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Abstract The computation time required to solve nonconvex, nonlinear optimiza-
tion problems increases rapidly with their size. This poses a challenge in trajectory 
planning for multiple networked vehicles with collision avoidance. In the centralized 
formulation, the optimization problem size increases with the number of vehicles in 
the networked control system (NCS), rendering the formulation unusable for exper-
iments. We investigate two methods to decrease the complexity of networked trajec-
tory planning. First, we approximate the optimization problem by discretizing the 
vehicle dynamics with an automaton, which turns it into a graph-search problem. Our 
search-based trajectory planning algorithm has a limited horizon to further decrease 
computation complexity. We achieve recursive feasibility by design of the automaton 
which models the vehicle dynamics. Second, we distribute the optimization prob-
lem to the vehicles with prioritized distributed model predictive control (P-DMPC), 
which reduces the problem size. To counter the incompleteness of P-DMPC, we 
propose a framework for time-variant priority assignment. The framework expands 
recursive feasibility to every vehicle in the NCS. We present two time-variant pri-
ority assignment algorithms for road vehicles, one to improve vehicle progress and 
one to improve computation time of the NCS. We evaluate our approach for online 
trajectory planning of multiple networked vehicles in simulations and experiments. 
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1 Introduction 

Networked and autonomous vehicles (NAVs) have the potential to increase the safety 
and efficiency of traffic [ 42]. Realizing this potential requires advances in many fields 
of networked and autonomous vehicles (NAVs), among which is the field of decision 
making [ 56]. In decision making, we develop a plan and control the actuators of 
the vehicle to execute this plan. Planning can be decomposed into three hierarchical 
layers. The highest layer plans a route through the road network, the middle layer 
plans behaviors for the vehicle on the road, and the bottom layer plans motions 
to realize the behavioral plan [ 46]. The work in this article focuses on the middle 
and bottom layer of planning for a multi-agent system. We will refer to this area as 
trajectory planning for multiple NAVs. Section 1.1 motivates our work on networked 
trajectory planning, Sect. 1.2 presents the state of the art and Sect. 1.3 states our 
contribution to the state of the art. We introduce our notation in Sect. 1.4 and give 
an overview of this chapter in Sect. 1.5. 

1.1 Motivation 

Trajectory planning for multiple NAVs with collision avoidance can be modeled as 
a nonconvex, nonlinear optimal control problem (OCP). For trajectory planning in 
changing environments, this OCP must be solved within a duration of tenths of a 
second. With an increasing amount of controlled vehicles, the OCP grows large, 
and finding a solution quickly becomes intractable. This chapter investigates two 
approaches to decrease computation time of networked trajectory planning: simpli-
fying and distributing the OCP. 

When simplifying the OCP, a compromise between global optimality and compu-
tational efficiency must be found [ 12]. Trajectory planning approaches can be classi-
fied as optimization-based and graph-based [ 46]. Optimization-based algorithms are 
often based on convexification of the original nonconvex OCP [ 5, 6, 28, 52, 58]. The 
advantage of convexification is a short computation time, which comes at the cost 
of disregarding nonlinearities in the vehicle model and of disregarding parts of the 
solution space. Graph-based methods based on motion primitives (MPs) can retain 
the nonlinearities and the complete solution space. The coarseness of quantization 
of states and control inputs highly influences the computational complexity and the 
trajectory quality. 

Distributing the centralized OCP, which plans trajectories for all vehicles at once, 
reduces the computational effort at the cost of global system knowledge. Prioritized 
trajectory planning for vehicles is first presented in [ 21]. In a prioritized approach, 
vehicles with lower priority adjust their objectives and constraints to respect coupled 
vehicles with higher priority. The core problem of prioritized planning algorithms 
is their incompleteness. That is, there might exist a priority assignment that leads to
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feasible optimization problems of all participating agents, but the algorithm can fail 
to find it. 

1.2 Related Work 

This section presents related work on trajectory planning with MPs and on prioritized 
trajectory planning. 

1.2.1 Trajectory Planning with Motion Primitives 

The goal of trajectory planning with MPs is to find an optimal sequence and duration 
of MPs that achieve a desired objective while satisfying constraints. MP consists of a 
control and state trajectory. Multiple MPs can be concatenated to form a vehicle tra-
jectory plan. There are mainly two kinds of methods to plan trajectories using MPs: 
methods based on continuous optimization problem formulations, such as mixed inte-
ger programming (MIP), and methods with graph-based problem formulations, such 
as an A. 

∗ algorithm or a rapidly-exploring random tree algorithm [ 39]. A literature 
review on both methods follows. 

MIP formulates an OCP with both continuous and discrete variables. MIP can 
find the optimal sequence and duration of MPs for trajectory planning of a single 
vehicle [ 23, 26, 27]. When dealing with multiple NAVs, collision constraints can be 
modeled with binary decision variables [ 7]. The ability of MIP to find the optimal 
solution comes at the cost of high computation time, which rapidly increases with 
the size of the OCP. Centralized trajectory planning for multiple vehicles with MPs 
[ 2, 20, 22] encounters this problem. 

