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Multiphase numerical simulations have become a widely sought methodology for modelling 
capillary flows due to their scientific relevance and multiple industrial applications. Much 
progress has been achieved using different approaches, and the volume of fluid is one of the most 
popular methods widely used for modelling two or more phases due to its simplicity, accuracy 
and robustness. However, when prescribing the forces emerging from three or more fluid-fluid 
interfaces, the force balance is not guaranteed and can lead to spurious self-propulsion. Here, a 
new approach to account for the surface tension forces for multiphase flows with a correct force 
balance is proposed. The newly proposed method is successfully validated for a wide range of 
tests, including contact angles for the fluid-fluid and fluid-solid triple line. Additionally, complete 
spreading phenomena of fluid on fluid and fluid on solid have been found to emerge naturally 
from the newly proposed surface tension force model. Finally, simulation results are compared 
against experiments of lubricant-impregnated surfaces to demonstrate the practical applicability 
of the newly proposed method.

 Introduction

The modelling of fluid systems that consist of three or more phases is important for industrial applications, such as phase separa-
n in pyrometallurgy and multicomponent alloys [1–4], oil separation in wastewater [5–7], atomisation and digital microfluidics 
r pharmaceutical applications [8–10]. Additionally, multiphase flows involving three or more phases are relevant from the point 
 view of fundamental physics, for example, the chemistry and adhesion of thin films over surfaces [11], including lubricant-
pregnated surfaces [12–14]. Therefore, modelling multiphase fluids of more than two phases has become highly relevant.
Several methods have addressed the modelling of flows of three or more phases. One of the popular choices is the phase-field 
ethod. Broadly, this numerical method is based on a free energy functional of the phase fields from which the thermodynamic 
operties of the fluid are prescribed [15–23]. Therefore, the physical properties of the system, such as chemical potential, pressure, 
rface tension, disjoining pressure and solid surface wettability, are derived. However, the unrealistic thickness of the interfaces 
d the large compressibility of the liquids might become cumbersome and expensive to avoid when simulating liquids far from the 
itical point.
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Another common approach is the level-set method [24–27]. In this method, the interface is defined by the contour of a marker 
nction, which evolves by the advection of the flow. Level-set methods are usually valid for incompressible flows and allow for highly 
curate calculation of the interfacial properties, such as the mean curvature, with high accuracy. Nonetheless, the marker function 
ust be “reinitialised” to restore the smoothness of the interface after advection, which may cause poor volume conservation [28,29].
Perhaps the most popular alternative approach to multiphase flows is the Volume-of-Fluid (VoF) method, which similarly uses 
field to identify each phase, the volume fraction. Most VoF methods ensure mass conservation while retaining a sharp interface, 
hilst they can naturally handle topological changes of the interfaces [30]. The challenge in this method is reconstructing the 
terface during its advection for an accurate calculation of the surface tension forces [20,31]. Much progress has been achieved in 
is endeavour, particularly in the correct representation of the triple line, the region in space where three interfaces meet [32–35].
A popular approach to more than two-phase flows in the VoF method was pioneered by Bonhome et al. [36] and followed by 
rsonnetaz et al. [37] and Bublik and Einarsrud [38]. Their surface tension model consists of superimposing the pairwise surface 
nsion and curvatures of each interface. It will be demonstrated in the following sections that the total momentum is not always 
aranteed to be conserved, thus leading to unphysical propulsion.
At the same time, several multiphase models have been derived for phase-field methods. These methods are based on a free 
ergy functional, which allows thermodynamic consistency in deriving the chemical potential of each component and total pressure. 
wever, choosing a realistic free energy functional might present challenges, such as the appearance of an interstitial third phase 
tween two phases [18].
One way of avoiding the interstitial phase is to add an energy penalty term that peaks in the presence of all phases [17,39–41]. 
ditionally, the surface tension coefficients can be expressed in terms of the spreading parameters, Γ𝑖, such that Γ𝑖 ∶= (𝛾𝑖𝑗 + 𝛾𝑖𝑘 −

𝑘)∕2, 𝑖 ≠ 𝑗 ≠ 𝑘. This approach is very convenient, for ternary fluids, as the number of phases equals the number of pairwise interface 
mbinations.
The ternary fluid approach has been adapted successfully into the VoF method [42]. In this case, the surface tension force, 𝒇 st, 
n be rewritten as 𝒇 st =

∑3
𝑖=1 Γ𝑖𝜅𝑖𝒏̂𝑖𝛿(𝑆𝑖) where 𝜅𝑖 is the curvature, 𝒏̂𝑖 is the unit normal vector, and 𝛿(𝑆𝑖) is a surface density 

nction of the boundary of the 𝑖-th phase given by the manifold {𝒙|𝑆𝑖(𝒙) = 0}. This method is conceptually different from the 
proach by Bonhome et al. [36] and has the advantage that it is computationally more efficient. Unfortunately, the generalisation 
not evident to an arbitrary number of phases, as the number of pairwise interfaces increases faster than the number of phases after 
ree. Therefore, the relation between the spreading parameters and the surface tension combinations becomes undetermined for 
ore than three phases.
Here, a new method for prescribing the surface tension forces consistent with the laws of motion is proposed. Our model has 
en tested for the algebraic VoF with interface compression in which the forces can be expressed in terms of gradients of the 
lume fraction fields. The new formulation has been implemented in the open-source code, OpenFOAM, since it can be extended for 
ditional physics with some simplicity and is well-validated and accepted in the Computational Fluid Dynamics community [43,44]. 
oreover, the surface tension force scheme presented in this work is not particular to the code implementation, as it does not require 
nctions or subroutines specific to the code. Furthermore, it can be generalised and applied to many other methods.

 Multiphase model

In the Volume-of-Fluid (VoF) method, phase 𝑖 is identified by a volume fraction field, 𝛼𝑖(𝒙) ∈ [0, 1]; 𝛼𝑖 = 1 corresponds to the bulk 
 phase 𝑖, whereas 𝛼𝑖 = 0 corresponds to the absence of that phase. The coexistence of 𝑀 phases imposes the constraint

𝑀∑
𝑖=1

𝛼𝑖(𝒙) = 1 ∀ 𝒙 ∈Ω, (1)

here Ω denotes the region where the multiphase fluid mixture is defined. The volume-fractions are governed by the conservation 
uations

𝜕𝑡𝛼𝑖 +𝛁 ⋅ (𝛼𝑖𝒖) = 0, for 𝑖 = 1,2, ...,𝑀 (2)

here 𝑡 is the time variable, R and 𝒖 is the velocity field of the fluid mixture. The velocity field is subject to the incompressible 
vier-Stokes equation,

𝜕𝑡(𝜌𝒖) +𝛁 ⋅ (𝜌𝒖⊗ 𝒖) = −𝛁𝑝+𝛁 ⋅ [𝜌𝜈(𝛁𝒖+𝛁𝒖𝑇 )] + 𝒇 st, (3)

here 𝜌 is the density, 𝑝 is the pressure, 𝜈 is the kinematic viscosity and 𝒇 st are the surface tension forces.
To formulate the model for the surface tension forces, three requirements are imposed as illustrated in Fig. 1. Considering the 
ess-based formalism detailed in Appendix A, expressing the surface tension forces as

𝒇 st = −𝛁 ⋅

(
𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

𝚷𝑖𝑘

)
(4)

proposed in this work, where the tensor 𝚷𝑖𝑘 is defined as( )

2

𝚷𝑖𝑘 ∶= −𝛾𝑖𝑘 𝐈− 𝒏̂𝑖𝑘 ⊗ 𝒏̂𝑖𝑘 𝛿
(𝑆)
𝑖𝑘

, (5)
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. 1. Illustration of the surface tension forces acting on a multiphase fluid. A volume of integration surrounding some area of interest is highlighted to show the 
ces arising from surface tension. (a) For a gently curved interface, the change in tangential stresses (red arrows) produces a force proportional to the curvature of 
 interface (blue arrow). (b) When the surface tension varies along the interface, the resulting force has a tangential component to the surface. (c) The forces arising 
the intersection of three phases, i.e., the triple line. (d) Far from interfaces, the resulting surface tension force should vanish, ensuring that momentum is conserved. 
r interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

here 𝛾𝑖𝑘 corresponds to the surface tension of the 𝑖𝑘-interface. In Eq. (5), 𝒏̂𝑖𝑘 corresponds to the unitary normal vector exclusively 
fined at the 𝑖𝑘-interface and pointing at the bulk of phase 𝑖. 𝛿(𝑆)

𝑖𝑘
= 𝛿

(𝑆)
𝑖𝑘

(𝒙) is a surface density function [45] which, ideally, tends 
 the Dirac delta function for an infinitely sharp interface, 𝛿(𝑆)

𝑖𝑘
→ 𝛿(𝑆𝑖𝑘(𝒙)) for 𝑆𝑖𝑘 ∶ℝ3 → ℝ such that 𝑆𝑖𝑘(𝒙) = 0 for all points on 

e 𝑖𝑘-interface. This implies that 𝚷𝑖𝑘 corresponds to the stresses exerted by the surface tension of the 𝑖𝑘-interface. Additionally, 
e term 𝐈 − 𝒏̂𝑖𝑘 ⊗ 𝒏̂𝑖𝑘 = 𝒕̂

(1)
𝑖𝑘

⊗ 𝒕̂
(1)
𝑖𝑘

+ 𝒕̂
(2)
𝑖𝑘

⊗ 𝒕̂
(2)
𝑖𝑘

is a projector onto the tangential components of the interface, where 𝒕̂(1)
𝑖𝑘

and 𝒕̂(2)
𝑖𝑘

e unitary vectors perpendicular to each other and to 𝒏̂𝑖𝑘, therefore, tangential to the interface 𝑖𝑘. Note the parity of the vector, 
𝑘 = −𝒏̂𝑘𝑖 and the symmetry of 𝛾𝑖𝑘 = 𝛾𝑘𝑖 and 𝛿

