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Abstract: This study explored the potential for enhancing pilot performance via an alerting system that adapts according to an eye-tracking-
based measure of monitoring. The novel measure combines gaze analysis with system state assessment to estimate the pilot’s understanding
of the current system state. On this basis, an alerting system was developed to direct pilot attention to unnoticed system state changes,
thereby improving system state monitoring. In a flight simulator study involving 10 participants in a generic jet cockpit, we compared the
adaptive alerting system with a no-assistance condition. Although alerting improved the participants’ performance in two tracking tasks, it
adversely impacted performance in a third task. Nonetheless, alerting resulted in a decrease in both variance and mean detection time of
critical changes. Participants’ subjective ratings were generally positive, yet they criticized the lack of transparency of the alerting mechanism.
Alerts triggered based on eye-tracking and system state show potential for improving operator task performance. Nonetheless, for the system
to reach its full performance potential, it is critical that the operator understand the principles underlying the alert triggers. False positives and
alert design were identified as key areas for improvement to maintain user trust and task flow.
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Human error remains a significant contributor to accidents
across various domains, such as driving and aviation (Kelly
& Efthymiou, 2019; National Highway Traffic Safety
Administration, 2018). In aviation, the loss of situation
awareness (SA) has been identified as the most common
factor leading to hazardous events (Kharoufah et al,
2018). Thus, an essential task for operators is to efficiently
monitor the dynamic states of systems, continuously com-
paring their expectations with the displayed information.
Failure to monitor relevant aspects of the work environ-
ment can lead to a mental picture of the situation that devi-
ates from the actual state, resulting in poor decision-making
and errors of omission (Endsley, 1995; Silva & Hansman,
2015). In civil aviation, the importance of monitoring is
reflected by the role of the pilot non-flying, who is respon-
sible for ensuring safe operation by monitoring the state of
the aircraft while the pilot flying is engaged in flying. To
increase safety, cockpit procedures and pilot training
require different types of monitoring activities such as pas-
sive, active, periodic, and mutual monitoring (Civil Aviation
Authority, 2013; Federal Aviation Administration, 2017).
Alerting systems adaptive to monitoring behavior could
enhance safety by detecting poor monitoring performance
and providing timely notifications to the operator regarding
crucial system statuses (Feigh et al., 2012; Rouse, 1988).
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This approach requires an objective measure of monitoring
performance that is used to trigger alerts in the cockpit.
Currently, there are not many studies that developed and
investigated such adaptive systems in closed-loop studies.
Before stating the goal of this study, we review the few
studies known to the authors. Bosse et al. (2009) proposed
a model that utilizes gaze measurement and display fea-
tures to estimate operator attention. They adjusted the sal-
iency of task-relevant objects on a map display according to
the mismatch between actual and desired attention, which
led to a significant improvement in task performance. Sim-
ilarly, Fortmann and Mengeringhausen (2014) developed
an eye-tracking-based adaptive interface for an unmanned
aerial vehicle (UAV) monitoring task. They adapted the sal-
iency of key objects on the tactical map based on a measure
of SA, resulting in faster detection of UAV malfunctions and
intruders. Schwarz and Fuchs (2017) used a combination of
physiological, behavioral, and performance measures to
identify critical operator states, which triggered different
adaption strategies for their task environment. Compared
to workload- and performance-based adaption, SA-based
adaption prevented performance decrements by guiding
the operator’s attention to the most relevant parts of
the task environment. Lounis et al. (2020) developed an
eye-tracking-based support system for a real aircraft
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cockpit. By comparing pilot dwell times on various cockpit
indicators with a standard gaze behavior database, they
detected poor monitoring and issued a vocal alert. Even
though this system managed to redirect attention to critical
flight instruments, it did not result in performance improve-
ments and was subjectively rated poorly due to false
alarms. The authors suggested that integrating flight
parameters could enhance the system’s usability.

These studies show the effective use of gaze-based mea-
sures in adaptive systems. However, it is crucial to include
both gaze and system states to pinpoint the right situations
for intervention. Currently, there is no generic measure of
good monitoring performance applicable to various task
environments, and most studies have not incorporated sys-
tem state into their measure. Therefore, our research aims
to contribute in two ways:

We aim to define a monitoring measure that combines
eye-tracking and system state, applicable across different
task contexts.

