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Abstract: External stressors, such as ionizing radiation, have massive effects on life, survival, and
the ability of mammalian cells to divide. Different types of radiation have different effects. In order
to understand these in detail and the underlying mechanisms, it is essential to study the radiation
response of each cell. This allows abnormalities to be characterized and laws to be derived. Tracking
individual cells over several generations of division generates large amounts of data that can no
longer be meaningfully analyzed by hand. In this study, we present a deep-learning-based algorithm,
CeCILE (Cell classification and in vitro lifecycle evaluation) 2.0, that can localize, classify, and track
cells in live cell phase-contrast videos. This allows conclusions to be drawn about the viability of
the cells, the cell cycle, cell survival, and the influence of X-ray radiation on these. Furthermore,
radiation-specific abnormalities during division could be characterized. In summary, CeCILE 2.0
is a powerful tool to characterize and quantify the cellular response to external stressors such as
radiation and to put individual responses into a larger context. To the authors knowledge, this is the
first algorithm with a fully integrated workflow that is able to do comprehensive single-cell and cell
composite analysis, allowing them to draw conclusions on cellular radiation response.
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1. Introduction

Radiation has profound effects on eukaryotic cells, the fundamental units of life in
complex organisms such as humans. When ionizing radiation interacts with biological
tissues, it can cause significant damage at the cellular level, which can lead to tissue and
organ failure, thus having an impact on a human’s health [1]. One of the primary types of
damage is DNA damage, including single-strand breaks (SSBs) and more severe double-
strand breaks (DSBs). DSBs, in particular, are highly cytotoxic and can lead to mutations,
chromosomal rearrangements, or cell death [2]. Additionally, radiation can induce oxidative
stress by generating reactive oxygen species (ROS) [3], disrupting cellular homeostasis [4],
and damaging cell membranes [5], proteins, and other vital cellular components [6]. These
effects can result in cell cycle arrest, apoptosis (programmed cell death), or senescence,
altering normal cellular functions and potentially leading to diseases such as cancer [7].

To understand the mechanisms underlying radiation-induced cellular responses, it is
important to perform basic radiobiological research [8]. The knowledge gained is essential
for developing and improving radiation therapies for cancer treatment. A profound
understanding of how different types of radiation affect various cancer cells can lead to
more targeted and efficient treatments while minimizing damage to healthy tissues, such
as in FLASH therapy [9] or particle minibeam therapy [10]. Furthermore, understanding
the effects of radiation on a single-cell basis is vital for assessing the risks associated with
radiation exposure [11]. Workers in nuclear facilities, astronauts, and patients undergoing
radiation-based medical procedures benefit from this knowledge. By understanding the
cellular responses to radiation, scientists can establish safe exposure limits and develop
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protective measures, ensuring the well-being of individuals exposed to radiation in various
contexts [12].

The damaging effects of radiation and their impact on human health on a large scale
have been known for more than a century [13]. Supported by technological developments,
assays were developed that can be used to determine and quantify the reactions of large
cell populations to radiation in vitro, such as colony-forming assays for cell survival [14],
MTT assays for cell viability [15], and flow cytometry for assessing cell death [16]. These
three assays are able to provide data that allows us draw conclusions on the major radiation
effects that predominantly influence cellular integrity. Furthermore, cell survival, viability,
and cell death can influence tissue functionality, immune reactions, and human well-being
in cancer treatment and after radiation accidents. All the assays mentioned face the same
challenge, as they can only be used at a particular time point for one endpoint in a sample,
averaging over the reaction of thousands or millions of cells. This limits its applicability
to low cell numbers, which are of interest, for example, in modern therapy methods such
as micro- or minibeam therapy as well as in bystander research, where low cell numbers
are irradiated. Furthermore, detailed information on how the cellular transition from the
irradiated cell to a colony, a viable cell population, or cell death occurs is missing. Finally,
post-irradiation treatments such as trypsinization for post-plating or color staining might
interfere with the biological reactions. For example, cells that are already severely damaged
might be lost during the trypsinization process, which is needed to perform the post-plating
in the colony-forming assay. Post-plating is mostly necessary when accurate irradiation
is needed for micro-beam [17,18] or bystander research [19]. In this case, the sample
processing would alter the results. Finally, to be able to create a full picture of radiation
damage, several assays have to be used, each on separate samples, and only indirect
conclusions can be drawn, which limits the generalization of the conclusions drawn.

Therefore, since the mid-20th century, the single-cell response has been of key interest
for researchers [20]. Only the limited amount of data storage and the long time needed
for analysis made single-cell tracking unattractive for gaining knowledge. Increasing data
storage, image analysis methods, and computational speed opens the door for performing
complex analysis on single cells by tracking them through several generations.

To overcome the problem of slow result generation and therefore the limited use of
single analysis, the CeCILE (Cell classification and in vitro lifecycle evaluation) project was
started. In 2021, we published the first machine learning-based program that was able
to detect and classify up to 100 cells in live-cell phase-contrast videos, CeCILE [21]. We
also showed the promising perspectives that the use of artificial intelligence-based analysis
provides for investigating cellular radiation responses. The aim of the current study was
to generalize CeCILE to more cell lines and increase performance. The first step was to
overcome the limitations, which come when there is a maximum number of cells that can
be analyzed. The key developments in the new version, CeCILE 2.0, were to implement
human-supervised cell tracking, which allows to track cells and their descendants over
several generations and to generate cell lineages for each cell from the tracking data. This
allows for the scoring of defects in the cell cycle, abnormalities occurring through division
or throughout the cell cycle, as well as proliferation and cell survival. These developments
represent a big step toward reaching the overall goal of the CeCILE project, which is to
provide an open-source platform for automated analysis of cellular reactions imaged in the
normal environment without interfering with the cells.

2. Results
2.1. Single-Cell Tracking
2.1.1. Object Detection

In CeCILE 2.0, object detection was optimized for an unlimited number of cells and
better accuracy compared to the first version [21]. Two videos from the test and tracking
video datasets were used to test the performance of object detection. The video selection
for one video with irradiated and one with non-irradiated cells was chosen to reflect the
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two extremes in terms of living and dead cells and final cell density. This helps to gain an
overview of the general performance of the algorithm. The videos were fed into CeCILE 2.0
object detection. To quantify the performance of the algorithm, the evaluation of CeCILE
was compared to the groundtruth data. The groundtruth was produced by manually
labeling the data, as the human expert is commonly accepted to be the benchmark. In
the performance test, both bounding box localization and classification were tested. The
localization was tested by calculating the precision, recall, and F1 score as described in
the Section 4. The results are shown for irradiated cells in Figure 1A and non-irradiated
cells in Figure 1B. The object detector achieved a higher recall than precision in almost all
frames of the irradiated cell video. The recall was between 0.82 and 1.0, with an increase
to 1.0 more often in the first 200 frames, while the recall was around 0.95 after 200 frames.
The precision was between 0.78 and 0.98 and followed the course of the recall. In the video
of the irradiated cells, the object detector achieved an average precision over all frames
of 0.88, an average recall of 0.93, and an average F1 score of 0.90. A better localization
performance was achieved by the object detector in the non-irradiated video. Here, the
recall was between 0.95 and 1.0 and the precision between 0.80 and 0.92. In the first frames,
frame 0 to frame 20, between frame 140 and frame 160, and from frame 180 to frame 340,
the precision decreased slightly, while the recall remained at a high level throughout the
video. The average recall over all frames was 0.96, the average precision was 0.88, and the
average F1 score was 0.92. The accuracy values for both videos are summarized in Table 1.
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Figure 1. Accuracy of object detection in a video of irradiated (A) and non-irradiated (B) cells over
340 frames. Shown are precision in blue, recall in orange, and F1-score in green. (C,D) show the
overall mean average precision (mAP) and the mAP for each class (liv: living cells, round: round
cells, div: dividing cells, dead: dead cells) for the irradiated (C) and the non-irradiated sample.
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Table 1. Summary of the mean, maximum, and minimum values of precision, recall, and F1-score for
the irradiated and non-irradiated video.