(𝑆)
𝑖𝑘

= 𝛿
(𝑆)
𝑘𝑖
, which implies 𝚷𝑖𝑘 =𝚷𝑘𝑖. Consequently, it suffices to range 𝑖 = 1, 2, ..., 𝑀

d 𝑘 = 𝑖 + 1, 𝑖 + 2, ..., 𝑀 to avoid repeating terms in the sum of Eq. (4).
The case of a gently curved interface is examined first. For this configuration, the well-known scheme of a two-phase system is 
covered. This can be demonstrated by considering the case shown in Fig. 1(a); when performing an integration over a finite but 
bitrary volume, ΔΩ, enclosing the AB interface, the surface tension force results in

∫
ΔΩ

𝒇 st d𝑉 = − ∫
𝜕ΔΩ

𝚷𝐴𝐵 ⋅ d𝝈 = ∮


𝛾𝐴𝐵 𝒕̂
(𝓁)
𝐴𝐵

d𝓁, (6)

here d𝝈 is the infinitesimal surface vector. For the first equality the divergence theorem has been used and the only surviving 
rm in the sum corresponds to 𝑖 =𝐴 and 𝑘 = 𝐵. On the second equality in Eq. (6),  = 𝜕(ΔΩ ∩ {𝒙|𝑆𝐴𝐵(𝒙) = 0}) is defined to be the 
osed circuit on the 𝐴𝐵-interface, d𝓁 is an infinitesimal displacement around the circuit, and 𝒕̂(𝓁)

𝑖𝑘
is the tangent vector to the AB

terface which is also perpendicular to . This expression of the surface tension forces for two-phase flows is sometimes preferred 
 it avoids calculating an additional numerical derivative [28]. However, it can be shown that, as the volume becomes vanishingly 
all, using the Frenet-Serret identities [46], the force tends to be proportional to the curvature of the interface and oriented in the 
rmal direction,

𝒇 st → −𝛾𝐴𝐵𝜅𝐴𝐵 𝒏̂𝐴𝐵𝛿
(𝑆)
𝐴𝐵

for a single interface, (7)

here 𝜅𝐴𝐵 ∶= 𝛁 ⋅ 𝒏̂𝐴𝐵 corresponds to the mean curvature of the AB-interface. The force contribution from Eq. (7) results in the 
ell-known Laplace’s pressure jump across an interface, that is,

Δ𝐴𝐵𝑝 = 𝛾𝐴𝐵𝜅𝐴𝐵, (8)

here Δ𝐴𝐵𝑝 = lim𝜖→0[𝑝(𝒙𝐴𝐵 + 𝒏̂𝐴𝐵𝜖) − 𝑝(𝒙𝐴𝐵 − 𝒏̂𝐴𝐵𝜖)] represents the discontinuity at the point 𝒙𝐴𝐵 on the interface.
Moreover, the surface tension of the AB interface can vary with position, i.e., 𝛾𝐴𝐵 = 𝛾𝐴𝐵(𝒙𝐴𝐵), 𝒙𝐴𝐵 ∈ {𝒙|𝑆𝐴𝐵(𝒙) = 0}, as shown 

 Fig. 1(b). This phenomenon can occur, for instance, due to the presence of surfactants or local temperature variations [47]. The 
tal force at the volume of integration on a flat surface follows from Eq. (6); however, in this case, it results in a force tangential to 
e surface. As the circuit, , is collapsed into a point, the surface tension force reads,

𝒇 st → 𝛿
(𝑆)
𝐴𝐵

𝛁𝑆𝛾𝐴𝐵 (9)

 the limit of 𝓁 → 0, where 𝛁𝑆 corresponds to the gradient operator on the manifold 𝑆 .
As depicted in Fig. 1(c), at the triple line, the volume integral of the surface tension force results in

𝒇 st d𝑉 =
′∑
𝛾𝑖𝑘 𝒕̂𝑖𝑘𝓁, (10)
3

∫
ΔΩ 𝑖𝑘
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here 
∑′ implies the sum of all the interfaces captured within the volume of integration, 𝒕̂𝑖𝑘 is the tangential vector to the 𝑖𝑘-

terface pointing out of the integration volume, and 𝓁 is the length of the triple line enclosed by integral. In equilibrium, the forces 
 the triple point must balance, thus satisfying Neumann’s construction [47,48],

′∑
𝑖𝑘

𝛾𝑖𝑘 𝒕̂𝑖𝑘 = 𝟎. (11)

Lastly, carrying out a volume integration such that the boundary does not intersect any interfaces should result in a zero total 
rface tension force. This implies that the total momentum of a multiphase capillary system, such as the one illustrated in Fig. 1(d), 
constant. Note that deriving the surface tension forces from the divergence on a tensor field that vanishes away from the interfaces 
sures the balance of forces and thus avoids self-propulsion.

 Numerical method

For numerical purposes, 𝛿(𝑆)
𝑖𝑘

is required to span over a few mesh nodes. Following Pope [49], the surface density function is 
nstructed from the gradient of a scalar field that ranges from zero to one, such as the volume fraction. Then,

𝛿
(𝑆)
𝑖𝑘

= |𝒎𝑖𝑘|, (12)

defined, where

𝒎𝑖𝑘 ∶= 𝛼𝑘𝛁𝛼𝑖 − 𝛼𝑖𝛁𝛼𝑘. (13)

 the one hand, far from any other phase on the 𝑖𝑘-interface, the expression 𝛼𝑖 + 𝛼𝑘 = 1 holds, and thus, 𝒎𝑖𝑘 becomes 𝛁𝛼𝑖 = −𝛁𝛼𝑘. 
 the other hand, 𝒎𝑖𝑘 becomes zero far from the 𝑖𝑘-interface, which includes sections of the 𝑖-interface that are not shared by the 
interface. A more detailed exposition of how the field |𝒎𝑖𝑘|, with 𝒎𝑖𝑘 as defined in Eq. (13), represents the surface density function, 
𝑆), can be found in Appendix B. Furthermore, the vector field 𝒎𝑖𝑘 is used to define the unit normal vector to the 𝑖𝑘-interface, that 

𝒏̂𝑖𝑘 ∶=
𝒎𝑖𝑘|𝒎𝑖𝑘| . (14)

The substitution of Eqs. (12) and (14) into Eq. (5) following Eq. (4) results in

𝒇 st =
𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

[
−𝛾𝑖𝑘 𝜅𝑖𝑘𝒎𝑖𝑘 + |𝒎𝑖𝑘| (𝐈− 𝒏̂𝑖𝑘 ⊗ 𝒏̂𝑖𝑘

)
𝛁𝛾𝑖𝑘 + 2𝛾𝑖𝑘 (𝛁𝛼𝑖 ×𝛁𝛼𝑘) × 𝒏̂𝑖𝑘

]
. (15)

e first term in Eq. (15) corresponds to the contribution due to the curvature of the interface and is identified as the term from 
. (7) smeared over a finite volume. This term is commonly implemented in many models of multiphase flows. The following term 
counts for local variations of the surface tension that occur over the interface, thus resulting in the tangential forces acting on the 
terface [50]. However, we will restrict ourselves to constant surface tensions, 𝛾𝑖𝑘, in all interfaces; therefore, this phenomenon will 
t be addressed in this work.
The last term in Eq. (15), localises the forces at the triple line, where each component in the sum is tangent to the 𝑖𝑘-interface. 

 shown in Appendix B, the term 2𝛁𝛼𝑖 × 𝛁𝛼𝑘 from Eq. (15) corresponds to a vector field that is tangent to the triple line and its 
agnitude conforms the line density function, 𝛿(𝐿)

𝑖𝑘
, of the perimeter of the 𝑖𝑘 interface. Therefore, this vector can be expressed as

2𝛁𝛼𝑖 ×𝛁𝛼𝑘 = 𝒃̂𝑖𝑘𝛿
(𝐿)
𝑖𝑘

, (16)

here 𝒃̂𝑖𝑘 is the unit tangent vector to the perimeter of the 𝑖𝑘-interface in the counter-clockwise direction and orthogonal to 𝒏̂𝑖𝑘. 
oreover, its cross product with 𝒏̂𝑖𝑘 results in the unitary vector that points into the 𝑖𝑘-interface, i.e., 𝒕̂𝑖𝑘 = 𝒃̂𝑖𝑘 × 𝒏̂𝑖𝑘. Therefore, the 
st term in Eq. (15) corresponds to a vector field pointing inwards to the 𝑖𝑘-interface and that is localised at the perimeter of the 
terface.
For numerical purposes, a term is added to Eq. (2) to maintain the sharpness of the interface. This approach is commonly referred 

 as the algebraic VoF, which reads,

𝜕𝑡𝛼𝑖 +𝛁 ⋅ (𝛼𝑖 𝒖) = 𝛁 ⋅
(
𝛼𝑖(1 − 𝛼𝑖)𝒖𝑟

)
, (17)

here 𝒖𝑟 in the right-hand side is defined as

𝒖𝑟 ∶= −𝑐𝛼 |𝒖| 𝛁𝛼𝑖|𝛁𝛼𝑖| , (18)

d 𝑐𝛼 is known as the interface compression coefficient. The velocity, 𝒖𝑟, in Eq. (18) produces a counter-gradient current that aims 
 cancel the numerical diffusivity of the interface from the advection scheme [51]. Without loss of generality, at every time step, 
4

. (17) is iterated for the first 𝑀 − 1 phases, then, the remaining volume fraction field, 𝛼𝑀 , is calculated by means of Eq. (1).
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. 2. Numerical simulation showing the surface tension forces of a three-phase flow of a suspended binary droplet in equilibrium. (a) An example of a binary droplet 
phases A and C suspended in a third phase, B. (b) A close up to the triple line region, where the shaded regions are showing the intensity of the smeared field 
𝑖𝑘| indicating the position of the three interfaces. The arrows correspond to the tangential forces calculated using the second term in Eq. (15). (c) The equilibrium 
essure profile along the axis of symmetry. The shaded regions show the location of each of the phases. The simulation dimensions, 𝐿𝑖 , and mesh resolution, 𝑁𝑖

