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A B S T R A C T

Laminated curved composite parts, used, e.g., in the spar and ribs in aircraft and wind turbine blades, are
typically subjected to high interlaminar stresses. This work focuses on a two-step procedure to study laminated
Euler–Bernoulli curved beams discretized via Isogeometric Analysis (IGA). First, we solve a (planar) Euler–
Bernoulli curved beam formulation in primal form to obtain the tangential and transverse displacements.
This formulation features high-order PDEs, which we can straightforwardly approximate using either an IGA-
Galerkin or an IGA-collocation approach. Starting from the obtained displacement solution, which accounts for
bending-stretching coupling, we can directly compute the normal stress only, while we do not have information
concerning the transverse shear stress state, typically responsible for delamination. However, by imposing
equilibrium in strong form in a curvilinear framework which eases the post-processing, eliminating the need
for coordinate changes, we can easily recover interlaminar transverse shear stresses at locations of interest.
Such a posteriori step requires calculating the high-order displacement derivatives in the equilibrium equations
and, therefore, demands once again higher-order regularity that can be easily fulfilled by exploiting the high-
continuity properties of IGA. Extensive numerical tests prove the effectiveness of the proposed approach, which
is also aided by the IGA’s superior geometric approximation.
1. Introduction

Composite materials typically exhibit higher strength- and stiffness-
to-weight ratios than most traditional materials like metals and plas-
tics [1,2]. In recent years, there has been a growing interest in their us-
age in the aerospace and automotive industries as they provide the flex-
ibility to achieve specific design objectives by optimizing, e.g., different
stacking sequences. Curved beam components, which can be found in
applications such as rotor blades of marine vessels and helicopters, civil
structures like bridges, and various aerospace elements [3], are among
the structures that benefit from the advantages deriving from composite
peculiarities. Laminated composite curved beams often display a com-
plex stress response even when subjected to simple loading conditions,
primarily due to a possible mismatch in terms of material properties
belonging to different layers. This stress state occurring through the
laminate thickness may eventually lead to a mode of failure termed
‘‘delamination’’, which refers to the separation of layers along ply inter-
faces [4,5]. To address and prevent delamination, it is crucial to accu-
ately predict the stress fields in these structures [6,7], focusing on the
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correct evaluation of the two or three-dimensional stress state through-
out the composites thickness [4,5]. In the literature, various theo-
ries have been proposed for the analysis of curved laminated beams.
Reddy [8] developed a third-order shear deformation theory to study
laminated composite plates. This theory was further refined by Khdeir
and Reddy [9] for investigating cross-ply laminated beams/arches.
Kim [10] introduced a composite laminated hybrid-mixed curved beam
element based on the Hellinger–Reissner variational principle and in-
corporating the first-order shear deformation theory. In [11], a linear
Euler–Bernoulli model was employed to analyze the static and dy-
namic behavior of non-homogeneous symmetrical-cross-section curved
beams and closed rings. Kant et al. [12] proposed a semi-analytical
methodology providing an accurate stress analysis of composite and
sandwich narrow beams. In [13], a 3D elastic total Lagrangian for-
mulation was developed to investigate steel-concrete curved beams.
Nguyen [14] studied the variation of tangential and radial stresses
using a 3D finite element model for both isotropic and orthotropic
curved laminated beams. Luu et al. [15] studied the non-dimensional
deflection and critical buckling loads of shear deformable laminated
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composite curved beams. Ye et al. [16] and Mohamad et al. [17] in-
vestigated the vibration analysis of laminated composite curved beams
under various boundary conditions, whereas Guo et al. [18] intro-
duced a domain decomposition approach to analyze the static and
free vibration behavior of curved beams. Instead, Hajianmaleki and
Qatu [19] utilized the Timoshenko beam theory to study free vibrations
in generally laminated deep curved beams under different bound-
ary conditions. Thurnherr et al. [7] developed a higher-order beam
model to investigate the flexural response of curved beams with con-
stant curvature and arbitrary constant thickness. This model is derived
from the Hellinger–Reissner mixed variational principle and ensures
inherently equilibrated 3D stresses through an equivalent single-layer
model. Yasin et al. [20] developed a third-order efficient layerwise
theory for laminated composite and sandwich curved beams with deep
curvatures. The circumferential displacement is assumed to exhibit a
global third-order variation through-the-thickness coordinate with a
linear plywise distribution. Avhad et al. [21] investigated the static
analysis of laminated composite and sandwich curved beams using a
novel quasi-3D polynomial-type beam theory, which accounts for the
effects of both transverse shear and normal strains, including thickness-
stretching effects. Other approximation theories of laminated composite
structures comprise the ‘‘Carrera Unified Formulation’’ (CUF) [22].
CUF models allow control over the theory order, a flexible param-
eter that can be chosen through convergence analysis [23]. Filippi
et al. [24], e.g., applied CUF to analyze functionally graded material
beams for the first time. Based on the reported literature review, it
is clear that various researchers have conducted extensive research
on the static and vibration analysis of curved beams using first- and
higher-order shear deformation theories. Additionally, specific models
in the literature especially address the investigation of interlaminar
stresses for those types of structures generally in the finite element
context. Kress et al. [25] developed a model to investigate radial
stresses in moderately thick curved laminates. Roos et al. [26] fur-
ther enhanced this model by considering interlaminar shear stresses.
In [27], a semi-analytical approach is reported for evaluating inter-
laminar stresses in curved beams with constant curvature. Kant and
Swaminathan [28] presented a review of techniques able to analyze
ransverse/interlaminar stresses in multilayered plates and shells, un-
erlining that a 2D-3D global/local finite element method (FEM) can
rastically improve the overall computational efficiency.
A higher-order numerical approach alternative to FEM is isogeo-
etric analysis (IGA) [29], which has shown a better accuracy per
egree-of-freedom, an enhanced robustness with respect to standard
inite elements, and a significant adaptability to various discretiza-
ion schemes. IGA utilizes the same basis functions, namely smooth
unctions typically belonging to Computer-Aided Design (such as B-
plines or Non-uniform rational B-Splines (NURBS)), to approximate
oth the geometry and field variables, thereby tightly connecting de-
ign and analysis. IGA leads to an overall cost-saving simplification
f the typically separated mesh generation and refinement procedures
equired in standard FEM, resulting in significant time and cost savings,
nd has demonstrated its effectiveness in solving a wide range of
olid and structural problems, including the successful modeling of
omposite and sandwich beams. Dvořáková and Patzák [30] introduced
n isogeometric Euler–Bernoulli straight beam element that provides an
xact representation of concentrated loads. Luu et al. [31] developed
NURBS-based IGA method to study the free vibration behavior of
enerally laminated Timoshenko-type beams with arbitrary curvature.
aroughi et al. [32] formulated a displacement-only NURBS-based
eam element, whereas Shafei et al. [33] utilized a third-order shear
eformation theory to study vibration analysis in laminated compos-
te beams. Marchiori and Neto [34] proposed an IGA formulation
or 2D curved beams based on Euler–Bernoulli assumptions. Osterle
t al. [35] presented a class of IGA formulations for beams, plates,
2

nd shells, which intrinsically avoids locking. Borković et al. [36]
developed a geometrically exact nonlinear analysis method for elastic
curved Euler–Bernoulli beams considering finite but small strain theory.