Irradiated Non-Irradiated

Mean precision 0.88 0.88
Max precision 0.98 0.92
Min precision 0.78 0.80
Mean recall 0.93 0.96
Max recall 1.0 1.0
Min recall 0.82 0.95

Mean F1-Score 0.90 0.92

Therefore, the precision achieved was the same as for the video of irradiated cells,
while a higher recall and F1 score were achieved for the video of unirradiated cells.

The mean average precision (mAP) score was used for classification evaluation. The
mAP scores for each frame in the two videos are shown in Figure 1C for the video of
irradiated cells and in Figure 1D for the video of unirradiated cells. In both videos, the
object detector obtained the highest mAP values for the living cell class, the second highest
for the dead cell class, followed by the round cell class. The lowest mAP values were
obtained for the cell division class. In the irradiated video, the mAP liv started to be the
lowest at about 0.90 and increased to about 0.95 after 50 frames. The mean mAP liv was 0.95;
this is an increase of 6% compared to the first version of CeCILE (mAP liv = 89.15%) [21].
The mAP dead was highest at the beginning of the video, with values around 0.85. It was
slightly lower between frame 300 and frame 456. The mean mAP dead rate was 0.82. In
most frames, a mAP round of about 0.7 was achieved. The average mAP round was 0.72.
Cell divisions did not occur in most frames. Therefore, the detector detected a few cell
divisions. The average mAP div was 0.5. Overall, the mAP values are slightly better when
compared to the first version of CeCILE [21], proofing the overall very good performance
of CeCILE 2.0.

Overall, the algorithm shows very good performance. Nevertheless, looking at the
data shows certain cases where the detection fails, especially when cells move over each
other or are getting close together (see Supplementary Figure S1). As in CeCILE 2.0 object
detection, no time information is given; the algorithm cannot use the information from
previous or later timepoints, which would help to increase performance. The use of 3D
information in detection would help to better identify the position of a single-cell and
differentiate between cells at different heights, but it would also increase complexity to a
non-acceptable level at the moment.

2.1.2. Cell Tracking

After object detection was performed for each frame, centroid tracking was applied
as described in the Section 4. The accuracy of tracking was tested by comparing the
tracking IDs predicted from the CeCILE 2.0 centroid tracker with tracking IDs from a
manually labeled groundtruth on groundtruth bounding boxes in the two test videos. In
the irradiated video, 97.77% (30,427 out of 31,120) of tracking cases were correct, and in the
sham irradiated case, 98.51% (26,544 out of 26,946). This method can very well track the
movement of cells but is not able to identify a cell division and assign two daughter cells to
a mother cell. Therefore, to correct for incorrect classification, a manual supervising step is
implemented in the CeCILE 2.0 workflow. The correction steps are implemented between
object detection and tracking and after tracking. This allows the user to manually correct
the bounding boxes, box labels, and box IDs, ensuring 100% accuracy in the classification
and tracking through several cell cycles. As a final step, cell lineages for each cell and its
descendants are created. A schematic sketch of the current workflow is shown in Figure 2.
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2.2. Characterizing Radiation Response

To test the human-supervised workflow and to demonstrate the potential of CeCILE 2.0
in a real application, an irradiation experiment was performed and evaluated. In this experi-
ment, CHO cells (25,000 cells in 3 mL) were seeded into two µ-dishes and incubated for 24 h.
One µ-dish was irradiated with 3 Gy of X-rays, and the other was sham-irradiated. Both
µ-dishes were placed in the live-cell imaging setup of the microscope, and video record-
ing with the microscope was started immediately after irradiation. The recording was
performed for 4 days. The obtained videos belong to the test and tracking video datasets
of CeCILE 2.0, which were also used before to evaluate the performance of CeCILE 2.0 in
object detection and tracking. As a biological response, endpoints such as cell vitality, cell
cycle duration, cell proliferation-related abnormalities, and the number of cell divisions
and vital daughter cells, as well as cell growth and survival, were scored.

2.2.1. Cell Vitality

Cell vitality was scored as a simple measure to assess radiation effects without the
need for single-cell tracking. Here, only the number of cells per class in a single frame is
necessary for evaluation. Since the cells are self-replicating, the recorded area is quickly
completely filled with cells. For the sham cells, it took 67 h to fully cover the growth area,
and for the irradiated cells, full coverage was achieved 90 h after irradiation. Figure 3a
shows the frames at 0 h, 24 h, 48 h, 72 h, and 96 h after irradiation for each video. As can be
seen, the cells in both videos started with 27 and 23 vital cells and show a reduced growth
rate for the irradiated cells compared to the sham cells.

A detailed evaluation was performed with CeCILE 2.0 for the first 28.3 h on the sham
video and for the first 38 h on the irradiated video. These time periods were chosen because
the cells in both videos were able to divide three times and were still well distinguishable
from each other until the end of these time periods, which is necessary for proper tracking
of the cells. In Figure 3b,c, the number of cells in each cell state is shown separately for the
irradiated sample (c) and the unirradiated sample (b). The majority of cells in both videos
are in the living cell state (liv), followed by the dead cell state, the round cell state, and
finally the cell division state (div). The living cells therefore show a similar progression
to the vital cells, which are all cells in the cell states liv, round, and div, with an increased
growth rate of the sham cells compared to the irradiated cells. In the irradiated video,
there are more dead cells with 11.88 ± 0.11 (mean ± SEM) dead cells per frame than in the
sham video with a mean of 7.93 ± 0.12 dead cells per frame. This difference is statistically
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significant with a p-value < 0.05 (two-sample t-test). During the first 2 h, both samples had
similar numbers of round cells, ranging from three to eight round cells. After two hours,
the number of round cells in the irradiated video remained almost constant until 15 h after
irradiation, while the sham sample had almost no round cells (mostly between 0zeroand
three round cells per frame) during this time period. Between 15 and 20 h, almost no round
cells were observed in the irradiated sample, similar to the sham sample. After 20 h, the
number of round cells increased in both samples. Cell divisions occurred twice as often in
the sham sample, with 117 cell divisions in 28.3 h, compared to the irradiated sample, with
55 cell divisions in 28.3 h.
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Figure 3d shows a comparison of vital cells for the irradiated and non-irradiated
samples. While the number of vital cells remains constant for the irradiated cells for
8.25 h, the sham cells begin to proliferate immediately. The growth of vital cells in the
sham sample increases exponentially after 3.25 h, resulting in 158 cells after 28.3 h. In the
irradiated sample, the cells also show exponential growth. However, radiation reduced
arrest and resulted in a slightly lower growth rate with 81 cells at 28.3 h and 123 cells at
38 h. These results show that even a simple evaluation of the data by object detection can
reveal significant differences in the treatment responses of the samples. A closer look at
how individual cells respond to irradiation is provided by a tracking-based evaluation.

2.2.2. Cell Cycle

The tracking results were used to determine information about the cell cycle. Here,
for each cell, which appears itself or together with its offspring on more than 300 frames
of a video, a full lineage was created as shown in Figure 4. This was the first time that it
was possible to automatically produce such lineages and, with this, be able to follow the
single-cell reactions throughout several divisions. The cell lineages serve as the basis for
the following quantitative analyses.



Cells 2023, 12, 2782 7 of 20

Cells 2023, 12, x  7 of 20 
 

 

2.2.2. Cell Cycle 
The tracking results were used to determine information about the cell cycle. Here, 

for each cell, which appears itself or together with its offspring on more than 300 frames 
of a video, a full lineage was created as shown in Figure 4. This was the first time that it 
was possible to automatically produce such lineages and, with this, be able to follow the 
single-cell reactions throughout several divisions. The cell lineages serve as the basis for 
the following quantitative analyses. 

 
Figure 4. Cell lineages of all cells evaluated in the sham-irradiated control (a) and the 3 Gy X-ray-
irradiated sample (b). Lines in the lineages appear dark blue for living cells, light blue for round 
cells, green for dividing cells, and red for dead cells. Black connections between two cells indicate a 
fusion of the membranes of two connected cells. 

The first quantitative analysis of the lineages was the cell cycle arrest after irradiation. 
Figure 5a shows the time the cells needed to start the first division after treatment. In the 
unirradiated cell colony, cells needed on average (7.6 ± 0.8) h (±SEM), with the first divi-
sion scoring 5 min after starting the imaging and the last division being at 12.9 h. In con-
trast, in the irradiated sample, there was a significant (p-value < 0.0001, two-sample t-test) 
delay, as on average, the cells divided after (12.0 ± 0.8) h. The first division took place after 
5.2 h and the last division took place at 22.5 h. Therefore, this analysis clearly showed a 
cell cycle arrest of 4.4 h. 

