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Abstract

The population of Earth-orbiting objects has grown steadily at an increasing pace. Unless
this trend is reversed, exploiting the near-Earth space environment will eventually become
unfeasible. Achieving a comprehensive portrait on how many objects there are, where, and
what their characteristics are, is key to devise mitigation strategies for this problem. This
thesis addresses the latter point: it explores which object characteristics can be estimated,
and how, using time-series of brightness measurements (a.k.a. light curves). An initial
literature review identified three main research areas in which this thesis could contribute
scientifically.

First, a new rendering method used to simulate light curves of non-convex objects has been
developed. Under the assumption that the object is a polyhedron with flat facets, it compares
these facets with each other to determine which are observable and illuminated. When the
object is composed by a few, big facets, it is shown that this new method outperforms the
traditional ray-tracing approach, both in terms of accuracy and speed.

Next, an existing two-step process that estimates the shape of an object from its light curve
and attitude ephemerides has been analysed. This method 1) extracts an Extended Gaussian
Image (EGI) using Weighted Least Squares, from which it then 2) reconstructs a convex
polyhedron using Minkowski minimization. This thesis’ contribution shows that dense EGIs
can be used even when the first step is not observable according to linear control theory;
deduces an analytical expression of the Hessian of the volume constraint of the second step;
and introduces the novel homotheticity, a criterion that enables assessing the performance
of the method based on the final polyhedron, instead of the intermediate EGI.

Finally, a new approach for Attitude Determination (AD) from light curves has been
developed. It models the probability distribution of the state as a Gaussian mixture, and
assumes that shape and surface reflectance are known. Each kernel is updated with an
Unscented Kalman Filter (UKF), while the mixture size is adapted at each step using a
non-linearity measure of the light curve model. Simulations show that this filter, dubbed
Adaptive Gaussian Mixtures Unscented Kalman Filter (AGMUKF) for AD, outperforms
the traditional UKF. Furthermore, results suggest that the AGMUKF for AD has the
potential to match the state-of-the-art Particle Filter (PF) performance-wise, but at a
lower computational cost thanks to its ability to adapt the mixture size.

This thesis is closed by a demonstration that the contributions of this thesis to the field of
Object Characterization can potentially constitute building blocks of derived use cases, such
as health monitoring of operational satellites.
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Kurzfassung

Der Bestand an Objekten in der Erdumlaufbahn ist stetig und in immer schnellerem
Tempo gewachsen. Wenn sich dieser Trend nicht umkehrt, wird die Nutzung des erdnahen
Weltraums irgendwann nicht mehr möglich sein. Ein umfassendes Bild davon, wie viele
Objekte es gibt, wo sie sich befinden und welche Eigenschaften sie haben, ist der Schlüssel
zur Entwicklung von Strategien zur Eindämmung dieses Problems. Die vorliegende Arbeit
befasst sich mit dem letztgenannten Punkt: Es wird untersucht, welche
Objekteigenschaften auf welche Weise anhand von Zeitreihen von Helligkeitsmessungen
(auch bekannt als Lichtkurven) geschätzt werden können. Eine erste Literaturrecherche
ergab drei Hauptforschungsbereiche, zu denen diese Arbeit einen wissenschaftlichen Beitrag
leisten kann.

Erstens wurde eine neue Bildsynthese-Methode für die Simulation von Lichtkurven
nicht-konvexer Objekte entwickelt. Unter der Annahme, dass das Objekt ein Polyeder mit
flachen Facetten ist, vergleicht es diese Facetten miteinander, um festzustellen, welche
davon beobachtbar und beleuchtet sind. Wenn das Objekt aus wenigen, großen Facetten
besteht, wird gezeigt, dass diese neue Methode den traditionellen Ray-Tracing-Ansatz
sowohl in Bezug auf die Genauigkeit als auch auf die Geschwindigkeit übertrifft.

Als Nächstes wurde ein bestehendes zweistufiges Verfahren analysiert, das die Form eines
Objekts aus seiner Lichtkurve und den Lageephemeriden schätzt. Diese Methode 1)
extrahiert ein Extended Gaussian Image (EGI) mit Hilfe der gewichteten Methode der
kleinsten Quadrate und rekonstruiert daraus 2) ein konvexes Polyeder mit Hilfe der
Minkowski-Minimierung. Der Beitrag dieser Arbeit zeigt, dass dichte EGIs auch dann
verwendet werden können, wenn der erste Schritt gemäß der linearen Kontrolltheorie nicht
beobachtbar ist; leitet einen analytischen Ausdruck für die Hessian der
Volumenbeschränkung des zweiten Schritts ab; und führt die neuartige Homothetizität ein,
ein Kriterium, das es ermöglicht, die Leistung der Methode auf der Grundlage des
endgültigen Polyeders anstelle des Zwischen-EGI zu bewerten.

Schließlich wurde ein neuer Ansatz für die Lagebestimmung (AD, attitude determination)
aus Lichtkurven entwickelt. Er modelliert die Wahrscheinlichkeitsverteilung des Zustands
als Gaußsche Mischung und setzt voraus, dass Form und Reflexionsgrad der Oberfläche
bekannt sind. Jeder Kernel wird mit einem Unscented Kalman-Filter (UKF) aktualisiert,
während die Größe der Mischung bei jedem Schritt anhand eines Nichtlinearitätsmaßes des
Lichtkurvenmodells angepasst wird. Simulationen zeigen, dass dieser Filter, der für AD
Adaptives Gaußsche Mischung Unscented Kalman-Filter (AGMUKF) genannt wird, den
traditionellen UKF übertrifft. Darüber hinaus deuten die Ergebnisse darauf hin, dass der
AGMUKF für AD das Potenzial hat, mit dem modernen Partikelfilter (PF) leistungsmäßig
gleichzuziehen, aber dank seiner Fähigkeit, die Mischungsgröße anzupassen, zu geringeren
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Rechenkosten.

Diese Arbeit schließt mit der Demonstration, dass die Beiträge dieser Arbeit zum Bereich
der Objektcharakterisierung potenziell Bausteine für abgeleitete Anwendungsfälle darstellen
können, wie z.B. die Gesundheitsüberwachung von operativen Satelliten.
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1. Introduction

This thesis is a scientific contribution to the field of Object Characterization (OC) within
the scope of Space Surveillance and Tracking (SST). The aim of SST systems is to observe
the population of objects that orbit the Earth, a.k.a. Resident Space Objects (RSOs),
and then exploit this information in the form of services and applications (i.e. use cases)
(ESA, 2022). In turn, OC consists in the estimation of different characteristics of these same
RSOs. There is a wide range of such characteristics, from physical properties of the system to
abstract attributes linked to its functionality. Examples of the former are shape, attitude and
orbit; for an artificial satellite, operational status, mission goal and ownership are examples
of the latter. This dissertation contributes to science via the analysis, improvement, and
original development of methods and algorithms used to estimate characteristics of RSOs.
In particular, it researches the problems of attitude and shape determination from light
curves (i.e. time-series of telescope measurements of the brightness of a RSO), as well as
light curve simulation itself.

