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VII

La strada si scopre soltanto percorrendola.
Guai a rimanere bloccati di fronte ad un crocicchio di vie
e non decidersi mai a tentarne una.
La rivelazione della strada avviene lungo la strada.
Non prima.
La strada giusta la si scopre soltanto dopo che si è deciso,
coraggiosamente, di uscire all’aperto
e di partire in esplorazione.
Certo si corrono dei rischi.
Ma il rischio maggiore è quello di non correre rischi.
E quando avremo percorso un bel tratto
ci volteremo indietro,
ma solo per un attimo: per valutare il tragitto,
gli ostacoli superati, le cadute, le forze rimaste...
Scopriremo di avere un panorama di fronte a noi,
ma ci accorgeremo che solo proseguendo il cammino
potremo giungere alla meta
ancora nascosta ai nostri occhi.
A. Lowen.





KURZFASSUNG IX

Kurzfassung

Die Erforschung kleiner Körper in unserem Sonnensystem, wie Asteroiden und Kometen, ist zu
einem wichtigen Schwerpunkt in den Planetenwissenschaften geworden, da sie Aufschluss über
die Entstehung des Sonnensystems und die Möglichkeiten der Ressourcennutzung geben können
und die Notwendigkeit besteht, die Risiken für die Planetenverteidigung zu bewerten und zu min-
dern. In-situ-Explorations- und Probenrückführungsmissionen zu diesen kleinen Körpern liefern
wertvolle Informationen über deren physikalische und chemische Eigenschaften, Zusammensetzung
und Umweltbedingungen. Autonomie ist von entscheidender Bedeutung, wenn es darum geht,
die Grenzen von Missionen zu kleinen Sonnensystemkörpern (SSSB) zu erweitern, indem Raum-
fahrzeuge in die Lage versetzt werden, Aufgaben auszuführen und eigenständig Entscheidungen zu
treffen.
Diese Arbeit zielt darauf ab, einen Beitrag zur Weiterentwicklung der Autonomie bei SSSB-Missionen
zu leisten, wobei der Schwerpunkt auf der präzisen Landung von Mikro-Raumfahrzeugen liegt.
Die Forschung untersucht kritische Aspekte der autonomen Navigation und konzentriert sich dabei
auf die Wahrnehmung der Umgebung und die Entscheidungsfindung. LiDAR-freie visuelle Navi-
gation und KI-gestützte Landetechniken werden für die Fern- und Nahbereichsnavigation unter-
sucht. Die Dissertation enthält die folgenden Hauptbeiträge:
Erstens wird ein autonomes visuelles relatives Navigationssystem entworfen, implementiert und
getestet. Dieses System ermöglicht die Navigation von Raumfahrzeugen in Oberflächennähe durch
relative Messungen. Es verwendet einen neuartigen monokularen, simultanen Lokalisierungs- und
Kartierungsfilter (SLAM), der durch Höhenmessungen unterstützt wird und eine punktgenaue
Landung am Ziellandeplatz ermöglicht.
Zweitens wird eine KI-gestützte autonome Technologie zur Auswahl eines sicheren Landeplatzes
entwickelt, implementiert und getestet. Diese Technologie vereint Bildverarbeitungs- und maschinelle
Lernmethoden, erfordert minimale Benutzereingaben und bezieht die Landeanforderungen direkt
in den Algorithmus ein. Für die Validierung werden authentische Missionsbilder verwendet.
Diese Forschungsarbeit bietet Einblicke in die Herausforderungen und Möglichkeiten bei der Ver-
wirklichung von Autonomie in SSSB-Missionen. Die Arbeit schließt mit einer Zusammenfassung
der wichtigsten Beiträge, der Diskussion von Einschränkungen und Vorschlägen für zukünftige
Forschungsrichtungen, um die Navigationsfähigkeiten von Raumfahrzeugen bei der Erforschung
kleiner Körper in unserem Sonnensystem weiter zu verbessern.





ABSTRACT XI

Abstract

Exploring small bodies in our solar system, such as asteroids and comets, has become a significant
focus in planetary sciences due to their potential insights into the Solar System’s formation, re-
source utilization prospects, and the need to assess and mitigate planetary defense risks. In situ
exploration and sample return missions to these small bodies provide valuable information about
their physical and chemical properties, composition, and environmental conditions. Autonomy is
crucial in advancing the boundaries of small solar system body (SSSB) missions, enabling space-
craft to perform tasks and make decisions independently.
This thesis aims to contribute to the advancement of autonomy in SSSB missions, focusing on the
precise landing of micro-spacecraft. The research investigates critical aspects of autonomous nav-
igation, focusing on environment perception and decision-making. LiDAR-free vision-based nav-
igation and AI-assisted landing techniques are explored for far-range and close-range navigation.
The thesis presents the following main contributions:
Firstly, an autonomous vision-based relative navigation system is designed, implemented, and
tested. This system allows spacecraft to navigate in the proximity of the surface using relative
measurements. It employs a novel monocular simultaneous localization and mapping (SLAM)-
based filter assisted by altimeter measurements, enabling pinpoint landing at the target landing
site.
Secondly, an AI-assisted autonomous safe landing site selection technology is designed, imple-
mented, and tested. This technology fuses image processing and machine learning methods, re-
quiring minimal user input and incorporating landing requirements directly into the algorithm.
Authentic mission images are used for validation.
This research provides insights into the challenges and opportunities in achieving autonomy in
SSSB missions. The thesis concludes by summarizing the main contributions, discussing limita-
tions, and suggesting future research directions to further enhance spacecraft navigation capabili-
ties in exploring small bodies in our solar system.

Keywords: Autonomy, Autonomous Navigation, Asteroid Landing, Microlander, Machine Learn-
ing, Hazard Detection, Vision-based Navigation, AI-based Safe Landing Site Assessment, GNC,
Space Exploration.
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Chapter 1

Introduction

This chapter serves as the introduction, setting the stage for the research by highlighting the back-
ground and motivation behind the study. It outlines the challenges faced by Small Solar System
Bodies’ missions and identifies the need for innovative autonomy solutions. The objectives and scope
of the thesis are clearly defined to give the reader a clear understanding of what will be covered.

1.1 The Small Bodies Frontiers

The in situ exploration of Small Solar System Body, mostly asteroids and comets, is currently
at the forefront of planetary sciences. These bodies provide a window into the past of the Solar
System [11]. Asteroids, in particular, are remnant debris from planetary formation. They contain,
at various stages, the history of the birth of the Solar System. They can provide details of the core
formation process or the composition of the protoplanetary disk [12, 13]. Moreover, they can also
provide mechanisms for the formation of inner planets. Motivation for the exploration of Small
Solar System Body (SSSB) is well-grounded and strong; it has encouraged a large portion of the
planetary science community over the last years [14]. The main mission drivers are the following
top-level scientific objectives:

1. Science Research: The asteroids are key science targets, thought to be pristine objects
of the early formation of the Solar System. Significantly, organic molecules surveyed on the
surface could profoundly impact our understanding of the origin of life [15, 16].

2. Future resource: As resources on Earth become increasingly scarce, asteroids could represent
a strong potential for minerals and precious metals mining. They are the closest substantial
resources due to the Solar System’s formation, and the critical experience gained with the
next asteroid missions will represent a necessary improvement for mapping and analyzing
these unknown environments for resource exploitation [17, 18].

3. Planetary Defence: The risk assessment for the impact of asteroids has been considered
for almost two decades. Small bodies are continually colliding with Earth, and although the
chances of a significant asteroid impact are low in the near future, a constant evaluation of the
risk is necessary. Many planetary defense strategies have been developed, such as a kinetic
impactor to alter the target trajectory, and asteroids are the focus of the research on the latter
strategies [19–21].
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Figure 1.1: DART’s last complete image of the Dimorphos asteroid before impact. (NASA/APL)

1.1.1 Landing on SSSB

In situ studying and sample return missions allow for characterizing the environment, investigating
the surface’s physical and chemical properties, and understanding the composition and aggrega-
tion of the target body. Spacecraft missions to the asteroids are the only solution to get in situ
measurements, and there are several ways to achieve these measurements.

One of the first mission strategies is to fly by the body to gather precious information [22] and
collect particles around it [23]. The orbiting missions allow more time around the asteroid and,
consequently, a more extensive survey of the unknown environment. The Touch And Go (TAG)
approach only temporarily touches the surface [24], and the sample is obtained via a horn-like
fast mechanism. The mission concept is less complex than a traditional landing, and currently, no
landing has been attempted for large spacecraft. Landing has been accomplished only for smaller
spacecraft (CubeSat or microprobes [25]) to mitigate the risk of losing the mothership without
excessively altering the mission returns of surface measurements. These methods will be thoroughly
described in Section 2.2.4 and applied in several missions, which will be discussed in Section 1.2.1.

1.1.2 Autonomy: Key Enabling Technology for Precise Landing

Autonomy represents the leading research driver for this research as it has been identified as the
primary key enabling technology for future explorations [26–28]; in this section, the research is
motivated by stating the clear need for autonomous systems and deriving the principal key-enabling
technologies for autonomous precise landing.

Autonomy as a future mission enabler. Advancements in exploring celestial bodies are fo-
cused on achieving autonomy in mission operations. Autonomy pertains to a spacecraft’s capability
to perform tasks and make decisions independently, without requiring constant human intervention
[29]. The development of autonomy plays a crucial role in enabling spacecraft to navigate, land,
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and conduct scientific investigations on SSSBs, as evident in past and current missions [30].

Why more autonomy is needed? Advancing the boundaries of autonomy in upcoming missions
is crucial as we are reaching the limit of human intervention or ground in the loop for SSSB missions.
The need for autonomy becomes paramount to ensure higher performance, mainly when operating
at large distances where communication delays pose significant challenges. As missions become more
complex, either due to an increase in the number of probes or the exploration of multiple targets,
the importance of autonomy is further underscored [31]. Scenarios, where multiple spacecraft can
independently land and explore asteroid fields with minimal human intervention, are envisioned.

To meet these demands, further development of the mentioned technologies is imperative [32].
This includes advancing more sophisticated machine learning algorithms enabling spacecraft to learn
and adapt in real-time, improving their decision-making capabilities. Improved sensor capabilities
are also vital, allowing spacecraft to gather accurate and reliable data to inform their autonomous
operations. This encompasses advancements in optical, infrared, and Light Detection and Ranging
(LiDAR) sensors and integrating new sensing technologies.

Distant flight time. The main asteroid belt lies around 2.5 AU , between Mars and Jupiter,
and it holds small solar system bodies of different compositions [33]. Therefore, this is next to
Near-Earth Asteroids, a very relevant site to find a scientifically interesting asteroid for close prox-
imity operations. Communication time at that distance would take approximately 25 minutes. The
ground station can command the spacecraft remotely; however, the time delay implies a high risk
for close-range operations. In addition, in case of unforeseen circumstances, the spacecraft is com-
promised without autonomy, and the time delay for active control could endanger the safety of the
mission. Autonomy is principal as a consequence of long signal flight time.

One potential solution is to execute a gradual descent, ensuring a crash-free trajectory despite
the presence of Earth-in-the-loop navigation, albeit at the expense of increased fuel consumption.
Another approach involves leveraging autonomous navigation techniques based on the data ac-
quired during the mission’s characterization phase. By eliminating Earth’s involvement from the
observation-state estimation, guidance decision-making, and actuator command loop, autonomous
navigation permits significantly closer operations while ensuring the spacecraft’s safety. This au-
tonomous approach has proven to be the preferred method in previous asteroid missions.

Decrease time-to-surface. Typically, prior to the landing phase, a prolonged surveying and
characterization period is requisite, during which the target is meticulously examined, facilitating
the acquisition of a comprehensive map. The characterization phase is a protracted process that
consumes substantial time and fuel resources. In situations where an asteroid mission involves a
mothership and smaller spacecraft, it is conceivable that the smaller spacecraft may possess a more
limited array of sensors. Consequently, there exists a need to expedite the mission timeline and
accommodate cost-effective and compact spacecraft by cultivating alternative autonomous method-
ologies.

Nevertheless, for the purpose of maximizing mission duration and mission yield, it is imperative
for the spacecraft to promptly land subsequent to the rendezvous with the asteroid, allowing for
expeditious transfer of the payload to the surface for direct interaction.
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Consequently, some strategies can be identified to enhance initial operation phases. Firstly,
local mapping could be enough for relative navigation and to allow a safe landing. If the Guidance,
Navigation and Control (GNC) algorithms are capable of adapting to an unknown environment,
little a priori information is needed from the orbiter or ground.

Robustness and adaptivity Additionally, robust decision-making and adaptive autonomy are
crucial for navigating the challenges posed by SSSB missions. These aspects involve developing
algorithms and strategies to handle unexpected events, adapt to changing environments, and make
intelligent decisions in complex and uncertain situations. By incorporating robustness and adapt-
ability into the autonomy framework, spacecraft can better handle mission complexities and ensure
the success of their operations.

Robust design is a high priority due to the unknown environment in which the spacecraft navi-
gates. The main sources of uncertainties are:

• Gravity field: as a consequence of the diverging spherical harmonics approximation, new
representations techniques need to be analyzed (Mascons, Polyhedron). Especially during
proximity operations, the gravity field is strongly perturbed, and the GNC systems should
compensate for unexpected environmental forces. The gravity fields of SSSB are highly per-
turbed and non-central due to their irregular shape or differentiated composition, and they
are relatively weak. As a result, stable closed orbits could turn into crashing or escape orbits
in days [34]. They are significantly subject to perturbations by nearby object approaches and
Solar Radiation Pressure (SRP), which may increase even more the irregularities in the gravity
field due to mass distribution. Also, several asteroids are subject to fast rotation periods; as a
consequence, the difference between gravity acceleration and effective gravity (i.e., taking into
account apparent forces) is large. As a target for a mission, they have the most perturbed
environment, and hence the dynamics around them can be unpredictable.

• Surface: terrain information is not always accurate, and the lander should be able to cope
with various conditions. Hazard Detection and Avoidance (HDA) functionalities combined
with the assessment of the landing site allow a reduction in the landing footprint; the latter
greatly enhances the robustness and science return of the mission [35]. Safer operations are
run as a consequence of real-time assessment of the hazards. Moreover, the scientific return
is increased by selecting a more interesting landing site due to the increased on-site surface
knowledge. Only local mapping could be required for proximity operations, and the target
body’s global characterization could be less detailed.

• Long flight time: degradation is another central point linked to robustness; in fact, failure
of units after long flight duration could lead to the definition of flexible strategies for GNC
or algorithms which require few and diverse information (e.g., camera and LiDAR or only
camera or LiDAR according to the availability). Flexible algorithms also allow the application
to different missions, from large-size landers to small CubeSat and vice versa, independently
from avionics.

Perception and decision-making The assessment of previous missions (as in Section 1.2.1)
reveals the utilization of various key enabling technologies for autonomy. Autonomous environment
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perception (e.g., vision-based navigation) has played a crucial role, allowing spacecraft to determine
their position and orientation relative to the target body using visual information. Additionally,
decision-making autonomous systems incorporating machine learning and image processing (Image
Processing (IP)) have been employed for hazard detection, slope estimation, and safe landing site
selection [36].

Partial progress towards autonomous systems. This has been achieved by optical relative
navigation and radiometric absolute navigation. Radiometric tracking enables precise absolute
tracking of the spacecraft trajectory with respect to Earth [37]. Landmark-based navigation has
utilized identifiable features on the SSSB’s surface to aid in spacecraft localization and orientation.
Although these technologies led to successful missions, they rely on continuous human monitoring
and processing. The landmark-based navigation requires extensive modeling effort on the ground,
radiometric measurements are not always available, and the landing site is carefully chosen by
extensive surface mapping. In contrast, a fully autonomous spacecraft would land on the surface
and afterward explore the whole surface independently. By extending the exploration range in this
way, the overall scientific return of the mission would increase significantly.

Leverage computing advancements. In the last decades, computing power has largely in-
creased, resulting in a paradigm shift towards computational real-time GNC, with limited human-
in-the-loop [38]. To address the limitation of human-in-the-loop, more recent missions progressively
included technologies that pushed the autonomy frontier even further. Hayabusa-2 [39], showcased
upgraded navigation instruments and extensive characterization techniques, including radiometric
tracking and autonomous descent. OSIRIS-REx [40], employed, in addition to radiometric track-
ing, vision-based navigation for close-range operations, advanced exposure techniques, and landmark
tracking. Finally, DART [21], achieved kinetic impact deflection with the help of fully autonomous
navigation systems and avionics.

Tooling artificial intelligence. Moreover, image processing is shifting towards a machine learning-
oriented approach [41]. Even if the space sector is considered conservative, major technological steps
have been made toward Artificial Intelligence (AI) and Deep Learning [42]. With the rise of the
practical usability of architectures such as support vector machines or artificial neural networks,
machine learning and AI have become ever more attractive and now provide practical solutions for
a wide range of problems. AI has achieved impressive results over the past few years, but often the
learned solution is difficult to understand and examine by humans. Additionally, the robustness and
reproducibility of AI results are usually evaluated by statistical testing, and there is no systematic
method to guarantee that a solution synthesized using AI techniques meets the expectations of the
designer. This becomes a pressing issue when applying AI methods to safety-critical tasks such as
GNC, where expectations are rigid verification requirements.

1.2 State-of-the-Art

The first asteroid flyby was in 1991 by the spacecraft Galileo across the asteroids Gaspra and Ida
on its way to Jupiter. Since then, there have been several missions, which have been dedicated



6 INTRODUCTION

to not just flybys, but landing on and studying asteroids [22, 43]. There has been an increased
interest in them in recent years due to the objectives discussed in Section 1.1.2. Only orbiters
and landers are presented; in particular, no flyby missions are included to focus on close proximity
operations, descent, and landing architectures. In Table 1.1, the missions are resumed, and their
GNC architecture is briefly described.

Name Mission Type Target
Diameter
[km]

GNC Suite Mass [kg]

NEAR
(NASA)

Orbiter landed on
Eros

16.8 4x 21N hydrazine thrusters
7x 3.5 N hydrazine thrusters
4x Reaction Wheel (RW)s
5x Sun Sensors
1x Star Tracker (STR)
1x Inertial Measurement
Unit (IMU)

800

Hayabusa
(JAXA)

Sample return
TAG on Itokawa

0.3 12x 20 N Reaction Control
System (RCS)
3x RW
1x Sun Sensor
1x STR
2x IMU
1x Accelerometer
1x Narrow Angle Camera
1x Wide Camera
1x LiDAR
1x Laser Range Finder
(LRF)

510

Rosetta
(Euro-
pean
Space
Agency
(ESA))

Comet orbiter with
lander on 67P

4 (Phylae)
1x Upward Facing Thruster
1x Flywheel (Phylae)

100

Dawn
(NASA)

Orbiter around
Vesta and Ceres

525-546 12x 0.9 N hydrazine
thrusters
4x RWs
16x Sun Sensors
2x STR
3x IMU (spinning gyros)
2x Cameras

1217
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Name Mission Type Target
Diameter
[km]

GNC Suite Mass [kg]

Hayabusa-
2 (JAxA)

Sample return
TAG on Ryugu

1.1 12x 20 N Hydrazine
Thrusters
4x RWs
4x Sun Sensors
2x STR
2x IMU
4x Accelerometers
3x Cameras
1x LiDAR
1x LRF

9.6 (Mas-
cot)

OSIRIS-
Rex
(NASA)

Sample return
TAG on Bennu

0.525 28x RCS
4x RWs
Sun Sensors
2x STR
2x IMUs
1x Camera suite
1x LiDAR
1x Laser Altimeter

2110

DART
(NASA)

Impactor on Di-
morphos

0.75-0.16 5x sun sensors
STR
Camera

500

Hera
(ESA)

Probes on Didymos
and Dimorphos

0.75-0.16 RCS
4x RWs
12x Sun Sensors
2x STR
2x IMU
2x Cameras
1x Altimeter

870

NEA-
Scout
(NASA)

Technology demon-
strator on Apollo
NEA

0.1 N/A 14

Psyche
(NASA)

Orbiter around
Psyche

225 N/A 2608

Janus
(NASA)

Orbiter on binary
asteroids

1.6-0.4 N/A 38

MMX
(JAXA)

Sample return lan-
der on Phobos

27 N/A 150

Table 1.1: Asteroid Mission Summary
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1.2.1 Past and Current Missions

NEAR Shoemaker

On February 12, 2001, NEAR-Shoemaker was the first spacecraft to land on the surface of Eros. It
was not designed for landing, but after 5 open loop maneuvers, it succeeded in touching down. The
NEAR navigation team used optical navigation during the terminal approach; the main challenges
were to estimate the center of mass given the irregularly shaped body and high surface brightness,
which made it impossible to expose correctly both stars and asteroids.

The goal of the mission was to increase the knowledge of asteroids in general by returning data
to Earth. NEAR started orbiting its target asteroid (433) Eros in February 2000. An image of the
asteroid is shown in Figure 1.2 NASA’s Deep Space Network (DSN) was used to perform radiometric
tracking of the spacecraft to navigate it towards Eros. Cameras were used to create a database of
landmarks, after which these landmarks were tracked for navigation purposes, as well as rotational
state estimation, shape, mass, and gravity estimation. The landmark tracking and matching were
done by hand by operators on Earth. A LRF was also used to get altitude measurements whenever
the distance to the surface was in the hundreds of kilometers range. The LRF measurement was
used in the orbit determination filter. The LRF was also used to solve for an accurate shape model,
which was then used to obtain a-priori gravity estimates by assuming a constant density. The LRF
was never used for real navigation purposes, but merely as a consistency check on the radiometric
tracking and landmark-based navigation. By comparing the estimated gravity to the real gravity
that the spacecraft experienced, it was concluded that the internal structure of the asteroid was
mainly uniform.

The landing trajectory was dependent on the accurate characterization of Eros’s dynamical and
physical properties (i.e., mass, gravity distribution, spin, pole, shape). The characterization phase
took approximately 2 years. They have used for the first time other gravity modeling techniques
as a consequence of the diverging spherical harmonics representation. In addition, robustness was
granted through Monte Carlo simulation of the open-loop trajectories, and constant ground coverage
was available [44].

Figure 1.2: NEAR Over Eros’ horizon. (NASA)
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Hayabusa-1

Launched in 2003, Hayabusa represents the first asteroid sample return mission. The target chosen
by JAXA is the asteroid Itokawa. Two touchdowns were accomplished following the touch-and-
go procedure (see Section 2.2.4 for details); during the first one, the spacecraft collected some
material from the asteroid’s surface, and however the second attempt faced operational problems.
The samples collected were successfully returned to Earth. The failures included two RWs failures
and an accidental landing [45]. Hayabusa included a multi-band imaging camera to image the
entire surface of the asteroid. It had an autonomous onboard guidance and navigation system to
touch down on the target since the precise shape, size, and surface conditions of the asteroid were
unknown. The onboard GNC system included a two axes Sun sensor, STR and an IMU for attitude
determination, an accelerometer, and a reaction control system with thrusters and reaction wheels
for attitude and translational control.

Navigation was carried out using narrow-angle and wide-angle cameras. The latter allowed
mapping and regional safety monitoring of surface obstacles. High altitude and low altitude mea-
surements were done by a LiDAR and a laser ranger, respectively. The Attitude and Orbital Control
System (AOCS) used the inputs from the cameras, LiDAR, laser ranger, and an extended Kalman
filter for state estimation. The programmed function included image processing designed to detect
an artificial target marker location to approach and cancel the surface relative velocity [46].

One of the primary goals of the mission was to return a sample of the surface of the target
asteroid (25143) Itokawa back to Earth. A hybrid navigation solution was employed that combines
optical navigation with radiometric tracking [47]. Images were processed on the ground to calculate
the direction vector from the spacecraft to the asteroid. A nonlinear least-squares estimator was
used to obtain the spacecraft position and velocity in an inertial frame. In the final part of the
descent, between 20 km and 3 km altitude, a more autonomous approach was envisioned. However,
due to a hardware failure, the crew decided to fly the spacecraft by hand. The intention was to use
the altitude measurement from the LiDAR together with the ’ center address’, which is calculated
from images of the onboard navigation cameras. This center address is found by extracting groups
of adjoining pixels whose brightness is beyond a specified threshold. The group that has the highest
number of pixels is assumed to be the one representing the asteroid, after which the center of this
group in the frame (pixel coordinates) is used in a Kalman filter to estimate three-dimensional
relative position and velocity [48].

Noteworthy is the target marker approach that was used for the final descent. A bright object
was released from the spacecraft and fell onto the surface of the asteroid. The navigation system
then used this target marker as a point of reference in the frame.

The Minerva micro-lander experienced a deployment failure; it was supposed to test inter-
satellite communication and hopping relocation via an internal flywheel.

Rosetta

Launched in 2004 to the Comet 67P/Churyumov-Gerasimenko, it orbited around it before sending
the lander, Philae to its surface. After being in space for more than 12 years, Rosetta’s mission
concluded with it descending on the surface of the comet in September 2016 [49]. During the
approach, from circa 44000 km to 122 km, radiometric and optical information were used as primary
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Figure 1.3: Hayabusa-1 at Itokawa. (JAXA)

measurements for the navigation. Single image frames contain both the asteroid and the star field
behind them, giving valuable information for the state estimation. After 3500 km, the star field
was no longer useful because the centroiding errors were so large that they were more significant
than any pointing error that could be deduced from the measurements.

Upon arrival, an early characterization phase was carried out, during which the rotational state,
shape, landmarks identification, and a first estimate of the gravity field were determined [50]. Since
then, and throughout the rest of the mission phases, Rosetta navigated using landmark observations
which were obtained on-ground by processing NAVCAM images. As the mission progressed, auto-
matic feature detection methods were phased in to track the landmarks. 3D high-resolution maps
(maplets) of landmarks are created from these observations. Combined with an albedo map and
photometric model, the visual appearance of the landmark can be predicted for every observation
condition. Matching the landmarks to a library of known landmarks gives a measurement for the
navigation filter.

Rosetta’s GNC system included two pairs of coarse Sun sensors, two star trackers, three IMUs
with three gyros and accelerometers each, and two navigation cameras (NAVCAM) for navigation
and control two sets of twelve thrusters of 10 N each, a bi-propellant system, four-momentum
wheels, 1-Degree of Freedom (DoF) solar array pointing mechanisms and a 2-DoF antenna pointing
mechanism. The kinematical and dynamical state of the comet was unknown a prior, and hence
in situ measurements were used to refine the knowledge of these properties. Relative navigation
performance required the relative state to be measured, as a consequence of the low accuracy of the
ground tracking [51].

OSIRIS-NAC and NAVCAMS provided optical images to detect the asteroid of interest and
deduce the relative trajectory from Rosetta to the center of the asteroid of interest or a recognizable
feature on its surface. For the comet, there were four observational phases to achieve navigation
accuracy for the lander delivery phase. The lander body contained a flywheel for attitude stabi-
lization during descent as well as cold gas hold-down thrusters to support touch-down. Anchoring
harpoons are additional devices to stay on the surface. The lander descends ballistically toward
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the selected landing site. Phylae landed on the surface but due to system failures, it bounced three
times and reached a landing site far from the nominal one [52].

Figure 1.4: 67P/Churyumov–Gerasimenko and Rosetta spacecraft. (ESA/Rosetta/MPS)

Dawn

Launched in 2007, Dawn is a multi-target orbiter. It completed a 14 months survey mission of
Vesta, one of the largest asteroid belt objects, and then it entered the orbit around Ceres, the
largest object of the main asteroid belt. The GNC subsystem included two STR, three two-axis
IMU, 16 sun sensors, four reaction wheel assemblies, and a set of 12 0.9 N hydrazine thrusters. The
two scientific framing cameras were also used for navigation and target relative estimation as part
of the ground processing. When in orbit around the asteroid, a combination of optical navigation
and radiometric navigation was used. A topographic map is developed for navigation purposes with
10 m accuracy on the surface. The heritage of Dawn cameras is being implemented on the Hera
mission [53].

Hayabusa-2

Hayabusa 2 is an extension of Hayabusa and was launched in December 2014 to the asteroid Ryugu.
It surveyed the asteroid for a year and a half, and then it returned with samples in December
2020 [39]. The design of the GNC system of Hayabusa 2 is significantly similar to Hayabusa. The
navigation instruments are just upgraded versions as those of Hayabusa: 4 RWs and RCS, navigation
cameras, LiDAR, LRF, flashlight, and target marker. The main lesson learned from Hayabusa
regarded an additional reaction wheel for redundancy and more secure propellant plumbing. An
advanced solar sail mode is implemented to save fuel during longer mission phases [54].

