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A B S T R A C T

Recently, it was shown that a detailed reconstruction of urban height maps is possible from single very
high resolution (VHR) synthetic aperture radar (SAR) images with deep convolutional neural networks. Being
merely a proof-of-concept so far, the potential of this approach has not been fully exploited yet. With this
work, we present an optimized deep learning model for height estimation from single VHR SAR images,
which incorporates sensor knowledge into the estimation. We embed this model into a SAR-specific processing
chain that allows the generation of seamless georeferenced digital surface models (DSMs) with geodetically
defined heights in an orthometric map coordinate system. Extensive experiments are carried out with a custom-
generated dataset including over 50 TerraSAR-X images from 8 different cities. They confirm that our workflow
generalizes well across different locations while being robust to different properties of the input data. Thus,
our workflow provides the unique ability to produce elevation models of urban areas quickly, regardless of
weather, around the clock, and at low cost. This can be of immense benefit when time is critical, e.g. in
disaster response scenarios or in the context of reconnaissance activities.
1. Introduction

Measuring elevation data is a time-consuming and expensive task.
Urban areas in particular pose a challenge with their dense complex
man-made structures. Moreover, it is also just these zones that are
subject to the most and fastest changes. At the same time, these changes
affect the most people, since cities are where the majority of the popula-
tion lives. Thus, efficient, fast, and cost-effective methods for a regular
update of urban topography data bear great relevance, as different
stakeholders could use them in many applications, e.g. change monitor-
ing. Since most conventional 3D reconstruction methods, e.g. LiDAR,
photogrammetric stereo, InSAR, or TomoSAR require pairs or even
stacks of images, a method relying only on single images would lower
the required acquisition time and data costs significantly. A single
satellite overflight would be able to provide an updated urban height
map for a detailed 3D analysis of the situation, e.g. after a disaster.

1.1. Related work

Pioneering and well-cited works in this context are suggesting
single-image height reconstruction from optical aerial images (Amirko-
laee and Arefi, 2019; Ghamisi and Yokoya, 2018; Mou and Zhu, 2018).
Since their publication, ever more sophisticated model architectures
and deep learning paradigms for depth estimation from the field of
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computer vision spilled over into the world of remote sensing and
height estimation, driving up the performance scores (Li et al., 2022;
Sun et al., 2022a; Xing et al., 2022; Karatsiolis et al., 2021; Liu
et al., 2020). While being very interesting and strong methodological
approaches, most of these works still use the same small-scale datasets
and sensor modalities, optical orthophotos, or nadir-viewing satellite
imagery, consisting of two to at most four different scenes. Train and
test sets are drawn from the same scenes so that the distribution of the
test data strongly resembles the one known from training. Although the
methods can be compared among each other, such a practice distorts
the achieved error metrics compared to an application using an actual
unseen test area and thus being closer to a real-world scenario. Also,
using true orthophotos for testing is generally pointless from a practical
point-of-view, as the elevations of the scene are already a prerequisite
for their generation in the first place. Overall, the methods often lack a
certain practicality and awareness of remote sensing-specific problems,
such as spatial generalization capability, the mosaicking of small model
outputs into coherent, seamless maps, or accurate georeferencing of
fairly raw sensor data.

A substantial leap in terms of the amount of data used for training
was provided by Cao and Huang (2021). Panchromatic multi-view data
(forward, nadir, backward) and multispectral data were collected over
42 Chinese cities, from which building footprints and heights are jointly
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derived within a multi-task network. The method was then applied
to U.S. cities as well. With the Chinese Ziyuan 3-03 satellite, all the
necessary data can be acquired in one satellite pass. Testing was still
done in a random split, but the method bears the potential to be applied
in practice. Another interesting choice of sensor for height estimation
was taken by Müller et al. (2023), who used Sentinel-2 data as input,
creating a theoretically global system with high temporal coverage. The
results are surprisingly good considering the coarse resolution of the
input data. Some tweaks such as attention gates in the skip connections
and parallel encoders with different sized receptive fields are used to
achieve these results. While it is only tested on a small scale as well,
it holds potential for large-scale applications. Regarding the problem
of only patch-wise relative estimates, for instance, Amirkolaee and
Arefi (2021) separate object pixels from ground pixels in a rule-based
manner and place these relative height estimates on an SRTM-DSM
as an approximated DTM, thus creating a coherent higher-resolution
DSM. Another nice remote sensing-specific turn in the methodology
was done by Chen et al. (2021) which estimate heights per building
instance instead of per pixel by using an adapted form of Mask R-
CNN in which a height prediction head is incorporated into its region
proposal network. For spatially lower-resolution data, instance-wise
height estimation can often be more reasonable. Li et al. (2023) also
estimates heights at a building level. Very interesting is the paradigm
introduced to determine the heights not by a direct regression, but by
a detour over 3D centripetal shift representations. These represent the
distances between the visible roof points to the visual center of the
building at ground level. From these, the corner points can also be
estimated and thus the footprints be determined.

What all these methods have in common, however, is the use of
optical or multispectral data as inputs. The related work using SAR
as input data remains very scarce to this day. This is probably due
to the unfamiliar imaging geometry of SAR and its more difficult
coregistration with other geospatial data. At the same time, however,
more and more commercial actors are entering the SAR business,
which has recently given the technology a fair amount of hype. SAR
is offering a set of advantages as an active system. It can be used at
any time of day or night independent of weather conditions, making
it a perfect system for reconnaissance and disaster management. Some
works address forest height estimation (like Zhang et al. (2022b)), or
the estimation of large-scale mountainous areas using L- and C-band,
like Xue et al. (2022), but the reconstruction of urban areas with just
a single image is very rare, with our earlier publication (Recla and
Schmitt, 2022) being the first of its kind to the best of our knowledge.
In this work, we showed that it is generally possible to estimate patch-
wise relative heights from slant range SLC SAR intensity data using a
dataset consisting of four images from two cities. Sun et al. (2022b)
take a different, higher-level approach and use building footprints
from OpenStreetMap and locate a bounding box around the visible
echo of the corresponding facade of each building in the SAR image.
Through the length of these facades, the heights of the buildings can
be determined.

1.2. Contributions

In this work, we build upon (Recla and Schmitt, 2022) and develop a
fully operational framework for the generation of geodetic height maps
of urban areas from single VHR SAR images solving several remote
sensing-specific challenges. For that purpose, we propose an enhanced
neural network architecture, which takes physical auxiliary knowledge
into account. In addition, we complement the neural network with
SAR-specific pre- and post-processing steps so that eventually not only
relative heights are generated in a patch-by-patch manner, but geode-
tically meaningful, seamless, and coherent height maps in a projected
orthometric reference system are provided. This enables the derivation
of the structure of an urban area from a single SpotLight scene, quickly
105

and around the clock, with high accuracy.
1.3. Paper structure

The remainder of this paper is structured as follows: Section 2
contains the description of the methodology, which consists of the
necessary preprocessing steps, the description of the used Deep Learn-
ing model and its training, and the postprocessing, which consists
of the mosaicking process, the conversion from slant range data to
ground range and some filtering techniques of the result. In Section 3,
the data used is described and the extensive experimental results are
summarized, including ablation studies and cross-validation. Finally,
the results are discussed and put into perspective in Section 4, before
the findings are summarized in Section 5.

2. The SAR2Height framework

The overall workflow of the SAR2Height Framework is depicted in
Fig. 1. It can be divided into a training phase, in which the param-
eters for the deep convolutional network residing at the core of the
framework are determined, and an inference phase, which uses the
trained model and applies a series of necessary postprocessing steps
to its results to generate a coherent DSM in an orthometric reference
system. The framework consists of different submodules for each of
these steps which will be described in the following.

2.1. Data preparation

To run the SAR2Height processing chain, several steps are necessary
to prepare the required data. To apply the method, calibrated and
resampled SAR data serves together with its approximative looking
angle as input, while a coarse-resolution terrain model is necessary to
georeference the result. The preprocessing steps for these data types are
described in the following.

The complex pixel values of VHR SAR level 1B data are calibrated
with the calibration factor from the metadata and converted into a
logarithmic scale. The values obtained in dB correspond to the so-called
radar brightness 𝛽0 and are approximately normally distributed. The
aim of the calibration is to counteract different recording geometries
and to provide the model with data as homogeneous as possible. A
further step to meet this goal is histogram matching. From all the
data available during training, a common histogram is created. Each
further image to be evaluated is then matched to this histogram. The
core of the process of histogram matching is generating cumulative
histograms for both the actual and reference images, which are then
used to identify the unique pixel values in the reference image that
most closely correspond to the quantiles of the distinct pixel values
present in the image to match. Linear interpolation is utilized to carry
out this mapping between the two sets of values. It should be noted
that this histogram matching step only provides value if the areas
under consideration are of a similar nature. If, for example, a large
part of the area is covered with water, histogram matching would
even be detrimental to the intention. However, if, as is the case here,
it is exclusively similar urban regions, this procedure can help to
make images from different viewing angles and/or other sensors more
comparable. Subsequently, the slant range data is resized to a square
pixel size on the ground of 1m. This scaling is performed with the mean
projected pixel spacings over the entire scene and thus corresponds only
to an approximation, which is however sufficient for mostly flat urban
space.