This chapter introduces the topic of this thesis in further detail. Section 1.1 below motivates
and justifies this work, highlighting the key role of OC in preserving the usability of the space
environment around our planet. Next, Section 1.2 distils these motivations into the research
questions that guide this thesis. This is followed by Section 1.3, which refines these questions
into a set of specific goals. Finally, Section 1.4 sets out the structure for the remaining of
this document.

1.1. Object Characterization

With the recent proliferation of mega-constellations of artificial objects, the number of RSOs
is expected to increase substantially in the years to come (S. D. O. ESA, 2019). If no
actions are taken, the most profitable orbit regimes will soon become impracticable. This
would impact space-derived services that are pillars to the current global economy, such as
communications, navigation, weather forecasting and climate change monitoring (OECD,
2019).

The first and most immediate challenge associated to this problem is the lack of exact
knowledge on how many RSOs orbit the Earth, and of which nature (Aglietti, 2020). Without
this key piece of information, further mitigation activities such as Active Debris Removal
(ADR) or precise collision risk assessment are not possible. SST is the branch of Space
Situational Awareness (SSA) that aims to catalogue RSOs, including their up-to-date orbital
ephemerides and any other characteristics (e.g. bus type or origin) (SatCen, 2023). As a
service-enabling technology, SST has become a valuable product in the space industry, and
it is essential for efficient space traffic management.
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1. Introduction

To characterize RSOs, SST providers use measurement techniques that do not require the
participation of the object being observed–i.e. optical sensors or telescopes and
Radar/Lidar-based systems. Such measurements contain information not only regarding
the instantaneous location of the object and its momentum–from which its orbit can be
inferred–but also about other characteristics, such as its orientation, size, shape and
reflective surface properties. Therefore, by extension these measurements can even give
clues regarding more abstract properties, such as the capabilities of its propulsive systems,
the power output of its solar panels, or even its origin or the goals of its mission. Space1

Object Characterization (OC) is the sub-field of SST that studies which characteristics can
be extracted from these measurements and how. Although orbit ephemerides can be
considered as object characteristics themselves, Orbit Determination (OD) is often treated
as a sub-field on its own, so that OC typically deals with any observable characteristics
other than the object’s orbit.

The characterization of RSOs has seen an increase of scientific interest during the last two
decades. This can be justified naively with the tenet: the more is known about all the objects
orbiting the Earth, the better. In particular, OC has the potential to provide information
with measurable and significant value. For example, during the design of an ADR mission
that targets the removal of a piece of space debris, knowledge on its attitude state or its
shape reduces the uncertainty associated to the mission success, which leads to a narrower
constraining of the risks, reducing the part of the mission budget dedicated to contingencies.
For a more thorough exploration of OC-enabled use cases, the reader may refer to Section 2.4
of the Literature Review Chapter.

Despite recent advancements, OC as a field of science still has potential for growth. This
dissertation looks into the problem of Object Characterization based on use-cases, and
proposes improvements and new solutions to classical OC problems.

In particular, this thesis focuses on OC from light curves. These are time series of brightness
measurements obtained from optical telescopes, for the common scenario when the image
obtained is non-resolved: the object appears as a point2, so that its features are not directly
recognizable. Figure 6.2 is one such image of the ISO satellite. Although it does not tell much
about the object characteristics, the evolution of measured light intensity (and potentially
polarization and/or spectral content) along a series of such consecutive images can tell much
more (see Figure 6.3). To illustrate, a sphere and a cube with equal surface properties,
and equal conditions (same orbit, same cross section area at observation time, etc.) would
produce the same indistinguishable point on a telescope image. However, if both rotate at
the same rate, and a light curve is recorded, while the signal from the sphere would be flat,
only influenced by the relative movement of the Sun, object and observer, the cube would
produce a periodic light curve where every full rotation around itself would correspond to four
periods. Light-curve-based OC exploits this intuition in a formal way to extract quantifiable
characteristics of the object.

1The Space qualifier is omitted from here onward, since it is redundant in the context of this thesis–i.e. only
Object Characterization (OC) is used for the rest of this document.

2Or a streak, if there is relative movement between the object and the field of view.
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1.2. Research Questions

The aim of this research work is to enhance the understanding on what is achievable in terms
of Object Characterization from light curves and derived use cases.

To guide these aims, the following specific research questions have been posed:

• Which Resident Space Object characteristics can be deduced from light curves and
how?

• Which observability conditions are necessary to do so?

• Which SST use cases does direct Object Characterization enable?

These questions are but a summary to which the reader can refer to for a brief understanding
of the essence and overall scope of this thesis. However, they are too broad to serve as specific
objectives. This is, they need to be broken down through a state of the art review of the field.
Therefore, the specific objectives identified in the Literature Review Chapter are summarized
in the following section.

1.3. Specific Research Goals

This is a list of specific research goals of this thesis, which have been derived from the three
research questions above through the Literature Review in Chapter 2. Each of these goals
corresponds to particular scientific contribution of this thesis. They have been grouped in
four main sub-groups, according to the specific OC sub-field.

• Light curve modelling

– Optimize the self-shadowing problem, inherent in light curve modelling, for the
particular case of a non-convex object whose surface can be described with a small
number of flat facets.

• Shape determination from light curves using the Extended Gaussian Image (EGI) plus
Minkowski minimization algorithm

– Propose a new metric that compares how close two polyhedrons are from being
mutually homothetic.

– Assess the performance of the algorithm for different variants and tuning
parameters.

– Derive the Hessian of the volume of a polyhedron relative to its supports, so that
it can be used within Minkowski minimization.

– Investigate the influence of the non-negativity constraint on the observability of
the density of the EGI tessellation w.r.t. the number of samples in the light curve,
including sensor noise.

• Sequential attitude estimation from light curves

– Characterize the non-linearity of the sequential attitude estimation problem from
light curves.
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– Adapt the Adaptive Gaussian Mixtures Unscented Kalman Filter (AGMUKF) to
the attitude estimation problem.

– Assess its potential as a competitor to the state-of-the-art Particle Filter (PF).

• Use cases

– Demonstrate that the other contributions of this thesis have the potential to
improve OC-enabled use cases such as ADR and health monitoring of operational
satellites.

These goals are discussed again in more depth 1) at the end of the Literature Review Chapter,
where they have been derived; 2) at the end ot this thesis, as part of the Conclusion and
Outlook Chapter; and 3) individually in their respective core chapters of this thesis (see the
following section).

1.4. Procedure and structure

The content of the rest of this thesis is summarized here. First, Chapter 2 investigates
the literature on the topic of the three research questions from Section 1.2, and sets the
specific and exact research goals of this thesis (summarized above in Section 1.3). Next,
Chapter 3 describes the light curve model, with the aim to lay out the concepts, foundations
and mathematical tools necessary to then develop Object Characterization (OC). Its main
contribution is the development of a new rendering algorithm for light curves. Chapter 4
revisits, verifies and expands the light-curve-based shape determination algorithm based
on EGIs and Minkowski minimization. Next, Chapter 5 develops the new AGMUKF for
Attitude Determination (AD), a non-linear sequential solver that estimates attitude from
light curves. It is followed by Chapter 6, which wraps the results of the previous chapters
by focusing on the third research question–it explains how the developments of this thesis
can be exploited to enable or enhance SST-related use cases. This dissertation is closed by
Chapter 7 with a summary of the new contributions of this thesis to science, as well as the
recommended work for future research.