A popular search algorithm for trajectory planning using MPs is A. 
∗ and its variant 

hybrid A. 
∗ [ 1, 19, 49]. When operating on a gridded environment representation, A. 

∗
associates a cost value with a grid cell center and the cell center’s state value, whereas 
hybrid A. 

∗ associates a cost value alongside a continuous state value with a grid cell. A 
computationally demanding task in search algorithms for trajectory planning are edge 
evaluations, as they incorporate the collision constraints [ 39]. The number of edge 
evaluations can be reduced using a lazy approach, in which an edge is only evaluated 
when the connected vertex is chosen for expansion [ 17, 18, 43]. The computation 
time of graph-search algorithms increases with the length of its horizon. Limiting 
the horizon decreases computation time [ 9, 36, 45]. Algorithms for graph-based 
trajectory planning for multiple NAVs include a Monte Carlo tree search [ 37] and a 
traditional A. 

∗ graph search [ 24, 25]. Graph searches with an infinite horizon suffer 
from high computation time [ 17– 19, 43, 49]. This challenge can be overcome with 
a receding horizon at the cost of global optimality guarantees. Graph-based receding 
horizon approaches do not yet guarantee recursive feasibility [ 9, 40, 45].
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1.2.2 Prioritized Distributed Control 

The distributed control strategy for networked control system (NCS) examined in 
this work is prioritized distributed model predictive control (P-DMPC), in which 
each vehicle optimizes only its own decision variables. Lower prioritized vehicles 
consider a communicated optimized solution of coupled higher prioritized vehicles 
in both in their objective function and their constraints. The benefit of the greedy 
P-DMPC algorithm is its short computation time [ 3, 57]. One of the main challenges 
in P-DMPC is its incompleteness [ 40]. That means, a priority assignment might lead 
to an infeasible OCP of a vehicle although the problem is solvable with a different 
priority assignment. Additionally, the priority assignment influences the solution 
quality and the computation time. 

The following works have designed priority assignments for robots and NAVs 
with the goal of feasibility and solution quality. In our work [ 32] the ordering is 
based on rules, i.e., we assign time-variant priorities to multiple vehicles compet-
ing on a racetrack based on their race position. Constraint-based heuristics increase 
the priority of a vehicle with the number of constraints it has [ 13, 16, 41, 48, 60]. 
The goal of these heuristics is to maintain feasibility of the control problems. In our 
work [ 35], we assign priorities to vehicles based on the time remaining before they 
enter an intersection. In our work [ 31], we assign priorities to vehicles based on the 
crowdedness of their goal location. Objective-based heuristics assign priorities to 
improve the solution quality of the NCS [ 15, 59]. A randomized priority assignment 
with hill-climbing is proposed in [ 10]. In [ 8], all priority assignments are considered 
to find the optimal one. Both approaches achieve higher solution quality with higher 
computation time. In [ 61], priorities are assigned based on machine learning and 
achieve results competitive to heuristics. The priority assignment can also influence 
computation time [ 4]. The number of simultaneous computations in prioritized plan-
ning is maximized in [ 38]. Despite the number of priority assignment strategies, the 
incompleteness of P-DMPC remains. Many works assign time-invariant priorities for 
a specific scenario [ 13, 16, 38, 41, 48, 59, 60]. Time-variant priority assignments 
improve feasibility in changing operating conditions over time-invariant priority 
assignments [ 10, 15]. In [ 38], time-invariant priorities are shown to produce recur-
sively feasible solutions. Similarly, this property needs to be shown for time-variant 
priorities. 

1.3 Contribution 

The contribution of this chapter is twofold. First, we present our method of reced-
ing horizon graph search (RHGS), a search-based trajectory planning algorithm for 
road vehicles. We reduce the computation time by limiting the planning horizon. We 
prove that our method fulfills recursive feasibility by design of the motion primitive 
automaton (MPA) [ 55]. Second, we present a framework for distributed reprioritiza-
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tion of vehicles. We prove that it fulfills recursive NCS-feasibility for P-DMPC with 
any time-variant priority assignment algorithm [ 51]. 

We present two priority assignment algorithms, one for vehicle progression using 
a constraint-based heuristic, and a one for computation time reduction of the NCS 
using graph coloring. We demonstrate the effectiveness of the presented approach in 
a simulative case study of P-DMPC for trajectory planning. 

1.4 Notation 

A variable. x is marked with a superscript.x ( j) if belonging to agent. j , and with. x (− j)

if belonging to the neighbors of agent . j . The actual value of a variable . x at time. k is 
written as .x(k), while values predicted for time.k + i at time. k are written as .xk+i |k . 
A trajectory is denoted by substituting the time argument with . · as in .x·|k . An agent 
equals a vehicle in our application of prioritized trajectory plannning. In this chapter, 
we use the terms vehicle, road vehicle and NAV interchangeably. 

