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ABSTRACT

This paper presents an enhanced verification and validation (V&V) framework that allows as-
sessing the robust stability and performance of uncertain systems. Although robustness analysis
techniques have been available for decades, they have not been integrated into the default indus-
trial processes. To facilitate the use of robustness analysis techniques, a step-by-step approach has
been developed.
The framework combines various V&V techniques including worst-case analysis, sensitivity anal-
ysis, and optimization within both the time and frequency domain. The outcome of the framework
is the worst-case stability/performance metric and the ranking of the most influential uncertainties
that cause the metric degradation. To illustrate the steps in the framework, the V&V techniques
are applied on the normal mode of the satellite MetOp-SG (SAT-B). The results show that the
worst case is efficiently found by avoiding time consuming simulations.
This implies that time and costs in the V&V procedure can be reduced through tailored V&V
tools and helps to reduce the gap between AOCS/GNC design complexity and mission time and
cost constraints.

1 INTRODUCTION

Current and future space missions require increasingly more complex AOCS/GNC designs for strin-
gent performance requirements. At the same time, the cost and time constraints for missions scale at
a smaller rate compared to the complexity. This gap between increased complexity and mission time
and cost constraints are tackled through industrial efficient in the established V&V procedures.
The default method for V&V of AOCS/GNC systems are Monte Carlo (MC) simulation campaigns.
Uncertainties in the system are randomly sampled and the variations in the outputs are analyzed and
compared to a given requirement. The major benefit of this approach is its easy implementation,
its applicability to any kind of system, and the probability assessment of given requirements. This
comes at the cost of large amount of time-consuming simulations, missing the worst-case scenario,
and giving no insights into the system drivers.
To tackle the drawbacks of the default method, an alternative approach based on worst-case analysis is
proposed. The new framework relies on various V&V techniques including robustness analysis based
on µ-analysis [1], sensitivity analysis, and optimization. It shifts most of the V&V activities from
the time to the frequency domain. This saves time because frequency analysis can be faster than in
the time domain. By combining robustness and sensitivity analyses, it is possible to not only find the
worst-case scenario, but also to identify the uncertainties that are driving the system’s performance
degradation. The added benefit from this new V&V framework is demonstrated on a realistic case
study based on the MetOp-SG (SAT-B) in its normal mode.
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Figure 1: Overview of the enhanced V&V framework.

The paper is structured as follows. In section 2, the new V&V framework is presented. In section
3, the MetOp-SG (SAT-B) is introduced and the V&V problem is formulated. In section 4, the
application of the V&V framework on the MetOp-SG (SAT-B) example is demonstrated. Finally,
conclusions are given in section 5.

2 ENHANCED V&V FRAMEWORK

The enhanced V&V framework consists of four steps as illustrated in Figure 1. Firstly, the uncertain
closed loop system has to be modeled using the linear fractional transform (LFT) framework. This
includes the kinematics and dynamics of the plant and any other relevant dynamical parts of the
closed loop system. Secondly, a sensitivity analysis is conducted to identify the uncertainties that
degrade the stability and performance metrics the most. Thirdly, a robustness analysis is conducted to
determine the worst-case parameter combination for each metric. Lastly, this worst-case is inserted
into a simulator. The results can be compared to the default method of conducting Monte Carlo
simulation campaigns directly. Details of the first three steps are given in the following.

2.1 System Modelling

The enhanced V&V framework analyses a control loop given in form of the standard formulation
shown in Figure 2. The plant dynamicsG(s) are interconnected with the controllerK(s) in a feedback
loop. This closed-loop system is excited by noise n and disturbances d. These inputs are propagated
through the closed-loop system to the outputs of interest. Typically, these are the attitude errors e and
control effort u. In this paper, only the attitude error is analyzed.
To obtain a physical representation of the inputs shaping filters Wn(s), Wd(s) are introduced. Un-
der the assumption that the inputs Wn, Wd are stationary random processes in form of unity white
noise, their frequency content is properly defined by their power spectral density (PSD). The output
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Figure 2: Standard formulation of the control loop for the enhanced V&V framework.