The reader will find the bibliography sources used throughout this document at the end,
followed by the Appendices. Appendix A summarizes the software and hardware
framework that has been used to support the scientific work of this thesis. Then,
Appendix B contains a quick reference of the methods highlighted in the Literature Review
Chapter. Afterwards, Appendix C contains necessary properties of quaternion algebra,
while Appendix D describes attitude representations and includes attitude-related
derivations. Next, Appendix E defines the concept of EGI and describes the quad-cube
tessellation of the sphere. Finally Appendix F describes the Unscented Transform.
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Having established the goals of this thesis, this chapter explores the available literature
on the state-of-the-art of space Object Characterization (OC) from light curves. First,
Section 2.1 explores the state-of-the-art of light curve simulation, a process that is key to
properly understand how OC itself works. Then, the research objectives themselves are
studied. This is done from the point of view of the three research questions. Therefore, each
of the three sections that follow (Sections 2.2 to 2.4) focus on each question, in the order
they have been presented in Section 1.2. Finally, Section 2.5 closes the Literature Review
with the identification of niches in the current literature of light-curve-based OC–i.e. where
this thesis can contribute. As such, this last section justifies the specific research goals of
this work from Section 1.3.

2.1. Light Curve Simulation

The first point that is relevant in this literature review is how light curves are simulated. OC
is the inverse problem to light curve simulation or modelling, which is analogously named
the forward problem. As such, understanding how object characteristics affect the outcome
of optical measurements–joined together in the form of light curves–is a first step towards
answering the first research question of this dissertation.

Furthermore, light curve simulation is an excellent tool to validate OC algorithms: it provides
the ground truth to the problem, allowing the researcher to cheaply and quickly explore
varied sets of scenarios, as well as to perform Monte Carlo simulations.

The problem of light curve simulation is well understood in general, and several works
have dealt with it. One possible approach is to simulate the whole observation chain: an
optical telescope image is simulated, which can then be processed to extract the brightness
measurement of the object of interest. This is the case of e.g.Watanabe et al. (2017)–they use
the software Blender to generate the image of the object, plus the modelling tool SOAPY
to perturb it with realistic sensor and atmospheric effects. Another example is the high-
fidelity image generation tool developed by Lockheed Martin and the Rochester Institute of
Technology (Bennett et al., 2014), where they use Computer Aided Design (CAD) models,
and adapt the radiometric model DIRSIG (Schott et al., 1999) to incorporate texture and
polarization properties of reflected light. An alternative option is to skip the image generation
step, and directly estimate the total amount of light received at the sensor. This is e.g. the
case of Willison (2016). Another comprehensive light curve simulation pipeline that also
skips image generation can be found in the doctoral dissertation of Fan (2020). There are
several parts that need to be addressed when considering a light curve model.

• The first factor is the observation geometry or the relative position of the three agents
involved: the Sun (illumination source), the object (upon whose surfaces the light
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reflects) and the observer (which receives the reflected light and records its properties).
This is a celestial mechanics problem where the orbits of the object (and possibly the
observer, if not ground-based) around the Earth, as well as that of the Earth around
the Sun, need to be known. This is well established knowledge in the field of physics,
and is widely covered by any modern or classical textbook on the topic, such as Vallado
et al. (2013).

• The next factor is the attitude state of the object. Attitude dynamics and kinematics
are textbook material, too (e.g. Titterton et al. (2004)). Environmental torques that
may perturb the attitude of a RSO have been explored (Wetterer et al., 2014), as well
as how they couple with orbital dynamics (Früh et al., 2014).

• The next point relevant to light curve simulation is how the object shape is modelled.
The field of CAD is mature enough–three dimensional objects are often modelled as a
mesh of flat facets connected along their edges and vertices. (Sarkar, 2017)

• Then, there is the topic of modelling the reflection phenomena of light bouncing off
the surfaces of the object. Although the physical and quantum principles of reflection
and refraction are well understood (Hecht, 2002), such fundamental laws are unfit
to be implemented on a system where computation resources are realistic–it would
require modelling every atom in the material, which is unfeasible and intractable with
a small, finite set of parameters. Thus, Nicodemus (1965) introduced what is known
as the Biderectional Refleciton Distribution Function (BRDF), a family of functions
that can be used to simplify this problem, while still preserving the ability to model
arbitrarily complex reflection patterns. There are plenty of BRDF models available
in the literature. The simplest one uses the diffuse Lambertian model (Hecht, 2002).
In order of complexity, then there are those that consider specular and diffuse effects
(Cook et al., 1982), and even include anisotropic components (Ashikhmin et al., 2000).
These are still tunable with a handful of parameters. Even more complex BRDFs
can model polarization effects, e.g. using Mueller matrices (Pasqual et al., 2017), or
with generalized Gaussian distributions (Renhorn et al., 2015). Finally, even more
detail can be achieved when using look-up tables that empirically define the BRDF
as a function of its parameters (Willison et al., 2015). Henderson (2014) presents a
comprehensive comparison of different BRDF models for light curve simulation.

• Another factor to consider is the sensor model. This is, how the telescope captures
the light and outputs it as an image (a two-dimensional array of pixels). For the
common case of Charge-Coupled Device (CCD) detectors, these type of models are
well understood. The Handbook of CCD Astronomy is one such example (Tobergte
et al., 2013). It details how the light is detected using a CCD telescope, and which are
the main perturbation effects. Früh (2015) or Coder et al. (2017) are but two examples
where CCD models are used in the scope of characterizing RSOs from light curves.

• The final item that should be taken into account is the problem of rendering. This is,
to determine the path of the light when traversing the shape geometry of the object,
so that each photon is perturbed by the surfaces it interacted with. This is a task
that can be extremely expensive–high fidelity approaches require advanced ray tracing
techniques and cutting edge Graphics Processing Units (GPUs). In the field of light
curve simulation, a wide range of approaches has been used. Piergentili et al. (2017)
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use the simplest approach possible, which is to neglect self-shadowing for non-convex
objects. They argue that this leads to the peaks in the light curve differing from reality
the most, but that this is not a critical hindrance in their OC application. Früh et al.
(2014) consider self-shadowing effects by tessellating the surface of the object, and
then using ray tracing to see which rays originated in each cell of the object can reach
the illumination source. They conclude that the thinner the tessellation, the higher
the precision but the more expensive the computation. They introduce the concept of
shadow map, that can be used as an averaged solution to the ray tracing output, which
is more efficient to compute. Ray tracing is used in Fan (2020). Another approach is
the one developed by Wang et al. (2018). It consists in using objects determined by
small triangular meshes, so that each triangle can be approximated as a vertex. Then,
each of these vertices is checked against the other facets, to determine if the facet
it represents is hidden or not. Finally, the most detailed approach is to use actual
rendering software, such as Blender in Watanabe et al. (2017). The disadvantage of
this approach is the additional complexity of seamlessly integrating external tools to
OC frameworks.

This is a summary of the aspects to be considered in a light curve model. Each of these
points is covered in Chapter 3, which establishes the light curve model used within this
dissertation.

