clay percent of bank and bed ch_clay 0 � 100 %

Carbon percent of bank and bed carbon 0 � 50 %

Dry bulk density ch_bd 0.9 � 1.9 g/cm3

Percent of sediment entering the
channel that is bed material

bedldcoef 0 � 1 %

Erodibility factor (0=non-erosive
channel; 1=no resistance to ero-
sion)

� � 0.01∗
tons∗
acre∗
hour/acre∗
year∗
foot∗
tons∗
inch

Cover factor (0=channel is com-
pletely protected from erosion by
cover; 1=no vegetative cover on
channel)

� � null

days of lateral soil �ow across
the hillslope

lat_ttime 0.5 � 180 days
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lateral soil �ow coe�cient - lin-
ear adjustment to daily lat �ow

latq_co 0 � 1 null

Residue cover factor for comput-
ing fraction of cover

� 0.1 � 0.5 null

Splash erosion coe�cient � 0.9 � 3.1 null

Rill erosion coe�cient � 0.5 � 2 null

Scaling parameter for cover and
management factor for overland
�ow erosion

� 0.001 � 0.45 �

Deposition coe�cient � � null

If data are available for each process (evapotranspiration, surface runo�, etc), the pro-
cess should be calibrated individually (Arnold et al., 2012). Stream�ow, sediment, and
nutrient transport should be calibrated sequentially (in that order); this is because of the
interdependencies between constituents due to shared transport processes (Arnold et al.,
2012). For the calibration of surface runo�, separating the base�ow and surface runo�
from the observed total daily stream�ow is recommended.

The process-based calibration should be done at a subwatershed or landscape level. This
is to ensure that variability in the predominant processes for each of the subwatershed
is captured instead of determining the global (watershed-wide) processes (Arnold et al.,
2012).

Users should check the water balance components (precipitation, evapotranspiration, per-
colation, surface runo� and lateral �ow) during the calibration process. This is to make
sure the predictions are reasonable for a study region or watershed (Arnold et al., 2012).

The temporal and spatial coverage of climate data used for both calibration and validation
should not be substantially di�erent, i.e., wet, moderate, and dry years occur in both
periods (Arnold et al., 2012). Some of the poorer testing results reported in the previous
SWAT model studies can be partially attributed to the inadequate spatial coverage of
precipitation inputs (Arnold et al., 2012). This is because an inadequate number of rain
gauges in simulated watershed con�gurations fails to capture the spatial detail of available
rainfall data.

Manual or partial calibration techniques may be used to calibrate the SWAT+ model. No
automatic calibration procedure can substitute for actual physical knowledge of watershed
processes (Arnold et al., 2012). To manually calibrate the SWAT+ model, we can use
the calibration.cal �le, where we de�ne calibration parameters. The potential automatic
calibration tools for the SWAT+ model are IPEAT+ (Yen et al., 2019), SWATplusR, R-
SWAT (Nguyen et al., 2022), SWATplus-CUP (licensed program), and SWAT+ Toolbox.

2.3 Regression Analysis

The relationship between independent and dependent variables is governed by accepted
scienti�c laws (Seber and Wild, 2003) or it is expressed by mathematical, statistical,
empirical, analytical, or numerical models. To �nd the best �t model to the measured
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data, parameters of the model can be estimated either through calibration or by regres-
sion analysis. The performance of the model is evaluated by using di�erent statistical
indicators.

Regression analysis, a technique for �nding the relation among variables, is important
to all scienti�c work where interpretations need to be drawn from measured data sets
(Wu and Yen., 1992). Barnes (1998); Finney (1996); Seal (1967); Stanton (2001) high-
lighted the history related to the regression analysis, and Fern andez-Delgado et al. (2019)
provided an extensive experimental survey of regression methods.

If the relationship between dependent and independent variables is known or their rela-
tionship is de�ned by a chosen model, parameters of the model can be determined by the
parametric regression method. The results of analyzing data using a parametric model
may heavily depend on the chosen model for regression and variance functions, more-
over also on a possibly underlying preliminary transformation of the variables (Bunke
et al., 1999). Non-parametric regression methods, on the other hand, have in general a
slower rate of convergence, but need no explicit speci�cation of the form of the regres-
sion function (Glad, 1998); the resulting curve is hence completely determined by the
data themselves (Glad, 1998). Di�erent types of parametric or non-parametric regression
methods, and their descriptions or applications are given by Fern andez-Delgado et al.
(2019); Li and Yin (2009); Linnet (1998); Lolli and Gasperini (2012); Özsoy and Örkçü
(2016); Qian and Reckhow (2005); Seber and Wild (2003); Wang and Du (2014); Yong
(2014).

The regression methods which can be used for both parametric and non-parametric re-
gression analysis are arti�cial neural network (Specht, 1991; Wu and Yen., 1992; Zhang
et al., 1998) and fuzzy regression method (Bárdossy et al., 1993; Hao and Chiang, 2008;
Yang and Lin, 2002). Compared to other regression approaches, the arti�cial neural net-
work is more appropriate than other approaches (Pao, 2008; Rahman and Asadujjaman,
2021; Wiese and Schaper, 1993). The arti�cial neural network was designed to study the
behavior of real, nonlinear, complex systems, and they are particularly e�ective in solving
problems where the correlations between the dependent and independent variables are
well-known (Kopal et al., 2022). However, their precise description by classical mathe-
matical methods is too complicated, too simpli�ed, or impossible (Du and Swamy, 2014;
Kopal et al., 2022) and they also embody much uncertainty and di�culty (Masters and
Land, 1997; Morala et al., 2021; Tomandl and Schober, 2001; Zhang et al., 1998). The
neural network model could be a more useful nonlinear regression tool if it successfully
incorporates human knowledge (heuristics) and other regression techniques (Wang, 1999).

2.4 Statistical Measures for the Evaluation of Model

Performance

We use di�erent statistical measures to judge model predictions. Some of these statistical
measures are correlation coe�cient, coe�cient of determination, Nash-Sutcli�e e�ciency,
root mean square error, volume error, a sum of square error, mean absolute error, per-
centage of bias, root mean square to standard deviation ratio, nonparametric tests, t-test,
sign test, median objective functions, auto-correlation, cross-correlation, and others.
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a) Coe�cient of determination

R2 =

(∑N
i=1

(
(Si − S̄)(Mi − M̄)

))2

∑N
i=1(Si − S̄)2

∑N
i=1(Mi − M̄)2

(2.43)

where, n is the number of observations, Mi is the i-th measured value, M̄ is the mean
observed value, Si is the i-th model-simulated value and S̄ is the mean model-simulated
value.

According to this measure, a correlation between observed and simulated data sets shows
0 ≤ R2 ≤ 1. For the best model prediction, the value of R2 is equal to one. For the
poorest model prediction, the value of R2 is zero.

b) Nash-Sutcli�e e�ciency

NSE = 1−
∑N

i=1(Si −Mi)
2∑N

i=1(Mi − M̄)2
(2.44)

According to this measure, a correlation between observed and simulated data sets shows
NSE ≤ 1. For the best model prediction, the value of NSE is equal to one. For the
poorest model prediction, the value of NSE is below zero.

c) Root mean square error

RMSE =

√√√√ 1

N

N∑
i=1

(Si −Mi)2 (2.45)

According to this measure, a correlation between observed and simulated data sets shows
RMSE ≥ 0. For the best model prediction, the value of RMSE is equal to zero.

d) Sum of square error

SSE =
N∑
i=1

(Si −Mi)
2 (2.46)

According to this measure, a correlation between observed and simulated data sets shows
SSE ≥ 0. For the best model prediction, the value of SSE is equal to zero.

e) Mean absolute error

MAE =
1

N

N∑
i=1

| Si −Mi | (2.47)

According to this measure, a correlation between observed and simulated data sets shows
MAE ≥ 0. For the best model prediction, the value of MAE is equal to zero.

f) Volume error

V E =

∑N
i=1 Si∑N
i=1 Mi

(2.48)

According to this measure, a correlation between observed and simulated data sets shows
V E ≥ 0. For the best model prediction, the value of V E is equal to one. If the value of
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V E is greater than one, it shows an overprediction of the model. Whereas, if the value
of V E is less than one, it shows an underprediction of the model.

g) Percentage of bias

PBIAS =

∑n
i=1(Mi − Si) ∗ 100∑n

i=1Mi

(2.49)

The percentage of bias measures the average tendency of the simulated data to be larger
or smaller than their observed counterparts (Gupta et al., 1999). According to this
measure, a correlation between observed and simulated data sets shows PBIAS ≤ 1.
For the optimal model prediction, the value of PBIAS is equal to zero.

h) Root mean square to standard deviation ratio

PSR =

∑n
i=1(Mi − Si)

2√∑n
i=1(Mi − M̄)2

(2.50)

According to this measure, a correlation between observed and simulated data sets shows
PSR ≥ 0. For the best model prediction, the value of PSR is equal to zero.

In general, both NSE and R2 are biased toward high �ows (Arnold et al., 2012). Co�ey
et al. (2004) recommended R2 and NSE for analyzing the monthly output. The median
objective functions, sign test, auto-correlation, and cross-correlation for assessing daily
output (Co�ey et al., 2004). To date, no absolute criteria for judging model performance
have been �rmly established in the literature, and for a good reason: the criteria for
judgment of model performance should be tied to the intended use of the model (Arnold
et al., 2012; Engel et al., 2007).
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3. METHODOLOGY

3.1 Descriptions of Study Areas

To begin our work, we considered four watersheds such as Gumera Watershed in Abbay
River Basin, Gilgel Gibe 1 Watershed (at Assendabo) in Omo-Gibe River Basin, and
Hombole and Mojo Watersheds in Upper Awash River Basin, in Ethiopia, as shown in
�gure 3.1.

Figure 3.1: The geographical location of study areas

We describe the topography, hydro-climate, land use, and soil of the study areas based
on data prepared or obtained from di�erent sources. Therefore, the descriptions of the
study areas are based on the DEM which were downloaded from the US Geological Survey;
climatic data which were obtained from the National Meteorology Agency of Ethiopia;
�ow and sediment data which were obtained from the River Basin Authority of Ethiopia;
soil and land use maps which were prepared from di�erent sources by comparative and
logical approaches. To identify the boundary of the river basin or watershed, streams
are generated by delineating DEM in the SWATplus-QGIS plugin, and then the streams'
shape�le is exported to the Google Earth Pro as Keyhole Markup Language to identify
the outlet point of the watershed, and then the watershed is delineated by using its outlet
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point, and its shape�le is exported to the Google Earth Pro as Keyhole Markup Language
to identify its geographic boundary(it is important to note that the delineated watershed
should be surrounded by the streams that were generated at the previous step).

Figure 3.2: The monthly average rainfall of each watershed under our consideration.

Figure 3.3: The monthly average out�ow at the main outlet point of each watershed
under our consideration.

3.1.1 Upper Awash River Basin

Upper Awash River Basin drains into Koka hydroelectric power reservoir. Its geographic
boundary lies between latitude 8.1036°N � 9.305°N and longitude 37.950°E � 39.295°E,
and its main outlet point lies at latitude 8.468521°N and longitude 39.156143°E. The
basin comprises two main gauged watersheds: Hombole and Mojo Watersheds which
cover 65.26% and 12.87% of the total area of the basin respectively, and the basin also
includes the ungauged watershed which covers 21.87% of the total area of the basin. The
total drainage area of the basin is estimated to be 11,680 km2.

In the basin, there are active socio-economic activities like agricultural, industrial, and
commercial activities. On the other angle, the basin experienced catastrophic �ooding,
and land degradation problems due to severe gully erosion. The gully erosion assessment
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in the basin was reported by Krop a£ek et al. (2016). Just to report average and extreme
events in the basin based on the available records (it is important to note that missing
records are not considered), the maximum daily rainfall had been recorded over twenty-
seven gauging stations within the record period from 1986 � 2020 is 5,039 mm, and the
average of the records is 71.6 mm. The list of these stations is given in the appendix
(see table A1). The daily maximum and minimum temperatures had been recorded over
thirteen stations within the record period from 1986 � 2020 are 43.40°C and � 8.40°C,
and the average of the maximum and minimum temperature records are 26.54°C and
10.90°C respectively. The list of these stations is given in the appendix (see table A1).
The maximum and minimum relative humidity had been recorded at either of the Addis
Ababa (lat. 9.01891°N and log. 38.7475°E) or Debre Zeit stations (lat. 8.733333°N and
log. 38.95°E) within the record period from 1986 � 2012 are 100% and 1% respectively,
and the average of the records is 58.23%. The maximum wind speed and the maximum
sun hours duration had been recorded at the Debre Zeit(AF) station within the record
period from 1994 � 2005 and 1994 � 2013 are 8.30 m/s and 12.60 hrs, and the average of
the wind speed and sun hours duration records are 1.40 m/s and 7.98 hrs respectively.

For the Hombole Watershed, the average, maximum and minimum elevations are 2,354
m, 3,565 m, and 1,699 m above sea level respectively. The daily maximum and minimum
out�ow had been recorded at the main outlet of the watershed within the record period
from 1990 � 2016 are 803.10 m3/s and 0.402 m3/s respectively, and the average of the
records is 43.20 m3/s provided that the missing records are not considered. The monthly
average rainfall, and monthly average out�ow at the main outlet point of the watershed
are given in the �gures 3.2 and 3.3 respectively (note: rainfall stations that lie inside
and near the watershed, and those stations which have the record length from 15 to 35
years are considered to calculate a simple arithmetic average for the sake of comparison
purpose). The maximum and minimum suspended sediment concentrations had been
recorded at the main outlet of the watershed within the record period from 1989 to 2015
are 18.530 kg/m3 and 0.136 kg/m3 respectively, and the average of the records is 1.5
kg/m3 provided that only available records are considered. The dominant soil types are
Eutric Vertisols and Haplic Nitisols which cover 57.30% and 17.77% of the total area of
the watershed respectively. Land-use changes had been observed in the watershed at four
time periods, the dominant land use class is agricultural land; it covers 85.70% of the
total watershed area in the time period from 1989 to 2000, 88.25% in the time period
from 2001 to 2008, 86.52% in the time period from 2009 to 2012, and 86.26% in the time
period from 2013 to 2015.

For the Mojo Watershed, the average, maximum and minimum elevations are 2,140.4 m,
2,932 m, and 1,739.86 m above sea level respectively. The daily maximum and minimum
out�ow had been recorded at the main outlet of the watershed within the record period
from 1990 � 2016 are 511.189m3/s and 0m3/s respectively, and the average of the records
is 17.21 m3/s provided that the missing records are not considered. The monthly average
rainfall, and monthly average out�ow at the main point of the watershed are given in
the �gure 3.2 and 3.3 respectively (note: rainfall stations that lie inside the watershed,
and those stations which have the record length from 15 to 35 years are considered
to calculate the simple arithmetic average). The maximum and minimum suspended
sediment concentrations had been recorded at the main outlet point within the record
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period from 1989 to 2015 are 37.66 kg/m3 and 0.16 kg/m3 respectively provided that only
available records are considered. The dominant soil types are Vertic Cambisols and Eutric
Vertisols which cover 46.80% and 45.06% of the total area of the watershed respectively.
Land-use changes had been observed in the watershed at four time periods; the dominant
land use class is agricultural land; it covers 95.18% of the total watershed area in the
time period from 1989 to 2000, 95.39% in the time period from 2001 to 2008, 93.85% in
the time period from 2009 to 2012, and 93.82% in the time period from 2013 to 2015.

3.1.2 Gumera Watershed

Gumera Watershed drains into Lake Tana. Its geographic boundary lies between latitude
11.574°N � 11.9052°N and longitude 37.6308°E � 38.1852°E , and its main outlet point lies
at latitude 11.83°N and longitude 37.6299°E. The total drainage area of the watershed is
estimated to be 1,278 km2. The average, maximum and minimum elevations are 2,260
m, 3,654 m, and 1,796 m above sea level respectively.

Just to report average and extreme events in the watershed based on available records (it
is important to note that missing records are not considered), the maximum daily rainfall
had been recorded over seven gauging stations within the record period from 1986 � 2020
is 3,736 mm, and the average of the records is 100 mm. These stations are listed in
the appendix (see table A2). The daily maximum and minimum temperatures had been
recorded over �ve stations within the record period from 1986 � 2019 are 39.7°C and
-6.3°C , and the average of the maximum and minimum temperature records are 25.38°C
and 10.02°C respectively. These stations are listed in the appendix (see table A2). The
maximum and minimum relative humidity had been recorded at Debre Tabor station
(lat. 11.8666°N and log. 37.9954°E) within the record period from 1988 to 2019 are
100% and 4% respectively, and the average of the records is 64.19%. The maximum
wind speed and the maximum sun hours duration had been recorded at the Debre Tabor
station within the record period from 1988 � 2018 and 1993 � 2019 are 18.3 m/s and 11.7
hrs, and the average of the wind speed and sun hours records are 1.1 m/s and 7.01 hrs
respectively. The daily maximum and minimum out�ow had been recorded at the main
outlet of the watershed within the record period from 2000 � 2017 are 307.937 m3/s and
0 m3/s respectively, and the average of the records is 44.97 m3/s. The maximum and
minimum suspended sediment concentrations had been recorded within the record period
from 1990 � 2017 are 10.07 kg/m3 and 0.17 kg/m3 respectively, and the average of the
records is 3.43kg/m3. The monthly average rainfall, and monthly average out�ow at the
main outlet point of the watershed are given in the �gure 3.2 and 3.3 respectively (it is
to note that rainfall stations that lie inside and near the watershed, and those stations
which have the record length from 15 to 35 years are considered to calculate a simple
arithmetic average). The dominant soil type is Haplic Luvisols which covers 69.50% of
the total area of the watershed. Land-use changes had been observed in the watershed
at two time periods, the dominant land use class is agricultural land; it covers 84.33% of
the total watershed area in the time period from 1989 to 2009, and 88.34% in the time
period from 2010 to 2015.
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3.1.3 Gilgel Gibe 1 Watershed

Gilgel Gibe 1 Watershed drains into Gilgel Gibe 1 hydroelectric power reservoir. Its
geographic boundary lies between latitude 7.3332°N � 7.995°N and longitude 36.515°E �
37.215°E, and its main outlet point lies at latitude 7.75°N and longitude 37.18299°E. The
total drainage area of the watershed is estimated to be 2928 km2. The average, maximum
and minimum elevations are 1,973 m, 3,141 m, and 80 m above sea level respectively.

Just to report average and extreme records in the watershed based on available records (it
is to note that missing records are not considered), the maximum daily rainfall had been
recorded over nine gauging stations within the record period from 1986 � 2020 is 6,317
mm, and the average of the records is 111 mm. These nine gauging stations are listed in
the appendix (see table A3). The daily minimum temperature had been recorded over
�ve stations within the record period from 1986 � 2020 is 0°C, and the average of the
maximum and minimum temperature records are 26.1°C and 12.47°C respectively. These
�ve gauging stations are listed in the appendix (see table A3). The daily maximum
and minimum out�ow had been recorded at the main outlet of the watershed within the
record period from 2000 � 2015 are 269.54 m3/s and 1.67 m3/s respectively, and the
average of the records is 40.97 m3/s. The maximum and minimum suspended sediment
concentrations had been recorded within the record period from 1990 � 2017 are 0.90
kg/m3 and 0.12 kg/m3 respectively, and the average of the records is 0.43 kg/m3. Monthly
average rainfall, and monthly average out�ow at the main outlet point of the watershed
are given in the �gures 3.2 and 3.3 respectively (it is to note that rainfall stations that
lie inside and near the watershed, and those stations which have the record length from
15 to 34 years are considered to calculate a simple arithmetic average). The dominant
soil types are Humic Nitisols and Mollic Fluvisols which cover 52.86% and 25% of the
total area of the watershed. Land-use changes had been observed in the watershed at
two time periods; the dominant land use class is agricultural land; it covers 90.23% and
91.953% of the total watershed area in the time period from 1989 � 2009 and 2010 � 2015
respectively.

3.2 Data Preparation, Review and Analysis

Some of the input data for our research works are soil, land use, stream network, climate,
�ow, and sediment data. We prepare soil, land use, and stream network data; we review
the interdependence between climate, �ow, sediment, and land use change for the data
quality check, and we prepare sediment rating curves.

3.2.1 Preparation of Soil Maps

Soil data is required to estimate the soil erodibility factor of the MUSLE. The necessities
of preparing soil maps are to assign a speci�c type of soil from a general category of
the soil and to maintain the spatial variability of soil. For all our watersheds, national
soil maps of Ethiopia, which we obtained recently from the River Basin Authority of
Ethiopia, show the general category of soil. To assign a speci�c type of soil, we locate
the shape�le of each watershed on a harmonized world soil data map, and we clip the
harmonized world soil data map to the size of our watersheds in the QGIS environment.
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Then, we compare the national soil maps of Ethiopia, the harmonized world soil map,
and the �eld observation report from the International Soil Reference and Information
Centre on QGIS. Particularly for the Upper Awash River Basin, we have two soil maps
that were prepared at di�erent times from the River Basin Authority of Ethiopia. Based
on these two soil maps, we maintain the spatial variability of soil right after the speci�c
type of soil was assigned by locating an areal coverage of the speci�c type of soil on the
old map that completely lies inside a large area of another speci�c type of soil on the
current soil map. Therefore, the soil maps of each watershed, which are �nally prepared,
are given in �gures 3.4 � 3.6.

Figure 3.4: Soil maps of the Hombole and Mojo Watersheds.

Figure 3.5: Soil map of the Gumera Watershed .
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Figure 3.6: Soil map of the Gilgel Gibe 1 Watershed.

3.2.2 Preparation of Land Use Maps

Preparation of land use data is necessary to estimate the cover and conservation prac-
tice factors of the MUSLE. Based on our assessment of land use and land cover by the
support of Google Earth Pro, Planet Explorer, literature review (e.g., Bogale (2020);
Shawul et al. (2019); Tadese et al. (2020)), and land use maps from the River Basin
Authority of Ethiopia, land-use change has been observed in the study areas. As the
basis of classi�cation of land use maps, dominant land use classes are categorized at 30 m
spatial resolution. This is an acceptable level of spatial dimension to consider the spatial
variability of land use at a tolerable level of accuracy. As a result, land use maps of each
watershed are prepared based on a comparative approach and logical sequence.

To prepare land use maps by the comparative approach, sample geographic coordinate
points with de�ned land use classes are collected from the Global land service map; forest
and agricultural land on historical imagery in the Google Earth Pro at di�erent acquisition
dates are digitized. A time demarcation of the land-use change classi�cation depends on
a number of available baseline land use maps per watershed, the time boundary of the
Global land service maps, and historical imagery in the Google Earth Pro. As a result,
the time demarcations of land-use changes for the Hombole and Mojo Watersheds are
1989 � 2000, 2001 � 2008, 2009 � 2012, and 2013 � 2015 and for the Gumera and Gilgel
Gibe 1 Watersheds are 1989 � 2009 and 2010 � 2015.

During the comparison of the above land use data �les with the baseline national land
use maps of Ethiopia on QGIS and Google Earth Pro; the vector data �les are converted
from the shape�le to the Keyhole Markup Language (KML) and vice versa. To prepare
a land use map by the logical sequence, we check whether a change in land-use from one
class to another is possible or not (for example, is the change from urban to agriculture
possible?) such as the comparison of di�erent land use data �les that were prepared or
acquired from di�erent sources at the speci�ed time demarcation.

Particularly for the Upper Awash River Basin, land use classes, found on the previous
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baseline map but not on the latter map, are included on the latter map based on the
logical sequence, and vice versa. Furthermore, also missing land use classes, such as water
bodies, are added on either of the maps during the comparison of the maps with other
sources, such as historical imagery in Google Earth Pro, while following these procedures,
the land use maps that are �nally prepared for each watershed are given in �gures 3.7 �
3.14.