Within IGA, collocation (IGA-C) methods have been initially intro-
duced as an attempt to address the issue of finding optimal quadrature
rules able to fully exploit the high inter-element continuity present in
early isogeometric Galerkin (IGA-G) approaches (see, e.g., [37–39])
- even though significant progress has been achieved in, e.g., [39] -
yet taking advantage from the higher-order and higher-smoothness of
IGA shape functions in terms of, e.g., geometrical flexibility and accu-
racy. The major advantage of isogeometric collocation over Galerkin-
type methods is the minimization of the computational effort with
respect to quadrature, since for each degree of freedom, only one
point evaluation at a so-called collocation point is required [40].
Also, IGA-C proved to be particularly suitable in the context of struc-
tural elements; in particular, it has been successfully applied to study
Bernoulli–Euler beams and Kirchhoff plates in [41], while rotation-
based Timoshenko beams [42] or mixed formulations both for Tim-
oshenko initially-straight planar [43] and non-prismatic [44] beams,
as well as for curved spatial rods [45] have been introduced and
studied, and then effectively extended to the geometrically nonlinear
case [46–52]. More recent contributions on this theme account for,
e.g., multipatch beams [53], viscoelasticity [54], as well as viscoplas-
ticity [55].

While extensive research has been carried out on the static and vi-
bration analysis of IGA curved beams made of isotropic and composite
materials, to the best of our knowledge, only a limited number of stud-
ies address numerical stress recovery techniques in laminated beams
and not in an isogeometric framework. Starting from the work in [56],
which takes its origin in e.g., [57–59], Patton et al. introduced a fast
and accurate equilibrium-based stress recovery technique to model the
out-of-plane behavior of Kirchhoff laminated plates using IGA [60]
and immersed IGA [61], extending this approach to study out-of-plane
stresses in laminated composite solid plates [62] and shells [63]. This
latter post-processing technique has already been proven to provide
good results not only in the context of IGA but also of methods based
on, e.g., Radial Basis Functions [64]. Vo et al. [65] proposed an
isogeometric stress recovery for 2D non-prismatic Timoshenko beams
based on the notion of the in-plane stress and stress resultants at the
boundary. Balduzzi et al. [66] introduced an enhanced stress recovery
for isogeometric Timoshenko beams based on a two-stage iteration
process, which ends up with a distribution of stresses that satisfies the
first constitutive relation, as well as the horizontal equilibrium partial
differential equation. Mercuri et al. [67] derived analytical expressions
to recover stresses in non-prismatic finite element beams that are effec-
tive for non-trivial geometries and arbitrary load conditions. Recently,
Bardella [68] leveraged equilibrium equations to recover through-the-
thickness normal stresses in straight sandwich beams subject to linear
elastic flexure governed by zigzag warping, where all layers behave
according to Timoshenko’s kinematics.

The above considerations provide strong motivation to extend the
numerical equilibrium-based stress recovery technique proposed, e.g.,
in [63], to study laminated composite curved beams using IGA. Namely,
the stress recovery approach introduced in the present manuscript
finds direct application to modeling interlaminar shear stresses in
2D Euler–Bernoulli beams with constant curvature and accounts for
bending-stretching coupling, previously neglected in [60], which is
in general not negligible for layer arrangements being nonsymmetric
about the beam axis. By implementing a systematic reduction of the
3D constitutive model with exact integration throughout the laminate
thickness, the proposed framework enhances the overall quality of the
stress recovery in the analysis. The proposed approach follows a two-
step procedure. Firstly, the Euler–Bernoulli curved beam formulation
is solved to obtain the tangent and transverse displacements. Once the
displacement solution is computed using either an IGA-G or an IGA-C
approach, the normal stress can be directly computed using classical

constitutive laws. However, information regarding the transverse stress
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state, often associated with delamination, is not readily available. Nev-
ertheless, the interlaminar transverse shear stresses at specific locations
of interest can be easily determined by imposing equilibrium equations
in strong form in a curvilinear framework. This latter process demands
higher-continuity requirements in terms of the displacement solution,
which is provided by the IGA shape functions properties. Additionally,
given the adopted displacement description along the beam axis, we do
not need to transform our solution field from a global to a local system
as proposed in [63], which simplifies the stress recovery a posteriori
step. The paper is structured as follows: Section 2 outlines the govern-
ng equations for the planar Euler–Bernoulli composite curved beam
ith constant curvature posing particular attention on material mod-
ling. In Section 3, we present the fundamentals of univariate NURBS
urves, followed by the proposed isogeometric approaches to obtain the
pproximate displacement field. These displacement-based modeling
trategies do not provide an immediate assessment of the transverse
tress distributions. However, in Section 4, we describe an equilibrium-
ased post-processing technique that allows for the recovery of these
tress distributions. In Section 5, we conduct various numerical tests to
emonstrate the accuracy of the proposed approach. We also examine
he behavior of different meshes for increasing length-to-thickness
eam ratios and numbers of layers, highlighting the effectiveness of
ur method. Finally, we present our conclusions in Section 6.

. General formulation for an Euler–Bernoulli composite curved
eam

In this section, we introduce first the kinematic description of Euler–
ernoulli curved beams in curvilinear coordinates. Then, we focus on
he material behavior of cross-ply laminated beams considering a sys-
ematic reduction of the constitutive relations of the three-dimensional
nisotropic body [69] and detail the considered formulation addressing
oth the weak and strong form level.

.1. Kinematics

Let us consider the curved beam model in Fig. 1 such that the
eam axis passes through the centroid of the (constant) cross-section
nd is identified by the curvilinear abscissa 𝑠, while 𝜃 describes the
ross section rotation. Analogously, the points of the beam axis can be
escribed in the global reference system 𝑋𝑖 (𝑖 = {1, 2, 3}). We assume a
ongitudinal plane of symmetry (i.e., the beam is planar) which means
hat the cross-section, constraints, and loading conditions are sym-
etric to the longitudinal plane. Furthermore, we adopt small strains
nd Euler–Bernoulli kinematic assumptions (i.e., after deformation, the
ross-section remains plane and orthogonal to the deformed beam axis),
hich allows to neglect the shear strain energy contribution [70]. Also,
he beam section is infinitely rigid in its plane, such that there is no
eformation in the plane of the cross-section. Therefore, restricting
ur discussion to structures presenting a constant radius of curvature,
(𝑠) = 𝑅̄, we introduce the problem variables 𝑢 and 𝑤 that describe the
isplacements along the tangential and normal directions of the curved
eam axis, namely along 𝑠 and 𝑧 (𝑧 ∈ [−ℎ∕2, ℎ∕2] being ℎ the thickness
f the beam, whereas to complete the description 𝑦 ∈ [−𝑏∕2, 𝑏∕2] being
the beam base), respectively.
Under these hypotheses, the only non-zero strain for such an Euler–

ernoulli curved beam can be introduced as

𝑠𝑠 = 𝜀0 − 𝑧𝑘0 , (1)

here 𝜀0 and 𝑘0 indicate the extensional strain and curvature, re-
pectively, of the beam axis (hence the superscript (.)0) and are given
s [34,71]:

𝜀0 = d𝑢
d𝑠 + 𝑤

𝑅̄
, (2a)

0 = − 1 d𝑢 + d2𝑤 . (2b)
3

𝑅̄ d𝑠 d𝑠2
Fig. 1. Geometry of a curved beam depicted in the longitudinal plane of symmetry.