2.2. Object Characterization Breakdown

This section breaks the first research question (which Resident Space Object characteristics
can be deduced from light curves and how? ) down into individual characteristics of a RSO.
A good starting point is the work of Cox et al. (2016), which introduces the Space Object
Ontology as an attempt to describe all RSO characteristics in a single framework. Some
included characteristics are:

• whether the RSO is natural or artificial,

• functions and capabilities,

• orbit and manoeuvres,

• attitude,

• object features (shape, size and mass),

• object identifier,

• involved entities (e.g. owner, operator, etc.),

among others. Object Characterization (OC) includes, thus, any piece of information that
can be associated to an object in any way. To approach this first research question, first it
is necessary to classify and organize the characteristics themselves.

The first grouping that can be defined is whether the characteristic represents a physical
or an abstract property of the object. A physical characteristic is such that represents
an aspect of the physical nature of the object, such as its position in space and time, its
attitude, or the composition of the object materials. An abstract property, instead, is a piece
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of information not related to a physical aspect, such as the object identification according
to some naming convention, the mission objective or the identity of the owner of the object.
Measurements are inherently physical. Therefore, intuitively it shall be easier to obtain
physical characteristics of the object from them. Abstract characteristics, on the contrary,
may require further effort or subsequent analysis of the physical ones.

The rest of this section gives an overview of which characteristics have been estimated from
light curves in the past, and how. The first and most obvious physical characteristic of a RSO
is its position and velocity in time–i.e. its orbit. Other physical characteristics that typically
influence the light curves directly are the attitude of the object, its size, shape and reflective
properties of its surfaces. Orbit and attitude are a time-variant status, while the rest are of
a more permanent nature–while they might change over time due to e.g. degradation, they
are unlikely to change over short periods.

2.2.1. Orbit Ephemeris

Orbit Determination (OD) (velocity and position or orbital elements) is itself a well
established and consolidated field, covered by textbooks such as Vallado et al. (2013) or
Wiesel (2010). Although there is still new research going on around this topic (Schiemenz
et al., 2020), this thesis focuses on object characteristics other than the orbit of the object,
since these fields are comparatively less developed.

2.2.2. Attitude

Chronologically, initial OC research focused on full or partial Attitude Determination (AD).
Full determination refers to estimating the entire attitude state and angular rates of an
object, while partial refers to obtaining less information: e.g. only the rotation period, but
not the direction of the spin axis.

AD methods can be further divided into two types, those that require a-priori knowledge
on the shape, size and reflective properties of the object, and those that do not (Hall et al.,
2014).

Partial, shape-independent methods

Starting with the shape-independent1, partial AD methods, their state is relatively mature in
the literature. Linder et al. (2015) present a compendium of six different methods to extract
the apparent period of a light curve, both for cases when the light curve is equispaced and
when it is not. Most of the methods they assess are based on the Fourier transform, namely
the Fast Fourier Transform (FFT), various types of periodogram and Welch’s method. They
additionally study the epoch folding method, which uses different candidate periods to fit an
artificial pulse to the folded light curve (Larsson, 1996). To validate these methods, Linder
et al. (2015) use apparent periods obtained from objects with retro-reflectors using Satellite
Laser Ranging (SLR). Their results surmise that, although none of these methods has 100%

1Here shape-independent is abusing the notation to imply independence not only from shape, but also from
reflective properties and size–i.e. from any non-dynamic property of the object.
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success rate (e.g. fractions of the actual period may be obtained), cross-checking between
them often allows correct extraction of apparent periods for stably spinning objects.

Once they have established the spin period of a light curve, if any, Linder et al. (2015)
additionally obtain phase plots of the light curve–i.e. the light curve is plotted against the
residual of time divided by period. A phase plot can be thought of as an intermediate partial
measurement and/or characteristic of the object, since it contains the apparent rotation
period, but might encode information pertinent to other characteristics, such as shape or
reflective properties.

Full, shape-independent methods

There have been some attempts to extract full attitude state from the object’s light curve,
without knowledge on its shape, size or reflective properties. The earliest work applied to
artificial objects is that of Hall et al. (2006). They use the epoch method (Magnusson,
1986), originally designed to determine the spin inertial axis and period of asteroids rotating
around a principle axis. It exploits the fact that the period observed on the light curve of a
rotating object differs slightly from the inertial rotation period, as a function of the relative
movement between the object, the observer and the Sun, as well as the orientation of the
spin axis. It uses Weighted Least Squares (WLS) to fit the spin axis and sidereal period to
variations over time of the apparent period, extracted by piece-wise Fourier analysis of the
light curve. This method, however, is severely limited on the observability conditions of the
object. For on-ground observers, it often provides two equally probable distinct solutions
for the spin axis (Somers, 2011).

Hall et al. (2014) propose a potential expansion to the epoch method, which could deal with
precessing objects–i.e. RSOs with axial symmetry that rotate around a non-principal axis.
They propose a double-Fourier analysis of the light curve, in which the main and precessing
frequencies could be identified. There has been no implementation of such case, neither on
simulated nor on real measurements, however. Another partial, more recent AD approach
based on Convolutional Neural Networks (CNNs) has been proposed by Badura et al. (2022)
to provide attitude status classification (stable, rotating, tumbling, etc.).

Full, shape-dependent methods

Finally, there is plenty of literature regarding techniques to extract the full attitude state
from passive measurements, when there is a priori information on the object shape, size and
reflective properties.

Davis et al. (1957) were some of the first to try to estimate the attitude of an artificial
spinning satellite with known cylindrical shape. They proposed observing the satellite in
question with an optical telescope, so that specular reflections would be caught. Specular
reflections constrict the orientation of the satellite to a subset of all possible orientations, as
a function of the observer-object-Sun triangle. From enough observations, given the known
shape and reflective properties of the object, it is possible to determine the spinning axis of
said object. Their approach was further expanded to account for diffuse reflections (Giese,
1963) or to exploit maximum/minimum ratio of observed brightness (Williams, 1969), which
simplified the acquisition of the measurement data. These methods, however, are particular

9



2. Literature Review

to only cylinder shapes, a small subset of all the possible shapes a RSO could have (e.g.
cuboid, winged or more complex).