1.5 Structure 

The remainder of this chapter is structured as follows. Section 2 presents our vehicle 
model, our RHGS for trajectory planning, and our proof of recursive agent-feasibility. 
Section 3 presents the distribution of RHGS with P-DMPC for trajectory planning. 
We show recursive NCS-feasibility of our reprioritization framework before present-
ing two time-variant priority assignment algorithms, one for vehicle progression and 
one for computation time reduction. In Sect. 4, we evaluate both the RHGS and the 
P-DMPC in experiment, before combining both in a simulative case study. 

2 Receding Horizon Graph Search for Trajectory Planning 

This section presents how we transfer a receding horizon control (RHC) approach 
to graph-based trajectory planning. The content is based on our previous publication 
[ 55]. Section 2.1 states the RHC trajectory planning problem that we subsequently 
map to graph search based on an MPA. Section 2.2 presents our approximation of 
the vehicle dynamics as an MPA, Sect. 2.3 shows the graph-based optimization in 
our RHGS algorithm. In Sect. 2.4, we prove that our RHGS produces recursively 
agent-feasible trajectories by design of the MPA.
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Fig. 1 Kinematic 
single-track model of a 
vehicle [ 55] 
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2.1 Trajectory Planning Problem 

This section presents the ordinary differential equations describing the vehicle 
dynamics and our cost function before both are incorporated in a RHC problem 
for trajectory planning. 

Figure 1 shows an overview of the variables for the nonlinear kinematic single-
track model [ 47]. Assuming low velocities, we model no slip on the front and rear 
wheels, and no forces acting on the vehicle. The resulting equations are 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = v(t) · cos(ψ(t) + β(t)),

ẏ(t) = v(t) · sin(ψ(t) + β(t)),

ψ̇(t) = v(t) · 1

L
· tan(δ(t)) cos(β(t)),

v̇(t) = uv(t),

δ̇(t) = uδ(t),

(1) 

with 

.β(t) = tan−1

 
 r

L
tan(δ(t))

 

, (2) 

where .x ∈ R and .y ∈ R describe the position of the center of gravity (CG), . ψ ∈
[0, 2π) is the orientation,.β ∈ [−π, π) is the side slip angle,.δ ∈ [−π, π) and. uv ∈ R

are the steering angle and its derivative respectively,.v ∈ R and.uv ∈ R are the speed 
and acceleration of the CG respectively,. L is the wheelbase length and. r is the length 
from the rear axle to the CG. The position of the CG and the orientation together 
form the pose . p. 

The system dynamics defined in (1) are compactly written as 

.ẋ(t) := d

dt
x(t) = f

 
x(t), u(t)

 
(3) 

with the state vector 
.x =  

x y ψ v δ
 T ∈ R

5, (4) 

the control input
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.u =  
uv uv

 T ∈ R
2 (5) 

and the vector field . f defined by (1). Transferring (3) to a discrete-time nonlinear 
system representation yields 

.xk+1 = fd
 
xk, uk

 
(6) 

with .k ∈ N, the vector field . fd : R5 × R
2 → R

5, the state vector .x ∈ R
5 and the 

input vector .u ∈ R
2. 

We define the cost function to minimize in our trajectory planning problem as 

.Jk→k+N |k =
N 

i=1

 
xk+i |k − xref,k+i |k

 T
Q
 
xk+i |k − xref,k+i |k

 
(7) 

with the planning horizon length. N , the positive semi-definite, block diagonal matrix 

.Q =
 

I2 02×3

03×2 03

 

∈ R
5×5 (8) 

and a reference trajectory .xref,·|k ∈ R
5. 

We combine the system model (6) and the cost function (7) to an OCP  

.. minimize
Uk→k+N |k

Jk→k+N |k (9a) 

. subject to

xk+i+1|k= fd
 
xk+i |k, uk+i |k

 
, i = 0, . . . , N − 1 (9b) 

.uk+i |k∈ U, i = 0, . . . , N − 1 (9c) 

.xk+i |k∈ X i = 1, . . . , N − 1 (9d) 

.xk+N |k∈ X f (9e) 

.xk|k= x(k) (9f) 

with the vector .Uk→k+N |k of stacked control inputs .(uk|k, uk+1|k, . . . , uk+N−1|k), the  
input constraint set .U ⊆ R

2, the state constraint set .X ⊆ R
5 and the terminal set 

.X f ⊆ R
5. We assume a full measurement or estimate of the state .x(k) is available 

at the current time . k. The  OCP (9) is solved repeatedly after a timestep duration . Ts
and with updated values for the states and constraints, which establishes the RHC. 

2.2 Motion Primitive Automaton as System Model 

This section presents how we model the state-continuous system (6) as an MPA, a  
type of maneuver automaton [ 23]. The MPA incorporates the constraints on system
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dynamics (9b), on control inputs (9c), and on both the steering angle and the speed 
(9d) and (9e). 1

From the system dynamics (1), we derive a finite state automaton which we call 
MPA and define as follows. 