Figure 4. Cell lineages of all cells evaluated in the sham-irradiated control (a) and the 3 Gy X-ray-
irradiated sample (b). Lines in the lineages appear dark blue for living cells, light blue for round cells,
green for dividing cells, and red for dead cells. Black connections between two cells indicate a fusion
of the membranes of two connected cells.

The first quantitative analysis of the lineages was the cell cycle arrest after irradiation.
Figure 5a shows the time the cells needed to start the first division after treatment. In
the unirradiated cell colony, cells needed on average (7.6 ± 0.8) h (±SEM), with the first
division scoring 5 min after starting the imaging and the last division being at 12.9 h. In
contrast, in the irradiated sample, there was a significant (p-value < 0.0001, two-sample
t-test) delay, as on average, the cells divided after (12.0 ± 0.8) h. The first division took
place after 5.2 h and the last division took place at 22.5 h. Therefore, this analysis clearly
showed a cell cycle arrest of 4.4 h.

Figure 5b shows the duration of the first and second full cell cycles for the sham and
irradiated samples. The duration of a cell cycle was defined as the time between two
complete cell divisions of a cell and was calculated for every mother cell, the cells that
were initially in the video and based on which the cell lineages were created. Consequently,
the duration of the first cell cycle was the time between the first and second cell divisions.
To determine the first cell cycle duration for a mother cell, the mean of the first cell cycle
durations of the corresponding two daughter cells is calculated. Analogously, the duration
of the second cell cycle per mother cell was the mean duration between the second and
third cell divisions of the four daughter cells. The first cell cycles of the sham sample lasted
an average of 11.8 ± 0.3 h and were as long as the second cell cycle, which lasted an average
of 11.4 ± 0.5 h. The shortest cell cycle lasted only 6.7 h, and the longest cell cycle lasted
14.7 h. In the irradiated sample, the first cell cycles lasted an average of 12.0 ± 0.5 h, and the
second cell cycles took 10.6 ± 0.5 h, which are as long as in the sham sample. The longest
cell cycle was 14.4 h, and the shortest was 8.9 h. This measurement shows that the cell cycle
durations of the first and second cell cycles were equally long and also equally long for
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both samples. This suggests that after the first cell division, no difference in the cell cycle
duration could be observed. This is also supported by the overall mean cell cycle duration
shown in Figure 5c. There is no difference between sham-irradiated control and irradiated
cells, with a mean cell cycle duration of (11.8 ± 0.3) h in the sham sample and (11.4 ± 0.4) h
in the irradiated sample.
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Figure 5. (a) Time until first cell division. Each cell is depicted with a data point for a sham (black)
and an irradiated sample (red). The mean and the corresponding standard deviation are shown.
(b) Cell cycle duration for the 1st and 2nd complete cell cycles for both sham (1st cell cycle: black,
2nd cell cycle: gray) and irradiated (1st cell cycle: red, 2nd cell cycle: light red). The mean and
standard deviation are shown. (c) The mean cell cycle duration for all fully imaged cell cycles in
the sham (black) and irradiated (red) samples are shown. The mean cell cycle duration for each cell
is depicted in each data point. The mean and standard deviation for each population are shown.
(d) The percentage of cells showing one or more cell cycle abnormalities, showing fusion, and
showing division in three daughter cells during recording are depicted. Red: irradiated population.
Black: non-irradiated sham population. (e) The percentage of initial cells showing a certain number
of divisions in 28.3 h after irradiation. Red: irradiated population. Black: non-irradiated sham
population. (f) Percentage of initial cells having a certain amount of vital daughter cells 28.3 h after
irradiation. Red: irradiated population. Black: non-irradiated sham population.

2.2.3. Cellular Abnormalities

In the next steps, the cells were scored for abnormalities during or after cell division.
Here, the cell lineages were used, in which the number of daughter cells and the fusion of
the cell membrane of two daughter cells were visually analyzed. Fusion occurs when the
cell is unable to completely separate the cell membranes between the daughter cells during
cytokinesis. After some time, the two daughter cells fuse to form a binucleate cell. This
type of abnormality is often related to aberrations linking two chromosomes, which cannot
be pulled into a single daughter cell. Therefore, chromosome bridges are still present, and
the cell will not be able to divide. The second type of abnormality is cell division into more
than two daughter cells. In this experiment, only two or three daughter cells were observed.

Both abnormalities were quantified in the sham-irradiated cell population and in the
irradiated cell population, as shown in Figure 5d. 35% of the cells in the irradiated sample
show abnormalities, in contrast to only 4% of the sham cells. In the sham cell population,
only one cell was divided into three daughter cells (cell 16, Figure 4a), and cellular fusion
did not occur. In the irradiated sample, cellular fusion was 30% the dominant process.
The abnormal number of daughter cells occurs in 9% of all cells. Some cells, such as cell
12 (Figure 4b, two times fusion, three daughter cells), show more than one abnormality.
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2.2.4. Cell Proliferation

Proliferation is the ability of a cell to reproduce offspring and thus undergo cell
division. It can be described by the maximum number of cell cycles a cell has undergone
in a given period of time and the number of daughter cells produced by a cell. CeCILE
evaluates both the maximum number of cell divisions and the number of viable daughter
cells per mother cell in a time period specified by the user. For this experiment, the first
28.3 h after irradiation was chosen as the time period. Only cells that were in one of the vital
cell states when they first appeared were considered. Figure 5e shows the percentage of
cells that underwent a certain maximum number of cell divisions in 28.3 h. In both groups,
most of the cells underwent two cell divisions: 71% of the cells in the irradiated group and
63% in the sham group. A maximum of three cell divisions were observed. 33% of the sham
group and 4% of the irradiated group underwent three cell divisions. More irradiated cells
than sham cells were divided only once: 21% of the irradiated cells and 4% of the sham
cells. 4% of the irradiated cells and none of the sham cells did not divide. On average, the
irradiated cells underwent a maximum of 1.75 ± 0.13 cell divisions, and the sham cells
underwent 2.29 ± 0.11 cell divisions. The maximum number of cell divisions undergone by
each cell is statistically significantly different between the sham group and the irradiated
group, with a p-value < 0.001 (two-sample t-test). These results can be compared to the cell
cycle duration analysis. Both analyses are in correspondence and suggest most of the cells
undergo two divisions, with a slight shift to more divisions for the non-irradiated sample.
This suggests that the difference in proliferative capacity in the first 28.3 h originates from
the cell cycle arrest due to the repair of the induced damage.

The number of daughter cells per cell is shown in Figure 5f. Cells that were not in
a vital state at the beginning of their appearance were excluded from the analysis. In
both groups, the mother cells most frequently produced four daughter cells, namely 46%
(irradiated) and 60% (sham). In the irradiated group, a maximum of five daughter cells
were produced by 4% of the mother cells. Also, 4% of the mother cells produced no
viable daughter cells and one viable daughter cell. 25% of the mother cells produced
two daughter cells, and 17% produced three daughter cells. In the sham sample, only
4% of mother cells produced three daughter cells, which was also the minimum number
of daughter cells. 4% of the mother cells produced six daughter cells, 7% of the mother
cells produced seven daughter cells, and 22% of the mother cells produced eight daughter
cells, which was also the maximum number of daughter cells produced in the selected
time period. On average, the irradiated cells produced 3.1 ± 0.25 daughter cells, and the
sham cells produced 5.1 ± 0.4 daughter cells. The difference in the distributions of the
number of viable daughter cells per mother cell is statistically highly significant with a
p-value < 0.00005 (two-sample t-test).