Another family of methods is the sequential estimation of RSO attitude given a known, but
arbitrary shape/reflective model. These all need an initial estimation of attitude, although
the most advanced versions can deal with high initial uncertainty. Wetterer et al. (2009)
pioneer the use of the Unscented Kalman Filter (UKF) to estimate the attitude and the
angular rates of RSOs from light curves. Holzinger et al. (2012), Holzinger et al. (2014),
and Linares et al. (2014a) improve upon the inability of the Extended Kalman Filter (EKF)
and the UKF to capture the high-non-linearities of this problem by using the Particle Filter
(PF) instead. While Linares et al. (2014a) estimate the attitude of uncontrolled objects,
Holzinger et al. (2012) and Holzinger et al. (2014) do so for agile, controlled objects with
shape model uncertainty. Coder et al. (2015) improve the computational tractability of
the agile scenario with the Marginalized Particle Filter: a Singer process noise model to
describe unknown manoeuvring torques justifies the linearization of attitude rates. Coder et
al. (2017) improve this approach with an extended noise model of the measurement process,
which allows to initialize the filter with bigger state uncertainty. Real attitude ephemeris
of the Hubble Space Telescope have been used to validate this implementation (Coder et
al., 2018). Regarding uncontrolled objects, Bernard et al. (2018) compare the performance
of the EKF against a bootstrapped Particle Filter. They identify that the EKF diverges
because of the extreme non-linearity of the measurement model. Du et al. (2018) show that
attitude estimation of uncontrolled objects can be improved w.r.t. the PF approach by using
an Unscented Particle Filter: particles become kernels, which are propagated with a bank
of UKFs. Finally, Burton et al. (2021) define pseudo-measurements as incident-reflecting
directions pairs, and use them to explore two extensions to the EKF for AD. In one, they
filter all unfeasible pseudo-measurements out, before feeding the surviving ones to an EKF.
In the other one, they use a Gaussian Mixture (GM) to represent the (attitude) state space
by wrapping the EKF core with a Probability Hypothesis Density (PHD).

A different alternative is that proposed by Piergentili et al. (2017). They treat the attitude
characterisation problem as a batch optimization one. They employ heuristic optimization
to find the attitude state at a given instant, such that the corresponding simulated light
curve best fits the measured one in the weighted least squares sense. They assume known
shape and reflective parameters.

2.2.3. Shape Characterization

The way the shape/size and reflective properties of an object affect its light curve are often
strongly coupled at any range of the electromagnetic spectrum. For example, a small-area,
high-albedo plate could reflect as much Sun light as a wider, yet low-albedo one in the
same orbit. Thus, unless specific information about the object is available, which could
help the SST agents discern these two factors, their effects on measurements are often
indistinguishable from one another. Often, shape characterization actually refers to the
characterization of some abstract quantity that contains both the effects of shape and
reflective properties, but from which neither can be extracted individually. The rest of this
subsection describes techniques available in the literature to extract shape (sometimes
coupled with surface properties) from light curves.
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The first family of shape-recovery methods is the one based on the method developed by
Kaasalainen et al. (2001). They recover asteroid shapes in a two-step process: first, they
extract an Extended Gaussian Image (EGI) from light curve data; then, they recover the
shape itself using the work of Little (1985), which exploits Minkowski’s theorem (Minkowski,
1897). Calef et al. (2006) port this process to the case of artificial objects, exploring the
benefits of ridge regularization. Bradley et al. (2014) apply this method to simulated non-
convex objects. More recently, Friedman et al. (2019) have further explored the observability
of this method based on the Gramian of the measurement model. Furthermore Fan et al.
(2019) and Fan et al. (2020) extend the method to use two consecutive light curves, an
initialization one where full observability is necessary, plus a refinement one that does not
need to contain all the shape information. They prove that this modification is more robust
than the one-big-light-curve approach when measurement noise is present. Finally, Fan et al.
(2021) further modify the method to incorporate an arbitrary number of light curves. After
initializing the filter with the two-light-curves method, the additional information of each
new light curve is fused with the EGI estimate via a PF scheme. In any variant, this method
is unable to obtain non-convex shapes, returning instead convex-equivalent ones–i.e. the
unique convex shape that would produce the same light curve.

An attitude-independent alternative that estimates average area-albedo of the cross section
of a stable RSO is proposed in Payne et al. (2017). They introduce a set of light curve
based methods, by which the average magnitude of a phase plot of the object of interest is
compared against a catalogue of well-known objects. The difference is used to return the
albedo-area both for simple-shaped objects (where the phase plot has a single peak), and
for objects with distinct recognizable features (e.g. specular glints from solar panels).

Fulcoly et al. (2012) plant the seed for the classification-based approach to shape
determination. They study a simulated set of light curves for a few selected shapes, and
detect that the lower bound intensity versus phase angle curve is strongly correlated to the
shape, regardless of size, attitude and surface reflective properties. This leads to the
development of a shape-classification method based on comparing this lower bound of a
test light curve, against the lower bound of each simulated set, on a shape by shape basis.
It’s success rate is of ∼ 70% for stable objects, and ∼ 80% for rotating ones. A generalized
approach based on Machine Learning (ML) is introduced by Furfaro et al. (2019), by which
a CNN is trained to classify light curves among a set of known shapes. Even if the
observation scenario is different than that of Fulcoly et al. (2012), the success rate is
increased to more than 90%. Wu et al. (2016) implement another gradient-descent neural
network to classify RSOs by shape, this time with the infrared signature taken by a space
observer as input.

2.2.4. Surface Materials Characterization

The reflective properties of the surfaces of RSOs influence any electromagnetic-based
measurements (i.e. light curves included). Thus, it should be possible to infer these
properties from them. However, as indicated in the previous subsection, reflectivity, shape
and size are strongly coupled, and their effects on passive measurements are not so easily
decoupled. In the literature, some approaches have been proposed to determine the
material composition of RSO surfaces. Stryjewski et al. (2010) postulate that polarized
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light curves should contain independent information on material composition, since neither
shape nor size should influence the polarization of the light upon reflecting off said
surfaces. They suggest the construction of RSO classifiers based on a symmetry observed
on different material diattenuation coefficients. This lead eventually to the work of
Dianetti et al. (2019), where multiple-model adaptive estimation is used to identify RSO
surface materials from polarized light curves. The dissertation of Dianetti (2020) expands
on this to exploit spectroscopic light curves, a.k.a. differential photometry, to characterize
surface materials.

Other works demonstrate the potential of using differential photometry to characterize RSO
materials: Reyes (2018) catalogues the spectroscopic signature of frequently-used spacecraft
materials, for future use in characterization techniques, while Zigo et al. (2019) classify
objects between three different dominant materials, based on their differential photometry
signature.

In general, material characterization literature suggests that polarized (Beamer et al., 2018;
Cegarra Polo et al., 2019) and spectroscopic (Reyes et al., 2021) light curves can potentially
be used for ML-based approaches to the material classification problem.

2.2.5. Simultaneous Characterization

This subsection deals with those methods and techniques in the literature that aim at
estimating more than one type of physical characteristic from light curves at the same
time. For example, Henderson et al. (2012) and Henderson (2014) use a batch-UKF and a
bootstrapped-PF to simultaneously estimate position, attitude, albedo and size of a
cuboid. On the same line, Linares et al. (2014b) fuse a light curve using a plain UKF to
estimate position, attitude, mass and area of the RSO. Linares et al. (2012) present a
similar UKF-based approach that estimates attitude and position together with an EGI
parametrization of shape. Linares et al. (2014c) do the same, but use a multiple-model
adaptive algorithm to capture the shape, instead. Linares et al. (2018) expand the state
with facet normals and albedo-area products to perform a simultaneous attitude-shape
estimation, albeit with known angular rates. They model the particles of a PF as a
Hamiltonian system in probability space to improve filter efficiency by providing
high-probability samples. Furthermore, after a certain number of iterations, Lasso
regularization is used to preserve only those facet normals that contribute the most,
leaving the rest out of the state vector. Finally Qin et al. (2018) estimate position and
attitude using a classical PF, while Yun et al. (2020) additionally estimate surface
reflectivity, too. Furthermore, the latter improve the computational cost of the PF by
approximating the Probability Density Function (PDF) represented by the particle cloud
of the filter with a Gaussian Mixture (GM), using the Excpectation-Maximizaiton (EM)
algorithm. Then, a conventional EKF or UKF measurement update for each GM kernel
substitutes the costlier PF update.