We aim to employ this new measure to trigger alerts in
an aircraft cockpit that will enhance pilot monitoring perfor-
mance in a representative task setting.

Measurement of Monitoring Performance

Various metrics exist that measure monitoring by capturing
the temporal, spatial, and sequential dynamics of gaze
behavior (Peifdl et al., 2018; Ziv, 2016). These are typically
linked to task-relevant areas in the workplace, known as
“areas of interest” (Aol), such as fixation duration on a
specific display. Through these metrics, studies found dif-
ferences between novice and expert aircraft pilots and iden-
tified poor monitoring as a cause for automation surprises
(Lounis et al., 2021; Sarter et al., 2007).

Measures of SA - which is often linked to monitoring -
involve asking contextual information from participants at
specific experiment times. The most popular methods, such
as freeze-probes, online probes, or posttrial questionnaires,
are not suitable for real-time measurement (Salmon et al.,
2009; Zhang et al., 2020). Thus, there are studies that used
eye-tracking-based implicit measures to infer SA during
operation, as monitoring is a crucial activity for data gather-
ing. For example, Moore and Gugerty (2010) showed in an
early study that the time spent fixating on relevant Aol pre-
dicted SA scores in an air traffic control task, provided that
fixations were optimally distributed. Excessive focus on one
Aol degraded the overall situational picture, a finding repli-
cated in other domains (Hasanzadeh et al., 2018; van de
Merwe et al., 2012). Winter et al. (2019) later revealed a
correlation between viewing behavior, task state, dynamics,
and performance. They found performance strongly linked
to correct sampling timing, defined by the current state of a

Aviation Psychology and Applied Human Factors

moving dial, and concluded that integrating system state
into eye-tracking-based online SA measurements could be
beneficial.

On the basis of these findings, we introduce a measure
called “awareness deviation”. This measure describes
how well the operator is aware of a system state by compar-
ing fixated values with the current system state. We then
show how this measure can help in setting off alerts in an
aircraft cockpit.

Awareness Deviation as a Measure of
Monitoring Performance

Our goal is to design a system that estimates a pilot’s
awareness of the aircraft status, steering their attention to
crucial details when their knowledge of the system state
deviates from the ground truth. This system should tell
the difference between various state details (e.g., altitude
or position), and the awareness attached to each one. To
achieve this, we introduce the concept of awareness devia-
tion (AD), which can also be interpreted as a measure of
the perceptual level of SA (Level 1) by quantifying the dif-
ference between the current state value and what the sys-
tem assumes is the pilot’s last perception of each state
(Endsley & Jones, 2012). The metric AD was first intro-
duced and tested by the authors in two previous studies
(Schwerd & Schulte, 2020, 2021), on the basis of which this
follow-up study was developed. With this AD measure, we
can alert the pilot and direct their attention to any unno-
ticed changes in the system state. Figure 1 gives a full pic-
ture of the adaptive mechanism, which includes two inputs
(system state and eye-tracking measurement) and pro-
duces a specific alert for the pilot. We break down the five
modules of the process in more detail in the sections that
follow.

Fixation Filter

A conventional eye-tracking system provides gaze positions
in the cockpit. All gaze samples are filtered for fixations in
the fixation filter (see Figure 1, Part 1). For the sake of sim-
plicity, we assume that the pilot perceives every piece of
information when he fixates the display of the information
within a margin of 2° on a cockpit indicator. From a fixa-
tion, we infer the Aol and extract the value displayed at
the time of measurement. Note that with our assumption
based on the eye-mind hypothesis (Just & Carpenter,
1980), we accept false-positive measurements, where a fix-
ation and perception of information do not align (e.g., a
“blank stare” into the void). A more detailed analysis of this
problem is given by Schwerd and Schulte (2022).
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Figure 1. Data flow of awareness deviation measurement for specific information.

Pilot Awareness and System State

Given the eye-tracking measurements, the pilot awareness
module holds a set of elements describing the state of the
system the pilot is aware of (see Figure 1, Part 2). Each ele-
ment of this set is a system state associated with the dis-
played value at the most recent fixation (e.g., “altitude:
10,300 ft”). Similarly, a system state is generated containing
all system states associated with the actual value at the cur-
rent time (see Figure 1, Part 3). The system state is contin-
uously updated with current system state values.