 𝐿𝑥 × 𝐿𝑦 ×𝐿𝑧 = 1mm3 and 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 1603 , respectively. Periodic boundary conditions are set in all directions. The system relaxes for 20ms. The surface 
sions are 𝛾𝐴𝐵 , 𝛾𝐵𝐶 and 𝛾𝐶𝐴 are 40, 50 and 60mNm−1 , respectively. Further technical specifications are described in Sec. 4. (Colour online)

It is worth emphasising that the formulation for the surface tension forces is not restricted to the algebraic VoF since Eqs. (4)
(15) are valid independently of the scheme employed to advect the interface.
Note that for a two-phase system, Eq. (15) reduces to the expected result since the second term vanishes because 𝛁𝛼𝑖 = −𝛁𝛼𝑘. In 

two-phase flow, the sum in Eq. (15) contains only one term, where 𝑖 = 1 and 𝑘 = 2. Therefore, the cross-product in the second term 
nishes.
Fig. 2 illustrates the results of a simulation of a suspended binary droplet that has reached equilibrium. The figure shows the 
fferent contributions of the surface tension forces. As the system relaxes, the interfaces form spherical sections, as shown in 
g. 2(a) and the angle between the interfaces converges to equilibrium.
Fig. 2(b) shows the surface density functions |𝒎𝐴𝐵|, |𝒎𝐵𝐶 | and |𝒎𝐶𝐴| and their intersection at the triple line. Additionally, the 
ntribution of the last term in Eq. (15) from each interface converging at the triple line can be observed. This is the contribution of 
ch of the forces at the triple line, pointing in the direction of their respective interfaces away from the triple line, and the result 
a zero-sum force, consistent with Eq. (11). Lastly, Fig. 2(c) shows the pressure profile along the symmetry axis for the binary 
oplet configuration. The sequence of pressure jumps at each interface can be observed, which is a direct consequence of the force 
stribution due to the curvature of the interface.
The modelling of the boundary conditions for solid surfaces is now addressed. Two boundary conditions for partially wetting 
ids on solids were implemented and will be tested in Section 4. The first of these, which shall be called the thermodynamic 
proach, consists of emulating the solid as an additional phase, 𝛼solid. Therefore, 𝛼solid = 1 only at the solid boundary and 𝛼solid = 0
erywhere else. Then, the spreading of some phase 𝑖 versus another 𝑘 can be specified by setting the surface tensions, 𝛾𝑖 solid and 
solid, respectively, for a given 𝛾𝑖𝑘. Therefore, one is free to choose the values for 𝛾𝑘 solid and 𝛾𝑖 solid to prescribe the contact angle of 
e 𝑖𝑘-interface.
The second method, which shall be deemed the geometric approach, consists of redirecting the vector 𝒎𝑖𝑘 to satisfy the prescribed 
ntact angle at each interface that reaches the solid boundary. Since this acts at each interface independently, the algorithm can be 
ported from two-phase modelling. Following the work of Ding and Spelt [52], the vector

𝒎𝑖𝑘 →𝒎
(𝑏)
𝑖𝑘

at the solid boundaries, (19)

n be redirected and satisfy the following three properties. (i) The vector magnitude is preserved, |𝒎(𝑏)
𝑖𝑘
| = |𝒎𝑖𝑘|. (ii) The orientation 

 the contact line is preserved, 𝝈̂𝑏 ×𝒎
(𝑏)
𝑖𝑘

= 𝝈̂𝑏 ×𝒎𝑖𝑘, where 𝝈̂𝑏 is the unitary outward surface area vector of the boundary. (iii) The 
5

gle between 𝒎(𝑏)
𝑖𝑘
and 𝝈̂𝑏, obeys the relation
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cos𝜃𝑖𝑘 =
𝝈̂𝑏 ⋅𝒎

(𝑏)
𝑖𝑘|𝒎(𝑏)

𝑖𝑘
| . (20)

The thermodynamic and geometric approaches are consistent with the usual solid-fluid boundary conditions for the velocity and 
essure fields, e.g., no-slip and impenetrability for the velocity field and 𝝈̂𝑏 ⋅𝛁𝑝 = 0 for the pressure field.

 Validation

The coupled system of advection and momentum equations of motion in Eqs. (2) and (3) are solved in an open-source, finite-
lume solver with multiphase capabilities based on OpenFOAM-v2006 [53]. The simulations are performed using a second-order 
heme for both temporal advancement and spatial discretisation.
The advection equations for the volume fraction fields were solved using the MULES algorithm for 3 sub-cycles with an interface 
mpression coefficient of 𝑐𝛼 = 1∕2 and a CFL condition of 𝐶𝑜 = 0.1.
A central differencing scheme is used to approximate the gradient, divergence and Laplacian operators, and a van Leer 
heme [54] for the advection of the interface. All meshes are hexahedral with uniform grid spacing in every direction. The momen-
m equation is solved using the PISO-SIMPLE algorithm for coupling the pressure and velocity fields. The pressure is solved by an 
er-relaxation method with a relative tolerance of 10−7 for the pressure correction and 10−9 for the final pressure solution.
Unless specified, in all simulations, the kinematic viscosity is set to 𝜈𝐴 = 𝜈𝐶 = 1 × 10−6 m2 s−1 and 𝜈𝐵 = 1.48 × 10−5 m2 s−1 and 
e density to 𝜌𝐴 = 𝜌𝐶 = 1 × 103 kgm−3 and 𝜌𝐵 = 1 kgm−3 . Phases A and C correspond to liquids, whilst phase B represents a 
s, such as air. The parameters for viscosity and density are chosen in analogy to water-air systems, which, universally, constitute 
e most familiar capillary system. However, this comes without loss of generality since the density and viscosity do not change the 
uilibrium states.

lidation Test 1: Force balance

The first validation test focuses on the balance of surface tension forces. A suspended binary droplet system surrounded by a gas 
set up for this test. Therefore, no interfaces extend indefinitely, and the total surface tension forces should add up to zero over a 
lume containing the pair of droplets. This implies that the velocity of the centre of mass of the two droplets should persist during 
e relaxation to equilibrium, irrespective of their initial configuration. In this case, since no initial velocity is set on the system, the 
tal momentum of the system should remain zero. The initial conditions of the system consist of two semicircles of equal area, each 
rresponding to phases A and C. The semicircles face each other and conform a complete circle embedded by phase B.
The two implementations are compared in order to demonstrate that the present surface tension force scheme is balanced cor-
ctly. Fig. 3 shows the comparison. The first implementation corresponds to an expression of the force that only includes the first 
rm in Eq. (15). This implementation can be found in many multiphase VoF algorithms that follow the approach proposed in 
fs [36–38]. The second implementation is the one proposed in this work, using the complete expression of Eq. (15). As can be 
served from Fig. 3(a), the centre of mass accelerates for the curvature-only implementation, and the shape of the droplets does 
t conform to the expected equilibrium shape, where the interfaces have a constant curvature, for instance. The quantification of 
e displacement, |𝑿cm(𝑡) −𝑿cm(0)|, is shown in Fig. 3(b), where the displacement of the droplet increases in time. Consequently, 
e acceleration of the centre of mass, |𝑿̈cm|, fluctuates about 102ms−2 . Moreover, a higher difference in surface tension produces a 
gher acceleration. Since there is no source of energy introduced to the system, this spontaneous propulsion is evidently unphysical.
In contrast, the same set of simulations using the proposed force model shows drastically different behaviour. Fig. 3(c) shows 
e binary droplet system at the expected equilibrium configuration, where the curvature is constant at every interface, which is the 
pected outcome that implies that the pressure has reached a constant value. Fig. 3(d) shows that the displacement of the centre 
 mass is negligible, which is expected since no momentum was initially given to the system, and, similarly, the acceleration is 
gligible.

lidation Test 2: Fluid-fluid contact angles

Then, the force scheme is tested to give the correct angles between interfaces provided a combination of surface tensions. For this 
lidation test, a droplet immersed between two phases is set up so that the system relaxes to equilibrium, as shown in Fig. 4. The 
itial conditions of the system consist of a cube of side 𝐿𝑥∕4 containing phase C, centred in the simulation domain and between 
ases A and B. The latter occupy the lower and upper half of the simulation domain. By changing the surface tensions 𝛾𝐴𝐵 and 𝛾𝐵𝐶

hilst keeping 𝛾𝐶𝐴 constant, the angles between interfaces can be varied according to Neumann’s construction. Taking the relation 
 Eq. (11) and employing the law of cosines, the relations

cos𝜗(𝑒)
𝐴

=
𝛾2
𝐵𝐶

− 𝛾2
𝐶𝐴

− 𝛾2
𝐴𝐵

2𝛾𝐶𝐴𝛾𝐴𝐵
, cos𝜗(𝑒)

𝐵
=

𝛾2
𝐶𝐴

− 𝛾2
𝐴𝐵

− 𝛾2
𝐵𝐶

2𝛾𝐴𝐵𝛾𝐵𝐶

, cos𝜗(𝑒)
𝐶

=
𝛾2
𝐴𝐵

− 𝛾2
𝐵𝐶

− 𝛾2
𝐶𝐴

2𝛾𝐵𝐶𝛾𝐶𝐴

, (21)

e obtained, where, as depicted in Fig. 4(b), the angles 𝜗(𝑒)
𝑖
correspond to the expected contact angle at the triple point from the 

ir of interfaces 𝑖𝑘 and 𝑖𝑗 on the side of phase 𝑖. The measured contact angles are obtained from the intersection of the best-fitting 
6

rcles.
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. 3. Comparison between the curvature-only implementation and the force scheme proposed in the present work. Panels (a) and (c) correspond to snapshots after 
10ms, of a binary droplet with different models for the surface tension forces: (a) curvature-only expression, i.e., the first term in Eq. (15) and (c) corresponds to 
 full expression. The red arrows show the acceleration of the centre of mass of the binary droplet system. Panels (b) and (d) displacement of the centre of mass 
m its initial position and the magnitude of its acceleration (inset) as a function of time for two different pairs of surface tensions. The simulation domain is 2D, with 
e 𝐿𝑥 ×𝐿𝑦 = 1mm2 in a 𝑁𝑥 ×𝑁𝑦 = 2002 mesh. Periodic boundary conditions are set in all directions. The surface tension for the BC interface is 𝛾𝐵𝐶 = 50mNm−1 . 
olour online)