The measured values can be compared to the model of exponential cell growth. The
growth rates can be determined by the cell numbers at certain time points. Here, exponential
growth with continuous time is taken using the formula

x (t) = x0ept (1)

with x(t) being the number of cells at time t, x0 the initial cell number, and p the growth
rate. The growth rate is determined by using the single logarithmic representation of the
function with ln(x(t)) = pt + ln(x0) and a linear fit of the data as shown in Figure 6. The
fit was performed for the exponential phase, which started at 3.25 h in the sham sample and
8.5 h in the irradiated sample. For the fit, x0 was the number of cells at the corresponding
starting times. For the non-irradiated cells, the growth rate is, psham = 0.0632 ± 1.6 × 10−4

and for the irradiated sample pirr = 0.0506 ± 4 × 10−4. Using the growth rate, the number
of divisions and the number of daughter cells per mother cell can be calculated.
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The number of daughter cells per mother cell are calculated as DCcalc = x(t)−x0
x0

.
The number of divisions is the number of DC divided by 2, as in a healthy cell cycle,
each cell divides into two daughter cells. Table 2 shows a comparison of the calculated
numbers of daughter cells per mother cell (DCcalc) and the cell divisions (Divcalc) with the
experimentally derived (DCmeas and Divmeas) values.

Table 2. Comparison of expected and measured values for the number of cell divisions (Div) and the
number of daughter cells (DC) for irradiated and non-irradiated samples.

Irradiated Non-Irradiated

p 0.0560 ± 4×10−4 0.0632 ± 1.6 × 10−4

DCcalc 3.1 ± 0.9 5.0 ± 0.7
DCmeas 3.1 ± 0.25 5.1 ± 0.4
Divcalc 1.6 ± 0.5 2.5 ± 0.4
Divmeas 1.75 ± 0.13 2.29 ± 0.11

Overall, the values derived from exponential growth theory, together with the cell
numbers, are in very good agreement with the values determined from the cell lineages.
This shows that the trained machine learning model gives very consistent results from basic
to complex analysis, which additionally confirm the theoretical models of cellular growth.

2.2.5. Cell Survival

Finally, a comparison is made between a conventional cell survival assay and the
calculated cell survival from the data acquired using CeCILE 2.0. Here, a colony-forming
assay was used, where a colony was defined as a minimum of 50 cells that originated from
one seeded mother cell within 5 days. As an experimental comparison, the cell survival
from Rudigkeit et al. [21] was used. Here, a survival fraction after 3 Gy X-rays of (55 ± 6)%
was measured. The data from CeCILE 2.0 allow for an estimate of cell survival. In the sham
sample, 25 out of 27 cells were able to proliferate following exponential growth. All of these
cells showed a normal cell cycle and are expected to be able to go on with proliferation until
nutrient supply and space limit exponential cell growth. These cells can be expected to
be colony-forming cells, although due to close contact in the sample at earlier time points,
no colonies could be differentiated. All of these 25 cells (92.5%) were able to divide into
4 or more daughter cells in the first 28.3 h; therefore, for the estimation of cell survival,
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the criterion of having 4 or more daughter cells after 28.3 h will be used to define a cell
as surviving. In the irradiated sample, 11 out of 24 cells (45.8%), were able to reach this
criterion. Survival is now defined as

SF =
Nsample≥4,DC

Nsample,total

Nsham,total

Nsham≥4,DC
·100

where Nsample≥4,DC is the number of mother cells in the evaluated sample that divided
into more than four daughter cells (DC), and Nsample,total is the number of mother cells in
the sample. Nsham≥4,DC and Nsham,total are the number of mother cells with more than four
daughter cells and the total number of mother cells in the sham sample, respectively. The
sham sample has an SF = 100% and the irradiated sample has an SF of 49.5%. This value is
in very good accordance with the survival measurement with the colony-forming assay,
showing that the measurement of the first cell cycles already gives very good evidence for
the future of the cell and its ability to survive.

3. Discussion

In this study, we presented a novel method to study the cellular behavior of single
eukaryotic cells. It is based on observing the cells for several days after irradiation by live-
cell phase-contrast microscopy and analyzing the obtained data with the human-supervised
algorithm CeCILE (Cell classification and in vitro lifecycle evaluation) 2.0, which is based
on artificial intelligence. The introduced algorithm can detect and track cells on microscopic
videos and classify them into four cell states depending on their morphology. It is also
capable of evaluating various cell cycle-related endpoints such as proliferation, cell cycle
duration, cell cycle abnormalities, and cell lineage. The first version of CeCILE published
in 2021 [21] was, to our knowledge, the first to present an artificial intelligence-based
algorithm for analyzing cell response to radiation on live-cell phase-contrast videos.

As a first step, we implemented an object detection system based on artificial intelli-
gence that is able to detect all cells on all frames of a live-cell phase-contrast video. The
object detection in CeCILE 2.0 represents an upgrade to the previously published one, as
it overcomes the limit of 100 cells that could be detected in the first version. Now there
is no limit to the number of detectable cells, opening the way for increased statistics and
deeper analysis. The object detection algorithm chosen is a pre-trained, faster RCNN with
ResNet-101 as the backbone CNN. The dataset includes images from a total of 20 experi-
ments with different setups to increase generalization and widen the window of possible
applications. It includes three cell lines, CHO-K1, LN229, and HeLa, which are commonly
used in radiobiology. These cell lines have three important characteristics that are necessary
for detection and tracking. They grow unchanged when seeded at low densities without
clustering. They adhere to flat surfaces and grow in a 2D-like fashion, usually without
overlapping. The cells of these cell lines are easily distinguishable and can be followed
throughout a video as long as the cell density is not too high. In principle, CeCILE 2.0 can
be applied to any cell line that meets these requirements, but it has to be tested if further
training is necessary before application.

Object detection performance was evaluated using two videos of the test and a tracking
dataset derived from an irradiation experiment. In the first video, CHO-K1 cells were
irradiated with 3 Gy of X-rays, and in the second video, cells were sham irradiated. For
these two videos, we created a detection and tracking groundtruth that was used to evaluate
the performance of CeCILE 2.0 in both tasks, detection and tracking. First, object detection
was evaluated in terms of its performance in localizing objects. This is the most important
part of object detection in CeCILE 2.0, since tracking relies on the correct localization of
cells. Here, the F1 score was calculated. Correctly detected cells had box overlaps with IoU
values > 0.5 of predicted boxes and groundtruth boxes. The video of the irradiated cells
achieved a mean F1-score of 0.90 with a mean precision of 0.88 and a mean recall of 0.93.
The video of the sham cells had a mean F1 score of 0.92, a mean precision of 0.88, and a
mean recall of 0.96. Thus, the object detector performed slightly better on the sham video.
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Overall, this means that over 90% of the cells were accurately localized in both videos.
For a low-contrast biological sample, this is a very good value, and we conclude that the
performance is good enough to proceed.

In addition to localization, an object detector also classifies the detected objects. For
object detection, localization and classification are typically evaluated in a combined score,
the mAP score. The mAP score is 1 for perfect detection and classification. The mAP can be
calculated for each class individually and as an average mAP over all classes. The object
detector achieved the best results in the detection and classification of the liv class. This
class had a mean mAP of 0.95 in the irradiated video and 0.97 in the sham video. In the
irradiated video, 75.1% of the cells were in class liv and in the sham video, 85.6% of the cells
were in class liv. The second-best results were achieved in the dead class, with mean mAP
values of 0.82 (irradiated) and 0.69 (sham). There were more dead cells in the irradiated
video, with 17.0% of the cells, than in the sham video, with 9.8% of the cells. The third
highest mAP score was achieved in the class round, with 0.72 in the irradiated video and
0.60 in the sham video. 7.6% of the cells were in the class round in the irradiated video,
and 4.2% of the cells, in the sham video. By far the least common class was div. Only 0.3%
and 0.4% of the cells in the irradiated and sham videos, respectively, were in this class.
The mean mAP values were also the lowest, at 0.5 in both videos. This shows that the cell
detection gave better results for classes containing more cells. However, it is important to
note that the mAP score is much more affected by a missing bounding box or an incorrect
classification when there are fewer cells in the class being examined. This can be seen in
the classes liv, round, and dead, where higher mAP scores were obtained when there were
more cells in a class. In particular, class liv, which contained the majority of cells, had
very high mAP scores above 0.95, indicating that the vast majority of cells were correctly
detected and classified. The mAP score of a class was only below 0.8 when less than 10%
of the cells belonged to the class. As shown in the classification with a simple CNN, the
classification struggles with cells that transit from one class to another. In the cell cycle, cells
stay in the liv class most of the time. The class round as a precursor to cell division occurs
only for about 30 min and the class div can be observed only for about 10 min. We imaged
the cells every 5 min. Therefore, the probability that a cell is in a transition state is higher
for the round and div classes than for the liv class. Dead cells change their morphology
after death. They may undergo self-digestion, as in apoptosis, or they may be digested by
other cells. In these processes, dead cells disappear after some time. Therefore, dead cells
are difficult to detect and classify for an algorithm, but also for a human expert annotator,
if the death occurred 1 h or more ago. Misclassifications in cell state transitions do not
affect the result after tracking, since it is not important whether a cell enters a particular cell
state one frame earlier or later. Furthermore, it is not important to track dead cells for the
whole observation time since the only important information, namely that a cell is dead,
has already been received. Therefore, it can be concluded that object detection provides all
the information needed for tracking and performs well enough to be passed to a tracking
algorithm. In order to improve the classification performance, the next development step
of CeCILE will include the time information, i.e., the state of the cell, several frames before
and after.