Awareness Deviation Computation

In the awareness deviation computation, we compute the dif-
ference between system state and pilot awareness (see Fig-
ure 1, Part 4). This difference is computed on each state on
the display separately, which creates a deviation value for
every state. Since system states are usually encoded by dif-
ferent types, such as modes (e.g., automation modes), texts
(e.g., warnings), times (e.g., waypoint timing), or positions
(e.g., map information), we defined a function dist(c;, ¢J
for different types in order to compute the difference
between pilot value ¢, and system values ¢, respectively
(see Table Al in the Appendix).

We then adjust dist(cp, ¢;) by a normalizing constant ¢, to
quantify when a deviation is significant enough to be con-
sidered a substantial distance. A substantial distance is later
used as a threshold for triggering alerts. For a given system
state such as aircraft altitude, the constant ¢, is not univer-
sal - it varies based on the task, as different tasks have dif-
ferent accuracy requirements. For example, awareness of
flight altitude needs to be more precise during landing
and take-off than in transit situations in high flight levels.

As a final processing step to compute the awareness
deviation AD(c, ¢;), we apply an exponential function to
normalize the value between O and 1:

|d13t|cpcs||

AD (Cp} Cs) =1l-¢ ‘o ' (1)

where ¢, is the value in the pilot’s awareness, ¢ is the sys-
tem value, and ¢,, is the normalizing value. The function has
the following attributes: (1) for dist(c;, ¢) = O, the deviation
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AD is 0. (2) With growing dist(cy, ¢s), AD grows rapidly until
the difference reaches the normalizing constant ¢, after
which AD converges to 1.0 for dist(c,, ¢;) — oo. We chose
this system dynamic since it has advantages in statistical
processing because deviations greater than what is consid-
ered large in the task context (defined by ¢,) are not over-
weighted. Apart from the processing reason, the rationale
behind the exponential formula is that at a certain distance
between the pilot and system value, it does not matter if the
difference grows even further.

Figure 2 shows an exemplary course of the AD for air-
craft speed. In this example, we chose a normalizing con-
stant of ¢, = 30 kt.

Initially, the speed is at 300 kt (indicated by the system
value) and the pilot is aware of this value (indicated by the
pilot value), and therefore the distance and AD are zero.
When the speed changes, the distance between the pilot
and system value increases. Accordingly, the AD increases
within its normalized limits. Following our assumptions, the
pilot’s fixation within a margin of 2° on the speed indicator
updates their knowledge about a speed of 400 kt. When
the pilot updates their knowledge, distance and AD are
set to 0. After 3 s, the speed changes again without the
pilot’s awareness. At 22.5 s, the second fixation updates
the knowledge about a current speed of 300 kt.

Alert
The ADs for all system states are passed to the alert gener-
ation (see Figure 1, Part 5). An alert is generated when
the deviation value exceeds a limit for a predefined dura-
tion. We selected this limit to be .6, which indicates a dist
(¢, ¢5) of approximately the normalizing constant. We wait
to trigger an alert for a predefined duration to prevent pre-
mature alerts the moment after the state has changed.
Table A2 in the Appendix denotes the trigger algorithm
for a single state. For every alert, a normalizing constant
¢, and a delay time (time-until-notification) must be
selected. Note that there is no check on whether the pilot
has actually made an error before an alert is triggered.
We chose to evaluate AD-adaptive alerts independent of
the desired flight parameters because we were interested
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Figure 2. Example for course of values for system, pilot, distance function, and awareness deviation function for aircraft airspeed. There are two
fixations on the relevant area of interest (speed indicator)att =7 sand t = 22.5.

in whether it is possible to trigger useful alerts using only
the proposed monitoring performance. The rationale for
this was that in some situations it is not trivial to extract
the current performance of the pilot, for example, when
the system does not know the desired flight parameters,
and early notification of poor monitoring performance
could prevent future performance degradation. But we
acknowledge that it may be preferable to include pilot per-
formance in the alert-triggering mechanism if performance
measures are readily available to the system.

Experiment

The goal of the experiment was to evaluate the AD metric
as a suitable trigger for an alerting system. It was designed
according to the guidelines of the ethics committee of the
University of the Bundeswehr Munich. Our hypothesis
was that our metric is correlated with pilot errors, and we
assumed that triggering alerts based on AD would improve
monitoring performance compared to no assistance.