As auxiliary data, the model uses the approximate local looking
angle of the image section shown as an additional parameter. The
central pixel of the patch is geolocated on a globally available, coarse-
resolution digital terrain model, giving us the target’s position 𝑥𝑇 .
Together with the position of the sensor 𝑥𝑆 , the local looking angle
𝜃 can be determined by

𝜃 = 𝜋 − arccos

(

𝑥𝑆 ⋅
(

𝑥𝑇 − 𝑥𝑆
)
)

. (1)

|𝑥𝑆 | ⋅ |𝑥𝑇 − 𝑥𝑆 |
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Fig. 1. The workflow of the entire SAR2Height framework can be divided into a training phase (left) and an evaluation phase (right). For training the model, high-resolution
nDSMs are projected into the image geometry of the SAR images. These pairs of SAR and relative height are used to train the model in a supervised manner. The so-learned
model parameters are then used in the evaluation phase to interpret an unseen SAR image and estimate its pixel-wise heights. A globally available coarse-resolution terrain model
is used on the one hand to determine the local looking angle as an auxiliary parameter for the model, and on the other hand to reproject the estimated nDSM in slant range into
an orthometric (projective) coordinate system (like UTM). The resulting point cloud is filtered and rasterized to finally obtain the estimated DSM in ground range.
This angle is then converted into a metric measure related to the length
of the layover that appears in the image by applying the cotangent. This
should help the model to distinguish whether longer appearing layovers
are coming from taller buildings or are a consequence of a different
viewing geometry.

Lastly, for the transition from normalized elevation values com-
ing from the deep learning model to geodetic absolute elevations
after post-processing, a digital terrain model is necessary. Due to the
tendentially low-frequency characteristics of bare topography, a coarse-
resolution terrain model is already sufficient for our purpose (<30m).
Such datasets are globally (and in some instances freely) available.
However, a potential error in these elevation data will directly affect
the final geoproduct. It is important to note that all heights used
here have to be geometric heights (if desired, a geoid model can be
reintroduced to the final DSM).

2.2. CNN-based single-image height estimation

The core of the approach presented here is the Deep Learning model.
It is the part where the actual estimation of the height above ground
value for each pixel of a SAR backscatter intensity image takes place.
This represents a supervised regression problem and is achieved with a
modified form of a U-Net (Ronneberger et al., 2015). The architecture
and the training strategy are described in the following.

2.2.1. Generating training data
This section describes the process of obtaining ground truth data

for the training process since we are dealing with a supervised method.
For the plain application of an already trained model, these steps are
of course omitted. For the annotation of the SAR images with elevation
values, a high-resolution surface model (DSM) and terrain model (DTM)
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Fig. 2. The lines each form a matched pair of SAR image and nDSM projected in its
image geometry. The image at the top was acquired at an incidence angle of 47◦, which
corresponds to a very shallow viewing setting. The bottom row shows an image with
an incidence angle of 21◦, which is already close to the TerraSAR-X lower operational
limit. It can be seen that one and the same building produce layovers of very different
lengths.



ISPRS Journal of Photogrammetry and Remote Sensing 211 (2024) 104–120M. Recla and M. Schmitt
Fig. 3. Overview of the model used for estimating the relative heights per pixel in slant range intensity SAR images. The right figure describes the blocks used, the left shows
where they are applied in the network. The input tile of size 512 × 512 pixels is reduced to a size of 32 × 32 in the encoder, which in turn is restored to the original dimensions
in the decoding part of the network.
are required. By subtracting the DTM from the DSM, the normalized
surface model (nDSM) is created, whose height values can then serve as
our target during the training. In essence, nDSMs contain heights above
ground, i.e. they represent the relevant heights of elevated objects such
as buildings, masts, trees, etc., which we seek to reconstruct eventually.
These heights are then projected into the image space of the SAR
acquisition in question. This process uses the sensor model defined in
the metadata to locate each pixel on the surface model using geometric
relations. Basically, a high-resolution surface model is intersected with
the respective Zero-Doppler plane per image line, resulting in a two-
dimensional terrain profile (or slice) for each image line. All point
targets of the pixels of one image line must lie on the corresponding
terrain profile. By intersecting these profiles with the range circles of
the individual image columns, the position and height of the possible
scatterers are obtained for each of the slant SAR pixels. In the case
of layover effects occurring, where multiple scatterers from different
locations (e.g. ground, wall, roof) fall within one resolution cell, the
highest lying point is projected, for instance, the one from the roof.
However, the pixels are not examined for visibility, which means that
heights are also predicted in the radar shadow. These will be filtered
out in postprocessing, see Section 2.3.3. For a detailed look at this
annotation process, refer to Recla and Schmitt (2022). In Fig. 2 you can
see two examples of a height-annotated image pair used for training the
model.

2.2.2. Network architecture
For our earlier proof-of-concept presented in Recla and Schmitt

(2022), we relied on the U-Net-like IM2Height architecture (Mou
and Zhu, 2018) with some minor tweaks. In this work, we present the
SAR2Height architecture, which again belongs to the U-Net family,
but contains several enhancements specifically designed for height re-
construction from single VHR SAR images. Fig. 3(a) shows the network
architecture. The single-channel input tiles of size 1 × 512 × 512
pixels are brought by max-pooling operations in each of the four
consecutive stages of depth to a spatial dimension in the bottleneck of
1024 × 32 × 32. In the decoder, these feature maps are then converted
back to the output size by unpooling, as it is done by Mou and Zhu
(2018). Unpooling describes the reverse process of (max) pooling by
restoring the spatial dimensions of the feature maps. In this process,
the pooling indices from the encoder are used again to place the values
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at their original position. Also, the feature maps from the encoder are
reintroduced to bring back the spatial details from the earlier stages of
the network. The model is based on what is known as a residual block
(originally introduced by He et al. (2016)), which is used in every level
of the network. Compared to the original ResBlock, the ones used here
consist of one more convolutional layer and a reversed arrangement of
activation, batch norm, and convolution (compare Fig. 3(b) upper left).
The residual blocks help to robustly train a deep network by learning
only a residual part of the function instead of a complete mapping. This
greatly reduces the problem of vanishing gradients.

The entire model is built on 3 × 3 convolutions. The maxpooling
operations increase the actual receptive field, but this happens only
in deeper parts of the network. In order to allow the model to get a
more global impression of the scene also at an earlier stage, a so-called
Multi-Scale ResBlock is introduced. The Multi-Scale ResBlock is shown
in Fig. 3(b), top right. It consists of a sequence of dilated convolutions
with different dilation rates (namely 1, 2, 3, 4, 6, 8, 16, 32 and 64). The
feature maps from these dilated convolutions are concatenated with the
input and a channel-wise mean value. They are then scaled to the size
of the output in two activated convolutional layers and finally added
to the input in the sense of a ResBlock. While using such high dilation
rates it is important to set the padding mode in the convolutions to
reflect to avoid distorting the result towards a fill value. The idea of
using atrous convolutions is inspired by DeepLabv3 (Chen et al., 2017).

Another particular feature of the model used here is the utilization
of sensor parameters as auxiliary knowledge. In the age of data-driven
models, this is often forgotten and missed potential, especially when
it comes to remote sensing data. In particular SAR sensors, as active
systems, provide a wealth of very precisely known and well-calibrated
metadata. For a lot of problems in Computer Vision, all the necessary
information lies in the pure pixel values of the input image (e.g. for
classifying a cat). However, a land use classifier, for example, could
strongly benefit from the knowledge of the position of the image in
question (information that is contained in every satellite image and
mostly ignored). A noteworthy instance can be found in the work
of Zhang et al. (2022a), wherein the authors leverage not only a
multispectral image but also its associated longitude and latitude co-
ordinates. This additional spatial information speeds up the training
process of a land use classification system while also improving its
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Fig. 4. Visual comparison of the influence of the viewing angle on the length of the
layover and the shadow. A smaller looking angle results in a longer layover, but a
shorter shadow.

generalization capabilities, even when limited training data is avail-
able. To enable the fusion of pixel feature vectors and spatial details
within the model, a dual-branch network is employed to ensure that
both components are appropriately aligned to a uniform size so that
they can be stacked together.