. 4.Measurement of the Neumann angles for the angles between the interfaces in a liquid lentil numerical experiment. (a) Three-dimensional simulation of a liquid 
til. (b) Slice of the system in (a) at the plane passing through the centre of phase 𝐶 and perpendicular to the AB interface. Depending on the surface tensions, the 
erfaces relax to the angles 𝜗𝐴 , 𝜗𝐵 and 𝜗𝐶 at the triple line. (c) Plot of the distribution of the measured angles against the expected angles according to Neumann’s 
nstruction. (d) Complete spreading of phase C between phases A and B. (e) Complete detachment of phase C from the AB interface. The system dimensions and 
sh resolution are 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 2 × 2 × 1 mm3 and 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 128 × 128 × 64, respectively. Periodic boundary conditions are assigned along 𝑥 and 𝑦, and 
7

id walls at the top and bottom boundaries. The surface tensions for 𝛾𝐴𝐵 and 𝛾𝐵𝐶 vary from 20 to 120mNm−1 , and 𝛾𝐶𝐴 = 40mNm−1 . (Colour online)
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The technique employed to extract the contact angles, 𝜗𝑖, is by calculating the intersection angles of the two fitted circles as 
own in Fig. 4(b), e.g., to the pair of interfaces 𝐶𝐴 and 𝐵𝐶 for 𝜗𝐶 . Each circle is obtained by a least squares algorithm from the 
surface 𝛼𝑖 = 1∕2 in the following way. Each volume fraction isosurface is obtained by a marching squares algorithm along a slice 
at passes through the centre of the liquid lentil. This results in a set of points, 𝑃𝑗 = {𝒙𝑛}, 𝑛 ∈ ℕ, 𝑗 = {𝐵𝐶, 𝐶𝐴}. Then, the distance, 
𝑛, from each of the points in the set to a new point, 𝒙c, is calculated

𝑅𝑛(𝒙c) ∶= |𝒙𝑛 − 𝒙c| ∀ 𝒙𝑛 ∈ 𝑃𝑗 . (22)

r which, the residue function

𝑓 (𝒙c) ∶=
∑
𝑛

[
𝑅𝑛(𝒙c) − ⟨𝑅𝑛⟩]2 , (23)

here ⟨ ⋅ ⟩ denotes the average value, is minimised, which is by finding the roots of 𝜕𝑓∕𝜕𝒙c. Consequently, the point 𝒙c corresponds to 
e centre of the best-fitting circle and its radius is obtained by reevaluating ⟨𝑅𝑛⟩. The uncertainty associated with the fit corresponds 
 the residue defined in Eq. (23). Lastly, the fluid-fluid contact angles are calculated from the unitary tangent vectors at the 
tersection points between the circles. This also implies that the contact angles inherit uncertainty from the covariance of the values 
 the centre and radius of each fitted circle. Fig. 4(c) compares the three contact angles and the uncertainty from their calculation. 
can readily be observed that there is good agreement with the expected angles.
Without loss of generality, note that if 𝛾𝐴𝐵 > (𝛾𝐵𝐶 + 𝛾𝐶𝐴), Eq. (21) is no longer valid as it would imply that cos𝜗𝐶 > 1. Instead, a 
nsition to complete spreading occurs, and the triple line vanishes. This implies that 𝜗𝐶 = 0, and phase C forms a film separating the 
and B phases. Similarly, if 𝛾𝐶𝐴 > (𝛾𝐴𝐵 + 𝛾𝐵𝐶 ), phase C forms a suspended spherical droplet next to the AB interface. The proposed 
odel for the surface tension forces captures such phenomena well, as shown in Figs. 4(d) and (e), respectively.
In Appendix D, the grid convergence of the forces scheme for the fluid-fluid contact angle is assessed. It can be readily observed 

 Fig. D.10 that the action of the surface tension forces is robust upon the coarsening of the grid. The angles calculated achieve a 
arly converged state on the second coarsest grid while the measurement uncertainty consistently reduces with decreasing grid size.

lidation Test 3: Fluid-solid contact angles

After validating the algorithm for the angles between interfaces, partially wetting boundary conditions are now tested. The 
sults are shown in Fig. 5. For this, the contact angle against a flat solid surface is compared against the expected value given by the 
undary condition. Two implementations for prescribing the wettability of the surface are considered as discussed in the previous 
ction: the thermodynamic and the geometric approaches. The initial conditions of the system consist of a cube of side 𝐿𝑥∕4 of 
ase A sessile to the solid surface, but otherwise, centred at the simulation domain.
For the first case, the contact angle against a given combination of surface tensions is measured. Let us assume that, as in Eq. (21), 

relation between the three surface tensions and the contact angle is a function of the surface tensions, i.e., cos𝜃𝑖𝑘 = 𝑓 (𝛾𝑘𝑆 , 𝛾𝑖𝑆 , 𝛾𝑖𝑘)
r some function 𝑓 . In particular,

cos𝜃𝑖𝑘 = 𝛽1

(
𝛾𝑘𝑆 − 𝛾𝑖𝑆

𝛾𝑖𝑘

)
+ 𝛽3

(
𝛾𝑘𝑆 − 𝛾𝑖𝑆

𝛾𝑖𝑘

)3
, (24)

proposed for the partial-wetting regime, i.e., when the right-hand side is between -1 and 1. Here, where 𝛽1 and 𝛽2 are introduced as 
ting parameters. Setting 𝛾𝐴𝐵 and 𝛾𝐴𝑆 and varying 𝛾𝐵𝑆 for two sets of simulations gave the results in Fig. 5(b). By fitting, 𝛽1 = 1.37
d 𝛽3 = 2.15, a good representation for the curve and the complete spreading regime was found. Additionally, complete spreading 
d dewetting were found for (𝛾𝑘𝑆 − 𝛾𝑖𝑆 ) ≥ 0.52𝛾𝑖𝑘 and (𝛾𝑘𝑆 − 𝛾𝑖𝑆 ) ≤ −0.51𝛾𝑖𝑘.
Next, the geometric approach for prescribing the contact angle is assessed. As shown in Fig. 5(c), resetting the angle of 𝒎𝐴𝐵

ith respect to the unitary normal of the surface prescribes the contact angle. This approach is independent of the expression of 
e surface tension forces. Therefore, the present model for the surface tension forces in Eq. (15) is demonstrated do be compatible 
ith the geometric approach. Fig. 5(d) shows the measured contact angle, 𝜃𝐴𝐵 , against the prescribed contact angle, 𝜃

(𝑝)
𝐴𝐵
, and good 

reement can be observed.
The geometric approach gives accurate results for a partially wetting boundary condition, i.e., prescribing a finite contact angle. 
netheless, the thermodynamic approach, whilst covering the partial wetting regime, can be extended to complete wetting or 
wetting. Additionally, specifying the surface tensions of the solid against the different fluid phases relaxes the contact angles and 
events the self-propulsion of multiple sessile droplets [55]. In other words, the Girifalco-Good relations [56] are naturally satisfied 
 the thermodynamic approach.
As shown in Fig. 5c, for both algorithms prescribing the boundary conditions, the contact angle was measured by the best circle 

 obtained as explain in by Eq. (23). Appendix E shows the equilibrium contact angles for different grid sizes. Whilst the expected 
ady-state is nearly obtained from the second coarsest grid, the uncertainty in the calculation of the angles decreases with the grid 
e.

lidation Test 4: Error estimation of the surface tension forces

In this subsection, the numerical error from two different implementations of VoF is assessed in a similar fashion to Evrard et 
8

. [57] and Cifani et al. [58]. In order to do this, a case with a known analytic solution is constructed, for instance, a two-dimensional 
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. 5. Contact angles of a gas-liquid system in contact with a solid. (a) and (b) Three-dimensional simulation of a droplet on a solid surface. The solid surface can 
 modelled as an additional phase prescribing the boundary condition. Thus, the contact angle can be specified by specifying the solid-gas and solid-liquid surface 
sions. (b) Plot of the measured contact angle as a function of the surface tension difference by varying the surface tension between the gas and the solid, 𝛾𝐵𝑆 . 
e dashed line corresponds to the best fit using Eq. (24). (c) and (d) In contrast to the simulations in panel (a) and (b), the angle, 𝜃(𝑝)

𝐴𝐵
, of the normal vector of the 

uid-gas interface and the solid surface is directly specified as a boundary condition, here shown for a slice at the centre of the droplet. (d) Plot of the measured and 
 prescribed contact angles. For reference, the identity function corresponds to the dashed line. The simulation dimensions and mesh resolution in all panels are 
×𝐿𝑦 ×𝐿𝑧 = 2 × 2 × 0.75mm3 and 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 128 × 128 × 48. Periodic boundary conditions are defined along 𝑥 and 𝑦, a solid for the bottom boundary and 
en at the top. The system relaxes for 150ms. (Colour online)