2.2.6. Abstract Characterization

This final subsection summarizes other characterization approaches in the literature, whose
goal is to obtain more abstract characteristics. Most of the more abstract characterization
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of objects comes in the form of classification, since these kind of characteristics are not so
easily represented by finite subsets of N -dimensional real numbers. For example, Furfaro
et al. (2016) propose an Ontology-based classification algorithm based on CNNs that learn
to identify object classes from their light curves. They demonstrate this approach by
training a network to identify the status and type of a RSO: active, inactive, space debris
or fragment. Another variant of this approach is validated in Linares et al. (2016b), where
objects are classified as rocket bodies, payloads or debris. Furfaro et al. (2018) compare
this approach against other classification techniques, showing that CNNs surpass previous
ML implementations.

Another subgroup of abstract OC is manoeuvre detection and characterization. This branch
of OC rarely uses direct passive measurements, such as Radar data or light curves. Instead, it
often relies on processed results in the form of orbital ephemerides. For example, Kelecy et al.
(2007) propose a Delta-V manoeuvre detection method based on the identification of orbital-
energy discontinuities extracted from Two-Line Element (TLE) data. They achieve impulsive
manoeuvre characterization accuracy down to the cm s−1. More recent approaches are based
on ML. While Linares et al. (2017) combine an UKF for Orbit Determination (OD) plus
reinforcement learning, Abay et al. (2018) do so with generative adversarial networks.

The manoeuvres that may be detected using direct measurements are those that modify the
attitude of the RSO, since this has a direct effect on its light curve. In fact, the Attitude
Determination (AD) methods developed in Holzinger et al. (2014) and Coder et al. (2017),
mentioned above, are a good example of this application. These works estimate attitude
under the assumption that the RSO is subject to control torques, modelled as a Markov chain
of exponentially time-correlated acceleration states. Thus, angular accelerations are part of
the output of their filters, providing an effective estimation of attitude manoeuvres.

2.2.7. Summary

To sum up, the current section gives a literature-review-based answer to the first question
of this dissertation: Which RSO characteristics can be deduced from light curves and
how?

For quick reference, the reader may refer to Appendix B, where the content of this section
is summarized into a set of compact tables.

2.3. Observability of Object Characteristics

This next section reviews the literature that assesses how observable particular object
characteristics are, in different scenarios. This is, it addresses the second research question:
Which observability conditions are necessary to do so? In this context, observability is to
be understood as the measure on how well a given characteristic (hidden state) can be
inferred from a measurement sample (observable state).

First, Hinks et al. (2013) study the observability of the attitude and reflective parameters
(albedo) from one single light curve measurement using its Fisher Information Matrix (FIM).
They show how, for the attitude case, the FIM has rank 1. Thus, since the attitude state
has 3 Degrees of Fereedom (DoFs), for any attitude state there exists a plane along which
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it can move without altering the measurement. They assume the Ashikhmin-Shirley BRDF
(Ashikhmin et al., 2000). They conclude that the anisotropy direction of any surface of the
object, along with its specular reflectance, is not observable unless the surface is observed
exactly from the glint direction relative to the incoming Sun light. Linares et al. (2016a) build
upon this concept to analyse other reflective models and prismatic shapes. They observe a
marked decrease in attitude observability when the object shape tends from an elongated
prism to a cylinder, for the case when the Sun and the observer lie on the object-centred plane
perpendicular to the axial axis. Dianetti et al. (2020) use the FIM to study the observability
of attitude from light curves, but this time using multiple spectral channels. Their results
show that attitude is not more observable than with a single monochromatic light curve,
except for corner-case configurations–the gain obtained from having the information spread
over multiple channels is countered by the increased noise per channel.

Next, Früh (2015) proposes the use of the Gramian of the linearized estimation problem,
considering position, attitude, shape and reflective properties as the hidden state, and
optical measurements as the observations. This allows to consider the joint observability
from a chain of measurements, in contrast to Hinks et al. (2013). Furthermore, she
modifies the classical Gramian from control theory to incorporate the effect of
measurement noise. Astrometric measurements (right ascension and declination on the
sky) are analysed separately from photometric ones (light curves). Früh (2015) concludes
that shape, attitude and reflective properties are not directly observable from astrometric
measurements: even if the orbital dynamic model incorporates non-conservative forces and
torques due to these characteristics, their effects are too coupled and only an abstract
hidden state that summarizes them is truly observable. This same issue is expected when
using light curves. Friedman et al. (2018) expand the Gramian approach to assess how long
the observations should be, and how many astrometric measurements are necessary, to be
able to extract reflective properties for different Low Earth Orbit (LEO) and
Geosyncrhonous Earth Orbit (GEO) cases. The Gramian is used by Friedman et al. (2019)
to assess the observability of the convex-equivalent shape, when using the EGI plus
Minkowski method (see Table B.2) to extract it from the light curve. They demonstrate
how observability analysis can be used to choose an efficient observation window and frame
rate. They conclude that the light curve must be at least as long as the number of cells of
EGI used (see Chapter 4). Subbarao et al. (2019) compare different reflective models in
terms of observability for the OC case, too, but using the observability matrix,
instead.

One particularly interesting approach, following the line of observability analysis, is that of
Dianetti et al. (2018). They propose an observability-driven filter that estimates the object
orbit and other characteristics using astrometric and photometric measurements. Whenever
the Gramian/FIM of the e.g. attitude state becomes positive-definite (least singular value
above some threshold), this state can be incorporated into the filter state, so that a more
realistic model can be used. A similar approach within an Unscented-Schmidt Kalman
Filter (USKF) to estimate position, mass, attitude and shape parameters is presented in
Richardson et al. (2018), where different parameters are toggled between considered (the
uncertainty of the parameter is taken into account, but it is not updated) and estimated
(the parameter is updated), depending on their FIM score.

The following list sums up the answer to the second research question, which observability
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conditions are necessary to do so?, as per the above literature review:

• Simultaneous shape and attitude characterization from light curves is strongly coupled
in most cases, making it difficult to discern between the two, if neither is known a-
priori. (Früh, 2015)

• Observability analysis can be used to design resource-efficient measurement scenarios.
(Friedman et al., 2017)

• Multi-model approaches exist to decide which parameters to estimate depending on the
observability assessment for each particular scenario. (Dianetti et al., 2018; Richardson
et al., 2018)

2.4. Object Characterization Derived Use Cases

This section of the Literature Review tackles the third research question: which SST use
cases does direct Object Characterization enable?

The most evident and straightforward use cases that SST offers are clearly defined in the
Service Portfolio of the EU SST Support Framework (EU SST, 2021). They identify three
main use cases:

• Collision Avoidance (CA) warns operators of oncoming high risk events;

• Re-entry Analysis (RE) monitors high risk atmosphere reentry events of man-made
objects; and

• Fragmentation Analysis (FG) catalogues and analyses destructive events, when
multiple new objects result from a collision between RSOs, or any other type of
fragmentation event.