Figure 3.7: Land use map of the Hombole and Mojo Watersheds from 1989 to 2000.

Figure 3.8: Land use map of the Hombole and Mojo Watersheds from 2001 to 2008.
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Figure 3.9: Land use map of the Hombole and Mojo Watersheds from 2009 to 2012.

Figure 3.10: Land use map of the Hombole and Mojo Watersheds from 2013 to 2015.

Figure 3.11: Land use map of the Gumera Watershed from 1989 to 2009.
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Figure 3.12: Land use map of the Gumera Watershed from 2010 to 2015.

Figure 3.13: Land use map of the Gilgel Gibe 1 Watershed from 1989 to 2009.

Figure 3.14: Land use map of the Gilgel Gibe 1 Watershed from 2010 to 2015.

3.2.3 Preparation of Stream Networks

We use the DEM to delineate a watershed and to generate streams. Based on the DEM
alone, generating a proper stream direction in a �ood plain is di�culty. In real situations,
meandering in an alluvial area and construction of diversion structures change the normal
course of a river or stream direction that may not be addressed by delineating the DEM
alone. Therefore, to guide the stream direction during the delineation of the watershed,
we should include a separate streams shape �le. We need this �le as input data during the
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application of the SWAT+model (see section 3.8.2). The stream networks of the Hombole
Watershed are given in �gure 3.15. For other watersheds under our consideration, we do
not need to prepare stream networks (see section 3.8.1).

Figure 3.15: Streams networks of the Hombole Watershed.

In �gure 3.15, the red color indicates the stream networks that were generated from
the DEM whereas the green color indicates the stream networks that we prepared by
digitizing the satellite image of the Google Earth Pro.

3.2.4 Data Review

It is essential to review data based on both quality and quantity perspectives for the
selection or de�nition of an appropriate modeling approach. From this perspective, we
assess the distribution and density of climatic stations and the relationship between rain-
fall, �ow, sediment, and land use change. We use the Thiessen polygon to represent the
area coverage of each climatic station. The distributions of the climatic stations of each
watershed are given in �gures 3.16 � 3.18.
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Figure 3.16: Distributions of climatic stations for the Hombole and Mojo Watersheds

Figure 3.17: Distribution of climatic stations for the Gilgel Gibe 1 Watershed
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Figure 3.18: Distribution of climatic stations for the Gumera Watershed

From �gures 3.16 � 3.18, we can see that the parts of the watersheds which fall outside
the Thiessen polygon. According to the Thiessen polygon, the existing climatic stations
particularly for the Mojo and Gilgel Gibe 1 Watersheds are not enough to cover all areas.

Since rainfall, �ow, sediment, and land use change are interrelated processes, we use
graphs to study a logical relationship between monthly or daily average rainfall, �ow,
suspended sediment concentration data, and land use change.

Figure 3.19: The relationship between monthly average rainfall, �ow and suspended
sediment concentration for the Hombole Watershed
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Figure 3.20: The relationship between daily average rainfall, �ow and suspended sedi-
ment concentration and land use change for the Hombole Watershed.

From �gure 3.19, we can see that there is a signi�cant direct relationship between monthly
average rainfall and �ow. From �gure 3.20, we can see that there is a signi�cant direct
relationship between daily rainfall and daily average �ow regardless of land use change.
In the �gure, there is an insigni�cant di�erence between the daily average �ow and
the average �ow corresponding to the suspended sediment concentration; there is also a
signi�cant direct relationship between the daily rainfall, the average �ow and sediment in
the period between 1989 � 2000. Based on �gure A1, we do not see land use change in this
period (i.e., between 1989 � 2000). There is insigni�cant indirect relationship between
the monthly average rainfall/�ow and sediment (see the highlighted data points in �gure
3.19). But, there is a signi�cant indirect relationship between the daily rainfall/�ow and
sediment in the record period between 2007 � 2009 (see the highlighted data points in
�gure 3.20). This may be because of land use change (i.e., we see less agricultural and
more urban areas in the period between 2007 � 2009 as compared with an agricultural
and urban land areal coverage in the period between 1989 � 2000 (see �gure A1).
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Figure 3.21: The relationship between monthly average rainfall, �ow and suspended
sediment concentration for the Mojo Watershed

Figure 3.22: The relationship between daily average rainfall, �ow and suspended sedi-
ment concentration and land use change for the Mojo Watershed

From �gures 3.21, we can see that there is a direct relationship between monthly aver-
age rainfall and �ow; there is a signi�cant irregular relationship between the monthly
rainfall/�ow and sediment. From �gure 3.22, there is a signi�cant di�erence between
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daily rainfall, daily average �ow, and the average �ow corresponding to the suspended
sediment concentration. For example, if we consider two record periods August 5, 1994,
and August 30, 1994, the daily rainfall increased; the daily average �ow decreased; the
�ow corresponding to the suspended sediment concentration increased; there is a signi�-
cant di�erence between the daily average �ow and the average �ow corresponding to the
suspended sediment concentration; there is a signi�cant change in the daily rainfall from
0 to 381 mm. Based on �gure A2, we do not see land use change in the period between
August 5 and 30, 1994. If we consider two record periods August 7 and 15, 1996, the daily
rainfall decreased; the daily average �ow increased; the average �ow corresponding to the
suspended sediment concentration decreased; there is a signi�cant di�erence between the
daily average �ow and the average �ow corresponding to the suspended sediment con-
centration; there is a signi�cant decrease in the daily rainfall. Based on �gure A2, we do
not see land use change in the period between August 7 and 15, 1996. In general, there
is an irregular relationship between the daily rainfall/�ow and sediment.

Figure 3.23: The relationship between monthly average rainfall, �ow and suspended
sediment concentration for the Gilgel Gibe 1 Watershed
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Figure 3.24: The relationship between daily average rainfall, �ow and suspended sedi-
ment concentration and land use change for the Gilgel Gibe 1 Watershed

From �gures 3.23, there is a direct relationship between monthly average rainfall and
�ow. From �gures 3.24 and 3.23, there is an irregular relationship between daily or the
monthly average rainfall/�ow and sediment. There is a signi�cant di�erence between
the daily average �ow and the average �ow corresponding to the suspended sediment
concentration.
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Figure 3.25: The relationship between monthly average rainfall, �ow and suspended
sediment concentration for the Gumera Watershed

Figure 3.26: The relationship between daily average rainfall, �ow and suspended sedi-
ment concentration and land use change for the Gumera Watershed

From �gure 3.25, there is a direct relationship between monthly rainfall and �ow. There
is an insigni�cant indirect relationship between the monthly average rainfall/�ow and
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sediment (see the highlighted data points in �gure 3.25). From �gure 3.26, there is an
irregular relationship between daily rainfall/�ow and sediment. There is a signi�cant
di�erence between the daily average �ow and the average �ow corresponding to the
suspended sediment concentration.

From the above relationships (for all watersheds), the irregular relationship between the
daily or monthly rainfall/�ow and sediment may be linked to the temporal and spatial
variation of �ood or erosion control works, the temporal and spatial scale of the land use
change, and very limited suspended sediment concentration data for the calculation of
the monthly average suspended sediment concentration. The direct relationship between
the monthly average rainfall and �ow, and the irregular relationship between the daily
average rainfall and �ow may be linked to the data manipulation. For instance, in a daily
data record, over and underestimation is common; if the daily data is expressed in terms
of monthly or yearly data, over and underestimation may balance each other. Therefore,
in terms of data point of view (i.e., both quality and quantity perspective), sediment
yield estimation at monthly time step is preferred.

3.2.5 Preparation of Sediment Rating Curves

A sediment rating curve is required to generate sediment data from corresponding �ow
data. The linear regression equation and nonlinear regression equations, such as power
function, the second and third-order polynomial function can be used to model the sed-
iment rating curve (e.g., Horowitz (2003)). Di�erent authors indicate that the power
function is a commonly used nonlinear regression approach to model the sediment rating
curve (e.g., Asselman (2000); Hapsari et al. (2019); Heng and Suetsugi (2014)). The power
function is given by:

C = aQb (3.1)

where C is the suspended sediment load or concentration, Q is the discharge, a is the co-
e�cient, and b is the exponent. Di�erent authors reviewed physical meanings associated
with the coe�cient a, and the exponent b (e.g., Efthimiou (2019); Heng and Suetsugi
(2014); Talebia et al. (2015)). Accordingly, the coe�cient a represents an index of soil
erodibility, whereas the exponent b is considered as an index of erosivity and transport
capacity of a river. Thus, the power function can be derived by interpreting or deduct-
ing the MUSLE, where its topographic, soil erodibility, cover, and conservation practice
factors describe a site-speci�c condition of a given watershed, and these factors a�ect the
coe�cient a of the power function at de�ned hydro-climatic conditions.

For the sake of simplicity of regression analysis, the nonlinear regression equation (in our
case, the power function) can be transformed to the simple linear regression equation by
log-transform of both sides of the nonlinear equation. Accordingly,

log(C) = log(a) + blog(Q) (3.2)

If y = log(C), d = log(a) and x = log(Q) then, y = bx+ d (3.3)

The Least Squares, Reduced Major Axis Line (R.M.A.L) or other regression methods can
be applied to �nd the best-�t regression line on logarithms of the suspended sediment load
or concentration and discharge data, and back transform of the linear equation results
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in the power function. Despite that there are no generally accepted procedures to model
the sediment rating curve, we proceed with the Least Squares regression method, which
is based on the minimum sum of squared errors to estimate the coe�cient b and the
constant d of the best-�t linear regression equation on logarithms of suspended sediment
concentration and discharge data.

b =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(3.4)

d = ȳ − bx̄ (3.5)

Apart from choosing sediment load�discharge (Balamurugan, 1989), logged mean loads
within discharge classes (Talebia et al., 2015) or sediment concentration�discharge (Horowitz,
2003) approaches, correction factors (y = CF ∗aQb) (e.g., Asselman (2000); Talebia et al.
(2015)) and power function with some additive constant (Asselman, 2000; Doomen et al.,
2008) can be used to improve the sediment rating curve. Furthermore, to improve the
sediment rating curve, we may use the data consistency or homogeneity test in order to
determine the data classes at speci�c hydro-climatic conditions.

While considering the above advantages and limitations to model the sediment rating
curve, the relationship between discharge and the suspended sediment concentration
rate is checked against land-use changes, seasonal weather variations or rainfall patterns,
and period of land tillage. Accordingly, the sediment rating curve that is drawn while
considering the rainfall and discharge relationship for the Gilgel Gibe 1 Watershed, shows
some improvement provided that one extreme discharge 319.65 m3s−1 on 23 August 2009
(no similar record in the daily average discharge from 1990 to 2015), which corresponds
to the suspended sediment concentration 0.53 kgm−3, is removed from the records as part
of the data quality check.

In addition, some data replication was possible for improving the sediment rating curve
due to the assumption that two measurements that were taken at very small time di�er-
ences were almost the same, as we only considered a pattern of the record rather than
a period of the record, and the data record also did not show watershed information.
Accordingly, the sediment rating curve is drawn for the Gumera Watershed, showing
some improvement (the change in the coe�cient of determination is from R2 = 0.324 to
R2 = 0.5091).

For the Hombole and Mojo Watersheds, the sediment rating curves are drawn without
any pre-conditions. This is because the above pre-conditions do not work for these two
watersheds. For the Mojo Watershed, two inconsistent records of the rainfall (extremely
large and small), �ow and sediment on 7 August 1996 and 6 August 2003, are removed
from the records as part of the data quality check. The sediment rating curves of all
watersheds are given in �gure 3.27.
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Figure 3.27: Sediment rating curves for each watershed under our consideration.

3.3 General Considerations for Regionalizing or Im-

proving the MUSLE

We take into account the simulation time step, HRU, and calibration parameters to
regionalize or improve the MUSLE.

a) Consideration of the simulation time step

Daily sediment yield may not re�ect daily watershed information such as land cover,
soil erodibility, and conservation activities. The reason for this can be soil erosion, sedi-
ment transport, deposition, consolidation, and re-suspension are quite complex processes,
which depend on physical, biological, mechanical, and chemical activities within a large
heterogeneous watershed. Due to these complex processes, the soil that was eroded at
an unknown last time can be transported, deposited, consolidated, re-suspended, and
reached an outlet at a di�erent time. Therefore, measured sediment at the outlet at
the current time may not re�ect the current information about the watershed; it rather
re�ects the unknown last time. This may be because sediment that was deposited along
the length and the bottom of the slope by small runo� energy at a previous time, can
be transported by high runo� energy at the current time. In the original development
of the USLE, the annual soil erodibility factor was taken to compute the annual soil loss
from the unit plot. Based on Wischmeier and Smith (1978) formulation, we can conclude
that the annual soil erodibility is the average of soil erodibility ranging from loose to
compacted soil due to rainfall impact. As the soil erodibility factor of the USLE and
MUSLE is the same, the annual time step is preferred over the daily time step (in the
case of SWAT model). The annual simulation time step enables us to take into account
gully erosion (gully erosion is usually estimated on an annual basis (Soil Conservation
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Service, 1966); it is important to note here that gully erosion is a common problem in
Ethiopia ( eg.,Amare et al. (2021); Frankl et al. (2014); Haregeweyn et al. (2015, 2017);
Krop a£ek et al. (2016))); to take into account gradual soil erosion process, and gradual
changing activities like cyclic behavior of agricultural activities, conservation practice,
�ood protection activities, plant growth and harvest with respect to rainfall pattern and
extreme events in a one-year full cycle.

b) Consideration of the HRU

If we consider the HRU in the SWATmodel environment, as the number of HRUs becomes
larger and larger, we better take into account spatial variability of land use, soil, and
slope all over the watershed. To test the MUSLE at a watershed scale, sediment or �ow
routing in stream channels of SWAT model is not considered (it is important to note here
that there is uncertainty in the de�nition of a channel, channel width, and depth in the
SWAT model environment). Therefore, we only considered HRU to calculate the areal
weighted average to capture the spatial variation of soil, cover, conservation practice, and
topography.

c) Consideration of the calibration parameters

All parameters (a, b,Q, q,K, L, S, C, P ) of the MUSLE can potentially be used for calibra-
tion and validation (Pongsai et al., 2010). An et al. (2016) conducted global sensitivity
analysis (Monte Carlo sampling) of the parameters of the MUSLE by using the extended
Fourier amplitude sensitivity test (EFAST) method. Accordingly, the exponent b is the
most sensitive parameter to predict the amount of soil loss, followed by P, a, LS, C
and q, and K's in�uencing variables such as organic matter, soil structure class, and soil
permeability class. In addition, Odongo et al. (2013) used Sobol's sensitivity analysis
and found that the coe�cient a and the exponent b are the most sensitive parameters
of the MUSLE model contributing about 66% of the variability in the output sediment
yield, at upper Malewa catchment in Kenya. On a storm event basis, Adegede and Mba-
jiorgu (2019) estimated the location parameters (a = 12.4 and b = 0.51) of the MUSLE
for Ofuloko Watershed in Nigeria. In some studies, only the exponent of the model was
calibrated, which is logically more acceptable as reviewed and reported by Sadeghi et al.
(2014). The calibrated sediment does not re�ect the actual soil erodibility and conser-
vation practice factors on the ground unless otherwise they are measured. To accept
our calibration, we should also check the calibrated value of the soil erodibility and con-
servation practice factors against the actual ones on the ground. This is because their
product e�ect is re�ected in the MUSLE rather than their individual e�ect during the
calibration of sediment yield. Unless otherwise, we can not reach a certain conclusion
that how these factors are really a�ecting the soil erosion process. For a given uniform
watershed, the temporal variation of the soil erodibility, cover and conservation practice
factors is expected. As the temporal variation of these factors is di�cult to measure in a
large watershed, we may estimate them through calibration. But, it is highly preferable
if these factors are measured and studied at a temporal and spatial scale to understand
their e�ect on soil erosion in a particular �eld. Any change in these factors a�ects the
coe�cient of the MUSLE, this is because only a product e�ect of the coe�cient and
these factors is re�ected in the MUSLE rather than their individual e�ect during the
calibration of sediment yield. As compared to the other parameters of the MUSLE, the
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individual e�ect of the exponent of the MUSLE is re�ected during the calibration of
sediment yield. Therefore, estimating the exponent of the MUSLE through calibration is
more feasible than other parameters of the MUSLE. For a given uniform watershed, the
topographic factor does not change with time (i.e it has a constant e�ect), the e�ect of
the topographic factor can be seen when the MUSLE is applied at di�erent watersheds.
From this explanation, the independent e�ect of the exponent and topographic factor
of the MUSLE can be seen by applying the model at di�erent watersheds. In general,
runo� and sediment data re�ect hydro-climatic conditions of a particular area, which
independently a�ect the overall calibration process.

3.4 Regionalizing the MUSLE under the Hydro-climatic

Conditions of Ethiopia

To regionalize the MUSLE under the hydro-climatic conditions of Ethiopia, we estimate
the best exponent of the MUSLE, and we estimate the best combination of the exponent
and topographic factor of the MUSLE by applying the model at di�erent watersheds of
Ethiopia. For the sake of the calibration procedure, the main factors of the MUSLE which
directly a�ect the soil erosion process such as cover, conservation practice, soil erodibility,
and topographic factors are estimated based on past experiences from literature and
comparative approaches, whereas the parameters which do not directly a�ect the soil
erosion process or which have no direct physical meaning (i.e coe�cient a and exponent
b) are estimated through calibration.

3.4.1 Estimating the Factors of the MUSLE

The original factors of the USLE represent the average value to estimate the annual
sediment yield. The unit plot (Wischmeier and Smith, 1978) represents the worst case
for the maximum soil erosion at a given rainfall event. It is practically impossible to
directly measure each �eld slope, slope length, the temporal variation of soil erodibility,
instantaneous runo�, cover change, and conservation practice for a large watershed. In the
actual �eld, the �eld slope and length are not uniform, which means they are irregular.
The topographic, soil erodibility, and cover and conservation practice factors depend on
the spatial resolution of the DEM, soil, and land use maps, respectively.

Therefore, in the actual sediment modeling, average �eld slope length (Desmet and Gov-
ers, 1996) and slope steepness or simply topographic factor (Pongsai et al., 2010), average
runo�, average soil erodibility factor (Gwapedza et al., 2018), and average cover and con-
servation practice factors are taken.

a) Estimation of the runo� factor

To estimate the runo� factor, the peak runo� rate and/or volume of runo� can be ob-
tained by direct measurement of the runo� on a storm-event basis, as well as using indirect
methods, such as the Soil Conservation Service Curve Number (SCS CN) method, Ratio-
nal method, �ood routing, unit hydrograph, etc. In our case, we used the daily average
discharge to estimate the annual total runo� volume and yearly peak runo� rate for the
annual sediment yield estimation. The reasons for why we use directly measured �ow
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data and why we estimate the annual sediment yield are addressed above.

b) Estimation of the soil erodibility factor

To choose the soil erodibility equations on the basis of the original de�nition of the soil
erodibility by Wischmeier and Smith (1978), the following conditions should be ful�lled.
From the MUSLE,

K =
y

a(Qq)b ∗ LSCP
(3.6)

where K represents the worst condition for the maximum erosion case when the slope-
�eld length is 22.13 m and the slope angle is 9%. In this case, no cover and conservation
practices are employed in the �eld to give protection against soil erosion; the land is tilled
up and down the slope, and therefore the maximum erosion is expected. In the above
equation, K represents the maximum erosion case when the observed sediment yield (y)
is due to soil erosion from a �eld with a speci�ed slope length, slope angle, cover, and
conservation practice.

If we take C = P = 1, K represents the maximum erosion from the �eld with the speci�ed
slope length and angle. However, our observed sediment yield does not represent the worst
conditions for the maximum erosion case; we have some magnitude of the cover and soil
conservation practice to give protection against soil erosion, and land is not tilled up and
down the slope. Therefore, in this case, K represents the minimum value as compared
to the actual value that will be obtained from the soil erodibility equation for the worst
conditions for the maximum soil erosion case (Keq)

Kmin =
y

aQbLS
<< Keq. (3.7)

For our watersheds, the minimum K value is calculated by replacing the annual sedi-
ment load, out�ow volume, and topographic factor (the reasons why we use the annual
erodibility factor are given in section 3.3). However, at this point, the coe�cient and
exponent of the model are not known for our watersheds; therefore, the minimum refer-
ence value (Kmin) is set. Based on the soil data we have, the actual soil erodibility factor
is calculated using the soil erodibility equations that were proposed by David (1988);
Wawer et al. (2005), and Williams and Renard (1983) as cited by Chen et al. (2011).
Accordingly, the graphs of the K-factor are shown in �gure 3.28.
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Figure 3.28: The K-factor graphs of di�erent soil types, which represent any of the four
watersheds under our consideration.

From the graph, a reasonable actual erodibility graph for our watersheds lies between the
minimum K-factor graph and the calculated K-factor using Williams's (1995) equation
as cited by Wawer et al. (2005). To proceed with Williams's (1995) equation as cited
by Wawer et al. (2005), Williams's sub-K-factors are calculated and compared based on
the silt and sand content, clay and silt content, and organic carbon content of our soil
data. Comparatively speaking, the soil erodibility increases if the silt content increases,
and the sand and clay content decreases. This is because the interaction between soil
particles ranges from the loose interaction for silt soil to the strong interaction for clay
soil. Humus, manure, organic matter, and the organic carbon content decreases soil
erodibility as it binds the soil particles together, or it provides protective cover for the
soil particles.
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Figure 3.29: Comparison of sub-K-factors based on soil data, which represent any of
the four watersheds under our consideration.

From �gure 3.29, the soil erodibility factors conform to the general comparisons stated
above. Therefore, we use Williams's (1995) equation as cited by Wawer et al. (2005) to
calculate the soil erodibility factor using soil data of the watersheds under our consider-
ation and watersheds of Ethiopia in general.

c) Estimation of the topographic factor

To estimate the topographic factor (LS-factor) for our watersheds, the SWAT+ model
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is used to de�ne as many HRU as possible to consider an areal distribution of the slope
steepness and slope length. In the TxtInOut folder of the SWAT+ model, area and
topography information of each HRU are stored in the hru.con and topography.hyd �les,
respectively. These �les are exported to an excel spreadsheet for analysis.

The area, slope, and slope length of each HRU are used to estimate the LS-factor for each
HRU using the equations of the topographic factor in section 2.1.2.1 and equations (3.8)
and (3.9) in section 3.4.2. The weighted average of the LS-factors is taken to represent
the watershed (at this point, it is important to note that the sediment or �ow routing
techniques in the SWAT+ model are not employed due to one or more reasons are stated
above). The best-�t methods are chosen during the calibration of the annual sediment
yield (see the calibration stage below).

d) Estimation of the cover factor (C-factor)

Although the C-factor value can be taken from the literature or determined in situ,
an extensive literature review compiling the potential soil loss rates of di�erent crop and
forest covers compared to likely soil loss rates of bare soil can be used to determine likely
C-factor values of a particular site (Benavidez et al., 2018). The published guidelines (Re-
nard et al., 2011; Wischmeier and Smith, 1978), the revised C-factor (Cai et al., 2000)
as cited by Luo et al. (2016) and the Normalized Di�erence Vegetation Index (Liu et al.,
2020; van der Knij� et al., 2000) can be used to compute the C-factor. In our case,
the annual or average annual cover factor for each land use category is adopted based on
the assessment of the literature.

Benavidez et al. (2018) reviewed C-factors for the general types of land use and land
cover. For our watersheds, the adopted cover factor for each land use is shown in table
3.1. To estimate an areal weighted average of the cover factor for our watersheds, SWAT+
model is used to de�ne as many HRU as possible to consider the areal distributions of
land use and land cover. In the TxtInOut folder of the SWAT+ model, the area of each
HRU is stored in the hru.con �le, and the HRU's land use data �les are stored in the
HRU-data.hru �le.