. 6. Error for different VoF implementations in the calculation of the forces. (a) Profiles of the analytical computation of the volume fraction fields, 𝛼𝑖 for 𝑖 =𝐴, 𝐵, 𝐶 , 
d the distribution of forces on a 64 × 48 grid. The black curves represent the interfaces, and the colour map indicates the partial filling of the corresponding cell by 
 phase as in Fig. 4. The blue and brown arrows represent the curvature and triple line forces as expressed by the first and last term of Eq. (15), respectively. (b) 
lative error in the calculation of the forces as a function of the cell size, Δ𝑥. Four cases are shown; the first three correspond to a straight calculation of the forces 
ing a finite differences stencil for no filtering, once and twice iterative application of a smoothing filter as denoted by 𝛼𝑖 , 𝐾 ∗ 𝛼𝑖 and 𝐾 ∗𝐾 ∗ 𝛼𝑖 , respectively. The 
t case corresponds to a preliminary Height-Function algorithm to calculate the curvature and triple line terms described in Appendix C. (Colour online)

uid lentil, as in Validation Test 2 of the present section. As shown in Fig. 6(a), by knowing the equilibrium configuration for the 
ape of each interface in the system, the corresponding volume fraction fields 𝛼𝑖, 𝑖 =𝐴, 𝐵, 𝐶 , are obtained by analytical integration.
The contribution to the surface tension forces from the curvature can be expressed as

𝒇 curv =
𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

𝛾𝑖𝑘 𝜅𝑖𝑘 𝒏𝑖𝑘 𝛿
(𝑆)
𝑖𝑘

, (25)
9

d the force at the triple line as
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𝒇 tl =
𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

𝛾𝑖𝑘 𝒕̂𝑖𝑘 𝛿
(𝐿)
𝑖𝑘

, (26)

here the different elements in Eqs. (25) and (26) can be evaluated by different methods as it will be described in the following.
As discussed in Section 2, the sharpness of the interface in the algebraic VoF is recovered by means of the interface compression 
efficient, 𝑐𝛼 . At low values of 𝑐𝛼 , the interface diffuses; this effect is emulated systematically through a smoothing filter,

𝛼̃𝑖(𝒙𝑚,𝑛) = (𝐾 ∗ 𝛼𝑖)(𝒙𝑚,𝑛) =
∑
𝑚′

∑
𝑛′

𝐾(𝑚−𝑚′, 𝑛− 𝑛′)𝛼𝑖(𝒙𝑚′ ,𝑛′ ) (27)

here 𝒙𝑚,𝑛 is the centre position vector of the cell (𝑚, 𝑛). The smoothing filter employed is

𝐾(𝑚,𝑛) =

{
𝑤 if |𝑚| ≤ 1 and |𝑛| ≤ 1
0 otherwise

, (28)

r some constant, 𝑤, such that 
∑

𝑚,𝑛 𝐾(𝑚, 𝑛) = 1. In this two-dimensional uniform grid, 𝑤 = 1∕9, which corresponds to the average 
 a 3 ×3 neighbourhood of the volume fraction. Note that the filter can be applied iteratively to the volume fraction fields to smooth 
t the interfaces further. After the smoothing filter is applied to 𝛼𝑖 , the forces can be calculated using Eq. (15).
Another common approach to calculate the surface tension forces is by a Height Function algorithm [59–61]. A preliminary 
aptation of the Height Function method, aimed at proving compatibility with the force scheme, is presented in this work. Moreover, 
 it will be shown, it promises that high-order accuracy in the calculation of the forces can be achieved by grid refinement. In 
mmary, a Height Function, 𝐻 , is evaluated in the neighbourhood of the 𝑖𝑘-interface. This leads to a subgrid distance to the 
terface from a reference point, and therefore, the curvature, normal vector and tangent vectors can be evaluated with increasing 
curacy. The details of the method can be found in Appendix C. Nonetheless, 𝛿(𝑆)

𝑖𝑘
and 𝛿(𝐿)

𝑖𝑘
are still calculated by means of Eqs. (12)

d (16), respectively.
Once the surface tension forces are calculated, an estimation of the error corresponding to each term, i.e., curvature and triple 
e contributions, can be estimated. The relative error in the curvature component can be defined as

curv ∶=
∫Ω |||𝒇 curv − 𝒇 (𝑒)

curv
||| d𝑉

∫Ω |𝒇 (𝑒)
curv|d𝑉 . (29)

milarly, the relative error for the forces at the triple line can be defined as

tl ∶=
∫Ω |||𝒇 tl − 𝒇

(𝑒)
tl
||| d𝑉

∫Ω |𝒇 (𝑒)
tl
|d𝑉 , (30)

here the superscript, (𝑒), in the forces corresponds to the expected value from the analytical solution. For an equilibrium config-
ation, such as the case under analysis, the total components of the surface tension forces are expected to vanish independently. 
erefore, any residual force is numerical in origin, i.e., ∫ 𝒇 (𝑒)

curv d𝑉 = ∫ 𝒇
(𝑒)
tl

d𝑉 = 0.
Fig. 6(b) shows the relative errors for the curvature and triple line contributions. It can be observed that the computation of the 
rces directly from the divergence of the unit normal vector leads to a poor representation of the surface tension forces. Refining 
e grid by decreasing the cell size, Δ𝑥, does not reduce the error. For the curvature calculation, this phenomenon has been reported 
fore [58], and it is only by smoothing out the volume fraction fields that the error is reduced. However, for the triple line forces, 
 additional effect takes place. In the neighbourhood of any triple line, since three phases intersect in a wedge, refining the grid 
sults in a self-similar picture, which is invariant with respect to the grid size. Therefore, as Δ𝑥 goes to zero, a reduction in the error 
not expected.
A reduction of the error in the forces by a smoothing filter is expected in general since a requirement for convergence in finite 
fferences or finite volume schemes is the continuity of the field in which the derivatives are approximated. As the interfaces 
e diffused, the discontinuity in the volume fractions is reduced, and the discretisation schemes work better. In conclusion, the 
nvergence of the curvature and triple line forces evaluated by finite differences on the volume fractions is of zeroth order with 
spect to grid size. However, smoothing out the volume fraction fields reduces the numerical error significantly. This can be done 
 applying a smoothing filter or by using a low value of the interface compression coefficient, 𝑐𝛼 , as it will be shown in Appendix D.
When using the Height Function method, the curvature term has a second-order convergence on the grid size, as expected for a 
ree-point stencil [57,59]. However, the challenge of finding the position of the triple line at the subgrid level emerges. For example, 
rcumventing this issue by linear extrapolation results in a first-order convergence in the representation of the forces. Therefore, 
gher-order schemes or a better subgrid localisation of the triple line will improve the convergence of the force scheme.
In contrast to several existing studies that deal with an arbitrary number of phases [21–23], convergence analyses of the force 
heme at the triple line are carried out in this work. These analyses were performed on an idealised system and the numerical 
lutions shown in Appendices D–F. The results show the promising adaptability and reliability of the proposed surface tension 
10

rces for different flavours of VoF, such as algebraic or geometric/Height Function algorithms.
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. 7. Simulations of Lubricant-Impregnated Surfaces (LIS). (a) and (b) are pseudo-2D simulations of a water droplet on top of a periodic array of pillars coated 
 FC70 lubricant in equilibrium. (a) Corresponds to the numerical simulations using the proposed force scheme by showing the volume fraction of the two liquids 
ng the central slice of the simulation domain. The water and lubricant are plotted in red and yellow, respectively. Additionally, the interfaces are shown as the 
surfaces at 𝛼𝑖 = 0.5. In the close-up, the volume fraction of the FC70 is highlighted exclusively to show the presence of the lubricant surrounding the droplet and 
 solid surface. (b) Confocal images by Schellenberger et al. from Fig. 4 of Ref. [13] showing the cloaking of the droplet by the FC70 indicated by the fluorescent 
nal. (c) and (d) are similar to (a) and (b), the surface is coated by decanol. The numerical simulations are shown in (c), and the confocal images of the experiments 
(d) were also taken from Fig. 4 of Ref. [13]. The system parameters are summarised in Table 1. (Colour online)

. 8. Evolution of a four-phase LIS. A droplet of liquid B (red isosurface) is in contact with another droplet of liquid C (blue isosurface) and a third liquid, D, all 
rrounded by a gas A. Liquid D works as a lubricant by coating the solid surface underneath, and it is coloured by the local pressure field at the interface. The 
ulation parameters are summarised in Table 2. (Colour online)

mulations of liquid-infused surfaces

Finally, simulations of lubricant-impregnated surfaces (LIS) are performed using the newly proposed method and shown in Fig. 7. 
r simplicity, the term LIS will be referred as a more general term that includes Slippery Liquid-Infused Porous Surface (SLIPS) 
d other types of surfaces in which an immiscible liquid of finite thickness alleviates the friction of sessile droplets against the 
lid. These systems are addressed in this work to show the correct modelling of the spreading of the lubricant on the solid with the 
oplet, preventing the formation of a contact line. A feature that is essential to these types of surfaces [14].
The simulation results are compared against the equilibrium configuration of a sessile droplet on a lubricated surface against the 
perimental observations by Schellenberger et al. [13]. On the one hand, it can be observed in Figs. 7(a) and 7(b) that the lubricant 
reads on the droplet by cloaking it. In the simulations, the volume fraction of the lubricant that covers the top of the droplet is 
ite. However, as shown by isosurface 𝛼FC70 = 1∕2, the value of the volume fraction does not reach unity as a fully developed 
ase which gives the appearance of a finite contact angle. A similar effect is observed in the confocal images, in which a film of 
 estimated thickness of 20 nm is found in the aforementioned experiments. On the other hand, Figs. 7(c) and 7(d) show different 
11

haviours in the case of a decanol LIS. Here, a Neumann triangle of finite contact angles is formed; thus, the lubricant does not 
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Table 1
Simulation parameters for Fig. 7(a) and 7(c), taken 
from Ref. [13].
System dimensions and mesh resolution

𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧 = 4 × 0.2 × 2mm3

𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 320 × 16 × 160
Relax. time = 100ms
Int. comp. 𝑐𝛼 = 1.0

Periodic boundary conditions along 𝑥 and 𝑦, solid 
walls at 𝑧 = 0 and pillars and open at the top 
boundary.