Aviation Psychology and Applied Human Factors

Setup

Trials were conducted in a cockpit simulator resembling a
generic fast-jet cockpit with three touchscreens and a
head-up display (HUD; see Figure 3). For eye-tracking, we
used the commercially available four-camera system by
SmartEye (Smart Eye Pro 0.3 MP, 60 Hz, best accuracy
< 0.5°) and the fixation classifier implemented in the soft-
ware SmartEye Pro 8.2 with a gaze angular velocity thresh-
old set to & < 2%.

Participants and Procedure

We conducted the experiment with 10 male participants
(Mage = 36.9 years + 12.5). Since alert was triggered based
on the gaze behavior of the pilot, the system should be
adaptive to different levels of experience. Therefore, we
recruited pilots with differing flight hours (between
500 hr and 29,000 hr on civil aircraft) reflecting a broad
range of expertise. The participants hold either a commer-
cial pilot license (n = 5) or a private pilot license (1 =5, at
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Figure 3. Cockpit simulation environment with integrated eye-tracking
system.

least German Glider pilot licence (SPL) including Touring
Motor Glider licence (TMG)), but had no prior experience
in using our simulator. The pilots participated voluntarily
and were not compensated in any way.

Each participant received a presentation about the exper-
iment and provided written consent about the trial. Then,
each pilot received training in the experimental task for
approximately 1 hr. During this training, they encountered
all aspects of the experimental task with equal difficulty
and frequency. Then, the eye-tracking was calibrated with
mean accuracy of 1.04° (SD,.. = 0.72°). After that, the par-
ticipants conducted two 30-min trials with equal difficulty,

first without and then with alerting. Participants were not
briefed about the alerting mechanism, but were only told
that there is an alerting system active in the second trial.
After the second trial, all participants answered a question-
naire to evaluate the assistance system.

Tasks

In both trials, the experimental task included monitoring of
continuous parameters and discrete states of the aircraft-
cockpit interface with all task-relevant Aols shown in
Figure 4.

The participants had three continuous tracking tasks
without using an autopilot: First, they had to track a route
displayed in their tactical map (see Figure 5), where
only the route leg to the next waypoint was visible (as dis-
played in the top right of Figure 4, Aol 3). After reaching a
waypoint, a new route leg appeared with an unknown
heading.

Second, the participant had to track a specified altitude
and speed, both displayed in the HUD (Figure 4, Aol 1
and 2). The target altitude and speed were changed by a
text message with a frequency of 0.1 times per minute,
which was indicated by a green light in the left screen (Fig-
ure 4, Aol 5). At unknown times, the aircraft altitude or
speed was disturbed by a simulated gust that changed the
aircraft position or speed to a value beyond the target
range. We triggered disturbances of either altitude or speed
with an average frequency of 3.5 times per minute, but
there was no disturbance of both variables at the same
time. We simulated bad visibility to minimize the influence
of spatial visual perception in the outside view (see HUD in

Figure 4. Simulator display setup with area of interest (top left: head-up display; top right: center display; bottom: side displays). Areas of interest
{Aol) marked in orange displayed the following information: (1) altitude indicator, (2) speed indicator, (3) position of aircraft and route to next
waypoint, (4) warning system (red on new waming), (5) message system (green on new message), (6) fuel system with button controls for

procedures, and (7) engine system with controls for procedure.
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Figure 4. (Continued)

Figure 4). Therefore, change of speed and altitude could
only be recognized by gazing at the displayed values.

Third, two aircraft warnings were triggered, which were
visible as red indications on the left screen (Figure 4, Area
4). Participants had to react with trained procedures to
these warnings. The procedures comprised the activation
of system modes (Figure 4, Areas 6 and 7) or a change of
thrust.

Configuration of Adaptive Mechanism

We applied the AD measurement to each of the five exper-
imental tasks: tracking route, speed, and altitude, acknowl-
edging a new message, and following a warning procedure.
Distance functions for speed and altitude were numerical
distances. For deviation in route tracking, we computed
the geometrical distance between aircraft and the nearest
route point as the system value. When a participant fixated
the Aol (see Aol 3 in Figure 4), we presumed they fully
understood the exact distance and calculate the numerical
distance. For mode-like states of a new message or warn-
ing, we used the distance function as outlined in Table Al
in the Appendix.

