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Deep Learning Assisted Kalman Filter
Key elements in Deep Learning

= Deep Learning in GNSS/INS Integration is NOT a standardized Problem. In order to apply the Deep learning to
this specific application, we need to consider those elements and define the task.
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Deep Learning Assisted Kalman Filter

Define the task

= The GNSS and INS can be loosely coupled

6p, v, 8a, by, by

Universitdt (.

[
|

I E Accelerometer Strapdown
| -

: Cl Gyroscope | computation
|

Integrated

——— Navigation
Solution

GNSS receiver

Internal | CR/ADI2.3 | 2024-06-20

INS
Solution
GNSS/INS
loose
coupling
GNSS
Solution

&p: Position error
& Velocity error
da: attitude error
b, accelerometer bias
b,: gyroscope bias

er Bun,

Milinchen

BOSCH



der Bundeswehr

Deep Learning Assisted Kalman Filter Universitat -y Miinchen
Define the task

= |n GNSS/INS integration, model-based Kalman Filter (MBKF) is one of the most widely used integration

algorithms
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Define the task
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= As a model-based algorithm, the MBKF estimates the accumulated error in the strapdown computation based
and noise statistics. The performance of the conventional MBKF is influenced by the

on

= The IMU error is complex especially for the MEMS IMU.
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= |[n MBKF and DL, they both combine approaches from statistics, recursion and optimization theory.

= By hybridizing them, the advantage of DL can assist MBKF to overcome the model deficiency and the unknown
process and measurement noise.

= How?

System propagation
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Predicted covariance estimate
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Updated error state estimate
Updated covariance estimate
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Deep Learning Assisted Kalman Filter
High-level Structrue and Features
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* We propose a deep learning-assisted Kalman Filter (DLKF) that incorporates a deep neural network (DNN) to
overcome the limitations of MBKF. This DNN is tightly integrated into the GNSS/INS integration system
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Deep Learning Assisted Kalman Filter
Neural Network Design

= To enable effective learning of the Kalman gain and IMU errors by the DNN, it is crucial to select the proper
network type and provide input features that contain the necessary information.
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Neural Network Design

= Convolutional neural network (CNN)
— IMU measurements and INS solutions operate in high frequency have complex interdependencies.

— By sliding the convolutional filters over time windows, the CNN can capture short-term temporal information and
identify temporal features such as motion dynamics.

" Long short-term memory (LSTM)
— Both the KF and LSTM are designed to predict future states based on historical data.

— Learn long-term dependencies, retain and leverage the information over the long sequence through the large memory
cell.

= CNN-LSTM

— This combination can help to enhance filter quality and learn the complex integration system.

[1] S. Li, M. Mikhaylov, N. Mikhaylov, and T. Pany, “Deep learning based Kalman filter for GNSS/INS integration : Neural network architecture and feature selection,” 2023 International
Conference on Localization and GNSS (ICL-GNSS), Castellén, Spain, 2023, pp. 1-7

[2] S. Li, M. Mikhaylov, T. Pany, and N. Mikhaylov, “Exploring the Potential of Deep Learning Aided Kalman Filter for GNSS/INS Integration : A Study on 2D Simulation Datasets,” in IEEE
Transactions on Aerospace and Electronic Systems, vol. 60, no. 3, pp. 2683-2691, June 2024.
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Training strategy
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Training strategy

= Endto End
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Training strategy

= Gradient explosion and vanish
— Truncate trajectory: long trajectory is truncated into multiple sub-trajectories
— Shuffle the sub-trajectories and use batch_size number trajectories to train
= Accuracy of the IMU error estimates
— Decrease GNSS measurement frequency
— Add GNSS outage in training dataset
= Loss function

— Weighted sum of the respective losses
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Experiments and Results

= Simulated dataset

Internal | CR/ADI2.3 | 2024-06-20 BOSCH



der Bundeswehr
Universitat (3 Mtnchen

Deep Learning Assisted Kalman Filter
Simulation

= The vehicle motion was manually designed with a variety of maneuvers, including acceleration, straight
driving, turns, 8-shape patterns, and halts.