As a tracking algorithm, we implemented the centroid tracker proposed by A. Rose-
brock [22] and adapted it to the special requirements of tracking cells in phase-contrast
videos. Furthermore, we implemented the IoU as a second feature to take into account
box overlap when matching bounding boxes, which further increases robustness. Since
the centroid tracker is a location-based tracker, it is well suited for cells on phase-contrast
videos. Cells on phase-contrast videos hardly move between frames when a frame-to-frame
distance of 5 min is applied during recording. An appearance-based tracker is less suitable
for cell tracking because cells change their morphology during the cell cycle. Also, trackers
that expect objects to move toward a specific target cannot be applied because cells in
culture move in a more random walk fashion due to the homogeneous distribution of
nutrients in the culture. The centroid tracker is a hard-coded tracker that only considers
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the information of the previous and current frames. It is designed for accurate tracking of
objects where each object has a track but does not provide the ability to track across cell
divisions where a track splits into two tracks. However, it can be used to track between cell
divisions and manually assign the tracks of two daughter cells to a mother cell afterwards.
The performance of the implemented tracker was tested, such as object detection before,
on the two videos of the test and tracking datasets. We tested the tracker on the bounding
boxes of the groundtruth in order to test only the performance of the tracker and not the
previously tested detector. Since the centroid tracker cannot track across cell divisions, all ID
assignments between cell divisions predicted by the tracker and given by the groundtruth
were compared to calculate the tracking accuracy. The tracking accuracy is the percentage of
correct ID assignments out of all assignments. The centroid tracker achieved an accuracy of
97.77% in the irradiated video and 98.51% in the sham video. This shows that the proposed
location-based tracker is well suited for cell tracking.

The detection and tracking implemented in CeCILE 2.0 both give very good results
when used separately. In combination, however, the errors made by each are amplified.
Errors in detection, such as missing bounding boxes, lead to errors in tracking, since tracking
relies on the bounding boxes of object detection. For the evaluation of phase-contrast videos
on a single-cell basis, 100% accuracy is required, and no errors can be accepted as they
would falsify the result. In particular, switching cell identities or prematurely stopping
the track will lead to incorrect results when evaluating the cell cycle and creating accurate
cell lines. Therefore, we implemented two manual monitoring steps. The first step was
implemented after object detection to allow the user to add any missing bounding boxes.
With these corrections, the tracking algorithm can be applied, which leads to very accurate
results. In the second correction step, the tracking IDs can be adjusted. The tracks of
mother cells and their daughter cells can be combined. In both correction steps, the class
labels of the bounding boxes can be corrected if necessary. With this supervised approach,
the user can easily evaluate phase-contrast videos with 100% accuracy and obtain precise
information about each cell in the video. Although very high accuracy could be achieved in
the supervised mode, this is one of the main limitations of CeCILE 2.0. In the future, human
supervision should be eliminated from the workflow. To be able to do this, a different
approach to tracking is necessary, which is able to track over a cell division, recognize the
daughter cells as such, and track them separately. For this, it is necessary to use the full
video information, adding the time domain as a parameter, and not sticking to the single
time planes. This development needs substantial improvement of the underlying model.
One possible solution could be the use of conservation tracking, which was proposed for
use in life sciences [23,24], or the use of the Hidden Markov Model [25].

In the experiment shown in this study, cells were imaged for 4 days and analyzed
for cell viability, cell cycle and cell cycle abnormalities, proliferation, and survival. It is
possible to extend the monitoring to more than 4 days, but the evaluation with CeCILE 2.0
is limited by the density of the cells. Proper detection and tracking are only possible as
long as the cells are still distinguishable from each other. We show that the cells are in
exponential growth during the imaging period, except for a cell cycle arrest of 4.4 h for the
irradiated sample. After the first division, the cell cycle is constant, with (11.8 ± 0.3) h in
the sham sample and (11.4 ± 0.4) h in the irradiated sample.

The cell lines generated by CeCILE 2.0 provide deep insight into the evolution of each
cell. For example, it can be seen here that some cells show abnormalities in their cell cycles.
In the videos analyzed, fusions of two daughter cells and divisions into three daughter
cells were observed. Combinations of both abnormalities were also observed. Overall,
35% of the irradiated cells showed cell cycle abnormalities and only 4% of the sham cells,
with division abnormalities being the dominant process. The object detection CeCILE 2.0
and the counted number of cells could also be used to correctly calculate the number of
divisions and daughter cells and to prove the assumed model of exponential growth with
cell cycle arrest for the irradiated cells. Based on the data, cell survival could be predicted,
which was in good agreement with actual measurements of the colony formation assay
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in the same setup [22]. By comparing the results obtained, it can be concluded that the
difference in cell growth between irradiated and sham cells is mainly a result of cell cycle
arrests immediately after irradiation and therefore delayed cell divisions. Furthermore,
due to unsuccessful cell divisions, on the one hand because more daughter cells died and,
on the other hand, because of cell cycle abnormalities.

4. Materials and Methods
4.1. Data Set

For the dataset used for training CeCILE 2.0, 20 videos of cells of three different
cell lines (HeLa, CHO, and LN229) were recorded via live-cell imaging with a stan-
dard inverted microscope in our lab. An overview of the used data can be found in
Supplementary Tables S1 and S2. During recording, cells were kept in a stage-top incuba-
tor that ensures a healthy environment for the cells and enables continuous monitoring for
up to 5 days. From the recorded videos, frames were chosen to be labeled and included in
the dataset. In the first 13 videos, a distinct time interval of 20 min or 100 min was chosen
between the labeled frames, and in videos 14 to 20, only frames were chosen to be included
in the dataset where at least one cell was in the state cell division. Cells were imaged
after different treatments, under different conditions, and with different imaging modes,
resulting in heterogeneous videos that represent a wide range of experiments. Cells were
seeded into three different containers that have different optical properties. The containers
were coated with either gelantine or CellTak or left uncoated. Cell samples were irradiated
or left unirradiated. For testing the performance of object detection and tracking on videos,
two videos were labeled. To create the videos of the test dataset, CHO cells were seeded
on two µ-dishes without coating. After 24 h of incubation, one µ-dish was irradiated with
3 Gy of X-rays, and the other one was sham irradiated. Both µ-dishes were placed in the
live-cell-imaging setup of the microscope, and recording of the videos with the microscope
started immediately after irradiation. The recording was performed for 4 days. For the
groundtruth, 457 frames of the irradiated sample were labeled, corresponding to a time
range of 38 h, and 341 frames of the unirradiated sample were labeled, corresponding
to a time range of 28.3 h. The different numbers of labeled frames were chosen because
the irradiated sample has a decreased growth rate compared to the sham sample. In the
evaluated time ranges, the cells in both samples were able to divide three times and could
still be tracked accurately as the cell densities were not too high. To create a groundtruth of
these videos, the videos were labeled by the CeCILE 2.0 object detector and tracker, and
the labels were manually corrected after object detection and tracking using VIA image
annotator software [26].