is weighted according to the specified performance metric. In attitude control problems, there are
standardized metrics that describe (windowed) attitude errors such as, among others, absolute point-
ing error (APE) and relative pointing error (RPE). In [2], [4], [5] the exact weighting functions have
been derived for the various metrics. These have been expressed as rational shaping filters F̃metrics(s)
summarized in [8].
To include uncertainties in the control loop the nominal plant is extended to an uncertain plant through
the LFT framework. In Figure 2, the uncertainties of the plant are presented by ∆. An input per-
turbation p is introduced for stability analysis problems. The corresponding uncertainty ∆p allows
assessing how large this perturbation can be until the closed-loop system becomes unstable.

2.2 Sensitivity Analysis

Whereas the robustness analysis quantifies how large the worst-case stability and performance metric
is, sensitivity analysis quantifies the influence of each uncertainty to the metric degradation. These
two analyses are combined to take advantages of each method. First, the sensitivity analysis is con-
ducted to rank the influence of each uncertainty. This information is used to reduce the complexity
of the plant LFT model. The full LFT model is reduced to a sesnsitive LFT model by removing in-
sensitive uncertainties from the model. This greatly reduces the computational time of the robustness
analysis. Additionally, the information is helpful for identifying system drivers. The design can be
improved by reducing the uncertainty range of the sensitive parameters.
In the enhanced V&V framework, the sensitive uncertainties are identified using the elementary effect
(EE) metric from the field of global sensitivity analysis (GSA). The term global implies that the whole
uncertainty space is explored. In contrast, local techniques are limited to analysis around a given point
in the uncertainty space. The EE extends the idea of finite difference to the global uncertainty space.
Let y = f(∆) be a generic function for the computation of the stability and performance metrics for
a given uncertainty sample of the plant ∆j , then the EE is defined as [7]:

δyEEi,j =
f(∆j + ki,jei)− f(∆j)

ki,j
(1)

where i = {1, . . . , n} is the i-th uncertainty, j = {1, . . . , r} is the number of picked samples, and ei
is the i-th canonical vector.
The sensitivity metric used in the enhanced V&V framework is the absolute mean value over all
samples:

δyEEi = E{|δyEEi,j |} (2)

Hence, there is one sensitivity metric per uncertainty. The larger the sensitivity metric is the more
influence it has on stability and performance metrics. The uncertainties are ranked from most sensitive
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Figure 3: Sorting of most sensitive uncertainties by the elementary effect.

to least sensitive by sorting their corresponding sensitivity metric in form of a histogram. An example
of this ranking is shown in Figure 3 a). Alternatively, the ranking can be represented by a normalized
cumulative histogram. This representation is utilized to define a threshold between sensitive and
insensitive uncertainties. In Figure 3 b), a threshold is set at 90%, so that only two uncertainties are
considered instead of five.
In case of uncertain systems represented as LFTs, the function evaluation in (1) consists of simply
substituting the LFT with the picked sample and evaluating the stability or performance of the result-
ing linear time-invariant (LTI) system.

2.3 Robust Stability Analysis

The most commonly used stability metrics are the gain, phase, and modulus margins in the AOCS/GNC
domain. The choice of the margin influences the type of input perturbation in Figure 2. The stability
margins can be computed directly from the open loop system and sensitivity function for a nominal
system, i.e. no uncertainties. The computation does not require the inputs and outputs of the intercon-
nection in Figure 2, because it is an inherent property of the linear system. When plant uncertainties
are introduced, the margins are expected to degrade to lower values. To quantify this degradation,
the problem can be recast as a skewed µ-analysis [9]. It splits the uncertainty space into the plant
uncertainties ∆ and perturbation uncertainties ∆p. The plant uncertainties are fixed to lie within a
predefined size, whereas the perturbation uncertainty is scaled until the system becomes unstable.
The LFT formulation of the gain, phase, and modulus margin perturbation is given by:

pgm = 1 + δr = Fu

([
0 1
1 1

]
, δr

)
(3)

ppm = ejφ =
1− jδr
1 + jδr

= Fu

([
−j −2

√
j√

j 1

]
, δr

)
(4)

pmm = 1 + δc = Fu

([
0 1
1 1

]
, δc

)
(5)

where δr ∈ R, δc ∈ C and Fu(M,∆) is the shorthand notation for the upper LFT. Solvers for this
kind of problem are given in [16].
The stability of the system could also be analysed using the robust stability analysis of the µ-analysis
directly. In this analysis, no input perturbation is assumed, but the size of the plant uncertainty is
increased until the closed-loop system becomes unstable. Although this is useful additional informa-
tion, most stability requirements are given as margins. Therefore, it is not used in this paper.
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2.4 Robust Performance Analysis

Performance analyses are conducted for specific channels of the closed-loop system. Using the inter-
connection in Figure 2, the input and output relations are expressed in terms of the complementary
sensitivity function T (s) and sensitivity function S(s):

e =
[
F̃metricTWn −F̃metricFu(G,∆)SWd

]︸ ︷︷ ︸
He(s)

(
wn

wd

)
(6)

Note that the input perturbation is disregarded for this analysis and the Laplace variable argument is
left out for brevity.
In the AOCS/GNC domain performance metrics are commonly given in form of PSDs or the (win-
dowed) attitude error metrics. The PSD requirement can be directly analysed using the robust perfor-
mance (RP) analysis of the µ-analysis. In [1], [3], it is shown that the RP µ-analysis is equivalent to
the H∞-norm:

max
∆∈∆
‖Fu(Hzw(jω),∆)‖∞ < γ (7)

where Hzw(s) is a given transfer function from w to z, γ is the robust H∞-norm, and the uncertainty
is confined to the unit ball B∆ = {∆(s) ∈∆ : ‖∆‖∞ ≤ 1}. In terms of the interconnection in Figure
2, the transfer function chosen according to one (or several) performance channels in (6). The output
filter Fmetric(s) is can be set as the inverse of the PSD requirement, if a proper and stable rational
expression exists. In this case, it is sufficient to show that the robust H∞-norm of (7) is less than one
[11]. Alternatively, the output filter is set to unity, then the resulting robust H∞-norm per frequency
point has to be compared to the given PSD requirement.
The second performance type is the (windowed) attitude error metrics. In [10], it is shown that this
metric can be evaluated using the H2-norm. In the frequency domain, it can be interpreted as the
integral over the system magnitude. In the following, a single input single output (SISO) system is
assumed.

‖Fu(Hzw,∆)‖2 := max
∆∈∆

(
1

2π

∫ ∞
−∞
|Fu(Hzw(jω),∆)|2dω

)1/2

(8)

The magnitude of the LFT in equation (8) is replaced by the robust performance µ-problem of equa-
tion (7) for each frequency point [14].

‖Fu(Hzw,∆)‖2 ≤
(

1

2π

∫ ∞
−∞

max
∆∈∆
‖Fu(Hzw(jω),∆)‖2

∞ dω

)1/2

(9)

The equation (9) is an upper bound with respect to (8), because the magnitude of the transfer func-
tion is maximized for each frequency point. This results in possibly multiple worst cases for each
frequency point, whereas equation (8) only has one worst case for the whole integral. The integral is
computed numerically, whose error is minimized using an adaptive integration scheme.

2.5 Local Optimization

The major drawback of utilizing the sensitive LFT is that not all uncertainties are considered in the
robust stability and performance analyses. To recover the effect of the neglected uncertainties, a local
optimization on the robustness metric is performed based on the sequential quadratic programming
(SQP) method:

min
x∈∆

f(x)

subject to − 1 ≤xi ≤ 1
(10)
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Figure 4: Artistic illustration of MetOp-SG SAT-B (left) adjusted from [15], and multi-body model (right).