We used a synthesized voice for the alerts, providing the
pilot with key warnings such as “ALTITUDE” or “SPEED.”
For route, altitude, and speed, we set the normalizing con-
stants ¢, to the tracking limits describing the required
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Table 1. Constants for adaptive functions in altitude, speed, route,
message, and warning

Information Normalizing constant Delay [s]
Altitude 200 [ft] 2
Speed 30 [kt] 2
Route 3,000 [m] 3
Warning 1[-1 5
Message 1[-1 5

tracking accuracy briefed to the pilots (e.g., altitude had to
be tracked within 200 ft). For warning and message, we used
¢ = 1 because these indications are binary - it is either “there
is a new message” or “there is no new message.” Before the
experiment, we set delay values that would provide the right
balance between too-early and too-late alerts for each task.
Table 1 presents the constants ¢, and delay times for each
information relevant to the experimental task.

Figure 6 shows an example of an alert to illustrate the
behavior of the adaptive system. In this scenario taken from
the experiment, a simulated disturbance changes the speed
of the aircraft (shown in gray). The participant does not
notice this change, which leads to a rising AD in speed.
When the AD exceeds the threshold for more than 3 s, a
vocal alert is activated. In response, the pilot immediately
checks the speed indicator (see bottom graph in Figure 6:
“Fixation on Speed Indicator”), which brings the AD back
down to O.
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is not smooth, because the sample frequency of system value updates is 2.5 Hz.
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Data Analysis

Task performance for the tracking tasks was quantified as
follows: We calculated the mean error rate as the root mean
square (RMS) of the difference between the target and
actual values. If the actual value fell below the briefed
tracking limits, we set the error to 0. The tracking limits
were 200 ft for altitude, 30 kt for speed, and 2 nautical
miles (NM) for the route.

During the trial, we collected data on AD, task perfor-
mance, alerts, and gaze. We analyzed these data with
Python Pandas (Reback et al., 2021) and conducted statisti-
cal tests with Python SciPy (Virtanen et al., 2020).

We applied the Shapiro-Wilk test to check whether the
data were normally distributed. If they were, we used Pear-
son’s correlation, indicated by the variable r, and a depen-
dent ¢ test to verify the significance. If not, we used
Spearman’s rank correlation, indicated by the variable rs,
and Wilcoxon signed-rank tests. We used Levene’s test to
ensure equal variances. Correlation strength was catego-
rized as follows: weak (r < .1), medium (1 < r < .7), and
strong (r > .7). We set the significance level to p = .05.

Results

In the following we present different aspects of the results:
First, we analyze the relationship between AD and tracking
performance in the baseline condition (without alerts) and
the relationship between number of alerts and tracking per-
formance in the experimental condition (with alerts). Sec-
ond, we compare how different gaze and performance
measures changed with the presence of alerts. Third, we
present the subjective feedback of the adaptive system
given by the participants.

Relationship Between AD and
Performance

To assess our method of measuring the monitoring perfor-
mance, we compared AD with pilot performance in three
tracking tasks without alerts in a control setting, Figure 6
shows the mean error and mean AD throughout all tracking
tasks for the control condition. Figure 7 displays the mean
error and mean AD over the complete trial in all tracking
tasks for the control condition.

We found a strong correlation of r = .88 (significant, p <
.001) between the mean altitude tracking error and AD in
aircraft altitude. Speed data also demonstrated a strong
positive correlation of r = .75 (significant, p < .01) with
AD in speed. These findings align with a previous study
with different participants that experimentally validated
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operator measurement in a similar task (Schwerd &
Schulte, 2020).

The far-right plot in Figure 7 presents the mean AD and
error in route tracking. While 60% of participants did not
make any errors in this task, there was a moderate positive
correlation coefficient between AD and route error of rs =
.65, which is significant.

These data indicate a strong link between AD and track-
ing performance in speed and altitude, with a somewhat
weaker relationship in route tracking.

Relationship Between Error and Number
of Alerts

In the adaptive setting, we compared the number of acti-
vated alerts with the error rate. The results can be seen
in Figure 8. There was a strong correlation between the
number of alerts and error rate in both altitude (r = .8,
p <.01) and speed (r = .77, p < .01). These correlations sug-
gest that the AD measure is meaningful in terms of speed
and altitude tracking performance because it triggers alerts
in the event of an error without directly measuring errors.
However, these data also show that our configuration of
adaptive alerts may not prevent individual pilot errors.