2.2. Constitutive relations

To possibly include the complete stacking sequence contribution
in our formulation, we focus on each 𝑘-th ply belonging to the lam-
inate and, for ease of description, we will assume that the principal
material coordinates coincide with those of the curved beam, namely
{𝑠, 𝑦, 𝑧} = {𝑥1, 𝑥2, 𝑥3} (see Fig. 1), which are taken as the composite
fiber, matrix, and normal directions. Therefore, the material behavior
of each lamina considers three mutually orthogonal planes of material
symmetry, allowing to reduce to 9 the number of elastic coefficients
of the complete fourth-order elasticity tensor C, such that 𝝈 = C ∶ 𝜺,
which can be expressed in terms of engineering constants in Voigt’s
notation as

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

symm. C44 0 0

C55 0

C66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸1

− 𝜈12
𝐸1

− 𝜈13
𝐸1

0 0 0
1
𝐸2

− 𝜈23
𝐸2

0 0 0
1
𝐸3

0 0 0

symm. 1
𝐺23

0 0
1

𝐺13
0
1

𝐺12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

−1

,

(3)

where 𝐸1, 𝐸2, and 𝐸3 are the Young’s moduli, 𝐺12, 𝐺23, and 𝐺13 the
shear moduli, and 𝜈12, 𝜈23, and 𝜈13 the Poisson’s ratios in the principal
material coordinates [1].

Then, if the Euler–Bernoulli beam is experiencing only uni-axial
bending and no torsional loading, the only relevant stress component
is

𝜎𝑠𝑠 = Q11𝜀𝑠𝑠 , (4)

where

Q11 = C∗
11 −

C∗
16C

∗
16

C∗
66

. (5)

All C∗
𝑟𝑠 (𝑟, 𝑠 = {1, 6}) coefficients in Eq. (5) consider a systematic reduc-

tion of the constitutive relations of the three-dimensional anisotropic
body as in [69] and are taken as

C∗
11 = C̄11 +

(

C̄13C̄23 − C̄12C̄33
)

(

C̄22C̄33 − C̄23C̄23
) C̄12 +

(

C̄12C̄23 − C̄13C̄22
)

(

C̄22C̄33 − C̄23C̄23
) C̄13 , (6a)

C∗
16 = C̄16 +

(

C̄36C̄23 − C̄26C̄33
)

( ) C̄12 +

(

C̄26C̄23 − C̄36C̄22
)

( ) C̄13 , (6b)

C̄22C̄33 − C̄23C̄23 C̄22C̄33 − C̄23C̄23
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C∗
66 = C̄66 +

(

C̄36C̄23 − C̄26C̄33
)

(

C̄22C̄33 − C̄23C̄23
) C̄26 +

(

C̄26C̄23 − C̄36C̄22
)

(

C̄22C̄33 − C̄23C̄23
) C̄36 , (6c)

here C̄𝑎𝑏 (𝑎, 𝑏 = {1, 2, 3, 6}) are the components of the IV-order elastic-
ty tensor (3) for a fiber-reinforced composite lamina whose tangential
principal) material axis is oriented at an angle 𝛼 with respect to the
1-axis and can be detailed as

̄ 11 = C11 cos 𝛼4 + 2
(

C12 + 2C66
)

sin 𝛼2 cos 𝛼2 + C22 sin 𝛼4 , (7a)
̄ 12 =

(

C11 + C22 − 4C66
)

sin 𝛼2 cos 𝛼2 + C12
(

sin 𝛼4 + cos 𝛼4
)

, (7b)
̄ 13 = C13 cos 𝛼2 + C23 sin 𝛼2 , (7c)
̄ 16 =

(

C11 − C12 − 2C66
)

sin 𝛼 cos 𝛼3

+
(

C12 − C22 + 2C66
)

sin 𝛼3 cos 𝛼 ,
(7d)

̄ 22 = C11 sin 𝛼4 + 2
(

C12 + 2C66
)

sin 𝛼2 cos 𝛼2 + C22 cos 𝛼4 , (7e)
̄ 23 = C13 sin 𝛼2 + C23 cos 𝛼2 , (7f)
̄ 26 =

(

C11 − C12 − 2C66
)

sin 𝛼3 cos 𝛼

+
(

C12 − C22 + 2C66
)

sin 𝛼 cos 𝛼3 ,
(7g)

̄ 33 = C33 , (7h)
̄ 36 =

(

C13 − C23
)

cos 𝛼 sin 𝛼 , (7i)
C̄66 =

(

C11 + C22 − 2C12 − 2C66
)

sin 𝛼2 cos 𝛼2

+C66
(

sin 𝛼4 + cos 𝛼4
)

.
(7j)

t this point, we can classically introduce the in-plane force 𝑁 and
oment 𝑀 resultants as

𝑁 = ∫𝐴
𝜎𝑠𝑠𝑑𝐴 , (8a)

= ∫𝐴
𝑧𝜎𝑠𝑠𝑑𝐴 , (8b)

hich, once substituting Eq. (4) and integrating through the beam
ross-section, can be expressed as
(

𝑁
𝑀

)

=
[

𝐴 𝐵
𝐵 𝐷

](

𝜀0

−𝑘0

)

, (9)

here 𝐴, 𝐵, and 𝐷 are calculated as:

(𝐴,𝐵,𝐷) = 𝑏∫

ℎ∕2

−ℎ∕2
𝑄̄𝑘

11
(

1, 𝑧, 𝑧2
)

d𝑧 . (10)

.3. Principle of virtual works

We consider Hamilton’s principle in order to derive the governing
quation weak form:

∫

𝑠̄

0
𝛿 (𝑈 − 𝑉 )d𝑠 = 0 , (11)

here 𝑈 and 𝑉 are the strain energy and external work, respectively.
he virtual strain energy can be then calculated as:

𝑈 = ∫

𝑠̄

0

(

𝑁𝛿𝜀0 −𝑀𝛿𝑘0
)

d𝑠 , (12)

nd further detailed by substituting Eqs. (2):

𝑈 = ∫

𝑠̄

0

(

𝑁𝛿
(

d𝑢
d𝑠 + 𝑤

𝑅̄

)

−𝑀𝛿
(

− 1
𝑅̄
d𝑢
d𝑠 + d2𝑤

d𝑠2

))

d𝑠

= ∫

𝑠̄

0

(

𝑁
(

d𝛿𝑢
d𝑠 + 𝛿𝑤

𝑅̄

)

−𝑀
(

− 1
𝑅̄
d𝛿𝑢
d𝑠 + d2𝛿𝑤

d𝑠2

))

d𝑠 .
(13)

Then, by inserting Eqs. (8) into Eq. (13), once expressed in terms of
membrane strain and curvature (see Eqs. (2)), we obtain a
4

t

displacement-based expression of 𝛿𝑈 :

𝛿𝑈 = ∫

𝑠̄

0

(

𝐴
(

d𝑢
d𝑠
d𝛿𝑢
d𝑠 + d𝑢

d𝑠
𝛿𝑤
𝑅̄

+ 𝑤
𝑅̄
d𝛿𝑢
d𝑠 + 1

𝑅̄2
𝑤𝛿𝑤

)

− 𝐵
(

− 1
𝑅̄
d𝑢
d𝑠
d𝛿𝑢
d𝑠 + d2𝑤

𝑑𝑠2
d𝛿𝑢
d𝑠 − 1

𝑅̄2
d𝑢
d𝑠 𝛿𝑤 + d2𝑤

𝑑𝑠2
𝛿𝑤
𝑅̄

)

− 𝐵
(

− 1
𝑅̄
d𝑢
d𝑠
d𝛿𝑢
d𝑠 + d𝑢

d𝑠
d2𝛿𝑤
𝑑𝑠2

− 𝑤
𝑅̄2

d𝛿𝑢
d𝑠 + 𝑤

𝑅̄
d2𝛿𝑤
𝑑𝑠2

)

+ 𝐷
(

1
𝑅̄2

d𝑢
d𝑠
d𝛿𝑢
d𝑠 − 1

𝑅̄
d𝑢
d𝑠
d2𝛿𝑤
𝑑𝑠2

− 1
𝑅̄
d𝛿𝑢
d𝑠

d2𝑤
𝑑𝑠2

+ d2𝑤
𝑑𝑠2

d2𝛿𝑤
𝑑𝑠2

)