For the navigation, an extensive characterization phase is carried out. In this phase, the axis
of rotation, period, shape model, and gravity field is determined. The characterization phase uses
a home position at 20 km altitude, and various descents to around 1 km were carried out. During
these descents, LiDAR was used to estimate the vertical velocity [55]. Radiometric tracking once
again plays a vital role in the navigation of the spacecraft, allowing the precise determination of
the orbit.
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During the final descent, a target marker is once again deployed, just as with Hayabusa-1. It
is released at 100 m, and then from 30 m, the spacecraft is fully autonomous in its descent. Four
rovers are included in the mission; one of them failed during deployment. They all use hopping
mobility after the uncontrolled ballistic descent [56].

OSIRIS-REx

Launched in 2016, OSIRIS-Rex is the first NASA sample return mission. A robotic shock-absorbing
arm on the main spacecraft acquired the sample, and the operations required close proximity navi-
gation on the surface of asteroid Bennu. During the encounter with the target, optical navigation,
using images taken by the two camera suites, was the primary means of navigation for proximity
operations. LiDAR and altimeter measurements were available for the generation of topographic
maps. They were input for autonomous guidance and fault detection algorithms during the Touch &
Go event [57]. Optical navigation relies on advanced bracketing techniques to correctly expose both
the asteroid and the background sky portion. At the same time, for landmark tracking features, a
subset of features is chosen to increase the responsiveness of orbit determination and allow the same
accuracy for the body and spacecraft positioning. The GNC subsystem includes 2 STR, 2 ring laser
gyros, sun sensors, RCS, and 4 RWs. The landing procedure is Touch & Go as for Hayabusa, and
several rehearsals have been made before sample collection [24].

For its navigation, OSIRIS-REx uses a combination of radiometric tracking and optical navi-
gation. The uncertainties in Bennu’s ephemeris, size, shape, spin-state, and composition were too
large to rely on radiometric tracking alone, creating a need for optical navigation [24]. To solve for
the camera pointing error, separate images at different exposure times were taken to image both
the star field as well as the asteroid from the same position. A centroiding algorithm is used to
determine the inertial attitude of the camera at the image epoch. Once the center of the asteroid
is found in the frame, the Centre of Mass (CoM) location is determined using an appropriate algo-
rithm. The camera attitude and the residual between the predicted and observed target centroid
are then used to estimate a solution for the body-relative spacecraft state [58].

For close operations and navigation to the touch-and-go zone, landmark tracking is used. A
transition period from centroid-based navigation to landmark-based navigation occurred once the
digital terrain maps of the surface had been generated. Besides the terrain map, albedo maps and
photometric curves were available for these landmarks, making it possible to render the landmark
image and compare it to the real camera image. Images of a collection of landmarks are rendered
simultaneously on-board and then matched to the visual information, yielding position and attitude
information. Besides these measurements, LiDAR sensors were also used to provide additional
measurements to the navigation system.

DART

The DART spacecraft achieved the kinetic impact deflection by deliberately crashing itself into the
moonlet of the Didymos binary system. The spacecraft was launched on 24th November 2021, and it
did not contain a scientific payload other than the needed avionics to support autonomous navigation
to impact Dimorphos: sun sensors, a star tracker, and a framing camera are the only sensors.
The Small-body Manoeuvring Autonomous Rendezvous and Targeting Navigation is FPGA-based
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avionics, and it guides the spacecraft on the target. The framing camera determined the impact
point with 1 m accuracy and characterized the Didymos and Dimorphos surface with < 50 cm/pixel

[21].

A secondary spacecraft LICIACube piggybacked with DART and acquired an image of the
impact through the two optical cameras. The images are downlinked directly to Earth, and the
mission will include a flyby of Didymos after the impact [59]. The majority of the flight is navigated
using radiometric tracking provided by the DSN [60]. However, the asteroid encounter cannot rely
on radiometric. The impact speed will be around 6.6 km/s. With the 70 seconds round-trip-time,
this means that it is impossible to use ground-in-the-loop GNC techniques.

Figure 1.5: Image captured by the Italian Space Agency’s LICIACube a few minutes after the inten-
tional collision of NASA’s Double Asteroid Redirection Test (DART) mission with its target asteroid, Di-
morphos, captured on Sept. 26, 2022. (ASI/NASA)

Therefore, an autonomous navigation solution is used. Optical navigation relies on a centroiding
algorithm that functions in three steps. First, all pixels in the image that are above a certain
brightness threshold are selected. Then, groups of pixels that satisfy this threshold requirement are
grouped.

Then the final step calculates a set of statistics associated with each group, such as the size of the
group, average brightness, and centroid location. This list of statistics for each group is then used to
determine which one of the groups is the asteroid. The largest/brightest group is the default setting.
The result of this calculation is the line of sight measurement. Combined with accurate attitude
information, the line of sight measurement is transformed into inertial coordinates. Proportional
navigation principles are then used in an extended Kalman filter to predict the miss distance at the
closest approach.
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1.2.2 Planned Missions

Psyche

Psyche is a planned 2023 orbiter mission; the spacecraft mass is 2608 kg; it will use solar electric
propulsion and full electric attitude control. It will study the metallic asteroid Psyche, which is
considered a proto-planet body [61].

Figure 1.6: An illustration, created in March 2021, of NASA’s Psyche spacecraft. (NASA/JPL-
Caltech/ASU)

Janus

Janus mission is composed of two 38 kg satellites launching in 2023 together with the Psyche mission.
The mission is aimed at investigating how binary asteroids are formed and evolved based on visible
and infrared cameras [62].

Hera

Hera will be launched in 2024 to validate the kinetic impact of DART as a planetary defense
technique. The mission will prove several guidance, navigation, and control (GNC) technologies.
Visual-based navigation will be tested thoroughly during close approach operations. Two different
image-processing techniques are used in the autonomous navigation function depending on the
range of the asteroid. During the ‘far range’, when the asteroid fits entirely in the camera image,
the image processing will compute the line-of-sight that the navigation filter will use to refine the
onboard knowledge. In the ‘close range,’ the image processing will track unknown features on the
surface, and the navigation filter will process them to avoid knowledge degradation [63].

The main guidance and navigation objective are to fuse sensor data between the optical camera,
Infrared (IR) camera, and hyperspectral camera to increase vision robustness and finally demon-
strate the strategy of sensor switching. The goal is to maintain nominal operation even in case of
sensor unavailability. The use of the thermal infrared camera can provide navigation measurements
on the dark side of the asteroid, whereas optical navigation cannot provide measurements.

Two CubeSats will fly with Hera: Juventas will attempt an uncontrolled landing without the
possibility of retargeting or landing site selection. Milani, the second CubeSat, will take images and
measures the characteristics of the asteroid environment [64, 65].
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Figure 1.7: An illustration of HERA spacecraft with the two CubeSats.(ESA)

Martian Moons Exploration

Set for launch in 2024, JAXA’s MMX is the first sample return mission from Mars’ largest moon
Phobos [66]. It is thought that Martian moons are captured asteroids, and the mission aims to
answer many questions about moons’ formation. The development of the landing technology is
the top technical issue for the mission, the moon has a strong gravitation attraction compared to
the other small celestial bodies, but the gravity is not enough to keep the spacecraft secured to
the surface after landing. Following the heritage of Hayabusa, a new landing technology is being
developed; four shock-absorbing landing legs are the key technology.

1.3 Research Goals

From the research motivation given in Section 1.1.2 and the current state-of-the-art review (Section
1.2.1), the landing phase emerges as the most critical phase for every mission. All the functionalities
that converge on the lander autonomy must be applied to the full extent to grant a safe pinpoint
landing.

The main goal of this thesis is then the following: to research, develop, implement, and test
precise and safe landing technologies for a µLander in a binary asteroid environment.

The research question is answered in two main categories, identified as the core research topics:
1) environment perception, and 2) decision-making. The initial classification, known as environment
perception, involves surveying the surroundings to create a map and determine the spacecraft’s
location within it. The main difficulty compared to Earth-based applications is the absence of GPS
signals. When the navigation filter has limited or no knowledge of the absolute position, the filter’s
estimates may drift due to the accumulation of relative position errors over time. Moreover, the
surface geometry is only known up to a certain degree of accuracy, necessitating periodic updates to
the onboard map. Additionally, the onboard computers’ computational capabilities are significantly
less, necessitating lightweight algorithms.

The researched solutions to these challenges are to use optical and ranging sensors in the form
of cameras and LRFs. Two novel navigation technologies are developed and implemented (Sections
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D-3), which allow accurate performance in all the phases of the landing.
LiDAR unit provides 3D information; however, it is not employed to comply with the µLander

architecture mass limitation, as detailed in Section 2.4.3.
Camera-based solutions present a range of advantages, chief among them being their lightweight

and compact design. While these solutions are limited to two-dimensional data, this shortcoming is
easily overcome by supplementing the data with additional information from a shape model or an al-
timeter. Camera-based algorithms do not have a maximum range, unlike their LiDAR counterparts.
This makes them especially well-suited for landing scenarios where a spacecraft may begin several
kilometers from the surface. Moreover, both camera- and LRF-based solutions allow for autonomous
navigation around the SSSB without relying on ground-based tracking or communication.

The second category decision-making is the ability to steer the spacecraft away from a nominal
trajectory. In both landing and surface exploration scenarios, the trajectory is meticulously planned
ahead of time to ensure it meets specific landing requirements. However, hazardous objects might
not be identified before takeoff if the objects are smaller than the available surface resolution. To
address this issue, autonomous hazard detection during flight is implemented to observe the surface
at a closer range. If a hazard is detected in the path of the designated trajectory, a new landing
site must be identified, and the trajectory must be adjusted onboard.

The challenge for the decision-making is to fulfill multiple landing requirements, e.g., surface
slope and roughness, at the same time. The nominal and target landing sites must be assessed for
these requirements with precise accuracy and high reliability. A new trajectory has to be feasible by
considering the system constraints while being able to adapt to the changing perceived environment.

Since no LiDAR is available, camera images can be segmented to detect hazards. An AI-based
algorithm is proposed for this task because they have been proven to excel in segmentation.

Finally, a novel mission concept has been meticulously designed within the framework of the
Near Earth Orbit Modelling and Payloads for Protection (NEO-MAPP) study [67]. Serving as
a test scenario for implementing and validating the presented research topics, this study aims to
address the critical issue of planetary defense. By employing advanced research methodologies, the
NEO-MAPP study seeks to develop and assess innovative techniques, instruments, and strategies
to mitigate the risks posed by NEOs. Within the study, a complete µLander system is defined with
a particular focus on the GNC subsystem:

NEO-MAPP test case is not a limitation; the knowledge gained, and the technological advance-
ments made through this research can be applied to various other small celestial bodies within our
solar system, such as asteroids and comets. Additionally, the research outcomes have the potential
to extend beyond planetary defense, finding applications in planetary descent missions as well, as
described in Section 3.9.

1.4 Contribution of the Thesis

In this section, the key contributions made through my research are outlines, which have advanced
the knowledge and understanding of autonomous technologies for µLanders. By addressing the
research question, this work has made significant progress in the following areas:

1. Designed, implemented, and tested a LiDAR-free autonomous safe landing site selection tech-
nology that fuses image processing and machine learning methods. The algorithm requires
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minimum user input as it incorporates landing requirements directly in the pipeline. The
technology is applied to real mission images for validation [29].

2. Designed, implemented, and tested an autonomous vision-based absolute navigation system
that employs a COTS camera and a laser range finder. The algorithm requires limited prior
environment knowledge and a simple ellipsoid shape model. The algorithm can navigate a
small lander in a binary asteroid environment up to a few hundred meters from the surface
[1, 9, 68].

3. Designed, implemented, and tested an autonomous vision-based relative navigation system
that allows one to navigate in the proximity of the surface using relative measurements. The
navigation utilizes a novel monocular SLAM-based filter assisted by altimeter measurements
to grant a pinpoint landing at the target landing site [69, 70].

4. Defined, designed, and characterized a µLander asteroid mission to safely bring NEO-MAPP
payload on the surface using the previous technologies. The problem domain has been iden-
tified, GNC requirements are derived, and the concept of operations is designed.

The research developed in the framework of NEO-MAPP highlights the robustness, reliabil-
ity, and efficiency of the proposed autonomous navigation solutions, vision-based extended Kalman
filter, and hazard detection and safe landing site selection framework for space exploration mis-
sions. The extended Kalman filter-based navigation solutions are robust to high sun phase angles,
irregular asteroid shapes, noisy and distorted camera images, and uncertainty in its initial state es-
timate. They are computationally efficient, use image processing efficiently, and maintain accuracy
in challenging conditions. The Monte Carlo analysis conducted on the filters demonstrates their
robustness to boundary conditions. The hazard detection and safe landing site selection framework
provides a lightweight and reliable solution for micro-lander autonomy, fulfilling stringent landing
requirements with a limited mass budget, and has few free design parameters, allowing for rapid
tuning and efficient onboard implementation. Both solutions are highly promising for future space
exploration missions and can be applied not only to SSSBs surface but also to planetary landing.

1.4.1 External Contribution

The autonomous spacecraft and landing high altitude phase algorithms discussed in this thesis
([9, 68]) were developed within the framework of a Master’s thesis conducted in collaboration with
TU Delft. This Ph.D. work serves as the foundational scenario for the Master’s thesis, and the author
played a significant role in advancing the Master’s project, contributing extensively to technical
implementations, knowledge transfer, and academic support as the supervisor.

Several innovative contributions emerged from this collaborative effort, enriching the scientific
knowledge base. Notably, the suite of sensors employed in this study represents a distinctive com-
bination not commonly encountered in existing literature. The mission scenario assumes the relay
of updated ephemeris data from the mothership to the lander. Positioned on the outer pole of
the secondary asteroid, the landing site presents a unique challenge as the primary asteroid is sit-
uated behind the secondary body (refer to Figure D.2b). This arrangement precludes the use of
angles-only navigation due to the absence of separation between the bodies.
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During various flight phases, both asteroid bodies are observable within the camera frame, as
depicted in Figure D.2a. This research deviates from the standard approach in the literature, where
image processing algorithms eliminate one of the bodies, resulting in a single measurement. Instead,
this study aims to extract information about both the primary and secondary asteroids from these
images, providing a more comprehensive understanding.

Furthermore, the integration of a Laser Range Finder (LRF) with visual data has been explored
in the past, primarily in the context of landmark tracking for absolute navigation. In this case,
the LRF is employed even in the absence of a highly detailed surface model. This departure from
conventional methods demonstrates the adaptability and robustness of the current approach, offering
insights into scenarios where detailed surface models may not be available.

In summary, the collaborative efforts between the present Ph.D. work and the Master’s thesis
have yielded valuable contributions to autonomous spacecraft and landing algorithms, introducing
novel elements to the existing body of scientific knowledge. The unique combination of sensors,
the challenging mission scenario, and the innovative integration of LRF with visual data mark this
research as a significant advancement in the field of autonomous space exploration. More derivation
are presented in Appendix D.

1.5 Outline

This section will provide an overview of the thesis structure, guiding the reader through the various
chapters and their contents. The thesis is organized into five chapters, each focusing on specific
aspects of this work.

Chapter 2 It delves into the mission and spacecraft characteristics, providing essential context for
the subsequent chapters. This chapter presents a detailed overview of the mission (i.e., the concept
of operations), including its purpose, goals, and target destination. Furthermore, it explores the
technical specifications of the spacecraft, discussing its payload and onboard systems with a specific
focus on the GNC subsystem.

Chapter 3 It addresses close-range navigation using novel feature tracking and SLAM-based
Kalman filtering techniques. It discusses the unique challenges encountered in relative navigation
and the significance of feature tracking increased with altimeter knowledge. The chapter outlines
the system design, integrates these techniques, and evaluates the navigation performance through
experimental results.

Chapter 4 It highlights the development of autonomous algorithms for safe landing site selection
and hazard detection. It outlines the methodology used for autonomous site evaluation and presents
the hazard detection algorithm. The innovative approach uses a hybrid combination of machine
learning solutions and more traditional image processing. Simulation and experimental results are
provided to demonstrate the effectiveness of these algorithms.

Chapter 5 It concludes the thesis by summarizing the main findings of the research. It dis-
cusses the contributions made to the mission and spacecraft navigation field, highlighting the novel
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advancements achieved. The chapter also acknowledges the study’s limitations and suggests future
research directions to enhance spacecraft navigation capabilities further.

Appendix D It focuses on vision-based navigation for far-range navigation. It introduces the con-
cept of vision-based techniques and their advantages in overcoming the challenges of far-distance
autonomous navigation. The appendix presents the strategies for absolute state estimation, in-
cluding developing a novel altimeter-aided navigation filter. Navigation algorithms are derived,
simulator developments are explained, and experimental results are briefly presented and analyzed.

Throughout the thesis, references are provided to ensure the sources’ credibility. Additionally,
appendices are included to provide supplementary information such as reference frames (Appendix
A), units and payloads details (Appendix B.1), and simulator developments (Appendix C) that
support the research presented in the main chapters.
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Chapter 2

Safe and Autonomous Landing on a
Binary Asteroid System

The prospect of landing on binary asteroid systems presents a unique and complex challenge. In this
chapter, I delve into the design of a safe and autonomous landing mission for such systems. Firstly,
the target binary asteroid system is described. The concept of operations forms the foundation of the
current exploration, outlining the mission phases, initial and final conditions, and the overarching
goal of achieving a successful landing. Various landing approaches are then explored, including
hover & go, touch & go, and traded-off.

Next, landing requirements imposed on the GNC system are derived, examining the objectives
and the system drivers. A comprehensive overview of the spacecraft architecture follows, highlight-
ing the GNC avionics suite and the trade-off associated with a LiDAR-free solution.

Furthermore, the propulsion system selection is explored, which includes considerations of
thruster type and reaction wheel utilization. Finally, the NEO-MAPP payload is presented.

Through a detailed examination of the µLander, this chapter sets the environment and system
scenario for the researched solutions in achieving a safe and autonomous landing on a binary asteroid
system.

2.1 Binary Asteroid System

The Didymos binary system comprises Didymos (main body) and Dimorphos; its orbit is a near-
Earth orbit around the Sun. The perihelion is at 1.01 AU , and the aphelion is at 2.28 AU , then
the resulting eccentricity is 0.38. The classical orbital elements are described in Table 3.2, they are
helpful for initial orbit propagation, but for accurate calculation, NASA ephemeris is used.

Dimorphos moves in an approximately circular retrograde orbit with an orbital period of 11.9
h, which equals the rotation period assuming synchronous rotation.

Before DART’s impact in September 2022, the only dynamical parameters measured directly
through observations were the orbital period of the secondary around the primary, their orbital
separation, the primary rotation period, and the secondary-to-primary size ratio. The diameters of
the binary components are measured to be about 780 and 160 m. A model of the short-term binary
dynamics suggests possible librations of the secondary with up to 10◦ amplitude, depending on its
axial ratio.
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A shape model of the Didymos primary is based on past radar observations in combination with
light-curve data. Radar data cannot provide a model of the secondary since the SNR is too weak,
echoes are not sufficiently resolved, and the rotation coverage is limited. The secondary shape is
assumed to be a triaxial ellipsoid for modeling purposes.

The primary, with an estimated 2.1 g/cc bulk density (uncertainty 30%), has a rotation period of
2.26 hours that may imply a cohesive strength of several tens of Pa. At this rate, perturbed regolith
material may go through take-off/landing cycles and cause loss of fines due to solar radiation
pressure. The system may be subject to weak thermal radiation forces (BYORP) with a period
drift of no greater than 1 s/yr.

The solar radiation model uses the distance to the Sun to define power availability and external
disturbances due to solar radiation pressure. The synthetic-hybrid environment will be generated.
The information for the latter is sourced from past mission data, for which detailed orbital and
physical parameters are available. The selection of the synthetic models should match closely with
the reference target bodies but also enable a flexible adaptation to another mission scenario.

Didymos’ orbit will be considered. It is assumed that the heliocentric trajectory is known with
enough accuracy for precise orbit determination. Since the change of position w.r.t. the Sun is
neglected due to the short landing duration compared to the heliocentric motion, the perihelion of
Didymos is defined as a fixed orbital position has to be defined. Firstly, the closer distance to the
Sun maximizes the solar radiation pressure. Secondly, the gravitational perturbation due to the
Sun is maximum; as a consequence, the perihelion represents a worst-case scenario, and in general,
it is different from the actual Hera deployment conditions. The synthetic environment approach
allows high-resolution shape models to inject into the optical sensor pipeline; since no high-fidelity
information about the actual bodies is available, some proxy bodies will be used. Section 3.3 presents
the detailed asteroid generation process.

2.2 Concept of Operations

The mission starts with deploying the µLander from its mothership near Didymos’ system. The
µLander release point is close enough to navigate toward the asteroids safely and far enough for
the safety of the mothership.

In the following sections, the mission phases are presented, the initial condition is described,
and the end condition is shown.

2.2.1 Mission Phases

The following is a top-level concept of operation for the µLander. The mission is divided into three
mission phases:

1. Separation and commissioning

2. Descent

3. Soft static landing
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Table 2.1 describes the main mission phases. Descent operations (as in Figure 2.1) can be
partitioned into two sets of operational sub-phases: High Altitude Phase (HAP) and Low Altitude
Phase (LAP).

Mission Phase Sub-
phase

Functions GNC Task

Separation & Com-
missioning

- Avionics System Check
Asteroid Acquisition

Descent towards Home posi-
tion
Pointing Home position

Descent High Al-
titude
Phase
(HAP)

Approach the target
body
Asteroid parameter esti-
mation
Telemetry

Environment parameter esti-
mation
Descent towards home posi-
tion
Pointing Home position

Low Al-
titude
Phase
(LAP)

Landing site selection
Landing preparation
Hazard-relative naviga-
tion

Descent towards the selected
landing site
Hazard detection and avoid-
ance
Pointing selected landing site

Soft Static Landing Touchdown Science surface opera-
tion

µLander stabilization
Monitor estimated state

Table 2.1: Mission phases

During Separation and Commissioning Phase, the µLander initiates an avionics system
checkout, and the navigation status is acquired; in addition, potential inter-satellite communication
is tested between the mothership and the µLander [71]. Telemetry is returned to the ground and
relayed via the mothership during all the operations. In the Separation and Commissioning Phase,
the µLander begins an un-propelled slow descent for a short period, and attitude control is granted
to start asteroid acquisition procedures.

The Descent Phase begins autonomously and is divided into two sub-phases. The sub-phases
are related to the avionics suite selection and different navigation and guidance strategies needed
for an accurate pinpoint landing. HAP is from the initial condition to a few hundred meters away
from Dimorphos with the same relative velocity. This phase includes an initial assessment of the
landing region and gathering information about its gravity field, surface properties, and dynamics to
support the following close-up operations. The switching to the next phase happens when the sensor
suite provides reliable data for the LAP algorithm. Then, the spacecraft moves to a closer altitude,
i.e., in the order of hundreds of meters. This phase aims to perform a close characterization and
navigate to reach the landing site. It is also considered to switch at a home asteroid fixed position;
the latter allows more effortless patching between the two sub-phases and can be chosen a few
hundred meters above the target landing site position.

During Low Altitude Phase (LAP), the online estimation of the approaching terrain and haz-
ards is fundamental to enable the use of hazard avoidance algorithms. Due to the communication
delay between the asteroid’s location and the ground, which is expected to be in the order of tens
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Figure 2.1: Concept of operations during descent from [1].

of minutes, this operation must be performed entirely autonomously up to the final landing site
selection and touchdown.

Soft Static Landing includes touchdown (and optionally a few meters ballistic phase) where
the µLander keeps a stable attitude and position to allow surface operation. The final condition is
presented in Section 2.2.3.

The phases differ from GNC modes and are defined according to the other environmental and op-
erational characteristics that the µLander experiences. In addition, the switching between phases is
done autonomously, permitting the mission objectives. Proximity operations represent a challenging
mission phase and require significant advances concerning GNC technologies.

2.2.2 Initial Conditions

The ESA Hera mission has been chosen as reference mission [72], then the Hera Payload Deployment
Phase (PDP) is assumed as µLander initial condition [73]. In particular, Hera will deploy two
CubeSats while the µLander in the studied scenario will be deployed. The µLander detachment
shall not endanger Hera’s mission by changing the trajectory safety margin or attitude constraints.
However, Hera is not designed to carry a µLander on the asteroid; consequently, the orbital initial
condition will be the same as PDP, but the deployment velocity is considered a free design parameter.
Moreover, using the maximum ejection velocity used for CubeSat of 0.05 m/s relative to Hera
spacecraft will cause a ∆V to be applied to the spacecraft because there is a small mass difference
between µLander (approximately 50 kg) and Hera spacecraft (launch mass 870 kg). From the
conservation of momentum:
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mSCVSC +mLANVLAN = 0 (2.1)

where all the velocities are measured w.r.t the CoM of the system. VSC = 0.30 cm/s is the ∆V

applied to the mothership after the deployment.
The µLander trajectory should allow sufficient time for safe commissioning considering de-

ployment uncertainties, but most of the system is checked out before deployment. In particular,
actuators and inter-satellite communication are checked after the deployment. The landing oper-
ation is initiated via telecommand; the telecommand not only provides the detachment order but
also updates the necessary configuration parameters for the µLander and makes prior knowledge
of the asteroid environment available.

The initial states of the µLander depend both on the knowledge of the mothership’s state and
on the release mechanism, and it represents the initial conditions of the navigation as developed in
Section D. The mothership’s state is estimated via range measurement techniques from the ground,
and the inertial attitude is known from the STRs [74].

Hera Payload Deployment Phase defines the initial condition as in [75], in Table 2.2 the initial
conditions with related uncertainties are presented.

State Nominal
Value

Uncertainty Comment

Velocity magnitude
[cm/s]

7-14 10% Initial velocity w.r.t. I-frame

Velocity direction
[deg]

-90/90 0.5 Direction of the deployment
velocity w.r.t. Line of Sight
(LOS) vector. The angle be-
tween the Hera-Primary line
and deployment ∆V . The
initial attitude is known very
accurately with STRs, and
then the uncertainty value is
conservative.

Distance [km] 5-8 0.050 A worst-case scenario uncer-
tainty is assumed.

Table 2.2: Initial conditions

The initial conditions are given regarding possible ranges compliant with Hera operations. The
accurate initial state is defined during specific simulation scenarios. The deployment is allowed from
any position around the system within the boundaries of the initial condition. Finally, two design
criteria for initial conditions are to be considered:

1. An approach out of the moon orbital plane is preferred because it allows a visual separation
between the two bodies for most of the landing; generally, it reduces the possibility of eclipses.

2. An approach from the Sun direction implies optimal illumination conditions of the landing
site.
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2.2.3 Final Conditions

This section presents different landing strategies, and a trade-off is produced to choose the optimal
surface interaction scenario. Several criteria can be identified to select the final conditions, i.e., the
target landing site. The concept of autonomous operations foresees the possibility of the operator
choosing a landing region, and then the spacecraft will select the landing site within the region.
Two main criteria are underlined to select the nominal landing site:

• Minimum moment of inertia of S-frame (as defined in Appendix A) is oriented along Didymos
CoM direction. The moon is tidally locked to the latter; if the moon is rotating along that
axis, the poles represent the landing site with minimum angular velocity. Consequently, the
guidance can more easily null the ground relative motion during landing.

• Eclipse times are lower at the poles; if the moon rotates, more extended illumination is possible.

Given the criteria above, optimal landing sites are represented by the poles; in particular, the
one opposite to Didymos can be reached easier coming from outside the binary system; this location
is selected as the nominal landing site.

2.2.4 Landing Approach Design

Once reaching the proximity of the asteroid’s surface (i.e., home position), the LAP starts. Gener-
ally, the landing envisages three possible scenarios:

1. Static Landing: the spacecraft lands on the surface and assumes a "stable" configuration while
performing the surface operations. The landing point also represents the initial condition for
relocation maneuvers. The time scale of these operations can vary from a few minutes to a
few hours, depending on the available fuel and the type of operations. In fact, due to the low
gravity experienced on the asteroid’s surface, an almost continuous thrust is required from
the propulsion subsystem to guarantee the needed stability enabling the surface operations.
An alternative solution is the use of harpoons [76]; however, these devices greatly limit the
flexibility for the relocation phase, in fact for every landing, a new set of harpoons has to be
used.