In the context of height estimation, as discussed here, incorporating
supplementary sensor data can prove highly beneficial, too, as the
primary indicators of height in a slant range SAR image are likely to
be the geometric phenomena of layover and shadow, which directly
correlate with building or target height. Fig. 4 illustrates how the ex-
tents of layover and shadow regions are influenced by varying viewing
angles. When a model is provided with a bare SAR image devoid of
any supplementary details, an elongated layover effect may originate
from either a taller structure or a more acute viewing angle. In this
regard, compare Fig. 2 left and right. A steep viewing setting leads
to very long layover artifacts, but the building in question keeps, of
course, the same height. If prior knowledge regarding the viewing angle
is supplied, the model’s determination of the height of the building in
question can be considerably simplified. Integrating additional data in
the form of scalar numbers (like the looking angle) into a U-Net, as the
one in the case at hand, can be accomplished in various ways, although
it is comparatively rarely described in the existing literature. In Kang
et al. (2021), the authors employ a small fully connected subnetwork
to adapt the scalar input to the spatial dimensions of the feature maps
in the bottleneck. However, this approach has the limitation that the
dimensions of the input image cannot be freely chosen after training,
as the number of nodes in the subnetwork would also need to change
accordingly. To overcome this constraint and retain the flexibility of
accepting arbitrarily shaped inputs, we have devised a more dynamic
method for injecting additional parameters. We described a first draft
and proof-of-concept of this idea in Recla and Schmitt (2023b). The
method works regardless of the size of the feature maps. The funda-
mental idea involves feeding the auxiliary data (in this case, the looking
angle) into the outputs of the residual blocks, as illustrated in Fig. 3(b).
We refer to this construct as the ‘‘Parameter Injection’’ block. It takes
the scalar input 𝑠 and reshapes it to match the spatial dimensions of the
feature maps within the corresponding ResBlock, resulting in 𝑆[1 ×𝑚×
𝑛]. To provide this block with information about the current features,
the residual feature map of the ResBlock 𝐹 [𝑐𝑜𝑢𝑡×𝑚×𝑛] is passed through
a convolutional layer, compressing it to a channel count of 3, creating
𝐹𝑐𝑜𝑚𝑝𝑟 [3 × 𝑚 × 𝑛]. 𝑆 is then concatenated with 𝐹𝑐𝑜𝑚𝑝𝑟 and forwarded
through two activated convolutional layers. The number of channels
already matches the output of the ResBlock [𝑐𝑜𝑢𝑡 × 𝑚 × 𝑛] that it can
be added to the output of the residual block 𝐹 . The network can thus
utilize the additional information only where necessary, with the option
to set regions of no interest to zero. As it is challenging to determine
108

precisely where the model learns what and requires the additional
information, the infusion block is incorporated into multiple locations
throughout the network, specifically within each ResBlock, instead of
only one particular point of the model. In theory, this approach can
accommodate multiple additional parameters as well. Further scalar
values (in a number 𝑘) can be straightforwardly added to the infusion
block as additional channels, resulting in dimensions of [𝑘 × 𝑚 × 𝑛].
But for this work, we injected the looking angle as the only additional
parameter in the manner as it is described in Section 2.1.

2.2.3. Training strategy
The model is trained in a conventional supervised manner. The

input images and the corresponding ground truth are cut into trainable
patches of 512 × 512 pixels. A fixed number of individual patches are
randomly sampled from the input images. This is to ensure a certain
balancing between the different available recordings. In practice, 400
patches were drawn from each image. For the smaller scenes, this
results in oversampling, but two identical patches are still unlikely. For
each epoch, not all patches are then used in training, but a random
subset. Thus, images with the same content but with some random
offset/shift are shown in the different epochs (due to the random
spatial sampling). As the loss function, 1 was used to train the model.
Even though the MSE loss (Mean Squared Error) would reduce the
final achievable RMSE, we decided against it, since many small spatial
details in the output height maps would get lost using it. An alternating
approach was also tested, but ultimately did not perform better than the
1 loss alone. Also, a batch size of 24 and the Adam optimizer were
used with a learning rate of 0.0005. The input data is clipped between
−30 and 10 dB and afterwards min–max-normalized to a range between
0 and 1. The target data (heights) are also scaled down in a similar
fashion with 50m becoming 1 but without clipping. This helps the
model to train faster and more reliably. Before evaluation, the outputs
are denormalized to represent meters again.

Like all datasets for Single Image Height Estimation in remote
sensing, ours suffers from a long-tailed (or heavy-tailed) distribution,
too. By their very nature, most pixels, even in urban areas, represent
ground pixels and thus carry a value of zero in an nDSM. Roof pixels,
and especially those of skyscrapers, on the other hand, do not appear
in large numbers. This imbalance would result in a model that always
tends to underestimate the height values just because of the statistical
prior of more probable small heights. To counteract this long-tailed
regression problem to some extent, all patches in the dataset are
classified into ‘‘height classes’’ by the maximum height that occurs in
each image section. These classes are then weighted against each other
and drawn using a RandomWeightedSampler during training. This thus
ensures that the model is presented with an equal number of patches
per height class within an epoch, by under-drawing over-represented
classes and over-drawing under-represented classes. The bounds of the
used classes are as follows: 30m, 60m, 100m, 150m, and 200m. This
means that per epoch, the same number of patches with a maximum
height of between 100 and 150m and less than 30m, for example, are
provided to the model for training.

2.3. Postprocessing

A significant portion of the SAR2Height framework is the post-
processing of the now patch-estimated height values. Most works from
the literature end already at this point. However, the previously pre-
dicted height maps are neither georeferenced nor in a usual mapping
geometry. The necessary steps are described in the following sections.

2.3.1. Generating coherent mosaics
The model estimates the heights above ground for each pixel of the

input patches, in our case of the size 512 × 512 pixels. However, the
patches, as they come out of the model, do not yet form a coherent
image. Fig. 5(a) shows an example of how adjacent patches were

simply stitched together. Unsightly artifacts appear at the borders and
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Fig. 5. The figure on the left shows the boundary area of four distinct height estimates,
i.e. model outputs. Unsightly edges appear at the borders of the individual patches,
especially in range direction. In the image on the right, the individual outputs have
been merged using the method described, resulting in a seamless appearance.

buildings cut off at the edges are underestimated. Reasonable, because
in such a case the base of the building is not shown in the input and
therefore only a part of the layover can be interpreted. This makes it
impossible for the model to estimate the building height correctly. To
overcome this problem, the mosaic is formed in a two-step process.
First, a 100-pixel-wide area at the edges of each output patch is dis-
carded (to ensure that only partially mapped buildings are not included
in the final result). The remaining core of the patch is merged with the
adjacent one by weighting a small overlapping area against each other.
The weights applied here decrease linearly with the distance from the
center of each patch. This results in an artifact-free composite, as can
be seen in Fig. 5(b). Also, the tall building in the middle of the example
is no longer underestimated.

This patch-wise approach together with the oblique view of the SAR
system limits the maximum detectable building height. As described
in Section 2.2.2, and shown in Fig. 4, the object’s height and the
incidence angle influence the length of the mapped layover effect of
raised objects such as buildings. Of course, we can only expect a model
to estimate its height correctly if there is a complete view of the
object. Taking the padding into account, the following limitations can
be identified for different incidence angles: While a 150m high building
at an incidence angle of 20° already represents the maximum height
that can be mapped, at an incidence angle of 50°, the buildings can
be almost 500m tall to be still covered within the area of the patch.
A medium-range incidence angle of 35° leads to a maximum building
height of approximately 300m.

2.3.2. Projecting to UTM
From the model and after the mosaicking process, we obtain the

estimated relative height values above ground for each pixel of the
supplied SAR intensity image, but still in image space, which in the
case of SAR means the so-called slant range geometry. In slant range,
the image columns directly correspond to the distance to the sensor.
This means that the pixels of an image column contain the echoes of
all backscatterers at the same distance from the sensor. As a result,
building facades, for example, are imaged as lying towards the sensor
(compare Fig. 2). In order to correct these geometric peculiarities
of a SAR image and to obtain a familiar orthometric projection, the
absolute heights for each pixel must be known. Together with the
known acquisition geometry of the sensor, namely the position and
velocity of the phase center of the antenna in an earth-fixed coordinate
system, each pixel can thus be georeferenced and an image in the
109
Fig. 6. Schematic illustration of the projection process from relative heights in slant
range to absolute heights in ground range. An additional terrain model is needed to
supply the absolute reference and to locate the pixel’s target in 3D space. For every
pixel, the task is to determine the intersection of the range circle (representing the
pixel) and the purple dashed line, which is the terrain including the estimated height
for this pixel.

so-called ground range geometry is generated. A first study on this
approach can be found in Recla and Schmitt (2023a). In order to derive
a DSM in ground range from an nDSM in slant range, we adopt the long-
known method for the orthorectification of SAR images (Curlander,
1982): Finding the position of a pixel’s target in a reference frame is
often referred to as geocoding and involves solving a system of three
non-linear equations: First, the range equation

𝑅 = |

|

𝑷 𝑺 − 𝑷 𝒕|| (2)

with 𝑷 𝑺 as the sensor’s and 𝑷 𝒕 as the target’s position in an earth-
centered frame. The range value 𝑅 is defined by the column of the SAR
image, the position of the sensor is known from the metadata. When
satisfied, the equation ensures that a target at the position 𝑷 𝒕 would
have ended up in the correct column (range gate) of the SAR image in
question. The next equation to solve is the so-called Doppler equation

𝑓𝐷𝑐 =
2
𝜆𝑅

(

𝑽 𝑺 − 𝑽 𝒕
)

⋅
(

𝑷 𝑺 − 𝑷 𝒕
)

, (3)

where 𝑓𝐷𝑐 is the Doppler centroid frequency, 𝜆 the signal wavelength,
𝑽 𝑺 represents the sensor’s and 𝑽 𝒕 the target’s velocity, which can be
derived from 𝑽 𝒕 = 𝝎𝒆 × 𝑷 𝒕 with 𝝎𝒆 acting as the Earth’s rotational
velocity vector. This equation includes all possible 𝑷 𝒕s that would
be mapped in the corresponding image line, i.e. in the direction of
azimuth or flight direction of the sensor. To limit the multitude of now
still possible solutions for 𝑷 𝒕, the last equation is introduced: the so-
called world equation, which draws the solution to the Earth’s surface.
The equation should model the shape of the Earth. Usually, an oblate
ellipsoid is used for this purpose:

𝑥2𝑡 + 𝑦2𝑡
(

𝑅𝑒 + ℎ
) +

𝑧2𝑡
[

(1 − 𝑓 )
(

𝑅𝑒 + ℎ
)]2

= 1 (4)

with the radius of the Earth as 𝑅𝑒 at the equator, the target height as
ℎ above the chosen reference model, the flattening factor 𝑓 , and 𝑥𝑡, 𝑦𝑡
and 𝑧𝑡 as the single components of 𝑷 𝒕.