)

d𝑠

= ∫

𝑠̄

0

(

(

𝐴 + 2𝐵
𝑅̄

+ 𝐷
𝑅̄2

)

d𝑢
d𝑠
d𝛿𝑢
d𝑠

+
((

𝐴
𝑅̄

+ 𝐵
𝑅̄2

)

d𝑢
d𝑠 𝛿𝑤 −

(

𝐵 + 𝐷
𝑅̄

)

d𝑢
d𝑠
d2𝛿𝑤
𝑑𝑠2

)

+
((

𝐴
𝑅̄

+ 𝐵
𝑅̄2

)

𝑤d𝛿𝑢d𝑠 −
(

𝐵 + 𝐷
𝑅̄

)

d2𝑤
𝑑𝑠2

d𝛿𝑢
d𝑠

)

+
(

𝐴
𝑅̄2

𝑤𝛿𝑤 − 𝐵
𝑅̄
d2𝑤
𝑑𝑠2

𝛿𝑤 − 𝐵
𝑅̄
𝑤d

2𝛿𝑤
𝑑𝑠2

+𝐷d
2𝑤
𝑑𝑠2

d2𝛿𝑤
𝑑𝑠2

)

)

d𝑠 .

(14)

inally, the external virtual work can be written as:

𝑉 = ∫

𝑠̄

0

(

𝑝𝑢𝛿𝑢 + 𝑝𝑤𝛿𝑤
)

d𝑠 +
(

𝑃𝑢𝑢̄
) |

|

|

|

𝑠̄

0
+
(

𝑃𝑤𝑤̄
) |

|

|

|

𝑠̄

0
+
(

𝑀̄𝜙̄
) |

|

|

|

𝑠̄

0
, (15)

here 𝑝𝑢 and 𝑝𝑤 are the distributed load per unit of beam axis length
long 𝑠 and 𝑧 directions (see Fig. 1), 𝑃𝑢, 𝑃𝑤, and 𝑀̄ are the tangential
orce, the transverse force, and the moment, while 𝑢̄, 𝑤̄, and 𝜙̄ are
he generalized displacements possibly applied at the boundary of the
eam.

.4. Strong form

Integrating Eq. (13) by parts yields:

∫

𝑠̄

0

(

−d𝑁d𝑠 − 1
𝑅̄
d𝑀
d𝑠 − 𝑃𝑢

)

𝛿𝑢 d𝑠 + ∫

𝑠̄

0

(

𝑁
𝑅̄

− d2𝑀
d𝑠2

− 𝑃𝑤

)

𝛿𝑤 d𝑠

+ (𝑁𝛿𝑢) ||
|

𝑠̄

0
+
(

𝑀
(

𝛿𝑢
𝑅̄

− d𝛿𝑤
d𝑠

))

|

|

|

|

𝑠̄

0
+
(

d𝑀
d𝑠 𝛿𝑤

)

|

|

|

|

𝑠̄

0
= 0 .

(16)

Then, we introduce the problem domain as 𝛺 = (0, 𝑠̄) and its boundary
by 𝛤 = {0} ∪ {𝑠̄} such that 𝛤 can be decomposed as 𝛤 = 𝛤𝑢 ∪ 𝛤𝑁 ,
𝛤 = 𝛤𝑤 ∪ 𝛤𝑉 , and 𝛤 = 𝛤𝜙 ∪ 𝛤𝑀 with 𝛤𝑢 ∩ 𝛤𝑁 = ∅, 𝛤𝑤 ∩ 𝛤𝑉 = ∅,
𝜙 ∩ 𝛤𝑀 = ∅. Following [41], to ensure the well-posedness of the
problem, we require that 𝛤𝑤 ≠ ∅, while 𝛤𝜙, 𝛤𝑁 , 𝛤𝑉 , and 𝛤𝑀 are allowed
o be empty sets. Given the distributed tangential and transverse loads
𝑢, 𝑝𝑤 ∶ 𝛺 → R and the boundary condition functions, namely the
tangential 𝑢̄ ∶ 𝛤𝑢 → R and transverse displacement 𝑤̄ ∶ 𝛤𝑤 → R,
rotation 𝜙̄ ∶ 𝛤𝜙 → R, as well as 𝑃𝑢 ∶ 𝛤𝑢 → R, 𝑃𝑤 ∶ 𝛤𝑤 → R,
and 𝑀̄ ∶ 𝛤𝜙 → R, we can introduce the boundary value problem 1

associated with an elastic Euler–Bernoulli beam, as Eq. (16) holds for
every 𝛿𝑢 and 𝛿𝑤:
d𝑁
d𝑠 + 1

𝑅̄
d𝑀
d𝑠 + 𝑝𝑢 = 0 in 𝛺 , (17a)

𝑁
𝑅̄

− d2𝑀
d𝑠2

− 𝑝𝑤 = 0 in 𝛺 , (17b)

𝑢 = 𝑢̄ on 𝛤𝑢 , (17c)

𝑤 = 𝑤̄ on 𝛤𝑤 , (17d)
𝑢
𝑅̄

− d𝑤
d𝑠 = 𝜙̄ on 𝛤𝜙 , (17e)

1 To avoid redundancy in the inter-text flow, we choose not to express
q. (17g) in terms of displacements, as it can be easily obtained by taking
he derivative of Eq. (18b) with respect to 𝑠.
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𝛿

𝑁 = 𝑃𝑢 on 𝛤𝑁 , (17f)
d𝑀
d𝑠 = 𝑃𝑤 on 𝛤𝑉 , (17g)

= 𝑀̄ on 𝛤𝑀 . (17h)

hen, inserting Eqs. (2) into (9), we can further detail the in-plane force
nd moment resultants as

𝑁 =
((

𝐴 + 𝐵
𝑅̄

)

d𝑢
d𝑠 + 𝐴𝑤

𝑅̄
− 𝐵 d

2𝑤
d𝑠2

)

, (18a)

𝑀 =
((

𝐵 + 𝐷
𝑅̄

)

d𝑢
d𝑠 + 𝐵𝑤

𝑅̄
−𝐷d

2𝑤
d𝑠2

)

, (18b)

nd rewrite Euler–Lagrange Eqs. (17a) and (17b) in terms of displace-
ents as follows:

(

𝐴 + 2𝐵
𝑅̄

+ 𝐷
𝑅̄2

)

d2𝑢
d𝑠2

+ 1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

)

d𝑤
d𝑠 −

(

𝐵 + 𝐷
𝑅̄

)

d3𝑤
d𝑠3

+ 𝑝𝑢 = 0 ,

(19a)
1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

)

d𝑢
d𝑠

(

𝐵 + 𝐷
𝑅̄

)

d3𝑢
d𝑠3

+ 𝐴
𝑅̄2

𝑤 − 2𝐵
𝑅̄
d2𝑤
d𝑠2

+𝐷d
4𝑤
d𝑠4

− 𝑝𝑤 = 0 .

(19b)

3. Isogeometric strategies for laminated planar Euler–Bernoulli
curved beams

In this section, we recall the notions of univariate NURBS curves
and detail the investigated numerical isogeometric approaches, namely
a classical Galerkin method and a collocation approach, to approximate
Euler–Bernoulli laminated beams.

3.1. Univariate NURBS curves

Since the geometry of the curved beam axis is described by a NURBS
curve, we proceed to briefly revise basic notions of univariate B-splines
and NURBS, while, for a more comprehensive discussion, readers may
refer to [29,72] and references therein.