Physical parameters

𝜈water = 1 × 106 m2 s−1
𝜈air = 1.48 × 105 m2 s−1
𝜈FC70 = 11.0 × 106 m2 s−1
𝜈decanol = 14.5 × 106 m2 s−1
𝜌water = 1 × 103 kgm−3

𝜌air = 1kgm−3

𝜌FC70 = 1.93 × 103 kgm−3

𝜌decanol = 830kgm−3

𝛾water air (FC70) = 72mNm−1

𝛾water air (decanol) = 30.1mNm−1

𝛾FC70 air = 17.9mNm−1

𝛾decanol air = 28.5mNm−1

𝛾water FC70 = 52.8mNm−1

𝛾water decanol = 8.6mNm−1

𝜃water decanol = 158°
𝜃water air = 160°

Table 2
Simulation parameters for Fig. 8. Arbitrary values 
for demonstration.
System dimensions and mesh resolution

𝐿𝑥 ×𝐿𝑦 ×𝐿𝑧 = 2 × 2 × 1mm3

𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 = 96 × 96 × 48
Relax time = 10ms

Periodic boundary conditions along 𝑥 and 𝑦, solid 
walls at 𝑧 = 0 and pillars and open at the top 
boundary.

Physical parameters

𝜌D = 1 × 103 kgm−3

𝜈D = 1.0 × 106 m2 s−1
𝛾𝐴𝐵 = 72mNm−1

𝛾𝐴𝐶 = 66mNm−1

𝛾𝐴𝐷 = 18mNm−1

𝛾𝐵𝐶 = 56mNm−1

𝛾𝐵𝐷 = 44mNm−1

𝛾𝐶𝐷 = 31mNm−1

read over the droplet or the micropillar array. In conclusion, the numerical simulations are in good qualitative agreement with the 
perimental observations by Schellenberger et al. [13].
To illustrate the method’s capabilities further, a four-phase LIS system is shown in Fig. 8. In this case, liquid that completely wets 

solid surface is considered (D) and a pair of immiscible droplets placed on the lubricant and relaxing to equilibrium. The gas phase, 
 surrounds the rest of the liquids B, C and D, where the droplets correspond to B and C. It can be observed how the droplets interact 
ith each other and how the lubricant reconfigures itself, raising a meniscus around the droplets and allowing the droplets to find 
uilibrium.
To test the convergence of the force scheme, a comparison for different grid sizes is show them in Appendix F for the two cases 
esented in Figs. 7(a) and 7(c). As expected, the quantitative discrepancies are negligible with respect to the grid size, and the 
12

stem settles at the expected equilibrium configuration.
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 Conclusions

In this work, a new model for incorporating surface tension forces for an arbitrary number of phases in the Volume-of-Fluid (VoF) 
ethodology has been developed and tested. Based on the macroscopic action of surface tension, this approach is demonstrated to 
 consistent with the laws of motion. The proposed model accurately produces the forces at the triple line but the reduction to a 
o- or single-phase flow has been shown.
The efficacy of the proposed algorithm is bestowed by using three quantitative and one qualitative validation tests. Consistency 

ith Newton’s laws of motion is shown by means of a suspended capillary system relaxing to equilibrium. As shown in the numerical 
periment, the total momentum of the system is a conserved quantity, which can only occur due to the correct balance of forces. 
bsequently, it was shown that the forces at the triple line, which adjust the contact angles according to Neumann’s construction, 
e correctly captured. In consequence, this technique was further employed to prescribe the contact angle against a solid phase 
 adjusting their respective surface tension constants. Additionally, it is shown that this allows to emulate the complete spreading 
 dewetting of the fluids-on-fluids or fluids-on-solids. This phenomenon is consistent with the thermodynamic behaviour of a 
ultiphase system and emerges naturally from the proposed formulation. Alternatively, the contact angle can be prescribed by 
adjusting the direction of the gradient vector of the volume fraction field with accurate results.
A brief analysis of the error in representing the forces was carried out. The convergence of the force scheme for different grid 
solutions has been demonstrated and assessed in terms of the contact angle for three different systems. This analysis was done 
 the curvature and triple line terms separately. A significant reduction in the error can be observed by smoothing the volume 
ctions. Additionally, the compatibility of the force scheme with other methods was demonstrated by adapting a simple Height 
nction algorithm to the triple line term. This approach shows promising results for convergence to the expected force fields. The 
portance of the line and surface density functions should be emphasised; these distribute the one- and two-dimensional force fields 
rresponding to the triple line and curvature components into the three-dimensional space.
Finally, the new formulation was applied to simulate a multiphase system, a lubricant-impregnated surface. Agreement between 
e simulation results and previous experimental observations by Schellenberger et al. [13] was demonstrated. For complete spread-
g, as in the case of an FC70 LIS, the droplet is cloaked by the lubricant. Also, a Neumann triangle is formed at the triple line for 
rtial spreading, as in the case of a decanol-lubricated surface. Afterwards, for illustration purposes, the algorithm was applied to 
four-phase LIS system in which two immiscible droplets interact, referring to the extensibility of the method to more than three 
ases.
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pendix A. Derivation of the surface tension forces expression

In van der Waals’s theory of capillarity, the Helmholtz free energy density of a system can be expressed as

𝜓(𝒙) ∼𝑊 (𝛼,𝑇 ) + 1
2
𝐾(𝑇 )|𝛁𝛼|2, (A.1)

here 𝑇 is the system’s temperature, and 𝐾 is a coefficient related to the direct correlation between the molecules of the fluid 
ixture. Here, 𝛼 = 𝛼(𝒙) is utilised as the phase field; therefore, it is a smooth function of space. 𝑊 (𝛼, 𝑇 ) corresponds to the excess free 
ergy density and has the shape of a double-well function for 𝛼, that is, 𝑊 (𝛼, 𝑇 ) = 0 if 𝛼 = 0 or 1 and 𝑊 (𝛼, 𝑇 ) > 0 otherwise [62]. 
e profile of 𝛼 in the thermodynamic equilibrium can be obtained by the Euler-Lagrange equations, assuming that the chemical 
13

tential, 𝜇 ∶= 𝜕𝛼𝑊 −𝐾∇2𝛼, is constant everywhere. Fig. A.9(a) shows a schematic solution for 𝛼.



É.

Fig
ph
ch
the

fo

su
eq
Th

w
te

et
in
in

w
an

su
ar

w

Journal of Computational Physics 513 (2024) 113149Ruiz-Gutiérrez, J. Hasslberger, M. Klein et al.

. A.9. Illustration of the stresses and the mechanical definition of the surface tension for a flat interface. a) Schematic representation of the transition between 
ases A to B as given by the phase field variable 𝛼. In this case, 𝛼 = 0 represents phase A, whereas 𝛼 = 1 corresponds to phase B. The transition occurs over a 
aracteristic length scale 𝓁, known as the interface thickness. b) Profile of the surface tension stresses along the normal coordinate to the interface. The area under 
 curve, highlighted as the green-shaded region, defines the surface tension. (Colour online)

The tensor 𝚷, sometimes called the pressure tensor, becomes a conserved quantity of the Euler-Lagrange equations and has the 
rm [63],

𝚷 = (𝛼 𝜇 −𝑊 ) 𝐈+𝐾

(
𝛁𝛼 ⊗𝛁𝛼 − 1

2
|𝛁𝛼|2𝐈) , (A.2)

= 𝑝 𝐈+𝐾

[
𝛁𝛼 ⊗𝛁𝛼 −

(1
2
|𝛁𝛼|2 + 𝛼∇2𝛼

)
𝐈
]
, (A.3)

ch that, in mechanical equilibrium, 𝒇 st = −𝛁 ⋅𝚷 = 0 everywhere. Here, the bulk pressure, 𝑝 ∶= 𝛼(𝜕𝛼𝑊 ) −𝑊 is defined from the 
uation of state of a homogeneous system. Fig. A.9(b) depicts a schematic representation of the stresses due to surface tension. 
en, according to Tolman [64], the surface tension between the two phases can be defined by the integral expression,

𝛾 ∶= −

∞

∫
−∞

(
Π∥ −Π⟂

)
d𝑥, (A.4)

here Π∥ ∶= 𝒕̂ ⋅𝚷 ⋅ 𝒕̂ is a parallel component to the interface, and Π⟂ ∶= 𝒏̂ ⋅𝚷 ⋅ 𝒏̂ is the normal component. The definition of surface 
nsion from Eq. (A.4) has the advantage that it is not restricted to a flat interface.
However, if the surface tension is known, the task is reduced to reconstructing 𝚷. This approach is considered by Lafaurie 

 al. [31], Scardovelli and Zaleski [30] and Tryggvason et al. [28]. For example, the stresses on an infinitesimally narrow, flat 
terface, which is perpendicular to the 𝑥 coordinate, can be written as Π∥ = 𝑝 − 𝛾𝛿(𝑥) and Π⟂ = 𝑝. Combining the two components 
to a single expression, the stresses can be generalised as

𝚷 = −𝛾 (𝐈− 𝒏̂⊗ 𝒏̂)𝛿(𝑆(𝒙)), (A.5)

here the interface is defined over a surface, 𝑆 , with normal vector 𝒏̂. Note that 𝑝 can be replaced by the hydrodynamic pressure of 
 incompressible flow already included in the Navier-Stokes equations (3).
Since each interface has a different surface tension coefficient, 𝚷 can be made specific to each interface. Therefore, adding the 
bindices 𝑖𝑘 to all the quantities, e.g., 𝚷 →𝚷𝑖𝑘 for the 𝑖𝑘-interface is proposed for this effect. In this way, the surface tension forces 
e derived from the superposition of the stresses of all interface pairs, and the expression in Eq. (5) is recovered.
Arriving at Eq. (15) from Eq. (5) is done directly by substituting the definitions of 𝒎𝑖𝑘 and 𝛿