These �les are exported to an excel spreadsheet for analysis and calculation of the areal
weighted average. We can use the shape�le of each land use map (see �gures 3.7 � 3.14) to
estimate the areal coverage of each land use classes in QGIS, and then the corresponding
C and P -factors can be assigned.

Table 3.1: The assigned cover and conservation practice factors for each land use of the
watersheds under our consideration.

Land use category C-Factor P -Factor

Acacia 0.01 1

Acacia Bushland/Thicket 0.01 1

Acacia Shrubland/Grassland 0.01 1

Agricultural land 0.525 0.52

Bare Land 1 1

Dispersed Acacia 0.01 1
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Dispersed Shrub 0.01 1

Eucalyptus 0.001 1

Fir/Cedar Forest 0.001 1

Forest 0.001 1

Forest; Montane broadleaf 0.001 1

Grassland 0.01 1

Grassland, Herbaceous Wetland 0.01 1

Grassland; unstocked (woody plant) 0.01 1

Herbaceous Wetlands 0.01 1

Montane Broadleaf Evergreen Woodland 0.001 1

Rocky Bare Land 1 1

Secondary Semi-deciduous Forest/Wood-
land

0.001 1

Semi-Desert Grassland with Shrubland 0.01 1

Shrubland 0.01 1

Tropical Forest 0.001 1

Plantations 0.001 1

Tropical Plantations 0.001 1

Urban 0 1

Water Bodies 0 0

Wetland 0.01 1

Woodland 0.01 1

e) Estimation of soil conservation or erosion control practice factor (P -factor)

The soil conservation or erosion control practice factor can be estimated with the help
of available tables (Wischmeier and Smith, 1978), using land use and land cover maps
(Gwapedza et al., 2018; Jang et al., 2015; Luo et al., 2016), and through �eld measurement
(refer the literature review report by Sadeghi et al. (2014)). For our case, the annual soil
conservation practice factor for each land use category is adopted based on the assessment
of the literature. Benavidez et al. (2018) reviewed the P factors for general types of land
use and land cover. The adopted P factor for the land use and land cover category of
each watershed is shown in table 3.1. The areal weighted average of the P factor was
found in the same manner as the cover factor.
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3.4.2 Estimating the Coe�cient and Exponent of the MUSLE

Through Calibration

For a chosen value of the exponent b, the best-�t corresponding value of the coe�cient
a is estimated through calibration. The selection of the best exponent and the best
equation among listed above and below (see equations (3.8) and (3.9)) for the topographic
factor is done after calibration of observed and simulated sediment (i.e., the MUSLE is
used to estimate sediment load). Figure 3.30 shows sample graphs of the calibrated
sediment when the topographic factor is calculated using the equation that was proposed
by Wischmeier and Smith (1978).

Figure 3.30: Sample graphs of observed and predicted sediment yield.

During calibration, the Nash-Sutcli�e e�ciency corresponds to each LS-factor, the ex-
ponent b and the coe�cient a is evaluated, and graphs of the exponent b versus the
Nash-Sutcli�e e�ciency, and graphs of the coe�cient a versus exponent b are drawn for
each watershed, as shown in �gures 3.31 � 3.37. For a chosen value of b, we test seven
di�erent equations of the topographic factor for each watershed. Therefore, we can have
as many graphs as possible.
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Figure 3.31: Therelationship between the exponent b versus the Nash�Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the equation that was proposed by Wischmeier and Smith (1978).
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Figure 3.32: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the equations that were proposed by Foster et al., (1977) and Mc-
Cool et al., (1987, 1989), as cited by Renard et al. (1997).
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Figure 3.33: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the equation that was proposed by Morgan (2005).
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Figure 3.34: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the equation that was proposed by McCool et al., (1987), as cited
by Pongsai et al. (2010).
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Figure 3.35: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the equation that was proposed by David (1988).
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Figure 3.36: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the Chines equation.
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Figure 3.37: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using equations (3.8) and (3.9).

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2901△ y0.4002 for J < 5% (3.8)

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2105△ y0.5004 for J > 5% (3.9)

whereJ is the slope in %, and △y is the slope length. For further description, readers
are encouraged to watch the video at https://www.youtube.com/watch?v=w6w8jxbTJfo
(accessed on 25 February 2021). For the case of the watersheds under our consideration,
we take △y/22.1 as the �eld slope length.
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3.4.3 Verifying the Best Exponent of the MUSLE

As explained in section 3.3, the yearly simulation time step is preferred to address the
gradual processes of soil erosion and sediment transport. It is important to prove whether
a change in the simulation time step changes the coe�cient and the exponent of the
MUSLE or not. This approach leads us to �nd the best exponent of the MUSLE.

Proof

If we consider the small simulation time step and the small simulation period, we can
maintain the temporal variation of the factors, which directly a�ects the soil erosion pro-
cess. For a given �eld, no change in the cover, conservation practice, and soil erodibility
factors of the MUSLE will be expected at the small simulation period. At the end of the
simulation period, only in variation of the coe�cient and the exponent of the MUSLE
with the simulation time step a�ect sediment yield output (see the proof steps below for a
change in runo� and the peak runo� rate).

If the variations of the coe�cient and the exponent of the MUSLE with a small change
in the simulation time step are detected, then the variations of the coe�cient and the
exponent with any other simulation time step are con�rmed. For the sake of starting,
let us consider one and two unit simulation time steps and two unit simulation period;
no change in the factors of the MUSLE will be expected for about two unit simulation
period. Therefore, soil loss from a �eld at the one unit simulation time step for about
two unit simulation period, is equal to the sum of soil loss at the end of the �rst and next
one unit time;

a1(Q1q1)
b1KLSCP + a1(Q2q2)

b1KLSCP (3.10)

where su�xes 1 and 2 correspond to the runo� volume (Q), and the peak runo� rate (q)
indicate the �rst and second simulation at the one unit simulation time step or interval.
We note that K, L, S, C, and P are the same for the two unit simulation period, and
the coe�cient and the exponent are the same at the one unit simulation time step. Soil
loss from the �eld at the two unit simulation time step for about a two unit simulation
period;

a2 ((Q1 +Q2)q1)
b2 KLSCP if the peak runo� rate is q1 (3.11)

a2 ((Q1 +Q2)q2)
b2 KLSCP if the peak runo� rate is q2 (3.12)

where a2 and b2 indicate a value of the coe�cient (a) and exponent (b) at the two unit
simulation time step. We note that the total runo� volume (Q) at the end of the two
unit simulation period, is equal to the sum of the runo� volumes at the end of the �rst
and next one unit time; the peak runo� rate will be expected before one unit time or
between 1 and 2 unit time.

In either case, sediment yield is the same. Therefore,

If the peak runo� rate is q1

a1(Q1q1)
b1KLSCP + a1(Q2q2)

b1KLSCP = a2 ((Q1 +Q2)q1)
b2 KLSCP (3.13)

a1(Q1q1)
b1 + a1(Q2q2)

b1 = a2 ((Q1 +Q2)q1)
b2 (3.14)
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If there is no variation of the coe�cient and exponent with small variation in simulation
time step, then a1 = a2 = a and b1 = b2 = b

(Q1q1)
b + (Q2q2)

b = ((Q1 +Q2)q1)
b (3.15)

In the same way

If the peak runo� rate is q2

a1(Q1q1)
b1KLSCP + a1(Q2q2)

b1KLSCP = a2 ((Q1 +Q2)q2)
b2 KLSCP (3.16)

a1(Q1q1)
b1 + a1(Q2q2)

b1 = a2((Q1 +Q2)q2)
b2 (3.17)

If there is no variation of the coe�cient with small variation in simulation time step, then
a1 = a2 = a & b1 = b2 = b

(Q1q1)
b + (Q2q2)

b = ((Q1 +Q2)q2)
b (3.18)

Equations (3.15) and (3.18) are false for a given value of the exponent b. In this case,
the coe�cient and the exponent of the MUSLE change as a change in simulation time step
for a given total simulation period. Equations (3.15) and (3.18) hold true when b = 1 and
q1 = q2, and for other values of the exponent b and q1 = q2, it is false. This implies that
only one peak runo� rate is possible per storm event (i.e., from the beginning of runo�
to the end of the runo� from a slope-�eld). This means that sediment is transported
from the beginning of runo� to the end of the runo�; the objective of the MUSLE is to
estimate the total sediment load transported from the beginning of runo� to the end of
the runo�.

Therefore, the best theoretical exponent of the MUSLE is 1. This is a theoretical exponent
because the left and right sides of equations (3.15) and (3.18) represent the theoretical
linked expressions without knowledge of observed sediment. The actual exponent of the
MUSLE is estimated by applying the model at selected watersheds. From all graphs
(see �gures 3.31 � 3.37), the best actual exponent of the MUSLE is 1, which results in
a Nash-Sutcli�e e�ciency of approximately 1 irrespective of the topographic factor and
the three watershed sizes (i.e., the Hombole, Mojo, and Gumera Watersheds). Therefore,
the best exponent of the MUSLE is 1.

3.5 Improving the MUSLE by Physical Interpretation

of its Factors

The assumption of the USLE and RUSLE is that the rainfall intensity is uniformly dis-
tributed over a slope �eld area. Likewise, in the case of the MUSLE, the runo� is uniformly
distributed over the slope �eld area. The total runo� volume is considered for sediment
yield modeling. In both cases, the slope length represents the worst condition for the
maximum erosion case, and therefore, the slope length is the shortest distance from the
origin of the runo� to the bottom of the slope. The underlying physical assumption to
improve the MUSLE is that the amount of potential energy of the runo� is proportional
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to the shear stress for sediment transport from a slope �eld and the kinetic energy of the
runo� at the bottom of the slope �eld for gully formation. The potential energy of an
object due to its position is given by

PE = mgh = ρvgh (3.19)

where PE is the potential energy, m is the mass of the object, g is the acceleration due
to gravity, h is the height referring to the position of the object from a reference point, ρ
is the density of the object, and v is the volume of the object.

In the process of all of the rainfall in the slope �eld area, the total potential energy of
the runo� is given by (Li et al., 2017)

PE =
ρg

4
BL2sin2θ ∗Q (3.20)

where PE is the total potential energy of the runo� (J), ρ is the density of water (kgm−3),
g is the acceleration due to gravity (ms−2), B is the slope width (m), L is the slope length
(m), θ is the slope angle, and Q is the runo� volume (m).

Equation (3.20) can be applied when the runo� volume �ows down from the top of the
slope �eld to the bottom of the slope �eld, and a temporal variation of the runo� volume
is considered. However, this equation does not consider every other runo� volume that
will begin at every slope height and �ows down simultaneously to the bottom of the
slope (i.e., the runo� that will start from any point on the entire slope surface due to the
uniform distribution of rainfall on the entire slope �eld), and it also does not consider
a temporal variation of every other runo� volume. Therefore, let us assume that every
runo� volume due to raindrops on the entire slope length �ows down to the bottom of
the slope. Let us say the position of �rst runo� volume, as well as those of the second,
third, and so on along the length of the slope are at the slope heights h, h1, h2, and so
on from the bottom of the slope, respectively. One runo� volume takes over the position
of another runo� volume as it �ows down to the bottom of the slope.

The total potential energy of the �rst runo� volume due to its changes in position as it
�ows down from the height h to the bottom of the slope is equal to E1:

E1 =

∫ h

0

ρvghdh (3.21)

The total potential energy of the second runo� volume due to its changes in position as it
�ows down from the height h1 (let us say just immediately after the �rst runo� volume)
to the bottom of the slope is equal to E2:

E2 =

∫ h1

0

ρvghdh (3.22)

The total potential energy of the third runo� volume due to its changes in position as
it �ows down from the height h2 (let us say just immediately after the second runo�
volume) to the bottom of the slope is equal to E3, and so on:

E3 =

∫ h2

0

ρvghdh (3.23)
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Therefore, the total potential energy of all runo� volumes due to their change in position
along the length of the slope to the bottom of the slope is equal to Et:

Et = E1 + E2 + E3 + · · ·+ En (3.24)

Then, we can substitute equations (3.21�3.23) into equation (3.24):

Et =

∫ h

0

ρvghdh+

∫ h1

0

ρvghdh+

∫ h2

0

ρvghdh+ · · ·+ En (3.25)

∫ h

0

ρvghdh+

∫ h1

0

ρvghdh+

∫ h2

0

ρvghdh+ · · ·+ En =

∫ h

0

(∫
ρvghdh

)
dh (3.26)

where h1 and h2 are the heights of the slope just immediately after heights h and h1,
respectively, and so on.

Et =

∫ h

0

(∫
ρvghdh

)
dh (3.27)

Each runo� volume (dv) in a very small area (dA) changes in time (dt) with the rainfall
intensity (irain) and soil in�ltration rate (isoil):

dv = hrunoff ∗ dA (3.28)

where hrunoff is the runo� depth:

hrunoff = (irain − isoil) ∗ dt (3.29)

Then, we can substitute equation (3.29) into equation (3.28):

dv = (irain − isoil)dt ∗ dA (3.30)

It is noteworthy that only the depth of the runo� volume changed with a small change in
time. If it rained continuously for some duration of time, then the runo� volume increased
at every point of the slope length. Therefore, the total runo� volume at a particular point
of the slope �eld is a function of the runo� depth changing with time, where the bottom
area of the runo� volume does not change with time:

v =

∫
dv =

∫ t

0

(dA ∗ (irain − isoil)) dt (3.31)

Substituting equation (3.31) into equation (3.27) yields

Et =

∫ h

0

(∫
ρgh

(∫ t

0

(dA ∗ (irain − isoil))dt

)
dh

)
dh (3.32)

For our case, the total potential energy per a unit area (et) is important parameter for
soil erosion and sediment transport along the length of the slope, and therefore

et =
Et

dA
(3.33)
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Substituting equation (3.32) into equation (3.33) yields

et =

∫ h

0

(∫
ρgh

(∫ t

0
(dA ∗ (irain − isoil))dt

)
dh

)
dh

dA
(3.34)

The bottom area of each runo� volume is constant, and therefore∫ t

0

(dA ∗ (irain − isoil))dt = dA

∫ t

0

(irain − isoil)dt = dA ∗Q (3.35)

where Q is the runo� volume in m

Substituting equation (3.35) into equation (3.34) yields

et =

∫ h

0

(∫
ρgh(dA ∗Q)dh

)
dh

dA
(3.36)

We can evaluate the integral as follows:

et = Q
ρgh3

6
(3.37)

The trigonometric relationship between the slope length, slope angle, and height is given
by

h = L sin θ (3.38)

Substituting equation (3.38) into equation (3.37) yields

et = Q ∗ ρg(L sin θ)3

6
(3.39)

We should note that as every runo� volume �ows down simultaneously to the bottom of
the slope, the runo� concentrates at the bottom of the slope, and it is proportional to the
rainfall intensity. The runo� concentration leads to gully formation at the bottom of the
slope. The total potential energy of the runo� is proportional to the rainfall intensity.

We can compare the total potential energy of the runo� per unit area (equation (3.39))
with the MUSLE:

Q ∗ ρg(L sin θ)3

6
∼ a(Qq)bKLSCP (3.40)

From the relationship in equation (3.40), we can reveal the following.

In the MUSLE, a(Qq)bLS is the term which contributes to the energy of the runo�,
whereas K, C, and P are the coe�cients which contribute to the energy dissipation (i.e.,
K, C and P can be taken as friction resistances against the �ow, and the values of K,
C, and P vary from 0 � 1).

Therefore, we can use Q ∗ ρg(L sin θ)3

6
in place of a(Qq)bLS in the MUSLE:

y ∼ Q ∗ ρg(L sin θ)3KCP

6
(3.41)

For a given watershed, the topography does not change over time (i.e., the slope length
(L) and slope angle (θ) are constant). Therefore, the runo� volume (Q) is proportional
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to the sediment yield by de�ning the proportionality constants:

y = aQb ∗ ρg(L sin θ)3KCP

6
(3.42)

The topographic factor of the MUSLE is proportional to the �eld slope length and angle
(i.e., the topographic factor is calculated based on a �eld slope length and angle). If the
topographic factor of the MUSLE is considered, then

LS ∼ ρg(L sin θ)3

6
(3.43)

where on the left side of the equation, L and S represent the slope length factor and slope
steepness factor of the MUSLE respectively, whereas on the right side of the equation, L

and θ represent a �eld length and slope angle respectively, and
ρ ∗ g
6

is the constant.

By de�ning an increasing function f for the proportionality,

ρg(L sin θ)3

6
= f(LS) (3.44)

Let f(LS) = LS
ρg(L sin θ)3

6
= LS (3.45)

Substitute equation 3.45 into 3.42

y = aQbKLSCP (3.46)

Therefore, we call equation (3.46) the improved MUSLE.

3.5.1 Estimating the Theoretical Exponent of the Improved MUSLE

As explained in section 3.3, the yearly simulation time step is preferred to address the
gradual processes of soil erosion and sediment transport. It is important to prove whether
a change in the simulation time step changes the coe�cient and the exponent of the
improved MUSLE or not. This approach led us to estimate the theoretical exponent of
the improved MUSLE.

Proof

If we consider the small simulation time step and the small simulation period, we can
maintain the temporal variation of the factors which directly a�ect the soil erosion process.
For a given �eld, no change in the cover, conservation practice, or soil erodibility factors
of the improved MUSLE will be expected in the small simulation period. At the end of
the simulation period, only variation of the coe�cient and the exponent of the improved
MUSLE with the simulation time step a�ects the sediment yield output (see the proof
steps below for a change in the runo� volume (Q). If the variations of the coe�cient
and the exponent of the improved MUSLE with a small change in the simulation time
step are detected, then the variations of the coe�cient and the exponent with any other
simulation time step are con�rmed. For the sake of the start, let us consider 1 and 2
unit simulation time steps and a 2-unit simulation period. No change in the factors of
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the improved MUSLE will be expected for about a 2-unit simulation period. Therefore,
the soil loss from a �eld at the 1-unit simulation time step for about a 2-unit simulation
period is equal to the sum of the soil loss at the end of the �rst and next 1-unit time:

a1(Q1)
b1KLSCP + a1(Q2)

b1KLSCP (3.47)

where su�xes 1 and 2 correspond to the runo� volume (Q), indicating the �rst and second
simulation at the 1-unit simulation time step or interval. It is noteworthy that K, L, S,
C, and P are the same for the 2-unit simulation period. The coe�cient and the exponent
are the same at the 1-unit simulation time step.

The soil loss from the �eld at the 2-unit simulation time step for about a 2-unit simulation
period is expressed as

a2(Q1 +Q2)
b2KLSCP (3.48)

where a2 and b2 indicate a value of the coe�cient (a) and exponent (b) at the 2-unit
simulation time step. It is noteworthy that the total runo� volume (Q) at the end of the
2-unit simulation period is equal to the sum of the runo� volumes at the end of the �rst
and next 1-unit time.

In either case, the sediment yield is the same, and therefore

a1(Q1)
b1KLSCP + a1(Q2)

b1KLSCP = a2(Q1 +Q2)
b2KLSCP (3.49)

a1(Q1)
b1 + a1(Q2)

b1 = a2(Q1 +Q2)
b2 (3.50)

If there is no variation in the coe�cient or exponent with small variation in the simulation
time step, then

a1 = a2 = a and b1 = b2 = b (3.51)

(Q1)
b + (Q2)

b = (Q1 +Q2)
b (3.52)

Equation (3.52) is false if b > 1 or b < 1. In this case, the coe�cient and the exponent of
the improved MUSLE change with a change in the simulation time step for a given total
simulation period. Equation (3.52) holds true when b = 1. This implies that we consider
the total runo� volume per storm event (i.e., from the beginning of runo� to the end of
the runo� from a slope �eld) to estimate the total sediment load. The objective of the
improved MUSLE is to estimate the total sediment load transported from the beginning
of runo� to the end of the runo� from the slope �eld. Therefore, the theoretical exponent
of the improved MUSLE is one. It is a theoretical exponent because the left and right
sides of equation (3.52) represent the theoretical linked expressions without knowledge of
the observed sediment. With knowledge of the observed sediment, the actual exponent of
the improved MUSLE can be obtained by applying the model at the selected watersheds
of Ethiopia.

3.5.2 Estimating the Factors of the Improved MUSLE

In the MUSLE, the runo� factor is the product of the total runo� volume and peak runo�
rate. In the improved MUSLE, the peak runo� rate is eliminated. We used the daily
average discharge to estimate the annual total runo� volume for the annual sediment
yield estimation. The reasons for why we used directly measured �ow data and why
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we estimated the annual sediment yield are addressed in section 2.1.2. We estimate
topographic, soil erodibility, cover and conservation practice factors in the same way as
the MUSLE.

3.5.3 Estimating the Coe�cient and Exponent of the Improved

MUSLE Through Calibration

For a chosen value of the exponent b, the best �t corresponding value of coe�cient a was
estimated through calibration. The selection of the best exponent and the best equation
of the topographic factor was performed after calibration of the observed and simulated
sediment (i.e., the improved MUSLE was used to estimate the sediment load). Figure
3.38 shows sample graphs of the calibrated sediment when the topographic factor was
calculated using the equation that was proposed by Wischmeier and Smith (1978).

During calibration, the Nash-Sutcli�e e�ciency corresponds to each LS factor, exponent
b and coe�cient a are evaluated, and graphs of exponent b versus the Nash-Sutcli�e
e�ciency and coe�cient a versus exponent b are drawn for each watershed, as shown
in �gures 3.39 � 3.45. For a chosen value of b, we tested seven di�erent equations of
the topographic factor for each watershed. Therefore, we could have as many graphs
as possible.

Figure 3.38: Sample graphs of observed and predicted sediment yield
.
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Figure 3.39: The relationship between the exponent b and the Nash-Sutcli�e e�ciency
as well as the coe�cient a versus the exponent b when the topographic factor is calcu-
lated by using the equation that was proposed by Wischmeier and Smith (1978).
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Figure 3.40: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equations that were proposed by Foster et al., (1977) and
McCool et al., (1987, 1989), as cited by Renard et al. (1997).
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Figure 3.41: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equation that was proposed by Morgan (2005).
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Figure 3.42: The relationship between exponent b versus the Nash-Sutcli�e e�ciency as
well as the coe�cient a versus the exponent b when the topographic factor is calculated
by using the equation that was proposed by McCool et al. (1987), as cited by Pongsai
et al. (2010).
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Figure 3.43: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equation that was proposed by David (1988).
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Figure 3.44: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the Chines equation.
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Figure 3.45: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus exponent b when the topographic factor is cal-
culated using equations (3.8) and (3.9).
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3.6 Deriving a Soil Loss Equation for Sediment Yield

Estimation

From section 3.5, the total potential energy of the �rst runo� volume due to its changes
in position as it �ows down from the height h to the bottom of the slope is equal to E1.
Therefore, consider equation 3.21

E1 =

∫ h

0

ρvghdh (3.53)

From equations 3.31 and 3.35, v = QdA. If the energy of the runo� volume along the
length of the slope (i.e., energy per a unit area) is considered, v = Q. Therefore,

E1 =

∫ h

0

ρQghdh (3.54)

Evaluate integral

E1 =
ρgQh2

2
(3.55)

Consider equation 3.38
h = Lsinθ (3.56)

Substitute equation 3.56 into 3.55

E1 =
ρgQ(Lsinθ)2

2
(3.57)

Let us consider the following explanations in the context of runo� energy for sediment
yield estimation.