Definition 1 (Motion primitive automaton) An MPA is a 5-tuple . (Q, S, γ, q0, Q f )

composed of: 

• .Q is a finite set of automaton states . q; 
• . S is a finite set of transitions . π , also called motion primitives; 
• .γ : Q × S × N → Q is the update function defining the transition from one 
automaton state to another, dependent on the timestep in the horizon; 

• .q0 ∈ Q is the initial automaton state; 
• .Q f ⊆ Q is the set of final automaton states. 

An automaton state is characterized by a specific speed . v and steering angle . δ. 
An MP is characterized by an input trajectory and a corresponding state trajectory 
which starts and ends with the speed and steering angle of an automaton state. It 
has a fixed duration which we choose equal to the timestep duration . Ts . MPs can be 
concatenated to vehicle trajectories by rotation and translation. Our MPA discretizes 
both the state space with the update function .γ and the time space with a fixed 
duration .Ts for all MPs. This  MPA replaces the system representation (6). Note that 
the dynamics model on which our MPA is based is exchangeable. Its complexity is 
irrelevant computation-wise for trajectory planning since MPs are computed offline. 

2.3 Receding Horizon Graph Search Algorithm 

This section demonstrates how our RHGS incorporates the constraints on the pose, 
which are included in (9d) and (9e), while minimizing the cost function (9a). 

Our RHGS algorithm constructs a search tree.T up to a limited depth. N . A level. i
in the tree directly corresponds to the timestep.k + i in the OCP (9). The information 
contained in each vertex . v of the tree is a tuple . q, p, i, J  , whose elements are the 
automaton state, the vehicle pose, the distance to the root vertex, and the value of the 
cost function, respectively. When the algorithm finds the leaf vertex with the minimal 
cost value at the horizon .k + N , it returns the path from the root vertex to this leaf 
vertex. The algorithm ensures optimality of the returned path with an admissible and 
underestimating cost estimation, similar to A. 

∗.

1 A detailed explanation of modeling with MPAs is found in this book’s chapter “Designing Maneu-
ver Automata of Motion Primitives for Optimal Cooperative Trajectory Planning”. 
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Algorithm 1 shows the main steps of our RHGS algorithm. At the beginning of the 
control loop at time. k, the algorithm determines the search tree’s root vertex.v0 from 
the state vector.x(k) and initializes the open list with this root vertex (Line 1). Sorting 
the open list by the cost function value brings the vertex with the lowest cost .vp to 
the front (Line 3). It is removed from the open list (Line 5). We evaluate the edge 
to the selected vertex by checking inter-vehicle collisions and obstacle collisions 
(Line 6). If there is a collision, the algorithm continues to the next vertex in the open 
list. If the vertex is collision-free, satisfies the constraint (9e), and is at the planning 
horizon . N , it is optimal (Line 8). The algorithm returns the path to the vertex (Line 
9). Otherwise, the algorithm expands the vertex based on its automaton state . q, the  
update function . γ , and its state vector . x (Line 10). The algorithm evaluates edges 
to successors lazily by computing only the cost function without collision checks 
to reduce computation time (Lines 11 to 12). In informed graph-search algorithms, 
the cost function consists of the cost-to-come (CTC) and the cost-to-go (CTG). Our  
algorithm minimizes (7) as the  CTC is equal to (7) and the CTG is an underestimation 
of (7). We underestimate the cost from a vertex . v at depth .iv by moving a vehicle 
towards its reference position at each subsequent timestep with maximum speed in 
a straight line 

. JCTG(iv) =
N 

i=iv+1

max
 
0,

 
xk+i |k − xref,k+i |k

 T
Q
 
xk+i |k − xref,k+i |k

 − i · vmax · Ts
 

(10) 

with the same.Q as in (7). At the end of the loop, all successor vertices are added to 
the open list (Line 13).
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2.4 Recursive Agent-Feasibility 

This section proves recursive agent-feasibility of our RHGS. The property is com-
monly known as recursive feasibility or persistent feasibility. We design the time-
variant update function . γ of our MPA such that an equilibrium state can always be 
reached within the horizon .N from expanded successors (Line 10). 

A set  .Cinv ⊆ X is a control invariant set for the system (6) subject to constraints 
(9b)–(9f) if  

.
x(k) ∈ Cinv =⇒ ∃u(k) ∈ U such that

x(k + 1) ∈ Cinv,∀k ∈ N.
(11) 

Lemma 1 If .X f is a control invariant set of the system (9) with .N > 1, then (9e) 
ensures recursive agent-feasibility of the RHC. 

Proof The proof is given in [ 11].  

We reformulate the condition of control invariant sets for MPAs as follows. 

Definition 2 (Control invariant set for an MPA) A  set.Cinv ⊆ X is a control invariant 
set for the system (6) given by an MPA if 

.

x(k) ∈ Cinv with q(k) ∈ Q f =⇒ ∃π ∈ S such that

x(k + 1) ∈ Cinv with q(k + 1) ∈ Q f and

γ (q(k), π, k) = q(k + 1),∀k ∈ N.

(12) 

Note that the automaton state . q follows from the state vector . x. 

Theorem 1 RHGS achieves recursive agent-feasibility if the generated sequence of 
transitions ends in an automaton state and a state vector that together form a control 
invariant set. 