Table 1: Stability and performance requirements.

Metric Requirement

Gain margin 6 dB
Phase margin 6 dB

Modulus margin 0.5
APE 61.88 arcsec

The meaning of f(x) is equivalent to elementary effect definition in (1). Note that for performance
metrics the minimum has to be changed to a maximum to obtain the worst case.
The initial guess is the worst-case parameter configuration obtained from the robust stability and
performance metrics in the section 2.3 and 2.4. This analysis uses the sensitive LFT, so that only
worst-case parameters for the sensitive uncertainties are available. The initial value of all insensitive
values are set to zero (nominal value).

3 METOP-SG PROBLEM FORMULATION

3.1 Mission Description

The enhanced V&V framework is demonstrated on the MetOp-SG SAT-B satellite, which includes a
vast range of uncertainties and slowly time-varying parameters throughout the mission. The satellite
is planned to fly in a Sun-synchronous orbit around the Earth at a mean altitude of about 835 km. In
the normal mode, its attitude is mainly nadir pointing towards the Earth. In this mode it uses star
trackerss (STRs) to determine its attitude and reaction wheels as actuators.

3.2 Closed-loop Model for normal mode

The MetOp-SG SAT-B satellite is modeled as a multi-body consists of the central body (CB), solar
array (SA), two SAs and fuel tank (F). An illustration of the multi-body model is given in Figure
4. The kinematics and dynamics of this system are modeled according to the Two-Input Two-Output
Port (TITOP) from [13]. The central body and fuel tank are modeled as rigid bodies, and the solar
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Figure 5: Bode diagram for the plant transfer function (x-axis) with normalized frequency axis.

Table 2: Uncertainties for the AOCS benchmark.

Uncertainty Symbol Range Repetition

Central body mass mcb 10% 3
Central body MoI Jcb 20% 6
SA mass msa 10% 5
SA MoI Jsa 20% 3
SCA (1) mass msca1 10% 5
SCA (1) MoI Jsca1 20% 3
SCA (2) mass msca2 10% 5
SCA (2) MoI Jsca2 20% 3
Fuel mass mf 23.2% 6
SADM angle θsadm [−π, π] 16
Cantilever frequency S/A ωsa 10% 12
Cantilever frequency SCA1 ωsca1 10% 4
Cantilever frequency SCA2 ωsca2 10% 4

array and scatterometers are flexible appendages. In this model, the central body is interconnected
with the appendages using feedback loops. Uncertainties are introduced for each component of the
multi-body model resulting in LFTs for each component. It is possible to form one LFT out of all the
LFT blocks using the LFT algebra [6]. The uncertainty block of the LFT has the size 72× 72 with 20
uncertainties and there are 26 states. The inputs and outputs of the plant are the torques and attitude
angles in the three axes.
The plant LFT is verified by comparing the frequency response of the LFT with linearized models
from the nonlinear Simulink model. In Figure 5, the Bode diagram for the transfer function from the
torque to the attitude angles for randomly sampled uncertainties are shown. The difference between
the two models is indistinguishable, which indicates that the LFT model matches the linear behavior
of the nonlinear simulator around the trim condition.
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Table 3: Sensitive uncertainties for the stability metrics.

Gain margin Phase margin Modulus margin

x-axis Jsa, θsadm, Jcb, msa, msca1 Jsa, Jcb, θsadm, msa, msca1 Jsa, Jcb, msa, θsadm, msca1

y-axis Jcb, mf , mcb, Jcb, mf , θsadm, msca1 Jcb, mf , θsadm, msca1

z-axis Jcb, Jsa, θsadm, mf , Jsca2 ,
Jsca1

Jcb, Jsa, θsadm, mf , msca2 ,
Jsca2

Jcb, Jsa, θsadm, mf , Jsca1 ,
msca1

Table 4: Sensitive uncertainties for the performance metrics.