(𝑆)
𝑖𝑘
,

𝒇 st = 𝛁 ⋅
𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

𝛾𝑖𝑘(𝐈− 𝒏̂𝑖𝑘 ⊗ 𝒏̂𝑖𝑘)|𝒎𝑖𝑘| = 𝑀∑
𝑖=1

𝑀∑
𝑘=𝑖+1

𝛾𝑖𝑘𝛁 ⋅ (|𝒎𝑖𝑘|𝐈− 𝒏̂𝑖𝑘 ⊗𝒎𝑖𝑘) + |𝒎𝑖𝑘|(𝐈− 𝒏̂𝑖𝑘 ⊗ 𝒏̂𝑖𝑘)𝛁𝛾𝑖𝑘, (A.6)
14

here the first term inside the sum can be expanded using vector calculus identities into
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𝛁 ⋅ (|𝒎𝑖𝑘|𝐈− 𝒏̂𝑖𝑘 ⊗𝒎𝑖𝑘) =
[𝛁(𝒎𝑖𝑘 ⋅𝒎𝑖𝑘)

2|𝒎𝑖𝑘| −𝒎𝑖𝑘(𝛁 ⋅ 𝒏̂𝑖𝑘) − (𝒏̂𝑖𝑘 ⋅𝛁)𝒎𝑖𝑘

]
(A.7)

= 𝒏̂𝑖𝑘 × (𝛁 ×𝒎𝑖𝑘) −𝒎𝑖𝑘(𝛁 ⋅ 𝒏̂𝑖𝑘). (A.8)

en, by the definition of 𝒎𝑖𝑘 ∶= 𝛼𝑘𝛁𝛼𝑖 − 𝛼𝑖𝛁𝛼𝑘, the curl term becomes,

𝛁 ×𝒎𝑖𝑘 = 𝛁 × (𝛼𝑘𝛁𝛼𝑖 − 𝛼𝑖𝛁𝛼𝑘) (A.9)

= 𝛼𝑘𝛁 ×𝛁𝛼𝑖 + (𝛁𝛼𝑘) ×𝛁𝛼𝑖 − 𝛼𝑖𝛁 ×𝛁𝛼𝑘 − (𝛁𝛼𝑖) ×𝛁𝛼𝑘 (A.10)

= 2𝛁𝛼𝑘 ×𝛁𝛼𝑖 (A.11)

nally, by substituting the previous expressions, the expression in Eq. (15) is obtained.

pendix B. The surface and line density functions

The following exposition is based on Brackbill et al. [45] in which the surface and line density functions are constructed by means 
 a smoothing kernel of continuous input, 𝐾 .
Let 𝐾 ∶ℝ3 →ℝ+ be a smooth isotropic convolution kernel such that

𝑓 (𝒙) = (𝐾 ∗ 𝑓 )(𝒙) ∶= ∫
ℝ3

𝑓 (𝒙′)𝐾(𝒙− 𝒙′) d𝑉 ′ (B.1)

oduces a field, 𝑓 , to vary smoothly everywhere in space, even though 𝑓 may not. 𝐾 must also satisfy

∫
ℝ3

𝐾𝑛(𝒙) d𝑉 = 1, ∀ 𝑛 ∈ℕ (B.2)

here 𝐾𝑛(𝒙) ∶= (𝐾 ∗ ... ∗𝐾)(𝒙) is the (𝑛 − 1)-th convolution of the kernel with itself. Additionally, let 𝜉 be the width of the kernel,

𝜉2 ∶= ∫
ℝ3

|𝒙|2𝐾(𝒙) d𝑉 , (B.3)

ch that 𝐾 tends to the Dirac delta function, 𝐾(𝒙) → 𝛿(𝒙), as 𝜉 → 0.
Let 𝛼𝑖 ∶ℝ3 → [0, 1] be the volume fraction of phase 𝑖 defined for all points in space. Then, assume that 𝛼𝑖 changes sharply from 
to 1 at 𝒙𝑠 such that 𝑆𝑖(𝒙𝑠) = const. corresponds to the two-dimensional manifold where the discontinuity of 𝛼𝑖 occurs. Note that 
e discrete volume fractions in the VoF method can be constructed by 𝛼̃𝑖 =𝐾 ∗ 𝛼𝑖 for some 𝐾 that averages the volume of phase 𝑖
 every grid cell. As shown by Brackbill et al. [45],

𝛁𝛼̃𝑖 = ∮
𝜕Ω𝑖

𝐾(𝒙− 𝒙′
𝑠
) d𝝈(𝒙′

𝑠
), (B.4)

here Ω𝑖 = {𝒙 ∶ 𝛼𝑖(𝒙) = 1} is the set of points occupied by phase 𝑖, 𝜕Ω𝑖 is the boundary of Ω𝑖, and d𝝈 corresponds to the infinitesimal 
ea element orthogonal to the surface and pointing into phase 𝑖. Then, 𝛁𝛼̃𝑖 can be regarded as a continuation of the normal vector 
 the boundary of Ω𝑖.

It can be shown that the function |𝛁𝛼̃𝑖| tends to the surface density function 𝛿(𝑆)𝑖
as 𝜉 is reduced to 0. First, consider the integral,

∫
ℝ3

||𝛁𝛼̃𝑖|| d𝑉 = ∫
ℝ3

||||||| ∮𝜕Ω𝑖

𝐾(𝒙− 𝒙′
𝑠
) d𝝈(𝒙′

𝑠
)
||||||| d𝑉 ≤ ∫

ℝ3
∮
𝜕Ω𝑖

𝐾(𝒙− 𝒙′
𝑠
) ||d𝝈(𝒙′𝑠)|| d𝑉 (B.5)

= ∮
𝜕Ω𝑖

∫
ℝ3

𝐾(𝒙− 𝒙′
𝑠
) d𝑉 ||d𝝈(𝒙′𝑠)|| = ∮

𝜕Ω𝑖

|d𝝈′| = |𝜕Ω𝑖| (B.6)

here, |𝜕Ω𝑖| indicate the measure of the set 𝜕Ω𝑖. For the last equality, the order of integration was swapped, and Eq. (B.2) was used. 
 𝜉 → 0, i.e., 𝐾 → 𝛿, the first equality in Eq. (B.5) becomes

lim
𝜉→0∫

ℝ3

||𝛁𝛼̃𝑖|| d𝑉 = ∫
ℝ3

||||||| ∮𝜕Ω𝑖

𝛿(𝒙− 𝒙′
𝑠
) d𝝈(𝒙′

𝑠
)
||||||| d𝑉 = |𝜕Ω𝑖|. (B.7)

Consider the vector field

𝒎𝑖𝑘 ∶= 𝛼𝑘𝛁𝛼̃𝑖 − 𝛼𝑖𝛁𝛼̃𝑘 (B.8)

hich can be regarded as a continuation of the gradient from phases 𝑘 to 𝑖 at their shared interface. Then, in a similar way, the 
15

nction |𝒎𝑖𝑘| approaches the surface density function of the 𝑖𝑘-interface,
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∫
ℝ3

|𝒎𝑖𝑘|d𝑉 = ∫
ℝ3

||||||| ∮𝜕Ω𝑖

𝛼𝑘(𝒙)𝐾(𝒙− 𝒙′
𝑠
) d𝝈𝑖(𝒙′𝑠) − ∮

𝜕Ω𝑘

𝛼𝑖(𝒙)𝐾(𝒙− 𝒙′
𝑠
) d𝝈𝑘(𝒙′𝑠)

||||||| d𝑉 (B.9)

= ∫
Ω𝑖∪Ω𝑘

||||||| ∫
𝜕Ω𝑖∩𝜕Ω𝑘

𝐾(𝒙− 𝒙′
𝑠
) d𝝈𝑖(𝒙′𝑠)

||||||| d𝑉 ≤ ∫
𝜕Ω𝑖∩𝜕Ω𝑘

|d𝝈| = |𝜕Ω𝑖 ∩ 𝜕Ω𝑘|. (B.10)

r the first equality, we have considered that 𝛼𝑖 + 𝛼𝑘 = 1 over the volume Ω𝑖 ∪Ω𝑘 and zero otherwise, which follows from Eq. (1). 
ditionally, at the shared boundary of phases 𝑖 and 𝑘, the normal vector to the surface points in opposite directions, i.e., d𝝈𝑖(𝒙) +
𝑘(𝒙) = 0 for 𝒙 ∈ 𝜕Ω𝑖 ∩ 𝜕Ω𝑘. The subindices, in this case, are placed to make explicit in which direction of the surface elements are 
inting in. The equality holds for the limiting case in which the width of the convolution kernel goes to zero. Note that, in general, 
e surface 𝜕Ω𝑖 ∩ 𝜕Ω𝑘 is not closed and, therefore, has a finite perimeter.
The line density function can be constructed in the following way. Consider the vector field 𝒎 defined by

𝒎(𝒙) ∶= ∫
Σ

𝐾(𝒙− 𝒙′
𝑠
) d𝝈(𝒙′

𝑠
) (B.11)

er some open surface Σ and local vector surface element, d𝝈. Then,

𝛁 ×𝒎 = 𝛁 × ∫
Σ

𝐾(𝒙− 𝒙′
𝑠
) d𝝈(𝒙′

𝑠
) = ∫

Σ

d𝝈(𝒙′
𝑠
) ×𝛁𝐾(𝒙− 𝒙′

𝑠
) (B.12)

= ∮
𝜕Σ

𝐾(𝒙− 𝒙′
𝑙
) d𝝀(𝒙′

𝑙
), (B.13)

here 𝜕Σ is the bounding perimeter of the surface Σ and d𝝀 is the infinitesimal line segment vector and 𝒙𝑙 ∈ 𝜕Σ is the local position 
 the perimeter. In the last equality of Eq. (B.13), Stokes’ theorem has been used. Note that, as the convolution kernel is narrowed 
wn, 𝛁 ×𝒎 becomes parallel to the unit tangent vector of the surface perimeter. Consequently, the magnitude of the vector tends 
 the line density function,

∫
ℝ3

|𝛁 ×𝒎|d𝑉 = ∫
ℝ3

||||||| ∮𝜕Σ 𝐾(𝒙− 𝒙′
𝑙
) d𝝀(𝒙′

𝑙
)
||||||| d𝑉 ≤ ∫

ℝ3
∮
𝜕Σ

𝐾(𝒙− 𝒙′
𝑙
) |||d𝝀(𝒙′𝑙)||| (B.14)