Proof Follows directly from Lemma 1 with Definition 2 of control invariant sets for 
MPAs.  

In an equilibrium of the system, it holds that. fd
 
x(k), u(k)

 = x(k). If a sequence 
of transitions ends in an automaton state from where there exists a transition which 
keeps the system at an equilibrium, .x(k) represents a control invariant set. Such 
an automaton state in our MPA has a speed .v = 0m s−1. Figure 2 depicts a simple 
example of an MPA with a time-invariant update function. This MPA can generate 
sequences of transitions which are not recursively feasible. We design a time-variant 
update function which only generates recursively feasible sequences, as shown in an 
example MPA in Fig. 3.
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Fig. 2 MPA which does not 
guarantee recursive 
agent-feasibility, rolled out 
over a planning horizon with 
length. N = 3

Fig. 3 MPA which 
guarantees recursive 
agent-feasibility by only 
allowing a speed of. 0 m s−1

at the end of the horizon, 
rolled out over a planning 
horizon with length. N = 3

3 Prioritized Trajectory Planning 

This section presents our approach for distributed trajectory planning with distributed 
reprioritization while guaranteeing recursive NCS-feasibility. It is based on our pub-
lications [ 51, 53]. Our P-DMPC loop consists of the steps coupling, prioritization, 
trajectory planning, and communication of trajectories. We couple agents if they 
potentially interact during their planning horizon. N . We represent couplings between 
agents with a coupling graph. Denote by .V = {1, . . . , NA} the set of agents and by 
.NA = |V| ∈ N its cardinality. 

Definition 3 (Coupling graph) A coupling graph .G = (V,E) is a graph that rep-
resents the interaction between agents. Vertices represent agents and edges denote 
coupling objectives or constraints in the OCP associated with the vertex. 

The agents connected to agent . j are called its neighbors .V( j). Introducing prior-
ities results in clear responsibilities to satisfy collision constraints. We direct edges 
in the coupling graph from a higher prioritized agent to a lower prioritized agent. 

Definition 4 (Directed coupling graph) A directed coupling graph . G  = (V,E )
results from a coupling graph.G = (V,E) by keeping all vertices.V and a subset of 
edges.E ⊂ E of. G. In a directed coupling graph, a directed edge denotes a coupling 
objective or constraint in the OCP associated with the ending vertex. 

Vehicles determine their priorities using a priority assignment algorithm. A time-
variant priority assignment algorithm yields an injective priority assignment function 
.p : V × N → N, which assigns a unique priority to each vehicle in the NCS at every 
timestep. If .p(l, k) < p( j, k), then vehicle . l has a higher priority than vehicle . j at 
timestep. k. At each timestep. k, every vehicle groups its current neighbors.V( j)(k) in 
a set of higher prioritized neighbors.V̂( j)(k) and lower prioritized neighbors.V̌( j)(k). 
When a vehicle . j has received the planned trajectories of all vehicles in .V̂( j)(k), it  
plans its own trajectory while avoiding collisions with the received trajectories. It
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communicates its own trajectory to vehicles in .V̌( j)(k). Each vehicle . j adds con-
straint functions.c( j,l) to its OCP (9) to ensure collision-free trajectories with vehicles 
in . V̂( j)(k)

.c( j,l)
 
x( j)
k+i |k, x

(l)
k+i |k

 
≤ 0, ∀i = 1, . . . , N , ∀l ∈ V̂( j)(k). (13) 

3.1 Reprioritization Framework for Recursive 
NCS-Feasibility 

One of the main challenges for P-DMPC is its incompleteness: even though there 
exists a priority assignment that results in an NCS-feasible P-DMPC problem, a 
specific priority assignment might fail to produce a solution. Changing the priority 
assignment during runtime can prevent such a failure, but loses recursive NCS-
feasibility of the P-DMPC problem. 

Definition 5 (NCS-feasible) A  P-DMPC problem is NCS-feasible if every agent in 
the NCS finds a feasible solution to its OCP. 

A P-DMPC problem is recursively NCS-feasible if from NCS-feasibility at time 
. k we can guarantee NCS-feasibility for all future times. Figure 4 illustrates our 
distributed reprioritization framework to maintain NCS-feasible P-DMPC trajectory 
planning problems while using a time-variant priority assignment function. At the 
beginning of every timestep . k, each agent attempts to plan its trajectory given the 
priorities from time. k. If any agent fails to find a feasible solution, it notifies all other 
agents. All agents stay on their recursively agent-feasible trajectory. At any point, if 
the P-DMPC problem is NCS-feasible, the corresponding input is applied. 

A proof for recursive NCS-feasibility of time-invariant priorities is given in [ 38]. 
We need to prove recursive NCS-feasibility with time-variant priorities and our dis-
tributed reprioritization framework. We assume an initially NCS-feasible problem 
and bounded disturbances which an underlying controller can compensate. 

Theorem 2 A P-DMPC problem with our distributed reprioritization framework, 
the OCP (9) with coupling constraints (13), and any time-variant priority assignment 
function . p is recursively NCS-feasible. 