To describe univariate B-spline basis functions of fixed order 𝑝
(i.e., the polynomial degree), we recall the so-called ‘‘knot vector’’
definition, that is in one dimension a non-decreasing set of coordinates
in the parameter space 𝛺̂:

𝛯 =
[

𝜉1, 𝜉2,… , 𝜉𝑖,… , 𝜉𝑚+𝑝+1
]

, (20)

where 𝜉𝑖 ∈ R is the 𝑖-th knot, 𝑖 is the knot index (𝑖 = {1, 2,… , 𝑚+𝑝+1}),
and 𝑚 is the associated number of basis functions. Then, univariate B-
spline basis functions can be defined recursively via the Cox-de Boor
formula [73], starting from piecewise constants (𝑝 = 0):

𝑖,0(𝜉) =

{

1 𝑖𝑓 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1
0 otherwise

, (21)

hile for 𝑝 = 1, 2, 3,…, they are constructed as

𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖

𝜉𝑖+𝑝 − 𝜉𝑖
𝐵𝑖,𝑝−1(𝜉) +

𝜉𝑖+𝑝+1 − 𝜉
𝜉𝑖+𝑝+1 − 𝜉𝑖+1

𝐵𝑖+1,𝑝−1(𝜉) , (22)

here the convention 0∕0 = 0 is assumed. Thus, univariate NURBS
asis functions of order 𝑝 can be defined as the projection onto a
𝑠-dimensional physical space of non-rational (polynomial) B-splines
efined in a 𝑑𝑠+1-dimensional homogeneous coordinate space and read

𝑝
𝑖 (𝜉) =

𝐵𝑖,𝑝𝑤𝑖
∑𝑛𝑐𝑝

𝑖=1 𝐵𝑖,𝑝(𝜉)𝑤𝑖

, (23)

here 𝑤𝑖 represents the NURBS weight associated to each 𝑖-th control
oint and consists of its 𝑑𝑠 + 1-component in the homogeneous space.
NURBS curves are then introduced by taking a linear combination

f univariate NURBS basis functions and control points as

(𝜉) =
𝑚
∑

𝑅𝑝
𝑖 (𝜉)𝐏𝑖 . (24)
5

𝑗=1
.2. IGA Galerkin approach

Once the geometry of the curved beam axis is described by a

URBS curve, adopting the isoparametric concept, the tangential and

ransverse displacements are approximated by a linear combination

f NURBS functions
{

𝑅𝑝
1, 𝑅

𝑝
2,… , 𝑅𝑝

𝑖 … , 𝑅𝑝
𝑚
}

and unknown control vari-
bles

{

𝑢̂1, 𝑢̂2,… , 𝑢̂𝑖,… , 𝑢̂𝑚
}

and
{

𝑤̂1, 𝑤̂2,… , 𝑤̂𝑖,… , 𝑤̂𝑚
}

as follows:

𝑢 ≈ 𝑢ℎ =
𝑚
∑

𝑖=1
𝑅𝑝
𝑖 𝑢̂𝑖 , (25a)

𝑤 ≈ 𝑤ℎ =
𝑚
∑

𝑖=1
𝑅𝑝
𝑖 𝑤̂𝑖 . (25b)

Then, to obtain the discrete weak form of the internal and external

virtual work in primal form (neglecting with no loss of generality gen-

eralized point loads), we substitute in relations (14) and (15) the primal

fields expressed by Eqs. (25) as well as the discretized counterpart

of virtual displacements, 𝛿𝑢 and 𝛿𝑤, which are approximated by the

same functions used for the displacement field approximation (25).

Therefore, addressing the element point of view, the control variables

spanning over each element 𝑒 can be rearranged into the tangential 𝒖̂𝑒 =

[𝑢̂𝑒1, 𝑢̂
𝑒
2,… , 𝑢̂𝑒nen] and transverse 𝒘̂𝑒 = [𝑤̂𝑒

1, 𝑤̂
𝑒
2,… , 𝑤̂𝑒

nen] displacement

lement vectors (being nen the total local number of control variables),
eading to:

𝑈 ≈
nel
∑

𝑒=1
𝛿𝑈 𝑒 =

nel
∑

𝑒=1

(

𝛿𝒖̂𝑒 𝛿𝒘̂𝑒)
[

𝑲𝑒
𝑢𝑢 𝑲𝑒

𝑢𝑤
𝑲𝑒

𝑤𝑢 𝑲𝑒
𝑤𝑤

](

𝒖̂𝑒

𝒘̂𝑒

)

, (26a)

𝛿𝑉 ≈
nel
∑

𝑒=1
𝛿𝑉 𝑒 =

nel
∑

𝑒=1

(

𝛿𝒖̂𝑒 𝛿𝒘̂𝑒)
(

𝑭 𝑒
𝑢

𝑭 𝑒
𝑤

)

, (26b)

where the element stiffness matrix and force vector sub-blocks are
defined as:

𝑲𝑒
𝑢𝑢 = ∫

𝑠̄

0

nen
∑

𝑖=1

nen
∑

𝑗=1

(

(

𝐴 + 2𝐵
𝑅̄

+ 𝐷
𝑅̄2

) d𝑅𝑝
𝑖

d𝑠

d𝑅𝑝
𝑗

d𝑠

)

d𝑠 , (27a)

𝑲𝑒
𝑢𝑤 = ∫

𝑠̄

0

nen
∑

𝑖=1

nen
∑

𝑗=1

⎛

⎜

⎜

⎝

(

𝐴
𝑅̄

+ 𝐵
𝑅̄2

) d𝑅𝑝
𝑖

d𝑠 𝑅𝑝
𝑗
−
(

𝐵 + 𝐷
𝑅̄

) d2𝑅𝑝
𝑖

d𝑠2
d2𝑅𝑝

𝑗

d𝑠2
⎞

⎟

⎟

⎠

d𝑠 , (27b)

𝑲𝑒
𝑤𝑢 =

(

𝑲𝑒
𝑢𝑤

)T , (27c)

𝑲𝑒
𝑤𝑤= ∫

𝑠̄

0

nen
∑

𝑖=1

nen
∑

𝑗=1

( 𝐴
𝑅̄2

𝑅𝑝
𝑖
𝑅𝑝

𝑗
− 𝐵

𝑅̄

d2𝑅𝑝
𝑖

d𝑠2
𝑅𝑝

𝑗

− 𝐵
𝑅̄
𝑅𝑝

𝑖

d2𝑅𝑝
𝑗

d𝑠2 +𝐷
d2𝑅𝑝

𝑖
d𝑠2

d2𝑅𝑝
𝑗

d𝑠2

)

d𝑠 ,

(27d)

𝑭 𝑒
𝑢 = ∫

𝑠̄

0

nen
∑

𝑖=1

(

𝑅𝑝
𝑖
𝑝𝑢
)

d𝑠 , (27e)

𝑭 𝑒
𝑤 = ∫

𝑠̄

0

nen
∑

𝑖=1

(

𝑅𝑝
𝑖
𝑝𝑤

)

d𝑠 . (27f)

Here, in order to integrate Eqs. (26), we have to compute the Jacobian
of the transformation between coordinates 𝑠 = 𝑅𝜃 and 𝜉, as well as the
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radius of curvature [34], which are given by:

𝐽 =
d (𝑅𝜃)
d𝜉 = d𝑠

d𝜉 =

√

(d𝑋1
d𝜉

)2
+
(d𝑋3
d𝜉

)2
, (28a)

(𝑠) = 𝐽 3

|

|

|

|

d𝑋1
d𝜉

d2𝑋3
d𝜉2 − d𝑋3

d𝜉
d2𝑋1
d𝜉2

|

|

|

|

, (28b)

here 𝑋1(𝜉) and 𝑋3(𝜉) are the global coordinates that describe the
urve (see Fig. 1). Moreover, we need to detail the first, second, and
hird derivatives of the 𝑖-th shape function 𝑅𝑝

𝑖 with respect to 𝑠, which
ead:

d𝑅𝑝
𝑖

d𝑠 =
d𝑅𝑝

𝑖
d𝜉

d𝜉
d𝑠 , (29a)

d2𝑅𝑝
𝑖

d𝑠2
= 1

(

d𝑠
d𝜉

)2

(

d2𝑅𝑝
𝑖

d𝜉2
−
d𝑅𝑝

𝑖
d𝑠

d2𝑠
d𝜉2

)

, (29b)

d3𝑅𝑝
𝑖

d𝑠3
= 1

(

d𝑠
d𝜉

)3

[

d3𝑅𝑝
𝑖

d𝜉3
−

(

2
d2𝑅𝑝

𝑖

d𝑠2
d𝑠
d𝜉

d2𝑠
d𝜉2

+
d2𝑅𝑝

𝑖

d𝑠2
d3𝑠
d𝜉3

+
d𝑅𝑝

𝑖
d𝑠

d3𝑠
d𝜉3

)]

.