= Accelerations and angular rates were calculated considering Earth’s rotation and gravity and different types of
IMU errors were simulated for various evaluation and analysis purposes

= No GNSS outage in simulated dataset
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Performance analysis

= [MU error estimation analysis
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— We simulated IMU measurements with a constant bias and Gaussian noise. The scale factor, misalignment error, and g-dependent

gyroscope errors were not simulated

Sensor
Accelerometer X
Accelerometer Y
Accelerometer Z
Gyroscope X
Gyroscope Y

Gyroscope Z

Constant Bias
0.0883 m/s*
-0.1275 m/s?
0.0785 m/s?
-0.0175 rad/s
0.0252 rad/s
-0.0296 rad/s

Gaussian Noise
0.0098 m/s*-®
0.0098 m/s'-?
0.0098 m/s'-?

0.0003 rad/s°-®

0.0003 rad/s®-®

0.0003 rad/s®-®
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Performance analysis

= [MU error estimation analysis

Results of 10 sub-trajectories, the duration of
each is 60 seconds

GNSS measurements are in centimeter level

Short converge time and no intial value
requires in DLKF

Position accuracy (0.45 m for DLKF and 0.49m
for MBKF)

Velocity accuracy (0.02 m/s for DLKF and 0.04
m/s for MBKF).
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Performance analysis

= KG analysis
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— If the KG value is close to 0O, it means the filter will rely primarily on the prediction, whereas if the KG value is close to 1, the filter will

rely primarily on the measurements.

— We simulated normal distributed Gaussian noise scaled by the specified factors and added it to the GNSS position and velocity

solutions to change the measurement quality:

Up =Yyp + SFP-N(0,1)
lﬁf}:y'y—'_SFV'N(Uj].)
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Performance analysis

= KG analysis
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Position Error increase
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Performance analysis

= KG analysis
— Set 1,4,5
— Velocity Error increase
— SFV (0, 0.1, 0.5)
— DLKF (up)
— MBKF(Down)
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Performance analysis
= KG analysis

— Set 6

— Position error 2
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Experiments and Results

= Real dataset
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Data collection

® The real data recorded in various scenarios, including urban canyons, highways, short tunnels, and
underground parking lots. A total of 75 test drives were conducted in 2021, 2022, and 2023, generating data

with a total duration of approximately 42 hours and covering 1300 km. The raw sensor data was collected by a
control area network (CAN bus) and recorded in ROS bag format.

Tallysman TW7972  NavXperience 3G+C

Sensor Type of Data Description Sample Rate Antenna
Genesys ADMA G-Pro+  Ground Truth/ Reference The reference system 100Hz NavXperience
(Novatel OEM7720) System includes position,

velocity, and attitude.

Ublox F9p (RTK) Precise GNSS RTK mode, GNSS 10Hz NavXperience
solutions in centimeter
level

Ublox F9p (Standard) Non-Precise GNSS Standrad mode, GNSS 10Hz Tallysman
solutions in meter level.
Bosch BNO035 IMU This sensor includes 50Hz —
accelerometer and
ZYroscope.
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Performance analysis

= GNSS outage condition
Sub-trajectory length: 60s

— GNSS outage Start: 30s 3 2231w
— GNSS outage End: 50s N
52°23'10"N R
— Basic strapdown computation ﬂ
9"50'E 9°42'55°E .
Longitude
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% 52°14'05"N
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Deep Learning Assisted Kalman Filter
Performance analysis i =
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Performance analysis
= GNSS outage condition

— IMU error estimation

— Results on 3 sub-trajs
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Accelerometer error estimated by MBKF
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Performance analysis - -

= GNSS outage condition ,
30.11 66.25
— Increase the sub-trajectory length to 120s " s s
— The GNSS outage start from 60s to 120s (1 minute outage)
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Conclusion and Future Work

We implemented a deep learning assisted Kalman filter to enhance the performance of GNSS/INS integration.

» The proposed DL algorithm can learn system dynamics and noise statistics, leading to improved GNSS/INS
navigation solution accuracy

= |t can estimate IMU errors more precisely, thereby maintaining the navigation solution quality during GNSS
outage conditions

= We can further extend the structure to learn the covariance separately for safety augmentations (integrity
monitoring)
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