OC has been identified as a key asset to improve the quality of these services. For example,
Friedman et al. (2022) state that shape and reflective properties determination is essential
for precise orbit propagation. It follows that the more accurate the model of the RSO orbit
becomes, the more reliable will collision warnings be. The same is true for atmospheric
reentry events.

Another field where OC can contribute to better quality services is the domain of Active
Debris Removal (ADR). Liou (2013) identify ground-based Radar and optical OC as one
of the main challenges faced by the ADR sector. They justify this statement on the fact that
knowledge of the attitude states of space debris is necessary to design any ADR mission.
On the same line, Juillard et al. (2021) state that the chaser agent in an ADR mission must
be able to estimate the attitude of its target. In fact, object characterization capabilities
(mainly for shape and attitude/angular momentum) are a common by-design feature of
ADR agents. For example, in Lv et al. (2022) they are used by the chaser spacecraft during
its approach to the target to autonomously decide which is the best-suited ADR method:
harpoon or net. The need for ADR-oriented OC capabilities is made even more evident in
the doctoral dissertation of Jankovic (2022), a work that proposes an ADR ontology designed
to incorporate object characteristics of different origin, and digest them for optimal ADR
decision-making.
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Finally, another potential OC-enabled use case is Health Monitoring of operational
satellites. Ryan et al. (2007) propose to use light curves to identify unexpected changes in
the characteristics of operated satellites, which might be indicators of health issues
(e.g. changes in surface properties might indicate degradation due to radiation exposure or
debris impacts). Enomoto et al. (2016) propose an UKF shape and attitude estimation
approach based on light curves, and using multiple-model estimation, to assess the health
status of satellite components (e.g. antennae direction or position of solar panel). Likewise,
from the ML point of view, Liu et al. (2021) conclude that neural networks could be
trained to identify satellite health issues from light curves. Matsushita et al. (2019) further
highlight the importance of OC for health monitoring purposes.

To summarize,

• characterization of attitude, shape and reflective properties positively impacts the
accuracy of orbital predictions. This, in turn, improves the reliability of collision and
reentry warnings, common use cases of the SST pipeline; (Friedman et al., 2022)

• ADR strongly benefits from a-priori knowledge of the characteristics of objects targeted
for removal; (Liou, 2013)

• OC techniques have been identified as potential data sources for satellite health
monitoring pipelines. (Enomoto et al., 2016)

2.5. The Scientific Contribution of This Thesis

Having explored the available literature on the three research questions (Section 1.2 of the
Introduction) it is clear that they are answered in extensive detail by previous works. This
means that the goals of this thesis need to be further particularized to fill the niches
therein. Given the wide range of characteristics and methods available, in order not to
dilute the contribution of this dissertation, the focus has been set on shape and attitude
determination using panchromatic (one single, wide channel across the visual spectrum)
light curves obtained from a CCD-equipped, ground-based optical telescope. This section
of the literature review justifies this decision by showing that it can lead toward original
scientific contribution in the field of Object Characterization.

The first niche has been identified in the light curve simulation field. In particular, regarding
the rendering problem and self-shadowing on non-convex objects. The current approach that
implements a solution for self-shadowing without relying on external software, in the state
of the art, is ray tracing. The main goal of ray tracing, however, is to generate images
as two-dimensional arrays of pixels. Rays are propagated from each pixel, through the
observation scenario until they reach the light source or they dissipate (e.g. by bouncing a
predetermined number of times on object surfaces) (Shirley et al., 2003). This approach has
several drawbacks. Overall this can be significantly expensive to compute, especially if a fine
resolution is desired, necessary for good light curve simulation accuracy (Früh et al., 2014).
Additionally, being the light curve a single scalar measurement (not a 2D array), the effort to
first calculate each pixel contribution through ray tracing, and then add all the contributions
together, seems like a long way to achieve the goal. The other method presented above is
that of Wang et al. (2018). This method is still an approximation, because each facet of the
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object can only be shadowed or not as a whole. In their use case facets are small, so that this
hypothesis does not introduce significant errors. However, this method looses accuracy when
flat facets are of comparable size to the overall object characteristic dimension. Sometimes,
it is interesting to simulate light curves of such simple geometries, where the object is defined
by a few, big flat surfaces. There is no state-of-the-art method that can handle these cases
with good accuracy and efficient computation times, for the reasons exposed above. This
thesis introduces an alternative approach to the self-shadowing problem that addresses this
niche.

The second niche that has been identified lies in the EGI plus Minkowski minimization
method used to estimate convex-equivalent shapes from light curves (Table B.2). Although
the method was introduced 20 years ago in the asteroid community (Kaasalainen et al.,
2001), and is based on even older numerical methods (Little, 1985), it has arisen recent
interest in the community. Several expansions have been proposed (Fan et al., 2020; Fan
et al., 2021) that improve its performance with realistic light curves. Furthermore, its
observability conditions have been explored (Friedman et al., 2019). However, there is some
room for improvement.

• First, there is no established quantitative criteria to assess the performance of the
method, but which can be applied directly on the obtained polyhedron shape. The
state of the art is to assess how well the partial EGI result of the actual shape of
the object is matched, but the actual final polyhedron is assessed qualitatively only
(Calef et al., 2006; Fan et al., 2019). This thesis addresses this by proposing one such
quantitative criterion.

• Second, Little (1985) suggests that the Minkowski minimization step of this method
can be improved. He states that its convergence speed might benefit from exploiting
analytical expressions for the gradient and Hessian of the volume of a polyhedron with
its supports. These expressions have not been found in the literature, so this point is
explored here.

• Third, the observability of the method has been explored using traditional, linearized
(Gramian-based) techniques (Friedman et al., 2019). However, the nature of the
problem does not allow negative areas, which means the solution space is
constrained, hence the conclusions of Gramian-based observability analysis need to
be reviewed. This is done in this thesis.

The third niche has been found for the sequential estimation approach to Attitude
Determination from light curves. Two major methods exist. On the one hand, there is
either the UKF- or the EKF-based approach, which is computationally efficient but is
shown to be unfit to deal with the high non-linearity and weak-observability inherent to
the problem (Wetterer et al., 2009; Yun et al., 2020). Although weak-observability can be
mitigated with observability-driven implementations (Dianetti et al., 2018; Richardson
et al., 2018), the non-linearity is still a problem. On the other hand, there is the family of
PF-based approaches (Linares et al., 2014a), which capture non-linear, multi-modal PDFs
well, but tend to be computationally expensive. Some improvements have been proposed
to mitigate this issue, including the use of GMs (Yun et al., 2020) or a Hamiltonian
Markov Chain (Linares et al., 2018). However, this dissertation proposes a third
alternative, inspired on the Adaptive Gaussian Mixtures Unscented Kalman Filter
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introduced in Schiemenz et al. (2020) for Orbit Determination. It is an alternative solution
that can model complex, multi-modal PDFs, like the PF, but has the potential to be
computationally cheaper, because it adapts the number of kernels (similar to the PF
particles) based on an online assessment of the non-linearity present in the system at each
time step, coupled with the novel Gaussian splitting libraries of Vittaldev et al.
(2016).