(29c)

Remark 1. We highlight that to integrate the element stiffness sub-
blocks in Eqs. (27), we utilize a standard quadrature rule which com-
prises 𝑝 + 1 points per element.

3.3. IGA collocation approach

Collocation strategies (see, e.g., [40,74,75] for further details) di-
rectly discretize the strong form of the set of partial differential equa-
tions governing the problem, which are evaluated at the so-called
‘‘collocation points’’. In this work, we adopt the simplest and most
widespread approach in the engineering literature, and we collocate
the governing strong-form equations at the images of ‘‘Greville abscis-
sae’’ (see, e.g., [76]). For alternative choices of collocation points, the
interested reader is referred to e.g., [77]. Greville abscissae consist of a
set of 𝑛 points along the parametric direction 𝜉, obtained from the knot
vector components, 𝜉𝑖, as

𝜏𝑘 =
𝜉𝑘+1 + 𝜉𝑘+2 +⋯ + 𝜉𝑘+𝑝

𝑝
𝑘 = 1, 2,… , 𝑛 , (30)

where 𝑝 is the polynomial order. As for an IGA Galerkin approach, also
within an IGA collocation method, problem variables are approximated
as linear combinations of IGA basis functions and control variables (see
Eq. (25)). Without loss of generality, we will focus on the discretization
of a clamped beam subjected to a point load at the free edge, which will
be of aid to the numerical test section. Other boundary conditions are,
of course, possible and may be easily considered. Following [41], we
will use an open knot vector such that 𝜏1 = 𝜉1 = 0 and 𝜏𝑛 = 𝜉𝑚+𝑝+1 = 𝑠̄
and assume 𝑝 ≥ 4 to fulfill the minimum regularity requirement to
collocate Eqs. (19). Our strong form problem (see Eqs. (17)) features
in 𝛺 a coupled system of differential equations comprising a second-
order operator in 𝑢 and a fourth-order one in 𝑤. Therefore, to obtain
a well-posed boundary-value problem for a second-order differential
equation, we need to impose one boundary condition at each boundary
point, whereas we need to impose two for the fourth-order differential
equation. Therefore, our collocation strategy for the problem under
6

consideration is as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑢ℎ(𝜏1) = 0 , (a)
(

𝐴 + 2𝐵
𝑅̄

+ 𝐷
𝑅̄2

) d2𝑢ℎ(𝜏𝑘)
d𝑠2

+ 1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

) d𝑤ℎ(𝜏𝑘)
d𝑠 −

(

𝐵 + 𝐷
𝑅̄

) d3𝑤ℎ(𝜏𝑘)
d𝑠3

= 0 𝑘 = 3, 4,… , 𝑛 − 2 , (b)
(

𝐴 + 𝐵
𝑅̄

) d𝑢ℎ(𝜏𝑛)
d𝑠 + 𝐴

𝑅̄
𝑤ℎ(𝜏𝑛) − 𝐵

d2𝑤ℎ(𝜏𝑛)
d𝑠2

= 0 , (c)

𝑤ℎ(𝜏1) = 0 , (d)
𝑢ℎ(𝜏1)
𝑅̄

−
d𝑤ℎ(𝜏1)
d𝑠 = 0 , (e)

1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

) d𝑢ℎ(𝜏𝑘)
d𝑠 −

(

𝐵 + 𝐷
𝑅̄

) d3𝑢ℎ(𝜏𝑘)
d𝑠3

+ 𝐴
𝑅̄2

𝑤ℎ(𝜏𝑘) −
2𝐵
𝑅̄
d2𝑤ℎ(𝜏𝑘)
d𝑠2

+𝐷
d4𝑤ℎ(𝜏𝑘)
d𝑠4

= 0 𝑘 = 2, 4,… , 𝑛 − 1 , (f)
(

𝐵 + 𝐷
𝑅̄

) d2𝑢ℎ(𝜏𝑛)
d𝑠2

+ 𝐵
𝑅̄
d𝑤ℎ(𝜏𝑛)
d𝑠 −𝐷

d3𝑤ℎ(𝜏𝑛)
d𝑠3

= 𝑃𝑤 , (g)
(

𝐵 + 𝐷
𝑅̄

) d𝑢ℎ(𝜏𝑛)
d𝑠 + 𝐵

𝑅̄
𝑤ℎ(𝜏𝑛) −𝐷

d2𝑤ℎ(𝜏𝑛)
d𝑠2

= 0 . (h)

(31)

To completely clamp 𝜉1 = 0, we impose that the control variables for
the first collocation point are zero, namely, 𝑢̂1 = 0 (as in Eq. (31a)) and
̂ 1 = 0 (see Eq. (31d)), whereas we set a zero rotation at 𝜏1, collocating
q. (31e). To apply instead a transverse point load at the free edge
𝑚+𝑝+1 = 𝑠̄, together with a zero in-plane force and moment, we will
ollocate Eqs. (31g), (31c), and (31h), respectively. As we can rely on
𝑛 equations and we need to impose 6 boundary conditions overall,
e will utilize (𝑛 − 2) + (𝑛 − 4) + 6 relations (namely, (𝑛 − 2) + (𝑛 − 4)
o collocate the internal body Eqs. (31b) and (31f) plus the 6 boundary
onditions) and disregard to collocate Eq. (31b) for collocation point 𝜏2
nd 𝜏𝑛−1. The final system to solve reads (see Eqs. (32) in Box I), where
e recall that 𝑚 is the total number of shape functions 𝑅𝑝

𝑖 . Collocating
q. (32c), we need to utilize relations (29) together with the fourth-
rder derivative of the 𝑖-th shape function 𝑅𝑝

𝑖 with respect to 𝑠 which
e compute by means of the chain rule:

d4𝑅𝑝
𝑖

d𝑠4
= 1

(

d𝑠
d𝜉

)4

{

d4𝑅𝑝
𝑖

d𝜉4
−

[

6
d3𝑅𝑝

𝑖

d𝑠3

(

d𝑠
d𝜉

)2 d2𝑠
d𝜉2

+
d2𝑅𝑝

𝑖

d𝑠2

(

4 d𝑠d𝜉
d3𝑠
d𝜉3

+ 3
(

d2𝑠
d𝜉2

)2)

+
d𝑅𝑝

𝑖
d𝑠

d4𝑠
d𝜉4

]}

.