As we explained in the previous section to improve the MUSLE, the slope and slope length
factors of the MUSLE contribute to the energy of runo� whereas the soil erodibility, cover,
and conservation practice factors of the MUSLE contribute to resistance to the runo�.
This is because soil conservation practice blocks and at the same time stores the runo�
volume up to some level to break its energy and reduce its velocity, which mainly increases
sediment deposition by reducing sediment transport. As there more soil protection works
are in a �eld, more dissipation of the energy of the runo�, and less soil loss from the
slope area and the bottom of the slope are expected. A soil cover doesn't store the runo�
volume but it blocks the runo� to break its energy, which mainly reduces soil erosion.
However, the soil cover may play less importance in facilitating sediment deposition. As
dense the soil cover or vegetation becomes, more dissipation of energy of the runo�, and
less soil loss from the slope area and the bottom of the slope are expected. It is obvious
that soil erodibility contributes to the energy dissipation of the runo�. However, its e�ect
on soil erosion and sediment transport should be explained.

As soil becomes more compacted and smooth, less dissipation of the energy of the runo�,
and less soil loss from the slope area, but more soil loss is expected from the bottom of
the slope due to the concentrated �ow. In this case, the fraction of soil shear resistance
against the �ow is high (i.e., its soil erodibility property is low) along the length of the
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slope. The runo� volume will have high kinetic energy at the bottom of the slope as the
potential energy of the runo� converts to the kinetic energy at the bottom of the slope.
Due to the high kinetic energy at the bottom of the slope, the runo� will have high speed
and momentum to scour the soil surface and leads to the gully formation at the bottom
of the slope. As soil becomes more loose or rough, more dissipation of the energy of the
runo�, more soil loss from the upper parts of the slope area, less sediment transport or
more sediment deposition, and less soil loss from the bottom of the slope are expected.
This is because the runo� loses its most of energy at the upper part of the slope. In
this case, the fraction of soil shear resistance against the runo� is low (i.e., its erodibility
property is high) along the length of the slope.

Based on the above explanations, if a fraction of soil shear resistance (Sr) against the
runo� is zero, then its soil erodibility factor (K) is one. Therefore,

Sr = 1−K (3.58)

As slope of the �eld increases, the energy of the runo� increase, and more soil erosion is
expected. As the slope length decreases, obstacles or friction resistance against the runo�
decreases, and more erosion due to the energy of the runo� is expected. As the slope
length increases, the energy of the runo� decreases as resistance against �ow increases
along the length of the slope, and its shear force decreases. Therefore, sediment deposition
is expected at the lower parts of the slope. Based on this explanation, a coe�cient of the
energy dissipation should be taken into account for the energy loss of the runo� volume
due to the length of the slope, for sediment yield estimation.

Equation 3.57 shows the total potential energy of the �rst runo�. Based on the above
explanations if the energy loss due to friction is taken into account, the available total
energy of the �rst runo� volume is equal to △E1.

△E1 =
ρgQ(Lsinθ)2(1−K)CPLf1

2
(3.59)

where Lf1 is the coe�cient of the energy dissipation due to the length of the slope

Work done by the �rst runo� volume is equal to W1

W1 = F1 ∗ L (3.60)

where F1 is the force due to the runo� volume, and L is the slope length

The �rst runo� volume has energy available △E1, therefore

W1 = △E1 (3.61)

Substitute equation 3.61 into 3.60

△E1 = F1L (3.62)

Rearrange equation 3.62

F1 =
△E1

L
(3.63)
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Substitute equation 3.59 into 3.63

F1 =
ρgQ(Lsinθ)2(1−K)CPLf1

2L
(3.64)

Simplify equation 3.64

F1 =
ρgQ(Lsin2θ)(1−K)CPLf1

2
(3.65)

From section 3.5, the total potential energy of the second runo� volume due to its changes
in position as it �ows down from the height h1 (let us say just immediately after the �rst
runo� volume) to the bottom of the slope is equal to E2. Therefore, consider equation
3.22

E2 =

∫ h1

0

ρvghdh (3.66)

Since v = Q (see the explanation above), therefore

E2 =

∫ h1

0

ρQghdh (3.67)

Evaluate integral

E2 =
ρgQh2

1

2
(3.68)

The trigonometric relationship between the slope length, slope angle, and height is given
by

h1 = L1sinθ (3.69)

Substitute equation 3.69 into 3.68

E2 =
ρgQ(L1sinθ)

2

2
(3.70)

Equation 3.70 shows the total potential energy of the second runo� volume. If the energy
loss due to friction is taken into account, the available total energy of the second runo�
volume is equal to △E2.

△E2 =
ρgQ(L1sinθ)

2(1−K)CPLf2

2
(3.71)

Work done by the second runo� volume is given by

W2 = F2 ∗ L1 (3.72)

The second runo� volume has energy available △E2, therefore

W2 = △E2 (3.73)

Substitute equation 3.73 into 3.72

△E2 = F2L1 (3.74)
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Rearrange equation 3.74

F2 =
△E2

L1

(3.75)

Substitute equation 3.71 into 3.75

F2 =
ρgQ(L1sinθ)

2(1−K)CPLf2

2L1

(3.76)

Simplify equation 3.76

F2 =
ρgQ(L1sin

2θ)(1−K)CPLf2

2
(3.77)

From section 3.5, the total potential energy of the third runo� volume due to its changes
in position as it �ows down from the height h2 (let us say just immediately after the
second runo� volume) to the bottom of the slope is equal to E3, and so on. Therefore,
consider equation 3.23

E3 =

∫ h2

0

ρvghdh (3.78)

Since v = Q (see the explanation above), therefore,

E3 =

∫ h2

0

ρQghdh (3.79)

Evaluate integral

E3 =
ρgQh2

2

2
(3.80)

The trigonometric relationship between the slope length, slope angle, and height is given
by

h2 = L2sinθ (3.81)

Substitute equation 3.81 into 3.80

E3 =
ρgQ(L2sinθ)

2

2
(3.82)

Equation 3.82 shows the total potential energy of the third runo� volume. If the energy
loss due to friction is taken into account, the available total energy of the third runo�
volume is equal to △E3.

△E3 =
ρgQ(L2sinθ)

2(1−K)CPLf3

2
(3.83)

Work done by the third runo� volume is given by

W3 = F3 ∗ L2 (3.84)

The third runo� volume has energy available △E3, therefore,

W3 = △E3 (3.85)

79



Substitute equation 3.85 into 3.84

△E3 = F3L2 (3.86)

Rearrange equation 3.86

F3 =
△E3

L2

(3.87)

Substitute equation 3.83 into 3.87

F3 =
ρgQ(L2sinθ)

2(1−K)CPLf3

2L2

(3.88)

Simplify equation 3.88

F3 =
ρgQ(L2sin

2θ)(1−K)CPLf3

2
(3.89)

Therefore, determine the sum of all runo� forces

F = F1 + F2 + F3...+ Fn (3.90)

Substitute equation 3.65, 3.77, 3.89, and so on into 3.90.

F =
ρgQ(Lsin2θ)(1−K)CPLf1

2
+

ρgQ(L1sin
2θ)(1−K)CPLf2

2
+

ρgQ(L2sin
2θ)(1−K)CPLf3

2
+ ...+ Fn

(3.91)

where L1 and L2 are the lengths of the slope corresponding to the heights of the slope h1

and h2 respectively provided that h1 and h2 are the heights of the slope just immediately
after heights h and h1 respectively, and so on. Therefore, equation 3.91 is written as

F =

∫ L

0

ρgQ(Lsin2θ)(1−K)CPLf

2
dL (3.92)

Simplify equation 3.92

F =
ρgQsin2θ ∗ (1−K) ∗ CP

∫ L

0
(L ∗ Lf )dL

2
(3.93)

Next, we de�ne soil shear resistance (shear force) which acts against the runo� direction
parallel to the slope length.

Soil shear resistance which acts at slope height h1 parallel to the length of the slope is
equal to f1

f1 = m1gcosθ (3.94)

where m1 is the mass of soil, g is the acceleration due to gravity

Soil shear resistance which acts at slope height h2 parallel to the length of the slope is
equal to f2

f2 = m2gcosθ (3.95)
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Soil shear resistance which acts at slope height h3 parallel to the length of the slope is
equal to f3

f3 = m3gcosθ (3.96)

Soil shear resistance which acts at slope height hn parallel to the length of the slope is
equal to fn

fn = mngcosθ (3.97)

Sum all shear resistances (shear forces) which act against the runo� direction is equal to
Fs

Fs = F1 + F2 + F3 + ...+ Fn (3.98)

Substitute equations 3.94 � 3.97, and so on into equation 3.99

Fs = m1gcosθ +m2gcosθ +m3gcosθ + ...+mngcosθ (3.99)

Simplify equation 3.99
Fs = mgcosθ (3.100)

where m is the total mass of sediment

At equilibrium, where sediment deposition takes place or sediment sinks into a channel
at the end of the slope �eld, the runo� force (F ) is taken to be counterbalanced by the
soil shear resistance (Fs).

F = Fs (3.101)

Substitute equations 3.93 and 3.100 into 3.101

ρgQsin2θ ∗ (1−K) ∗ CP
∫ L

0
(L ∗ Lf )dL

2
= mgcosθ (3.102)

Rearrange equation 3.102

m =
ρQ(1−K)CPsin2θ

2cosθ

∫ L

0

(L ∗ Lf )dL (3.103)

Next, let us consider the rainfall impact energy for soil erosion (refer to �gure A5). If the
free fall velocity (terminal velocity) of a raindrop is considered, then the kinetic energy
(KE) of the raindrop that causes soil erosion on the slope �eld is given by

KE =
1

2
mv2cosθ (3.104)

where m is the mass of the raindrop, and u is the terminal velocity of the raindrop

But m = ρ ∗ V , therefore
KE =

1

2
ρV u2cosθ (3.105)

where ρ is the density of the raindrop, and V is the volume of the raindrop

The total kinetic energy (KEtotal) of the raindrops on the entire slope �eld is given by

KEtotal =
1

2
ρVtu

2cosθ (3.106)
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where Vt is the total volume of the raindrop

Let us assume that the raindrop is uniformly distributed over the entire slope �eld,
therefore, the total volume of the raindrops (Vt) is given by

Vt = Ah (3.107)

where A is the area of the slope �eld, and h is the height of the raindrop

Substitute equation 3.107 into 3.106

KEtotal =
1

2
ρAhu2cosθ (3.108)

where KEtotal is the total kinetic energy of the raindrops

The area of the slope �eld is given by

A = Lw (3.109)

where L is the length of the slope �eld, and w is the width of the slope �eld

Substitute equation 3.109 into 3.108

KEtotal =
1

2
ρLwhu2cosθ (3.110)

Consider equation 3.110

The total kinetic energy per a unit width of the slope is given by

KEtotal =
1

2
ρLhu2cosθ (3.111)

The total amount of soil loss (m) is proportional to the total kinetic energy of the rain-
drops, soil resistance against the rainfall impact, and soil cover. The soil shear resistance
can be taken as the soil erodibility factor of the USLE. Since the soil cover reduces soil
erosion by reducing the raindrop impact energy, it can be taken as the cover factor of
the USLE. Since the soil conservation practice factor has no role in reducing the rainfall
impact energy, we will not consider it in the context of the rainfall energy for soil erosion.
Therefore,

m ∼ KEtotal ∗KC (3.112)

Substitute equation 3.111 into 3.112

m ∼ 1

2
ρLhu2cosθ ∗KC (3.113)

where K is the soil erodibility factor, and C is the cover factor of the USLE

Equation 3.103 is based on runo� energy whereas equation 3.113 is based on rainfall
energy for estimation of the amount of soil loss from a slope �eld. As runo� is directly
proportional to rainfall, the amount of soil loss due to the runo� is directly proportional
to the amount of soil loss due to the rainfall. Therefore, correlate equation 3.103 and
3.113.

ρQ(1−K)CPsin2θ

2cosθ

∫ L

0

(L ∗ Lf )dL ∼ 1

2
ρLhu2cosθ ∗KC (3.114)
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Rearrange equation 3.114 ∫ L

0

(L ∗ Lf )dL ∼ hu2Kcos2θ

Q(1−K)Psin2θ
L (3.115)

Equation 3.115 can be written as∫ L

0

(L ∗ Lf )dL ∼
∫ L

0

hu2Kcos2θ

Q(1−K)Psin2θ
dL (3.116)

Simplify equation 3.116

L ∗ Lf ∼ hu2Kcos2θ

Q(1−K)Psin2θ
(3.117)

Rearrange equation 3.117

Lf ∼ hu2Kcos2θ

Q(1−K)Psin2θ
∗ 1

L
(3.118)

Since the e�ect of the slope length on soil erosion can be seen while keeping other variables
constant. Therefore,

Lo =
hu2Kcos2θ

Q(1−K)Psin2θ
(3.119)

where Lo is the constant

Substitute equation 3.119 into 3.118

Lf ∼ Lo

L
(3.120)

By de�ning the proportionality constant c and v

Lf = c
Lo

Lv
(3.121)

We expect sediment transport by a runo� volume if 0 < Lf ≤ 1. As a slope length
increases, Lf decreases to zero. As a slope length becomes smaller and smaller, Lf

approaches one. Since Lf is inversely proportional to L, a value of v should be a positive
value. If cLo > 1 and L < 1, there is no a positive value of v such that 0 < Lf ≤ 1.
For a given value of cLo, there is a possible value of v such that 0 < Lf ≤ 1 if L ≥ 1.
Therefore, the minimum slope length is de�ned to be 1m (i.e., L ≥ 1m) from which soil
erosion and sediment transport take place.

Let v = 1

Lf = c
Lo

L
(3.122)

Substitute equation 3.122 into 3.103

m ∼ ρQ(1−K)CPsin2θ

2cosθ

∫ L

0

(L ∗ cLo

L
)dL (3.123)

Evaluate integral

m ∼ ρQ(1−K)CPsin2θ

2cosθ
L ∗ cLo (3.124)
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For a particular �eld with slope angle and length, soil cover, soil erodibility, and con-
servation practice can be controlled. Runo� due to rainfall determines hydro-climatic
conditions of the �eld, and it independently a�ects soil loss from the �eld. Therefore, by
de�ning the proportionality constants ao and b

m =
aoρQ

b(1−K)CPsin2θ

2cosθ
L ∗ cLo (3.125)

Since a0, ρ, c, L0 are all constants, let a = 1
2
aoρcLo. Therefore, equation 3.125 is given as

m =
aQb(1−K)CPsin2θ

cosθ
L (3.126)

We call equation 3.126 the SLESYE

To take into account soil loss from a horizontal �eld (i.e., the �eld slope is zero), we
can consider the topographic factor (LS) of the MUSLE. The topographic factor of the
MUSLE is proportional to the �eld slope length and angle (i.e., the topographic factor is
calculated based on a �eld slope length and angle). From equation 3.126,

sin2θ

cosθ
L ∼ LS (3.127)

where, on the left side of the proportionality, L and θ represent a �eld slope length and
angle respectively, whereas, on the right side, L and S represent the slope length factor
and slope steepness factor of the MUSLE respectively.

By de�ning an increasing function f for the proportionality,

sin2θ

cosθ
L = f(LS) (3.128)

Let f(LS) = LS
sin2θ

cosθ
L = LS (3.129)

Substitute equation 3.129 into 3.126

m = aQb(1−K)CPLS (3.130)

We call equation 3.130 the RSLESYE-v1

3.6.1 Evaluating the SLESYE

We evaluate the coe�cient and exponent of the SLESYE following a similar calibration
procedure as that of the MUSLE or improved MUSLE (see section 3.5.3). For the sake
of calibration procedure, we estimate the soil erodibility, soil cover, and conservation
practice factors of the SLESYE in the same ways as the soil erodibility, soil cover, and
conservation practice factors of the improved MUSLE (see section 3.5.2). Runo� volume,
slope angle, and slope length are taken directly. Thus, �gure 3.46 shows sample graphs
of the calibrated sediment, and �gure 3.47 shows graphs of exponent b versus the Nash-
Sutcli�e e�ciency as well as coe�cient a versus exponent b.
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Figure 3.46: Sample graphs of observed and predicted sediment yield
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Figure 3.47: The relationship between the exponent b and the Nash-Sutcli�e e�ciency
as well as the coe�cient a versus the exponent b.

3.6.2 Estimating the Theoretical Exponent and the Factors of

the RSLESYE-v1

To estimate theoretical exponent of the RSLESYE-v1, we follow a similar procedure to
that of the improved MUSLE (see section 3.5.1). Since the structure or mathematical
form of the RSLESYE-v1 is similar to the improved MUSLE, the theoretical exponent
of the RSLESYE-v1 is the same as the improved MUSLE. We also estimate the factor of
the RSLESYE-v1 in the same way as the improved MUSLE (see section 3.5.2).
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3.6.3 Estimating the Coe�cient and Exponent of the RSLESYE-

v1 Through Calibration

For the sake of comparison purposes, we evaluate equation 3.130 following a similar
evaluation procedure as that of the MUSLE or improved MUSLE (see section 3.5.3).
Figure 3.48 shows sample graphs of the calibrated sediment when the topographic factor
was calculated using the equation that was proposed by Wischmeier and Smith (1978).

Figure 3.48: Sample graphs of observed and predicted sediment yield

Graphs of exponent b versus the Nash-Sutcli�e e�ciency and coe�cient a versus exponent
b are drawn for each watershed, as shown in �gure 3.49 � 3.55.
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Figure 3.49: The relationship between the exponent b and the Nash-Sutcli�e e�ciency
as well as the coe�cient a versus the exponent b when the topographic factor is calcu-
lated by using the equation that was proposed by Wischmeier and Smith (1978).
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Figure 3.50: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equations that were proposed by Foster et al., (1977) and
McCool et al., (1987, 1989), as cited by Renard et al. (1997).
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Figure 3.51: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equation that was proposed by Morgan (2005).
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Figure 3.52: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equation that was proposed by McCool et al. (1987), as cited
by Pongsai et al. (2010).
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Figure 3.53: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated by using the equation that was proposed by David (1988).
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Figure 3.54: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using the Chines equation.
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Figure 3.55: The relationship between the exponent b versus the Nash-Sutcli�e e�-
ciency as well as the coe�cient a versus the exponent b when the topographic factor
is calculated using equations (3.8) and (3.9).

3.7 Improving the Accuracy of a Model by Modifying

its Mathematical Form

In this case, we consider the Nash�Sutcli�e e�ciency equation to modify the mathe-
matical form of a given model. The Nash�Sutcli�e e�ciency is one of the commonly
used statistical tools to measure the performance of the model. For the same observed
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data but di�erent simulated values, if a Nash-Sutcli�e e�ciency of the correlated values
shows an improvement, then it is the premise that the other statistical measures also
show an improvement. The performance of the model can be improved by minimizing
the overestimation and underestimation of the model.

For measured sediment yield (let us say x) and predicted sediment yield (let us say y),
the Nash-Sutcli�e e�ciency is given by

E = 1−
∑

(x− y)2∑
(x− x̄)2

(3.131)

where E represents the Nash-Sutcli�e e�ciency (for this case only), and x̄ is the average
of the measured values.

Expand equation 3.131

E = 1−
∑

(x2 − 2xy + y2)∑
(x2 − 2xx̄+ x̄2)

(3.132)

E = 1−
∑

x2 −
∑

2xy +
∑

y2∑
x2 −

∑
2xx̄+

∑
x̄2

(3.133)

For continuously measured and predicted values, express equation 3.133 in integral form

E = 1−
∫
x2dx−

∫
2xy?+

∫
y2dy∫

x2dx−
∫
2xx̄dx+

∫
x̄2dx

(3.134)

where question mark ? represents dx or dy, which will be decided latter in this document.

To solve integrals
∫
2xx̄dx and

∫
x̄2dx in equation 3.134, we consider a graph of a function

f(x) = x as shown in �gure 3.56.

Figure 3.56: The graph of the function f(x)

In �gure 3.56, consider right angle triangles △ACD and △ABE. Let the lengths of line
segments from point A to B is L1, from point B to C is L2, from point A to E is x1, and
from point A to D is x. Based on the Angle-Angle Triangle Similarity Theorem, triangles
△ACD and △ABE are similar triangles. Therefore, based on this similarity theorem:

x1

x
=

L1

L1 + L2

(3.135)
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Let point B indicates an average or mid point of line segment AC, then

L1 = L2 (3.136)

Substitute equation 3.136 into 3.135

x1

x
=

L1

L1 + L1

=
1

2
(3.137)

Rearrange equation 3.137
x1 =

x

2
(3.138)

The average of values that will be returned by the function f(x) is obtained at x1 =
x

2
.

Therefore, the average of values that will be returned by the function f(x) is x
2
. Let x̄ is

the average of values that will be returned by the function f(x), therefore,

x̄ =
x

2
(3.139)

The average of values that will be returned by the function f(x) is given by

x̄ =

∫
xdx

n
(3.140)

where n denotes a number of continuous values that will be returned by the function at
equal intervals.

Substitute equation 3.139 into 3.140

x

2
=

∫ x

0
xdx

n
(3.141)

Solve equation 3.141

n = x+
2co
x

(3.142)

where co is the constant

The value of the constant (co) is determined by considering the discrete number of values
that will be returned by the function f(x) at equal intervals. Accordingly, the value of
co is determined to be 0.

Rearrange equation 3.140

n =

∫
xdx

x̄
(3.143)

Substitute equation 3.143 into 3.142, and note that co = 0. Therefore,

x =

∫
xdx

x̄
(3.144)

Rearrange equation 3.144

x̄ =
1

x

∫ x

0

xdx (3.145)
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Therefore, the average of values that will be returned by the function f(x) is 1
x

∫ x

0
xdx

Substitute equation 3.145 into 3.134

E = 1−
∫
x2dx−

∫
2xy?+

∫
y2dy∫

x2dx−
∫
2x( 1

x

∫ x

0
xdx)dx+

∫
( 1
x

∫ x

0
xdx)2dx

(3.146)

Simplify equation 3.146 (for the time being, let us leave out integral constant)

E = 1−
x3

3
−

∫
2xy?+ y3

3
x3

12

(3.147)

Consider equation 3.147

If y is expressed in terms of x, ? = dx

If the measured and predicted values are equal (i.e., y = x), then

E = 1−
x3

3
−
∫
2x2dx+ x3

3
x3

12

(3.148)

Simplify equation 3.148 (for the time being, leave out integral constant)

E = 1 (3.149)

Equation 3.149 shows that the Nash�Sutcli�e e�ciency (E) is equal to 1 if the measured
values are exactly equal to the predicted values, which is true. Therefore, in equations
3.147 and 3.149, consideration of constants of integral is not important.

Consider equation 3.147

If the measured and predicted values are not equal (i.e., y ̸= x and E < 1), let y = x+ c
where c is the correction constant that maximize the Nash�Sutcli�e e�ciency. Therefore,

E = 1−
x3

3
−
∫
2x(x+ c)dx+ y3

3
x3

12

(3.150)

Simplify equation 3.150 (consideration of a constant of integral is not important, therefore,
leave out the constant of integral).

E = 1−
x3

3
− 2x3

3
− cx2 + y3

3

x3

12

(3.151)

Rearrange equation 3.151

y =

(
5− E

4
x3 + 3cx2

) 1
3

(3.152)

Consider equation 3.152

If a value of y is unknown, then the value of y is estimated based on given values of x, E,
and c. Therefore, in equation 3.152, y and x are variables whereas E and c are constants
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or calibration parameters that independently a�ect the calibration of the equation. From
our derivation step, E ≤ 1. However, the best value of E corresponding to a value of c,
which maximize the prediction accuracy of the equation can fall outside this range (i.e.,
it can have a value greater than one). Therefore, based on equation 3.152, the general
recommended value of E is less than or equal to 5.