This method requires knowledge of the absolute altitude ℎ above
the reference ellipsoid. However, we estimate only a normalized value,
i.e. the relative heights above ground. So, Eq. (4) cannot be used as
it is. To provide this missing absolute component to the process, we
have to introduce a piece of external information in the form of a
digital terrain model. To make the method work worldwide, this terrain
model should be globally available. Also, it should actually feature
bare ground, in other words, no man-made objects or vegetation,
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Fig. 7. Illustration of the iterative process to forward geocode a pixel together with
its estimated height above ground and a DTM. Position 1⃝ on the range circle is found
by the evaluation of the RPC model together with an initial height assumption. At
this location, the height of the terrain together with the estimated building height is
used to get the next approximation 2⃝. This is repeated until the position no longer
changes 3⃝.

since that is what we are estimating with the model. The process of
incorporating the absolute component is described in the following:
For each individual pixel of the model’s output, the digital terrain
model (DTM) is elevated by adding its respective estimated height,
denoted as DTM′ = DTM,+, ℎ𝑒𝑠𝑡 (as illustrated by the purple dashed
ine in Fig. 6). Then, the algorithm searches for the precise location on
he modified DTM′ where both the range and Doppler equations are
ulfilled. Notably, the Earth model Eq. (4) is inherently satisfied due to
he search restricted to the surface of DTM′. Consequently, only two

equations are optimized through this approach. The accuracy, how-
ever, remains sub-pixel precise, as continuous interpolation between
the DTM cells takes place. To practically implement this method, the
fsolve optimizer from the scipy Python Library can be utilized. This
ptimizer determines the roots of a system of equations starting from a
iven point, by minimizing the sum of squares of its components. The
utcome of this process yields a three-dimensional point cloud in an
bsolute reference system, with each pixel of the image corresponding
o a single point.

The use of numerical solvers inevitably entails a considerable com-
utational effort, which is reflected in the runtime of the algorithm.
herefore, an alternative approach is proposed in the following: By
pproximating the Range-Doppler model described above with a so-
alled RPC sensor model (rational polynomial coefficients), the runtime
an be substantially reduced. To set up an RPC model, a set of ground
ontrol points (GCPs) with their corresponding SAR image coordinates
s required. These points can be obtained in any number by the known
ange-Doppler model and are therefore often referred to as virtual GCPs
vGCPs). Using the Eqs. (2)–(4), for the vGCPs following a grid in world
pace (𝑋𝑖, 𝑌𝑖, 𝑍𝑖), their corresponding image coordinates (𝑟𝑜𝑤𝑖, 𝑐𝑜𝑙𝑖)
re determined. With this set of coordinate pairs, the 78 coefficients
escribing the RPC model can be defined by a least squares fit (Akiki
t al., 2021). However, in order to combine the predicted relative
eights with the absolute heights from the DTM, an iterative process
s again necessary: In a first step, the absolute height 𝐻 we are looking
or is initiated as the mean height of the DTM ℎ𝐷𝑇𝑀 together with the

estimated relative height ℎ𝑒𝑠𝑡:

𝐻𝑖𝑛𝑖𝑡 = ℎ𝐷𝑇𝑀 + ℎ𝑒𝑠𝑡 (5)

This allows the pixel (𝑟𝑜𝑤, 𝑐𝑜𝑙) to be localized using the RPC model by
110

, 𝑌 , 𝑍 = 𝑅𝑃𝐶(𝑟𝑜𝑤, 𝑐𝑜𝑙,𝐻). (6) i
he 𝑋 and 𝑌 coordinates obtained can be used to further refine the
eight 𝐻 by means of interpolation on the DTM:

= 𝐷𝑇𝑀(𝑋, 𝑌 ) + ℎ𝑒𝑠𝑡 (7)

These two steps, i.e. the localization of the pixel with the current H
(6) and the subsequent re-evaluation of 𝐻 (7), are repeated until the
position in 𝑋 and 𝑌 stops changing (within a specified tolerance). Fig. 7
schematically shows the sequence of such an iteration in very difficult
terrain to illustrate the concept. The process runs in 3 iteration steps.
The mean height and the estimated building height are used to deter-
mine position 1⃝ on the range circle. Position 2⃝ is identified by adding
up the terrain height under position 1⃝ and the building height to get
an updated 𝐻 to put into the RPC model. At some point, the algorithm
converges at the location of the building being searched for, and the
next iteration results in no, or only a minimal, change in its position.

Using the RPC-based approximation for the geocoding process gives
the method a massive boost in terms of runtime. For example, com-
pared to the range-Doppler approach, the reprojection of a HS scene
(approx. 45 km2) now takes 34 s (single-core) instead of 67 min
(using 30 CPU cores). This is mainly due to the vectorizability of
the polynomial functions. In addition, in flat urban areas very rarely
more than three iteration steps are necessary to converge with the
method presented above. The residuals between the results of the
Range-Doppler approach and the RPC method are in the centimeter
range and are therefore negligible regarding the achievable accuracy
of the overall task.

2.3.3. Filtering the point cloud
If the predictions of the model were perfect, after the former de-

scribed process of georeferencing each pixel, the resulting point cloud
would already be ready to use. However, as the prediction of 3D
information from a 2D image remains a mathematically ill-posed prob-
lem, estimation errors cannot be avoided. Deviations in the estimated
heights lead to misplaced points in the point cloud — not only in
the height component but also in the positional coordinates. This
reallocation happens during the projection process. In Fig. 6, a wrongly
predicted height would move the resulting point of the point cloud
along the range circle away from its true position in world space.
Fig. 8 shows this behavior in more detail. The gray block is meant
to symbolize a potential building. At its upper right corner, the range
circle’s tangent is indicated as an approximation for it. Along the range
circle, a solution of the above equation system is searched for. If the
height of the building is overestimated, the resulting georeferenced
point will move away from the sensor and its actual position. If the
opposite is the case, the point comes closer to the sensor. This means
that the error, which in slant range only occurs in the vertical direction,
is distributed between the location and the height components after the
transition to ground range. The displacement in range direction 𝛥𝑙 can
be approximated by

𝛥𝑙 = 𝛥ℎ ⋅ cot 𝜃, (8)

with 𝛥ℎ representing the error in the height prediction and 𝜃 as the
ooking angle.

A well-known problem of monocular depth estimation is that the
odel is trained using a 2-dimensional loss function, i.e. on the depth
aps. Converting these depth maps to points in 3D space can result

n very different accuracies. A small deviation in depth around edges
eads to dispersed points floating around in the air. This would not
appen if the model had the opportunity to train directly in 3D space,
ut this is computationally very expensive and till now oftentimes not
ossible. Pınar Örnek et al. (2022) did an extensive investigation on
his problem. The model used here also suffers from this shortcoming.
n our case, we do not estimate depth maps but height maps in slant
ange, which is a 2-dimensional representation of the 3-dimensional
orld, too. As a U-Net, the model struggles to generate clear edges
n the height map when the input image shows blurry edges as well
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Fig. 8. The impact of an inaccurate height prediction, denoted as 𝛥ℎ, on the
displacement in the range direction 𝛥𝑙 of a target in world space is dependent on
the viewing angle 𝜃. When the height (for instance of a building) is overestimated, the
projected point target will move farther away from the sensor in the georeferenced
point cloud; conversely, if it is underestimated, the target will approach the sensor.
This shift is happening in range direction upon the range circle (here approximated by
its tangent).

due to speckle effect and limited spatial resolution. It is in its nature
to stay on the safe side in such cases and to generate a blurred edge,
with which it achieved a better loss in training. In slant range this is no
further disturbance, but after projection to ground range, washed-out
building edges lead to unsightly free floating, non-contiguous points.
And, due to the effect described above, these points do not spread only
in vertical direction around the building wall, but also in horizontal
direction (compare Fig. 9(a)). For filtering out these erroneous points,
we can take advantage of the property that the error component in the
point’s position is limited to the range direction, i.e. along the sensor’s
line of sight. Considering this aspect, the filter algorithm operates as
follows:

First, the range direction 𝛼𝑟𝑎𝑛𝑔𝑒 is determined on the ground, i.e. in
world coordinates. This can be done using two points originating from
the same image line 𝑗 but different columns with

𝛼𝑟𝑎𝑛𝑔𝑒 = arctan
( 𝑦𝑗,𝑘 − 𝑦𝑗,𝑙
𝑥𝑗,𝑘 − 𝑥𝑗,𝑙

)