4.2. Object Detection

A faster RCNN implemented in the TensorFlow object detection API was chosen as an
object detection model. This model is easy to use and adapt to custom datasets, and it is
very accurate in detecting many small objects on a crowded image [27]. The Faster-RCNN
also shows these characteristics when applied to microscopy images of cells [28]. To save
computational time, transfer learning with a pretrained ResNet-101 model trained on the
COCO dataset [29] from the TensorFlow 2 Model Detection Zoo was used. For identification
of the cell-specific appearance, classification, and location, CeCILE 2.0 was trained and
fine-tuned on the specific dataset described in the Section 4.1, which was split randomly
(75%/25%) into a training dataset and a validation dataset. Training was performed on the
training dataset, and for fine-tuning, the object detector’s predictions were evaluated during
training on the validation dataset. During this process, only the top 10 layers of ResNet-101
were trained, and the rest were frozen. For inspection during the training, the qualification
scores were used, which are described in the next section. This way, the training process
could be inspected and the parameters fine-tuned accordingly. The data preparation and
training pipeline for faster RCNN is implemented as described by Rosebrock [30] and on
the official website of the TensorFlow 2 object detection API [31]. In the training process, the
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following parameters were fine-tuned: number of epochs, learning rate, aspect ratios and
scales of the anchor boxes, data augmentation, non-maximum suppression, localization loss
weight, classification loss weight, and objectness loss weight. These parameters have been
chosen because during the development process, it turned out that they had an influence
on the model’s performance. The major influences were seen in the learning rate and data
augmentation. The final parameters are shown in Table 3.

Table 3. Parameters used for object detection training.

Parameter Value

Number of epochs 100,000
Learning rate Cosine decay learning rate, with

warm-up (3000 epochs): 0.001
Aspect ratio 0.5, 1.0, and 2.0

Scales of the anchor boxes 0.25, 0.5, 1.0 (256 × 256 pixels), and 2.0

Data augmentation Horizontal flip, adjust brightness,
contrast, square crop by scale

Non-maximum suppression IoU: 0.3 and 0.35
Localization loss weight 3 and 2

Classification loss weight 1
Objectness loss weight 1.5

Training was performed on a NVIDIA GeForce RTX 2080 super graphics card (NVIDIA
corporation, Santa Clara, CA, USA) with 8 GB of VRAM (video random access memory).

4.3. Qualification Scores

For object detection qualification, first the number of true positives, false positives,
and false negatives were counted. True positives are all boxes that overlap a groundtruth
box with an intersection over union (IoU) > 0.5. The intersection over union is determined
by measuring how much the predicted bounding box overlaps with the groundtruth
bounding box. False positives are all boxes that do not overlap with a groundtruth box
with an IoU > 0.5 and are, therefore, falsely predicted by the object detector. An example
of a false positive is a prediction of two boxes for one object. Objects not predicted by
CeCILE 2.0 object detection are called false negatives. After that, the following scores were
calculated for each frame:

Recall, also known as true positive rate, is the percentage of cells correctly identified
for a class out of the total cells for this class:

Recall =
True Positives

True Positives + False Negatives

The precision is the percentage of cells correctly predicted for a class out of all cells
belonging to that class:

Precision =
True Positives

True Positives + False Positives

The F1-score is the harmonic mean of precision and recall:

F1 =
2·Precision·Recall
Precision + Recall

For the mAP score, the class labels of the boxes were also taken into account when
assigning the boxes as true positives, false positives, and false negatives. Now, only boxes
are true positive if the box overlaps with an IoU > 0.5 with a groundtruth box and the label
is the same. If the label does not match the label of the corresponding groundtruth box,
the box is false positive. The boxes were sorted according to their confidence score that
was assigned by the object detector, starting with the highest confidence score and going
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to boxes with smaller scores. The precision and the recall were calculated by taking only
the current box and all boxes with a higher confidence score as one of the current boxes
into account. This is repeated for all boxes, and in every step, one more box is taken into
account. The average precision is the area under the resulting recall-precision curve. The
mean average precision score was calculated for each class individually as the mean of the
average precision for IoU < 0.5 (mAP liv, mAP round, mAP div, and mAP dead). If a class
did not appear in the predictions and the groundtruth, it was assigned a mAP score of 0.
The overall mAP was defined as the average of all classes present in each frame.

4.4. Centroid Tracking

The bounding boxes obtained from the detection are passed to a tracking algorithm.
By implementing a tracking algorithm that uses the bounding boxes obtained from object
detection, CeCILE 2.0 is able to track each cell throughout the video. The tracking algorithm
assigns a unique ID to each bounding box in the first frame of a video. In the next frame, the
tracking algorithm matches the bounding boxes with the bounding boxes of the previous
frame. If a matching bounding box is found, it is given the same ID as its matching partner.
If there is a bounding box in the current frame that has no matching partner in the previous
frame, it receives its own unique ID. This matching process is repeated for all frames in
the video.

To track the cells based on their location and the bounding boxes obtained from the
detection, the centroid tracker developed by Adrian Rosebrock [22] was implemented in
CeCILE 2.0 and adapted to the specific needs of cell tracking. This object tracker uses the
OpenCV library in Python. In the first step of the centroid tracker, the centroids of each
bounding box in a frame were determined by calculating the center coordinates of the
bounding box based on the box coordinates:

centroidX =
startX + endX

2

centroidY =
startY + endY

2
where centroidX and centroidY are the coordinates of the center of a bounding box in the x
and y directions, startX and startY are the x- and y-coordinates of the upper left corner of a
bounding box, and endX and endY correspond to the x- and y-coordinates of the lower right
corner of a bounding box. In the first frame of the video, each bounding box is assigned a
unique ID by the function register. This function stores the IDs as keys and the bounding
box coordinates as box coordinates as values in the dictionary objects. In each subsequent
frame n, the bounding boxes are mapped to the bounding boxes of the previous frame n
− 1 using the Euclidean distance d. Here, the Euclidean distances between the centroids
of each pair of bounding boxes in frame n and frame n − 1 are computed and stored in a
matrix Mdist, where the columns correspond to the bounding boxes of frame n − 1 and the
rows correspond to the bounding boxes of frame n:

Mdist =

d (centroid cell 1n−1, centroid cell 1n) d (centroid cell 2n−1, centroid cell 1n) . . .
d (centroid cell 1n−1, centroid cell 2n) d (centroid cell 2n−1, centroid cell 2n) . . .

. . . . . . . . .


Additionally to the tracking proposed by Rosebrock [22], the IoU overlap of each box

in frame n − 1 and frame n was calculated and also stored in a matrix MIoU similar to Mdist.
A matching matrix was computed using the following:

Mmatching = Mdist + 0.1 − 0.1 · MIoU

Now, the algorithm searches each row of the matching matrix for the smallest value.
These values are ordered in ascending order, and the position of each value in the matrix is
also stored. Starting with the first and smallest value, the corresponding bounding boxes
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in frame n and frame n − 1 are derived based on the position in the matrix. It can be
assumed that these two bounding boxes contain the same object since they are the closest
to each other and overlap the most. Therefore, the ID of the bounding box in frame n − 1 is
assigned to the bounding box in frame n. This step is repeated for all the smallest values in
all rows. To avoid double assignment of the bounding boxes of both frames, the indices of
the bounding boxes used are stored. Before each new assignment of an ID, it is checked
whether the bounding box in frame n − 1 has already been matched to a bounding box
of frame n or vice versa. Each time a bounding box is matched, the dictionary objects are
updated by assigning the value tuple containing the coordinates of the matched bounding
box of frame n to the key ID that was found to be the matching ID. Finally, it is checked
whether there are bounding boxes in frame n or n − 1 that have not been matched to a
box of another frame. If a bounding box of frame n has no matching partner, the function
register is executed. If there is no matching partner for a bounding box in frame n − 1,
the deregister function is executed. This function deletes the ID and coordinates of this
bounding box from the dictionary objects. This procedure is repeated for each frame of
the video. By using the matching matrix instead of the Euclidean distance matrix for
the matching, the matching of two boxes that do not overlap or only partly overlap is
penalized, and the matching of boxes that have a small center-to-center distance and a huge
box overlap is encouraged.