Consider equation 3.152

Let us say variable y stands for the mass of soil loss, and variable x stands for the variables
or factors that a�ect soil loss. Therefore, we apply equation 3.152, for instance, to modify
the mathematical form of equation 3.130. Accordingly,

y = m (3.153)

x = aQb(1−K)CPLS (3.154)

Therefore, substitute equations 3.153 and 3.154 into equation 3.152

m =

(
5− E

4

(
aQb(1−K)CPLS

)3
+ 3c

(
aQb(1−K)CPLS

)2) 1
3

(3.155)

We call equation 3.155 the RSLESYE-v2

Except for the constants c and E of the RSLESYE-v2, its other parameters are the same
as that of the RSLESYE-v1.
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3.7.1 Evaluating the RSLESYE-v2

Since RSLESYE-v1 is an integral part of the RSLESYE-v2, we can �rst evaluate the
RSLESYE-v1 to determine its best parameters. The best exponent and topographic
factor of the RSLESYE-v1 are determined by the procedure in section 3.6.3. We have
already evaluated RSLESYE-v1, and we found its best exponent and topographic factor
for all watersheds under our consideration (see section 4.5). For this best exponent
(i,e., 1.42) and topographic factor (see section 4.5), the coe�cient of the RSLESYE-v1
is estimated through calibration for the maximum performance of the RSLESYE-v1, as
shown in �gure 3.57.

Figure 3.57: The performance of the calibrated RSLESYE-v1 when its exponent is 1.42
and its topographic factor is calculated using the equations that were proposed by Fos-
ter et al., (1977) and McCool et al., (1987, 1989), as cited by Renard et al. (1997).

Then, to evaluate the RSLESYE-v2, we use the calibrated values of RSLESYE-v1, and
we estimate values of E and c through calibration. Figure 3.58 shows sample graphs of
calibrated sediment yield. During calibration, a Nash-Sutcli�e e�ciency corresponding
to each value of E is evaluated, and a graph of E versus Nash-Sutcli�e e�ciency, as well
as a graph of c versus E are drawn for each watershed, as shown in �gures 3.59 and 3.60.
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Figure 3.58: Sample graphs of observed and predicted sediment yield

Figure 3.59: The relationship between the Nash-Sutcli�e e�ciency and the calibration
parameter E
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Figure 3.60: The relationship between the calibration parameters E and c

3.8 Checking the Performance of the Original SWAT+

Model

In the previous sections, we regionalized the MUSLE under the hydro-climatic conditions
of Ethiopia, we improved the MUSLE, and we proposed the SLESYE and its revised
versions by taking the observed �ow as direct input data. However, if rainfall is taken as
direct input data for sediment yield estimation, we apply the SWAT+ model for sediment
yield estimation. This is because the model generates runo� by taking climatic data as
its input data.

3.8.1 Selection of a Suitable Watershed

Selecting a suitable watershed based on the quality and quantity perspective of input data
is important to apply the SWAT+ model. Compared with the other watersheds, we could
see a su�cient number of climatic stations and a logical relationship between rainfall, �ow,
sediment, and impact of land use change for the Hombole Watershed (see section 3.2.4).
And also, the performance of the sediment rating curve for the Hombole Watershed
is good. Therefore, the Hombole Watershed is suitable for the implementation of the
SWAT+ model, which is the largest watershed among the others. For a large watershed,
applying the SWAT+ model is an appropriate approach to divide the watershed into
sub-watersheds so as to consider spatial variation.
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3.8.2 Preparation of Input Data for the SWAT+ Model

The required initial input data to run the SWAT+ model are DEM, stream network in
the shape �le, a geographic location of an outlet point, maps and tabular data of land use
and soil, and tabular data of urban, plant, and climate data. The climate data includes
precipitation, minimum and maximum temperature, wind speed, relative humidity, and
solar radiation. We have prepared the maps (see sections 3.2.1 � 3.2.3), and the tabular
data according to the input data format of the SWAT+ model. For a good reason, as
the SWAT+ model had been demonstrated at Robit Watershed in Ethiopia, we used the
standard urban and plant data of the SWAT+ model for our modeling.

Based on the initial input data, we can use the recommended land use management data
(such as conservation practice, curve numbers, etc) in the SWAT+ model. The SWAT+
editor provides options to modify the initial input and the land use management data. As
the calibration of the model determines the value of the input data parameters, the �nal
value of the input data and model parameters can be decided based on the calibration
and validation results of the model.

3.8.3 Estimation of the QSWAT+ Model Parameters

In the QSWAT+ model, the expression for calculating a channel width or depth (in me-
ters) is given by mult∗Aexp where A is the drainage area, mult and exp are the constants
that depend on the channel width and depth. The channel width and depth a�ect the
�ow and sediment routing in the SWAT+ model, and they can be estimated through cali-
bration. For the initial input values, the SWAT+ model assumes the default values for the
constants. The initial default values may not be the same for all watersheds. Therefore,
to estimate the values of the constants for the Hombole watershed, we considered four
points on the mainstream of the watersheds; we estimate the channel width (w) based
on a satellite image, and the channel depth (d) is estimated by considering maximum
�ow, and by applying the continuity equation or mass balance equation. Accordingly,
the width and depth of the channel for the Hombole watershed can be determined by
w = 0.3A0.6 and d = 0.00151A
where A is the drainage area of the watershed

In this section, we considered a physical background to estimate the channel width and
depth. However, we have to check whether this approach improves the initial performance
of the model in the section 3.8.5.

3.8.4 Selection of Modelling Approaches in the SWAT+ Model

Among the SWAT+ modeling approaches, we focus on the modeling approaches which
directly or indirectly a�ect sediment yield. The sediment yield is a�ected by surface
runo� which in turn is a�ected by potential evapotranspiration and in�ltration. The
SWAT+ model uses di�erent empirical equations to estimate each of these interrelated
processes. Therefore, we select a suitable method based on the input data and modeling
approach.

The SWAT+ model provides three alternative methods such as the Penman/Monteith,
Priestley-Taylor, and Hargreaves methods to estimate potential evapotranspiration. It
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also provides options to upload ET values directly. The Penman/Monteith method is
intended to correctly predict ET under variate of locations and climate conditions and
can be applied in case of data shortages (Wu et al., 2021). It is used to calculate po-
tential evapotranspiration when temperature, wind speed and relative humidity data are
available. The Priestley-Taylor equation, a simpli�cation of the Penman/Monteith equa-
tion (Flint and Childs, 1991; Shekar and Hemalatha, 2021). The Hargreaves method is
advantageous in regions where solar radiation, humidity, and wind data are lacking or are
of low or questionable quality (Hargreaves and Allen, 2003). For our modeling approach,
we selected the Penman/Monteith method.

The SWAT+ model provides two alternative methods for �ow routing, such as vari-
able storage and Muskingum methods. For the variable storage method, Shekar and
Hemalatha (2021) reported that SWAT-2012 model did not perform a transformation of
the out�ow compared to the in�ow. For the Muskingum method, Shekar and Hemalatha
(2021) reported that the calculated evaporation in a reach for each sub-daily time step in
SWAT-2009 and SWAT-2012 models was taken as daily evaporation, and the calculated
transmission losses were not summed up during each time step to have the total amount
of transmission losses during a day. Therefore, for �ow routing in SWAT+ model, we can
select the Muskingum method for daily time step. However, we can check that the model
performance in either of the cases is the same for the watershed under our consideration
(i.e., the Hombole Watershed).

The SWAT+ model provides three options to estimate runo�. These involve the cal-
culation of daily curve number value as a function of soil moisture, daily CN value as
a function of plant evapotranspiration, and using the traditional SWAT method that
bases CN on soil moisture but retention is adjusted for mildly-slope �eld-drained water-
sheds. According to the traditional SWAT method, the retention should be adjusted as
watersheds in Ethiopia are characterized by a hilly slope. The calculation of the daily
CN value as the function of plant evapotranspiration may not be suitable due to lim-
ited daily temperature, relative humidity, and watershed management data. Since the
SWAT+ provides the option to consider the warm-up period that determines initial soil
moisture, we selected the daily CN values as the function of soil moisture.

The SWAT+ model provides two options for event codes. The �rst event code is daily/
rainfall/ curve number runo�/ daily routing, and the other event code is sub-daily rain-
fall/ Green and Ampt in�ltration/sub-daily routing. Since we have daily rainfall data,
we selected the �rst event code for our modeling approach.

The SWAT+ model provides three methods for sediment routing. These methods are
the Bagnold model, Brownlie model, and Yang model. We can check that the model
performance in all cases is the same for the selected watershed. There is a possibility
that sediment transport equations yield similar sediment yields (Yen et al., 2017).

The SWAT+ model provides two methods to calculate the cover factor of the MUSLE.
The �rst method is cover factor calculation using the minimum cover factor of a land
cover, the total mass of the plant community, and surface residues. The other method is
a new cover factor calculation without using the minimum cover factor of the land cover
but the calculation is based on the total mass of the plant community above ground, total
surface residues, and plant biomass. As there is no signi�cant di�erence between these
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two methods, we selected the �rst method for our modeling approaches.

3.8.5 Sensitivity Analysis, Calibration and Validation of the Orig-

inal SWAT+ Model

Before we do sensitivity analysis, calibrate and validate the model, we �rst check the initial
performance of the model. The initial performance of the model relates to the quality of
input data, selected time steps, and modeling approaches of the SWAT+ model. Since
we have observed �ow and sediment data from 1990 � 2015 and four land use maps that
show land use changes (see section 3.2.2), we check the initial performance of the model
from 1990 � 2000. To calibrate sediment yield, we should �rst calibrate �ow. Therefore,
checking the initial performance of the model for daily, monthly, and yearly average �ow
is an important task. For evaluation, we use statistical performance measures such as R2,
NSE, RMSE, MAE, VE, and SSE, and we also use graphs to evaluate the performance
of the model.

If we use all or a large number of the calibration parameters, we require a long time
to calibrate the model as the model needs to be rerun several times, in this case, we
may not easily calibrate the model. Sensitivity analysis is a technique to minimize the
size of the calibration parameters by choosing the appropriate parameters that have a
signi�cant e�ect on �ow or sediment yield. As compared to the other parameters, a
change in the values of the appropriate parameters results in a higher value of the �ow
or sediment yield. We can do a manual or automatic sensitivity analysis. The result of
the automatic sensitivity analysis depends on the number of times the model should be
rerun and the algorithms it uses for sensitivity analysis. For example, the current version
of the automatic sensitivity analysis and calibration tool like the SWAT+ Toolbox v1.0
supports four algorithms for the sensitive analysis, such as the Sobol, Fourier Amplitude,
Random Balance Designs Fourier Amplitude, and Delta Moment-Independent Measure.
We can check that the SWAT+ Toolbox v1.0 is not successful for a large watershed, as
it takes more than a week for a few simulations runs.

Basically, the selection of the calibration parameters depends on the structure or math-
ematical form of the model (for example, see explanation in the section 3.3). To directly
calibrate the model, we choose the following parameters which a�ect the �ow. These
are one of the sensitivity parameters which have been reported in the literature many
times. We use the SWAT+ Toolbox v1.0 to calibrate the model, which uses Dynamically
Dimensioned Search algorithms for the calibration. We use the following current best
value of the parameters (in percent change) for the evaluation of the model, which were
estimated using the SWAT+ Toolbox v1.0 at chosen 120 iterations.

Table 3.2: Automatically calibrated value of the selected �ow calibration parameters,
using the SWAT+ Toolbox v1.0.

Selected calibration parameters Selected
types of
change

Selected
range

Current
best value

perco percent
change

-60 � 60 26.096
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alpha percent
change

-60 � 60 59.736

�o_min percent
change

-60 � 60 -26.266

awc percent
change

-60 � 60 26.796

ovn percent
change

-60 � 60 -34.143

cn3_swf percent
change

-60 � 60 -16.226

epco percent
change

-60 � 60 51.905

esco percent
change

-60 � 60 47.492

cn2 percent
change

-60 � 60 -57.468

For the validation of the model in the context of �ow estimation, we use observed �ow
data from 2001 � 2015 provided that missing �ow records on August 21, 2012, August 25,
2012, September 3, 2012, and September 6, 2012, are not considered for the comparison
against the simulated �ow. Since we want to minimize uncertainty, we prefer not to
�ll data using statistical approaches rather than we prefer not to consider the missing
observed �ow data. We check the performance of the calibrated model by changing the
land use maps for the periods 2001 � 2008, 2009 � 2012, and 2013 � 2015, and without
changing the land use map (i.e., the land use map of 1989 � 2000 is used for both
calibration and validation periods).

As �ow and sediment transport are interrelated processes, the calibration parameters
which a�ect �ow also a�ect sediment yield. It is important to note here that the �ow
calibration parameters which have less e�ect on �ow may have much e�ect on sediment
yield. We selected the following calibration parameters that only a�ect the sediment
yield. These parameters are one of the sensitivity parameters which have been reported
in literature many times. Due to the same reason mentioned above, the SWAT Toolbox
v1.0 is not successful in the sensitivity analysis and calibration of sediment yield. We
use the SWAT+ Editor to do sensitivity analysis manually. For the analysis, we take the
minimum, maximum and intermediate values for one parameter while keeping the other
parameters constant. We use the most sensitive parameter to calibrate the model. In the
actual case, parameters usle_p and usle_k have equal sensitivity e�ect (for an explana-
tion, see section 3.3). Therefore, one of these parameters is an unnecessary calibration
parameter. The values of these parameters were assigned based on the explanations given
in the section 3.3. To control the calibration parameters while considering the future eval-
uation of the model, we also assigned the values of the parameters which did not show a
signi�cant e�ect on sediment yield.
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Table 3.3: The assigned and manually calibrated values of the sediment calibration pa-
rameters

Selected parameters test range sensitivity assigned or calibrated
value

lat_sed 0 � 5000 no signi�cant changes
were seen

0

spcon 0.0001 � 0.01 no signi�cant changes
were seen

1

spexp 1 � 1.50 no signi�cant changes
were seen

1

prf 0 � 2 no signi�cant changes
were seen

1

adj_pkr 0.5 � 2 no signi�cant changes
were seen

1

usle_p 0 � 1 no signi�cant changes
were seen

0.583

usle_k 0 � 1 no signi�cant changes
were seen

0.113

bedldcoef 0 � 1 signi�cant changes
were seen

0.055

For the validation of the model in the context of sediment yield estimation, we use
sediment data generated by the sediment rating equation. Since there are missing �ow
records on August 21, 2012, August 25, 2012, September 3, 2012, and September 6, 2012,
we do not have sediment data in these periods to compare against the simulated sediment.

3.9 Modifying the SWAT+ Model for Sediment Yield

Estimation

In this section, we modify the source code of the SWAT+ model rev.60.5.4 in three
di�erent types for sediment yield estimation. To evaluate these three types of the SWAT+
models, we use the same calibration parameters, data, and approach as the original
SWAT+ model.

3.9.1 Type One

Compared to the other parameters of the MUSLE, the parameter whose value can be
estimated through calibration is the exponent (see explanation in the section 3.3). In the
previous section, we determined the best exponent and the best equation of the topo-
graphic factor of the MUSLE under the hydro-climatic condition of Ethiopia. Therefore,
to modify the source code of the SWAT+ model rev.60.5.4 for sediment yield estima-
tion, we replace the best exponent (b = 0.57) and the following best equation of the
topographic factor in the source code, i.e., in the subroutine ero_ysed and subroutine
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hru_lte_read respectively.

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2901△ y0.4002 for J < 5% (3.156)

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2105△ y0.5004 for J > 5% (3.157)

where L is the slope length factor, S is the slope steepness factor, J is the slope in %,
△y = λ/22.1, and λ is the slope length.

a) Before modi�cation

The original source code of the SWAT+ model rev.60.5.4, in the subroutine ero_ysed,
which require modi�cations are provided below.

sedyld(j) = (10. * surfq(j) * qp_cms * hru(j)%area_ha) ** .56 * cklsp(j)
qp_cms = qp_cms * 3.6 / hru(j)%km !cms�> mm/h
sedyld(j) = 1.586 * rock * (surfq(j) * qp_cms) ** .56 * (hru(j)%area_ha) ** 0.12 * &
usle_cfac(j) * soil(j)%ly(1)%usle_k * hru(j)%lumv%usle_p * hru(j)%lumv%usle_ls

The original source code of the SWAT+model rev.60.5.4, in the subroutine hru_lte_read,
which require modi�cations are provided below.

xm = 0.
xm = .6 * (1. - EXP(-35.835 * hlt_db(idb)%slope))
sin_sl = SIN(Atan(hlt_db(idb)%slope))
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.128)**xm * &
(65.41 * sin_sl * sin_sl + 4.56 * sin_sl + .065)

b) After modi�cation

The modi�ed source code of the SWAT+ model rev.60.5.4, in the subroutine ero_ysed,
are given below.

sedyld(j) = (surfq(j) * qp_cms * hru(j)%area_ha) ** .57 * 4000. * cklsp(j) * rock

The modi�ed source code of the SWAT+model rev.60.5.4, in the subroutine hru_lte_read,
are given below.

sin_sl = hlt_db(idb)%slope *100.
if(sin_sl < 5.0) then
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.1)**0.4002 * 0.2901 * & (0.02222 *
sin_sl**1.5 + 0.03231*sin_sl + 0.1004)
else
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.1)**0.5004 * 0.2105 * & (0.02222 *
sin_sl**1.5 + 0.03231*sin_sl + 0.1004)
end if

We call this type the SYEt1-SWAT+ model

3.9.2 Type Two

The SWAT+ model provides calibration parameters like peak rate adjustment factor for
sediment routing in the subbasin (tributary channels) (adj_pkr) and peak rate adjust-
ment factor for sediment routing in the main channel (prf), their values can be estimated
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during the calibration of sediment yield. There is uncertainty that how likely the SWAT+
model estimates the actual peak runo� rate. To minimize uncertainty, in our previous
section, the peak runo� rate is eliminated in the improved MUSLE. Therefore, we im-
prove the SWAT+ model by replacing the improved MUSLE (aQ1.44KLSCP ) in the
place of the MUSLE in the source code, i.e., in the subroutine ero_ysed. The following
best equation of the topographic factor corresponding to the improved MUSLE is also
replaced in place of the topographic factor of the MUSLE in the source code, i.e., in the
subroutine hru_lte_read.

L =

(
λ

22.13

)m

(3.158)

m =
β

1 + β
(3.159)

β =
sin θ
0.0896

3 (sin θ)0.8 + 0.56
(3.160)

S = 10.8 sin θ + 0.03 if the slope is less than 9% (3.161)

S = 16.8sinθ − 0.5 if the slope is greater than or equal to 9% (3.162)

where λ is the slope length (m), and θ is the angle of the slope in degree.

a) Before modi�cation

The original source code of the SWAT+ model, in the subroutine ero_ysed, which require
modi�cations are provided in section 3.9.1. The original source code of the SWAT+
model, in the subroutine hru_lte_read, which require modi�cations are provided below.
xm = .6 * (1. - EXP(-35.835 * hlt_db(idb)%slope))

hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.128)**xm * &
(65.41 * sin_sl * sin_sl + 4.56 * sin_sl + .065)

b) After modi�cation

The modi�ed source code of the SWAT+ model rev.60.5.4, in the subroutine ero_ysed,
are given below.
sedyld(j) = (surfq(j)) ** 1.44 * cklsp(j) * rock

The modi�ed source code of the SWAT+model rev.60.5.4, in the subroutine hru_lte_read,
are given below.

betha4_imusle = sin_sl / 0.0896* (3.0 * sin_sl ** 0.8 + 0.56)
xm = betha4_imusle / (betha4_imusle +1)
if (hlt_db(idb)%slope < 0.09) then
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.13)**xm * &
(10.8 * sin_sl + .003)
else
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.13)**xm * &
(16.8 * sin_sl - .5)
end if

We call this type the SYEt2-SWAT+ model
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3.9.3 Type Three

In this case, we modify the SWAT+ model by replacing the RSLESYE-v1 (aQ1.42(1 −
K)LSCP ) in the place of the MUSLE in the source code, i.e., in the subroutine ero_ysed.
The best equation of the topographic factor corresponding to the RSLESYE-v1 is also
replaced in the place of the topographic factor of the MUSLE in the source code, i.e., in
the subroutine hru_lte_read.

a) Before modi�cation

The original source code of the SWAT+ model, in the subroutine ero_ysed, which re-
quire modi�cations are provided in section 3.9.1. The original source code of the SWAT+
model, in the subroutine hru_lte_read, which require modi�cations are provided in sec-
tion 3.9.2.

b) After modi�cation

The modi�ed source code of the SWAT+ model rev.60.5.4, in the subroutine ero_ysed,
are given below.
sedyld(j) = (surfq(j)) ** 1.42 * cklsp(j) * rock
! note the value of K is replaced by the value of 1−K in user soil table. The modi�ed
source code of the SWAT+ model rev.60.5.4, in the subroutine hru_lte_read, are given
below.

betha4_imusle = sin_sl / 0.0896* (3.0 * sin_sl ** 0.8 + 0.56)
xm = betha4_imusle / (betha4_imusle +1)
if (hlt_db(idb)%slope < 0.09) then
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.13)**xm * &
(10.8 * sin_sl + .003)
else
hlt_db(idb)%uslels = (hlt_db(idb)%slopelen/22.13)**xm * &
(16.8 * sin_sl - .5)
end if

We call this type the SYEt3-SWAT+ model

3.10 Compiling the SWAT+ Editor

After compiling source code for both debug and release versions, we will obtain executable
applications. We pack these two applications with SWAT+ Editor �les, and we follow
the following steps to compile SWAT+ Editor (these steps are taken from the original
SWAT+ Editor's 'README' �le).

1. Install Python 3 and up from https://www.python.org/

2. Install required Python packages

� From command prompt, go to source code `/api` directory

� Run `pip install -r requirements.txt`

3. Update the `appsettings.json` �le in the root of the source code directory with your
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python PATH variable (typically `python` on Windows)

4. Install Node.js from https://nodejs.org/en/

5. Install required Node.js packages

� From command prompt, go to the root directory of the source code

� Run `npm install`

6. If needed, adjust the `pythonPath` setting in `appsettings.json`; change to `python`
(Windows)

7. From command prompt, go to the root directory of the source code

8. Run `npm run serve`

9. In another prompt, run `npm run electron`

3.11 An Iterative Approach for Deriving and Solving

an Accurate Regression Equation

In actual modelling, the underlying processes are generally complex and not well un-
derstood, this means that we have little or no idea about the form of the relationship
(Seber and Wild, 2003). For example, di�erent authors indicate that the power function
is a commonly used nonlinear regression approach to model the sediment rating curve
(eg.,Asselman (2000); Hapsari et al. (2019); Heng and Suetsugi (2014)). However, the
error of the regression equation is very large. In this section, we provide a method to
derive an accurate regression equation for sediment rating.

3.11.1 An Iterative Approach to Derive an Accurate Regression

Equation

To arrive at iteration steps, let us begin from the following de�nition.

De�nition: for given values of paired variables S and Q, variables x and y are de�ned by

y = i(bS)1/u + jQ (3.163)

x = k(hQ)1/w + t (3.164)

where i, b, u, j, k, h, w and t are constants.

Let y ≈ y(x)

Since a polynomial function can accommodate negative or positive value, let us consider
a polynomial function y(x)

y(x) = anx
n + an−1x

n−1 + an−2x
n−2 + ...+ c (3.165)

y = y(x) + e (3.166)

where e is the error value
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Substitute equation 3.163 into 3.166

i(bS)1/u + jQ = y(x) + e (3.167)

Rearrange equation 3.167

S =
1

biu
(y(x)− jQ+ e)u (3.168)

In equation 3.168, variables y(x), Q and e are connected by plus and minus sign. It shows
that values of variables y(x), Q or e have an individual e�ect on a value of variable S.
This is a reason why we de�ned x and y in the above way to arrive at equation 3.168.