. (9)

In addition, the three-dimensional point cloud is thinned and reduced
to the two spatial dimensions (x and y) to speed up the subsequent
filtering operations and thus make the process more efficient. The
thinning sieves out all those points that are not far enough from their
neighboring points in their 2-dimensional position using a specified
threshold. For each of the remaining points, the relative direction 𝛥𝛼𝑖
between the connections to their 10 nearest neighbors and the range
direction is calculated through

𝛥𝛼𝑖 = 𝛼𝑟𝑎𝑛𝑔𝑒 − 𝛼𝑖, (10)

with 𝛼𝑖 being the directional angle for the neighbor 𝑖. The correspond-
ing distances 𝑑 from the examined point to its neighbors can then be
divided into their range and azimuth components by

𝑑𝑟𝑎𝑛𝑔𝑒 𝑖 = 𝑑𝑖 ⋅ cos
(

𝛥𝛼𝑖
)

(11)

and

𝑑𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑖 = 𝑑𝑖 ⋅ sin(𝛥𝛼𝑖). (12)

Each point is considered a valid point only if at least one of the
neighboring points meets the specified distance tolerances in both the
azimuth and range directions, i.e. any

(

𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 < 𝑡𝑜𝑙𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
)

. Other-
wise, the point is regarded as isolated and removed from the final
point cloud. In this way, the tolerances can be set differently in the
111
Fig. 9. Comparison between the raw point cloud after projection to 3D space (left) and
the filtered point cloud (without shadow filtering) (right). Blurry edges in the height
estimation lead to levitating isolated points after the conversion to ground range. They
can be seen in the blank areas of layover. The sensor captured the scene from the right
(as the direction of the layover effect suggests).

two directions, which is necessary because these mislocated points are
frequently close to each other in the azimuth direction, but far from
each other in range direction. In Fig. 9, an example view of a point
cloud before and after the filtering process can be seen. The scattered
points behind the buildings are removed in the filtered point cloud
(Fig. 9(b)).

As mentioned in Section 2.2.1, the CNN predicts height values for
every pixel, even if it contains no echoes and therefore represents radar
shadow. Because these areas were not visible to the sensor, even a
hypothetically perfect model could not make any reliable assumptions
about them. For this reason, these pixels are filtered out in the height
image and appear there as nodata values. For that purpose, the intensity
image is converted into a shadow map using a threshold: All low-
intensity pixels will be discarded from the predicted height map based
on this shadow map. By adding an acquisition from a different viewing
angle, these gaps could be filled.

2.3.4. Rasterizing the point cloud
After filtering the point cloud, only one step is left, which is rasteriz-

ing the result and thereby generating an actual DSM. In an equidistant
grid, the maximum occurring height value of all points located within
each cell is mapped. This results in a 2.5D DSM or 2.5D nDSM (knowing
the location of each pixel from the projection procedure, both values
can be projected). Small holes with a maximum size of 3 pixels are
filled by interpolation. The areas of layover and shadow lead to large
gaps without data. These can optionally be filled with values coming
from the DTM.

3. Experiments & results

In order to test and validate the SAR2Height framework described
in Section 2, a series of experiments is carried out. We compare our
adapted deep convolutional neural network architecture to the classic
U-Net baseline, investigate the influence of different geometry-related
acquisition parameters, quantify the reprojection error due to the con-
version to ground range, and finally apply the full framework to all
available data in a cross-validation manner.

3.1. Data

For training and evaluation of the model, a dataset was compiled
consisting of SAR intensity images and their relative elevation data
projected into slant range geometry. A total of 51 TerraSAR-X Level 1B
SLC images from 8 different cities were available for that purpose. The
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Fig. 10. The upper graph shows the histogram of the maximum occurring height values
per each patch in the generated dataset. The figure at the bottom, on the other hand,
shows the height distribution on a pixel-wise level throughout the dataset. The 𝑦-axis
is here in a logarithmic scale. There are way more small height values present in
the nDSMs. This represents a heavy-tailed distribution and is challenging for neural
networks.

images vary with respect to orbit direction, incidence angles, imaging
modes, i.e., High Resolution SpotLight (HS) and Staring Spotlight (ST),
and polarization, with the majority acquired horizontally–horizontally
(HH), and only a small portion in vertically–vertically (VV). For the
most part, the acquisitions were archival data. The most descriptive
parameters of the available SAR acquisitions are summarized in Ta-
ble 1. The two imaging modes differ in their azimuth resolution. In
HS mode, the antenna is steered using a squint angle to elongate
the acquisition time and thus the synthetic aperture and achieve a
resolution in azimuth of 1.1m. In ST mode, the radar antenna is pointed
at the target during the fly-by for an even longer period of time,
which reduces the azimuth resolution to about 25 cm, but also reduces
the area covered. The range resolution remains for both the same at
60 cm. Even if the pixel spacing of the model inputs is resized to 1m in
both directions, a distinct difference can still be observed. Due to the
enlarged resolution cells, the speckle effect is also more pronounced
in the HS images and fine spatial details are therefore more difficult
to perceive. The data was collected over the cities of Munich, Berlin,
Frankfurt, London, Barcelona, Vienna, Melbourne, and St. Louis. The
different scenes from the same cities overlap spatially but differ in their
recording geometry and/or spatial resolution.

The primary constraint for deep learning-based single-image height
reconstruction approaches pertains not so much to the availability of
satellite data, but to the accessibility of high-resolution urban elevation
data, which is required to provide the supervisory target signal. How-
ever, more and more governmental geospatial data providers, mostly
land surveying agencies, subscribe to an open data policy, which makes
it easier to collect the needed training data even if these data are still
very heterogeneous between different governmental districts and thus
need to be preprocessed regarding their format and height systems. In
addition, if no DTM is available, a terrain model must be generated
from the surface model, since this is required to determine the nDSM
containing only relative heights above ground. This can be done by
removing buildings and vegetation from the surface model and then
interpolating the gaps.

Fig. 10 shows both the distribution of height values in the entire
data set per pixel (bottom, note the logarithmic scaling of the y-axis)
and the distribution of the maximum height values occurring per patch
(top). It can be seen that there is a difference of several orders of
magnitude between the number of pixels with zero, pixels with heights
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of around 20m, and pixels with height values greater than 50m. To
counteract this imbalance, height-aware sampling is applied during
training (see Section 2.2.3).

3.2. Error metrics

In order to classify the performance of the model and the entire
pipeline numerically, various error metrics are used. These are kept to
a minimum since the statement usually remains the same even with a
vast number of metrics. A very simple and straightforward metric is the
Mean Absolute Error (MAE). It is used to quantify the average absolute
difference between predicted values �̂� and actual target values 𝑦. It
provides a simple and interpretable measure of the overall prediction
accuracy. The formula is given by

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|, (13)

with 𝑛 as the number of data points, 𝑦𝑖 is the actual target value for
pixel 𝑖, and �̂�𝑖 as the predicted value for pixel 𝑖.

A similar measure, but penalizing larger errors more heavily
through the square, is the Root Mean Squared Error (RMSE). It is widely
used to assess modeling errors. With the same nomenclature as above,
it is given by

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2. (14)

The Pearson Correlation Coefficient (or Pearson’s 𝑟) is a statistical
measure that quantifies the strength and direction of a linear rela-
tionship between two continuous variables. It ranges from −1 to 1,
where 1 represents a perfect positive linear relationship, −1 indicates
a perfect negative linear relationship, and 0 corresponds to no linear
relationship. It is given by

𝑟 =
∑𝑛

𝑖=1(𝑦𝑖 − 𝜇𝑦)(�̂�𝑖 − 𝜇�̂�)
√

∑𝑛
𝑖=1(𝑦𝑖 − 𝜇𝑦)2

√

∑𝑛
𝑖=1(�̂�𝑖 − 𝜇�̂�)2

, (15)

with 𝑦𝑖 and �̂�𝑖 representing the target and predicted value for pixel 𝑖
and 𝜇𝑦 and 𝜇�̂� as their corresponding mean values.

The Structural Similarity Index Measure (SSIM) is a metric used in
image processing and computer vision to quantify the perceptual sim-
ilarity between two images. It takes into account luminance, contrast,
and structure to provide a comprehensive assessment of image quality
that aligns more with human perception than traditional pixel-based
measures (like PSNR). It is determined in a local windowed fashion
(using Gaussian kernels), averaging the local results to get the final
measure. It is defined as

SSIM =
(2𝜇𝑦𝜇�̂� + 𝐶1)(2𝜎𝑦�̂� + 𝐶2)

(𝜇2
𝑦 + 𝜇2

�̂� + 𝐶1)(𝜎2𝑦 + 𝜎2𝑦�̂� + 𝐶2)
, (16)

where 𝑦 and �̂� are the predicted and target images, 𝜇𝑦 and 𝜇�̂� their
average pixel intensities, 𝜎2𝑦 and 𝜎2𝑦�̂� the corresponding variances, 𝜎𝑦�̂�
representing the covariance, and 𝐶1 and 𝐶2 as constants to stabilize
the division (Wang et al., 2004).