APE for He(s)

x-axis Jsa, Jcb, msa, msca1

y-axis Jcb, mf , mcb

z-axis Jcb, Jsa, mf , msa, Jsca1

The described plant LFT is interconnected with the normal mode controller as shown in Figure 2. The
attitude angles are feedback to the controller, which turns them into torque commands. The controller
is a PID-based controller with various additional filters. The controller is designed to gain stabilize the
flexible modes of the satellite for the normal mode. In this mode, the satellite points its instruments
towards the Earth with high accuracy using STR and reaction wheels. The number of states of the
controller are 28.
The noise and disturbance inputs to the system have to be described by the shaping filters Wn(s),
Wd(s) for the performance analysis. The noise stems from the STR measurement error. The error
model for the follows the standards given in [12], where the total noise consists of the summation of
temporal, low spatial frequency error, and high spatial frequency error. The resulting shaping filter
Wn(s) has a size of 3× 9 with 6 states. The disturbances are external torques from the environment.
The model includes effects from aerodynamic drag, gravity gradient torque, magnetic torque, and
solar radiation pressure. The resulting shaping filter Wd(s) has a size of 3× 12 with 21 states.

4 WORST-CASE ANALYSIS

4.1 Sensitivity Analysis

In the sensitivity analysis, the uncertainties defined in Table 2 that mostly affect the stability and per-
formance metrics from Table 1 are identified according to the method described in 2.2. The sensitivity
analysis requires a predefined number of samples r according to (1), which is chosen to be 50. These
samples are perturbed for each uncertainty resulting in r(n+ 1) = 1050 total function evaluations.
The most sensitive uncertainties within 90% of the cumulative histogram, see example in Figure 3, are
summarized for stability and performance metrics in Table 3 and Table 4 respectively. For illustrative
purposes, the cumulative histogram for the performance channel in the x-axis is shown in Figure 6.
In this example, the moment of inertia (MoI) of the SA Jsa has the largest sensitivity metric, whose
value is roughly 46% of the summation of all sensitivity metrics combined. There are three more
uncertainties (Jcb, msa, msca1) that contribute up to 90% of the total. Therefore, four uncertainties are
identified as sensitive according to Table 4. The same procedure is conducted for the other axes and
stability metrics.
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Figure 6: Normalized cumulative mean EE for the performance channel in the x-axis.

The result of the sensitivity analysis indicates various properties of the system. Firstly, the tables
reveal that most of the sensitive parameters belong to the mass and MoI of the various multi-bodies.
The cantilever frequencies do not appear as sensitive uncertainties. This is a reasonable result, because
the controller suppresses the flexible modes through gain stabilization, i.e. the controller does not
react to high frequency excitations. Thus, the contribution of the flexible modes on the H2-norm are
negligible.
Secondly, the mass uncertainties also influence the attitude system. It changes the MoI of the multi-
body system because of the parallel axis theorem which includes the mass:

JA = JB +m
(
r̃BA

)T
rBA (11)

for two arbitrary reference points A and B and a torque arm rBA. The central body has the largest
MoI in terms of its principal axes for this particular example. Therefore, the central body uncertainty
Jcb is expected to have a significant influence on the performance metrics. However, the arms of the
appendages in the form of rBA are large enough, so that masses of appendages also influence the MoI.
Thirdly, the solar array drive mechanism (SADM) angle is influential in almost all stability and per-
formance channels. This is the result of the relatively large solar array compared to the central body.
The torque arm is the largest for this appendage.
Lastly, the table shows that the number of uncertainties for the LFT can be reduced by more than
half for both stability and performance analysis. The largest number of sensitive uncertainties are
6 compared to 20 for the full LFT. This helps to significantly reduce the computation time for the
subsequent robustness analysis using the µ-analysis.