2. Touch & Go: the spacecraft performs a fast "touch" of the surface, in the order of a few sec-
onds, and bounces back to orbit. This operation is concise and imposes significant constraints
on the sampling mechanism. In this case, mobility is limited and only possible if a series of
TAG events are executed; consequently, mission complexity increases.

3. Hover & Go: the spacecraft does not have any contact with the surface of the asteroid but
hovers over it. As for the Touch & Go case, if a sampling mechanism is present, this approach
imposes severe constraints and may cause uncertainties regarding the sample site character-
istics. This solution also implies that the GNC algorithms can maintain the spacecraft at a
very low altitude (order of tenths of centimeters) from the surface to enable sample collection.
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Hover & Go

In the Hover & Go mission option, the spacecraft does not touch the surface but only an appendage.
The main feature of this option is the limited interaction between the spacecraft and the asteroid’s
surface. This reduces the level of interaction between the spacecraft and the asteroid and the risk
of the spacecraft becoming ’stuck’ on the asteroid. However, the scope of the present µLander is
surface direct interaction and mobility for relocation. For Hover & Go, the limited time for in-situ
measurements or other experiments is a significant disadvantage. This reduces the scientific return.

In addition, this strategy does not require any dedicated landing system, therefore saving dry
mass. Instead, a dedicated mechanism should be adapted to the transfer system (if a robotic arm,
for instance) to absorb the shocks at touchdown and the residual lateral velocities and avoid the
tumbling of the spacecraft. However, this mechanism can probably be much lighter than landing
legs have to be. The stay time above the surface can be very short, depending on which sampling
mechanism is used, limiting integrated radiative thermal effects and propellant consumption.

Overall, such a concept can save a non-negligible mass on the spacecraft. For instance, this
mass reduction concerning a landing strategy will translate into cost savings, an advantage for this
mission. This cost-saving seems balanced by the higher complexity of the specific systems required
for this approach, such as sample transfer, GNC, and touchdown absorbing mechanism. The former
needs further technological advancements to reach an adequate level of development in Europe.

The Hover & Go option is the most demanding for the GNC system because the spacecraft has
to remain aligned with the terrain and at a constant distance to the ground with high stability to
perform the sampling. Moreover, the non-uniform gravity perturbations are not negligible during
this period near the surface, e.g., deployment of the sampling mechanism.

The need for a remote sampling mechanism and long-reach deployment system, which can cancel
any residual velocities, also adds to the mission complexity.

Touch & Go

The Touch & Go mission option uses an impulsive rebound of the spacecraft with fast sampling and
immediate re-orbiting. This implies that the spacecraft has a short but direct interaction with the
surface, potentially requiring the adoption of the same landing leg design for the landing mission.

The Touch & Go option offers no significant advantage over the Hover & Go or the Static
Landing as the spacecraft makes complete contact with the asteroid but has a limited time (<3s)
for the sampling operations. Moreover, the stability of the spacecraft during the sampling operations
represents a critical aspect that could compromise the success of the mission, together with a fast
and autonomous capability to react to events/hazards is required. In the Static Landing option,
the spacecraft fully lands on the asteroid to perform sampling operations. The GNC system and
the firing of reaction control thrusters ensure the stabilization of the spacecraft during the stay.

Static Landing

For the Static Landing option, the GNC system shall apply a force to maintain the spacecraft on
the ground and avoid rebound. In fact, given a restitution factor Cr = 0.5 and a touchdown velocity
of V=1 cm/s relative to the ground, the required time to achieve a rebound height smaller than
0.10 m is approximately 40 minutes. The sampling operations are, therefore, more secure in the full
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landing option. In some cases, anchoring systems (e.g., harpoons) could be envisaged to enhance
the stability of the µLander on the surface, but as discussed, limiting mobility function on the
ground.

The extended period available on the surface for scientific operations gives additional flexibility
in the type of analysis; moreover, it allows stable and accurate initial conditions for relocation
maneuvers.

Trade-Off Landing

The preliminary trade-off for the mission type is presented in Table 2.3. Based on this trade derived
from previous investigations, the preferred mission option would be a static landing on the asteroid
because it simplifies the stabilization of the µLander before the sampling and surface operations
and allows relocation.

Criteria Weight Max Value Hover & Go Touch & Go Static Landing
Technical Ad-
vancement

0.3 10 7 8 9

Mission Re-
turn

0.3 10 4 5 9

Risk -0.2 10 6 (low risk) 6 9 (high risk)
Cost -0.1 10 6 6 8
Complexity -0.1 10 5 (low com-

plexity)
6 8 (high com-

plexity)
Total 1 1.5 2

Table 2.3: Landing Approach Trade Off

The goal of the present work is to define a system that is flexible and adaptable to a variety of
missions; the static landing approach represents the optimal landing condition to have increased sci-
entific return on the asteroid surface, allowing less constrained payload, in particular, it removes the
need for a fast sampling mechanism. Moreover, static landing is a real technological advancement,
and few missions succeeded in this approach; being an ambitious goal to pursue.

Finally, the static landing scenario seems to provide the highest success probability to meet the
science requirement of deploying instruments on the surface or collecting samples. This scenario
offers various advantages, among which the possibility to:

• Select the operation to be performed with support from the ground on a longer time scale

• Perform multiple attempts on the same sampling site without the implementation of critical
maneuvers

• Select more sampling mechanism concepts (more sampling mechanisms are compatible with
this type of mission)

• Allow stable relocation and mobility initial condition, decreasing mission complexity
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Finally, the contamination and temperature aspects have to be taken into account. From a
mission and system point of view, the Hover & Go, as well as the Touch & Go, are providing a
lower level of contamination and temperature of the sample site concerning the case of the Static
Landing.

Based on the discussion provided in the previous section, the following is assumed:

1. A static landing is selected for the landing approach. This solution increases the probability
of directly interacting with the surface on a longer time scale.

2. The target selection represents an essential input for understanding the suitability of the
approach. Although the landing option seems to provide more substantial advantages, it has
to be noted that this can be severely affected by the size of the asteroid. Landing on a few
hundred meters in diameter asteroids is expected to be more complex than landing on one a
few kilometers in diameter.

3. Final conditions (target landing site) can be defined in the body fixed coordinates of Dimor-
phos. In particular, the pole opposite Didymos represents an optimal choice.

2.2.5 Retargeting Operations

The Safe Landing Site Selection (SLSS) functionalities run at specific gates during LAP to accom-
plish the mission target, see Section 2.2.1 and Section 4.4.8: landing on the secondary body of the
Didymos binary system.

LAP starts approximately 300 m from the surface and ends with the soft touchdown on the
secondary body. Once the target landing site is defined before deployment, the system can refine
the selection according to safety and mission return criteria (e.g., visiting a specific region) during
descent and define an updated landing site on board. Safe Landing Site Selection (SLSS) routine
is discrete to avoid continuous shifts in the target landing site position while landing. Three SLSS
gates are identified, as shown in Figure 2.1:

1. when the LAP begins at around 300 m from the surface (resolution = 0.31 m/pixel)

2. when the mid-point of the trajectory is reached at 150 m (resolution = 0.16 m/pixel)

3. at 50 m from the surface, the last retargeting gate is reached (resolution = 0.05 m/pixel)

2.3 GNC System Landing Requirements

2.3.1 Objective

The need of the mission is an autonomous and safe landing in a partially known environment from
a farther distant orbit leading to asteroid surface interaction of the µLander. The identified mission
objectives are:

• Small deep space platform deployment

• Asteroid physical properties acquisition

• Surface science package landing
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The GNC subsystem shall have a reduced impact on the spacecraft and allow a flexible adap-
tation to different mission architectures. Most of the requirements are defined bottom-up from the
GNC level to the mission level because the mission represents only a test case, and it is helpful to
demonstrate the flexibility of the proposed solutions.

2.3.2 System Drivers

In this section, the major system drivers from which the requirements are derived:

• Autonomy: the long signal flight time in the order of tenths of minutes implies that the
system shall perform the operations autonomously. Autonomy shall be granted during both
the nominal decision-making process and accidental malfunctions always to prioritize mission
survival.

• Robustness: due to the partially known environment, the µLander shall robustly react to un-
foreseeable/unmodelled forces and avoid divergence from the nominal onboard derived guid-
ance profile.

• Landing Site Selection: once the target landing site is defined before the deployment, the
system can refine the selection according to safety and mission return criteria (e.g., visiting a
specific region) during descent and define an updated landing site onboard.

• Soft Landing: the system shall perform a touchdown with minimal translational and rotational
velocity. Moreover, it should allow a working functionality for the payload to be stable on the
landing site for a determined time.

2.3.3 Landing Requirement Definition

The Landing Site Selection driver expresses the rationale to have an autonomous landing site detec-
tion and selection on the µLander; from this driver, the following SLSS requirements are derived.
The SLSS requirements define those constraints related to the SLSS functionality and the target
landing site.

Title Description Rationale Note
Landing
Footprint

The landing site
area shall be
within a circle of
100 cm + 40 cm
radius

The landing footprint is the
geometrical projection of the
µLander area onto the sur-
face. The landing footprint
considers the mechanical
landing footprint and adds
a safety margin of 40%

The landing footprint is the
area on which the µLander

touchdown. The dimensions
are used in the SLSS as a
fundamental parameter to
verify that this area is clear
from hazards.
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Title Description Rationale Note
IlluminationThe surface shall

have a minimum
Sun phase angle of
45◦ during touch-
down

Shaded areas are considered
unsafe because it is impossi-
ble to identify any hazard in
them. Dark areas the sensors
system cannot process should
be classified a priori as un-
safe; they could represent a
deep crater or the shadow
generated by a boulder hid-
ing more hazards.

The sun phase angle is
granted during mission de-
sign on the ground.

Slope The maximum
landing footprint
slope w.r.t. the lo-
cal gravity is 30◦

The µLander physical char-
acteristics limit the slopes
where it can land to avoid
keeling.

Local gravity is assumed to
be known.

Closest
Landing
Site

The selected land-
ing site shall be
closer than 50 m

from the nominal
landing site.

The selected target landing
site shall be in the neighbor-
hood of the nominal landing
site. The latter is chosen be-
fore deployment and has a
high scientific interest.

The nominal landing site is
selected on the ground before
the deployment. Its knowl-
edge is limited, and if it is
unsafe, the SLSS re-target to
a different landing site

Minimum
Distance

The target land-
ing site shall be at
least 1.5 m from
the closest unsafe
landing site

The safe landing site should
be far from any unsafe land-
ing site to account for per-
formance error and increase
system safety.

-

Roughness The maximum lo-
cal rock density for
a target landing
site is 80%

Rock density is defined as
the area containing detected
rocks divided by the overall
area analyses (see Section
4.4.4).

The local rock density is
an indirect measurement of
the surface roughness [77].
The physical and geomet-
rical characteristics of the
µLander touchdown system
determine the maximum haz-
ard size the µLander can
take without damaging any
part of the system.

Table 2.4: SLSS system requirements

2.4 Spacecraft Architecture

The available mass budget largely determines the µLander design. The following mass character-
istics play an important role:
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• Mass of the µLander to be launched

• CoM position

• Moment of Inertia (MOI)

Generally, a µLander is defined as a mass ranging from 10-150 kg. Evaluating the actual and
past missions to Near-Earth objects and the successful lander missions on Mars, a system total wet
mass of 50 kg is assumed, including a 20 % margin.

In Table 2.5, the estimated relative mass of the subsystems is given in percentages. The percent-
ages are averaged out over several spacecraft. For the GNC subsystem, a 7.5 kg mass is allocated
considering AOCS, and it is excluded part of the propulsion system; in particular, the total mass
estimate is made a requirement to have selection criteria during design, the decision-making process
for avionics shall consider this value.

Subsystem (%) Mass [kg]
Structure 15 7.5
Propulsion (RCS) 10 5
GNC 15 7.5
Power 12 6
TT&C 5 2.5
Thermal 2 1
Payload (incl. anten-
nae)

9 4.5

Wiring 5 2.5
Data Handling 4 2
System Margin 20 10
Propellant 3 1.5
Total 100 50

Table 2.5: Mass Budget

The µLander system mass represents a key driver for overall complexity and potentially im-
plemented functionalities into the system. Thus, it is a crucial figure for overall feasibility. As
presented in Table 2.6, the estimated and calculated mass properties are needed assumptions for
the GNC system development.

Parameter Unit Value
Mass (wet) kg 50

MoI w.r.t. B-frame kg ·m2

1.021 0 0

0 1.021 0

0 0 1.021


Table 2.6: Mass properties of the NEO-MAPP µLander
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2.4.1 GNC Avionics Suite

The following section briefly describes the selected sensors; detailed specifications can be found in
Appendix B.1. Moreover, some trade-offs are identified to assess the optimal sensor configuration
and actuators definition for the specific concept of operations; the trade-off results are presented in
Appendix B. Figure 2.2 shows the sensor’s configurations.

xB

zB

B

FoVLRF
CAM

STR

IMU

Figure 2.2: Sensor Configurations

The baseline avionics for the GNC system includes:

• STR (B.1.1): the unit provides attitude information, and it is used on a classical gyro-stellar
estimator by measuring attitude quaternion.

• IMU (B.1.3 and B.1.2): the units are tailored for low gravity field environment, and it is used
for dynamic model propagation in the navigation filters.

• Camera (B.1.4): it is the fundamental unit for navigation, providing different measurements
according to the mission phases (i.e., centroid estimation or tracked features).

• LRF (B.1.5): it represents a very accurate LOS measurement used in both the developed
navigation filters and for the SLSS functionalities.

2.4.2 Payload

The suitable payload for NEO-MAPP has been identified by NEO-MAPP partners’ payload devel-
opments. The payload specifications are presented in Table 2.7.

Payload Description Value Reference
Inter-Satellite Link
(ISL) technology

Range Rate Accuracy (2
σ)

30 mm/s [71]

Range Accuracy (2 σ) 1 m

Frequency 5 s to 600 s

Bistatic Radar Low
Frequency Radar
(LFR)

Carrier Frequency 50-70 MHz [78]

Resolution (monostatic) 2.5 m

Pulse repetition 5 s
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Mass 1360 g

Mean power 10 W

Gravimeter Dimensions 1U Cubesat [79]
Mass 400 g

Seismometer Volume 2 l [80]
Mass 2 kg

Table 2.7: Payload Overview

2.4.3 LiDAR-free Solution Trade-off

Next, I explore the trade-off between utilizing LiDAR-based solutions and LiDAR-free alternatives,
examining their respective advantages and limitations. Finally, I discuss the selection process for
the propulsion system, analyzing various technologies’ implications on the avionics architecture and
overall vehicle performance.

Table 2.8 presents a comparison between LiDAR units: it appears that all of the LiDAR options
currently available are either too heavy or out of range for the mission scenario.

A LiDAR-free mission will be necessary to stay within the mass constraints of the GNC system.
While the HERA LiDAR is the most promising option, it is still in the early development stages. It
has a minimum range of only 200 m, making it unusable during landing proximity operations [81].

However, it is essential to note that not having a LiDAR onboard does come with inevitable
trade-offs: the spacecraft’s ability to accurately sense its surroundings and make necessary adjust-
ments could be compromised, potentially leading to higher levels of risk during landing operations.

Unit Mass Range Accuracy Comment
HELENA [81] <2kg 200 m-14

km

n/a Low TRL. The minimum range does
not include proximity operations

Hayabusa-2 [55] 3.5
kg

50 m-50
km

0.5 m Flown on Hayabusa-2, heavy and over-
performing for the current mission sce-
nario.

Goldeneye [82] 6.5
kg

- - Mass beyond GNC envelope, state of
the art for space-borne LiDAR

Table 2.8: LiDAR Comparison

2.4.4 Propulsion System Selection

Thruster Type

Table 2.9 provides information on three propulsion systems for asteroid landers: electric, cold gas,
and chemical propulsion.
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Type Electric Cold gas Chemical
Reference ACFT Airbus [83] CGT1 AST [84] MR-401 Aerojet

[85]
Min Impulse Bit - - 60 sec
Isp[s] 1500 65 184
Propellant Xenon Nitrogen Hydrazine
Mass [kg] (each
thruster)

1.5 0.12 1

Thrust Range [N] 0-0.01 0-0.01 0.07-0.09
Power to Thrust
Ratio [W/mN]

20 - -

Table 2.9: Thruster Comparison Properties

Electric propulsion offers a much higher specific impulse (Isp) of 1500 seconds, providing a higher
velocity change per propellant unit than the other two systems. Using Xenon as a propellant offers
higher efficiency, and the power-to-thrust ratio of 20 provides a more sensitive and controllable
thrust, making it useful in low-gravity environments. However, the mass of the thruster is higher
at 1.5 kg each.

On the other hand, cold gas propulsion uses Nitrogen as a propellant, which is less efficient. Still,
it provides a smaller impulse bit suitable for more minor, more precise maneuvers. It is a mature
technology with a Technology Readiness Level (TRL) of 9, which means it has been extensively
tested and is reliable. Additionally, the thruster’s mass is the lowest at 0.12 kg, making it more
lightweight, simple, and inexpensive.

Finally, the chemical propulsion system offers a higher minimum thrust range than the other
two systems, with a maximum thrust of 0.07-0.09 N. This higher thrust is unsuitable for sensitive
maneuvers in low-gravity environments but could be helpful for landing and take-off phases. The
Hydrazine propellant used is not as efficient as Xenon, and the mass of the thruster is higher at 1
kg each. However, chemical propulsion is a well-established technology, and the MR-401 Aerojet
system has been used extensively in space missions.

In conclusion, cold gas propulsion has several advantages, making it a suitable option for space
missions. Firstly, it is a mature technology with a Technology Readiness Level (TRL) of 9, which
means it has been extensively tested and is reliable. Additionally, it has a small impulse bit, making
it ideal for more minor, more precise maneuvers. Cold gas thrusters are also simple, robust, and
inexpensive. For missions that require only landing, electric thrusters may be too heavy. How-
ever, electric propulsion may become the preferred solution for more considerable velocity changes.
Electric thrusters have a TRL of approximately 6.

Assuming a generic cold gas thruster with a thrust range of 10-50 mN, an Isp of 60, and a
mass of 0.3 kg, different options such as Nanoprop [86], VACCO [87], or CGT1 DASA [88] can be
considered.
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Reaction Wheel Utilization

The assessment in Table 2.10 shows that using RW and cold gas RCS have their advantages and
disadvantages.

Regarding micro-vibrations, the utilization of RW can introduce such disturbances; however,
their amplitudes can be mitigated by implementing damping isolators. Nevertheless, it is worth
noting that micro-vibrations may also reach negligible levels, thereby minimizing their significance.
Regarding the slew maneuver, both RWs and RCS demonstrate comparable ratings, yet the RCS
configuration exhibits a higher threshold for torque. Moreover, the RCS configuration holds the
advantage of being lighter in mass, rendering it an appealing option in terms of weight considera-
tions. From a cost perspective, incorporating RWs entails additional expenses. Furthermore, RWs
tend to possess a higher complexity rating due to their susceptibility to errors and necessitating
more extensive verification processes. Power-wise, the RCS requires less energy, whereas RWs offer
the advantage of a longer operational lifespan and enhanced resilience against radiation. The par-
asitic ∆V is similar for both alternatives, with wheel offloading performed before landing, while a
balanced thruster configuration effectively minimizes the impact of ∆V on the wheels.

Regarding Technology Readiness Level (TRL), applying RWs for interplanetary missions has
not been previously undertaken, whereas RCS enjoys a higher TRL rating. Lastly, operational
constraints may impose the necessity of concurrently employing both RWs and RCS.

Taken as a whole, the comprehensive assessment table illustrates the respective advantages and
disadvantages of both alternatives. However, considering the brief duration of the mission phases
in the case of NEO-MAPP, it is determined that using RWs would be redundant. Consequently,
the decision is made to refrain from incorporating RWs into the NEO-MAPP system.

Criteria RW Cold
gas

Comment

Micro-vibrations 2 3 RW introduce micro-vibrations
Slew 2 3 -
Mass 2 3 4+1 kg vs 4 kg (12 RCS + 4 RWs con-

figuration)
Cost 1 3 -
Complexity 1 3 -
Power 2 3 -
Lifetime 3 1 -
Parasitic ∆V 2 3 Effect of wheel offloading
TRL 2 3 Never used CubeSat RW on an Inter-

planetary mission.
Total 17 25 -

Table 2.10: Reaction wheels assessment table (low score is worse)
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Chapter 3

Feature-based Altimeter-aided
Navigation for Close Range

In this chapter, a novel approach of feature-based altimeter-aided navigation is explicitly designed for
close-range scenarios. The Introduction outlines the significance of the research and its contributions
to the field of relative navigation. Subsequently, the prevailing Low Altitude Navigation Strategies
are explored to identify the existing limitations and pave the way for the current proposed solution.
An Environment Modelling section highlight the challenges in the asteroid modelling and in building
a representative simulator. The subsequent sections focus on crucial aspects, including Relative
State Estimation, where the techniques employed are detailed to estimate the platform’s state in
relation to its surroundings. Next, Sensors and Measurement Models are presented, which form
the backbone of this feature-based approach. Furthermore, the Navigation Filter Development is
presented, which illustrates the development and implementation of this navigation filter based
on the proposed feature-based methodology. The navigation filter workflow is applied to a lunar
landing test case to prove the applicability of the solution to a planetary landing. Finally, the chapter
culminates with a comprehensive results section, thoroughly evaluating the system’s performance
in various scenarios.

3.1 Introduction

This section investigates the navigation solution for the second phase of the landing. The primary
objective is to enhance the accuracy and robustness of navigation strategies at low altitudes where
absolute measurements are unavailable. Since the secondary fills the field of view, the centroid
cannot be estimated, and a feature-based approach is used. The features are extracted and tracked
from the observed images and used together with the LRF measurement to estimate the state of the
lander. In this approach, no absolute information is measured, and the relative state with reference
to the surface is observed. The solution is intended to be used at short distances from the surface.
The chapter contributes to developing a novel navigation filter that fuses efficient features and LRF
measurements by granting a high accuracy and reduced drift of the solution.
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3.2 Current Close Range Navigation Strategies

3.2.1 Current Asteroid Relative Navigation Systems

Relative navigation built on feature-based techniques has been successfully used for a few asteroid
landing missions, providing a reliable solution for spacecraft navigation without GPS signals. How-
ever, a pure relative solution has never been used (without prior information). Pien [89] conducted
pioneering research on the autonomous exploration of Mars, focusing on precision-landing strategies
and autonomous navigation, which can be considered synonymous with relative navigation. This
foundational study emphasized the significance of relative navigation in space missions.

DIMES [90] represented a groundbreaking milestone as the first use of computer vision to control
spacecraft landing. DIMES measured horizontal velocity using two camera images as a Vision-based
Navigation (VBN) system. This approach was vital for countering potential steady-state winds and
mitigating hazards to the airbag landing system.

The Autonomous Precision Landing Hazard Avoidance Technology (ALHAT) project [91], de-
veloped by NASA, aimed to enable safe, precise lunar landings without lighting constraints and
avoid hazards for human-scale vehicles. ALHAT targeted landing accuracies ranging from hundreds
to tens of meters, and the project focused on advanced GNC hardware and software technologies,
reaching TRL 6.

In the context of space missions, unexpected challenges often arise, as seen in the Osiris Rex
mission [58]. Due to the high boulder density on the asteroid’s surface, stricter landing requirements
were necessary. The use of Natural Features Tracker (NFT) as the baseline navigation method [92]
instead of LiDAR proved essential, as LiDAR had limitations in cross-track accuracy and sensitivity
to albedo heterogeneity.

Hayabusa 2 [54] employed a Target Marker Navigation (TMN) system, deploying a small target
marker on the asteroid’s surface. Using a high-resolution camera, the spacecraft determined its
relative position and orientation, achieving precise positioning during mission operations.

Figure 3.1: Hayabusa target marker on Ryugu (JAXA)

The Ingenuity mission [93, 94], a part of NASA’s Mars 2020 project, showcased the application
of relative navigation principles for aerial exploration on Mars. Deploying a small helicopter drone
to the Martian surface, Ingenuity employed a LRF and state filter update frequency to determine
its position and orientation during flights, demonstrating the viability of aerial exploration in Mars’
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atmosphere.
In all these missions, relative navigation based on features-based techniques provided a reliable

and accurate solution for spacecraft navigation. However, pure relative navigation still represents
the frontiers of SSSBs and planetary explorations.

3.2.2 Challenges in Asteroid Relative Navigation

In the domain of VBN, it is essential to establish clear definitions for the terminology employed
in this study. Typically, all methods using images or DEMs/depth maps to localize the lander are
collectively referred to as VBN systems. However, it is crucial to differentiate between methods that
utilize images to position the lander relative to a pre-existing map or ephemerides and those that
solely perform localization based on the currently sensed image from the spacecraft. The former
method can determine the inertial, absolute position of the lander (as in Section D). At the same
time, the latter can only provide localization relative to the current image, thus minimizing the
accumulation of relative error from the IMU over time. In this work, I will use the term absolute
navigation to refer to the former method and relative navigation for the latter, emphasizing the
critical distinction between them.

A significant challenge is the necessity for autonomy, a requirement shared across various mission
aspects, including relative navigation and already presented in Section 1.1 and Section D.

It is essential to note that absolute navigation and relative navigation significantly differ in
their applications. Absolute navigation can guide a spacecraft toward a predefined landing region,
whereas relative navigation can be employed to avoid hazards identified in an onboard hazard map
or achieve a precision landing without preventing hazards. The accuracy of absolute navigation
methods depends on the resolution of the reference maps, ephemerides (as shown in Section D),
or catalogs used for matching, whereas pre-existing data do not restrict relative navigation. While
absolute navigation can ensure safe and precise landing when very high-resolution surface images
are available, such as in the case of planetary landings, it is insufficient for ensuring safety on other
celestial bodies where hazardous landing regions may be present and detailed terrain maps are
unavailable.

Addressing these challenges, features-based relative navigation is a promising approach to en-
hance accuracy. By utilizing landmarks and distinct surface features for navigation, features-based
methods offer improved precision in determining relative positions, allowing for more reliable and
successful missions.

3.2.3 Recent Research

Most terrain-relative navigation technologies fall into the absolute navigation section as defined
above. As presented in multiple surveys [95, 96], matching measured landmarks [97–99], craters
[100], or DEMs to pre-existing catalogs or data is the current state-of-the-art technology.

In the context of navigation through unexplored terrain or as the spacecraft approaches its land-
ing site, absolute navigation methods face limitations in recognizing landmarks or centroids. During
these critical phases, the vehicle is most vulnerable, demanding the utmost reliability in navigation
systems. In such scenarios, where traditional landmarks and reference points are unavailable, the
need for alternative and robust navigation strategies emerges. Hybrid approaches fusing landmarks
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matching with features tracking are available [101].
According to the degree of a priori information used, different features-based navigation range

from using just a rough shape model [102] to fully autonomous systems [103, 104].
Decreasing the dependency on a-priori data (e.g., landmarks, shape models, etc.) requires

advanced navigation techniques such as Simultaneous Localization and Mapping (SLAM) and visual
odometry. SLAM is a technique that allows a spacecraft to simultaneously create a map of its
surroundings and localize itself within that map. This is done using sensors such as cameras [105]
and LiDAR [106] to measure the distance and orientation of nearby objects. By combining this
sensor data with information about the spacecraft’s motion and dynamics, SLAM algorithms can
accurately determine the spacecraft’s position and orientation relative to the planetary surface
without pre-existing information.

3.2.4 Research Novelties

This research explores several novel technologies to address the challenges the landing environment
poses and µLander architecture on Simulataneous Localization and Mapping (SLAM) systems. The
weak gravitational pull necessitates precise landing velocity knowledge to avoid crashing or bounc-
ing off from the surface, while reduced parallax at far ranges complicates feature triangulation in
structure-from-motion methods. Additionally, the large stereo-camera baseline required to account
for the landing altitude excursion is impractical for the µLander size. Accurate position knowledge
is vital for targeting the landing site. At the same time, the absence of a LiDAR unit hinders depth
estimation, and ConOps eliminates the possibility of loop closure during landing.