3.3. Ablation study for the single-image height prediction network

In order to substantiate the merits of the deep convolutional net-
work architecture proposed in this article, our SAR2Height model is
compared to a plain U-Net without any of our presented modifications.
This baseline U-Net, like introduced by Ronneberger et al. (2015), has
only been adapted so that Softmax is not used as the last activation
anymore, because that originally was designed for segmentation tasks,
and so that the number of convolutional filters per block matches
the number used in the proposed model to ensure a fair comparison
(64–1024 instead of 32–512). The two models were trained in the
exact same fashion, using the same data set including all available
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Table 1
Table with some meta parameters of the 51 individual SAR images comprising the dataset used in all the experiments. The cells are color-coded to facilitate the impression of the
distribution of individual data characteristics in the data set.
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Table 2
Comparison in the performance of an original U-Net against the here described SAR2Height architecture, once with and once without the
so-called ‘‘Parameter Injection’’ (PI). All models were trained in the same fashion on the same data set (excluding images from Berlin). The
models were applied to all acquisitions from Berlin. The mean absolute error is split up into different ‘‘height classes’’ according to the ground
truth. The difference between the models becomes larger while concentrating on tall structures. The values are computed in slant range geometry,
so that no reprojection errors distort the comparison.

Image Model MAE ↓ [m] Pearson ↑ SSIM ↑

Overall <10m 10–30m >30m

ber_312
UNet 3.71 2.64 4.38 18.38 0.74 0.84
Ours w/o PI 3.48 𝟐.𝟑𝟗 4.25 16.13 0.76 0.85
Ours 𝟑.𝟒𝟔 2.55 𝟒.𝟎𝟔 𝟏𝟓.𝟑𝟑 𝟎.𝟕𝟕 𝟎.𝟖𝟓

ber_426
UNet 4.23 3.27 4.17 19.34 0.69 0.84
Ours w/o PI 4.20 𝟐.𝟗𝟐 4.54 17.79 0.71 0.84
Ours 𝟒.𝟎𝟒 3.10 𝟒.𝟏𝟎 𝟏𝟔.𝟗𝟑 𝟎.𝟕𝟏 𝟎.𝟖𝟓

ber_432
UNet 4.12 3.18 4.37 16.59 0.73 0.83
Ours w/o PI 3.96 𝟐.𝟗𝟏 4.41 14.57 0.76 0.83
Ours 𝟑.𝟕𝟗 2.96 𝟒.𝟎𝟖 𝟏𝟑.𝟓𝟔 𝟎.𝟕𝟔 𝟎.𝟖𝟓

ber_452
UNet 3.63 3.01 3.54 17.05 0.74 0.87
Ours w/o PI 3.60 𝟐.𝟔𝟐 3.86 15.56 0.76 0.87
Ours 𝟑.𝟒𝟔 2.70 𝟑.𝟓𝟖 𝟏𝟒.𝟕𝟕 𝟎.𝟕𝟔 𝟎.𝟖𝟖

ber_553
UNet 3.85 2.91 4.34 14.81 0.76 0.83
Ours w/o PI 3.68 𝟐.𝟔𝟖 4.35 12.65 0.78 0.83
Ours 𝟑.𝟓𝟏 2.73 𝟑.𝟗𝟔 𝟏𝟐.𝟎𝟔 𝟎.𝟕𝟗 𝟎.𝟖𝟓

ber_609
UNet 3.34 2.72 3.48 13.66 0.82 0.81
Ours w/o PI 3.18 𝟐.𝟒𝟎 3.58 11.52 0.84 0.82
Ours 𝟑.𝟏𝟑 2.55 𝟑.𝟑𝟒 𝟏𝟏.𝟎𝟏 𝟎.𝟖𝟒 𝟎.𝟖𝟐

ber_612
UNet 3.32 2.66 3.55 13.07 0.82 0.77
Ours w/o PI 3.13 𝟐.𝟑𝟒 3.59 10.64 0.85 0.78
Ours 𝟑.𝟏𝟎 2.48 𝟑.𝟒𝟏 𝟏𝟎.𝟑𝟕 𝟎.𝟖𝟓 𝟎.𝟕𝟖
cities except Berlin. Table 2 shows the error scores achieved for the
baseline, the SAR2Height model with and without using the parameter
injection on all of the remaining SAR images covering different areas
in Berlin. The results are shown for all of the available Berlin images.
The method presented here performed better than the baseline in
every category. However, looking only at the partly small numerical
increases in performance scores averaged over the entire scene, the
cost-benefit ratio of the increased complexity of the SAR2Height model
could be questioned. The usefulness of the added modules is revealed
more explicitly in a visual comparison. Fig. 11 shows this compari-
son as a side-by-side examination of the baseline’s and the complete
SAR2Height model’s outputs against ground truth. Tall buildings in par-
ticular seem to benefit from the new architecture. To reflect this in the
error metrics as well, the mean absolute error was not only calculated
over the entire scenes but was divided into ‘‘height classes’’ according
to the pixel’s height values. The height classes, or height ranges, are
determined via the ground truth data. Only those pixels that belong
to the corresponding height class in the ground truth are subsequently
used for the error determination. The classes used were pixels with
height values below 10m, between 10 and 30m, and everything above
30m in height. Buildings taller than 30m are considered high-rise and
represent an extraordinary challenge for the models. This is where the
difference to the baseline also becomes larger in the achieved MAE. It
seems as if it is particularly these special cases that are covered by the
increased complexity in the SAR2Height model.

To highlight the influence of the Parameter Injection Blocks (PI-
Blocks), an exceptional example is shown in Fig. 12. It shows the
outputs of the models once with and once without the use of the looking
angle as an auxiliary quantity within the PI-Blocks in comparison to
the ground truth in slant range. The largely free-standing skyscraper
was estimated to be far too high without using the PI-blocks, as
demonstrated by the elevation profile shown in Fig. 12(e). Although
the numerical error metrics do not suggest a large difference, the use
of the looking angle can have a significant effect on the quality of the
height estimate in individual cases. However, not every building shows
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such a strong and significant effect. Numerous buildings are estimated
correctly even without the PI-Blocks, regardless of the geometry of the
image. Thus, there must be viewpoint-invariant features that allow the
model to infer height, such as the number of rows of windows that can
be converted to stories and thus a height.

3.4. Reprojection error

As mentioned in Section 2.3.2 and as shown in Fig. 8, an inac-
curately estimated height in slant range affects not only the height
component (𝑧) of the result after projection in ground range but also its
position (𝑥 and 𝑦). The shift here takes place mainly in range direction,
which of course does not have to correspond exactly to an axis of a
(projective) coordinate system like UTM. To quantify this effect, the
SAR2Height method was applied to a SAR acquisition showing an area
in Berlin. The model used for this purpose was trained, like before, on
the remaining cities exclusively. Table 3 shows the mean absolute error
between the predictions and the ground truth in three different phases
of the system, namely after the effective height estimation in slant
range (𝐌𝐀𝐄𝑠𝑙𝑎𝑛𝑡 𝑟𝑎𝑛𝑔𝑒), after the conversion of these estimates into a
georeferenced point cloud in the UTM system (𝐌𝐀𝐄𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑), and yet in
the final grid in UTM (i.e. the nDSM in ground range, 𝐌𝐀𝐄𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒).
In the 3-dimensional point cloud, it is possible to decompose the error
into its components 𝑥, 𝑦, and 𝑧, because, for each pixel of the SAR
image, not only the relative height from the ground truth is known,
but also its 3-dimensional position in space. So, after the projection
to UTM, an error vector per pixel can be determined, which in turn
is decomposed into its components. The height dimension 𝑧 can be
further distinguished into absolute 𝑧𝑎𝑏𝑠 and relative heights 𝑧𝑟𝑒𝑙. The
relative heights are those above ground, which are also estimated by
the model. By the projection to ground range and through the external
DTM, however, the absolute height for each pixel is known as well.
This absolute height additionally contains the error of the used DTM.
The values were calculated for a complete scene (not tile by tile)
and averaged. It should be noted, that the point cloud was filtered as
described in Section 2.3.3. The error metrics are thus already adjusted

for shadow pixels and obvious faulty reprojected targets. It can be seen
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Table 3
Error evaluation in different stages of the method: after the height estimation in slant range (MAE𝑠𝑙𝑎𝑛𝑡 𝑟𝑎𝑛𝑔𝑒), after the georeferencing to UTM as
a point cloud (MAE𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 ) and after the rasterization of the point cloud to a nDSM in ground range (MAE𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒). In the point cloud, the
error was separated into its 3 components along the axes of the coordinate system. The same scene was projected to ground range using two
DTMs of different resolutions and accuracies.
Image DTM for reprojection MAE𝑠𝑙𝑎𝑛𝑡 𝑟𝑎𝑛𝑔𝑒 [m] MAE𝑝𝑜𝑖𝑛𝑡 𝑐𝑙𝑜𝑢𝑑 [m] MAE𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒 [m]

norm 𝑥 𝑦 𝑧𝑎𝑏𝑠 𝑧𝑟𝑒𝑙 DSM nDSM

ber_609 WorldDEM™ DTMlite 3.13 8.42 5.84 1.34 4.38 3.19 6.52 5.08
ber_609 HighRes LiDAR DTM 3.13 6.35 4.28 0.97 3.19 3.20 4.53 4.53

ber_312 WorldDEM™ DTMlite 3.46 8.73 5.54 0.79 5.04 3.57 6.54 4.74
Fig. 11. Qualitative comparison between the outputs of different models. The top
figure shows the normalized height values projected into the slant range geometry
of the SAR acquisition in question. In the middle row, the output of the original U-Net
can be seen. The figure at the bottom is our model’s output. The two models were
trained the exact same way for an equal number of epochs on the same training set.
It can be seen that, despite the similar-looking numerical error metrics, the differences
are clearly visible, especially for taller structures.

that the final error after rasterization is a mixture primarily of the
error in the 𝑥 and 𝑧-directions. The 𝑥-direction (west-east) corresponds
for TerraSAR-X approximately to the range direction through its polar
orbit.