Let
e = e1 + e2 + e3 + ...+ ep−1 + ep (3.169)

Substitute equation 3.169 into 3.168

S =
1

biu
(y(x)− jQ+ e1 + e2 + e3 + ...ep−1 + ep)

u (3.170)

Equation 3.170 represents an actual value of variable S. In equation 3.170, if a value
of error ep is the minimum tolerable error that could be ignored, then the sum of error
values e1, e2, e3,....ep−1 represents an approximate value of the total error e. Therefore,
the predicted value of variable S (let us say Sp) is given by

Sp =
1

biu
(y(x)− jQ+ e1 + e2 + e3 + ...+ ep−1)

u (3.171)

Therefore, the di�erence between S and Sp is an error, which is equal to Ep (i.e., Ep =
S − Sp), where p− 1 refers to the number values of error e should be required to derive
an accurate regression equation at p number of iteration steps. If there are p− 1 number
of values of error e (i.e., e1, e2, e3...ep−1), there are also p − 1 number of values of
corresponding error E (i.e., E1, E2, E3...Ep−1).

Logic is now if we are able to express error e as a function of error E, we can derive an
accurate regression equation. This is because of both errors (i.e., e and E) is the function
of variables Q and S. Therefore, we de�ne an iterative procedure to approximate a value
of error e based on a value of the corresponding error E. Let an approximate value of
error e1, e2, e3...ep−1 be equal to r1, r2, r3...rp−1 respectively. Therefore, the following
iteration steps are de�ned based on equation 3.171 and the explanations above.

For the �rst iteration step (p = 1), e0 = 0, E0 = 0 and r0 = 0. Therefore, the �rst
predicted value of variable S (i.e., S1) is determined by

S1 =
1

biu
(y(x)− jQ)u (3.172)

If S1 ≈ S, no need to proceed to the next iteration step. If S1 ̸≈ S, we proceed to the
next iteration step.

For the second iteration step (p = 2), e1, E1 and r1 is determined by

e1 = y − y(x) (3.173)
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E1 = S − S1 (3.174)

r1 = f1(E1) (3.175)

where f1 is the polynomial regression function between the values of e1 and E1. There-
fore, at the second iteration step, the second predicted value of variable S (i.e., S2) is
determined by

S2 =
1

biu
(y(x)− jQ+ r1)

u (3.176)

If S2 ≈ S, no need to proceed to the next iteration step. If S2 ̸≈ S, we proceed to the
next iteration step.

For the third iteration step (p = 3), e2, E2 and r2 is determined by

e2 = y − (y(x) + r1) (3.177)

E2 = S − S2 (3.178)

r2 = f2(E2) (3.179)

where f2 is the polynomial regression function between the values of e2 and E2. Therefore,
at the third iteration step, the third predicted value of variable S (i.e., S3) is determined
by

S3 =
1

biu
(y(x)− jQ+ r1 + r2)

u (3.180)

If S3 ≈ S, no need to proceed to the next iteration step. If S3 ̸≈ S, we proceed to the
next iteration step.

For the fourth iteration steps (p = 4), e3, E3 and r3 is determined by

e3 = y − (y(x) + r1 + r2) (3.181)

E3 = S − S3 (3.182)

r3 = f3(E3) (3.183)

where f3 is the polynomial regression function between the values of e3 and E3. Therefore,
at the fourth iteration step, the fourth predicted value of variable S (i.e., S4) is determined
by

S4 =
1

biu
(y(x)− jQ+ r1 + r2 + r3)

u (3.184)

If S4 ≈ S, no need to proceed to the next iteration step. If S4 ̸≈ S, we proceed to the
next iteration step.

For the (p− 1)th iteration step, ep−2, Ep−2 and rp−2 is determined by

ep−2 = y − (y(x) + r1 + r2 + r3 + ...+ rp−3) (3.185)

Ep−2 = S − Sp−2 (3.186)

rp−2 = fp−2(Ep−2) (3.187)
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where fp−2 is the polynomial regression function between the values of ep−2 and Ep−2.
Therefore, at the (p−1)th iteration step, the (p−1)th predicted value of variable S (i.e.,
Sp−1) is determined by

Sp−1 =
1

biu
(y(x)− jQ+ r1 + r2 + r3 + ...+ rp−2)

u (3.188)

For the pth iteration step, ep−1, Ep−1 and rp−1 is determined by

ep−1 = y − (y(x) + r1 + r2 + r3 + ...+ rp−2) (3.189)

Ep−1 = S − Sp−1 (3.190)

rp−1 = fp−1(Ep−1) (3.191)

where fp−1 is the polynomial regression function between the values of ep−1 and Ep−1.
Therefore, at the pth iteration step, the pth predicted value of variable S (i.e., Sp) is
determined by

Sp =
1

biu
(y(x)− jQ+ r1 + r2 + r3 + ...rp−2 + rp−1)

u (3.192)

3.11.2 Determining the Final Form of the Accurate Regression

Equation

Suppose at the pth iteration step, S ≈ SP . Then, the �nal form of an accurate regression
equation is obtained through substitutions.

Substitute equation 3.172 into 3.174

E1 = S − 1

biu
(y(x)− jQ)u (3.193)

Substitute equation 3.176 into 3.178

E2 = S − 1

biu
(y(x)− jQ+ r1)

u (3.194)

Substitute equation 3.180 into 3.182

E3 = S − 1

biu
(y(x)− jQ+ r1 + r2)

u (3.195)

Substitute equation 3.188 into 3.190

Ep−1 = S − 1

biu
(y(x)− jQ+ r1 + r2 + r3...+ rp−2)

u (3.196)

Substitute equation 3.193 into 3.175

r1 = f1

(
S − 1

biu
(y(x)− jQ)u

)
(3.197)
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Substitute equation 3.194 into 3.179

r2 = f2

(
S − 1

biu
(y(x)− jQ+ r1)

u

)
(3.198)

Substitute equation 3.195 into 3.183

r3 = f2

(
S − 1

biu
(y(x)− jQ+ r1 + r2)

u

)
(3.199)

Substitute equation 3.196 into 3.191

rp−1 = fp−1

(
S − 1

biu
(y(x)− jQ+ r1 + r2 + r3...+ rp−2)

u

)
(3.200)

Substitute equation 3.197 into 3.198; equations 3.197 and 3.198 into 3.199; equations
3.197, 3.198 and 3.199 into 3.200 and so on. After all substitutions have been done one
after the other, then the �nal resulting equation is very long. But, we can see that r1, r2,
r3...rp is the function of variables Q and S. For given values of paired variables, i, b, u,
j, k, h, w and t are all constants. Therefore,

r1 + r2 + r3 + ...+ rp−1 = f1(Q,S) + f2(Q,S) + f3(Q,S)...+ fp−1(Q,S) (3.201)

Substitute equation 3.201 into 3.192

Sp =
1

biu
(y(x)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ fp−1(Q,S))u (3.202)

Substitute equation 3.164 into 3.165

y(x) = an
(
k(hQ)1/w + t

)n
+ an−1

(
k(hQ)1/w + t

)n−1
+ an−2(k(hQ)1/w + t)n−2 + ...+ c

(3.203)
From equation 3.203, y(x) is the function of variable Q. Therefore,

y(x) = f(Q) (3.204)

Substitute equation 3.204 into 3.202

Sp =
1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ fp−1(Q,S))u (3.205)

Suppose at the pth iteration step, S ≈ SP . Therefore, equation 3.205 is given by

S ≈ 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + ...+ fp−1(Q,S))u (3.206)

Equation 3.206 is the shorthand form of a very long equation. The substituting equations'
power constants u, w, and nmake the equation complex and di�cult to simplify. However,
the substituting equations that form the complex equation are easily interconnected in an
Excel spreadsheet or programmed in Matlab. As we can see from equation 3.206, there
are only two variables Q and S. Therefore, we can solve this equation for a given value
of Q or S. A procedure to solve the equation is provided in section 3.11.5.
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3.11.3 Determining Initial Values for Deriving an Accurate Re-

gression Equation

In sections 3.11.1 and 3.11.2, we showed the steps to derive and determine the �nal form
of the accurate regression equation based on values of paired variables S and Q. To start
deriving the equation based on the values of the paired variables S and Q, we should
have to �rst determine the constants (see equations 3.163 and 3.164). The polynomial
function (see equation 3.165) directly describes the relationship between variables x and
y, but it indirectly describes the relationship between variables S and Q. Therefore, for
given values of paired variables S and Q, we �nd values of constants i, b, u, j, k, h, w,
and t for equations 3.163 and 3.164 such that plots of x versus y yield a smooth curve
of a polynomial function. Accordingly, once all values of constants are known, the initial
and �nal values of variables will be determined by following the iteration steps above.

3.11.4 Deriving an Accurate Sediment Rating Equation

In above sections, we indicated the general directions showing how to derive and de-
termine the �nal form of the accurate regression equation, and we also indicated the
direction showing how to determine the initial values to start deriving the equation. For
a practical example, we use sediment concentration and corresponding river or stream-
�ow data (see table 3.4) to derive an accurate sediment rating equation. In the table,
suspended sediment concentration data is represented by variable S whereas �ow data is
represented by variable Q.

Table 3.4: Sediment concentration versus river or stream�ow data

S Q S Q S Q S Q S Q S Q

0.14 4.45 0.38 20.12 2.36 94.00 1.39 0.17 1.49 31.02 0.69 199.26

1.28 6.25 1.32 15.30 0.32 17.68 1.03 1.53 0.55 25.32 0.90 189.28

0.16 2.21 12.49 149.06 3.93 42.80 0.44 21.83 0.77 17.64 0.57 198.42

0.24 37.89 0.28 15.04 4.07 119.92 1.12 93.23 0.44 3.15 0.53 319.65

0.21 33.19 14.66 37.81 2.42 6.09 1.30 74.07 1.33 12.06 0.77 110.63

0.14 30.44 1.98 167.03 0.74 0.49 0.92 1.60 1.26 14.15 0.67 104.23

0.19 37.09 4.62 114.72 2.67 57.20 1.18 24.21 0.74 5.39 0.51 153.16

0.26 40.82 2.58 59.48 1.00 56.88 0.62 17.47 1.01 53.83 0.35 159.87

0.15 1.51 3.67 152.82 1.29 52.23 4.95 144.55 4.32 39.80 0.25 135.77

0.24 2.51 1.15 238.53 10.35 57.74 5.58 108.34 1.63 13.08 0.17 3.12

2.14 54.81 1.91 58.37 25.17 49.32 0.81 9.69 24.41 2.40 0.18 29.89

0.67 23.65 0.89 4.79 1.81 108.29 0.76 9.72 28.09 0.63 0.23 3.64

1.18 30.74 0.61 5.10 36.73 159.62 11.86 15.58 2.37 39.32 0.76 12.60

0.43 32.12 1.41 32.37 51.81 179.98 1.40 93.23 1.88 17.10 0.53 113.22

0.75 38.05 0.58 24.74 90.85 69.49 5.28 105.25 2.81 25.48 0.43 97.20

0.32 20.44 2.24 11.55 4.96 128.92 1.16 104.70 19.72 1.30 0.80 50.24
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3.53 55.26 1.42 13.48 4.11 104.01 0.48 36.19 23.65 1.51 0.17 1.28

0.41 21.89 13.49 40.42 2.22 82.63 1.37 38.07 19.66 0.99 0.37 0.31

2.49 35.16 6.76 43.20 0.42 5.31 1.81 42.83 0.16 0.29 10.07 37.64

1.21 63.67 2.70 75.92 0.33 6.18 0.56 37.75 0.52 2.53 0.54 0.45

0.65 37.58 1.33 130.30 0.33 5.18 1.49 37.75 17.00 5.25 0.29 35.88

0.41 22.34 11.75 176.14 0.20 2.21 0.42 48.70 0.30 0.23 3.11 117.10

2.83 44.08 5.42 111.82 0.16 2.48 0.43 48.70 0.80 0.31 5.37 207.80

1.48 24.09 2.94 98.13 0.28 3.08 0.42 35.76 23.20 32.44 5.04 95.13

0.63 22.51 3.83 99.30 0.95 5.64 0.78 48.92 0.43 0.43 3.36 146.50

6.73 133.89 1.35 168.55 0.68 6.99 7.12 95.55 31.05 50.11 3.87 152.71

0.45 31.28 1.24 20.22 0.34 3.72 0.60 54.25 20.31 10.16 2.63 50.12

0.48 31.03 1.78 62.43 0.19 5.43 0.78 56.13 0.32 0.22 5.95 62.99

0.44 57.53 3.43 71.05 1.38 53.34 2.79 13.58 0.36 0.44 3.26 73.70

0.20 34.61 2.63 38.20 1.31 67.62 3.78 10.14 14.60 228.98 3.23 129.79

0.28 32.44 3.13 39.30 2.18 8.69 3.30 5.27 30.02 127.80 2.07 122.71

0.37 26.92 0.93 48.68 3.16 44.75 0.65 41.22 7.70 10.93 0.65 73.37

0.20 2.70 0.38 28.72 0.38 12.68 2.85 47.26 33.64 28.16 3.04 129.32

2.58 93.17 0.36 34.10 4.97 31.55 0.39 41.71 27.86 30.54 2.19 152.27

0.15 1.21 2.87 151.57 3.24 44.48 0.30 39.25 2.58 2.54 4.74 180.53

0.38 33.75 7.17 33.49 4.64 45.20 1.27 65.49 9.56 12.85 1.55 118.12

0.34 30.32 0.57 16.89 39.48 56.21 3.44 271.87 3.57 21.47 0.17 3.19

0.19 3.98 4.71 37.33 0.34 6.30 1.74 208.40 4.75 16.66 7.24 225.41

0.36 4.61 3.49 40.91 59.70 61.38 0.39 29.66 1.63 2.89 5.13 176.56

1.39 102.17 1.34 33.79 13.36 148.11 1.80 85.73 37.06 22.19 5.27 221.30

1.11 59.16 3.86 74.78 0.63 4.54 3.33 108.97 0.33 0.23 2.47 171.11

0.52 33.87 0.48 24.69 0.40 0.57 0.85 69.59 0.27 1.72 3.94 276.35

0.27 152.47 7.52 75.00 0.30 0.13 5.34 127.63 0.47 1.56 1.08 110.00

18.53 78.29 1.28 16.81 0.19 0.48 2.48 77.18 0.36 0.75 2.52 137.09

0.38 2.89 0.97 27.20 0.63 0.60 12.29 98.50 37.66 36.81 0.28 17.58

0.27 11.05 1.08 59.65 1.08 1.01 3.42 110.31 11.92 214.26 0.21 17.16

0.54 14.02 2.94 66.77 1.25 23.21 4.41 70.46 23.07 67.11 0.24 19.31

0.79 19.02 1.57 66.74 0.35 14.29 8.77 108.26 2.89 6.26 0.63 101.23

1.29 58.66 0.23 32.58 5.50 31.05 0.29 46.20 9.81 9.92 2.68 274.87

0.60 4.56 2.93 66.22 0.36 1.30 0.69 35.27 0.39 0.17 2.01 140.60

0.23 24.35 3.61 23.95 0.24 1.83 6.14 60.28 0.29 1.85 0.94 148.94

0.30 29.23 0.58 15.38 0.27 1.83 7.78 82.47 3.20 7.15 3.40 179.02

0.36 23.58 4.46 119.18 2.61 46.23 5.45 72.37 0.33 1.27 4.83 181.19
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0.73 226.44 1.53 16.09 2.30 107.37 1.80 72.65 0.50 0.88 2.76 175.82

1.04 231.54 4.27 30.15 5.80 355.23 6.28 144.50 8.06 6.52 4.44 214.76

0.71 173.97 0.54 30.39 18.50 133.38 0.76 13.54 0.48 1.13 1.76 115.29

1.59 50.64 0.51 26.49 4.67 148.95 0.72 12.26 19.58 85.06 4.95 177.35

4.82 99.40 0.28 12.27 1.87 132.59 0.82 11.28 0.30 0.72 1.48 101.10

2.82 18.86 0.33 61.50 3.57 113.26 0.80 12.24 1.16 1.21 6.10 145.92

0.61 72.30 0.32 38.59 6.87 118.23 0.73 9.70 0.39 1.14 6.09 152.61

1.17 84.22 1.28 23.90 5.27 121.66 0.81 10.55 0.36 0.64 4.34 142.45

0.41 12.03 0.24 49.53 0.25 1.50 0.75 10.38 0.46 0.36 3.20 153.48

0.46 16.91 8.39 232.91 0.27 1.80 0.86 11.69 0.23 0.64 6.96 263.48

1.50 16.62 0.20 0.42 0.31 0.78 0.76 11.85 0.33 1.38 1.77 127.29

0.62 17.65 0.18 6.47 2.19 0.76 55.67 103.16 0.26 0.97 2.00 88.42

0.42 10.38 0.76 11.92 11.84 0.77 40.87 56.90 0.35 1.63 3.36 108.43

0.38 62.83 0.30 10.18 4.26 0.74 20.17 25.76 11.58 18.41 4.12 109.92

0.48 44.38 0.54 4.93 5.77 0.32 11.20 16.43 0.21 1.97 0.91 93.72

0.29 25.15 31.76 55.98 4.50 0.44 9.71 19.69 14.76 12.43 2.84 94.94

0.27 2.72 7.66 197.55 6.59 0.43 3.03 37.75 45.57 9.86 4.59 129.44

1.62 11.78 1.38 134.05 0.92 11.76 11.27 26.97 8.05 3.37 2.51 139.24

5.35 53.47 1.17 22.75 31.40 1.60 69.93 34.78 13.44 5.32 2.58 144.18

0.29 4.23 1.19 195.35 8.40 0.93 6.13 21.76 15.25 23.31 5.72 171.62

7.07 200.33 0.97 193.68 5.20 0.44 39.35 117.00 34.20 16.55 3.96 207.69

0.57 7.86 1.37 201.84 12.68 0.44 27.25 37.75 15.01 16.64 2.13 146.80

1.05 9.04 1.69 205.97 0.71 9.93 21.58 30.66 18.28 24.10 3.31 148.29

0.68 53.32 1.11 139.99 4.39 0.72 18.56 23.01 8.58 10.44 4.87 187.62

0.45 66.91 1.30 168.31 36.95 0.72 11.80 19.02 0.21 0.43 2.62 118.57

0.60 51.73 2.25 264.60 0.71 13.37 6.45 22.07 14.17 10.15 1.38 94.30

0.35 5.62 1.14 233.50 10.20 361.08 3.67 97.29 0.88 0.65 7.70 208.42

0.53 6.71 1.71 18.52 2.47 254.38 1.12 86.98 25.65 29.16 5.50 112.99

0.25 8.90 2.14 236.63 2.19 245.57 2.98 83.68 12.38 10.89 5.11 184.17

7.06 18.77 3.22 17.85 2.87 51.24 5.70 119.69 35.03 6.75 5.17 154.67

1.19 50.21 0.76 17.13 8.82 154.82 3.23 124.85 2.94 1.35 3.95 127.96

1.58 111.47 2.74 13.87 2.64 235.94 4.67 126.00 5.16 4.97 4.78 176.35

3.37 76.86 25.59 97.91 3.74 289.75 4.78 140.53 2.11 1.16 6.53 212.73

0.99 62.46 2.24 66.73 2.03 246.12 5.83 84.36 0.18 9.62 1.82 139.40

0.30 24.61 0.98 98.90 0.86 43.60 2.74 41.96 0.15 114.51 3.48 200.64

0.34 26.30 1.00 73.00 14.64 43.91 0.45 38.08 0.12 3.72 5.06 153.94

3.59 87.21 3.23 296.16 11.77 75.13 0.42 42.77 0.28 3.37 6.85 190.77
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0.49 24.87 2.43 285.66 4.13 413.23 1.03 41.25 0.28 3.37 2.29 116.25

3.57 29.98 0.56 5.42 2.65 170.43 0.43 24.19 0.73 4.92 7.65 259.50

0.88 30.47 0.59 5.76 3.10 410.41 1.94 90.56 0.20 6.88 2.97 153.25

4.95 64.42 1.60 0.37 0.30 1.91 1.32 108.50 0.31 2.99 2.53 122.99

1.30 28.83 0.73 27.55 0.29 0.95 3.50 38.88 0.17 2.30 2.32 161.80

5.10 258.24

To make it clear, we use the following steps to derive an accurate sediment rating equation
based on the above pairs of sediment concentration and river or stream�ow data.

Step 1. For given values of paired variables S and Q, estimate constants i, b, u, j, k, h, w,
and t such that plots of x versus y yields a smooth curve of polynomial function
(refer to equations 3.163 and 3.164)

Step 2. Choose a polynomial regression function that �ts the plots of x versus y

Step 3. From the regression equation in step 2, �nd the constants of equation 3.165

Step 4. Calculate y by using equation 3.163

Step 5. Calculate x by using equation 3.164

Step 6. Calculate y(x) based on steps 3 and 5

Step 7. Calculate S1 by using equation 3.172, where S1 represents the �rst predicted value.
Plot graphs of measured (S) and predicted (S1) values. If the graphs do not match
each other, then we proceed to the next iteration step.

Step 8. Calculate e1 by using equation 3.173

Step 9. Calculate E1 by using equation 3.174

Step 10. Consider a polynomial regression function to correlate e1 and E1

Step 11. Calculate r1 by using the regression equation from step 10 (i.e., refer to equation
3.197)

Step 12. Replace the calculated value of r1 from step 11 in equation 3.176

Step 13. Calculate S2 by using equation 3.176, where S2 represents the second predicted
value. Plot graphs of measured (S) and predicted (S2) values. If the graphs do not
match each other, then proceed to the next iteration step.

Step 14. Replace the calculated value of r1 from step 11 in equation 3.177

Step 15. Then, calculate e2 by using equation 3.177

Step 16. Calculate E2 by using equation 3.178

Step 17. Consider a polynomial regression function to correlate e2 and E2

Step 18. Calculate r2 by using the regression equation from step 17 (i.e., refer to equation
3.198)

Step 19. Replace the calculated value of r1 from step 11, and the calculated value of r2 from
step 18 in equation 3.180

118



Step 20. Then, calculate S3 by using equation 3.180, where S3 represents the third predicted
value. Plot graphs of measured (S) and predicted (S3) values. If the graphs do not
match each other, then we proceed to the next iteration step, and so on.

We repeat the same procedure to calculate a value of Sp by using equation 3.192, where
subscript p stands for number of iteration steps. During each iteration step, we plot
graphs of the measured (S) and predicted (Sp) values. Our iteration procedure ends
when the graphs almost match each other.

Based on the paired data given in the table 3.4, the values of the required constants
(i.e., i, b, u, j, k, h, w, and t) and variables (i.e., y(x), r1, r2, r3, r4....r14) had been
determined by following the above steps. The values of these constants and variables are
given below. Figure 3.61 shows the graph of the original river or stream�ow (Q) versus
sediment concentration (S) data, and the graph of the transformed data (x versus y) (see
section 3.11.3).

Figure 3.61: The original and transformed data according to step one

k = 0.000001 (3.207)

h = 1 (3.208)

w = 2 (3.209)

t = 0 (3.210)

i = 0.0000111 (3.211)

b = 0.0022 (3.212)

u = 2 (3.213)

j = 2 (3.214)

y(x) = 1999999995091.56x2 + 0.10499849x+ 0.0000001 (3.215)

r1 = (−0.00008E2
1 + 1.011E1 + 0.004− E1) ∗ 10−5 (3.216)

r2 = (1.052E2 + 0.006− E2) ∗ 10−6 (3.217)
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r3 = (0.002E2
3 + 1.089E3 − 0.018− E3) ∗ 10−6 (3.218)

r4 = (1.042E4 − E4) ∗ 10−6 (3.219)

r5 = (0.007E2
5 + 1.096E5 − 0.006− E5) ∗ 10−6 (3.220)

r6 = (0.001E2
6 + 1.047E6 − E6) ∗ 10−6 (3.221)

r7 = (0.02E2
7 + 1.143E7 − 0.004− E7) ∗ 10−6 (3.222)

r8 = (0.005E2
8 + 1.066E8 − E8) ∗ 10−6 (3.223)

r9 = (0.013E2
9 + 1.075E9 − E9) ∗ 10−6 (3.224)

r10 = (0.026E2
10 + 1.09E10 − 0.001− E10) ∗ 10−6 (3.225)

r11 = (0.026E2
11 + 1.102E11 − E11) ∗ 10−6 (3.226)

r12 = (−0.001E2
12 + 1.04E12 − E12) ∗ 10−6 (3.227)

r13 = (0.115E2
13 + 1.139E13 − E13) ∗ 10−6 (3.228)

r14 = (0.007E2
14 + 1.048E14 − E14) ∗ 10−6 (3.229)

As the values of the above constants and variables were already determined, the �nal form
of the accurate regression equation is obtained by direct substitutions (refer to section
3.11.2). Therefore, the �nal form of the accurate sediment rating equation is given by

S ≈ 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + ...+ f14(Q,S))u (3.230)

For the �nal form of the equation, the graphs of measured (S)and predicted sediment
concentration (Sp) matched each other (see �gure 3.62).