= ∮
𝜕Σ

∫
ℝ3

𝐾(𝒙− 𝒙′
𝑙
) d𝑉 |||d𝝀(𝒙′𝑙)||| = |𝜕Σ|. (B.15)

rthermore, the equality holds when 𝐾 is narrowed to the Dirac delta function.
In a similar way, the vector field 𝛁 ×𝒎𝑖𝑘, as presented in Eq. (A.9), can now be expressed as

𝛁 ×𝒎𝑖𝑘 = 2𝛁𝛼̃𝑘 ×𝛁𝛼̃𝑖 ≈ 𝒃̂𝑖𝑘𝛿
(𝐿)
𝑖𝑘

, (B.16)

here 𝒃̂𝑖𝑘 is the extension of the unit tangent vector for the vicinity of the perimeter of the 𝑖𝑘-interface and 𝛿
(𝐿)
𝑖𝑘

its line density 
nction. Consequently, the volume integral of the magnitude of the vector field in Eq. (B.16) results in the perimeter of the 𝑖𝑘-
terface,

∫
ℝ3

||𝛁 ×𝒎𝑖𝑘
|| d𝑉 ≈ |𝜕(𝜕Ω𝑖 ∩ 𝜕Ω𝑘)|. (B.17)

turally, the equality of both Eqs. (B.16) and (B.17) is achieved in the limit 𝜉 → 0.

pendix C. A preliminary algorithm for the triple line forces based on the Height Function (HF) method

In the Height Function (HF) method, the local profile of the 𝑖𝑘-interface is obtained by constructing a function 𝐻 ∶ ℤ𝑑−1 → ℝ, 
here 𝑑 is the dimension of the system. 𝐻 is obtained by carrying out a column summation of the volume fractions over a small 
cinity of an interface [57,65,66]. For the preliminary algorithm proposed here, let 𝐻 be defined as

𝐻(𝑚) ∶=
3∑

𝑙=−3

1
2
[
1 + 𝛼𝑖(𝒙𝑚′+𝑚,𝑛′+𝑙) − 𝛼𝑘(𝒙𝑚′+𝑚,𝑛′+𝑙)

]
, 𝑚′, 𝑛′ ∈ℤ and𝑚 = −1,0,1 (C.1)

r the 𝑖𝑘-interface in two-dimensions (𝑑 = 2) and inside a 3 ×7 neighbourhood of the point 𝒙𝑚′ ,𝑛′ [66]. Eq. (C.1) performs an average 
 the distance from the 𝑖 and 𝑘 interface in the 𝑦 direction. However, for the 𝑥 direction, the summation is done about the index 𝑛′. 
16

 this case, the curvature is computed by
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. D.10. Convergence test for the liquid lentil setup. (a) Measured angles 𝜗𝐴 and 𝜗𝐶 after changing the grid resolution Δ𝑥. Δ𝑥 is compared to the cubic root of the 
lume of the droplet, 𝑉 1∕3

d
, the latter setting the length scale of the system. The vertical line corresponds to the grid size for the simulations presented in Fig. 4. The 

pty markers, representing the limit of Δ𝑥 → 0 correspond to the expected value. (b) Relative error in the measured angle with respect to the expected angle for 
erent grid sizes. The grey line shows the average exponent of the power-law trends. The surface tension constants are summarised in the legend of the panel a and 
 other simulation parameters are given in Fig. 4. (Colour online)

𝜅𝑖𝑘 ≈
𝐻(−1) − 2𝐻(0) +𝐻(1)

Δ𝑥2
[
1 + (𝐻(1) −𝐻(−1))2Δ𝑥−2∕4

]3∕2 , (C.2)

hich is derived from the curvature expression 𝜅 = ℎ′′∕(1 +ℎ′ 2)3∕2 for some smooth curve ℎ and then approximated by a three-point 
ite difference stencil. Additionally, the unit normal vector is redirected using 𝐻 ,

𝒏̂𝑖𝑘(𝒙𝑚,𝑛) =
1√

Δ𝑥2 + (𝐻(1) −𝐻(−1))2

(
𝐻(1) −𝐻(−1)

−Δ𝑥

)
. (C.3)

The forces at the triple line are calculated in a similar way. As in the previous approach, the line density function is calculated 
rectly based on the volume fractions by taking the magnitude of Eq. (16),

𝛿
(𝐿)
𝑖𝑘

∶= 2|𝛁𝛼𝑘 ×𝛁𝛼𝑖|. (C.4)

en, the tangent vector to the 𝑖𝑘-interface, 𝒕̂𝑖𝑘, is corrected by means of a two-point stencil of 𝐻 ,

𝒕̂𝑖𝑘(𝒙𝑚−1,𝑛) =
1√

Δ𝑥2 + (𝐻(1) −𝐻(0))2

(
Δ𝑥

𝐻(1) −𝐻(0)

)
(C.5)

here it is assumed that the triple line is located inside the cell centred at 𝒙𝑚−1,𝑛. Note that the tangent vector evaluated at 𝒙𝑚−1,𝑛
calculated one cell away in the direction of the 𝑖𝑘-interface; this is done because the slope of the surface is ill-defined at the triple 
e since it corresponds to a wedge between the converging interfaces. Higher-order corrections to 𝒕̂𝑖𝑘 can be implemented utilising 
larger stencil or by transporting the unitary vector using detailed knowledge of the geometry of the interface.

pendix D. Grid convergence assessment for the fluid-fluid contact angles

In addition to calculating the contact angles for the fluid-on-fluid system, the convergence of the force scheme for different grid 
solutions is assessed; Fig. D.10 presents these results. To assess the convergence of the numerical method, we have employed the 
pe method to measure the contact angles between phases.
The slope method consists of measuring the contact angle by the slope that adjacent interfaces have at the triple line. This slope 
calculated by pivoting about the triple line against the position of the interface at the neighbouring sites. Therefore, the slope 
ethod utilises only local information in the same way that the underlying numerical method calculates the surface tension forces. 
r that reason, the convergence of the measuring method is consistent with the numerical method.
Fig. D.10a shows the measured contact angle and the expected angle of the fluid-fluid triple line. It can be observed that, as the 
id size is reduced, the measured angle decreases and approaches its expected value. In Fig. D.10b, the error in the measurement 
 the contact angle was calculated. It was found that the error is reduced by the grid size, Δ𝑥, as 𝑂(Δ𝑥0.35), on average. This 
provement is consistent with smoothing the volume fraction due to the numerical diffusivity that occurs due to the advection 
heme in the algebraic VoF. By using a relatively small compression coefficient, 𝑐𝛼 = 0.5, the interface is naturally smoothed out, 
17

d the finite volume stencils have an improved convergence compared to a high compression coefficient.
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. E.11. Convergence test for the sessile droplet case using the geometric approach to prescribe the wettability of the surface. (a) The measured contact angle, 
𝐵 , for different grid sizes, Δ𝑥. The grid size is compared to 𝑉 1∕3

𝑑
to set the system’s length scale. The vertical line in the plots corresponds to the grid size for the 

ulations presented in Fig. 5. The prescribe value of the contact angle, representing the limit Δ𝑥 → 0, is indicated by the empty symbols. (b) Relative error in the 
asurement of the contact angle with respect to its prescribed value as shown in Figs. 5(c) and 5(d). The grey line in the panels indicates the average power-law 
ponent. (Colour online)

. F.12. Convergence test for the FC70 and decanol LIS. These simulations correspond to the systems in Figs. 7a and 7c for different grid sizes. a) Measurement of 
 apparent contact angle for the FC70- and decanol-libricated LIS. The black lines correspond to the expected value, 𝜃(𝑒)app, based on Richardson’s extrapolation as 
 → 0. b) Relative error and trend in the measurement of the apparent contact angle compared to the expected value. The grey lines show the trend of the power-law 
ponent. (Colour online)

pendix E. Grid convergence assessment for the fluid-solid contact angles

Fig. E.11 shows the behaviour of the liquid-solid contact angle for varying grid size. As in Fig. D.10, the contact angles are 
lculated by the slope method, in which the intersection angle of the local slope of the interface is measured against the solid 
rface.
Fig. E.11(a) shows how the accuracy in the contact angle improves as the grid is refined. Fig. E.11(b) shows the error in the 
easurement of the fluid-solid contact angle against the prescribed one by the geometric approach, 𝜃(𝑝)

𝐴𝐵
. It can be observed that the 

ntact angle converges at a rate of ∼ Δ𝑥1.09, approximately. As discussed before, this improvement can be associated to the effect 
 smoothing the volume fraction due to the numerical diffusivity by using a relatively small compression coefficient, 𝑐𝛼 = 0.5.

pendix F. Grid convergence assessment on LIS

The equilibrium configuration state of the two LIS shown in Fig. 7 is compared in Fig. F.12. Here, the apparent contact angle, 𝜃app, 
measured for different grid sizes. The apparent contact angle is a relevant quantity in the characterisation of the LIS. Formally, it 
defined as the angle that the spherical cap of the droplet draws against the plane parallel to the surface as shown in the insets of 
g. F.12a. The apparent contact angle depends on the height of the meniscus and the Neumann triangle formed by the interfaces. 
erefore, 𝜃app depends on the surface tensions of the three fluid phases, and on the relative pressure differences of the meniscus and 
e droplet [67].
In Fig. F.12a the apparent contact angle is calculated for the FC70- and decanol-lubricated surfaces. It can be observed that the 
parent contact angle converges to 𝜃(𝑒)app = 74.09° and 𝜃(𝑒)app = 38.66°, respectively. Here, 𝜃(𝑒)app was obtained by employing the Richard-
n extrapolation method [68]. Taking the asymptotic value, the relative error is reported in Fig. F.12b. It can be observed that, on 
18

erage, the convergence to the extrapolated angle is higher than 𝑂(Δ𝑥) for both FC70- and decanol-lubricated LIS, respectively.
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