Fig. 4 Distributed 
reprioritization framework 
which guarantees recursive 
NCS-feasibility, as seen from 
agent. j . Figure adapted 
from [ 51] 

New timestep k 
P-DMPC 
with p(j, k) reuse input u(j) 

·|k−1 

apply u(j) 
kfeasible 

infeasible
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Proof Without loss of generality, assume the computation order resulting from the 
priority assignment function.p( j, k) to be.1, . . . , NA. Assume an NCS-feasible solu-

tion.

 
u( j)

·|k , x
( j)
·|k
 
,∀ j ∈ V at timestep. k. Because of bounded disturbances which an 

underlying controller can compensate, we have 

.x( j)(k + 1) ≈ x( j)
k+1|k, ∀ j ∈ V. (14) 

Every agent shifts and extends the feasible solution of the previous timestep 

.
x( j)
k+1+i |k+1 = x( j)

k+1+i |k, ∀ j ∈ V, ∀i = 1, . . . , N − 1

x( j)
k+1+N |k+1 = x( j)

k+N |k, ∀ j ∈ V
(15) 

For agent . 1, who does not consider other agents, recursive feasibility is given by 
Theorem 1. For any agent .2 ≤ j ≤ NA, the coupling constraints (13) must also be  
considered. Substituting (15) in  (13) yields 

.c( j,l)
 
x( j)
k+1+i |k+1, x

(l)
k+1+i |k+1

 
= c( j,l)

 
x( j)
k+1+i |k, x

(l)
k+1+i |k

 
, (16) 

.∀i = 1, . . . , N − 1 and .∀l ∈ V̂( j)(k). Since the agents stand still at the horizon, we 
have for the last timestep . k + N + 1

.c( j,l)
 
x( j)
k+N+1|k+1, x

(l)
k+N+1|k+1

 
= c( j,l)

 
x( j)
k+N |k, x

(l)
k+N |k

 
(17) 

.∀l ∈ V̂( j)(k). This establishes recursive NCS-feasibility of the P-DMPC at time . k. 
Because of a time-variant directed coupling graph, the set of higher prioritized agents 
.V̂( j)(k + 1) might differ from .V̂( j)(k). Still, all coupling constraints are fulfilled. 
Our coupling constraints are symmetric, i.e.,.c( j,l) = c(l, j). A new coupling constraint 
is guaranteed to be satisfied, as there was no collision possibility in timestep . k. A  
vanished coupling constraint cannot interfere with feasibility. Since all constraints 
are satisfied at timestep .k + 1, the  P-DMPC problem with time-variant priorities is 
recursively NCS-feasible with our reprioritization framework.  

3.2 Priority Assignment Algorithms 

This section introduces two priority assignment functions. Section 3.2.1 describes 
a constraint-based heuristic which aims at assigning priorities for NCS-feasibility. 
Section 3.2.2 presents a priority assignment function based on coloring of the cou-
pling graph which reduces computation time.
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3.2.1 Constraint-Based Heuristic 

The goal of the priority assignment function presented in this subsection is to reduce 
the risk of standstill of the NCS due to infeasible OCPs of vehicles. We propose 
a distributed, time-variant priority assignment algorithm for road vehicles on road 
networks based on our previous work [ 51]. Each vehicle . j first plans a trajectory 
without inter-vehicle collision constraints (13), which we call the free trajectory 
. y( j)free. Then, each vehicle. j counts the number of collisions.Nc with other free trajec-
tories. y(− j)

free and possibly already planned, optimal trajectories. y(− j)∗ . Vehicle. w with 
most collisions receives the next priority and plans its trajectory considering already 
planned, optimal trajectories . y(−w)∗ by solving OCP (9) with coupling constraints 
(13). The loop repeats until all vehicles have planned their optimal trajectories. If a 
vehicle cannot find a feasible solution, all vehicles use the previous input as illus-
trated in Fig. 4. This algorithm results in a time-variant priority assignment function 
.pfca : V × N → N. The index “future collision assessment (FCA)” reflects the inspi-
ration of this approach from [ 41]. 

3.2.2 Graph Coloring 

In P-DMPC, if there is no path between two vehicles in the coupling DAG, they can 
compute in parallel [ 4]. We call the number of necessary sequential computations the 
number of computation levels. This section presents a priority assignment function 
which minimizes the number of computation levels by vertex coloring based on 
our previous work [ 53]. Figure 5 illustrates the proposed problem solution with an 
example. From an example undirected graph, a baseline approach which assigns 
priorities equal to the vertex number results in four computation levels. Assigning 
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4 
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2 

4 

1 
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3 
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24 

3 

Fig. 5 Example of computation levels from graph coloring compared to baseline. Left: Undirected 
coupling graph. Middle: Coupling DAG with computation levels from baseline priorities equal 
to vertex number. Right: Coupling DAG with computation levels from priorities based on graph 
coloring. Figure adapted from [ 53]
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priorities with our coloring approach reduces the number of computation levels to 
three, as each color corresponds to a computation level. 