To overcome these challenges, several innovative approaches have been developed. A monocular
camera method is introduced to address the limitations of stereo-camera and LiDAR. A SLAM-based
approach robustly tracks features and improves the limitations of structure-from-motion methods.
Utilizing a LRF enhances observability along the LOS without relying on prior shape models. An
Extended Kalman Filter (EKF)-SLAM is implemented to achieve accurate velocity and position
estimates, and efficient data fusion techniques are employed. These technological advancements offer
promising solutions to effectively navigate and address the complexities of the landing environment
and µLander architecture.

3.2.5 Close Range Navigation Architectures Review

An overview of the relative navigation methods and related sensors in the literature is shown in
Table 3.1. The analysis is limited to features-based filters with limited or without prior knowledge.
An EKF implementation will be used because it has shown promising results compared to particle
filters or graph-based implementations; these have much higher computational and implementation
complexity with minor result improvements [107]. The LRF/altimeter unit is fundamental to in-
crease the observability normal to the surface, and the monocular approach represents the optimal
configuration to account for the lack of LiDAR and the limited stereo baseline on the µLander.
Finally, a limited number of tracked features is employed to keep the filter state reasonable in size
while granting accurate landing. The HERA implementations [74] are close to the researched one.
However, it is not tailored for a landing scenario, has substantial avionics differences, and has limited
published details.
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Paper Architecture Sensors Description
[108] EKF-SLAM Monocular Camera Not a space application, indoor envi-

ronment, heavy implementation, dy-
namics features number.

[109] Graph-based Earth-relative po-
sition, Monocular
Camera

Graph-based heavy implementation,
additional non-visual measurement,
proven SLAM-feasibility, not designed
for landing missions.

[106] Graph-based, EKF LiDAR, IMU LiDAR unit employed, GPU used, very
power intensive, not for landing but for
characterization phase.

[74] EKF Monocular camera,
IR camera, laser
altimeter, IMU

Mission experimental phase, additional
sensors used, features tracking, HIL
validated, promising solution but lim-
ited details.

[103] Particle Filter Monocular camera,
Altimeter, IMU

High computational effort, features
matching, loosely coupled approach for
altimeter, a large number of particles
for accuracy

Table 3.1: Overview of architectures in reviewed literature

3.3 Environment Modelling

In the current section, a detailed environment modeling description is provided. Since a high-
fidelity model is needed for simulation and testing, a combination of synthetic properties and actual
estimates is used to define a high-resolution mission environment. The focus is an enhanced environ-
ment compared to the available knowledge to accurately model the interaction between spacecraft
and asteroid scenarios.

3.3.1 Reference Target Body

Baseline Parameters for Binary Asteroid Environment

The baseline parameters of the target bodies are summarized in Table 3.2. More detailed information
is contained in [110].

Baseline Value
General
Target Name Primary Didymos
Target Name Secondary Dimorphos
Physical Parameters Primary
Overall dimensions 832 m × 837 m × 786 km

Rotation Period 2.26 hrs
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Rotational speed 7.7227e-04 rad/s
Rotation Axis (body fixed z-axis w.r.t.
J-frame)

RA: 270 deg Dec: -87 deg

Obliquity 175 deg
Orbital inclination 0 deg
Physical Parameters Secondary
Overall dimensions 208 m × 160 m × 133 km

Rotation Period 11.9217 hrs
Orbital Period 11.9217 hrs
Rotational speed 1.4640e-04 rad/s
Rotation Axis (body fixed z-axis w.r.t.
J-frame)

RA: 90 deg Dec 87 deg

Density 2170 kg/m3

Total Volume 18.7 km3

Total System Mass 5.278 1011 kg

Table 3.2: Baseline parameters for target body environment

3D Shape Model

The high-resolution 3D shape models are given in the format of an obj-file. The shape models are
used for several purposes:

• Model the image processing and camera acquisition

• Model the laser range finder acquisition

• Generate a machine learning dataset for the hazard detection functionalities

• Derive the gravity fields of the two bodies using a constant density model

The models importing pipeline includes two main operations for each model (primary and sec-
ondary):

1. Rescaling: in which the high-resolution shape model fits the assumed actual asteroid size as
in [110].

2. Enhancing, in which the high-resolution shape model is further detailed, adding boulders,
base asteroid Perlin noise, and surface features (e.g., craters.)

The 3D polyhedron models of Bennu and Itokawa are stretched to match the ellipsoid models’
extent along their principal inertia axes. After calculating the volume of the reshaped 3D polyhedron
models, the density of the two asteroids is recalculated to match the mass of the reshaped asteroids
to the masses.

These operations are the necessary pre-processing for the shape model. In the following, it is
referred independently to rescaled Bennu/Itokawa or Didymos/Dimorphos.

The rescaled version is used for gravity field generation (boulders mass is neglected).
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The two available shape models are enhanced to increase the resolution. The available ESA/JPL
shape models are used to model the system. These models are the most updated knowledge available
of the binary system. The Bennu shape model is used for the primary body and rescaled according
to Didymos’ main moment of inertia (MOI) to simulate the mass properties. Bennu shape model is
chosen because it is a high-resolution model, and the spherical shape fits Didymos estimated shape.
For Dimorphos, the estimated NASA/JPL model consists of a low-resolution ellipsoid model, which
is not sufficient to perform high-fidelity landing sequences using vision-based navigation.

Figure 3.2: Synthetic Didymos Environment Generated with ESA/PANGU Software

The model is enhanced following three main steps: base model improvement, surface features
addition, and albedo matching as presented in Figure 3.3. In the first step, a high-resolution Itokawa
asteroid model [111] is rescaled to match Dimorphos’ main moment of inertia (MOI) to have a more
representative body, compared to the ellipsoid. Itokawa is chosen because it has a well-known
high-resolution shape model, and the highly oblate shape fits closely with the Dimorphos estimated
ellipsoid compared to other NEO such as Bennu or Ceres. This step allows to have increased base
surface resolution and matches Dimorphos mass properties, i.e., MOI); the rescaling factors are
shown in Table 3.3.

MOI
Axis

Itokawa [km] Dimorphos [km] Scale Factor

X 0.562 0.208 0.370
Y 0.306 0.160 0.523
Z 0.244 0.133 0.545

Table 3.3: Itokawa Dimorphos Scale Factors

Perlin noise is applied to the base asteroid model to increase the base mesh’s resolution. Per-
lin noise is created by summing several octaves of coherent noise, each subsequent octave having
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increased frequency and reduced amplitude. Frequency is the frequency of the initial octave, lacu-
narity is the frequency multiplier between each octave, and persistence is the amplitude decrease
factor between each octave. For the Dimorphos model, the values in Table 3.4 are used.

Parameter Values
Number of octaves 10
Frequency 3000
Lacunarity 2
Persistence 0.1
Scale 1

Table 3.4: Perlin Noise Specifications

The ESA/Planet and Asteroid Natural Scene Generation Utility (PANGU) environment sim-
ulator [112] is used for the following steps. Surface feature addition consists of iteratively adding
boulders to the surface according to the precise rock distribution law provided by the Hera reference
model. According to Hera’s science team, rocks and boulders are added as in [110]. The differential
size frequency distribution of surface rocks is assumed to follow a power law described by:

dN = KDqdD (3.1)

Where dN is the number of boulders per unit area in the diameter range from D to D + dD

and where q = −(K/c+ 1), the model parameter are described in the Table 3.5.

Parameter Values
Diameter 0.164 km
Lower Cutoff Rock
Diameter

6.4 cm

Upper Cutoff Di-
ameter

5 m

c 0.121/m2

K 0.30 1/m2

Table 3.5: Surface Modelling

Finally, surface albedo is matched with available optical observation and estimated albedo. In
Figure 3.4, a comparison is shown between the modeled high-fidelity surface and the 67P/Churyu-
mov–Gerasimenko comet surface.

The PANGU software also provides for each RGB image the corresponding masked boulder
image, which is precisely the labeled data on which the neural networks are trained as presented in
Section 4.5.1.

3.4 Relative State Estimation

This section aims to provide a comprehensive definition of relative state estimation, explicitly fo-
cusing on the dynamics equations involved in the estimation process. The term relative, as opposed
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Figure 3.3: Asteroid Modelling Pipeline

Figure 3.4: Synthetic surface detail(left) and 67P/CG Comet surface (right).

to absolute, defines a state generally described with reference to a non-inertial reference frame (i.e.,
L-frame). The relations between the L-frame and the I-frame are derived given the final knowledge
of the High Altitude Phase Navigation (HAPNAV).

3.4.1 Translational Dynamics

The dynamics are written in the L-frame (defined in Appendix A) as in Eq. 3.2; in Figure 3.5 a
sketch of the reference frame definition is illustrated.

r̈LBL + 2ωIS
L × ṙLBL + ωIS

L × [ωIS
S ×

(
RLSrLSS + rLBL

)
] = uL + gL + dL (3.2)

where rLBL is the lander position in the relative body-fixed frame, ωIS
S is the angular velocity of the

secondary body with respect to the primary, uL, gL, dL are respectively the control acceleration,
the gravitational acceleration (i.e., primary and secondary acceleration) and any external modeled
disturbances.

3.4.2 Attitude Dynamics

For the attitude dynamics, the same consideration presented in Section D.2.2 are valid for the
rotational dynamics. In particular, it is chosen to develop a 3 DoF implementation focused on
translational navigation. The attitude problem already has well-grounded state-of-the-art solutions
with proven efficacy, and for the NEO-MAPP activity, attitude is assumed to be perfectly known.
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Figure 3.5: Relative navigation reference frame sketch

3.5 Sensors and Measurement Models

The same HAP sensor suite is also used for the LAP. However, the sensors provide different mea-
surements and are fused using different approaches compared to HAPNAV.

3.5.1 Accelerometer

Exact derivation and specification of Section D.3.1 are valid.

3.5.2 Camera

The navigation camera represents the primary sensor for the Low Altitude Phase Navigation (LAP-
NAV). The RGB image is processed by extracting and tracking the features in the navigation
filter. Relative feature-based navigation filters rely on images captured by cameras to determine
the spacecraft’s relative position and orientation with respect to a celestial body.

The camera takes images of the asteroid’s surface and identifies salient features such as craters,
boulders, and ridges that can be easily distinguished. These features act as reference points and
can be tracked to estimate the spacecraft’s position and orientation by comparing them to previous
instances; the aim is to reduce the drift of the solution compared to the inertial frame.

The feature-based navigation back-end uses the EKF to estimate the position and orientation of
the spacecraft. This algorithm considers the noise and uncertainties associated with the measure-
ments obtained from the camera and other sensors on board the spacecraft, such as accelerometers.

The 3D points on the surface tracked in the filter are defined landmarks, while their 2D projection
on the sensor are features.

Camera Characteristics

Table B.4 shows the camera’s characteristics. Since a high-fidelity scene is needed to assess rep-
resentative mission performance, a high-resolution model of the landing area is rendered. Due to
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hardware limitations, a completely high-fidelity asteroid would excessively slow down the develop-
ment and testing process. The 3D models and modeling steps are the same as Appendix 3.3. Still,
only a cut-out of approximately 50 m around the landing zone is rendered for faster generation
performances; see Figure 3.13. The inputs for PANGU are defined in Section D.3.2.

Camera Model

Similar to the previous chapter, a camera model extracts spatial information from the images.
Landmarks are projected into features using the pinhole camera model. The pinhole camera model
[113] is used to calculate the pixel coordinates associated with the projection of the i-th landmark
defined in B-frame: (
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vi

)
=

f

hpxzBi
B

(
xBi
B

yBi
B

)
(3.3)

In figure 3.6, 38 landmarks are projected on the image sensor.

Figure 3.6: Landmarks projected into features on a sample image, the white cross is the LRF measure-
ment

3.5.3 Laser Range Finder

The LRF points in the same direction as the camera, the z-axis of B-frame, and provides a distance
measurement to landmark linked to the current target landing site or any hit landmark. The current
target landing site tracking is kept by attitude guidance using visual information. When the filter is
initialized, a feature is forced on the sensor origin (i.e., initial target landing site), and the attitude
guidance and control keep this feature centered in the frame.

If the target landing site pointing is lost, the LRF measurement is linked to the landmark hit by
the beam within a fixed threshold. The measurement is invalid if no landmark is hit, as in Figure
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Figure 3.7: LRF measurement association: valid (left) and invalid (right) measurement

3.7. The distance rLRF measured by the LRF between the spacecraft and a landmark j on the
surface of the secondary asteroid is sketched in Figure 3.8 and is expressed as:

r̃LRF = r̃Bj
B = |rLjL − rLBL | (3.4)

The measurement is obtained using PANGU and uses the 3D model of the landing site area.

L

zL

B

rLRF

rLjLrL1L rL2L

rLiL

rLmL

Figure 3.8: LRF measurement (blue) in LAP and estimated landmarks (yellow)

3.6 Image Processing

The image processing front-end of the LAPNAV filter uses Japanese for "wind" (KAZE) [114] as a
feature detector and Kanade Lucas Tomasi Tracker (KLT) for feature tracking [115, 116] as shown
in Figure 3.9; it includes the steps presented in Algorithm 1.

A total of 50 features is tracked; however, when the number of the tracked features goes below 20
(i.e., they are lost from the Field of View (FOV)), new features are detected, their relative landmark
initialized and added to the filter state.

3.6.1 Feature Extractor

A feature extractor is a computer vision algorithm that detects and extracts distinctive features from
an image [117], which can be used to track objects over time. In a tracking Kalman filter, a feature
extractor is typically used in the front end of the filter to extract features to track. The KAZE
algorithm is proven to have stable and accurate performance on asteroid and comet scenarios [118],
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Figure 3.9: Image processing front-end flow chart

Algorithm 1 LAPNAV Image Processing Algorithm
1: Image acquisition. ▷ The first step is acquiring the camera’s images.
2: Preprocessing. ▷ The acquired images are typically

preprocessed to remove noise and enhance the features. This step includes distortion removal,
given the calibration parameters of the camera.

3: Feature detection. ▷ KAZE is used as a feature detector. KAZE is a
scale and rotation invariant feature detector that can detect keypoints with high repeatability
and robustness to image noise and blur. Features are detected and extracted; particularly, the
feature associated with the LRF measurement is detected.

4: Feature tracking. ▷ Once the features are detected in the current frame, the KLT algorithm
is used to track the features across subsequent frames. KLT tracks the features by estimating
the optical flow between the frames. Each feature is identified by an ID allowing the filter to
track every measured landmark.
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and it is chosen for initiating the extraction process in the navigation filter. KAZE (or "Accelerated-
KAZE") is a feature extractor algorithm commonly used in computer vision applications such as
object detection [114], image registration, and 3D reconstruction. Here are some characteristics of
the KAZE feature extractor:

• Scale and rotation invariance: The KAZE algorithm is designed to be invariant to scale and
rotation, meaning it can detect the same features regardless of their size or orientation in the
image.

• Non-linear scale space: KAZE uses a non-linear scale space representation of the image,
allowing it to capture more complex structures than linear scale spaces such as Gaussian
pyramids.

• Non-maximum suppression: KAZE applies non-maximum suppression to the detected key
points to remove redundant keypoints close to each other.

• Gradient-based feature extraction: KAZE computes feature descriptors based on the gradient
orientation and magnitude of the image at each keypoint, similar to other feature extractors
such as SIFT and SURF [117].

• Fast computation: KAZE is designed to be computationally efficient, making it suitable for
real-time applications such as video tracking and augmented reality.

• Robustness to image noise and blur: KAZE is designed to be robust to image noise and blur,
which can be challenging for other feature extractors that rely on precise image gradients.

Overall, the KAZE feature extractor is a powerful tool for detecting and describing image key-
points, with desirable characteristics such as scale and rotation invariance, fast computation, and
robustness to image noise and blur. Figure 3.6 shows an example of KAZE-extracted features.

3.6.2 Feature Tracking and Matching Analysis

Two main approaches can be used in the front end after the features are extracted, feature tracking
and feature matching. A comparison is presented in Table 3.6.

Feature matching is a one-time process used to find correspondences in two or more images;
feature tracking is a continuous process used to track the movement of features over time. In the
matching, features are extracted independently from each image and then matched by comparing
their descriptors. In the tracking, the features are extracted from the first image and then tracked
in subsequent frames [119].

Criteria Feature Matching Feature Tracking
Number of features Vary significantly between

frames
Same over multiple frames

Initialization Detect new features in each
frame

Track previously detected
features

Matching step Computationally expensive Faster and less computation-
ally expensive
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Outliers False matches and mis-
matches

Use RANSAC to remove
them

Accuracy when many features are
available

Effective when few features
are available

Implementation Slower, more computational
effort

Faster, less computational
effort

Re-initialization Frequent, relatively short-
term tracking

Track features for extended
periods

Table 3.6: Comparison feature matching and tracking

Feature matching can be more accurate when many features are available but can suffer from
false matches and mismatches and requires detecting new features in each frame. Feature tracking
is faster, requires less computational effort, and can track the same features over multiple frames.
However, it may be less effective when few features are available and can still suffer from mismatches
and require outlier removal.

One of the critical advantages of feature tracking is its speed and efficiency. Compared to feature
matching, feature tracking requires less computational effort and can be implemented faster, making
it a more practical choice for real-time applications. Additionally, feature tracking can track the
same features over multiple frames, allowing longer-term tracking and reducing the need for repeated
feature detection and matching. This can help to improve the accuracy and reliability of navigation
filters and other computer vision applications, especially in situations where features may be difficult
to detect or where motion is complex or unpredictable. Overall, the speed, efficiency, and longer-
term tracking capabilities of feature tracking make it a valuable tool for many different types of
computer vision applications.

Figure 3.10 it is shown how feature tracking (KLT) has higher performance compared to feature
matching (KAZE): the number of tracked features decreases at a lower rate in the tracking. It
allows less filter refresh, in addition to the advantages mentioned above.

Figure 3.10: Comparison of feature tracking versus feature matching
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3.6.3 KLT Tracking and Performances

KLT tracking is a computer vision technique used to track and estimate the motion of objects in a
video sequence. The algorithm uses feature points in the image to track the object’s motion. KLT
tracking is beneficial in high motion or occlusion scenarios [115, 120].

The KLT tracking algorithm first identifies a set of feature points in an initial frame using
a feature extraction algorithm, in this case KAZE [114]. The algorithm then tracks the motion
of these feature points in subsequent frames using the Lucas-Kanade algorithm, which estimates
the optical flow between two consecutive frames. The Lucas-Kanade algorithm assumes that the
intensity of a pixel in an image does not change significantly between frames. Hence, the motion
of a pixel can be estimated by minimizing the error between the intensities of the pixel in the first
frame and its corresponding pixel in the second frame. The algorithm models the motion of the
feature point as a translation in x and y directions and then uses a linear least squares method to
estimate the motion parameters.

Once the motion parameters are estimated, the feature point is projected onto the next frame
using the estimated motion parameters, and the process is repeated for the next frame. The KLT
tracking algorithm can track multiple feature points simultaneously, and it is computationally effi-
cient, making it suitable for real-time applications.

To assess the performance of the KLT algorithm, a method is defined to evaluate the performance
of KLT tracking by comparing the projection of the true features with the tracked features. The
steps are presented in the Algorithm 2.

Algorithm 2 KLT Performance Evaluator Algorithm
1: Extract feature points (u, v) from the image at time t0 using KAZE. These features are used

as reference points for tracking.
2: For each feature, extract the corresponding 3D landmark: the landmark linked to each feature

is extracted using PANGU. These 3D locations are considered true landmarks and are fixed in
L-frame.

3: Propagate pose (translation and attitude) at t1
4: The feature points extracted at t0 are tracked in the image at t1 using the KLT algorithm.

The resulting tracked feature points are called tracked features.
5: The true landmarks extracted at t0 are projected to the image at t1 using the real pose of the

camera. The resulting projected feature points are called true features.
6: Evaluate error between true features and tracked features

The algorithm aims to estimate and understand if the noise in the tracking system is Gaussian.
By evaluating the error between the true features and tracked features using various metrics, I
can determine the characteristics of the noise in the system. If the noise is Gaussian, the error
distribution will be normal, and the error signal will have a flat frequency content. In Figure 3.11a,
the drift along (u, v) directions are presented for all the features during a sample landing: as known
in the literature [121], the process is not Gaussian but has a drift over time. The mean features drift,
presented with the bold line, is 0, but in this specific landing simulation, the u axis has an increased
drift, probably depending on the principal direction of motion. In Figure 3.11b, a randomly selected
feature drift is shown; it is noted that a 1 px drift is accumulated in 500 seconds simulation. By
observing the magnitude of the drift in Figure 3.11c, it is clear that some features have higher drift
than others, probably depending on the KLT performance in some specific surface texture.
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(a) Features drift over time (b) Sample feature drift (c) Drift magnitude

Figure 3.11: KLT tracking performances

This behavior is modeled in the filter using an adaptive covariance in the measurement covariance
matrix, as presented in Equation 3.20.

The measurement provided by the image processing front-end is composed of the tracked ID
number and the current features coordinate as:

fi =
(
IDi ui vi

)
(3.5)

Figure 3.12 presents tracked features over time. The minimum and maximum number of tracked
features can be easily identified. Also, the refresh procedure is well-defined. At the beginning of the
trajectory, no feature decrease is observed because all the features are detected on a small central
portion of the image, as shown in Figure 3.13, and some time must occur before they are lost from
the field of view. At the end of the trajectory, the features refresh gets more frequent because the
parallax effect is more significant at a lower altitude, and then the features are lost at a higher rate.

Figure 3.12: KLT tracking performances: tracked features over time for a sample trajectory

3.7 Navigation Filter Development

This section presents the navigation concept that is implemented using an EKF, the EKF state
vector, and the propagation and measurement update steps of the EKF. Directly following the
EKF development is a description of the reference landing trajectory, the initial setup and tuning
of the EKF.
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Figure 3.13: Image processing preview: in yellow tracked features in red true features, in blue LRF
beam and measurement

3.7.1 Navigation Concept

The navigation concept estimates the relative position with reference to the lander’s surface. Since
no absolute information is measured, only the relative state can be measured, and the drift of that
knowledge shall be limited over time. On-board measurements keep the estimation drift bounded
and allow to estimate precisely the relative state. Camera images provide tracked features while
the LRF improves the observability along the LOS axis, as introduced in Section 3.2.4. Both the
accelerometer and the LRF resolve the scale ambiguity of using only a monocular camera. No prior
knowledge of the environment is used except for the initial inertial condition and camera pose.

3.7.2 State Definition

The camera and LRF measurements are relative to the observed features, i.e., surface features. The
camera tracks up to 50 features/landmarks from the surface and at least 20 features/landmarks.
Defining the state vector in the L-frame is favorable because measurements are directly provided in
this relative frame. The state vector, therefore, consists of the position and velocity of the spacecraft
in the L-frame, respectively rLBL , ṙLBL and the accelerometer random walk ba in B-frame; all the
current tracked landmarks rLiL are included in the state vector. The velocity random walk is also
called the accelerometer bias. The state vector is thus as follows:

x =
(
xdyn xmap

)T
=
(
rLBL ṙLBL ba rLiL

)T
(3.6)

xdyn =
(

rLBL ṙLBL ba

)T
(3.7)
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xmap =
(
rLiL
)T

(3.8)

With i = 1, . . . ,m, and m is the number of current tracked features.
At each time step, the tracked landmarks are managed by removing the lost ones and adding

the newly detected ones; in fact, the map part of the state xmap is dynamically changing over time.

3.7.3 State Propagation

The six DoF dynamics equations in L-frame are given by:



ṙ = ṙLBL
r̈ = RT

BL ( qLB) (ãB − ba)− 2ωIS
L × ṙLBL − ωIS

L ×
[
ωIS

L ×
(
RLSrSLS + rLBL

)]
+

gL −RT
BL (qLB)ηa

ḃa = ηba

q̇LB =
1

2

[
ω̃B − bg −RBL (qLB)ω

IS
L − ηg

]⊗
qLB

ḃg = ηbg

(3.9)

Figure 3.14: Relative navigation architecture sketch

As explained in Section 3.4.2, only the 3 DoF dynamic is developed. The actual relative acceler-
ation of the spacecraft is unknown. Therefore, the measured acceleration, corrected for bias, is used
in the filter in the dynamic-model replacement form [122]. The uncertainty in this measurement
is included in the propagation equation through the G matrix and the input noise vector. A Look
Up Table (LUT)-based polyhedron model is used as input for the gravity model gL = gL(rLBL );
the polyhedron model is updated with the most recent environment knowledge. The nonlinear
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propagation equation is as follows:

ẋdyn = fdyn (x,u) +Gω =

vLB
L

r̈LBL
ḃa

+G

(
ηa

ηba

)
=

=

 ṙLBL
gL +RLB (ãB − ba)− 2ωIS × vLB

L − ωIS × ωIS

(
RLSrSLS + rLBL

)
03×1

+

+

 03×3 03×3

−RIB 03×3

03×3 I3×3

(ηa

ηba

)
(3.10)

The acceleration equation contains the centripetal and Coriolis terms linked to the non-inertial
L-frame system: rSLS represents the coordinate of the landing site in the S-frame, ωIS is the angular
rate of the secondary to the primary in the L-frame. Since all the landmarks are static in the
L-frame, their propagation equation is trivial.

ẋmap = 03m×1 (3.11)

The Jacobian of the state derivative is used to propagate the covariance matrix P of the EKF.
The ∇gLis the gravity gradient calculated using a binary point mass assumption. For the dynamic
part of the state, the following is obtained:

Fx,dyn =
∂fdyn(x,u)

∂xdyn
=

 03×3 I3×3 03×3

[ωIS ]×[ωIS ]× +∇gL −2[ωIS ]× −RBL,3×3

03×3 03×3 03×3

 (3.12)

where

∇gL = ∇gP
L +∇gS

L = −µPRLSRSPJP (RSLRSP )
T − µSRSLJSR

T
SL (3.13)

with

JP/S

(
rPB/SB
P/S

)
=

1

|r|5

−2x21 + x22 + x23 −3x1x2 −3x1x3

−3x1x2 x21 − 2x22 + x23 −3x2x3

−3x1x3 −3x2x3 x1x2 x21 + x22 − 2x23

 (3.14)

The gravitational parameters are µP/S = GmP/S , where P/S subscripts are used respectively for
the primary and secondary body. For the map section of the state, the Jacobian is Fxmap = I3m×3m

Finally, the process noise covariance matrix Q is created using the accelerometer noise and bias
covariances:

Q =

[
σ2
aI3×3 03×3

03×3 σ2
baI3×3

]
(3.15)
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3.7.4 State Update

The state update step includes the Kalman gain calculation, the measurement update itself, and
the covariance matrix P update. An essential part of these calculations is the function z = h(x,u),
which calculates the measurement that is expected given the current best estimate for the filter state
x. The Jacobian of h(x,u), called Hx, is used in the Kalman gain calculation and the covariance
matrix update. The measurements that must be calculated are the expected feature locations on
the sensor and the expected distance to the hit landmark measured by the LRF.

The measurement updates are performed separately from one another. Details on the measure-
ment update for the camera and the LRF are given below.

Camera Measurement

The image processing calculates which features are tracked and which are lost for every image the
camera outputs and sorts the state accordingly. The landmark-feature data association is done
at this stage, thanks to the feature ID provided by the front end. If some feature is lost, no
measurement update happens for that particular feature. The size of the measurement update
varies between the minimum and the maximum number of tracked features. In the following, the
generic update for the i-th feature is presented.

The image processing outputs f̃i =
[
IDi ui vi

]
, its measurement for feature location in the

sensor frame and the ID connected to the specific landmark.
To calculate the expected value for this measurement using z = h(x,u), the knowledge of the

mapping between the i-th feature and the i-th landmark (ID) is used. The measured feature is
connected to its specific landmark. This landmark point must now be projected onto the camera
sensor. First, it must be transformed into the B-frame. This is done as follows:

rBi
B = RBL

(
rLiL − rLBL

)
(3.16)

where the attitude navigation gives RBL and, as mentioned, assumed known. The next step
is to use the pinhole camera model to calculate the corresponding pixel coordinates of rBi

B . The
coordinates are shifted by 256 pixels to transform them to the image coordinate system because the
image coordinate system (0, 0) is at the image border, while the pinhole model is at the center of
the image. The resulting equation is:

z = h(x, u) = f̂i =
f

hpxzBi
B

(
xBi
B

yBi
B

)
+

(
256

256

)
(3.17)

where hpx is the pixel metric width. Now to find Hx, the Jacobian of h(x,u) is calculated:

Hx =
∂h(x,u)

∂x
=
[
−RBLJ 02×6 . . . RBLJ . . .