As in the control condition, there is a floor effect in the
route tracking task. Some participants did not make any
errors in route tracking. However, there was a mediate cor-
relation of s = .67 (p < .04) between the number of route
alerts and the mean error in route tracking,

Interestingly, some participants triggered alerts without
making any errors in route tracking. These false alarms
occurred because the adaptive system relied solely on AD
to activate alerts, without checking whether there was a
genuine error in relation to the experimental task. This
result shows that performance can be good even if the pilot
is not monitoring a system value frequently due to estima-
tion of the system value via a mental model.

Comparison of Tracking Performance
Between Conditions

Figure 9 compares the average tracking error in both the
control and experimental conditions. Errors in tracking
speed and altitude were reduced in the adaptive condition.
For speed error, which followed a normal distribution, the
paired ¢ test marked the decrease as significant, #(9) =
553, p = .0004. The change in altitude error, however,
was not significant (ps < .084). Contrary to speed and alti-
tude, the error in route tracking increased with adaptive
alerting (not significant, ps < .11). The average performance
shown in Figure 9 reflects two aspects of task performance:
First, the participants’ ability to perform the tracking tasks
without any disruption to the aircraft altitude and speed.
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Second, their ability to promptly recognize a disturbance
and revert to the target value.

A deeper understanding of the difference between the
two conditions can be gained by examining the time it took
participants to notice an error in the aircraft state after it
had been induced.

Comparison of Detection Performance
Between Conditions

We defined detection time as the period between a change
(disturbance, new waypoint, or warning) and the moment
the participant first glanced at the relevant Aol (see
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Figure 4). Table 2 presents mean and standard deviation
values, and Figure 10 provides a letter-value box plot of
the distribution. For altitude and speed, the average time
to detect changes saw a slight decrease in the adaptive con-
dition. On the other hand, there was a nonsignificant
increase in the mean detection time for the route.

For altitude and speed, the adaptive alerting also reduced
the standard deviation. The reduction between condi-
tions was significant (altitude: p < .01, speed: p <.03). This
indicates that the adaptive system effectively detected
situations where participants failed to notice a value change
in a system state. The number of instances with extended
detection times was reduced by alerts triggered once the

Aviation Psychology and Applied Human Factors
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Table 2. Detection times for tracking tasks

Altitude detection [s]

Speed detection [s] Route detection [s]

Condition M SD M SD M SD
No alerting 0.93 1.04 1.25 1.56 1.01 1.84
Adaptive alerting 0.83 75 1.09 1.19 1.70 2.74

Note. Altitude, n = 939; speed, n = B23; route, n = 129. M = mean; SD = standard deviation.

Table 3. Detection times for message and warning

Warning detection [s]

Message detection [s]

Condition M SD M SD
No alerting 3.96 11.86 7.93 22.49
Adaptive alerting 1.23 0.94 3.18 3.45

Note. Warning, n = 20; message, n = 54. M = mean; SD = standard deviation.

AD measurement exceeded the threshold for more than the
specified time delay.

By contrast, route tracking had a different effect.
Although the median detection time dropped, the standard
deviation increased, but the change was not significant (p <
.09). It is worth noting that the median times were below
the alert trigger delay, and thus the system could not have
improved them.

Table 3 displays the average detection times for new
messages and warnings. There was a reduction in both
the mean and standard deviation in the experimental con-
dition. This effect is largely due to the outliers visible in
Figure 11, which also shows that the primary impact of
the adaptive system was to reduce variance. The number

Aviation Psychology and Applied Human Factors

of samples was limited because warnings only occurred
twice during one trial, and new messages arrived five to
six times.

Comparison of Fixation Count and
Duration on Aol Between Conditions

Fixation count and durations on Aol for both conditions are
plotted in Figure 12 and reflect the system state dynamic in
the experiment. Altitude and speed indications are fixated
the most and longest compared to Aols that are relevant to
tasks with lower demand for continuous monitoring. The
data show small changes between experimental conditions,
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most prominent in fixation count for altitude, speed, and
route and in fixation duration for fuel, route, speed, and
warning. Both metrics decreased for the route Aol, which
indicates that the alerts moved attention away from this
task, which aligns with the performance measures.