(33)

4. Local stress recovery for laminated Euler–Bernoulli curved
beams

In this section, we adapt the stress recovery technique introduced
in [63] for curved structures to Euler–Bernoulli curved beams and study
the transverse shear stress distribution through the laminate thickness.
Given the adopted displacement description along the beam axis, we
do not need to transform our solution field from a global to a local
system as proposed in [63], which leads to an even more direct and
straightforward stress recovery. Therefore, the equilibrium equation
can be written with respect to the curvilinear system as:
(

𝑧 + 𝑅̄
)

𝑅̄𝜎𝑠𝑠,𝑠 +
(

(

𝑧 + 𝑅̄
)2 𝜎𝑠𝑧

)

,𝑧
+ 𝑏𝑠 = 0 , (34)

being 𝑏𝑠 the tangential force per unit of beam volume. In Eq. (34),
𝜎𝑠𝑠 is already the normal stress component that is well approximated
starting from the obtained displacement field (𝑢, 𝑤), whereas 𝜎𝑠𝑧 is
the transverse shear stress, which cannot be directly assessed in this
type of formulation using constitutive equations. However, relying on
IGA shape functions high-order continuity properties, we are able to
accurately approximate also the derivatives of normal stresses 𝜎𝑠𝑠,𝑠,
thereby recovering the transverse shear integrating along the beam
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∑

𝑖=1
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𝑖 (𝜏1) 0
0 𝑅𝑝

𝑖 (𝜏1)

]

⋅

(

𝑢̂𝑖
𝑤̂𝑖

)

=

(

0
0

)

, (a)

𝑚
∑

𝑖=1

[

𝑅𝑝
𝑖 (𝜏1)
𝑅̄ −

d𝑅𝑝
𝑖 (𝜏1)
d𝑠

]

⋅

(

𝑢̂𝑖
𝑤̂𝑖

)

= 0 , (b)

𝑚
∑

𝑖=1

⎡

⎢

⎢

⎢

⎣

(

𝐴 + 2𝐵
𝑅̄ + 𝐷

𝑅2

) d2𝑅𝑝
𝑖 (𝜏𝑗 )
d𝑠2

1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

) d𝑅𝑝
𝑖 (𝜏𝑗 )
d𝑠 −

(

𝐵 + 𝐷
𝑅̄

) d3𝑅𝑝
𝑖 (𝜏𝑗 )
d𝑠3

1
𝑅̄

(

𝐴 + 𝐵
𝑅̄

) d𝑅𝑝
𝑖 (𝜏𝑘)
d𝑠 −

(

𝐵 + 𝐷
𝑅̄

) d3𝑅𝑝
𝑖 (𝜏𝑘)
d𝑠3

𝐴
𝑅̄2 𝑅

𝑝
𝑖 (𝜏𝑘) −

2𝐵
𝑅̄

d2𝑅𝑝
𝑖 (𝜏𝑘)
d𝑠2 +𝐷

d4𝑅𝑝
𝑖 (𝜏𝑘)
d𝑠4

⎤

⎥

⎥

⎥

⎦

⋅

(

𝑢̂𝑖
𝑤̂𝑖

)

=

(

−𝑝𝑢(𝜏𝑗 )
𝑝𝑤(𝜏𝑘)

)

,
𝑗 = 3, 4,… , 𝑛 − 2
𝑘 = 2, 4,… , 𝑛 − 1

(c)

𝑚
∑

𝑖=1

[

(

𝐵 + 𝐷
𝑅̄

) d2𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠2

𝐵
𝑅̄
d𝑅𝑝

𝑖 (𝜏𝑛)
d𝑠 −𝐷

d3𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠3

]

⋅

(

𝑢̂𝑖
𝑤̂𝑖

)

= 0 , (d)

𝑚
∑

𝑖=1

⎡

⎢

⎢

⎢

⎣

(

𝐴 + 𝐵
𝑅̄

) d𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠

𝐴
𝑅̄𝑅

𝑝
𝑖 (𝜏𝑛) − 𝐵

d2𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠2

(

𝐵 + 𝐷
𝑅̄

) d𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠

𝐵
𝑅̄𝑅

𝑝
𝑖 (𝜏𝑛) −𝐷

d2𝑅𝑝
𝑖 (𝜏𝑛)
d𝑠2

⎤

⎥

⎥

⎥

⎦

⋅

(

𝑢̂𝑖
𝑤̂𝑖

)

=

(

0
0

)

, (e)

(32)

Box I.
hickness ℎ as

𝑠𝑧(𝑧) =
1

(

𝑧 + 𝑅̄
)2

(

∫

𝑧

𝑧
−
((

𝑧 + 𝑅̄
)

𝑅̄ 𝜎𝑠𝑠,𝑠(𝜁 ) + 𝑏𝑠(𝜁 )
)

d𝜁 + 𝜎𝑠𝑧
(

𝑧
)

)

,

(35)

here 𝑧 is chosen as the value of 𝑧 at the bottom of the beam. It
hould be noted that integral (35) is computed numerically using a
composite trapezoidal quadrature rule once the derivatives necessary
for the recovery are evaluated as

𝜎𝑠𝑠,𝑠 =
dQ11
d𝑠

(

𝜀0 − 𝑧𝑘0
)

+Q11

(

d𝜀0
d𝑠 − 𝑧d𝑘

0

d𝑠

)

= Q11

((

d2𝑢
d𝑠2

+ 1
𝑅̄
d𝑤
d𝑠

)

− 𝑧
(

− 1
𝑅̄
d2𝑢
d𝑠2

+ d3𝑤
d𝑠3

))

,
(36)

having assumed, without loss of generality, that Q11 is constant for each
layer along 𝑠, as it is in the case of homogeneous anisotropic materials
(including orthotropic ones) in which the fibers have a constant ori-
entation 𝛼 with respect to the beam axis, and, consequently, the term
dQ11
d𝑠 vanishes.
With reference to Eqs. (35) and (36), it is clear that to apply

the proposed post-processing technique, a highly regular displacement
solution is needed. More specifically, the required derivatives need to
be computed from a C2-continuous displacement solution, which can
be achieved using, e.g., isogeometric analysis.

5. Numerical tests

We now consider a quarter of curved cantilever beam that is
clamped at one end (𝑠 = 0) and loaded with a tip force 𝐹 = 1 in
negative 𝑋1-direction at 𝑠 = 𝑅̄𝜋∕2, being 𝑅̄ the mean radius (see
Fig. 2). The thickness of every single layer is set to 1 mm, and the
mean radius 𝑅̄ is 𝑆 times larger than the total thickness of the laminate
𝑡, 𝑆 = 𝑅̄∕𝑡, while the base 𝑏 = 𝑡. Thus, 𝑆 represents the inverse of
he slenderness parameter or mean radius-to-thickness ratio. Layer
aterial parameters taken into account for all the proposed numerical
ests are summarized for 0◦-oriented plies in Table 1, whereas all stress
rofiles in the local reference system are then normalized as

𝜎𝑠𝑠 =
𝜎𝑠𝑠
𝑆2

, (37)

𝜎𝑠𝑧 =
𝜎𝑠𝑧
𝑆

. (38)

For this benchmark, we present and comment several numerical
esults investigating different types of cross-ply laminates featuring
0◦/90◦ stacking sequence starting from the bottom to the top of
7

Fig. 2. Curved cantilever beam: geometry and boundary conditions.