]
(3.18)

Where J is:

∂h(x,u)
∂rBi

B

=
f

zBP
B hpx

1 0 −
xBP
B

zBP
B

0 1 −
yBP
B

zBP
B

 (3.19)
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The covariance matrix for the feature measurement uses an adaptive expression; as the feature
is observed for a longer time, its drift increases. Features initialized for longer times should have
higher covariance, as shown in Figure 3.11a. The adaptive covariance is given by:

σcam = 2 + 0.05 · tk,refresh [px] (3.20)

Where trefresh counts the step from initialization, this equation empirically represents the con-
clusion driven in Section 3.6. The camera covariance has an initial value of 2 px, and at each time
step increases of 0.05 px, these values have been empirically derived.

Laser Range Finder Measurement

The LRF update is only performed if a valid LRF measurement is obtained from PANGU and if
one of the following conditions is verified:

• The current target landing site is hit by the LRF beam within a certain tolerance.

• Any tracked landmark is hit by the LRF beam within a certain tolerance.

From a practical point of view, the target landing site is treated as any other landmark. However,
the two concepts are separated for increased clarity. See Figure 3.7 for an example of valid or invalid
measurement.

The sensor model projection equation calculates the j-th expected LRF measurement from the
filter state. The main challenge here is the data association between LRF beam and j-th landmark.
This approach uses no shape model, and only when the laser beam collides with the j-th tracked
landmark, the measurement is valid.

The Jacobian is calculated from Eq. 3.4 as follows:

Hx =
∂h(x,u)

∂x
=

[
∂h(x,u)
∂rLBL

01×3 01×3 . . .
∂h(x,u)
∂rLjL

. . .

]
(3.21)

Now the chain rule is applied:

∂h(x,u)
∂rLBL

=
∂h(x,u)
∂rBj

B

∂rBj
B

∂rLBL
= −∂h(x,u)

∂rBj
B

I3×3 (3.22)

∂h(x,u)
∂rLjL

=
∂h(x,u)
∂rBj

B

∂rBj
B

∂rLjL
= −∂h(x,u)

∂rBj
B

I3×3 (3.23)

The remaining partial derivative to complete the Jacobian is given by:

∂h(x,u)
∂rBj

B

=
∂|rLjL − rLBI |

∂rBj
B

=
rLjL − rLBI
|rLjL − rLBI |

(3.24)

Landmarks Initialization / Refresh

There are many possible approaches to initialize the landmarks in the filter state; the most com-
monly used are to define landmarks in an inverse depth parametrization [123] where landmarks are



3.7. NAVIGATION FILTER DEVELOPMENT 59

initialized at infinite while being observed if enough parallax is achieved, they converge to the true
3D state.

However, a less complex approach is used in the current implementation. The landmarks are
parametrized in Cartesian form as follows:

rLiL =

x
Li
L

yLiL

zLiL

 (3.25)

Once the filter is initialized, the landmarks are located on a plane orthogonal to the LOS
(estimated using the attitude determination) and located at the LRF measurement, it is assumed
a planar surface, and as a consequence, all the features are projected on that plane.

L

zL

B

rLRF

r̂LiL
π

Figure 3.15: Landmarks initialization/refresh: predicted landmarks locations (yellow) on π (LRF plane)
and true landmarks (blue).

The former assumption provides a more significant error once the filter is initialized, i.e., far
from the surface, however as the surface is approached, the surface curvature decreases and increases
the validity of the assumption; as the lander approaches the surface, the initialization error linked
to curvature decreases. Also, as the landing is mostly nadir, the LOS direction tends to be parallel
to the plane normal, minimizing the error of the assumption.

The same algorithm is used to refresh lost landmarks. Once a state refresh is triggered, the
number of tracked features goes below a predefined threshold, new features are detected, and their
corresponding landmarks are initialized on a plane orthogonal to the LRF measurement.

This simplified initialization/refresh algorithm has proven stable and robust initialization even
in cases with high curvature shape models, i.e., the current Itokawa reshaped model (see Section
3.3.1).

3.7.5 Reference Landing Trajectory

The nominal flight time is 30 minutes, and the starting position is 300 m above the surface at
the home position, i.e., above the outward-facing pole of the secondary (as defined in Section 2).
A sample trajectory is shown in Figure 3.16 with position knowledge error. A set of reference
trajectories of the spacecraft is shown in Figure 3.17; this set will be discussed as part of the Monte
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Carlo reference landing scenario.

Figure 3.16: Sample landing trajectory: PKE in colorbar and tracked landmarks (yellow)

3.8 Results

This section presents the findings of my investigation into the navigation system’s filter configura-
tion, spanning the initial setup and tuning process, filter consistency and characteristics, default
configuration performance, LRF measurement sensitivity, and Monte Carlo analysis.

3.8.1 Filter Configuration and Consistency

Two requirements must be met by a consistent state estimator: ensuring zero-mean estimation
errors, and maintaining a covariance matrix that is either smaller or equal to the one computed by
the filter as described in [124]. To assess the consistency of the developed EKF, ideal measurements
are used for LRF via Eq. 3.4 and for the camera using Eq. 3.3. This process involves utilizing
precise state information from the simulator as input to these equations. White noise with a known
variance is then introduced to these ideal measurements. These variances are incorporated into the
EKF via the measurement covariance matrix R. Consequently, the filter’s output must be compliant
with the two requirements for a consistent state estimator.

The position and velocity knowledge errors are presented for a sample run. The knowledge error
is defined as the difference between true and estimated quantity. The filter performances are shown
in Figure 3.18.

Several observations can be made from this figure:
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Figure 3.17: Sample landing trajectory used for Monte Carlo analysis: green and red respectively success
and failed requirement trajectory

(a) PKE on x-(red) and y-axis (green) (b) PKE on z-axis

(c) VKE on x-(red) and y-axis (green) (d) VKE on z-axis

Figure 3.18: EKF performances: position and velocity knowledge error and predicted covariance
(dashed).
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• The EKF is consistent on the three-axis for position and velocity.

• The estimated across bore-sight dimension has slightly more bias compared to the LOS direc-
tion: this is due to the presence of LRF precise measurement along the z-axis, which increases
the observability along that particular axis.

• The estimated quantities and their predicted uncertainties comply with the navigation re-
quirement as in Equation 3.26.

• The abrupt decrease in the predicted covariance along the x- y-axis is linked to the trig-
gered features refresh. New features are detected with the same initial pixel covariance as t0;
however, at lower altitudes, it translates into lower metric covariance than the filter initial con-
dition. In other words, once the features are initialized at a lower altitude, the measurements
have higher accuracies.

The increase in the drift in the final phase of the simulation is connected to the limit in simulation
resolution. Since the 3D landing site area model cannot have infinite resolution, the quality of the
detected features at the end of the simulation is low, as shown in Figure 3.19. The predicted drift
stays bounded and limited during the LAP.

Figure 3.19: Final landing image: in yellow tracked features, note the lower resolution at such a low alti-
tude due to simulation limitations.

Navigation filter default configuration

The default configuration for the navigation filter established after this initial testing phase is given
in Table 3.7.

Setting Value Unit
Pointing Strategy Target landing site -
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Setting Value Unit
Approach Trajectory Vertical descent -
Starting Altitude 300 m

Final Altitude 10 m

Flight Time 0.5 h
Accelerometer Sample Time 0.125 s

Cam & LRF sample time 5 s

Acc. uncertainty (1σ) 2.8284e-4 m/s2

Acc. bias uncertainty (1σ) 2.8284e-5 m/s3

Rcam uncertainty (1σ) adaptive -
RLRF uncertainty (1σ) 0.5 m

Initial error and uncertainty 0 -

Table 3.7: Navigation filter settings in default configuration at LAP

3.8.2 LRF Measurement Sensitivity

The LRF significantly improves the filter consistency and estimate accuracy. In Figure 3.20a and
Figure 3.20b, the position and velocity knowledge error is shown with and without the LRF mea-
surement.

The significant contribution is brought on the z-axis, i.e., the LOS axis, by increasing position
and velocity observability. For the x- and y- axis, there are only minor changes in the knowledge
errors. Still, on the z-axis, the estimates’ accuracy and consistency improve using the LRF unit.
The most considerable effect of LRF is found on the position knowledge error on the z-axis (Figure
3.20a); the z-position estimate becomes inconsistent on the center of the trajectory by going beyond
the 3σ bounds when the measurement is not used. Moreover, the 3σ bounds are significantly higher
than the case with LRF, implying an inaccurate estimate.

This analysis shows as the LRF improves the estimate accuracy being a fundamental sensor for
the landing scenario. In particular, the sensor enhances the observability along LOS compared to
the pure monocular camera approach [125].

3.8.3 Monte Carlo Analysis

To test the robustness of the filter to a variety of initial and end conditions, a Monte Carlo analysis
of the boundary conditions has been run. The goal of the study is to assess if there are limit
trajectories that degrade filter performances. In particular other sensitivity analysis linked to Sun
phase angles or camera artifacts has already been presented in [9].

The initial and end conditions for the analysis are randomly sampled to generate 600 trajectories.
The initial state derives from a spherical section volume centered at the nominal landing site, while
the end condition is located inside a box centered on the nominal landing site. The distribution
values are presented in Table 3.8, and some trajectories are shown in Figure 3.17. Figure 3.21
presents the generated boundary conditions.

Some condensed metric has been identified to synthetically assess the Monte Carlo analysis
results. In particular, the analysis shall verify the requirement for the navigation as defined in
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(a) PKE on the x-axis (b) VKE on the x-axis

(c) PKE on the y-axis (d) VKE on the y-axis

(e) PKE on the z-axis (f) VKE on the z-axis.

Figure 3.20: LRF measurement performances with (red) and without (blue) LRF measurement and pre-
dicted covariance (dashed).

Setting Value Unit
Initial condition azimuth [0-360] ◦

Initial condition elevation [40-90] ◦

Initial condition range [200-350] m
End condition volume 30x30x10 m

Table 3.8: Monte Carlo Boundary Conditions
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Figure 3.21: Monte Carlo initial (red) and end (blue) conditions.

Equation 3.26. Figure 3.22-3.23 presents a set of the analyzed trajectories.

Figure 3.22: Monte Carlo analysis on boundary conditions: position knowledge error (blue), predicted
covariance (red)

Figure 3.22 presents the Monte Carlo results for position knowledge error. It is noted that
there is a much larger error distribution at the end of the trajectory because the effects on the end
condition are more evident and result in different surface textures and light conditions. On the
contrary, the initial condition distribution is minimal due to fewer changes in the images (textures,
lightning) at the start of the trajectory. Moreover, different selected features may trigger refresh at
other times; this is visible in the predicted covariance (red). The covariance decreases for different
runs linked to the refresh, which can be triggered sooner or later during the trajectory.
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Figure 3.23: Monte Carlo analysis on boundary conditions: velocity knowledge error (blue), predicted
covariance (red)

Similar considerations are valid also for Figure 3.23; it is also noted that the error distribution
is smaller on the z-axis because the presence of direct LRF measurement limits the influence on
boundary conditions (i.e., different surface textures or changes in lighting conditions).

The main requirement checked is that the position knowledge error [126] stays within 10% of
the distance from the surface.

PKE ≤ 10%|rLBL | (3.26)

On a single trajectory, this requirement may be verified only partially. In particular, it is assessed
for how long this requirement is verified along a trajectory, and the time of compliance is defined
as:

Time Compliant =
t∗ (PKE < Req.)

tTOT
(3.27)

Where tTOT is the specific simulation time of a trajectory and t∗ states for how long the re-
quirement is verified in Figure 3.24a it is shown that for approximately 98% of the simulation, the
requirement is verified 100% of the time, i.e., for the entire simulation. Also, it can be seen that
less than 1% of the simulation is compliant for less than 30% of the time. In other words, 98% is
compliant with the requirement on position knowledge error.

Another interesting metric is to assess how far the position knowledge error is outside the
requirement. It is possible to state that the requirement is almost verified if the trajectory is close
to the aforementioned 10% threshold. Figure 3.24b presents the compliance distance frequency.
It is highlighted that the majority (99%) of the simulation has a minimal compliance distance,
and less than 1% has a considerable compliance distance. These latter are linked to limit cases
trajectory that, due to the initial-end conditions combination, have very high glide slope angle and,
consequently, low navigation performance due to invalid LRF measurement. An example image is
presented in Figure 3.25, here LRF is invalid for most of the trajectory, some poorly observable
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(a) Compliance time of position knowledge requirement. (b) Compliance distance of position knowledge require-
ment.

Figure 3.24: Monte Carlo compliance analysis

trajectories, the red ones, are presented in Figure 3.17.

Figure 3.25: Example of limited observability.

Once the trajectories that comply with the main navigation requirement have been evaluated,
the quality of these must be assessed. In particular, the consistency of EKF is checked for each
successful trajectory. Two primary metrics are used: the duration of consistency and the consistency
error. A filter is defined as consistent (see Section 3.8.1) where the knowledge error is within the
3σ bound.

The following analysis has been run on the subset of trajectories compliant with the requirement.
In Figure 3.26a, the consistency time is presented: it is shown that 35 % is consistent for the entire
simulation, and the majority of the simulations are consistent for 80% of the time or more. From
Figure 3.22, it can be seen that in a few samples, the filter starts to get inconsistent at the end of
the simulation, and this is due to the limited simulated resolution of boulders, i.e., features close to
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the end conditions. In other words, the features at the end of the simulation have degraded quality,
and the filter tends to be more inconsistent.

However, if the consistency distance is presented, as in Figure 3.26b, it can be seen that most
of the sample is inconsistent for a minimal space, below <0.25 m. Approximately 60% of the
inconsistent sample has a maximum error from 3σ of less than 25 cm.

Finally, the Monte Carlo analysis was conducted to test the extended Kalman filter’s robustness
to various initial and end conditions. Six hundred trajectories were randomly sampled and analyzed
to assess whether limit trajectories would degrade filter performance. The main requirement tested
was whether the relative position knowledge error was smaller than 10% of the distance from
the surface, as defined in Equation 3.26. The analysis found that for approximately 98% of the
simulation time, the requirement was verified 100% of the time. Additionally, the compliance
distance frequency showed that the majority (99%) of the simulations had minimal compliance
distances. However, less than 1% of simulations had considerable compliance distances due to limit
cases trajectories with high glide slope angles and invalid LRF measurements.

(a) Consistence time of position knowledge requirement. (b) Consistence distance of position knowledge require-
ment.

Figure 3.26: Monte Carlo consistency analysis

3.9 Lunar Landing Extension

This section highlight the needs for planetary landings, specifically targeting lunar surfaces. As
humanity extends its reach beyond Earth, the exigencies of precision landing technologies on diverse
planetary bodies become increasingly paramount [127]. This section is dedicated to an examination
of lunar landing test case, with a specific focus on the transference and implementation of the
current navigation filter algorithms to Moon environment.

At the core of this extension is the investigation into the adaptability of navigation filter al-
gorithms to the lunar landing test case. The lunar surface, characterized by distinctive geological
features, serves as an experimental platform to assess the operational efficacy of existing algorithms
within this unique context .

A fundamental objective in this research is the modelling of large portions of lunar terrains, in
contrast with the limited asteroid surfaces [128]. The spotlight is on understanding the adaptability
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and critical points in the current navigation filter setup when dealing with the differences of lunar
landscapes. This work represent only a preliminary initial analysis, the final aim is to fine-tune and
optimize the current navigation systems, boosting the ability for precise and safe planetary landings
in the future, with a special focus to lunar missions.

3.9.1 Argonaut Mission Test Case

The Moon holds a central position as a target mission for humankind, driven by a historical pursuit
that spans millennia [129]. Recent decades have witnessed significant strides in lunar exploration
through orbital, landed, robotic, and human missions, leading to substantial advancements in lunar
knowledge [130]. The Moon’s appeal transcends scientific curiosity, attracting global interest for
technology research, scientific exploration, and potential resource mining.

Ongoing and planned robotic missions, propelled by breakthrough technologies and recent sci-
entific discoveries, underscore the contemporary lunar exploration landscape. China’s Chang’e
missions, with rovers and orbiters exploring the dark side of the Moon, stand out as noteworthy
accomplishments [131]. Meanwhile, private entities such as SpaceX and Blue Origin, along with up-
coming university projects, contribute to the expanding lunar mission landscape [132]. Anticipating
the return of humans to the Moon, the NASA leads an ambitious international effort, the Artemis
program [133]. In collaboration with Japan, Europe, and Canada, the program aims to land hu-
mans from 2025. This marks a significant milestone in lunar exploration, highlighting collaborative
endeavors on a global scale.

Among the pivotal lunar missions, the Argonaut Lander plays a prominent role within the ESA
Terrae Novae Exploration Programme [2]. Formerly known as European Large Logistic Lander –
EL3, Argonaut’s Lunar Descent Element (LDE) is slated to deliver scientific or logistic payloads
to the lunar surface from 2030 onward. With a focus on cargo delivery missions in support of the
Artemis program, sample return, and scientific/technology demonstration endeavors, Argonaut’s
objectives are extensive.

Argonaut, weighing approximately 10 tons, possesses the capability to deliver up to 1500 kg of
payload with pinpoint landing precision. The Lunar Descent Element (LDE) incorporates advanced
GNC capabilities, including Terrain Relative Navigation (TRN), HDA, and throttleable engines.

The current test case is based on a Argonaut baseline lunar descent from main braking burn
(MBB) to touch down (MECO). The concept of operations is presented in Figure 3.27 and it is
defined into the open loop simulator to test the navigation.

3.9.2 Lunar South Pole Simulation

Initially, an open-loop simulator is developed with specific assumptions: the utilization of a flat
moon model, neglecting lunar curvature, maintaining constant gravity throughout the landing, and
disregarding any rotational effects of the moon.

The simulated terrain encompasses a 150 km x 150 km area around the South Pole [134].
The original NASA Digital Elevation Model (DEM) serves as the basis for this simulation. The
Shackleton crater DEM is specifically obtained from 75S to the South Pole (90S) at a resolution of 30
m/px, then is cut to a square area of approximately 150 km per side. The South Pole coordinates
are applied in this context. Further refinements include defining regions of enhanced resolution,
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Figure 3.27: Descent and landing scenario from [2]

reaching up to 6 cm/px.

The Argonaut landing site, situated in proximity to the Shackleton crater rim, is characterized
by specific coordinates. Crater and boulder modeling follows, with craters ranging from 1 m to
100 m being simulated in a designated area of 50 km x 50 km around the landing area. Boulders,
spanning from 0.5 m to 15 m, are modeled in an area of 150 m x 150 m around the landing site.
To enhance the accuracy of the simulation, SPICE kernel sun elevation is applied.

The Argonaut baseline trajectory is imported into the simulator, integrating the refined terrain
and environmental parameters. This comprehensive approach ensures a detailed and consistent
simulation of the lunar landing scenario.

In Figure 3.29 and Figure 3.28 some sample image from the landing sequence are shown, in the
vertical descent overall illumination has been increase for better printing results.

Figure 3.28: Terminal vertical descent approach with tracked features

The navigation equations are the same in Equation 3.9 with the aforementioned assumptions,
and the same filter parameters are applied as defined in Table 3.7.
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Figure 3.29: Initial landing phase with tracked features

3.9.3 Adaptations and Criticalities

In summary, this section comprehensively outlines the primary adaptations required and critical
considerations inherent in the current lunar navigation approach. Distinct disparities compared to
the asteroid scenario have been identified, manifesting in significantly faster dynamics, condensing
the operational timeframe from 30 minutes to a mere 30 seconds for the lunar case (terminal
vertical descent). The lunar environment introduces challenges, including lower feature density,
prompting the necessity for a feature manager. The feature manager should assess the quality of
each initialized features and manage their distribution over the frame for increased observability.
Moreover, limitations arise from the impracticality of achieving high-fidelity surface modeling for
extensive lunar terrains due to hardware constraints, notably the limitations of RAM for model
loading.

The attitude of the lander preceding terminal descent further complicates matters, rendering the
current filter initialization suboptimal. Notably, the baseline Argonaut camera pointing proves to
be non-optimal in a non-Nadir orientation, impeding Laser Range Finder (LRF) filter initialization.
This culminates in the infeasibility of conventional LRF initialization, prompting the proposal of
using a moon shape model as an alternative means of filter initialization.

Moving forward, these identified challenges serve as focal points for future improvements if the
current solutions are to be considered for the advancement of lunar navigation technologies. Ad-
dressing the accelerated dynamics, refining feature management strategies, overcoming hardware
limitations for surface modeling, optimizing trajectory initialization, and innovating LRF initial-
ization methods are improvements for future research and development in the domain of lunar
exploration.
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3.10 Conclusion

In conclusion, one of the main advantages of the novel EKF based on SLAM is its ability to
increase the observability of the LOS. Using a LRF, the filter can better estimate the position and
orientation of the spacecraft relative to the planetary surface, even in challenging environments with
few distinguishable features. This increased observability enhances the filter’s ability to estimate
the spacecraft’s state, particularly during the final landing stages when high accuracy is critical.

Another advantage of the novel EKF is its efficient use of features and reduced number of
them. This reduces the computational burden of the algorithm, making it more suitable for on-
board implementation. Additionally, the reduced number of features allows for faster processing
and improved reliability, as fewer features mean fewer opportunities for errors in feature detection
and matching.

The Monte Carlo analysis of the filter demonstrates its robustness to boundary conditions. This
is particularly important in space exploration missions, where the spacecraft may encounter unex-
pected obstacles or environmental conditions. The ability of the filter to handle such scenarios and
maintain accurate estimates of the spacecraft’s state further enhances its reliability and usefulness
for space exploration missions.

A simplified planetary landing test case is investigated highlighting the need for the filter adap-
tion to account to the different environment in terms of dynamics and surface features.

Overall, the novel extended Kalman filter based on SLAM represents a significant advancement
in space exploration and autonomy. Its ability to increase observability, use features efficiently,
maintain accuracy in challenging conditions, and provide a relative estimated state for closed-loop
guidance makes it a highly promising technology for the future of space exploration.
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Chapter 4

LiDAR-Free Hazard Detection and
Landing Site Selection

This chapter explores the critical aspects of LiDAR-free hazard detection and safe landing site se-
lection for autonomous landing systems. I present the foundational landing autonomy framework,
outlining its essential components and mechanisms. Subsequently, the safe landing site selection
functionalities is analyzed, discussing the algorithms and methodologies used to identify suitable
landing locations while mitigating potential hazards. This investigation then delves into the ad-
vancements in deep learning developments, showcasing the integration of deep learning techniques
to enhance hazard detection and landing site evaluation. Through an in-depth analysis and per-
formance assessment, I quantify the effectiveness and accuracy of my approach, considering various
real-world scenarios and challenges. Finally, the chapter culminates in a conclusion, summarizing
the findings, highlighting the strengths of this methodology, and outlining potential avenues for
future research and improvement in LiDAR-free hazard detection and safe landing site selection for
autonomous landings. Autonomous Safe Landing Site Selection (SLSS) is described in this section.

4.1 Introduction

Hazard identification and the selection of an appropriate landing site with autonomous capabilities
involve recognizing threats that jeopardize the mission and pinpointing the optimal landing loca-
tion based on mission criteria. HDA systems are designed to execute a spectrum of critical tasks,
encompassing shadow detection, feature detection, slope estimation, and surface roughness estima-
tion, among other functions. The significance of these tasks lies in their collective contribution to
ensuring the spacecraft’s ability to autonomously identify and circumvent potential hazards during
the descent and landing phases. In the following paragraphs a brief state-of-the-art review will be
presented focusing on the current systems and highlighting the main challenges of these class of
methods. Finally, the research contribution will be highlighted.
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4.2 Autonomy for Hazard Detection and Landing Site Selection

4.2.1 Current Hazard Detection Systems

The integration of hazard detection and avoidance systems in planetary missions has seen significant
evolution over time. Historically, most planetary missions lacked dedicated terrain hazard detection
and avoidance capabilities, relying primarily on human-operated apparatus or simpler methods.
Notable examples include the Apollo missions, where the hazard detection system was essentially
the human eye [135], with the consequent increased risks see Figure 4.1.

Figure 4.1: The Apollo 15 lunar lander positioned on the edge of a small crater is depicted in these two
images. The landing incurred a tilt of approximately 11 degrees, merely 1◦ from maximum allowable limit,
leading to damage to the engine bell. [3]

The Chang’e-3 mission marked a turning point by implementing an autonomous Hazard Detec-
tion and Avoidance (HDA) system using a two-step approach [136]. This involved classical image
processing and a LiDAR system for precise hazard avoidance, showcasing a more advanced and
automated hazard mitigation strategy.

Mars 2020, with the Perseverance rover, introduced a groundbreaking approach by utilizing
an on-board hazard map referenced to observed images for hazard-relative navigation [137]. The
hazard map, generated in the years leading up to launch through analysis of high-resolution data,
covered multiple candidate landing sites.

Similarly, the Tianwen-1 mission [138] adopted a two-step guidance system akin to Chang’e-3,
emphasizing the importance of autonomous hazard detection and avoidance in modern planetary
exploration. For aerial exploration, the Ingenuity helicopter employed inertial navigation with opti-
cal odometry relative to pre-mapped hazards [139]. This innovative approach allowed for dynamic
hazard avoidance during flight, demonstrating the adaptability of hazard detection systems across
different mission profiles.

To focus on SSSB missions, limited examples of HDA exists: optical navigation relative to
mapped natural features was utilized by the OSIRIS-REx mission, showcasing the versatility of
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hazard detection methods [140]. This strategy involved navigating relative to pre-mapped natural
features on the target asteroid.

Lastly, the Hayabusa-2 mission employed prior mapping and optical tracking relative to a target
marker, emphasizing the importance of comprehensive hazard assessment before and during the
mission [141].

It is highlighted that no fully autonomous systems currently exist. All the mentioned solutions
are inherently based on prior knowledge and pre-mapping of potential hazards. Even in instances
where advanced techniques such as LiDAR systems, image processing, or optical navigation are
employed, these technologies rely on data collected and analyzed prior to the mission.

4.2.2 Challenges in HDA and Landing Site Assessment

Autonomous hazard detection and landing site assessment in space exploration pose formidable
challenges, contributing to a historically low success and survival ratio of landing attempts. For
instance, more than 60% of Mars exploration missions launched by NASA and ESA have encoun-
tered failures [142], with many attributed to complications during the landing phase. This trend
underscores the critical need for advancements in autonomous systems to enhance the precision and
reliability of landing procedures.

A particularly intricate challenge arises from the diverse and often hazardous terrain that plane-
tary and SSSBs landers encounter. Many landing points of interest are situated in areas surrounded
by craters, rocks, ridges and other geological hazards. The detection algorithms must, therefore,
exhibit versatility in adapting to complex environments and operate autonomously to promptly
identify and mitigate potential hazards [143].

Moreover, the inherent long communication delay induced by the vast distances between target
planets and Earth-based base stations adds another layer of complexity. Combined with the limited
capabilities of traditional planetary landing Guidance Navigation and Control modes, this commu-
nication lag restricts the effectiveness of real-time ground-based hazard detection and avoidance
systems.

4.2.3 Recent Research

Three primary categories of solutions can be delineated:

1. A solution based on visual input supplemented with distance data [144].

2. A solution based on LiDAR technology [145].

3. Solutions that blend visual inputs [35] with direct depth measurements [3].

The first category can be divided into two subsections: 1) employing a single camera and 2)
using a stereo camera system. In comparison to a single camera setup, the stereo approach offers
the advantage of directly estimating and reconstructing surface 3D characteristics using established
stereo techniques, which mitigates issues like scale drift. Nonetheless, a drawback of the stereo
system is its reliance on the lander’s size and geometry. In simpler terms, the camera baseline
capacity on the proposed lander restricts the range resolution.

To enhance the previous technique, current missions involving Near Earth Orbit (NEO) utilize
bulky LiDAR devices [55] to detect dangers and assess surface conditions that might affect safe
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Figure 4.2: Typical HDA pipeline from [4]

landing [146]. The weight constraints of smaller designs (e.g., CubeSat) prevent the installation
of on-board LiDAR, which also consumes more power compared to a passive sensor like a camera
[147].