This also includes the error introduced by the use of the coarse-
resolution terrain model. A terrain model in urban space always rep-
resents an artificial product derived algorithmically, which is subject
to uncertainties. If a higher resolution DTM were available for the city
in question, this could be used and thus reduce the final error budget.
For a comparison of the impact of this effect on the results in ground
range, the scene from Berlin was also projected to ground range with
a high-resolution DTM from a LiDAR campaign (grid size of 1m). The
results are shown in Table 3 as well. As can be seen, the accuracy of the
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Fig. 12. Comparison between the outputs of the model once with and once without
using the Parameter Injection Blocks (PI-Blocks) in slant range. The corresponding
ground truth can be seen in the upper right. The elevation profile at the bottom shows
the intersection right through a reconstructed skyscraper (A to B). The model without
the PI-Blocks overestimated the height of the shown building heavily.

relative height 𝑧𝑟𝑒𝑙 remains approximately the same, these values are
not affected by the reprojection. The absolute height, on the other hand,
depends on the DTM used, and with it, the displacement of the pixels
in range direction (approximately 𝑥) changes too. The error introduced
by the terrain model can be directly quantified by comparing the MAEs
in DSM and nDSM in ground range. While these remain the same using
the precise DTM, the mean error in the estimated DSM is almost 1.5m
larger than in the nDSM when the lower-resolution terrain model was
used for the projection. Fig. 13 shows a visual comparison between the
two generated DSMs. The error maps (13(b) and 13(d)) quantify the
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Fig. 13. Comparison between the estimated DSMs using a low- and high-resolution
DTM for reprojection. The low-resolution version (top row) leads to larger errors (see
error maps on the right) because of the errors present in the DTM and the consequential
shift of elevated pixels in range direction after the projection to ground range.

difference between the estimated DSMs and ground truth from LiDAR.
In a pixel-wise comparison like this, the pixel’s shift in 𝑥-direction
affects of course the error map. The edges of the buildings are visualized
as areas of high errors because they are not at their true position. This
effect is greatly reduced using the high-resolution DTM for reprojection
(Fig. 13(d)). Overall, a high-resolution DTM should thus be used if such
is available. For a globally applicable version, however, there is so far
no higher-resolution alternative of better accuracy. This is the reason
why all experiments shown here were done with the WorldDEM™ DTM-
lite, even if higher resolution alternatives would have been at hand. The
table also shows that different scenes result in different final achievable
accuracies, even if the error in 𝑧 is similar in the point cloud. This is
due to the different acquisition geometries of the images and will be
discussed in the next section.

3.5. Evaluation across different acquisition settings

The goal of the SAR2Height framework is to be as generically
applicable as possible and therefore produce comparable (n)DSMs,
regardless of the geometric setting of the image, i.e. orbit and angle
independent. Fig. 14 compares two SAR images of the same area but
taken from different orbits at different angles. The orthometric nDSMs
in ground range (rightmost column) should be perfectly georeferenced
and thus comparable. However, the accuracies to be achieved do
depend on the acquisition geometry and the imaging mode. Since the
area to be estimated has a substantial impact on the error metrics as
well, all SAR scenes used here were cropped to the same overlapping
area. This prevents, for instance, a difficult-to-estimate high rise from
being present in one image and not in the other, which would bias
the outcome. The results of this investigation can be seen in Table 4.
The mean absolute deviation has been determined both in slant range
(i.e. directly after the DL model) and in ground range (after post-
processing). Refer to the middle and right columns in Fig. 14 for a
visual comparison between slant and ground range.

As in Section 3.3, the error was separated into different intervals.
While the errors in slant range (overall) seem to be quite comparable,
these changes in ground range and clear differences appear. Smaller
incidence angles, corresponding to a steeper acquisition setting, lead
to a stronger effect of the projection error from slant to ground range
(see Section 2.3.2 and Fig. 8). This effect emerges clearly from the
experiment. The image with the smallest incidence angle (ber_426)
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yields the largest error in ground range. However, this is not the
only explanation for the reduced reconstruction capability. A steeper
acquisition geometry yields longer layovers (see Fig. 4), which thus
overlap more. Road ditches are also difficult to distinguish as a result.
Separating these layovers from each other and correctly assigning them
to only the tallest building is a challenge for the model. Even if the
numerical error values, at least in the slant range, do not suggest
any major differences between the various scenes, the results obtained
using images with larger incidence angles are clearly preferable from
a purely qualitative or visual point of view. Fig. 15 shows such a
comparison. The model outputs in slant range of two different images,
one steep (ber_426) and one flat (ber_312), are compared. The
one with the larger incidence angle leads to much clearer and sharper
edges, less misclassification, and overall a better fit to ground truth.
Thus, in application, incidence angles in the mid to high range are
preferable. It should be kept in mind that with a larger incidence angle,
the shadow areas also grow. Even if this has a detrimental effect on
the completeness of the resulting DSMs, the advantages of the reduced
layover and the associated smaller influence of the reprojection errors
discussed above still outweigh the disadvantages.

In contrast, the reduced resolution of the High Resolution SpotLight
(HS) acquisitions compared to the Staring SpotLight (ST) images did
not significantly degrade the results. However, the choice of orbit
(ascending or descending) plays a further role in the result. Since the
roof surface of a building always merges with the echo of the facade
in the layover, the edge of the building further away from the sensor
can be better identified in the SAR image than the edge closer to the
sensor. Consequently, this edge is localized more precisely in the final
DSM. Another circumstance to be considered is that a building perfectly
estimated in relative height will appear in a different position in an
ascending and descending image (with constant viewing direction) in
ground range, if the DTM used for the projection presents an inaccuracy
since this will affect the two images in exactly the opposite way (e.g. the
pixels will be shifted towards the sensors, but they were looking at the
scene from different directions).

3.6. n-Fold cross-validation

To validate the model’s performance also across different test sites,
cross-validation is performed with all the data available. The split
between train and test set is done very strictly, namely city-wise.
This means that the city on which testing is performed is completely
excluded from the training. This test set also has no effect on the
choice of the checkpoint of the model weights. For all results shown
here, a fixed number of epochs was trained, regardless of the fact that
there may have been a more optimal point in time during the training.
This is to create a real-world scenario in which the previously trained
model is applied to an unseen scene. So, eight different models were
trained here, each with the data from the city being tested excluded
from the train set. Training on images coming from the same city
would obviously improve the performance of the method in this city
drastically. Fig. 16 shows the MAE, RMSE, and median of the prediction
error of the ground range nDSMs for all of the 51 SAR acquisitions
as a bar chart. The dashed horizontal lines indicate the corresponding
average value over all the scenes coming from one city. It can be seen
that the achievable error depends not only on the acquisition geometry
of the SAR image in question but also on the area covered and the
nature and arrangement of its objects. A very densely built-up inner
city with high-rise buildings like Melbourne’s leads to increased error
values. Not only is the task more difficult due to the heavy overlapping
of the different layovers, but the absolute error budget is also much
larger for high-rise buildings. A city like Munich with primarily low-
to mid-rise buildings and wide streets is easier to reconstruct, which is
also reflected by the error metrics.