Figure 3.62: Graphs of measured (S) and predicted (Sp) sediment concentration

Since the �nal form of the equation is a very large and complex equation, the above
values of the variables are easily interconnected in an excel spreadsheet or programmed
in Matlab. A separate Excel spreadsheet and video presentation are provided at https:
//1drv.ms/f/s!AtNG51Vlt6XqhwNVMPn1cOaJrGgd?e=d3RJhe
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3.11.5 Solving the Accurate Sediment Rating Equation

In the above section, we showed the procedures to derive the accurate sediment rating
equation. For the paired suspended sediment concentration (S) and �ow data (Q), we
calculated each value of E1, E2, E3...E14, and the corresponding value of e1, e2, e3...e14
respectively. At the �fteenth iteration step, at the values of E14 and e14, S ≈ S15.
Therefore, the last remaining errors are E15 and e15. According to the steps above or
section 3.11.1, a value of E15 is determined by

E15 = S − S15 (3.231)

Based on equation 3.205

S15 =
1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ f14(Q,S))u (3.232)

Therefore,

E15 = S − 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ f14(Q,S))u (3.233)

Based on equations 3.163, 3.189 and 3.201

e15 = f0(Q,S)− (f(Q) + f1(Q,S) + f2(Q,S) + f3(Q,S) + ...+ f14(Q,S)) (3.234)

For each paired values of S and Q, there are corresponding values of E15 and e15. Now,
we take the values of E15 and e15 as paired input data to derive another equation that
relates E15 and e15 by following the above steps, and so on. To derive the equation based
on paired values of E15 and e15, we calculate another values of Ep and ep (see the steps
above). To avoid confusion, let us express these other values of Ep and ep in terms of E∗

p

and e∗p respectively. Therefore, we de�ne the following relationship.

If lim
E∗

p→ 0
(E∗

1 + E∗
p) = E∗

1 , then E14 + E∗
p ≈ E14 (3.235)

For the given paired data (S and Q), at the value of E14, S ≈ S15. According to steps
above or section 3.11.1, the value of E14 is determined by

E14 = S − S14 (3.236)

Consider equation 3.205

S14 =
1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ f13(Q,S))u (3.237)

Therefore,

E14 = S − 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + f3(Q,S)...+ f13(Q,S))u (3.238)

For each paired value of S and Q, there is a corresponding value of E14, which is a unique
value. It is to mean that, let's us say for a given value of Q, there is only one value of S
which results in a corresponding value, minimum value, or zero value of E14 (i.e., there
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is no possibility to have two di�erent values of E14 for the same values of paired data).
From the relationship to approximate a value of E14 for an unknown value of suspended
sediment concentration or �ow data, we keep on deriving a series of equations until a
value of E∗

p is approximately zero or it is far apart from a value of E∗
1 . In this case,

the value of E∗
p determines the accuracy of the approximation. Therefore, to estimate

an unknown value of suspended sediment concentration for a given value of �ow data, a
value of suspended sediment concentration that results in the minimum value of E∗

P is
the solution.

Since the systems of equations forming the complex equation are very long, the separate
Excel spreadsheet and video presentation on deriving and solving the accurate sediment
rating equation are provided at https://1drv.ms/f/s!AtNG51Vlt6XqhwNVMPn1cOaJrGgd?
e=d3RJhe

122



4. RESULTS

4.1 The Input Data

The �rst input tasks for our main research works were data preparation, review, and
analysis. The prepared land use maps are given in �gures 3.7 � 3.14; soil maps are given
in �gures 3.4 � 3.6; stream network for the Hombole Watershed is given in �gure 3.15.
The pictorial representations of selected land use categories are given in �gures A1 � A4.

The distributions of climatic stations are given in �gures 3.16 � 3.18. Compared with
the other watersheds under our consideration, the Hombole Watershed has a su�cient
number of climatic stations.

The relationships between daily or monthly average rainfall, �ow and sediment are given
in �gures 3.19 � 3.26. For all watersheds under consideration, there were direct rela-
tionships between monthly average rainfall and �ow. The data review shows that �ow
and sediment yield estimation in monthly time step was the convenient approach for all
watersheds under our considerations. Compared with the other watersheds under our
consideration, we could see a logical relationship between rainfall, �ow, sediment, and
the impact of land use change for the Hombole Watershed.

The sediment rating curves for each watershed are given in �gure 3.27. Compared with
the other watersheds under our consideration, the performance of the sediment rating
curve for the Hombole Watershed was good. The expression to calculate a channel width
and depth for the Hombole Watershed is given in section 3.8.3.

4.2 The Regionalized MUSLE

We con�rmed that the best exponent of the MUSLE was 1 irrespective of the topographic
factor, which resulted in the maximum performance of the MUSLE (i.e., approximately
100%). From all graphs (see �gures 3.31 � 3.37), if we considered one watershed, we took
the exponent and topographic factor, which resulted in the maximum Nash-Sutcli�e
e�ciency; however, if we considered two or more watersheds, we took the exponent and
topographic factor, which resulted in the minimum Nash-Sutcli�e e�ciency.

Accordingly, the best exponent of the MUSLE was 0.57, which resulted in a Nash-Sutcli�e
e�ciency of approximately 0.8 if the topographic factor was calculated using equations
(3.8) and (3.9). Therefore, this was the best combination of the exponents and to-
pographic factors of the MUSLE under the hydro-climatic conditions of all watersheds
under our consideration.

To determine the best combination of the exponent and topographic factor of the MUSLE,
the important relationships between the coe�cient a and exponent b, the exponent b
and the Nash-Sutcli�e e�ciency are drawn for the future evaluation of the MUSLE at
any watershed. As we can see from the graphs (see �gures 3.31 � 3.37), for observed
and simulated sediment, as the relationship between the coe�cient a and exponent b
approaches to power or logarithmic function; the relationship between the exponent b and
the Nash-Sutcli�e e�ciency approaches to a quadratic function. This relationship can be
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used to �nd the best performance of the MUSLE during the calibration of the model.

4.3 The Improved MUSLE

We called equation (3.46) the improved MUSLE. The input data requirement of the
MUSLE was changed for calculation of its runo� factor, for possible application of the
model using only the runo� volume, and the topographic, soil erodibility, cover, and
conservation practice factors. From all graphs (see �gures 3.39 � 3.45), the best actual
exponent b of the improved MUSLE was 1.2, which resulted in a Nash-Sutcli�e e�ciency
of approximately 1 irrespective of the topographic factor, whereas the theoretical ex-
ponent of the improved MUSLE was 1. Therefore, the best exponent of the improved
MUSLE was obtained only through calibration of the observed and predicted sediment.

From all the graphs (see �gures 3.39 � 3.45), if we considered one watershed, we took the
exponent and topographic factor which resulted in the maximum Nash-Sutcli�e e�ciency,
but if we considered two or more watersheds, we took the exponent and topographic
factor which resulted in the minimum Nash-Sutcli�e e�ciency. Accordingly, the best
exponent of the improved MUSLE was 1.44, which resulted in a Nash-Sutcli�e e�ciency
of approximately 0.84 if the topographic factor was calculated by using the equations
that were proposed by Foster et al., (1977) and McCool et al., (1987, 1989), as cited
by Renard et al. (1997). Therefore, this was the best combination of the exponent and
topographic factor of the improved MUSLE under the hydroclimatic conditions of all
watersheds under our consideration. Compared with the original MUSLE, the improved
MUSLE showed better performance (i.e., the minimum performance was 84%) over the
original MUSLE (i.e., the minimum performance was 80%).

To determine the best combination of the exponent and topographic factor of the im-
proved MUSLE, the important relationships between the coe�cient a and exponent b,
the exponent b and the Nash-Sutcli�e e�ciency are drawn for the future evaluation of
the improved MUSLE at any watershed. As we can see from the graphs (see �gures 3.39
� 3.45), for observed and simulated sediment, as the relationship between the coe�cient
a and exponent b approaches to power or logarithmic function; the relationship between
the exponent b and the Nash-Sutcli�e e�ciency approaches to a quadratic function. This
relationship can be used to �nd the best performance of the improved MUSLE during
the calibration of the model.

4.4 The SLESYE

We called equation 3.126 the SLESYE. From �gure 3.47, if we considered one watershed,
we took the exponent which resulted in the maximum Nash-Sutcli�e e�ciency, but if we
considered two or more watersheds, we took the exponent which resulted in the minimum
Nash-Sutcli�e e�ciency. Accordingly, the best actual exponent of the SLESYE was 1.4,
which resulted in a Nash-Sutcli�e e�ciency of 0.86.

To determine the best exponent of the SLESYE, the important relationships between
coe�cient a and exponent b as well as exponent b and the Nash-Sutcli�e e�ciency are
drawn for the future evaluation of the SLESYE at any watershed. As we can see from
the graphs (see �gure 3.47), for observed and simulated sediment, as the relationship
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between the coe�cient a and exponent b approaches to power or logarithmic function;
the relationship between the exponent b and the Nash-Sutcli�e e�ciency approaches to
a quadratic function. This relationship can be used to �nd the best performance of the
SLESYE during the calibration of the model.

4.5 The First Revised Version of the SLESYE

We called equation 3.130 the RSLESYE-v1. From all graphs (see �gures 3.49 � 3.55), the
best actual exponent b of the RSLESYE-v1 was 1, which resulted in a Nash-Sutcli�e e�-
ciency of 0.98. The best actual exponent of the RSLESYE-v1 was equal to its theoretical
exponent.

From all the graphs (see �gures 3.49 � 3.55), if we considered one watershed, we took the
exponent and topographic factor which resulted in the maximum Nash-Sutcli�e e�ciency,
but if we considered two or more watersheds, we took the exponent and topographic
factor which resulted in the minimum Nash-Sutcli�e e�ciency. Accordingly, the best
exponent of the RSLESYE-v1 was 1.42 which resulted in a Nash-Sutcli�e e�ciency of
approximately 0.86 if the topographic factor was calculated by using the equations that
were proposed by Foster et al., (1977) and McCool et al., (1987, 1989), as cited by Renard
et al. (1997). Therefore, this was the best combination of the exponent and topographic
factor of the RSLESYE-v1 under the hydroclimatic conditions of all watersheds under
our consideration. Compared with the original MUSLE and the improved MUSLE, the
RSLESYE-v1 showed the best performance (i.e., the minimum performance was 86 %)
over the regionalized MUSLE (i.e., the minimum performance was 80%) and the improved
MUSLE (i.e., the minimum performance was 84%).

To determine the best combination of the exponent and topographic factor of the RSLESYE-
v1, the important relationships between the coe�cient a and exponent b, the exponent b
and the Nash-Sutcli�e e�ciency are drawn for the future evaluation of the RSLESYE-v1
at any watershed. As we can see from the graphs (see �gures 3.49 � 3.55), for observed
and simulated sediment, as the relationship between the coe�cient a and exponent b
approaches to power or logarithmic function; the relationship between the exponent b
and the Nash-Sutcli�e e�ciency approaches to a quadratic function. This relationship
can be used to �nd the best performance of the RSLESYE-v1 during the calibration of
the model.

4.6 The Second Revised Version of the SLESYE

We called equation 3.155 the RSLESYE-v2. The values of the best exponent and topo-
graphic factor of the RSLESYE-v2 were the same as that of the RSLESYE-v1 (see section
4.5). As compared with the RSLESYE-v1 (see �gure 3.57), the RSLESYE-v2 increased
the accuracy of sediment yield prediction from 0.87 to 0.90 for the Hombole Watershed,
from 0.93 to 0.98 for the Mojo Watershed, from 0.94 to 0.95 for the Gumera Watershed,
from 0.86 to 0.95 for the Gilgel Gibe 1 Watershed (see �gure 3.58). From �gures 3.59
and 3.60, the relationship between the Nash-Sutcli�e e�ciency and calibration parameter
E, as well as the relationship between the calibration parameters E and c approach to a
quadratic function. These relationships help to determine the best values of E and c for
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the maximum possible performance of the RSLESYE-v2.

4.7 The Performance of the Original SWAT+ Model

Before calibration and validation of the SWAT+ model, we checked the initial perfor-
mance of the SWAT+ model by considering the density of weather gauging stations and
the simulation time steps. As compared with the available twenty-�ve national weather
gauging stations, we checked that the performance of the model was better when thirty-
three gauging stations (i.e., twenty-�ve national weather gauging stations, and eight
stations from global weather data) had been considered. The performance of the model
for daily, monthly, and yearly simulation time steps are given in �gures A8, A6 and A7
respectively. The initial performance before calibration of the model for the monthly
average �ow and thirty-three gauging stations was very good, and there were also direct
relationships between the observed monthly average rainfall and �ow for all watersheds
under our consideration. Therefore, we considered the monthly simulation time step and
thirty-three gauging stations for the calibration and validation of the model.

At the current best value of the �ow calibration parameters, as shown in table 3.2,
calibration results of the original SWAT+ model are given in �gure 4.1.

Figure 4.1: The calibrated original SWAT+ model rev.60.5.4 for the monthly average
�ow

For the validation of the model, we considered two cases to evaluate the performance of
the calibrated model. When the land use maps were changed for the simulation periods
2001 � 2008, 2009 � 2012, and 2013 � 2015, the performance of the original SWAT+
model is given in �gures A9, A10 and A11 respectively. When the land use map was not
changed (i.e., the land use map of 1989 � 2000 was used) for the simulation periods 2001 �
2008, 2009 � 2012, and 2013 � 2015, the performance of the model is given in �gure A12,
A13 and A14 respectively. For the simulation periods 2001 � 2008 and 2009 � 2012, the
performance of the model for the latter case was very good. However, for the simulation
period 2013 � 2015, the performance of the model for the latter case decreased but it
was not huge di�erence. Therefore, there was no need to change the land use map as
the calibrated values of the calibration parameters better-captured �ow in the validation
period 2001 � 2015 for the same land use map. Therefore, for the validation period 2001
� 2015, the performance of the validated model is given in �gure 4.2.

126



Figure 4.2: The validated original SWAT+ model rev.60.5.4 for the monthly average
�ow

For the validated model, the basin annual average water balance is given in �gure A15.
The di�erence between precipitation and loses (i.e., surface runo� + lateral �ow + per-
colation + evapotranspiration) was 17.33 mm.

Since the SWAT+model gives daily, monthly, or yearly total sediment load in metric tons,
we used the observed monthly total sediment load in metric tons to evaluate the model.
We found that the parameter 'bedldcoef' is the most sensitive parameter for sediment
calibration. The sediment calibration and validation results of the original SWAT+ model
are given in �gures 4.3 and 4.4 respectively.
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Figure 4.3: The calibrated original SWAT+ model rev.60.5.4 for the monthly total sedi-
ment yield

Figure 4.4: The validated original SWAT+ model rev.60.5.4 for the monthly total sedi-
ment yield

The performance of the model was evaluated using six statistical indicators as shown in
�gures 4.1 � 4.4. Overall, the original SWAT+ model prediction of the monthly average
�ow was very good, whereas the SWAT+ model prediction of the monthly total sediment
yield was fairly good.

4.8 The Modi�ed SWAT+ models for Sediment Yield

Estimation

The original SWAT+ rev.60.5.4 model was modi�ed in three di�erent types for sediment
yield estimation. The SWAT+ editors were compiled for each of the modi�ed SWAT+.

4.8.1 The First Type of the Modi�ed SWAT+ Model for Sedi-

ment Yield Estimation

We called the �rst type of the modi�ed SWAT+ model the SYEt1-SWAT+ model. Since
the runo� components of the original SWAT+ model were not changed in the SYEt1-
SWAT+ model, the �ow calibration and validation results were the same for both models.
The sediment yield calibration and validation results of the SYEt1-SWAT+ model are
given in �gures 4.5 and 4.6 respectively.
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Figure 4.5: The calibrated SYEt1-SWAT+ model for the monthly total sediment yield

Figure 4.6: The validated SYEt1-SWAT+ model for the monthly total sediment yield

For sediment yield estimation, the SYEt1-SWAT+ model showed better performance
than the original SWAT+ model.

4.8.2 The Second Type of the Modi�ed SWAT+ Model for Sed-

iment Yield Estimation

We called the second type of the modi�ed SWAT+ model the SYEt2-SWAT+ model.
Similar to the previous type, the runo� components of the original SWAT+ model were
not changed in the SYEt2-SWAT+ model. Therefore, the �ow calibration and valida-
tion results of the SYEt2-SWAT+ model were the same as the original SWAT+ model
or SYEt1-SWAT+ model. The sediment yield calibration and validation results of the
SYEt2-SWAT+ model are given in �gures 4.7 and 4.8 respectively.

Figure 4.7: The calibrated SYEt2-SWAT+ model for the monthly total sediment yield
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Figure 4.8: The validated SYEt2-SWAT+ model for the monthly total sediment yield

For sediment yield estimation, the SYEt2-SWAT+ model showed better performance
than the original SWAT+ model.

4.8.3 The Third Type of the Modi�ed SWAT+ Model for Sedi-

ment Yield Estimation

We called the third type of the modi�ed SWAT+ model the SYEt3-SWAT+ model. In
this type too the runo� components of the original SWAT+ model were not changed.
Therefore, the �ow calibration and validation results of the SYEt3-SWAT+ model were
the same as the above SWAT+ models. The sediment yield calibration and validation
results of the SYEt3-SWAT+ model are given in �gures 4.9 and 4.10 respectively.
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Figure 4.9: The calibrated SYEt3-SWAT+ model for the monthly total sediment yield

Figure 4.10: The validated SYEt3-SWAT+ model for the monthly total sediment yield

For sediment yield estimation, the SYEt3-SWAT+ model showed better performance
than the original SWAT+.

4.9 The Iterative Approach for Deriving and Solving

the Accurate Sediment Rating Equation

The iterative approach for deriving an accurate regression equation based on values of
paired variables is given in section 3.11.1. The procedures to determine the �nal form of
the accurate regression equation are given in section 3.11.2. Accordingly, the shorthand
form of the �nal accurate regression equation is given by

S ≈ 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + ...+ fp−1(Q,S))u (4.1)

where, S and Q are variables, b, i, u and j are constants for given values of paired data.

The accurate sediment rating equation which was derived based on �ve hundred seventh
one number of records of suspended sediment concentration and �ow data is given by

S ≈ 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + ...+ f14(Q,S))u (4.2)

The graphs of measured and predicted suspended sediment concentration matched each
other (see �gure 3.62), and statistical measures for the data correlation are given in �gure
3.62. The procedures to solve the accurate regression equation are given in section 3.11.5.

The separate Excel spreadsheet and video presentation on deriving and solving the accu-
rate sediment rating equation are provided at
https://1drv.ms/f/s!AtNG51Vlt6XqhwNVMPn1cOaJrGgd?e=d3RJhe

131



5. DISCUSSIONS

5.1 Discussions on the Regionalized MUSLE

Based on our evaluation of the soil erodibility equations, we found that the best equa-
tion to estimate the soil erodibility factor was the Williams' (1995) equation, as cited
by Wawer et al. (2005). We considered the land use maps to assign a value for the cover
and conservation practice factors from the past experiences from the literature, and the
coe�cient a was estimated through calibration. Since only a product e�ect of the coe�-
cient, soil erodibility, cover, and conservation practice factors are re�ected in the MUSLE
rather than their individual e�ect during the calibration of the sediment yield, any change
in these factors a�ects the coe�cient of the MUSLE.

Therefore, we do not like to suggest strict procedures to estimate these factors. It is
highly preferable if these factors are measured and studied at a temporal and spatial
scale to understand their e�ect on soil erosion in a particular �eld. This is because the
soil erodibility, cover, and conservation practice factors of the MUSLE re�ect site-speci�c
conditions. For example, we can talk about the density and pattern of land cover, nature
and extent of soil conservation and �ood protection work, and the temporal variation of
soil properties.

For all watersheds under our consideration, the best exponent of the MUSLE was 0.57,
which resulted in a Nash-Sutcli�e e�ciency of 0.8 if the topographic factor was calculated
using equations (3.8) and (3.9). In this case, the proposed exponent of the model was
di�erent from its original exponent (0.56), while for other exponents and topographic
factors, the performance of the model decreased. For example, the best exponent of the
model was 0.56, which resulted in a Nash-Sutcli�e e�ciency of 0.78 if the topographic
factor was calculated using the equation that was proposed by McCool et al. (1987), as
cited by Pongsai et al. (2010). In this case, the proposed exponent was the same as
the original exponent of the MUSLE (0.56); however, the performance of the MUSLE
decreased as compared with the previous one. Therefore, the performance of the MUSLE
was very good for the previous case.

The performance of the MUSLE was tested at a watershed scale using directly measured
�ow data; it showed good performance (i.e., the performance of the MUSLE is greater
than or equal to 80%) for all four watersheds under our consideration provided that the
exponent and topographic factor of the original MUSLE were changed. This result sup-
ports the literature review report that the model shows better performance at a watershed
scale than a plot scale and if it is applied using directly measured runo� data (Sadeghi
et al., 2014).

This also supports the conclusions of some authors as the MUSLE has been observed to
give good results in various applications in some parts of tropical Africa (Ndomba, 2007),
as cited by Adegede and Mbajiorgu (2019). The MUSLE has also been successfully
demonstrated in sub-Saharan Africa (Adegede and Mbajiorgu, 2019). In addition, it
also supports the experimental plot result of sheet erosion at the Enerta study site in
Ethiopia, where the MUSLE was better at estimating soil loss from a cultivated �eld than

132



the USLE (Muche et al., 2013).

5.2 Discussions on the Improved MUSLE

To improve the MUSLE, we assumed that the amount of potential energy of the runo�
was proportional to the shear stress for sediment transport from a slope �eld and the
kinetic energy of the runo� at the bottom of the slope �eld for gully formation. Li et al.
(2017) underestimated the total potential energy of the runo� that would be available
for soil erosion and sediment transport (compare equations (3.20) and (3.39)). Based on
the physical assumption, the peak runo� rate was eliminated from the variables of the
MUSLE. This improvement had an advantage for the possible application of the model
in data-scarce areas and not use indirect methods to estimate the peak runo� rate.

To compare the improved MUSLE with the regionalized MUSLE, we followed a similar
evaluation procedure to evaluate the improved MUSLE versus the original MUSLE. The
improved MUSLE showed better performance (i.e., the minimum performance was 84%)
over the regionalized MUSLE (i.e., the minimum performance was 80%) for all watersheds
under consideration. This improvement may be linked to the uncertainty in the peak
runo� rate (i.e., uncertainty in the interpretation of the daily �ow data for the yearly
peak runo� rate) or other unknown reasons. As all variables of the improved MUSLE
are parts of the original MUSLE, there is no indication to say gully erosion is considered
in the improved MUSLE, as per the physical assumption that we made to improve the
MUSLE.