4.2 Robust Stability Analysis

Sensitive LFTs with a reduced number of uncertainties are created based on the sensitivity analysis
results from Table 3. The µ-analysis is applied to the system to determine the robust gain, phase, and
modulus margin according to section 2.3.
The results are summarized for each control axis in Table 5. The nominal values (fourth column)
are the stability metrics when no uncertainties are present. The robust stability metrics (fifth column)
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Table 5: Stability robustness metrics for the nominal and robust controllers

Metric Unit Nominal Robust Robust
(local optimization)

x-axis Gain margin [dB] 15.06 13.24 12.99
Phase margin [deg] 48.88 46.85 46.49
Modulus margin [-] 0.77 0.74 0.73

y-axis Gain margin [dB] -15.25 -13.93 -13.77
Phase margin [deg] 47.68 45.10 44.64
Modulus margin [-] 0.78 0.76 0.76

z-axis Gain margin [dB] 11.28 9.75 9.53
Phase margin [deg] 50.51 49.49 49.16
Modulus margin [-] 0.71 0.66 0.65

Table 6: Performance robustness metrics.

Metric Unit Nominal Robust Robust
(local optimization)

x-axis APE [arcsec] 3.83 3.87 3.88

y-axis APE [arcsec] 2.60 2.63 2.64

z-axis APE [arcsec] 1.80 1.81 1.81

are the result of the worst-case analysis using only the most sensitive uncertainties. The difference
between the nominal and robust values shows the influence of the uncertainties on the margins. In
this example, the uncertainties degrade the margins by around 1-2 dB and 1-3 deg. The requirements
from Table 1 are still all met because of the relatively high nominal margins.
The results of the robust margins can be illustratively using the Nichols plot. In Figure 7, the nominal
system response is shown as a solid blue line. By randomly sampling 1000 uncertainties from Table
2, this nominal response varies indicated by the solid grey lines. The variations are bounded by the
worst-case stability margins. In this example, the gain and phase margins have two different worst-
case parameter combinations and the worst-case modulus margin is equal to the gain margin. The
worst-cases belong to the sixth column of Table 5, which is explained in more detail in section 4.4.

4.3 Robust Performance Analysis

Sensitive LFTs with a reduced number of uncertainties are created based on the sensitivity analysis
results from Table 3. The µ-analysis is applied to the system to determine the robust performance
metric according to section 2.4.
The results are summarized for each control axis in Table 6. The table is structured analogous to the
stability metrics in Table 5. In this example, the uncertainties increase the APE metric only marginally
by less than one arcsec. The results indicate a robust controller, which mets the requirements given
in Table 1 with large margins.
The results of the robust margins can be illustratively using the cumulative single sided (SS) power
spectrum (PS). It is the integration of the magnitude over the frequency according to (8) and (9). As
an example, the cumulative SS PS for the x-axis is visualized in Figure 8. The nominal system re-
sponse is shown as a solid blue line and the perturbed system response using 1000 randomly sampled
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Figure 7: Worst-case stability margins for x-axis.

Figure 8: Worst-case attitude performance for He(s) (x-axis).

uncertainties is indicated by the solid grey lines. The upper (dashed red line) and lower (dotted orange
line) bounds belong to the µ-analysis for the robust H2-norm. The lower bound values correspond to
the fifth column of Table 6. The upper bound is always larger than the random samples, but the lower
bound is smaller for some cases. The reason for this behavior is that the lower bound only considers
the sensitive uncertainties, whereas the random samples consider all uncertainties in Table 2. This is
improved by the local optimization detailed in the following section.