In vertex coloring, we map vertices .i ∈ V(G) to colors .c ∈ C ⊂ N>0 with the 
function .ϕ : V(G) → C. In order to produce a valid coloring, . ϕ has to satisfy 

.ϕ(i)  = ϕ( j), ∀i, j ∈ V(G),∀ei j ∈ E(G), i  = j. (18) 

Our distributed graph coloring algorithm must produce the same coloring. ϕ in every 
vehicle and must be fast enough for online execution. We propose a combination 
of saturation degree ordering, largest degree ordering and first-fit to achieve a deter-
ministic coloring as detailed in [ 53]. We translate our graph coloring function. ϕ to a 
priority assignment function . p. Let .Vc be all vertices of color . c

.Vc = {v | v ∈ V, ϕ(v) = c} . (19) 

We can generate a coupling DAG from an undirected coupling graph colored with. ϕ

with an injective priority assignment function . p that fulfills the requirement 

.p(i) < p( j) ⇐⇒ c1 < c2, ∀i ∈ Vc1 , ∀ j ∈ Vc2 . (20) 

4 Numerical and Experimental Results 

This section describes the evaluation platform, our Cyber-Physical Mobility Lab 
(CPM Lab). 2 It presents the evaluation of our RHGS algorithm for recursive agent-
feasibility and of our reprioritization framework for recursive NCS-feasibility. Our 
algorithms are implemented in MATLAB R2023a and openly available online. 3

4.1 Cyber-Physical Mobility Lab 

The evaluation hardware for this work is our 1:18 model-scale CPM Lab [ 34]. 
It is a remotely accessible open-source platform consisting of 20 networked and 
autonomous vehicles (µCars) [ 54]. Our trajectory planning algorithms run on a PC 
with an AMD Ryzen 5 5600X 6-core 3.7 GHz CPU and 32 GB of RAM. This PC 
communicates with the other components in the CPM Lab via the data distribution 
service standard over WLAN [ 33]. Figure 6 illustrates the road network in the CPM 
Lab. It replicates a wide variety of common traffic scenarios with a 16-lane urban 
intersection, a highway, highway on-ramps, and highway off-ramps.

2 https://cpm.embedded.rwth-aachen.de. 
3 https://github.com/embedded-software-laboratory/p-dmpc. 

https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://cpm.embedded.rwth-aachen.de
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
https://github.com/embedded-software-laboratory/p-dmpc
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Fig. 6 1:18 model-scale road network in the CPM Lab with an intersection, a highway, highway 
on-ramps, and highway off-ramps 

Fig. 7 The MPA for our experiments. The position of a state marks its speed . v and its steering 
angle . δ. For clarity of presentation, the figure omits the time dependency of transitions to ensure 
recursive feasibility 

Our algorithm plans trajectories using the MPA shown in Fig. 7. It is based on 
a kinematic bicycle model (1) of our  µCars with . r = 7.5 cm and .L = 15 cm. It is  
designed such that transitions between automata states respect input constraints of 
the µCars used in the experiments. The transitions change the control inputs linearly 
over the duration of the sampling time .Ts = 0.2 s. The planning horizon is .N = 8. 

4.2 Evaluation of Receding Horizon Graph Search 

In our RHGS algorithm, we achieve recursive agent-feasibility by design of the MPA, 
as illustrated in Fig. 3. The recursive agent-feasibility is verified in [ 55]. 

In [ 55], we compare our RHGS planner with a state-of-the-art graph search (SGS) 
planner. The SGS planner computes the trajectory once at the beginning of the exper-
iment with a horizon spanning the whole experiment duration. The test scenario 
contains moving obstacles with known future trajectories. Both planners manage to 
avoid the obstacles. In the specific test scenario, the RHGS planner stops in front of
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the obstacles, while the SGS avoids the obstacles by steering early enough. Conse-
quently, the cost function value is lower for the SGS than for the RHGS. However, 
in the worst case, the computation effort increases exponentially with the horizon 
length. A video of an experiment using RHGS with multiple vehicles in the CPM 
Lab is available online. 4

4.3 Evaluation of Time-Variant Priority Assignment 

This section presents P-DMPC trajectory planning with time-variant priority assign-
ment using our reprioritization framework depicted in Fig. 4 to guarantee recursive 
NCS-feasibility. A time-invariant priority assignment algorithm and a time-variant 
random priority assignment algorithm represent state-of-the-art priority assign-
ment algorithms for our evaluation. In the time-invariant priority assignment algo-
rithm, each vehicle receives a unique priority corresponding to its unique num-
ber . j ∈ V at the beginning of the experiment. The priority assignment function 
.pconst : V × N → N is 

.pconst( j, k) = j. (21) 

In the random priority assignment algorithm, each vehicle receives a random priority 
in each timestep. The priority assignment function .prand : V × N → N is 

.prand( j, k) = r(k). (22) 

The evaluation focuses on two criteria: (i) the ability to maintain progress of the 
vehicles, i.e., to avoid a standstill, and (ii) the ability to reduce computation time. We 
call the absence of progress a standstill, which we define as a situation where two or 
more vehicles stop for the rest of the experiment. 