Subjective Rating

After the second trial, participants were asked to evaluate
the system through a nonstandardized questionnaire (see
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Figure 13). Overall, most participants found the alerts useful
and felt they were activated at an appropriate frequency.
They also did not feel disturbed or distracted by the alerts
during other tasks.

However, the average participant rating revealed low
levels of trust and transparency. In a debriefing following
the trial, some participants expressed confusion about
why an alert was triggered, particularly when their flight
parameters were within the desired limits. This led to a loss
of trust after a few false alerts. Another criticism was that
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auditory alerts should be reserved for critical situations, not
minor deviations in flight parameters.

Discussion

In summary, the AD measure was effective in revealing nota-
ble features about the participants’ performance, with results
from the control condition showing a correlation with pilot
errors. The alerts not only improved average performance
but also reduced variance, particularly in the “unpredictable”
tasks such as altitude tracking, which was disturbed by vir-
tual gusts. Furthermore, using AD as an adaptive trigger
was successful in generating sensible alerts in the experi-
mental condition without requiring a direct error check.
While checking for errors would be trivial for the experiment,
this is not the case in every real-world application.

Aviation Psychology and Applied Human Factors

Meutral == Disagree == Totally disagree

While the performance increase for speed and altitude
tracking was consistent, performance in route tracking
declined. Our initial explanation is that the alerts for speed
and altitude may have distracted pilots from tracking the
route. We noticed a higher number of task alerts for partic-
ipants with lower performance (see Figure 8). If this low
performance was due to high workload, additional alerts
could potentially further impair the participant’s perfor-
mance. Another possible explanation could be that pilots
rapidly lost trust in the route alert, as it was sometimes trig-
gered without an actual error (as shown in Figure 8). This
led participants to disregard the route alert.

From these results, we draw the first two conclusions
from our study: First, unpredictable shifts in system states
are more suited for adaptive alerting than predictable
changes. Hence, a predictable shift in values should involve
a longer delay before triggering an alert, as the pilot is likely
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aware of this change. Second, false positives pose a serious
issue for user trust. This must be addressed carefully when
designing such systems. A similar issue has also been
observed by Lounis et al. (2020).

Even though the performance of almost all participants
improved, their subjective feedback was mixed. We suggest
two reasons for this: Firstly, the assumptions about the direct
relationship between fixation and perception do not hold in
every situation, therefore AD was overestimated while the
pilots were already aware of the state. This led to the false
alerts, which contributed to the negative evaluation, particu-
larly in route tracking where alerts were frequently triggered
without a need. Secondly, pilots were not briefed about the
logic behind the adaptive system before the experiment,
leading to confusion when alerts were issued without clear
reason. The combination of a high number of false alerts
and a lack of transparency may be responsible for this mixed
feedback. This aligns with findings from Dorneich et al.
(2016), where aviation professionals ranked low trans-
parency and predictability of adaptive systems in the cockpit
as the main risk factors to flight safety and user acceptance.
To boost user acceptance, we recommend training partici-
pants on the adaptive system. Moreover, the design of such
systems could be enhanced by incorporating models of trans-
parency, as suggested by Chen et al. (2018).

When it comes to alert design, we found our vocal alerts
to be quite intrusive for the multitask experiment. The
audio notifications disrupted the participants’ workflow.
This kind of design might be suitable for drawing attention
to critical safety information, but it should be toned down
for less crucial data.

Generally, managing interruptions is a key aspect in design-
ing alert systems (McFarlane & Latorella, 2002). As an alter-
native, the system could have used visual alerts to emphasize
changes in parameters, similar to the approach by Fortmann
and Mengeringhausen (2014). Another option could have
been to delay alerts until the participant had finished their cur-
rent task, as suggested by Katidioti et al. (2016).

Limitations

There are limitations to the validity of the experiment. First,
the training effect was not eliminated since the sequence of
trials was “no alerting” followed by “adaptive alerting.”
This could account for the improvements in performance.
However, it is evident that the alerts influenced pilot perfor-
mance since we did not see performance increase in all
tasks (e.g., worse performance in route tracking). Further,
the number of outliers where pilots fail to notice some
change for a particularly long time is not a matter of train-
ing, but rather a situational error, which has the biggest
potential for this alerting approach. Additionally, we had
an extensive training of the experimental task before the
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trial, which could help to reduce the confounding potential
of the unbalanced trial sequence.