5.3 Discussions on the SLESYE and its Revised Ver-

sions

In the SLESYE and its revised versions, the slope steepness factor (S) is given by

S =
sin2 θ

cos θ
(5.1)

Figure 5.1: The relationship between slope angle and slope steepness factor of the
SLESYE
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As slope angle increases slope steepness factor increases. As the slope steepness factor
increases more soil erosion and sediment transport are expected. From �gure 5.1, there
is a direct relationship between slope angle and slope steepness factor of the SLESYE.
Therefore, the derived equation of the slope steepness factor is appropriate.

In the SLESYE, the runo� volume, soil cover factor, soil conservation practice factor,
slope steepness factor, and slope length are directly proportional to sediment yield, and
the soil erodibility is indirectly proportional to the sediment yield. This proportionality
can be explained by considering three cases.

a) Case one: how is sediment yield a�ected if runo� volume is constant in
given periods but soil erodibility increases ?

The SLESYE estimates the total sediment load based on the total runo� volume. It was
derived while considering the e�ect of an individual runo� volume and soil erodibility on
sediment transport.

For the same runo� volume (i.e., for the same rainfall distribution in given periods),
as soil erodibility increases from period to period, the runo� volume gets concentrated
with sediment particles. This action reduces sediment transport and facilitates sediment
deposition along the length of the slope, which eventually leads to mud concentration at
the lower parts of the slope. Therefore, sediment yield at the bottom end of the slope or
an outlet of a watershed is expected to decrease as soil erodibility increases. For example,
if we consider silt and clay soil, silt soil is easily erodible soil as compared with clay soil.
This is because of the cohesive force between soil particles, clay soil has a higher cohesive
force than silt soil. Therefore, for the same runo� volume, sediment yield is expected to
decrease for silt soil due to deposition. One reason for the deposition can be the settling
velocity of soil particles; silt soil settles �rst as compared with clay soil. Actually, soil
erodibility expresses highly erodible soil to non-erodible soil (rocky or paved soil). In the
SLESYE, if K = 1, it shows mud or high shear stress. In this case, no sediment transport
is expected. If K = 0, it shows a rocky or paved area. In this case, the cover factor is
zero, and therefore, no soil erosion is expected. This shows that soil erosion and sediment
transport are expected in the range of these two extremes. Based on these explanations,
the SLESYE considers the sediment deposition process. Therefore, the SLESYE is an
appropriate model for the sediment yield estimation.

b) Case two: how is sediment yield a�ected if runo� volume increases in given
periods but soil erodibility is constant ?

For the same soil erodibility, as runo� volume increases from period to period, soil erosion
and sediment transport are expected to increase and sediment deposition is expected to
decrease due to the scouring power of the runo� volume. In this case, how soil erosion
can be increased if soil erodibility is constant? Since soil erodibility refers to the property
of soil which indicates how a given soil is erodible or susceptible to erosion or it refers
to the degree of ease in eroding a given soil, it does not tell us the mass of the soil. For
example, soil erodibility tells us how easy to erode silt soil compared with clay soil, but
it does not directly tell us the mass of silt soil available in a given �eld. In this context,
more runo� volume erodes and caries more silt soil or another type of soil having constant
erodibility.
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Therefore, based on above explanations, the SLESYE hold true.

c) Case three: how is sediment yield a�ected if both runo� volume and soil
erodibility increase simultaneously in given periods ?

Depending on the magnitude of runo� volume and soil erodibility factor, soil erosion and
sediment deposition processes are not easy to de�ne.

5.4 Discussions on the Performance of the SWAT+model

The initial performance of the original SWAT+ model for the monthly average �ow was
very good as shown in �gure A6. This might be linked to the data quality (for example,
there was the direct relationship between the observed monthly average rainfall and �ow
as shown in �gure 3.19) and the predetermined parameters of the QSWAT+model like the
channel width and depth (see section 3.8.3). The performance of the calibrated SWAT+
model was very good when the single land use map was used for the entire simulation
periods (compare �gures A9, A10, A11 with �gures A12, A13 and A14 respectively). This
was linked to the values of the calibration parameters that directly or indirectly a�ect
the value of the input data parameters. It would be also linked to the uncertainty in the
temporal and spatial resolution of the land use and soil data. Furthermore, it depends
on dominant land use and soil that form a HRU in the SWAT+ model (i.e., in the HRU
only dominant land use and soil are considered).

The SWAT+ model showed very good performance for the �ow but it showed fairly good
performance for the sediment yield. These might be linked to the quality and quantity of
the available data. To compare the simulated �ow against the observed �ow data, we had
su�cient and continuous records of the observed �ow data in daily or monthly time step.
However, we did not have su�cient and continuous records of the observed sediment
data to compare against the simulated sediment. Since we had had very limited and
non-continuous records of the sediment data, we used sediment rating curves to generate
sediment data. Therefore, the sediment data were subject to the error of the sediment
rating curves.

5.5 Discussions on the Accurate Sediment Rating Equa-

tion

The relationship between the sediment concentration and �ow was given by the complex
equation (it was not polynomial or other kinds of known function). This equation may
re�ect the complex relationship between the dynamic behavior of �ow and sediment
transport.

A power function is a commonly used non-linear regression approach for predicting sedi-
ment from a given �ow data. However, a regression error is very large. The comparison
of sediment prediction accuracy of the proposed regression equation and power function
are given in �gures 5.2 � 5.5. The proposed regression equation is very accurate. We can
minimize a regression error as small as possible by increasing iteration steps.
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Figure 5.2: Comparison of sediment prediction accuracy of the proposed regression
equation and the power function ( S = 0.069Q0.9576) for the Hombole Watershed

Figure 5.3: Comparison of sediment prediction accuracy of the proposed regression
equation and the power function (S = 0.2036Q0.5475) for the Gumera Watershed, pro-
vided that all data records were taken into account without any preconditions.
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Figure 5.4: Comparison of sediment prediction accuracy of proposed regression equa-
tion and the power function (S = 0.659Q0.839) for the Mojo Watershed, provided that
all data records were taken into account without any preconditions.

Figure 5.5: Comparison of sediment prediction accuracy of the proposed regression
equation and the power function (S = 0.1901Q0.1916) for the Gilgel Gibe 1 Watershed,
provided that all data records were taken into account without any preconditions.

Model calibration and validation are challenging tasks to apply a model for a particular
purpose, even for further improvement of the model. For example, if we consider the
MUSLE or the improved MUSLE, �nding the coe�cient, soil erodibility, cover, and con-
servation practice factors of the MUSLE or the improved MUSLE through calibration is
not a feasible approach. This is because only a product e�ect of the coe�cient and these
factors is re�ected in the MUSLE or the improved MUSLE rather than their individual
e�ect during the calibration of sediment yield. Therefore, the individual e�ect of model
variables rather than their product e�ect on the engaged physical processes is important.
Therefore, expressing the relationship between model variables in such a way that their
individual e�ects can be seen on the engaged physical process is essential. The proposed
regression method may play a signi�cant role in this regard.
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6. CONCLUSIONS AND

RECOMMENDATIONS

6.1 Conclusions and Recommendations on the Region-

alized MUSLE

We veri�ed that the best exponent of the MUSLE was 1, which resulted in the maximum
performance of the MUSLE. The performance of the MUSLE was greater than or equal
to 80% for all four watersheds under our consideration. We expect the same for other
watersheds of Ethiopia provided that the exponent of the model is 0.57 and that its
topographic factor is calculated using the following equations (https://www.youtube.
com/watch?v=w6w8jxbTJfo (accessed on 25 February 2021)).

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2901△ y0.4002 for J < 5% (6.1)

LS = (0.02222J1.5 + 0.03231J + 0.1004) ∗ 0.2105△ y0.5004 for J > 5% (6.2)

where L is the slope length factor, S is the slope steepness factor, J is the slope in %,
△y = λ/22.1, and λ is the slope length.

The above value of the exponent and the equations of the topographic factor can be taken
as the best combination of the exponent and topographic factor under the hydro-climatic
conditions of Ethiopia. We recommend further investigation of the best combination of
the exponent and topographic factors by applying the MUSLE at di�erent watersheds
of Ethiopia.

We suggested the best equations of the topographic factor for the conditions of Ethiopia.
In the MUSLE, the topographic factor is directly proportional to the soil erosion and
sediment yield. However, as the slope length becomes increasingly larger, there is a
possibility that soil erosion from the upper part of the slope becomes deposited at the
lower part of the slope. Therefore, more research works are required to understand the
e�ect of the slope length on soil erosion and sediment transport.

6.2 Conclusions and Recommendations on the Improved

MUSLE

The improved MUSLE is given by

y = aQbKLSCP (6.3)

where y is the sediment yield in metric tons, a is the coe�cient, Q is the runo� volume in
m3, b is the exponent, K is the soil erodibility factor, L is the slope length factor, S is the
slope steepness factor, C is the soil cover factor, and P is the soil conservation practice
factor. The improved MUSLE showed better performance (i.e., the minimum performance
was 84%) over the regionalized MUSLE (i.e., the minimum performance was 80%) for
all four watersheds under consideration. The performance of the improved MUSLE was
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greater than or equal to 84% for all four watersheds under our consideration, provided
that the exponent of the model was 1.44, and its topographic factor was calculated by
using the equations that were proposed by Foster et al., (1977) and McCool et al., (1987,
1989) as cited by Renard et al. (1997):

L =

(
λ

22.13

)m

(6.4)

m =
β

1 + β
(6.5)

β =
sin θ
0.0896

3 (sin θ)0.8 + 0.56
(6.6)

S = 10.8 sin θ + 0.03 if the slope is less than 9% (6.7)

S = 16.8sinθ − 0.5 if the slope is greater than or equal to 9% (6.8)

where λ is the slope length (m), and θ is the angle of the slope in degree.

The above value of the exponent and the equations of the topographic factor can be taken
as the best combination of the exponent and topographic factor under the hydroclimatic
conditions of Ethiopia. We recommend further investigation of the best combination
of the exponent and topographic factor by applying the improved MUSLE at di�erent
watersheds of Ethiopia.

As per our discussion above, we cannot exactly tell whether gully erosion is considered
in the improved MUSLE or not. As part of the comparison between the original MUSLE
and the improved MUSLE, what di�erent e�ect does the peak runo� rate have on soil
erosion and sediment transport compared with the runo� volume? As far as the lumped
model is concerned, the individual e�ect of the runo� and peak runo� rate on soil erosion
and sediment transport should be explicitly shown. This helps us to put a physical de-
marcation between the peak runo� rate and runo� volume. Therefore, better explanation
and further improvement of the MUSLE may become necessary to address soil erosion
and sediment transport problems. In the improved MUSLE (the same for the original
MUSLE), the topographic factor is directly proportional to the soil erosion and sediment
yield. However, as the slope length becomes larger and larger, there is a possibility that
soil erosion from the upper part of the slope gets deposited at the lower part of the
slope. Therefore, more research is required to understand the e�ect of the slope length
on soil erosion and sediment transport.

The improved MUSLE considers the topographic factor of the original MUSLE. Equation
(3.42) does not consider the topographic factor of the original MUSLE; therefore, this
equation should also be tested.

6.3 Conclusions and Recommendations on the SLESYE

and the Revised Versions of the SLESYE

The SLESYE is given by

y = aQb(1−K)CPL
sin2 θ

cos θ
(6.9)

139



The RSLESYE-v1 is given by

y = aQb(1−K)CPLS (6.10)

The RSLESYE-v2 is given by

y =

(
5− E

4

(
aQb(1−K)CPLS

)3
+ 3c

(
aQb(1−K)CPLS

)2) 1
3

(6.11)

where y is the sediment yield in metric tons, a is the coe�cient, b is the exponent, Q is the
runo� volume in m3, K is the soil erodibility factor, L is the slope length in the case of
the SLESYE, L is slope length factor in the case of the RSLESYE-v1 and RSLESYE-v2,
θ is the angle of slope in degree, sin2 θ

cos θ
is the slope steepness factor (S) of the SLESYE,

C is the soil cover factor, P is the soil conservation practice factor, and E and c are
calibration parameters.

The performance of the SLESYE, RSLESYE-v1, and RSLESYE-v2 is greater than or
equal to 86%, 86%, and 90% respectively for all watersheds under our consideration.
Therefore, the performance of the SLESYE and its revised versions was better than the
regionalized MUSLE (i.e., the minimum performance was 80%) or improved MUSLE (i.e.
the minimum performance was 84%). The best exponent of the SLESYE, RSLESYE-v1,
and RSLESYE-v2 was 1.4, 1.42, and 1.42 respectively. The best topographic factor of
the RSLESYE-v1 and RSLESYE-v2 was calculated by using the equations that were
proposed by Foster et al., (1977) and McCool et al., (1987, 1989) as cited by Renard
et al. (1997) (these equations are given in section 6.2).

We evaluated the performance of the RSLESYE-v2 by considering positive values of the
calibration parameter E. However, the performance of the RSLESYE-v2 will be further
improved by considering negative values of E, this is true for the case of the Hombole
and Gumera Watersheds (see �gure 3.59). We changed the mathematical form of the
RSLESYE-v1, and we called the resulting forms of the equation the RSLESYE-v2. The
mathematical form of the MUSLE, the improved MUSLE, the SLESYE or any other
model will be changed by the following similar procedure that we followed to change
mathematical form of the RSLESYE-v1.

Physically speaking, the SLESYE and its revised versions are more appropriate than the
original MUSLE or improved MUSLE for sediment yield estimation. The SLESYE and its
revised versions do not consider peak runo� rate, and therefore, it is advantageous to the
data-scarce area. However, if we include the peak runo� rate in the SLESYE or revised
versions, the physical meaning for sediment estimation is still appropriate. Therefore, we
recommend the SLESYE and its revised versions for sediment yield estimation at data-
scarce areas, and we also recommend including the peak runo� rate in the RSLESYE-v1
(i.e., a(Qq)b(1 −K)CPLS), SLESYE, and RSLESYE-v2, and test their performance if
the peak runo� data are available.

6.4 Conclusions and Recommendations on the Modi-

�ed SWAT+ models

The modi�ed SWAT+ models showed the better performance than the original SWAT+
model. Therefore, we recommend the modi�ed SWAT+ models for sediment yield esti-
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mation. If we want to apply a(Qq)b(1 − K)CPLS in the SWAT+ model environment,
we can adjust the soil erodibility factor in the user soil table of the SWAT+ model or
simply K is the calibration parameter.

6.5 Conclusions and Recommendations on the Itera-

tive Approach for Deriving and Solving the Accu-

rate Sediment Rating Equation

The accurate sediment rating equation was derived by following the proposed iteration
steps. For the paired values of suspended sediment concentration (S) and �ow (Q) data,
the shorthand form of the �nal accurate sediment rating equation is given by

S ≈ 1

biu
(f(Q)− jQ+ f1(Q,S) + f2(Q,S) + ...+ f14(Q,S))u (6.12)

where, b, i, u and j are constants for given values of paired data

In this dissertation, the polynomial regression functions were considered to derive very
long and complex accurate regression equation. However, we can use any other known
functions. And also, variables x and y were de�ned in such a way that individual e�ects
of other variables can re�ect on variable S (refer to section 3.11.1). However, we can
de�ne variables x and y in another way, and we follow the proposed iterative approach
to derive an accurate regression equation.

The proposed iterative approach can be used to derive an accurate regression equation
based on given values of paired variables. Therefore, the iterative approach can be used
to model any processes, and any calibration and validation processes can be addressed.

In this dissertation, the iterative procedure is provided to solve the accurate regression
equation. For further research, the analytical solution of the equation is recommended.
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APPENDICES

Table A1: Climatic stations of the Upper Awash River Basin. Data source: National
Meteorology Agency of Ethiopia

station name station's location available data type record period

Abebe Keranso 8.978056°N 38.169167°E daily rainfall 1999 � 2020

Addis Ababa 9.01891°N 38.7475°E daily rainfall 1986 � 2020

daily maximum and mini-
mum relative humidity

1986 � 1987

Enselale (Hi-
dosokoke)

8.937°N 38.44°E daily rainfall 1986 � 2019

Ginchi 9.01667°N 38.1333°E daily rainfall 1986 � 2015

Guranda Meta 8.912°N 38.593°E daily rainfall 1986 � 2018

Hombole 8.368167°N 38.78°E daily rainfall 1986 � 2020

Kimoye 9.013°N 38.341°E daily rainfall 1986 � 2020

daily maximum and mini-
mum temperature

1986 � 2020

Koka Dam 8.471°N 39.157°E daily rainfall 1986 � 2020

daily maximum and mini-
mum temperature

1986 � 2020

Mojo 8.609°N 39.114°E daily rainfall 1986 � 2020

daily maximum and mini-
mum temperature

1986 � 2020

Sebeta 8.915°N 38.629°E daily rainfall 2015 � 2020

daily maximum and mini-
mum temperature

2015 � 2020

Sendafa 9.152167°N 39.0215°E daily rainfall 1986 � 2020

Tefki 8.846°N 38.494°E daily rainfall 2007 � 2020

daily maximum tempera-
ture

2007 � 2020

daily minimum tempera-
ture

2009 � 2020

Teji 8.836°N 38.375°E daily rainfall 1986 � 2020

Tulu Bolo 8.658°N 38.211°E daily rainfall 1987 � 2020

daily maximum and mini-
mum temperature

1987 � 2020

Zequala 8.86667°N 38.866667°E daily rainfall 1986 � 2017

Addis Alem 9.042°N 38.38333°E daily rainfall 1987 � 2019

daily maximum and mini-
mum temperature

1997 � 2019
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Alem Tena 8.29°N 38.90783°E daily rainfall 1987 � 2019

daily maximum and mini-
mum temperature

1987 � 2019

Arbuchulele 8.47°N 38.25133°E daily rainfall 2004 � 2019

Asgori 8.79°N 38.3342°E daily rainfall 1987 � 2018

daily maximum and mini-
mum temperature

1987 � 2018

Bantuliben 8.6185°N 38.357°E daily rainfall 1987 � 2018

Boneya 8.7845°N 38.64167°E daily rainfall 1987 � 2019

daily maximum tempera-
ture

2010 � 2014

daily minimum tempera-
ture

2010 � 2016

chefedonsa 8.97°N 39.1232°E daily rainfall 1987 � 2019

daily maximum tempera-
ture

1998 � 2019

daily minimum tempera-
ture

1996 � 2019

Debrezeit 8.733333°N 38.95°E daily rainfall 1987 � 2018

daily maximum tempera-
ture

1987 � 2013

daily minimum tempera-
ture

1988 � 2018

daily maximum and mini-
mum relative humidity

1994 � 2012

daily maximum wind speed 1994 � 2005

daily maximum sun hour
duration

1994 � 2013

Dilela 8.63583°N 38.04083°E daily rainfall 1987 � 2019

Dire Gidib 9.15783°N 38.943°E daily rainfall 2000 � 2018

daily maximum and mini-
mum temperature

2000 � 2018

Ejersa Lele 8.2432°N 38.686°E daily rainfall 1987 � 2019

Welenkomi 9.001833°N 38.254667°E daily rainfall 1987 � 2019

Table A2: Climatic stations of the Gumera Watershed. Data source: National Meteo-
rology Agency of Ethiopia

station name station's location available data type record period

Amed Ber 11.9135°N 37.8858°E daily rainfall 1986 � 2020
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daily maximum and mini-
mum temperature

1986 � 2019

Debre Tabor 11.8666°N 37.9954°E daily rainfall 1988 � 2020

daily maximum and mini-
mum temperature

1988 � 2019

daily maximum and mini-
mum relative humidity

1988 � 2019

daily maximum wind speed 1988 � 2018

daily maximum sun hour
duration

1993 � 2019

Gassay 11.7971°N 38.134497°E daily rainfall 2004 � 2019

daily maximum and mini-
mum temperature

2004 � 2019

Lewaye 11.72°N 38.07194°E daily rainfall 1987 � 2020

Licha 11.651°N 37.885°E daily rainfall 2008 � 2018

Mekaneyesus 11.6076°N 38.05422°E daily rainfall 1987 � 2020

daily maximum and mini-
mum temperature

1994 � 2019

Wanzaye 11.7862°N 37.67503°E daily rainfall 1986 � 2020

daily maximum and mini-
mum temperature

1986 � 2019

Table A3: Climatic stations of the Gilgel Gibe 1 Watershed. Data source: National
Meteorology Agency of Ethiopia

station name station's location available data type record period

Ako 8.032117°N 37.20255°E daily rainfall 2010 � 2020

daily maximum and mini-
mum temperature

2010 � 2020

Assendabo 7.7605°N 37.231117°E daily rainfall 1986 � 2020

daily maximum and mini-
mum temperature

1986 � 2020

Chekorsa 7.616667°N 36.733333°E daily rainfall 1986 � 2019

Dedo 7.504233°N 36.879717°E daily rainfall 1986 � 2020

daily maximum tempera-
ture

1986 � 2020

daily minimum tempera-
ture

1986 � 2005

Busa 8.7725°N 38.1382°E daily rainfall 1987 � 2019
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daily maximum and mini-
mum temperature

2015 � 2019

Dimtu 7.85°N 37.2333°E daily rainfall 1987 � 2019

Jiren Abajifar 7.700117°N 36.706367°E daily rainfall 2008 � 2017

Serbo 7.7°N 36.966667°E daily rainfall 1998 � 2018

Yebu 7.68333°N 36.816667°E daily rainfall 1987 � 2019

daily maximum and mini-
mum temperature

1987 � 2019

Table A4: Global weather data for SWAT model 1979 � 2014 (maximum and minimum
temperature, rainfall, wind, relative humidity and solar radiation of the Upper Awash
River Basin)

name of weather data
location

period

weatherdata-
86381

8.58633271°N
38.12720908°E

1979 � 2014

weatherdata-
86384

8.586290359°N
38.4375°E

1979 � 2014

weatherdata-
86388

8.586290359°N 38.75°E 1979 � 2014

weatherdata-
89381

8.89852047°N 38.125°E 1979 � 2014

weatherdata-
89384

8.89852047°N 38.4375°E 1979 � 2014

weatherdata-
89388

8.89852047°N 38.75°E 1979 � 2014

weatherdata-
89391

8.89852047°N 39.0625°E 1979 � 2014

weatherdata-
92384

9.210749626°N
38.4375°E

1979 � 2014
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Figure A1: The pictorial representation of land use change for the Hombole Watershed

Figure A2: The pictorial representation of land use change for the Mojo Watershed
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Figure A3: The pictorial representation of land use change for the Gilgel Gibe 1 Water-
shed

Figure A4: The pictorial representation of land use change for the Gumera Watershed
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Figure A5: The main variables a�ecting soil erosion (I Acknowledge my colleague Julia
who helped me to draw this �gure)

Figure A6: The initial performance of the Original SWAT+ model at monthly time
step

Figure A7: The initial performance of the Original SWAT+ model at yearly time step
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Figure A8: The initial performance of the Original SWAT+ model at daily time step

Figure A9: The performance of the calibrated original SWAT+ model when the land
use map of 2001 � 2008 was used for the simulation period 2001 � 2008

.
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Figure A10: The performance of the calibrated original SWAT+ model when the land
use map of 2009 � 2012 was used for the simulation period 2009 � 2012

Figure A11: The performance of the calibrated original SWAT+ model when the land
use map of 2013 � 2015 was used for the simulation period 2013 � 2015

Figure A12: The performance of the calibrated original SWAT+ model when the land
use map of 1989 � 2000 was used for the simulation period 2001 � 2008

.

Figure A13: The performance of the calibrated original SWAT+ model when the land
use map of 1989 � 2000 was used for the simulation period 2009 � 2012
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Figure A14: The performance of the calibrated original SWAT+ model when the land
use map of 1989 � 2000 was used for the simulation period 2013 � 2015

Figure A15: The basin average annual water balance of the Hombole Watershed. This
�gure is an output of the SWAT+ editor.
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