4.2.4 Research Novelties

The current strategy employs a combination of a single camera image and LRF measurements; these
inputs are processed to create distinct safety maps directly associated with landing prerequisites: the
identification of hazards (such as large boulders), minimum lighting conditions, maximum allowable
surface slope, proximity to the designated landing site, and minimum distance from unsafe landing
areas. The proposed approach seeks to address the challenges posed by a bulky LiDAR device and
the inability of small landers to achieve a sufficient stereo baseline for depth resolution at operational
altitudes.

An independent hazard detection system without LiDAR is introduced, enabling the on-board
selection of safe landing sites based on specified requirements. The system’s effectiveness is demon-
strated and validated using the µLander configuration within the context of the NEO-MAPP study
[1, 67], which serves as an ideal scenario for testing autonomous and secure landings on an asteroid’s
surface. The innovative solution seamlessly combines machine learning-driven (Machine Learning
(ML)) hazard detection and slope estimation with traditional image processing (IP), resulting in a
hybrid workflow.

The researched Safe Landing Site Selection system optimizes weight and cost, thereby serving as
a facilitating technology for exploration missions demanding a high level of autonomy. The proposed
algorithm delivers essential hazard detection [69] and avoidance functionalities, ensuring autonomy
in the selection of a landing site that adheres to safety criteria.

4.3 Landing Autonomy Framework

The general SLSS routine uses navigation information, direct sensor measurements, and pre-configured
parameter to assess the optimal landing site. The landing site shall verify the requirements in Table
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2.4. The target landing site in the camera reference is the final output. Given the current state
estimate, this information must be converted to the L-frame, as defined in Section 3.7.4.

The requirements maps are generated using classical IP coupled with the navigation estimates
and ML strategies. Machine supervised learning functions allow us to predict with enough accurate
information, which would require a heavier LiDAR unit [148]. In particular, hazards and slope
information is derived by training neural network models on expected mission scenarios derives
hazards and slope information. Fuzzy logic fuses the different maps into a final safety map.

The deep learning developments are detailed in Section 4.5. The fuzzy logic applies a human-
based language and imports fusion parameters directly from landing system requirements [149].
Combining landing requirements and human-based rules minimizes the number of free design param-
eters in the fusion process, making this innovative approach more robust to various environmental
conditions. The target landing site is assessed on the final safety map obtained and communicated
to the guidance for re-targeting.

4.3.1 Inputs

The SLSS uses two primary sensors as inputs: the camera is used for most operations and function-
alities, and the LRF is used mainly to establish a dimension conversion from pixel unit to metric
unit. Additional information to the SLSS is provided by the LAPNAV solution. The RGB 1 MP
resolution and 1 s sampling time, as shown in Table 4.1.

Category Specification
Model Pinhole
FOV 30 degrees
Resolution 512 x 512 pixel
Focal Length 50 mm
F-number 1.2

Table 4.1: On-board Camera Specifications

4.3.2 Outputs

The final output of the SLSS block is the position of the target landing site in the camera sensor
reference frame f∗. This output needs to be processed with the estimated camera pose and the LRF
measurement to provide a target landing site position in the L-frame to the guidance algorithm:

rLiB ≈ K−1f∗ (4.1)

rBi
L = RLBrLiB − rLBL (4.2)

where K is the intrinsic matrix to project the pixel position of the target landing site in the
camera coordinate f∗. Then, using the estimated lander position rLBL is possible to express the
target landing site from B-frame to L-frame, the process is represented in Figure 4.3. The range
information of the target landing site rLiB is provided by the direct LRF measurement as presented
in Section 3.7.4.
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Figure 4.3: Target landing site projection sketch

4.3.3 Core Functionalities

Three main high-level functionalities compose the SLSS, as shown in Figure 4.4:

1. Pre-fusion: it fuses the slope, illumination, hazards, and reachability constraints to build an
initial risk map.

2. Post-fusion: it fuses the preliminary risk map, reachability, and proximity constraints to build
the final risk map.

3. SLSS decide the nominal if the landing site is safe and if the target landing site needs to be
updated.

The two fusion functionalities are separated and run in series because the pre-fusion output
must first be processed to build the proximity map. Given the requirements, the logic is a decision
logic that outputs the optimal landing site f∗. Figure 4.4 presents a high-level system description.

4.4 Safe Landing Site Selection Functionalities

In this section, all the direct input and output maps of the pre-fusion functionalities will be pre-
sented, and their functions described; a focus on the deep learning developments is detailed in
Section 4.5.

4.4.1 Reachability

Input Type Output Type Parameter Name
Nominal Landing
Site

Double
[3x1]

Reachability
Map

Boolean
[512x512]

Maximum distance
from nominal land-
ing site

α

Table 4.2: distMap interface definition

The input of this function is the nominal landing site location in the camera reference frame.
The output is the distMap where 0 value is safe, and 1 is unsafe, which means too far from the
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Figure 4.4: Core Functionalities High-Level Overview
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nominal landing site. The map uses the maxDivert = 3α parameter (see Table 4.13), which states
the maximum allowed distance from the nominal landing site. The parameter is derived directly
from the landing requirement [35]. The map is built using a truncated 2D Gaussian distribution
p(x) given by:

p(x) =

 1
|2πΣ|e

− 1
2
(x−µ)TΣ−1(x−µ) if |x| ≤ 3α

0 elsewhere
(4.3)

where µ is the nominal landing site position and Σ is the 3σ covariance equals to the 3α

parameter. A sample map with a central position nominal landing site is shown in Figure 4.5.

Figure 4.5: distMap example: red is unsafe, green is safe

4.4.2 Slope

Input Type Output Type Parameter Name
RGB Image Uint

[512x512]
Slope Map Double

[512x512]
- -

Table 4.3: slopeMap interface definition

The slopeMap generation is a ML-based process trained on a slope map ground truth to predict
the slope for every pixel. The slope is defined as the angle between the line of sight vector from the
spacecraft to the surface and the surface normal direction, as described in Figure 4.6. This slope
definition does not account for the gravity direction. However, it is assumed that, on average, the
gravity vector is aligned with the surface normal.

The input is the RGB image, and the output is the slopeMap expressed in degree. The prediction
is based on a U-net [5] neural network architecture trained on various synthetic images and labeled
depth maps. The main contribution of the U-net architecture is the shortcut connections. U-net
proposes to send information to every up-sampling layer in the decoder from the corresponding
down-sampling layer in the encoder [150]. Capturing finer information also keeps the computation
low. Since the layers at the beginning of the encoder would have more information, they would
support the up-sampling operation of the decoder by providing small details corresponding to the
input image, thus improving the accuracy. A more detailed description of the deep learning process
is presented in Section 4.5.
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Figure 4.6: Slope definition sketch: measured slope (red), effective slope (blue)

(a) Absolute slope error distribution: y-axis
absolute frequency, x-axis predicted slope
value.

(b) Absolute slope error example:
higher error is located on boulders
edges.

Figure 4.7: Absolute slope error performances

The validation set statistics show an absolute estimate error (3σ) between 25-30 degrees, cal-
culated over the entire dataset (42k images), as shown in Figure 4.7a. It is observed, see Figure
4.7b, that the highest estimate error is located where the slope angles are higher (close to boulder-
s/craters edges), and since these locations are already excluded from the safety region by the other
maps contributions, the estimated error does not concern the overall map quality in the area of
potential landing. The predicted slopeMap is presented in Figure 4.8.

4.4.3 Illumination

Input Type Output Type Parameter Name
RGB Image, Ker-
nel Size

Uint16
[512x512]
Double
[1]

Binary
Boolean Map

Boolean
[512x512]

Shadow Tolerance η

Table 4.4: illuMap interface definition

The input of this map is the RGB camera image, and the output is a binary map that is 0 for
safe pixels (light) and 1 for unsafe ones (dark). The shadowToll = η parameter (see Table 4.13) is
linked to the thresholding operation, and the kernelSize is used as an additional input.

The final binary map is obtained in multiple thresholding steps, as shown in Figure 4.9.

1. RGB image is converted to grayscale.
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Figure 4.8: slopeMap example: smaller slope (green) and higher slope (red)

Figure 4.9: illuMap Generation Process
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2. Otsu Adaptive Thresholding [151] is applied: this method is automatic, and the thresholding
value is provided without intervention from the user (see Figure 4.10).

3. The image is encoded into 0-1 binary values: 0 values are linked to pixels darker than the
threshold and 1 to pixels lighter than the threshold.

4. The local brightness density is evaluated: by using the kernel size as averaging window, the
image is convoluted with a linear averaging kernel [152] as:

out(x, y) =
∑

(x′,y′)∈kernel

kernel(x′, y′) ∗ src(x+ x′, y + y′) (4.4)

Where kernel = IkernelSize and src is the binarized image.

(a) Otsu’s threshold-
ing step

(b) local brightness
density

Figure 4.10: illuMap pre-processing

5. Binary thresholding is applied using the η parameter as level: according to the parameter
intensity, the amount of brightness to be included in the unsafe regions is controlled by the
user (see Figure 4.11).

(a) η=70 % (b) η=80 %

Figure 4.11: illuMap example: yellow is unsafe, blue is safe

4.4.4 Boulders

Hazard

A detailed description of the present functionality is presented in Section 4.5.3, here it is shortly
described for the sake of SLSS overview. The problem of boulders detection is identified as binary
semantic segmentation; this formulation implies that the likelihood of being a hazard for each pixel
is estimated. Thus, semantic segmentation consists of dense, i.e., pixel-wise predictions inferring
labels for every pixel; in this case, the label is the boulder/not-boulder binary class.
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Input Type Output Type Parameter Name
RGB Image Uint16

[512x512]
Hazard Map Double

[512x512]
- -

Table 4.5: hazMap interface definition

The hazMap output provides a probability value from 0 to 1. The neural network is trained on
various asteroid environments to avoid over-fitting to a specific condition.

(a) Prediction (b) False positive (green)

Figure 4.12: hazMap Results

The raw output of the selected neural network is post-processed to include the information about
the image scale (e.g., landing footprint and resolution) and to take into consideration the prediction
probability, as shown in the flow chart below (Figure 4.13).

Figure 4.13: Post-Processing Workflow from RGB Image to riskMap

Hazard Map Refinement

The riskMap is built by processing the hazMap (i.e., the neural network prediction): the riskMap
contains for each pixel the local rock density value. The local rock density is evaluated by averaging
the hazMap values over a window of the size of the landing footprint obtained from the kernel size.
In other words, an averaging filter is convoluted with the hazard map with a kernel size equal to
the landing footprint.

The post-processing increases the safety of the hazard map; a point with no boulders, which is
close (within a footprint size) to a very high detection probability area, has some rock density. While
a small rock (i.e., a set of pixels where a boulder is detected) in a shallow detection probability area
will have its density value decreased.

The methods allow filtering out boulders smaller than the lander footprint; thus, they do not
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represent a risk for the landing. In addition, it increases the local rock density of areas close to
dense boulders structure to avoid this area during re-targeting. The processing result is shown in
Figure 4.14.

Figure 4.14: riskMap sample: green is safe and red is unsafe.

4.4.5 Preliminary Fusion

Input Type Output Type Parameter Name
Boulders Map,
Slope Map, Illu-
mination Map,
Reachability Map

Double
[512x512]

Fused Risk
Map

Double
[512x512]

Maximum Rough-
ness, Maximum
Slope

γ, δ

Table 4.6: riskMap interface definition

The fusedRiskMap combines the previously mentioned maps by considering the roughness and
slope requirements. The fusion implementation uses a look-up-table (LUT) approach. Fuzzy rules
are defined to fuse the maps, and a multi-dimensional fuzzy function is obtained, then this function
is encoded in a LUT [153]. On each pixel, the following operations are run:

1. Verify that the illumination map and the reachability map are safe.

2. If 1. conditions are valid, the fuzzy reasoning (LUT) is applied to the pixel.

The riskMap values are classified into three classes: smooth, rough, and very rough. The
slopeMap values are classified into three categories: flat, incline, and steep. The class definition is
established given the parameters provided by the requirements.

Once the requirements are set, the membership function design points are defined w.r.t. the
requirement parameter (see Table 4.13), and the process is displayed in Figure 4.15. For the riskMap

and slopeMap
1

2
and

1

4
of the set parameter.

Once the slopeMap and riskMap are fused according to the fuzzy logic defined rules, the resulting
fused pixel can belong to four classes: safe, risky, very risky, and unsafe. These classes are de-
fuzzified according to the following membership function to obtain the fused risk map value between
0 and 1. The unsafe area is increased to make the overall algorithm more conservative.
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α

1
4
α α1

2
α

Memberhip Function

α = 0.6

Landing
Requirem.

Figure 4.15: Membership function design process sketch

Figure 4.16: riskMap membership function: maximum roughness is set to 60% and design points are
defined as γ

2 and γ
4 of the parameter

Figure 4.17: slopeMap membership function: maximum roughness is set to 30 degrees, and design points
are defined as δ/2 and δ/4 of the parameter

Figure 4.18: fusedRiskMap membership function: unsafe score is set to 80% and design points are de-
fined by the user
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The fusion rules are summarized in the table 4.7, and nine rules are obtained. Once the fuzzy
set is obtained, the results are encoded into a LUT.

riskMap /
slopeMap

Flat Incline Steep

Smooth Safe Risky Unsafe
Rough Risky Very Risky Unsafe
Very Rough Unsafe Unsafe Unsafe

Table 4.7: Pre-fusion fuzzy logic rules

Finally, two additional criteria are integrated into fuzzy reasoning:

1. if a point is not compliant with any of the landing requirements, the point is labeled as unsafe

2. If all the criteria are safely verified, the point is labeled safe.

A sample LUT is presented in Figure 4.19 where it is shown that given a slopeMap and a riskMap
value, the fusedRiskMap index is obtained.

Figure 4.19: fusedRiskMap LUT: resulting score from riskMap and slopeMap fusion, illuMap, and
distMap condition are checked at pre-fusion input.

4.4.6 Proximity

Input Type Output Type Parameter Name
Fused Risk Map Double

[512x512]
Keep-out
Map

Double
[512x512]

Distance from un-
safe area

β

Table 4.8: keepOutMap interface definition

The keep-out map takes the fusedRiskMap resulting from the pre-fusion block and processes it
to label the area too close to a hazard as unsafe. The user has to input only the minimum distance
from the unsafe area. A Euclidean distance transform is applied [154], and the map labels each
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pixel with the Euclidean distance to the nearest obstacle pixel as shown in the simplified sketch in
Figure 4.20; a sample map is presented in Figure 4.21.

fusedRiskMap Distance Transform

Figure 4.20: Distance Tranform Diagram

Figure 4.21: keepOutMap example: red are unsafe areas, green is the distance from the hazard.

4.4.7 Final Fusion Map

Input Type Output Type Parameter Name
Fused Risk Map,
Keep-out Map,
Reachability Map

Double
[512x512]

Final Risk
Map

Double
[512x512]

Maximum Dis-
tance from Nom-
inal Landing Site
Distance from the
unsafe area

β α

Table 4.9: finalRiskMap interface definition

The finalRiskMap combines the previously mentioned maps by considering the hazard require-
ments, the reachability, and the distance from the hazardous areas. The fusion implementation uses
a multi-dimensional look-up-table (LUT) approach. Thirty-six fuzzy rules are defined to fuse the
maps (see Table 4.10), and a multi-dimensional fuzzy function is obtained. This function is encoded
in a LUT.



4.4. SAFE LANDING SITE SELECTION FUNCTIONALITIES 89

finalRiskMap distMap AND keepOutMap AND fusedRiskMap
Unsafe Large Far Safe
Unsafe Large Far Risky
Unsafe Large Far Very Risky
Unsafe Large Far Unsafe
Unsafe Small Far Unsafe
Unsafe Medium Far Unsafe
Unsafe Large Close Safe
Unsafe Large Close Risky
Unsafe Large Close Very Risky
Unsafe Large Close Unsafe
Unsafe Small Very Close Safe
Unsafe Small Very Close Risky
Unsafe Small Very Close Very Risky
Unsafe Small Very Close Unsafe
Unsafe Medium Very Close Safe
Unsafe Medium Very Close Risky
Unsafe Medium Very Close Very Risky
Unsafe Medium Very Close Unsafe
Unsafe Large Very Close Safe
Unsafe Large Very Close Risky
Unsafe Large Very Close Very Risky
Unsafe Large Very Close Unsafe
Safe Small Far Safe
Risky Small Far Risky
Very Risky Small Far Very Risky
Risky Medium Far Safe
Very Risky Medium Far Risky
Very Risky Medium Far Very Risky
Risky Small Close Safe
Very Risky Small Close Risky
Very Risky Small Close Very Risky
Very Risky Medium Close Safe
Very Risky Medium Close Risky
Very Risky Medium Close Very Risky
Unsafe Small Close Unsafe
Unsafe Medium Close Unsafe

Table 4.10: finalRiskMap LUT Rules

The fusedRiskMap values are classified into four classes as for the pre-fusion: safe, risky, very
risky, and unsafe. The distMap values are classified into three categories: small, medium, and large
diversion. The keepOutMap is classified according to three values: very close (to obstacle), close,
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and far.

The class definition is established given the parameters provided by the requirements. The
distMap membership function design points are defined as α, 2α, 3α. The keepOutMap membership
function design points are linked to the requirement parameter as β, 2β, 3β see Table 4.13 for
parameters definition.

Figure 4.22: distMap membership function: set point are α, 2α, 3α

Figure 4.23: keepOut map membership function: set point are β, 2β, 3β

Once the fusedRiskMap, distMap, and keepOutMap are fused according to the fuzzy logic de-
fined rules, the resulting fused pixel can belong to four classes: safe, risky, very risky, and unsafe.
These classes are de-fuzzified according to the same pre-fusion membership function to obtain the
fusedRiskMap value between 0 and 1, as shown in Figure 4.18. The unsafe area is increased to make
the overall algorithm more conservative. In Figure 4.24, a sample finalRiskMap is displayed; every
valid pixel represents possible landing requirements; in fact, it verifies the landing safety require-
ments after the fusions. Each pixel has a safety index (green is safe and red is unsafe) on which the
landing site logic assesses the target landing site.

4.4.8 Assessment and Logic

The presented workflow is run at a fixed distance from the surface at a specific gate as in Section
2.2.5. The final logic can be resumed in the Algorithm 3. The logic can be applied to more than
one landing site if needed.
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Figure 4.24: finalRiskMap example at 300m: green is safe, red is unsafe.

Algorithm 3 Safe Landing Site Logic

1: Evaluate finalRiskMap (̄f) . ▷ Evaluate finalRiskMap at nominal landing site f̄ decided by
operation/ ground operators.

2: Minimize finalRiskMap. ▷ Select global minimum for finalRiskMap namely located in f∗.
3: if finalRiskMap(̄f)− finalRiskMap(f∗) ≤ ϵ then ▷ ϵ is a design decision threshold
4: Retarget to f∗

5: else
6: Proceed to f̄
7: end if

4.5 Deep Learning Developments

The current section focuses on segmenting boulders from the surface images and building a hazard
map containing the detected hazards to produce the hazMap. Firstly, the synthetic dataset gener-
ation workflow is explained, then, the supervised learning architectures trade-offs and results are
introduced. Finally, the post-processing of the selected network is described, and the verification
results on authentic mission images are presented. The process summary is shown in Figure 4.25.

4.5.1 Dataset Generation

In this section, the dataset generation workflow is presented. Firstly, the procedure for synthetic
environment modeling is shown, then, the trajectory generation and environment randomization is
discussed.

Dataset Modelling

Supervised-learning paradigms use a representative environment dataset in which the algorithms are
deployed [155]. In this case, the dataset includes RGB images generated according to the on-board
camera specification as in Section B.4, and labeled images that contain the boulders extracted from
the images, i.e., binary images that show masked boulders up to image resolution.

The dataset is generated synthetically because of three main limitations:

1. The limited number of available real images from missions that featured vision-based naviga-
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Figure 4.25: Process Summary from Dataset Generation to Verification

tion and camera specifications similar to those in the table.

2. The exact labeling process is usually done manually, it is very time-consuming, and the an-
notation is imprecise.

3. To the best of the authors’ knowledge, there is no open source SSSBs landing dataset currently
available.

To model Dimorphos, the available ESA/Jet Propulsion Laboratory (JPL) shape model is used,
and the complete environment modeling description is presented in Section 3.3. This step allows
increased base surface resolution to match Dimorphos mass properties (i.e., MoI); the rescaling
factors are shown in Table 3.3. The PANGU software [112] also provides for each RGB image
the corresponding masked boulder image, which is precisely the labeled data on which the neural
networks are trained.

Trajectory Generation

The landing images are generated during a set of trajectories with different illumination scenarios
and boulder distributions to avoid over-fitting the model to a specific test scenario.

The landing trajectories are generated using a quadratic open loop path from a set of initial
conditions, landing sites, and time-to-go. The guidance acceleration is defined as:

a(t) = C0 + C1t+ C2t
2 (4.5)

where Ci ∈ ℜ3 are coefficient determined once the boundary conditions are set. Assuming a
constant gravity acceleration and integrating the acceleration, the trajectory is obtained as follows:

r(t) = r0 + v0t+
1

2
(C0 + g) t2 +

1

6
C1t

3 +
1

12
C2t

4 (4.6)

The minimum height considered is 2 m because no hazard detection is expected to happen below
that threshold. According to the mission concept of operation and assuming an average descent
velocity of 6 cm/s, the descent duration is specified as 1800 s.
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In addition to decreasing the possibility of over-fitting, the Sun azimuth and elevation are
distributed from 0 to 60 degrees to consider diverse illumination conditions. Finally, the boulders
are located according to different random seeds. The envelopes of the former environmental and
dynamic conditions (i.e., lander positions) generate around 43000 RGB images and corresponding
labels, i.e., binary mask, which precisely identifies all the added boulders.

The images are selected to represent samples every 5 s along the trajectory. In conclusion, the
dataset is shuffled and randomly divided into training (81%), validation (9%), and test set (10%).
The training set is used to fit the model’s parameters (e.g., weight and biases of the networks),
and the validation set allows us to evaluate the fit model and tune the network’s hyper-parameters
(e.g., architecture, layers type, etc.). Finally, the test set is used to assess the final performance of
a network. After the training and the tuning, the model accuracy is assessed.

4.5.2 Neural Networks Architecture

The problem of boulders detection is identified as binary semantic segmentation; this formulation
implies that the likelihood of being a hazard for each pixel is estimated. Thus, semantic segmentation
consists of dense, i.e., pixel-wise predictions inferring labels for every pixel; in this case, the label is
the boulder/not-boulder binary class. A set of convolutional neural networks (Convolutional Neural
Network (CNN)) is selected for the task; their performance is compared according to accuracy
metrics, complexity, and execution time.

4.5.3 Optimal Framework Selection

A collection of neural network architectures is trained on the present problem; the architectures
are selected according to current state-of-the-art surveys for semantic segmentation [156]. They
are presented and investigated according to increased network complexity. The simpler network
architecture consists of a Fully Convolutional Network (Fully Connected Network (FCN)) [157];
the general architecture is composed of a few convolutional and pooling layers followed by fully
connected layers at the output. The most common issue for FCN is that by propagating through
several alternated convolutional and pooling layers, the resolution of the output feature maps is
downsampled. The FCN is a base approach not addressed in the study.

Segnet [150] comprises an encoder network and a corresponding decoder network followed by a
pixel-wise classification layer. The architecture of the encoder network is structurally identical to the
most common FCN (VGG16). The role of the decoder network is to map the low-resolution encoder
features maps to full input resolution feature maps for pixel-wise classification, i.e., input resolution
is preserved in the output. The novelty of Segnet is the up-sampling of the lower-resolution input
feature map in the decoder. Specifically, the decoder uses pooling indices computed in the max-
pooling step of the corresponding encoder to perform non-linear up-sampling. The network does
not learn to up-sample but derives the parameters from the encoder. Finally, the up-sampled maps
are sparse and convoluted with trainable filters to produce dense feature maps.

Shortcut connections are the main contribution of the U-net [5] architecture. In FCN, the image
is down-sampled as part of the encoder. Consequently, information is lost and cannot be quickly
recovered in the decoder part. FCN addresses this by taking information from pooling layers before
the final feature layer.
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U-net proposes to send information to every up-sampling layer in the decoder from the corre-
sponding down-sampling layer in the encoder, as shown in Figure 4.26. Capturing finer information
also keeps the computation low. Since the layers at the beginning of the encoder would have more
information, they would support the up-sampling operation of the decoder by providing small details
corresponding to the input image, thus improving the accuracy.

Figure 4.26: U-net architecture adapted from [5]

ResNet [158] uses a skip connection in which an original input is also added to the convolution
block output, which is implemented via the residual block. This mitigates vanishing gradient prob-
lems by allowing a different path for the gradient to propagate. In traditional neural networks, each
layer feeds into the next layer. But in a network with residual blocks, each layer feeds into the next
layer and directly into the layers about some steps away, as shown in Figure 4.27.

Figure 4.27: ResNet residual block architecture adapted from [6]

PSPNet [159] is one of the most well-recognized image segmentation algorithms. The model was
introduced because FCN based pixel classifiers could not capture the overall context of the whole
image. The PSPNet architecture considers the global context of the image to predict the local
level predictions using a pyramid pooling module. The feature map from the backbone, i.e., the
input CNN, is pooled at different sizes and then passed through a convolution layer, as presented
in Figure 94. Then up-sampling takes place on the pooled features to make them the same size as
the original feature map. Finally, the up-sampled maps are concatenated with the original feature
map to be passed to the decoder. This technique fuses the different scales of the features, hence
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aggregating the contextual meaning of the image.

Figure 4.28: PSPNet architecture adapted from [7]

Lastly, a combination of U-net with Convolutional Long-Short-Term-Memory (C-LSTM ) Block
is used. The C-LSTM block allows incorporating spatial-temporal information by introducing a
memory block in every scale of the encoder section [160]. Applying it to different scales allows for
saving information on varying scales of the boulders. The ability to store temporal information
could increase segmentation accuracy. The frame-to-frame difference could be used to track the
same boulders and refine single-image hazard detection.

Figure 4.29: C-LSTM cell adapted from [8]

The same loss function is optimized in each training, which is the binary cross-entropy defined
as:

Loss = − 1

output size

output size∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (4.7)

The previous equation represents the standard loss function for binary segmentation task, the
hat variables represent the neural network prediction, while the yi is the ground truth value. Finally,
the architectures are trained on the dataset divided into training, validation, and test sets on a cloud
platform with a 16 GB Tesla V100 GPU.
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Results and Final Selection

To compare the different network’s results, two main criteria are applied. Firstly, the quantitative
metric is accuracy, defined as:

Accuracy =
TP + FN

TP + TN + FN + FP
(4.8)

Here TP, TN,FP, andFN are True Positive, True Negative, False Positive, and False Negative,
respectively. The accuracy is a valid metric since the classification problem is well-balanced and
not skewed. The second criterion for the architecture trade-off is the qualitative visual analysis
of the neural network prediction. In particular, some test images are sampled, and the predicted
hazard map is visually analyzed. The focus is on the prediction in well-lit conditions and very scarce
illumination scenarios.

In Table 4.11, the results of the training are presented. Most architectures converge on similar
values for the loss function, i.e., binary cross-entropy. Thus they can fit the ground truth. Segnet
represents an exception; the loss function after ten epochs stays relatively high. The U-net + C-
LSTM implementation by integrating three frames has the highest accuracy. However, the increase
in complexity with reference to the classical U-net may not motivate the use of such architecture. It
is also underlined that the U-net + C-LSTM with the four frames implementation is less accurate.
The cause of such behavior could be linked to the temporal distance between frames being too large.
In fact, given the sample time of 5 seconds, there is a temporal distance of 20 seconds from the first
frame to the last. This represents an extensive modification of the images and results in issues in
incorporating the changes in the memory block.

ResNet and PSPNet have a high accuracy. However, they are deeper and more complex than
the U-net. Convergence is another index considered for the trade-off; the convergence number is
the epoch when the loss function is not decreasing after three epochs. Consequently, the training
process is stopped. It is noted that ResNet, Segnet and U-net + C-LSTM (4 frames) converge
faster. Hence the training process is finished in fewer epochs than the other architectures.