4.5. Tracking Accuracy

The tracking accuracy was measured by applying the centroid tracker to the groundtruth-
bounding boxes of the two test videos and comparing the IDs assigned to the boxes by the
tracker to the groundtruth IDs. As the centroid tracker is not able to track across cell divisions,
the specific ID changes at cell divisions were ignored for the scoring, and only the consistency
of the tracks in between cell divisions was scored. The IDs of each object in a frame n > 0
were compared to the ID of the very same object in the previous frame n − 1 in the tracks
created by the centroid tracker (prediction) and the tracks created by me (groundtruth). If the
ID of an object did not change in the groundtruth and the prediction between frame n and
frame n − 1, the variable right_ID, which was initially 0, was increased by 1. If the ID of an
object changes in the prediction but not in the groundtruth, the variable wrong_ID, which was
initially 0, was increased by 1. This was performed for all bounding boxes and frames in the
video. Afterwards, the tracking accuracy tacc was calculated by using the following formula:

tacc =
right_ID

right_ID + wrong_ID

4.6. Cell Culture and Irradiation

CHO cells were cultivated in the growth medium RPMI 1640 (R8758-500ML, Sigma-
Aldrich, St. Louis, MO, USA) supplemented with 10% FCS (fetal calf serum, F0804-500ML,
Sigma-Aldrich, USA), 1% Penicillin-Streptomycin (P4333-100ML, Sigma-Aldrich, USA),
and 1% Sodium Pyruvate (S8636-100ML, Sigma-Aldrich, USA). Cells were grown in an
incubator at a temperature of 37 ◦C, 5% CO2, and 100% humidity and were passaged
twice a week. Cells were seeded for 24 h before irradiation on µ-dishes with glass bottoms
(µ-Dish 35 mm, Ibidi, Martinsried, Germany). For irradiation, an X-ray cabinet (CellRad,
Precision Xray Inc., Madison, CT, USA) was used. One dish was irradiated with 3 Gy of
X-rays (130 kV) and a dose rate of 0.067 Gy/s and the other dish was sham irradiated.

4.7. Life-Cell Microscopy

Cells were imaged by live-cell microscopy for up to 4 days. Therefore, the microscope
was equipped with a stage-top incubator (Tokai-hit STX, Tokai-hit, Fujinomiya, Japan). The
incubator allows cells to be maintained under cell culture conditions (37 ◦C temperature,
5% CO2 concentration, and 100% humidity). The water reservoir in the stage-top incubator
was replenished every day during the recording period, and the growth medium for
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the cells was replenished every second day. The water reservoir, high humidity, and
medium replenishment prevented the cell sample from drying out and ensured optimal
physical conditions and nutrient supply for the cells during observation. A 10× objective
(Plan-Apochromat 10×/0.45 Ph1, Zeiss, Oberkochen, Germany) was used for imaging.
Cells were imaged in two modes: in standard phase-contrast using the phase stop Ph 1
(Zeiss, Germany) as suggested by the manufacturer and hereafter referred to as mode 1.
In addition, videos were recorded in a bright-field phase-contrast mode using the phase
stop Ph 2 (Zeiss, Germany), hereafter referred to as mode 2. Both imaging methods
were included in the dataset to increase the robustness of the detection algorithm and to
encourage the algorithm to learn the structure and pattern of different cell morphologies
rather than intensity patterns. The test videos were recorded in mode 1.

5. Conclusions

We show that CeCILE 2.0 can be used to accurately detect and track cells in phase-
contrast videos in a human-supervised mode. The results provided by CeCILE 2.0 provide
information on cell growth, cell cycle duration, first cell divisions, proliferation, cell cycle
abnormalities, relationships between cells in a sample, and cell survival. Thus, CeCILE 2.0
combines all important endpoints of radiobiological research and provides more detailed
information that cannot be derived from state-of-the-art assays, such as cell cycle abnor-
malities. In addition, CeCILE 2.0 could achieve significant results by analyzing only small
numbers of cells. Gold standard assays such as the colony-forming assay require several
thousand cells to obtain significant results [14]. No cell staining or specific treatment is
required, as is the case with CFA or the Caspase3/7-Sytox assay [16], which evaluates cell
death. Possible effects of treatments can be avoided by using CeCILE 2.0. Since the cells are
monitored every 5 min, detailed information about the cells can be derived for each time
point. Thus, a detailed history of each cell is obtained. State-of-the-art assays are typically
evaluated at specific time points. The CFA is typically evaluated 5 days after irradiation
and the Caspase3/7-Sytox assay at 24 h in the case of CHO-K1 cells. If information at other
time points is of interest, these assays need to be repeated. Currently, CeCILE 2.0 is used
in a human-monitored mode, which we aim to overcome in the next development step of
CeCILE using different tracking approaches.
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mdpi.com/article/10.3390/cells12242782/s1, Figure S1: Problem_cases_CeCILE; Table S1: List of used
data; Table S2: Details of the videos used for tracking.

Author Contributions: Conceptualization, J.R.; methodology, J.R and S.R.; software, S.R.; validation,
J.R. and S.R.; formal analysis, J.R. and S.R.; investigation, S.R.; resources, J.R.; data curation, J.R.
and S.R.; writing—original draft preparation, J.R.; writing—review and editing, S.R.; visualization,
J.R. and S.R.; supervision, J.R.; project administration, J.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the EU transnational access program RADIATE (grant
agreement No 824096).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to restrictions set by the university.

Acknowledgments: We acknowledge Julian Reindl for the continuous support with regard to the
machine learning, all students who helped with the creation of the dataset and Dollinger for the
inspiring discussions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

https://www.mdpi.com/article/10.3390/cells12242782/s1
https://www.mdpi.com/article/10.3390/cells12242782/s1


Cells 2023, 12, 2782 19 of 20

References
1. Baatout, S. (Ed.) Radiobiology Textbook, 1st ed.; Springer International Publishing: Cham, Switzerland, 2023.
2. Santivasi, W.L.; Xia, F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid. Redox Signal. 2014, 21, 251–259.

[CrossRef] [PubMed]
3. Szumiel, I. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: The pivotal role of mitochon-

dria. Int. J. Radiat. Biol. 2015, 91, 1–12. [CrossRef] [PubMed]
4. Balogh, A.; Persa, E.; Bogdándi, E.N.; Benedek, A.; Hegyesi, H.; Sáfrány, G.; Lumniczky, K. The effect of ionizing radiation on the

homeostasis and functional integrity of murine splenic regulatory T cells. Inflamm. Res. 2013, 62, 201–212. [CrossRef] [PubMed]
5. Corre, I.; Niaudet, C.; Paris, F. Plasma membrane signaling induced by ionizing radiation. Mutat. Res. 2010, 704, 61–67. [CrossRef]

[PubMed]
6. Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of ionizing radiation on biological molecules--mechanisms of

damage and emerging methods of detection. Antioxid. Redox Signal. 2014, 21, 260–292. [CrossRef] [PubMed]
7. Reindl, J.; Abrantes, A.M.; Ahire, V.; Azimzadeh, O.; Baatout, S.; Baeyens, A.; Baselet, B.; Chauhan, V.; Da Pieve, F.; Delbart, W.;

et al. Molecular Radiation Biology. In Radiobiology Textbook, 1st ed.; Baatout, S., Ed.; Springer International Publishing: Cham,
Switzerland, 2023; pp. 83–189.