Our evaluation spans 720 numerical experiments with an individual duration of 
180 s, a combination of the four priority assignment functions (.pfca,.pcolor,.prand, and 
.pconst) with vehicle amounts from 1 to 20 in 9 random scenarios. All scenarios are 
based on the map shown in Fig. 6. The vehicle starting positions and their reference 
paths in the map are determined randomly to replicate various traffic situations. 
We use the Mersenne Twister algorithm [ 44] with a manually set random seed for 
reproducible experiments. 

Figure 8 depicts the performance on a scale of 0 to 1 of the four priority assign-
ments in three aspects. The first aspect is the number of vehicles up to which all 
vehicles in all scenarios could maintain progress over the experiment duration. The 
functions.pconst and.pfca are able to move up to 10 and 9 vehicles respectively, whereas 
.prand and .pcolor produce a standstill with already 6 and 5 vehicles respectively. The 
second aspect is the percentage of scenarios from all scenarios with all numbers 
of vehicles, for which the corresponding priority assignment function successfully

4 https://youtu.be/7LB7I5SOpQE. 

https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
https://youtu.be/7LB7I5SOpQE
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Fig. 8 Performance of priority assignment functions scaled from 0 to 1:.NA min: standstill-free up 
to number of agents (.×10), % succ.: percentage of standstill-free scenarios (.×100), Time: average 
time until standstill (.×145.1 s) 

Fig. 9 Median and maximum number of computation levels.NCL in all timesteps of all standstill-
free scenarios per priority assignment function over the number of vehicles. NA

maintained progress over the full experiment duration. The performance tendency is 
similar to the first aspect. Both aspects indicate that a change in the priority assign-
ment can decrease NCS-feasibility. A constant priority might not be ideal in all 
situations, but can help maintaining NCS-feasibility and avoid standstills. The third 
aspect is the average time until standstill, in which .pfca performs best with an aver-
age time of 145.1 s. These results indicate that changing priorities might harm the 
systems performance. A better approach might be to change priorities only when the 
P-DMPC problem becomes NCS-infeasible. 

The computation time in P-DMPC is mainly determined by number of compu-
tation levels, i.e., the minimum number of sequential computations of the NCS [ 4]. 
Figure 9 shows the median and maximum number of computation levels per prior-
ity assignment function in experiments without standstills. A scenario will develop 
differently for different priority assignment functions. To mitigate the effect of this 
difference, we consider each timestep from all experiments on its own. In every
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timestep, we assign priorities with all four priority assignment functions and analyze 
the resulting number of computation levels. The strength of the priority assignment 
function .pcolor lies in this criterion, as it produces the lowest amount of median and 
maximum computation levels for all experiments. In the scenarios with 17 to 19 
vehicles, it reduces the number of computation levels by up to 33 %. 

A video of an experiment in the CPM Lab is available online. 5 It presents the 
priority assignment function .pfca with our distributed reprioritization framework. 

5 Conclusion 

This chapter presented two approaches to deal with the complexity of a nonconvex 
trajectory planning problem: discretization of control inputs using motion primitives 
and distribution of the control problem using prioritization. We showed recursive 
agent-feasibility for our receding horizon graph search using motion primitives, mak-
ing it a viable alternative to receding horizon approaches using optimization. The 
efficiency of the informed search algorithm is highly dependent on the quality of 
the cost-estimating heuristic. We showed recursive NCS-feasibility for time-variant 
priority assignment functions in prioritized planning. We presented and evaluated 
two priority assignment functions for road vehicles, one for maintaining progress 
of vehicles and one for reduced computation time. Changing the priorities during 
an experiment affects NCS-feasibility of the P-DMPC problem, as it alters the con-
straints of the vehicles’ OCPs. Experiments with up to 17 vehicles in our CPM Lab 
showed efficient computation and effective results for networked trajectory planning 
problems. 

The priority assignment function offers potential for improvement. A strategy that 
might be worth examining is the application of game theory to assign priorities [ 30]. 
Our framework for distributed reprioritization achieves recursive NCS-feasibility 
through standstill at the end of the prediction horizon. While ensuring safety, this 
counteracts the goal to maintain progress in traffic. Some of the scenarios we evalu-
ated resulted in a standstill which could not be resolved through the priority assign-
ment function. In these situations, the priority assignment function could be altered 
to explore different priority permutations. The trajectory planner could also switch 
to a cooperative or centralized trajectory planning algorithm, which is more flexible, 
but has higher computation time [ 29]. The minimum number of computation levels 
and thus the expected computation time in our P-DMPC is decided by the coupling 
graph. If the allowed computation time is fixed and the number vehicles increases, 
less computation time for each vehicle is available. This issue will be addressed in our 
future work. Another topic to explore is the cooperation of our distributed trajectory 
planning algorithm with others such as [ 14], and the cooperation with human-driven 
vehicles [ 50].

5 https://youtu.be/RqwbHUwip10. 

https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
https://youtu.be/RqwbHUwip10
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