Architecture Accuracy [%] Loss [%] Convergence
[Epoch]

U-net 97.08 6.53 20
ResNet 97.01 6.61 10
Segnet 90.48 21.32 10
PSPNet 97.00 6.90 16
U-net+C-LSTM (3 frames) 97.11 6.52 19
U-net+C-LSTM (4 frames) 95.96 8.91 10

Table 4.11: Neural network architecture training results

In Figure 4.30, some sample images are presented for the U-net architecture; it is underlined how
the false positives and false negatives occur exclusively around the boulder contours. The shadows
contain the most misclassified pixels. However, since they are confined to the contours, they can
be easily avoided by targeting a landing point further from the boulders. The false negatives are
the most critical error: no boulder is detected on the pixel when there is one. The power of the
machine learning-based approach is highlighted in the low-illuminated image (Figure 4.31). In low
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illumination, the neural network can correctly identify the boulders in the shaded area. It is noted
that the prediction value for the U-net provides a value from 0 to 1, where 1 is 100% probability
of finding a boulder, and 0 is no probability of boulders. The processing time on the hardware is
between 3 and 40 ms for each frame.

In conclusion, the U-net architecture is selected to implement the hazard map estimator. It
provides high accuracy and light implementation, which makes it suitable for onboard applications.
A more extended convergence than other architectures is insignificant since the network is trained
offline on the ground without time constraints.

(a) Input Image (b) Ground Truth

(c) Prediction (d) Difference Plot: green FP ,
red FN

Figure 4.30: U-net Results

4.5.4 Map Fusion Example

In the present section, an example of simplified data fusion is presented. Different criteria are fused
in the final safe landing map (e.g., slope, roughness, illumination, accessibility, etc.), as shown in
Section 4.3. Here, the riskMap is fused with a simplified illuMap to highlight the contribution of
the hazMap to the simplified finalRiskMap. The sample safe landing map only includes Risk Map
and Illumination Map for explanation purposes; the other criteria are introduced in the previous
section.

The simplified Illumination Map is generated by applying a threshold to the RGB image to
detect all the pixels above a fixed intensity. After applying a threshold to the image, each pixel’s
local illumination density is evaluated, following the process used for the riskMap generation. The
riskMap and the illuMap are fused according to the same safety parameter. Binary logic is used;
the pixel is considered safe if the local rock density (i.e., the risk map pixel value) is smaller than
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(a) Input Image (b) Ground Truth

(c) Prediction (d) Difference Plot: green FP ,
red FN

Figure 4.31: U-net Results Dark Scenario

the safety parameter. On the other hand, if the local illumination density (i.e., the illumination
map pixel value) is greater than the safety parameter, the pixel is safe. If a pixel is considered safe
for both the risk map and the illumination map, the fusion is a safe pixel; for any other case (e.g.,
unsafe and unsafe, unsafe and safe), the pixel is considered unsafe.

As expected, Figure 4.32 shows as safe landing site areas change according to the safety param-
eter value. Higher values imply more conservative criteria fusion and less safe landing site area;
however, the safe landing site area increases with a lower value. From the image is also visible the
added value of information, in terms of boulder detection accuracy provided by the network. The
orange areas represent the neural network-detected boulders that are not detected in the illumina-
tion map; on the contrary, the light orange zone represents the shadow detected in the illumination
map but not in the risk map. The latter proves that the hazard detection neural network can
identify the boulders correctly and not the shadows. Then it is possible to classify the shadows
and the boulders with high accuracy separately. Most current techniques for boulders detection are
based on shadow analysis, and they are not based on the classification of the boulder semantic; in
this example is underlined how the boulder information is extracted, and it is not confused with
the shadow semantic.

If the safe landing site map is overlaid on the real image is possible to identify that some
boulders are considered safe landing sites, as in Figure 4.33. In fact, due to the averaging operation
according to the estimated landing footprint, it is possible to neglect boulders that are smaller than
the footprint. In addition, the neighborhood of a big (with reference to the footprint) boulders
cluster is considered unsafe because during the averaging operation, the local risk density spill over
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(a) Risk Map (b) Illumination Map

(c) Safety Map fusion with 0.50
safety parameter

(d) Safety Map fusion with 0.99
safety parameter

Figure 4.32: Safety Map and Inputs for synthetic images

to the region; the latter increases the conservativeness of the approach.

(a) Safety parameter 0.50 (b) Safety parameter 0.99

Figure 4.33: Safety Map and Original at 22.5 m from the surface: the black square is the estimated lan-
der footprint

Finally, it is highlighted in Figure 4.33 how different safety parameters can have other resulting
safe landing site areas; the final selection of the safety parameter can be executed by weighting the
different safe landing criteria and the available landing site.

It is also possible to adapt dynamically the safety parameter for each subsequent safe landing site
assessment. This would allow for finding the safest landing site rather than finding all landing sites.
Other criteria are introduced in the final Safety Map, such as slope, roughness, and reachability.
The latter is linked to fuel consumption; a fuel-optimal landing site is preferred. In conclusion,
it is possible to select the best landing site by fusing all the criteria and by re-tuning the safety
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parameter for each of them.

4.5.5 Real Mission Images Validation

The workflow presented in the previous section is applied to real mission images from the Rosetta
mission. The mission represents the general SSSB environment and allows a comparison with
classical image processing algorithms.

The Rosetta spacecraft carried a Navigation Camera (NavCam) for optical navigation in the
vicinity of the comet [161]. Similar environmental and geometrical conditions to the dataset must
be selected to validate the hazard detection workflow. Rosetta images have a resolution of 1024 px

× 1024 px; as a consequence, cropping is needed to reduce by half the image size. Moreover, the
crop operation does not alter the original image signal, but the equivalent distance from the surface
is halved.

Equivalence is established to convert Rosetta acquisition conditions (i.e., surface distance, field
of view, etc.) into the current scenario, given the fact that NavCam has 5◦ FOV and the chosen
camera 30◦ FOV. The closest Rosetta images are taken at approximately 3 km from the surface;
after cropping, the equivalent distance is about 1.5 km, with 5◦ FOV the resolution is 0.25m/pixel.
To obtain the exact resolution of the selected camera, the equivalent distance from the surface is
approximately 240 m, which is within the current scenario condition, and it is the distance used for
footprint estimation.

(a) Risk Map (b) Illumination Map (c) Safety Map fusion with 0.99
safety parameter

Figure 4.34: Safety Map and Inputs for Rosetta sequence

In Figure 4.34, the output of the Risk Map and Illumination Map is shown for a sample image
of the selected Rosetta sequence (i.e., post-landing mission phase MTP034 ). It is highlighted that
neural network prediction contributes to detecting unsafe landing regions close to the ridges and
the cliffs. At the same time, the Illumination Map is able to detect only unsafe shaded areas. Both
criteria provide complementary information.

The criteria are fused using a 0.99 safety parameter; it is possible to use extremely high safety
parameters further from the surface, i.e., in the initial hazard detection routines, while being less
conservative as the lander approaches because higher altitude values mitigate the risk. In Figure
4.35, the final Safety Map is overlaid on the real image, and the hazard detection workflow correctly
identifies the central planar valley and some clearings above the cliffs as a safe area. Finally, by
introducing other criteria (e.g., slope, roughness, and landing site reachability), it is possible to
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refine the selected landing zones to further increase the landing site safety.

(a) Input Image (b) Safety Map Overlaid

Figure 4.35: Safety Map at 244 m (equivalent) from the surface with 0.99 safety parameter

Validation Outlook

In conclusion, landing on SSSB requires lander autonomy and robustness. To improve autonomous
landing site selection, supervised learning strategies are introduced into the hazard detection func-
tionality to improve autonomous landing site selection. U-net neural network architecture is selected
between the state–of–the–art semantic segmentation neural networks as the optimal architecture for
hazard detection in terms of accuracy, simplicity, and execution speed. The architecture accurately
detects the boulders without tuning many parameters and long processing times. The Hazard Map
obtained is post-processed to incorporate the prediction probability and the surface distance to
increase the safety of the Risk Map. The network prediction is robust against various illumination
conditions, and the algorithms are applied to real mission images to validate the results qualita-
tively. The approach presented here is part of the safe landing site assessment functionality, and it
incorporates only the illumination and boulders detection criteria.

4.6 Analysis and Performances

4.6.1 Simulation Environment

The functionalities are implemented into MATLAB/Simulink 2021b. Most of the functions run into
this environment; however, some of them run on Python compiler, and most of the map creation is
done using OpenCV [152] and Tensorflow [162]. The SLSS is a triggered block with inputs: LRF
measurement, RGB image, and nominal landing site coordinates in the camera reference frame.
SLSS outputs are the safety of the target landing site coordinate and the target landing site position
in the camera reference frame. The pose estimation derived from the navigation filter (LAPNAV)
converts the camera reference frame to the landing frame.

Some functions are not native MATLAB code and use specific Python packages. In particular,
most of the map creation is done using OpenCV 4.6.0 and Tensorflow 2.10.0. In future development,
non-native code should be implemented into Matlab or optimized into C-coding. Table 4.12 shows
the different dependencies linked to each function.
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Figure 4.36: Safe Landing Simulink Block

Function MatLab
Native

Extrinsic Python OpenCV Tensorflow

fooprintEstimator ✓
createDistMap ✓ ✓
createIlluMap ✓ ✓ ✓ ✓
createSlopeNet ✓ ✓ ✓ ✓
createRiskMap ✓ ✓ ✓ ✓
preFusion ✓
createKeepOutMap ✓ ✓ ✓ ✓
postFusion ✓
slssLogic ✓

Table 4.12: Function Programming
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4.6.2 Parametrization

The SLSS is designed to have the minimum number of parameters possible; moreover, the architec-
ture is designed to link most of these parameters to the landing requirements set by the user. Each
parameter is detailed in Table 4.13, and the corresponding requirement is presented.

Parameter Symbol Description Unit Note Req.
decisionThreshold ϵ Minimum safety

distance to decide
for retargeting

- Tunable -

minDistUnsafe β Minimum distance
from an unsafe
landing site

Pixel The conversion
from metric to
pixel is done in the
pre-processing of
block

✓

maxDivert 3α Maximum retarget-
ing distance from
target landing site

Pixel Conversion from
metric to pixel is
done in the pre-
processing block.

✓

maxRoughDens γ Maximum local
rock density

% Fixed in the re-
quirement

✓

maxSlope δ Maximum allowed
slope

degree Fixed in the re-
quirement

✓

shadowToll η Binary threshold-
ing parameter

- Tunable -

Table 4.13: SLSS Parameters

The decisionThreshold and shadowToll are tunable parameters that can be set after sensitivity
analysis. In particular, the study should consider the available prior knowledge of the environment
and the landing operations scenario.

4.6.3 Execution Time

In this section, the average execution time for the most critical functionalities is presented (Table
4.14). All the pre-fusion maps creation can run in parallel; the maps that take most of the time are
the slopeMap and riskMap. Both of them have multiple function calls and run U-net-based neural
networks. These modes can be improved, and the network can be optimized for onboard execution:
the network evaluation can run in parallel on Field Programmable Gate Array (FPGA) for example
[163].

Function Time Parallel
distMap 18 ms ✓

illuMap 14 ms ✓

slopeMap 1.5 s ✓
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riskMap 1.2 s ✓

Pre-fusion 30 s (expected < 2
s)

-

keepOutMap 10 ms -
Post-fusion 6 s (expected < 2

s)
-

Logic 35 ms -

Table 4.14: Function Average Execution Time

Pre-fusion map is slow because it has not been optimized using a LUT; once the final parameter
set has been decided, the fuzzy logic rules will be encoded into the LUT format, that is, the expected
execution time in Table 49. For the post-fusion, the same consideration is valid; however, this map
is faster because fewer points are evaluated. Overall a call requires approximately 40 s. However,
the fusion functions are not optimized, and a total time of less than 10 s is expected. Given the
slow environmental dynamics and the altitude at which it is run, this execution time is not critical
for the specific mission scenario.

4.6.4 Monte Carlo Analysis Performances

A Monte Carlo test campaign is run to derive the complete system performance of the SLSS. SLSS
is tested on 600 different images, which are generated by distributing environment and spacecraft
states. In particular, the Sun azimuth, elevation, trajectory end condition, and boulder distribution
are varied according to Table 4.15. The landing sites are 20 m above the surface, as no routine
occurs below that altitude. The predicted finalRiskMap is compared with a ground truth; the latter
uses the pipeline having as an input the actual slopeMap and hazMap.

Sun Azimuth Sun Elevation Landing Site Boulder Seed
Value [20, 45, 60]◦ [15, 30, 45]◦ alpha, bravo ,

charlie
[1,2]

Table 4.15: Monte Carlo Parameters Distribution

The performance error is defined as:

∆F = FGT (f∗)− F (f∗) (4.9)

where FGT , F is respectively the ground truth and predicted finalRiskMap value and f∗ is the
target landing site selected location. In Figure 4.37, a cumulated histogram is presented to show
the error between predicted and ground truth finalRiskMap: it is shown that more than 90% of the
samples have a negative error, which means that the predicted risk map is more conservative than
the real ground truth (green area). In this case, the solution estimates a more significant risk than
the actual one. However, these false negatives are not mission-critical.

False positives are the points for which the error is positive, and they represent less than 10%
of the samples (red area). In some limits cases, the error may increase mainly due to the high sun
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phase angle; this situation is avoided by mission analysis on the ground. The false positive amount
represents an acceptable value for the NEO-MAPP mission, and it is believed that in a complete
GNC closed-loop testing, this value can be further reduced because successive runs will observe
previously selected safe landing sites.

(a) Histogram (b) Cumulative histogram

Figure 4.37: finalRiskMap error predicted vs. ground truth: false positive (red) and false negative
(green)

In Figure 4.38, the mean absolute error and standard deviation between final risk maps are
shown: the mean error is always below 6 % for all the data points; these statistics consider a mean
and a standard deviation over the entire maps on not only on the target landing site as shown
previously as:

∆̄F = E{FGT (f∗)− F (f∗)} (4.10)

(a) Mean error (b) Standard deviation

Figure 4.38: Histogram on finalRiskMap predicted vs. ground truth

In conclusion, Figure 4.39 displays the cumulative histogram for the landing size distance. In
more than 90% of the data points, the percentage difference between the target and the nominal
landing sites is less than 30 %. The percentage represents the normalized pixel difference over
the image resolution. This effect combines the reachability map constraint and the fusion, which
sets the target landing site close to the nominal one. It is proved that the current solution tries
to balance the proximity to the nominal landing site, which is of high scientific interest, with the
overall safety of the lander.
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Figure 4.39: Cumulated histogram for landing site distance predicted vs. ground truth

4.7 Conclusion

This novel hazard detection and safe landing site selection framework provides a lightweight and
robust solution for micro-lander autonomy. The hybrid machine learning and image processing
pipeline extracts augmented information (e.g., hazards and slope) only from the camera and LRF.
In this way, it completely fulfills the stringent landing requirements by limiting the mass budget
(e.g., LiDAR-free). This innovative solution has few free design parameters, granting rapid tuning,
and is highly parallelizable for efficient onboard implementation. Finally, its application is not
limited to SSSBs surface and can also be employed on planetary landing.
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Chapter 5

Conclusion

5.1 Outlook

This chapter culminates with a comprehensive summary of the substantive contributions advanced
through this research, enriching our knowledge and application of autonomous technologies tailored
for µLanders. Interrogating my central research questions (see Section 1.1.2), significant advance-
ments across distinct thematic topics are found:

• LiDAR-Free Autonomous Safe Landing Site Selection Technology: the research has yielded
the conceptualization, realization, and robust validation of a novel LiDAR-free autonomous
safe landing site selection technology. Distinctively fusing image processing and machine
learning paradigms, this innovative solution has engendered a diminution in human-in-the-
loop. Remarkably, this technology integrates landing prerequisites into its operations, a feature
proven by empirical validation employing authentic mission imagery [29].

• Autonomous Vision-Based Absolute Navigation System: an autonomous vision-based absolute
navigation system, with a commercial off-the-shelf (COTS) camera and a laser range finder,
has been implemented. This navigation system asserts its effectiveness in navigating binary
asteroid environments with limited prior environmental knowledge, leveraging a rough ellipsoid
shape model [1, 9, 68].

• Autonomous Vision-Based Relative Navigation System: precision navigation through an au-
tonomous vision-based relative navigation system has been proven. Using an innovative
monocular SLAM-based filter aided by altimeter measurements, this system allows precision
pinpoints landings. [69, 70].

• µLander Asteroid Mission Concept: a µLander asteroid mission paradigm within the ambit of
NEO-MAPP has been outlined, designed and its requirements defined. This includes problem
domain definition, derivation of GNC requirements, and elaboration of a concept of operations.

The research introduces an autonomous navigation paradigm for small spacecraft within binary
asteroid environments, thus extending the prior research into the efficacy of LRFs and cameras for
navigation in such dynamic settings. Central to my approach is employing an extended Kalman filter
featuring a 9-parameter state vector, estimating spacecraft state in an inertial reference frame. The
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fusion between relative measurements and the inertial frame necessitates using asteroid ephemeris
and ellipsoidal shape modeling.

The performance of the current navigation solution is tested with several influential factors,
including high sun phase angles and the irregular topography of the asteroid. My findings verify
the system’s robustness, demonstrating successful state estimation even for irregular asteroid shapes
and under high sun phase angles. Furthermore, the system’s robustness is evident in its capacity to
navigate under uncertainty regarding the initial state estimate effectively. The navigation solution’s
independence from LRF is also highlighted if optimal visibility of both asteroids is present. The
filter’s robustness remains solid even when subjected to distorted and noisy camera images. This
success makes this navigation solution valid for medium to close-range navigation in binary asteroid
environments.

For close-range navigation, a novel EKF grounded in SLAM with enhanced LOS observability
is defined. A LRF substantially amplifies the system’s capacity to estimate spacecraft position even
when measuring scarce parallax features. These improvements grant high-precision accuracy during
landing.

The EKF balances between computational efficiency and efficacy through reduced feature se-
lection in the state. This mitigates the algorithmic computational burden, rendering it possible for
onboard implementation and augments processing speed. Moreover, the robustness of the novel
EKF is established through a Monte Carlo analysis for boundary conditions.

The design of a hazard detection and safe landing site selection framework to increase lander
autonomy has been presented. The hybridization of machine learning and image processing provides
a robust and lightweight solution that adheres to landing requirements without the constraints of
LiDAR-dependency. This innovative framework presents a scarcity of free design parameters, facil-
itating calibration and parallelizable onboard implementation. A salient aspect is the framework’s
compliance with stringent mass budgets, marking a difference from traditional LiDAR-dependent
approaches.

Taken together, the findings from this research present highly promising prospects for future
space exploration missions. The developed autonomous navigation solutions and hazard detection
framework hold considerable potential and can be effectively utilized to enhance the efficiency and
reliability of space exploration missions. Their successful application extends beyond SSSBs and
can also e readily adapted for planetary landing missions. This research significantly advances au-
tonomous navigation and safe landing systems in space exploration by addressing critical challenges
and providing innovative solutions.

5.1.1 Standard for Autonomy

One of the primary objective of this research can be precisely formalized as advancing the
autonomy level from E2 to E3 for SSSBs lander spacecraft, aligning with the standards established
by the European Cooperation for Space Standardization (ECSS) [10]. This targeted enhancement
in autonomy levels reflects a significant stride towards optimizing the operational efficiency and
reliability of lander spacecraft in the exploration of Small Solar System Bodies. The necessity for
heightened autonomy has been previously expounded upon in Section 4.3, underscoring the critical
role that autonomous capabilities play in overcoming operational challenges and ensuring the success
of future space missions. In the Table 5.1 a brief description of the standard’s level is presented.
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Level Description Function
E1 Mission execution under ground con-

trol; limited on-board capability for
safety issues

Real-time control from ground for
nominal operations Execution of time-
tagged commands for safety issues

E2 Execution of pre-planned, ground-
defined, mission operations on-board

Capability to store time-based com-
mands in an on-board scheduler

E3 Execution of adaptive mission opera-
tions on-board

Event-based autonomous operations
Execution of on-board operations con-
trol procedures

E4 Execution of goal-oriented mission op-
erations on-board

Goal-oriented mission re-planning

Table 5.1: Mission execution autonomy levels as imported from [10]

5.2 Future Work

Important questions remain unanswered by this research, which should be investigated in future
studies. Here are some recommendations based on the research presented in this thesis:

• Provides processor-in-the-loop simulations to prove the applicability of the algorithms for
on-board implementation

• Hardware-in-the-loop to switch simulated sensors (especially camera and LRF) for real units
and demonstrate the capability on real hardware.

• Prototype a full end-to-end GNC simulation, testing the transition between different landing
phases and GNC modes.

• Improve the centroid detection: The issue of overlapping asteroids needs to be solved to
increase the deployability of the navigation system. The current image processing requires
permanently separating the two asteroids in the frame.

• Improve the features selection: some criteria can be added to increase the quality of selected
features for better tracking or longer tracks. A feature management system can be imple-
mented.

• Study the attitude determination problem and its coupling with translation estimation. The
full six DoF can lead to different performances for the developed algorithms.
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Appendix A

Reference Frames

In this section, the reference frames used in the study are described, and their related mutual inter-
relationships are defined and shown in Table A.1; they are chosen to derive in mathematical terms
the landing scenario equations easily, their relations are sketched in Figure A.2.
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Figure A.1: Reference frames sketch as defined in the document

Name Origin Axis Scope
J2000 (J) Solar System’s

barycentre
X: vernal equinox at 1 Jan-
uary 2000 12:00:00 Terres-
trial Time Z: normal to the
equator at reference time Y:
right-hand rule completion
According to J2000

Used for ephemerides of the
binary system and the Sun’s
position. Reference for all
other coordinate systems.
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Binary system
Quasi-inertial
(I)

Binary system
CoM

Aligned with J It describes the solution for
the primary and secondary
motion and the landing tra-
jectory in the HAP. More
readable distances compared
to J coordinate frame. Note:
I is quasi-inertial because it
is orbiting around the Sun.
However, the simulation time
allows to neglect the non-
inertial effects, justifying the
assumption.

Primary Body
Centred Pri-
mary Body
Fixed (P)

Primary CoM X: Axis with minimum MOI
Z: rotation axis, assuming
the maximum MOI Y: right-
hand rule completion

It is fixed to the primary and
rotates with it. It is used to
describe the rotation of the
primary

Secondary
Body Centred
Secondary
Body Fixed
(S)

Secondary
CoM

X: axis with minimum MOI
Z: rotation axis, assuming
the maximum MOI Y: right-
hand rule completion

Used for proximity opera-
tion and terminal landing
phases. To describe location
on the target. Note: At time
0 is aligned with CoM of the
primary along the minimum
inertia axis
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Landing Site
Reference
Frame (L)

Landing site
location (cen-
troid)

Z: anti-parallel to the effec-
tive gravity vector X: point-
ing rotation axis, assuming
the maximum MOI Y: right-
hand rule completion

Used for features process-
ing and relative navigation
during LAP and surface
operations Note: The effec-
tive gravity vector is defined
by gravity and centrifugal
acceleration. The Coriolis
acceleration is assumed to
be zero because L does not
move with respect to the S
coordinate system. Addi-
tionally, the Euler accelera-
tion is supposed to be zero
because the target body’s
angular acceleration is con-
sidered negligible. Thus,
the effective gravity vector
is defined by the following.
gS,eff = gS − ω̃SI

S (ωSI
S rSLS )

The symbols g, ωS
SI, r

SL
S de-

note the gravity vector, an-
gular rate of the target body
w.r.t. the inertial frame, and
the origin of the local-level-
frame w.r.t. the target body
frame respectively. This
frame is fixed for a landing
maneuver. The estimat-
ed/modeled effective grav-
ity vector at the start of the
landing is used.

Mechanical
Frame

Connection
point between
landing legs
joint and bot-
tom panel of
NEO-MAPP
core

Z: downward directed, per-
pendicular to the horizontal
bottom panel X: perpendic-
ular to the z-axis in the di-
rection of one landing leg Y:
right-hand rule completion

Physically measurable coor-
dinate system



130 REFERENCE FRAMES

Lander Body
Fixed (B)

Lander CoM Z: downward directed, per-
pendicular to the horizontal
bottom panel X: perpendic-
ular to the z-axis in the di-
rection of one landing leg Y:
right-hand rule completion

Used for attitude determina-
tion and control.

Lander Body
reference
frame (R)

Lander CoM Z: pointing the CoM of the
secondary. X: points towards
the rotation axis of the sec-
ondary Y: right-hand rule
completion

It is the reference frame that
relates the attitude to iner-
tial. It is useful to define the
reference pointing.

Table A.1: Reference Frames Definition

A.1 From J- to I-frame

The reference frames from Figure A.1 define the coordinate systems in this section. The transfor-
mation between J- and I-frame is only a translation. The transformation of a vector from A to B
from the J- to I-system is given by:

rAB
I = rAB

J − rJIJ (A.1)

The position vector of the CoM of the system w.r.t. the Solar System’s barycentre rJIJ is given
by the corresponding ephemeris information.

A.2 From I- to P-frame

The transformation between the I- and P-system is both a rotation and a translation. The trans-
lation between the P- and I-system is defined by rPI

P the surface position of the system CoM w.r.t.
the CoM of the primary body CoM. The z-axis of the P-system is defined by the pole direction,
which is specified by the right ascension λ and declination ϕ. In addition to the initial attitude, the
body rotates around its spin axis (z-axis of the P-frame) with the rotational speed ω.

RPI = R3 (ωt)R1

(π
2
− ϕ

)
R3

(π
2
+ λ

)
(A.2)

Here t is the simulation time. The transformation of a position vector can be described with:

rAB
P = rPI

P +RPIrAB
I (A.3)

This assumes that the z-axis of the P-frame is the spin axis of the body, e.g., no nutation or
precision exists.
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Figure A.2: Reference frames diagram

A.3 Body-fixed Frame Definition

The body-fixed coordinate system of the primary body rescaled Bennu is visualized in Figure A.3.
The red, green, and blue axes indicate the body-fixed frame’s x-, y- and z-axis.

The body-fixed coordinate system of the secondary body rescaled Itokawa is visualized in Figure
A.4. The red, green, and blue axes indicate the x-, y- and z-axis of the body-fixed frame, respectively.

A.4 From I- to S-frame

The transformation between the I- and S-system is both a rotation and a translation. The translation
between the S- and I-system is defined by rSIS the surface position of the system CoM w.r.t. the
CoM of the secondary body CoM. The z-axis of the S-system is defined by the pole direction, which
is specified by the right ascension λ and declination ϕ. In addition to the initial attitude, the body
rotates around its spin axis (z-axis of the S-frame) with the rotational speed ω.

RSI = R3 (ωt)R1

(π
2
− ϕ

)
R3

(π
2
+ λ

)
(A.4)

Here t is the simulation time. The transformation of a position vector can be described with:

rAB
S = rSIS +RSIrAB

I (A.5)

This assumes that the z-axis of the P-frame is the spin axis of the body, e.g., no nutation or
precision exists.
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Figure A.3: Bennu Rescaled body shape with its body-fixed coordinate system (x-, y- and z-axes in red,
green, and blue).

Figure A.4: Itokawa Rescaled body shape with its body-fixed coordinate system (x-, y- and z-axes in
red, green, and blue).
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A.5 From S- to L-frame

The transformation between the S- and L-system is a translation and rotation. The S- and L-
system translation is defined by rSLS , the surface position of the desired local plane w.r.t. the CoM
of the secondary body. This is the selected landing position of NEO-MAPP after the retargeting
maneuver. The rotation between the S- and L-system is defined by the effective gravity vector geff
at the chosen position rSLS . The position from the CoM of the secondary body and the surface
position of the desired local plane is given by the vector rSLS . The unit vector of the effective gravity
vector defines the normal vector of the xL−yL plane. The axis xL is defined as the projection of the
vector rLSz

S onto the plane spanned by zL. This ensures that xL and zL are perpendicular to each
other. The superscript Sz denotes the location of the end of the zS axis. Note that zS is simply the
unit vector in the z-direction in the S-frame. The axis yL is defined by the cross product between
the zL- and xL-axis. Mathematically, this transformation is defined in the following way.

zL =
gS,eff

|gS,eff |
(A.6)

xL =
rLSz
S −

(
rLSz
S · zl

)
zL

|rLSz
S −

(
rLSz
S · zl

)
zL|

(A.7)

yL =
zL × xL

|zL × xL|
(A.8)

where rLSZ
S = zL − rSLS

The direct cosine matrix can be derived from the base vectors.