Fig. 17 shows exemplarily two reconstructed nDSMs, compared to
the given ground truth from LiDAR. The area in Barcelona 17(a) is
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Fig. 14. To see are two SAR images showing the same scene from different orbits with their corresponding height estimation in slant range (middle column) and the final nDSMs
in ground range after reprojection. The pixels containing no data were set to zero for better visualization.
Table 4
Comparison in MAE of all available SAR scenes from Berlin. The relationship between error in slant and ground range highly depends on the
looking/incidence angle of the acquisition in question. All the images were cropped to the same area to create a fair comparison.
Image Mode Inc. Angle MAE𝑠𝑙𝑎𝑛𝑡 𝑟𝑎𝑛𝑔𝑒 [m] MAE𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑎𝑛𝑔𝑒 [m]

Overall <10m 10–30m >30m Overall <10m 10–30m >30m

ber_426 ST 22◦ 3.70 3.47 3.61 11.55 8.36 11.31 4.24 8.95
ber_452 ST 30◦ 3.06 2.54 3.29 8.11 5.97 7.93 3.59 6.36
ber_609 ST 36◦ 2.81 2.45 2.96 8.21 5.19 6.94 3.28 6.40
ber_612 ST 36◦ 2.87 2.48 3.04 8.28 5.14 6.81 3.36 6.56
ber_312 ST 41◦ 3.08 2.32 3.62 9.42 4.29 4.90 3.51 8.61
ber_432 HS 30◦ 3.60 3.02 3.84 9.45 6.03 7.46 4.12 8.98
ber_553 HS 36◦ 3.32 2.76 3.62 8.96 5.43 6.65 3.90 8.20
reconstructed very well. Most of the buildings are around 30m high
and they are clearly distinguishable from each other in the SAR image.
However, the building outlines are mostly too narrow, as it is difficult
for the model to delineate the roof area from the rest of the facade.
The areas of the non-reconstructed roof surfaces do in fact not include
any values but were set to zero here for better visualization. Fig. 17(b)
shows the area around the financial district in Frankfurt, consisting
of a series of skyscrapers built closely together. When reconstructing
this type of urban design, the method reaches its limits. High-rise
buildings are partially recognized as such, but the height is no longer
very reliable. In Fig. 18, absolute DSMs are shown for two areas, namely
Berlin 18(a) and Munich 18(b), which contain the elevation of the
terrain as well. As a product of the estimated reprojected nDSM and the
coarse-resolution DTM, the influence of the DTM can be seen. It appears
smoother and more washed out than its LiDAR-derived counterpart.
Using a higher-resolution terrain model would eliminate this effect.

4. Discussion

From the results in the previous section, some key insights can be
drawn:
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• While even an ordinary U-Net is able to derive the heights of
most buildings quite accurately, the adapted network architecture
presented in this paper, using the looking angle for a parameter
injection, is particularly beneficial for unusually tall buildings.

• SAR images with larger incidence angles tend to yield more
accurate height estimates both in slant and ground range: in
slant range due to reduced layover effects and clearer building
separation and in ground range because of the reduced impact
of a wrong height estimation and/or an error in the DTM on the
resulting projected DSM.

• As higher incidence angles reduce the length of the layover
effects, the maximum building height that can be mapped under
very oblique viewing directions (i.e. higher incidence angles) is
higher. This is another reason why high incidence angles are
advantageous for the type of height mapping presented here.

• However, larger incidence angles cause enlarged radar shadow.
This leads to more occluded areas and thus nodata pixels in the
DSM. These gaps could be filled using another acquisition from a
different aspect, using a data fusion approach.

• The reprojection error depends on the accuracy of the height
estimates on the one hand and on the quality of the DTM on
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Fig. 15. Comparison between the model outputs from an image with a large incidence
angle (top), and a small incidence angle (bottom). The more shallow acquisition
geometry (top) leads to sharper edges and a better reconstruction capability.

the other. Due to the oblique view of the system, pixels with
an incorrect height are also shifted in their position in ground
range within the process of the projection. Therefore, if a high-
resolution DTM is available for the area in question, this should
be used to achieve the best possible result. This effect is smaller
for images with a large incidence angle.

• The difference in resolution between High Resolution SpotLight
and Staring SpotLight imaging modes affects the accuracy of the
method only slightly.

• SAR data as a product of an active system, in contrast to optical
images, represents a very controlled commodity that allows a DL
model to generalize quite easily. Even though the data set used
here consists of only eight areas and also has a clear bias towards
westernized cities, the model already generalizes surprisingly
well. In our opinion, expanding the data set would provide a
further enormous boost in performance.

• Cross-validation experiments demonstrated the method’s adapt-
ability across various urban environments, with achievable ac-
curacy influenced by city characteristics, building density, and
object arrangement. In very densely built-up cities consisting of
many skyscrapers, the method reaches its limits. In the intensity
image, the facades of the individual buildings are too strongly
mixed to reliably assign them to the respective objects. Compare
the SAR image in Fig. 19(a) with the corresponding height im-
age in 19(b). Even knowing the ground truth, it is difficult to
recognize the facades.

• As can be concluded from the results, unusually large and/or
unusually shaped buildings tend to cause larger errors. This is
most likely due to the fact that they rarely occur in the training
data set. The same holds for forested or heavily vegetated areas.
The model has learned the concept of forest exclusively from
urban parks, which represent only a small proportion of the data
set compared to built-up areas. Closed canopies in particular
represent a limiting factor, as they allow no or only very limited
evaluation of layover effects.

• Especially the edges of buildings often look a bit fuzzy and wobbly
in the reprojected DSM after filtering. Here, smart learned post-
processing filters could be added to correct these deficiencies, as
found in Stucker and Schindler (2022) or Bittner et al. (2018).
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• The provision of height estimates, even in slant range, signifi-
cantly enhances the interpretability of synthetic aperture radar
(SAR) scenes, particularly for users lacking specialized training.
Refer to Figs. 14(a) and 14(b), and 14(d) and 14(e) for com-
parison. While discerning objects within SAR images typically
necessitates the expertise of seasoned users, the height image,
even in the hands of a non-expert, offers readily comprehensible
insights.

Furthermore, the achieved absolute accuracy of the method remains
to be assessed. It is important not to be misled by the numerical values
of the error metrics: On the one hand, the SAR recordings and ground
truth data are not temporally aligned. This means that newly built or
already demolished buildings are included in the ground truth, but not
in the SAR image. This artificially raises the error metrics. Furthermore,
there are certain characteristics of buildings that make them almost
invisible to a SAR sensor. Figs. 19(c) and 19(d) show an example
of such a case. The Diagonal ZeroZero skyscraper in Barcelona has
a glass facade without any horizontal struts. In the SAR image, only
the roof surface can be made out, but no facade. Single-image height
estimation from SAR imagery understandably reaches its limits here,
since the input data does not include the necessary information. From
the literature on optical single image height estimation, lower achieved
RMSE values are known. This is very likely due to the fact that no
reprojection errors further influence the predictions of the models when
using orthophotos as input and also due to the sharper edges of optical
images compared to the noise-rich SAR data. Not least, the datasets
used also affect the model’s performance. These datasets are mostly
very small-scale and of rather rural character, like the ISPRS dataset of
Vaihingen, a small German village mostly consisting of free-standing
single-family homes, which is easier to reconstruct than metropolises.
Additionally, the frequently found random split between train and
test set artificially drives up the performance scores compared to a
truly unseen scene since the distributions of train and test data match
strongly.

In summary, our results show that our SAR2Height framework can
provide a viable alternative to conventional 3D reconstruction methods.
While LiDAR scanning or optical stereo certainly provide the best accu-
racies, they are relatively complicated, time-consuming, and expensive,
not least due to their dependency on favorable weather conditions.
In the SAR realm, classic InSAR comes to a limit in urban areas due
to phase mixtures in the layover areas, while TomoSAR requires very
large stacks of coherent images which makes it most time-consuming
and expensive. Thus, especially when speed is critical and accuracy is
less important, single-image-based height reconstruction from SAR will
shine and can no longer be ignored.

5. Summary and conclusion

In this paper, the SAR2Height framework was described that allows
to derive a georeferenced digital surface model in an orthometric
projective coordinate system of urban areas from a single SAR intensity
image. For this purpose, a new convolutional neural network architec-
ture based on the well-known U-Net was proposed, which incorporates
sensor knowledge. SAR-specific pre- and postprocessing methods were
introduced which make the framework operational. Using it, seamless
digital surface models can be generated. The dataset comprises over
50 images from 8 different cities. The method was extensively tested,
examined for shortcomings, and its performance was put into perspec-
tive. It was shown that the model is able to generalize well to unseen
areas and to reconstruct cities with reasonable accuracy. Too dense
arrangements of skyscrapers represent a limitation since individual
layovers can no longer be divided in the intensity data. The method
has the unique ability to derive the geometry of an urban area from
just one acquisition independent of light and weather, adding immense
value to time-critical applications.
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Fig. 16. Error metrics for all available SAR images in the data set. Shown are the individual RMSE, MAE, and the median of the pixel-wise errors of the scenes in question. The
dashed lines represent the respective mean over all scenes in a city. It can be seen that the achievable accuracy of the method is highly dependent on the area being estimated.
A city like Melbourne, with numerous skyscrapers built close together, increases the error significantly.

Fig. 17. Two generated normalized surface models (nDSMs) for Barcelona (left) and Frankfurt (right) with their corresponding ground truth from LiDAR. While Barcelona can be
reconstructed very well, the method reaches its limits with the skyscrapers in Frankfurt. The individual buildings can no longer be accurately mapped. Pixels with no data are
filled with a height value of zero for the purpose of better visualization.

Fig. 18. Two generated Surface Models (DSMs) for Berlin (left) and Munich (right) with their corresponding ground truth from LiDAR. The smoother or more washed-out character
of the estimation is due to the coarse-resolution DTM underneath. The height values represent absolute measures above a reference ellipsoid. Pixels with no data are filled with
values from the DTM.
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Fig. 19. Two example pairs of SAR image and ground truth height image to showcase
the limitations of the method. The top row shows an area of Melbourne’s inner city,
consisting of densely-built skyscrapers. The layovers are too mixed to separate them
reliably. The bottom row shows a skyscraper in Barcelona, the Diagonal ZeroZero. Due
to its glass facade without any horizontal struts, it is basically invisible to the SAR
sensor (the roof surface can be seen by an experienced observer).
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