Second, there was no support system in the control con-
dition. This is somewhat an unfair comparison, since any
kind of support has a good chance of improving perfor-
mance compared against no support. This study lacks the
evidence that the adaptive trigger is superior to the situa-
tional trigger checking for errors.

Third, the experiment was conducted with only 10 partic-
ipants. A follow-up study should include more participants
to gain statistical power. This would be particularly impor-
tant to the validity of the results related to the reduction
of rare outliers.

In general, the approach to measure AD is very simple
and susceptible to both false-positive and false-negative
classifications of perception. The former could be explained
by inattentional blindness (Kennedy et al., 2017) or working
memory limitations (Cak et al., 2020) while the latter could
be caused by nonfocal attention and perception with
peripheral vision (Ramén Alamdn et al., 2020). However,
we think that this study is a step toward the implementation
of more advanced adaptive systems for aircraft cockpits.

Conclusion

Even with the known limitations of the AD measurement
approach, the study demonstrated that adaptive alerting was
able to trigger useful alerts. While the subjective ratings were
mixed, we have explored potential reasons for these results
and proposed various ways to improve the system design.

A remaining challenge is the robust estimation of pilot
attention on a professional flight deck. In the current study,
we were able to assign different system values to individ-
ual experimental tasks and position the corresponding (Aols
a significant distance apart. This made identifying the
pilot’s focus relatively straightforward. However, in a real
cockpit, indicators are positioned closely (e.g., on a pri-
mary flight display, integrate different information (e.g.,
symbols on a tactical map), or are overlayed with other
information (e.g., HUD). Hence, robust identification of
attended information is not trivial and remains an open
research question.

In general, the integration of adaptive systems into safety-
critical environments, like aircraft, requires more conceptual
research and rigorous testing. The notion of system adaptiv-
ity needs to be clear and transparent and should provide tan-
gible benefits to the operator to be fully effective, as outlined
by Dorneich et al. (2016). Most laboratory experiments,
including the one detailed here, often operate under the
assumption that the operator is not fully aware of the logic
behind the adaptation, or at the very least, not thoroughly
trained in the use of the adaptive system. This assumption
is worth questioning, as the integration of adaptive systems
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into safety-critical environments would undoubtedly require
comprehensive training, which would certainly include
information about the system’s adaptive logic.

As a result, it is unclear how operators might alter their
behavior when they are supported by a behavior-adaptive
system and what impact this would have on the efficiency
of the overall human-machine system. Would operators
rely too heavily on the adaptive system, possibly leading
to overtrust and decreased vigilance? Or would they use
the system as a tool to enhance their capabilities, leading
to better overall performance? Further research is needed
to answer these questions and guide the design of effective,
reliable, and trustworthy adaptive systems.
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Appendix

Table A1. Distance functions for information categories

Types of information Distance function dist(x,, x2)

Example

Numeric (integer, floating-point)  x, — x,

Text {D,D ifxy =x2
1.0 otherwise
Booleans
Modes
Positional Great circle distance in meters between x; and x5

Aircraft altitude, engine temperature, magnetic heading

Text message
Gear fully extended
Autopilot hold/acquire status

Aircraft position, airport position

Table A2. Pseudocode of trigger mechanism

ADAPTIVE-ALERTING (information, c-norm, time-until-notification, threshold = .6)
time-of-high-AD = niL
WHILE adaptive-alert-active
pilot-value = LAST-FIXATED-VALUE-OF (information)
system-value = SYSTEM-VALUE-OF (information)
aw-deviation = COMPUTE-AW-DEVIATION (pilot-value, system-value, ¢-nam)
IF aw_deviation > threshold
NOW = GET-TIME
IF time-of-high-deviation == NIL
time-of-high-AD = now
IF now — time-of-high-deviation > time-until-notification
TRIGGER-ALERT f{information)
time-of-high-AD = NIL
ELSE
time-of-high-AD = NIL

Aviation Psychology and Applied Human Factors © 2024 The Author(s). Distributed as a Hogrefe OpenMind article under the
license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)
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