4.4 Local Optimization Analysis

The robustness analysis for the stability and performance based on the µ-analysis in the sections
4.2 and 4.3 only considered the sensitive uncertainties. To include the insensitive uncertainties, a
local optimization is performed. The worst-case parameter combinations from robust metrics in the
fifth column of Table 5 and Table 6 are used as an initial guess for the local optimizer. Insensitive
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Figure 9: Worst-case parameter combination for He(s) (x-axis).

uncertainties are set to their nominal value of zero. A maximum of 200 function evaluations is set for
the SQP solver to limit the number of iterations.
The final values from the solver are the sixth columns of Table 5 and Table 6. In both tables, the
optimizer finds slightly more degraded metrics compared to the robustness analysis with the sensitive
uncertainties (fifth column). This degradation is not as large as the degradation between the nominal
(fourth column) and robust (fifth column) values. This indicates that the sensitive LFTs are able to
capture most of the metric degradation. The gap between column five and six could be reduced by
setting a larger threshold for the sensitive uncertainties, e.g. increasing the threshold value from 90%
to 95%.
The gap is illustrated for the worst-case performance metric (x-axis) in Figure 8. After optimizing
the lower bound from the fifth column of Table 6, the optimized lower bound (sixth column) is larger
than the 1000 random samples. The corresponding worst-case parameter combinations are shown in
Figure 9. The normalized values of the worst case are plotted in the y-axis for each uncertainty in
the x-axis, which are sorted from most to least sensitive. The robustness analysis with the sensitive
LFT only includes the four uncertainties, whereas the local optimizer considers all 20 uncertainties.
The figure shows that the values of the sensitive uncertainties are unchanged except for one after the
optimization. It mainly optimized all other masses and MoIs. Many of the cantilever frequencies
are unaltered by the optimizer. This is reasonable because the flexible modes of the appendages are
suppressed by the controller, so that they do not influence the performance metric.

4.5 Comparison with Monte Carlo Simulations

The alternative to the worst-case analysis from the enhanced V&V framework is to conduct Monte
Carlo simulations directly on the nonlinear simulator. This comparison is shown for the performance
metric. Compared to the frequency analysis, the simulations take a long time because low frequency
content has to be simulated for the APE requirement, while at the same time high frequency content
from the flexible modes are simulated.
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Figure 10: Worst-case Monte Carlo simulation (x-axis).

In Figure 10, the results of 1000 Monte Carlo simulations are shown for the APE in the x-axis.
Compared to the worst-case metric obtained from the enhanced V&V framework (sixth column in
Table 6), the Monte Carlo metrics are always below the worst-case. This result can be expected
because the considered study case only has nonlinearities in the plant, which can be well represented
by the linear plant LFT as shown in Figure 5.

5 CONCLUSION

The demonstration of the enhanced V&V framework on the MetOp-SG example has demonstrated
a systematic approach to gain insights into the uncertain system behavior. The first step to better
understand the system is to model the uncertain dynamics in form of a physical LFT. Unlike the
numerical linearization method, the effect of uncertainties can be directly traced back to the LFT
equations. This comes at the expense of increased modeling effort.
In the second step, the sensitivity analysis quantifies the effect of each uncertainty. This information
is useful in multiple ways. The overall performance of the system can be enhanced by reducing
the uncertainty range of the most sensitive parameters. For instance, this can be achieved through
calibration before or during a mission. Additionally, the sensitivity analysis has been used to reduce
the complexity of LFT as shown in this paper. Instead of analyzing all 20 uncertainties, it has been
shown that mainly six or less uncertainties are significantly affecting the system’s performance. By
reducing the LFT to the much smaller size, the µ-based robustness analysis is very efficient to find the
worst cases. The worst-case analysis in the frequency domain helps to identify the frequency range
in which the uncertainties affect the system the most. This information is useful to redesigned the
controller if necessary.
In contrast, the worst-case metric found by the traditional MC analysis is smaller for all considered
systems. Especially when the performance evaluation is very time-consuming (e.g. high-fidelity
simulations), this method is not very efficient. Although it provides a probabilistic assessment of the
worst-case performance, it gives no quantifiable insight, which uncertainty is driving the performance
degradation.
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The enhanced V&V framework is limited to linear problems such as the presented normal mode
of MetOp-SG. Other modes, where for example transient and nonlinearities such as saturations are
present, would require a different analysis approach.
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