RSL =
(
xL yL zL

)
(A.9)

The transformation of a position vector can be described with:

rAB
L = RLS

(
rAB
S − rSLS

)
(A.10)
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Appendix B

Avionics and Design Trade-off

This appendix presents technical information and analyses related to the avionics system and design
considerations. The section comprises three key subsections, starting with an Avionics Datasheet
detailing system specifications and capabilities.

B.1 Avionics Datasheet

B.1.1 Star Tracker Model

The STR model is based on an ST400 unit by AAC Clyde Space [164].

Parameter Unit Value
dtstr s 0.02
Accuracy (cross axis) arcsec 10
Accuracy (boresight) arcsec 120
Max tracking rate ◦/sec >1
Radiation krad 9 (Si)
Size mm 53.8x53.8x90.55
Mass g 280

Table B.1: STR properties

B.1.2 Gyroscope

The baseline model is based on the high-performance optical fiber IMU instrument, specifically
designed for small body missions at ISAE SUPAERO as part of the PIONEERS H2020 project
[165].

Parameter Unit Value
dtrmu s 0.01
N – Angle random walk rad/

√
s 1e-4

K – rate random walk rad/
√
s3 1e-4

B – Bias instability rad/s 5e-4/3600
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eps – Accuracy of flicker
instability

[-] 1e-4

Number of required
flicker rate system
states

[-] 20

Range rad/s +/- 50
Noise µrad/s/

√
Hz < 5

BW max Hz DC-800
Digital resolution nrad/s/LSB 50

Table B.2: Gyroscope Properties

B.1.3 Accelerometer

The accelerometer performance is described with the same model as the IMU, see Section B.1.2,
but with linear accelerations instead of rotational rates. Based on the assessment of the IMU units,
the Pioneer IMU [165] emerges as the optimal choice for the mission. It has lower noise compared
to the Honeywell alternative in the 1-200 Hz frequency range, while both IMUs exhibit similar
performance overall. Additionally, the lower dynamic range of the Pioneer IMU [166] is not an
issue for this mission, as the asteroid environment does not entail high acceleration. Therefore, the
Pioneer IMU satisfies the requirements for the mission and is the preferred option.

Parameter Unit Value
dtrmu s 0.01
N – Velocity random
walk

rad/
√
s 3e-5

K – linear acceleration
random walk

rad/
√
s3 1e-5

B – Bias instability rad/s 1e-5
eps – Accuracy of flicker
instability

[-] 1e-5

Range g +/-30
Noise µm/s2/

√
Hz < 100

BW max Hz DC-800
Digital resolution µm/s2/LSB 1
Power W <15
Mass kg < 1.5
Size mm 97x97x150
Temperature ◦C -40/+85
Radiations krad(Si) 10

Table B.3: Accelerometer Properties
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B.1.4 Camera

The baseline camera model is based on a pinhole model; however, for more detailed specifications,
IM200 by AAC Clyde Space is used as a reference [167]. The camera is simulated in ESA PANGU
software (as explained in Section 3.3).

Parameter Unit Value
Volume mm3 29x29x70
Mass g 59
Resolution Pixel 512x512
Field of View ◦ 30
Frame Rate Hz 5
F-number - 1.2

Table B.4: Camera Properties

B.1.5 Laser Range Finder

The baseline Laser Range Finder sensor is based on DLEM 20 by Jenoptik [168]. Based on the
analysis, the DLEM 20 laser range finder sensor appears to be the optimal choice for the mission.
It offers a range that covers most mission operations and has a high level of accuracy with 1σ of 0.5
meters.

Additionally, the DLEM 20 is the lightest sensor in its class, which is particularly important
given the stringent mass requirements of the mission. The DLEM 20’s high frame rate of 25 Hz is a
significant advantage that will provide critical data for the mission’s success. The LRF is included
in the ESA PANGU scene generator.

Parameter Unit Value
Volume mm3 50x22x34
Mass g 33
Sample frequency Hz 1-25
Range m 10-5000
Accuracy m < 0.5 m
Resolution m 0.1

Table B.5: Laser Range Finder Properties

B.1.6 RCS

The baseline of the propulsion system is a generic cold gas thruster system (RCS). The detailed
characteristics are based on JPL MarCO - Micro CubeSat Propulsion System by VACCO [87]. Key
factors are summarized in Table B.6.

Parameter Unit Value
Thrust range mN 10-50
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Isp s 60
Mass kg 0.3
Minimum impulse Bit mN-s 0.5
Thruster valve response
time

ms <20

Table B.6: Performance characteristics of the RCS.
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Appendix C

GNC Model-in-the-Loop Simulator

C.1 Simulator Assumptions

Rotational State Assumptions

It is assumed that the z-axis of the P-frame and S-frame coincides with the direction of highest
MOI. Nominally, this coincides with the spin axis. To describe the initial attitude of the target
body frame P w.r.t., the inertial frame J, the right ascension, and declination from [110] are used.
These angles describe the direction vector in the Earth Centred Inertial (ECI) frame. In this case,
the J2000 Ecliptic frame is used as the ECI-frame. The unit direction vector is given by:

rJ =

cosϕ cosλ

cosϕ sinλ

sinϕ

 (C.1)

where λ and ϕ are the right ascension and declination, respectively.
Note that these angles only define the pole (z-axis) of the target body. The x- and y-axis are

not fixed. For simplicity, the East, North, and Up frame is used. The “Up” direction is the pole
vector rJ , and the “East” and “North" direction define the x- and y-axis, respectively, as shown in
Figure C.1. The rotation from the inertial frame J to the body fixed frame P is given:

RP0EclipJ = R1

(π
2
− ϕ

)
R3

(π
2
+ λ

)
(C.2)

RP0J = RP0EclipJREclipJ−J (C.3)

Alternatively, it is also possible to implement the dynamics of the target body with rigid-body
dynamics. Hence, it is possible to include a deviation between the spin axis and the direction of
highest MOI. As a result, tumbling can be represented. It is assumed nutation is not relevant due
to the short flight duration. The same equations are valid for the secondary by substituting P with
S and considering that the retrograde solution is selected in [110].

The initial condition is set in such a way that the x-axis (minimum MOI) is aligned with the
centre of mass of the system:

RP0EclipJ = R3

(π
2

)
R1

(π
2
− ϕ

)
R3

(π
2
+ λ

)
(C.4)
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Figure C.1: Visualization of the Up, East, Down coordinate system.

RS0J = RP0EclipJ”EclipJ−J (C.5)

R3

(π
2

)
term is to align the x-axis and CoM of the primary, as shown in the previous equation

according to [110]. The rotation matrix from J2000 (J-frame) to Ecliptic J2000 is provided at the
initial condition from the spice kernel, and it is assumed fixed for the mission duration.

REclipJ−J =

1 0 0

0 0.91748206 0.39777716

0 −0.39777716 0.91748206

 (C.6)

Figure C.2: Hera’s Didymos system (secondary on the x-axis of I-frame)

C.1.1 Reference Orbit

As mentioned in Section 3.3.1, the orbit of Didymos system is chosen as the target system orbit.
The Hera SPICE Kernel gives the orbit: STUDY – Hera – Study Earth-Mars-Didymos launch
2024 kernel set. The motion of the CoMs of the two bodies can be described using the available
SPICE ESA kernels in particular: didymos_gmv_270101_330623_v01.bsp The previous kernel pro-
vides the motion of primary and secondary w.r.t. the system barycentre (I-frame): rPI , r

S
I . The
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motion of the system barycentre w.r.t. to the Solar System barycentre (J-frame) rCOM
J is given by:

didymos_hor_200101_400101_v01.bsp

The main assumption that can be made throughout the whole analysis is to neglect the change
of position w.r.t the Sun for the main bodies. In the case of Didymos’ system, given the mean
motion n and an approximate landing operation time t=5 h, the angular position change can be
evaluated as:

α = nt = 0.09◦ (C.7)

C.1.2 Gravity Model and Disturbances

Comparison of Gravity Models

Numerous external influences come into play when a spacecraft operates in a binary asteroid setting.
In addition to the gravitational pull of both the primary and secondary bodies, there are additional
celestial bodies, such as the Sun, Earth, and Moon, that exert their gravitational forces on the
spacecraft. Furthermore, the photons emitted by the Sun interact with the spacecraft’s surface,
generating a disruptive force known as solar radiation pressure. This section offers a basic exam-
ination of these forces to determine which elements will be integrated into the final simulator. A
specific threshold for the magnitude of disturbance acceleration is defined, below which all impacts
will be disregarded. The threshold has been established at a value of 10−8 m/s2. If this accelera-
tion is considered affecting the spacecraft following a 4 hours duration of flight from a stationary
position, the resultant accumulated displacement would be approximately 1 m.

In this analysis, several assumptions are established:

• Point mass gravity model

• Circular orbit.

• Sun and Earth are the only external bodies analyzed.

• External bodies are aligned in order to maximize their influence on the asteroid system. See
Figure C.3.

• Lander attitude is kept constant.

The primary and secondary bodies contribute the predominant accelerations during the landing
phase. The gravitational pull of the primary body exerts its influence until approximately 150 m

above the secondary body’s surface. To determine the gravitational acceleration, denoted as aB,
experienced by the spacecraft at a distance r from the center of mass of the secondary body:

aB(r) = GM(1/(r2)) (C.8)

Third Body Perturbations

Third body perturbations act on both NEO-MAPP and the target system. Since the dynamics of
NEO-MAPP are described in the target body frame, the third body perturbations are limited to the
difference between the gravitational attraction on NEO-MAPP and the target body. This difference
is most likely very small. Care must be taken for close-by planets, especially large ones. To calculate
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Figure C.3: Disturbance accelerations on the spacecraft as a function of the distance to the CoM of the
secondary asteroid.

the influence, one can compute the third body acceleration caused by the Sun at perihelion distance
(1.02 AU), with a difference in distance of 2 km. The gravitational attraction can be calculated by:

g = −GM

r2
(C.9)

∇g = −GM

(
1

(1.02AU)2
− 1

(1.02AU + 2e6)2

)
(C.10)

The resulting acceleration is 1.50e-7 m/s. The other third bodies are either far away or have a
smaller mass.

Other solar system bodies pull on the binary asteroid system and the spacecraft. The effect of
this so-called third-body perturbation ap is calculated as follows. It is assumed that the perturbing
body, the spacecraft, and the binary system are on a single line.

C.1.3 Solar Radiation Pressure

The calculation of solar radiation pressure on the lander depends on its location and alignment in
relation to the Sun, as well as the optical characteristics of the surface material of the probe. To
compute the solar radiation pressure, one can utilize the following formula:

F = CR
WS∗

c
(C.11)

In this formula, CR denotes the reflectivity of the satellite, while W represents the power density
of solar radiation, c symbolizes the speed of light, and S∗ signifies the effective cross-sectional area.

To analyze the effect of solar radiation pressure, a geometric representation of the spacecraft is
employed. The spacecraft consists of basic surfaces. When a surface is oriented toward the Sun,
Equation C.11 is employed to compute the resultant force due to solar radiation pressure. The
resulting torque is determined by the distance between the center of mass and the geometric center
of the surface.
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C.2 GNC Simulator

C.2.1 Low Altitude Phase Simulator

High-Level Overview of the Simulator

In the pursuit of developing and validating the navigation solution, a simulated environment will
be employed. This simulator shall furnish the navigation filter with input data and facilitate the
subsequent assessment of the navigation filter’s estimated state against the ground truth. Figure
C.4 presents an illustrative sketch of the simulator’s constituent elements, each of which will be
subject to detailed examination in the following sections.

Figure C.4: Schematic diagram of the different components of the LAPNAV simulator

Environment Model

Within the simulator, there exists an environment model for LAP. This environment encompasses
the gravitational fields of two asteroids, the influence of gravitational forces from other celestial
bodies within the solar system, and the effects of solar radiation pressure (SRP). Precise compu-
tations are made regarding the positions and velocities of the two asteroid bodies and perturbing
planets in the J2000 reference frame, which is anchored to the solar system’s barycenter. Addition-
ally, angular positions and rates are factored into the calculations. Transformation matrices and
attitude quaternions in various relevant reference frames are also computed. All these computations
are based on NASA’s JPL SPICE kernels, which contain the most current data on the ephemeris
of solar system bodies.

Trajectory Generator Model

The satellite requires a predetermined trajectory to adhere to. The spacecraft possesses full control
authority, enabling movement in any direction, even counteracting the forces exerted by the envi-
ronment. Consequently, a logical approach for guidance involves imposing a specific acceleration
profile from an initial condition, effectively isolating the control aspect of the problem. This ap-
proach simplifies dynamics modeling by eliminating interactions between thrusters and the control
system.
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Sensors Model

The Sensor block encompasses models representing the noise and bias characteristics of the onboard
sensors deployed on the spacecraft. Of particular importance is the Pangu camera simulator, as
it generates the images utilized by image processing algorithms. These algorithms are responsible
for extracting crucial data, such as extract and track features of the asteroid surface within the
frame. These measurements subsequently feed into the navigation filter. Ultimately, the camera
simulator must produce images, and image processing must extract data, as this mirrors the high
fidelity system’s operation.

Navigation Model

The navigation filters are presented in Appendix D for HAPNAV and Chapter 3 for LAPNAV.

C.2.2 Image Processing Front-End

The Image Processing block is part of the OBC functionalities and it is developed to extract, track
and manage the features from the camera observable. In addition, it serves to initialized the filter
state (i.e. landmark position) with the initial camera measurement.

C.3 Simulator Verification and Validation

All experiments within this study are conducted within a simulated setting. It is important to grasp
the constraints and assumptions underlying the creation of this simulated environment in order to
properly contextualize the outcomes. This section initially provides an overview of the procedures
employed to confirm the accurate execution of the simulator’s components.

C.3.1 SPICE Kernel

The SPICE kernel is incorporated into the simulator as a functional block responsible for providing
asteroid and sun position, velocity, and orientation information at a specified moment in time, for-
matted in the Modified Julian Date style. By selecting a sufficiently extensive simulation duration,
it becomes possible to derive the rotation period of both the primary and secondary bodies, as well
as the orbit radius of the secondary, and these values are systematically validated.

The alignment of the primary’s spin pole with that of the secondary’s orbital spin pole is
confirmed through the calculation of a vector perpendicular to the orbital plane of the secondary in
relation to the primary. This verification process involves three specific points along the secondary’s
orbital path, each situated at one-third intervals of an orbital period from the previous point. The
determination is made that the primary’s rotational axis is indeed parallel to the vector normal to
the orbital plane of the secondary around the primary, thereby establishing the correctness of the
primary’s rotational behavior. Additionally, it is ascertained that the secondary asteroid successfully
completes a full revolution around the primary within the specified period, and its spin pole is also
verified to align parallel with that of the primary body.
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C.3.2 Solar radiation pressure

A verification process involves performing a manual examination to ascertain the orientation of the
solar radiation pressure force relative to its source, the sun. Initially, the computation of the unit
vector originating from the spacecraft to the sun is carried out. Subsequently, the solar radiation
force is normalized. The determination of the dot product between these two vectors results in
a value of -1, conclusively demonstrating that the solar radiation pressure operates in a direction
counter to the incoming sunlight.

C.3.3 Gravity fields

During the configuration of the scripts responsible for computing the lookup tables for the poly-
hedron gravity model, intermediate outcomes have been consistently graphed to confirm their con-
formity to expected solutions. One vital validation procedure involves ensuring that, at significant
distances, the polyhedron gravity model approximates the point mass gravity model.

Indeed, the polyhedron gravity model effectively approximates the point mass gravity model
when the distance exceeds a few hundred meters from the asteroid’s surface. The polyhedron
gravity model is computed across a mesh grid containing points that encompass the area within
the simulation’s reach by the spacecraft. Linear interpolation is applied to determine gravitational
values at all points lying between the grid nodes. It’s important to note that the polyhedron gravity
model is not inherently defined within the 3D polyhedron model itself. To address this, a function
has been integrated into the script responsible for computing the gravity model lookup tables. This
function verifies, for each grid point, whether it resides inside the 3D polyhedron model.

To validate the accuracy of the polyhedron gravity model’s orientation, the 3D model employed
for constructing the polyhedron model is imported into MATLAB using the patched polygon draw-
ing function. Subsequently, all points identified as being within the hull of the 3D polyhedron model
during the gravity lookup table computation are depicted as a point cloud graph. This graph is then
compared to the original 3D model. The point cloud graph is found to be an exact match to the
3D model, confirming that the orientation of the 3D model used in the polyhedron gravity model is
identical to that employed in the 3D model itself. The same data is also employed in the PANGU
system, thus ensuring alignment between the primary and secondary asteroid gravity models and
the visual representation in the PANGU system.

C.3.4 Camera Simulator

In order to assess the configuration of the virtual environment within the context of PANGU, a
specific evaluation procedure has been devised. This evaluation involves the casting of a shadow
by the secondary asteroid onto the primary asteroid. The primary objective of this evaluation is to
confirm the accuracy of the 3D models implemented in PANGU, as well as to validate the fidelity
of the shadows generated by the system. The resulting outcome is illustrated in Figure C.5. These
outcomes align with the anticipated results, thus substantiating this particular aspect of PANGU.
Many other facets pertaining to a camera simulator like PANGU remain unaddressed in this context.

Factors that are exclusive to the camera, such as the lens model and the incorporation of
effects like chromatic aberration, vignetting, and radiation noise, are notable examples of aspects
not examined in this assessment. Additionally, the camera’s light metering settings have not been
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taken into account. These intricate details necessitate thorough examination in forthcoming research
endeavors to ensure that the PANGU environment accurately mirrors the actual conditions of the
asteroid environment. For the purposes of this research, the extent of validation achieved is deemed
sufficient for the development of the navigation system and the demonstration of the operational
principles of the navigation concept.

Figure C.5: Image taken during the PANGU test, showing the shadow cast by the secondary onto the
primary.
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Appendix D

Centroid-based Altimeter-aided
Navigation for Far Range

In the context of this PhD research and as part of the preparation for a MSc thesis conducted
in collaboration with TU Delft University [68], this appendix introduces a novel centroid-based
altimeter-aided navigation filter designed for far range applications. This research effort has also
led to the production of [9]. Within this collaboration, the presented appendix summarizes the
challenges associated with long-distance navigation by proposing an innovative method that inte-
grates centroid-based techniques and altimeter measurements. The content is organized into four
main sections.

The first section covers absolute state estimation, breaking down translation dynamics, gravita-
tional acceleration, external accelerations, and attitude dynamics.

The second section delves into sensors and measurement models, offering insights into accelerom-
eters, cameras, image rendering, and laser range finders.

The third section focuses on image processing, discussing centroid extraction, reference landing
trajectory considerations, and presenting results.

The structure of this appendix serves as a concise repository, offering a straightforward presen-
tation of the main findings from the centroid-based altimeter-aided navigation filter designed for
far-range applications. Finally, the conclusion summarizes the key outcomes, contributing to a clear
understanding of the research findings.

D.1 Introduction

In this appendix, a new approach to navigation in a binary asteroid system is explored, as pre-
sented in [9]. It utilizes measurements from both asteroids captured in the camera’s frame, along
with a single measurement from the LRF, which employs ellipsoid models for the asteroids. The
navigation camera’s measurements, adjusted for changing lighting conditions, will offer LOS data.
This navigation method is intended for use at medium to far distances, as determining LOS at very
close range, when an asteroid occupies the entire camera’s field of view, is not feasible. The key
contribution of this section lies in the development of a navigation filter that is based on the binary
nature of the asteroid system, coupled with the LRF. This filter shows potential resilience against
errors during state initialization, thanks to the comprehensive observability when both asteroids
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are visible. Unlike landmark-based approaches [102, 169], this method only necessitates an ellipsoid
shape model for establishing relative position with respect to the asteroid.

D.2 Absolute State Estimation

This section aims to briefly define absolute state estimation, explicitly focusing on the dynamics
equations involved in the estimation process.

D.2.1 Translation Dynamics

The translational dynamics are described in the I-frame. The equations of motion are written as
follows:

ṙIBI = vIB
I (D.1)

v̇IB
I = gI + aext (D.2)

where r is the position vector, v the velocity vector, g the gravity vector, and aext the external
acceleration vector from sources other than gravity. The gravitational and external acceleration are
detailed in the next sections.

Gravitational Acceleration

The 3D polyhedron models utilized for the primary and secondary bodies in this context are derived
from modified representations of the asteroids Bennu and Itokawa, respectively, as documented
in the references [111, 170]. These shape models were established during the OSIRIS-REx and
Hayabusa-1 missions, as outlined in greater detail in Section 3.3. This choice is underpinned by the
aspiration to create a simulated environment within the camera simulator, offering the significant
advantage of assessing the efficacy of the developed algorithms against realistic shape models.

Furthermore, it is noteworthy that third-body perturbations have been deliberately disregarded
in this analysis. This decision stems from the observation that, at altitudes below 5 km, the influence
of these perturbations is neglectful when compared to the other prevailing accelerations, such as
those resulting from SRP, control acceleration, and gravitational forces (as depicted in Figure C.3).

External Accelerations

The simulated external accelerations encompass both the influence of the SRP and the guidance
acceleration. It’s important to note that the SRP arising from the asteroids’ albedo is omitted from
consideration. Within this context, the constrained terminal velocity guidance algorithm computes
the desired guidance acceleration, as in [171]. It’s noteworthy that the dynamics of the propulsion
system are not used into this calculation; consequently, the computed guidance acceleration is
directly applied to a simplified point mass model of the spacecraft.

D.2.2 Attitude Dynamics

The spacecraft’s attitude dynamics are not explicitly represented in the model. It is assumed that
the spacecraft’s pointing information is provided by the GNC subsystem, utilizing a traditional
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gyro-stellar estimator. This model does not consider any inaccuracies in the pointing information.
For a more comprehensive description of the asteroid system modeling, please refer to Section 3.3.

D.3 Sensors and Measurement Models

The spacecraft is equipped with various sensors that are essential for its operation. This section
provides a more detailed description of the characteristics of these sensors and how they are modeled.
It should be noted that the star trackers and gyroscopes will not be considered at this point. Instead,
attention will be directed towards the remaining sensors, which include the accelerometer, LRF, and
the camera.

D.3.1 Accelerometer

The accelerometers measure the acceleration of the lander. The accelerometers are assumed to
be located on the lander CoM, aligned with the three axes of the B-frame. The accelerometer
measurements ãB are modelled with white noise and velocity random walk:

ãB = aB(t) + ba(t) + ηa(t) (D.3)

where ba is the velocity random walk in B-frame modelled as:

ḃa(t) = ηba(t) (D.4)

ηa(t) and ηba(t) are zero-mean white noise vectors with standard deviations presented in Table
3.7.

D.3.2 Camera

The navigation camera employs image processing techniques to precisely determine the position of
the asteroid’s centroid within the image. By leveraging this centroid’s coordinates in conjunction
with a camera model, a unit vector pointing towards the asteroid within the B-frame reference is
derived. This procedure is thoughtfully presented in Figure D.1, wherein a point denoted as P on
the asteroid is projected onto the camera’s sensor, yielding the pixel coordinates, namely (uP , vP ).
Subsequently, a unit vector originating from P and expressed within the B-frame is computed
employing the camera model. This resulting unit vector carries information about the asteroid’s
relative direction with respect to the lander, and it represents the measurement in the navigation
filter.

Image Rendering

Table 4.1 shows the camera’s specifications. A scene containing two asteroids has been rendered
within the Planet and Asteroid Natural Scene Generation Utility (PANGU). The 3D models utilized
for the asteroids are modified versions of Bennu and Itokawa, as elaborated in Section 3.3.1. The
operation of PANGU takes place within the MATLAB/Simulink simulator. PANGU receives inputs
consisting of the sun’s position, the positions and orientations of the asteroids, and the spacecraft’s
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Figure D.1: Projection of a landmark P defined in S-frame onto the camera sensor frame as feature

position and orientation. Figure D.2a and Figure D.2b illustrate two sample images rendered in
PANGU.

(a) Navigation camera output at 8500
m distance from the surface of the sec-
ondary

(b) Navigation camera output at 550
m distance from the surface of the sec-
ondary

Figure D.2: Navigation camera output.

D.3.3 Laser Range Finder

The LRF is aligned with the camera LOS direction, the Z-axis of B-frame, and provides a distance
measurement to a point on the asteroid’s surface. The distance r̃Bj

B measured by the LRF between
the lander and a point j on the surface of the asteroid is sketched in Figure D.3 and is modelled as:

r̃LRF = r̃Bj
B = |rPj

P − rPB
P | (D.5)

The measurement is obtained using PANGU and uses the reshaped 3D models of Bennu and Itokawa.
The measurement is obtained using the accurate distance from the sensor center to the 3D object
hit point. If there is a pointing error, this is directly reflected in the measurement from PANGU.
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Figure D.3: Sketch of the LRF beam rBj
P intersecting the surface of asteroid P in the point j. Also

shown is the position of P and B in the I-frame

D.4 Image Processing

The processing of camera images involves the extraction of centroid locations of asteroids in pixel
coordinates. These centroids are subsequently employed as measurements within the navigation
filter. The procedure for centroid extraction presents challenges owing to changing illumination
conditions, overlapping asteroids, asteroids that may be partially outside the image, and irregular
shapes. Additionally, the correct labeling of centroids as either primary or secondary is fundamental.
In the current research, the following definitions are given:

1. Center of figure (CoF): the projection of the CoM of the asteroid onto the camera sensor, in
pixel coordinates.

2. Center of brightness (CoB): the centroid of a region of pixels detected in the image, in pixel
coordinates.

D.4.1 Centroid Extraction

The motion of the center of mass of asteroids is detailed in the SPICE kernels. Consequently, the
preferred approach involves measuring the center of the figure, as it provides orientation towards a
known point in inertial space. Nevertheless, this proves unattainable due to the variable lighting
conditions causing shadows on the asteroid’s surface and the irregular shapes of asteroids.

Figure D.4, the larger asteroid exhibits a shadowed region on its right side, leading to a dis-
placement of the center of brightness location towards the left relative to the center of the figure.
In order to address this disparity between the center of figure and center of brightness, the work
by [103] introduces a corrective factor denoted as ϵcob. This factor compensates for the fluctuations
in illumination conditions by shifting the center of brightness in the direction opposite to the sun’s
position within the camera frame. The definition of this correction factor, as well as the subsequent
adjustments to obtain an estimation for the center of the figure [9]:

ϵcob = arctan

(
8πR

3r
sin

(
ϕ

2

)2
)

udet

hcam
(D.6)

p̂cob = ϵcob + pcob (D.7)
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Figure D.4: Key concepts from the image processing. Note how pcob is shifted in the direction opposite
of udet to obtain p̂cof [9]

The process of making correction can be seen in Figure D.4. However, it’s worth noting a
limitation with ϵcob: it assumes a spherical shape during its derivation. Consequently, when dealing
with non-spherical asteroids, this correction may have limited effectiveness and could potentially
even negatively impact the accuracy of estimating p̂cof . As a result, this correction is exclusively
implemented for the primary asteroid and not for the secondary one.

D.5 Reference Landing Trajectory

A reference landing scenario is being defined now that the EKF has been completed. The nominal
flight time, in this case, is 4 hours, and the starting position is approximately 6770 m above the
surface of the secondary asteroid. This initial position lies within the plane of rotation of the
secondary asteroid around the primary. After the 4-hour duration, the spacecraft will have reached
a target position approximately 300 m above the outward-facing pole of the secondary asteroid.
Consequently, it can be inferred that at some point along the trajectory, the primary asteroid will
come into view behind the secondary asteroid (as depicted in Figure C.5), prompting a simulation
shutdown. The selection of the reference trajectory is based on ensuring this overlapping of the two
celestial bodies in the image only occurs during the very final stages of the simulation, when the
spacecraft is situated at an altitude of around 550 m above the surface. By default, the camera
and LRF maintain their orientation towards the secondary asteroid at all times. The reference
trajectory of the spacecraft, along with the movements of the asteroids and the direction of the sun,
are illustrated in Figure D.5.

D.6 Results

The results obtained from my experiments and analyses, specifically concentrating on assessing the
performance and sensitivity of the EKF setup across various scenarios, can be found in [9, 68]. The
content delves into the filter’s behavior during initial setup and tuning, its reaction to changes in
the initial position, sensitivity to filter initialization errors, and its performance in the presence of
image imperfections. The main findings are resumed in [9].
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Figure D.5: Trajectory of the primary, secondary, and spacecraft in the reference landing scenario. Note
that the illumination conditions are favorable due to the low sun phase angles
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