8. Kirsch, D.G.; Diehn, M.; Kesarwala, A.H.; Maity, A.; Morgan, M.A.; Schwarz, J.K.; Bristow, R.; Demaria, S.; Eke, I.; Griffin, R.J.;
et al. The Future of Radiobiology. J. Natl. Cancer Inst. 2018, 110, 329–340. [CrossRef] [PubMed]

9. Friedl, A.A.; Prise, K.M.; Butterworth, K.T.; Montay-Gruel, P.; Favaudon, V. Radiobiology of the FLASH effect. Med. Phys. 2022,
49, 1993–2013. [CrossRef] [PubMed]

10. Zlobinskaya, O.; Girst, S.; Greubel, C.; Hable, V.; Siebenwirth, C.; Walsh DW, M.; Multhoff, G.; Wilkens, J.J.; Schmid, T.E.; Dollinger,
G. Reduced side effects by proton microchannel radiotherapy: Study in a human skin model. Radiat Env. Biophys. 2013, 52,
123–133. [CrossRef] [PubMed]

11. Preston, R.J.; Rühm, W.; Azzam, E.I.; Boice, J.D.; Bouffler, S.; Held, K.D.; Little, M.P.; Shore, R.E.; Shuryak, I.; Weil, M.M. Adverse
outcome pathways, key events, and radiation risk assessment. Int. J. Radiat. Biol. 2021, 97, 804–814. [CrossRef] [PubMed]

12. Domenech, H. Radiation Safety: Management and Programs; Springer International Publishing: Cham, Switzerland, 2017.
13. Kardamakis, D.; Baatout, S.; Bourguignon, M.; Foray, N.; Socol, Y. History of Radiation Biology. In Radiobiology Textbook, 1st ed.;

Baatout, S., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–24.
14. Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1,

2315–2319. [CrossRef] [PubMed]
15. Supino, R. MTT assays. Methods Mol. Biol. 1995, 43, 137–149. [CrossRef] [PubMed]
16. Bertho, A.L.; Santiago, M.A.; Coutinho, S.G. Flow cytometry in the study of cell death. Mem. Do Inst. Oswaldo Cruz 2000, 95,

429–433. [CrossRef] [PubMed]
17. Greubel, C.; Ilicic, K.; Rösch, T.; Reindl, J.; Siebenwirth, C.; Moser, M.; Girst, S.; Walsh, D.W.M.; Schmid, T.E.; Dollinger, G. Low

LET proton microbeam to understand high-LET RBE by shaping spatial dose distribution. Nucl. Instrum. Methods Phys. Res. Sect.
B Beam Interact. Mater. At. 2017, 404, 155–161. [CrossRef]

18. Friedrich, T.; Ilicic, K.; Greubel, C.; Girst, S.; Reindl, J.; Sammer, M.; Schwarz, B.; Siebenwirth, C.; Walsh DW, M.; Schmid, T.E.;
et al. DNA damage interactions on both nanometer and micrometer scale determine overall cellular damage. Sci. Rep. 2018, 8,
16063. [CrossRef] [PubMed]

19. Shao, C.; Folkard, M.; Michael, B.D.; Prise, K.M. Targeted cytoplasmic irradiation induces bystander responses. Proc. Natl. Acad.
Sci. USA 2004, 101, 13495–13500. [CrossRef] [PubMed]

20. Frigault, M.M.; Lacoste, J.; Swift, J.L.; Brown, C.M. Live-cell microscopy—Tips and tools. J. Cell Sci. 2009, 122, 753–767. [CrossRef]
[PubMed]

21. Rudigkeit, S.; Reindl, J.B.; Matejka, N.; Ramson, R.; Sammer, M.; Dollinger, G.; Reindl, J. CeCILE—An Artificial Intelligence Based
Cell-Detection for the Evaluation of Radiation Effects in Eucaryotic Cells. Front. Oncol. 2021, 11, 688333. [CrossRef] [PubMed]

22. Rosebrock, A. Simple Object Tracking with OpenCV. Available online: https://pyimagesearch.com/2018/07/23/simple-object-
tracking-with-opencv/ (accessed on 18 October 2023).

23. Haubold, C.; Schiegg, M.; Kreshuk, A.; Berg, S.; Koethe, U.; Hamprecht, F.A. Segmenting and Tracking Multiple Dividing Targets
Using ilastik. Adv. Anat. Embryol. Cell Biol. 2016, 219, 199–229. [CrossRef] [PubMed]

24. Schiegg, M.; Hanslovsky, P.; Kausler, B.X.; Hufnagel, L.; Hamprecht, F.A. Conservation Tracking. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 2928–2935.

25. Han, M.; Xu, W.; Tao, H.; Gong, Y. Multi-object trajectory tracking. Mach. Vis. Appl. 2007, 18, 221–232. [CrossRef]
26. Dutta, A.; Zisserman, A. The VIA Annotation Software for Images, Audio and Video. In Proceedings of the 27th ACM International

Conference on Multimedia, Nice, France, 21–25 October 2019; Amsaleg, L., Ed.; Association for Computing Machinery: New York,
NY, USA, 2019; pp. 2276–2279.

27. Du, J. Understanding of Object Detection Based on CNN Family and YOLO. J. Phys. Conf. Ser. 2018, 1004, 12029. [CrossRef]
28. Uka, A.; Tare, A.; Polisi, X.; Panci, I. FASTER R-CNN for cell counting in low contrast microscopic images. In Proceedings of

the 2020 International Conference on Computing, Networking, Telecommunications & Engineering Sciences Applications (CoNTESA):
Proceedings: Epoka University, Albania, Partially Held online as a Live Interactive, Virtual, 9–10 December 2020; Ali, M., Ed.; IEEE:
Piscataway, NJ, USA, 2020; pp. 64–69.

https://doi.org/10.1089/ars.2013.5668
https://www.ncbi.nlm.nih.gov/pubmed/24180216
https://doi.org/10.3109/09553002.2014.934929
https://www.ncbi.nlm.nih.gov/pubmed/24937368
https://doi.org/10.1007/s00011-012-0567-y
https://www.ncbi.nlm.nih.gov/pubmed/23080082
https://doi.org/10.1016/j.mrrev.2010.01.014
https://www.ncbi.nlm.nih.gov/pubmed/20117234
https://doi.org/10.1089/ars.2013.5489
https://www.ncbi.nlm.nih.gov/pubmed/24382094
https://doi.org/10.1093/jnci/djx231
https://www.ncbi.nlm.nih.gov/pubmed/29126306
https://doi.org/10.1002/mp.15184
https://www.ncbi.nlm.nih.gov/pubmed/34426981
https://doi.org/10.1007/s00411-012-0450-9
https://www.ncbi.nlm.nih.gov/pubmed/23271171
https://doi.org/10.1080/09553002.2020.1853847
https://www.ncbi.nlm.nih.gov/pubmed/33211576
https://doi.org/10.1038/nprot.2006.339
https://www.ncbi.nlm.nih.gov/pubmed/17406473
https://doi.org/10.1385/0-89603-282-5:137
https://www.ncbi.nlm.nih.gov/pubmed/7550641
https://doi.org/10.1590/S0074-02762000000300020
https://www.ncbi.nlm.nih.gov/pubmed/10800202
https://doi.org/10.1016/j.nimb.2016.11.032
https://doi.org/10.1038/s41598-018-34323-9
https://www.ncbi.nlm.nih.gov/pubmed/30375461
https://doi.org/10.1073/pnas.0404930101
https://www.ncbi.nlm.nih.gov/pubmed/15345742
https://doi.org/10.1242/jcs.033837
https://www.ncbi.nlm.nih.gov/pubmed/19261845
https://doi.org/10.3389/fonc.2021.688333
https://www.ncbi.nlm.nih.gov/pubmed/34277433
https://pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
https://doi.org/10.1007/978-3-319-28549-8_8
https://www.ncbi.nlm.nih.gov/pubmed/27207368
https://doi.org/10.1007/s00138-007-0071-5
https://doi.org/10.1088/1742-6596/1004/1/012029


Cells 2023, 12, 2782 20 of 20

29. Yu, H.; Chen, C.; Du, X.; Li, Y.; Rashwan, A.; Hou, L.E.; Jin, P.; Yang, F.; Liu, F.; Kim, J.; et al. TensorFlow Model Garden. Available
online: https://github.com/tensorflow/models (accessed on 18 October 2023).

30. Rosebrock, A. Deep Learning for Computer Vision with Python, 3rd ed.; PyimageSearch: Baltimore, MD, USA, 2019.
31. Vladimirov, L. TensorFlow 2 Object Detection API Tutorial: Training Custom Object Detector. Available online: https://

tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html (accessed on 18 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/tensorflow/models
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html

	Introduction 
	Results 
	Single-Cell Tracking 
	Object Detection 
	Cell Tracking 

	Characterizing Radiation Response 
	Cell Vitality 
	Cell Cycle 
	Cellular Abnormalities 
	Cell Proliferation 
	Cell Survival 


	Discussion 
	Materials and Methods 
	Data Set 
	Object Detection 
	Qualification Scores 
	Centroid Tracking 
	Tracking Accuracy 
	Cell Culture and Irradiation 
	Life-Cell Microscopy 

	Conclusions 
	References