Table 1
Material properties for 0◦-oriented layers.
𝐸1 𝐸2 𝐸3 𝐺23 𝐺13 𝐺12 𝜈23 𝜈13 𝜈12
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [–] [–] [–]

25 000 1000 1000 0.2 0.5 0.5 0.25 0.25 0.25

the composite. We model beams with 𝑆 = {20, 50} featuring both
odd and even number of layers (i.e., # layers = {3, 4, 11, 14}) and, in
Figs. 3 and 4, we show the good approximation of the normal stress
profiles computed with 𝑝 = 6, which fulfills the continuity requirements
described in Section 4, and 16 knot spans for two distinct sampling
points: 𝑃1 = 0.1𝑅̄𝜋∕2, close to the clamped boundary, and 𝑃2 =
0.9𝑅̄𝜋∕2, in the proximity of the Neumann’s boundary. To study this
beam problem, we consider both an IGA collocation method, whose
strategy has been depicted in Section 3.3, as well as an IGA Galerkin
approach, such that, to clamp the beam following [34], we impose
that the displacement field of the first control point and the transverse
displacement of the second control point are zero (i.e., 𝑢̂1 = 𝑤̂1 =
𝑤̂2 = 0). Following [78], the obtained transverse shear stresses are
validated against an overkill 3D solid Finite Element Abaqus solution
(version Abaqus/CAE 2023) comprising C3D20R elements (i.e., 20-
node quadratic brick elements with reduced integration) as detailed for
the considered varying number of layers and mean radius-to-thickness
ratios in Table 2.
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Fig. 3. Profiles of the normal stress through the beam thickness at different sampling locations considering structures with # layers = {3, 4} and 𝑆 = {20, 50}. Results obtained
taking into account 16 knot spans and 𝑝 = 6.
The normalized stresses obtained with either an IGA Galerkin or
IGA collocation approach prove in all cases to accurately capture the
behavior of both symmetric and antisymmetric cross-ply structures, as
well as reproducing the ply-wise jumps happening at the interface level
even for a rather small slenderness beam ratio (i.e., 𝑆 = 20). Further
8

tests have been carried out for the minimum degree requirement of
the displacement field approximation (i.e., 𝑝 = 4), leading to a less
accurate solution for collocation. We acknowledge that the considered
beam tests would, in principle, suffer from locking due to the curvature
of the structure. However, in the isogeometric analysis framework, in
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Fig. 4. Profiles of the normal stress through the beam thickness at different sampling locations considering structures with # layers = {11, 14} and 𝑆 = {20, 50}. Results obtained
taking into account 16 knot spans and 𝑝 = 6.
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Fig. 5. Profiles of the transverse shear stress through the beam thickness at different sampling locations considering structures with # layers = {3, 4} and 𝑆 = {20, 50}. Results
obtained taking into account 16 knot spans and 𝑝 = 6.
addition to the usual post-processing techniques to achieve smooth
stress results, a simple way to alleviate locking is elevating the basis
10
order (see, e.g., [79] and references therein). Specifically, in our work,
we utilize approximation degree 𝑝 = 6, which proved to be a reasonable
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Fig. 6. Profiles of the transverse shear stress through the beam thickness at different sampling locations considering structures with # layers = {11, 14} and 𝑆 = {20, 50}. Results
obtained taking into account 16 knot spans and 𝑝 = 6.
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Fig. 7. Relative error of the maximum transverse shear stress value through the beam thickness for various slenderness parameters (i.e., 𝑆 = {20, 30, 40, 50}) and different number
of layers (namely # layers = {3, 4, 11, 14}) at 𝑃2 = 0.9𝜋∕2 considering 𝑝 = 6.
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Table 2
Total number of C3D20R elements considered to build the overkill 3D solid Finite Ele-
ment Abaqus solution for the examined number of layers and mean radius-to-thickness
ratio.

3 layers 4 layers 11 layers 33 layers

𝑆 = 20 55,584 81,216 108,432 135,504
𝑆 = 30 127,744 192,256 256,256 320,768
𝑆 = 40 330,572 497,552 665,016 831,996
𝑆 = 50 471,184 526,064 1,027,040 1,161,104

choice in line with [60,61] to obtain accurate results and correctly
reproduce the beam interlaminar stress behavior for both considered
discretization approaches.

5.1. The local stress recovery effect

For the same sampling points 𝑃1 and 𝑃2 and beam cases considered
n Figs. 3 and 4, we now investigate the performance of the local
stress recovery technique introduced in Section 4. Thus, starting from
the obtained IGA-G and IGA-C displacement solutions, we are able to
accurately reconstruct the transverse shear stress profiles in Figs. 5 and
6 by applying equilibrium equations directly at the locations of interest.

To further test the proposed approach, we investigate the conver-
gence of several beam cases which consider a progressively larger
slenderness ratio (i.e., 𝑆 = {20, 30, 40, 50}) and 3, 4, 11, and 14
layers, examining an increasing number of degrees of freedom and an
approximation degree 𝑝 = 6. It is worth noticing that the process to
build our overkill reference solution is rather expensive for laminates
characterized by a high number of plies, as we utilize a layerwise
approach (see, e.g., [80] and references therein) that necessarily needs
1 element to model each layer and namely 2 per ply to obtain accurate
profile solutions in practice. Thus, in Fig. 7, we assess the convergence
of both the IGA-G and the IGA-C approaches coupled with the presented
post-processing technique at 𝑃2, which corresponds to a point where the
interlaminar transverse shear is more relevant for this benchmark and
examine the relative error of the maximum value of this stress compo-
nent along the beam thickness. In fact, after the post-processing step is
applied, which is fundamental as we cannot directly assess interlaminar
shear stresses using Euler–Bernoulli constitutive equations, we are able
to obtain accurate results using both IGA-C and IGA-G even considering
a relatively coarse mesh comprising 16 knot spans along the beam axis.
Overall, the post-processing approach seems to be particularly suitable
for tackling slender beams characterized by a significant number of
layers. The error plots prove to be rather stable for the isogeometric
Galerkin case starting from 8 knot spans, whereas for collocation, we
need to consider 16 elements to encounter this type of behavior. In
fact, after considering this level of refinement, we observe that the
modeling error, given by the a posteriori step, dominates over the
approximation one; thus, further refinement operations do not seem to
provide a significant benefit in terms of accuracy for the considered
tests, confirming what has been observed in [61,63]. More specifically,
both IGA-G and IGA-C provide errors in the order of 0.7% or lower for
# layers > 3, and even in the case of 3 layers, the error does not exceed
1.2%.

6. Conclusions

In this work, we extend the equilibrium-based stress recovery pro-
posed in [60,63] to study the transverse shear behavior of laminated
Euler–Bernoulli curved beams that do not provide a direct assessment
of the interlaminar shear stress using constitutive relations. To this
end, we first compute the displacement field solution in the curvilinear
system convenient for the description of the beam, whose problem
definition features high-order PDEs in primal form that can be eas-
ily approximated by leveraging IGA shape functions higher-continuity
13
properties. In this work, we also consider the coupling between mem-
brane and bending behavior, whereas in [60] we account for only
bending behavior in the context of Kirchhoff’s plates. A systematic
reduction of the 3D composite constitutive relation is examined with
exact integration through the laminate thickness to include the com-
plete stacking sequence information in our formulation, which allows
for an accurate solution utilizing both an isogeometric collocation and
a Galerkin method. As the interlaminar shear stress is not directly
available considering an Euler–Bernoulli formulation, we propose to
perform a local stress recovery via simple numerical integration of
curvilinear equilibrium equations. Given the chosen beam description,
the high-order derivatives required for this a posteriori step are quan-
tities already referred to the beam axis. As a result, the proposed
approach avoids performing any change of coordinates, thereby pro-
viding an even more straightforward stress recovery for this simpler
type of structure than in [63]. The accuracy of the proposed method
is proven for both Galerkin and collocation approaches, considering
either symmetric or non-symmetric ply distributions. Our numerical
tests confirm the effectiveness of the proposed approach, particularly
for slender laminated beams comprising a relevant number of layers.

Further research topics currently under investigation consider the
extension of this approach to more complex variational formulations,
such as Kirchhoff–Love shells, and the inclusion of material and geo-
metrical nonlinearities. Moreover, among future study directions, we
highlight that this formulation can be easily applied to investigate
e.g., energy harvesting or mems devices from composite beams pro-
duced at different lamination.
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