Finally, regarding the third question on OC-enabled use cases, this thesis briefly explores
the potential of these two methods toward ADR and health monitoring. Collision avoidance
is left for further work, because it requires coupled modelling of attitude and shape with
orbital dynamics. This falls out of the scope of this dissertation.
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3. Light Curve Model

A light curve is the time series of brightness measurements taken by a telescope when
observing a target object. Each measurement is a 1-dimensional value that is a function
of the observed light intensity. This measurement is mainly conditioned by the following
elements.

• The observation geometry refers to the relative position between the Sun, the object
and the observer. This influences the measurement in two key aspects:

– first, the observation geometry defines the distance travelled by the light until it
is measured–the longer the distance, the higher the Free-Space Path Loss (FSPL),
which is proportional to the inverse squared distance;

– second, it determines which is the phase angle, the angle between the incident
(Sun to object) and reflection (object to observer) directions–this is a key factor
that determines how much light is reflected out of the surfaces of the object.

• Next, the object characteristics determine how the reflection happens locally
(around the object). This is,

– the size of the object influences how many photons interact with it;

– the shape establishes the local geometry of the reflection;

– the surface material properties define the spectral intensity (and polarization)
of the light reflected from each surface element of the object; and

– the attitude state determines the incident and reflection directions from the point
of view of the object.

• Another factor that influences the measured intensity is the sensor. Its aperture size,
focal length, quantum efficiency and overall transmissivity affect the final reading.

• Finally, other environmental factors can have an effect on measured intensity, such as
atmospheric attenuation (in case of ground-based observers) or Sun irradiance
fluctuations.1

This chapter starts with Section 3.1, which describes the models used to solve the Forward
Problem, a.k.a. Light Curve Simulation. It establishes the necessary relations between the
variables of the problem (summarized above) and the measurement. These relationships
are key to later study the OC problem, or Inverse Problem, which tries to determine a
sub-set of this factors (e.g. shape or attitude) from the measurement. Next, Section 3.2

1These two factors are not taken into account within the scope of this thesis. They are complex issues that
would overcomplicate this work and distract from the goals at hand. Their effects are roughly modelled
by artificial noise, when necessary.
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identifies the need for an efficient rendering algorithm when simulating objects with simple,
polyhedron geometries. Section 3.3 follows with what constitutes the scientific contribution
of this chapter. This is the Shadow Projection algorithm, which proposes a new solution to
said rendering problem by projecting shadows between triangular facets. This new
algorithm is then tested in Section 3.4. Finally, the chapter concludes with a summary in
Section 3.5.

This chapter is adapted from and expands on Vallverdú Cabrera et al. (2021a, Section 3),
the first paper published as part of the doctoral research of this thesis. As such, parts of
Vallverdú Cabrera et al. (2021a) are included herein.

3.1. Problem Definition

This section lays out the equations from the literature, and derived from the assumptions
taken in this thesis when necessary, that are required to model the optical measurement of
a RSO. Additionally, it establishes most of the definitions used throughout this thesis in
coming chapters, as well as nomenclature and mathematical conventions.

This section is a prelude to the first research question, Which Resident Space Object
characteristics can be deduced from light curves [. . . ]?. This is, all the characteristics that
can influence an optical measurement are discussed: only those that influence it are
susceptible to be estimated in the inverse problem. Therefore, for the most part, this
section can be seen by the reader as the equivalent of the Fundamentals of this thesis. All
the theory necessary to build up to the research described in the subsequent sections and
chapters is introduced here.

3.1.1. Observation Geometry

In this section the three agents whose interaction produces the measurement are established.
These are the Sun, which acts as the illumination source; the object, which reflects the light
coming from the Sun; and the observer, which receives the light coming from the object and
registers its intensity.

ur

us

ub

φbO

Figure 3.1.: Observation geometry projected on the plane formed by the Sun, the object and
the observer (Vallverdú Cabrera et al., 2021a)

The complete observation geometry is shown in Figure 3.1. It represents the plane formed
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3.1. Problem Definition

by the Sun, the object (O) and the observer. The vectors are all unitary: us is the incident
direction, which points away from the object and toward the Sun; ur, the reflected direction,
toward the observer. The vector ub is the bisector of the other two,

ub =
us + ur
∥us∥+ ∥ur∥

(3.1)

a.k.a. Phase Angle Bisector (PAB). The angle between us and ur is known as the phase
angle, φb = ∠(us, ur).

These, together with the distance from object to Sun ds, and from observer to object dr,
a.k.a. range, are the parameters that define the path travelled by the light throughout the
whole process.

The main hypothesis that constrains the observation geometry for the case at hand is that
the dimensions of the object can be neglected compared to the distances involved (ds and
dr). This means that the light rays from the Sun are parallel in the vicinity of the object,
and the same happens for the reflected ones at the observer location. In other words, this
dissertation focuses on non-resolved objects–i.e. objects that are too far away from the
observer to appear as anything more than a single point.

3.1.2. Object Shape and Size Representation

The next factors to be discussed are the shape and size of an object, and how they are
represented throughout this work.

A tractable way to represent a three-dimensional object is to approximate it by an Euclidean
region bound by a closed set of triangular surfaces, called facets (Wang et al., 2018). This
is, an object O ⊂ R3 is delimited by Nf facets with three vertices each, connected with
each other along their edges. Thus, its boundary δO is a closed surface made up by a set of
facets:

δO =
{
F (k) | k ∈ 1 . . Nf

}
. (3.2)

Each facet F (k) ⊂ δO is uniquely defined with the set of its three vertices v
(k)
i ,

vset
(
F (k)

)
=
{
v
(k)
1 , v

(k)
2 , v

(k)
3

}
, (3.3)

where the operator vset returns the vertex set that uniquely defines a polygon, ordered as
per the right-hand rule around the facet normal.

3.1.3. Attitude

On the one hand, the observation geometry (object orbit, observer and Sun locations) is
given in the inertial frame I; throughout this work, the inertial frame refers to the Geocentric
Celestial Reference Frame (GCRF) as defined in Kaplan (2006). On the other hand, the
geometry of the object (its shape and size) is defined in the body frame B–i.e. any frame
attached to the object. The object attitude links the observation and object geometries: it
is used to determine how the object itself is oriented relative to the Sun and the observer.
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In particular, the us and ur directions, which are naturally known in inertial frame, need to
be transformed to body frame.

This section establishes the convention followed throughout the rest of this document to
represent attitude. Quaternions, whose algebra is symbolized as H (see Appendix C) are the
main attitude representation used in this thesis. Different conventions exist in the literature
to represent and manipulate quaternions (Solà, 2017). Thus, this section states which ones
have been adopted in this work.

In particular, the quaternion product used throughout this thesis follows the Hamilton
convention, as defined in Equation C.7. As stated in Appendix C, this work uses the
symbol ⊙ to represent said Hamiltonian product of quaternions, following the notation
used in Markley et al. (2014).

Attitude in this thesis is represented by the unit quaternion qIB ∈ A that transforms vector
in body frame vB ∈ R3 to inertial frame vI ∈ R3 representation. This is

vI =
(
qIB
)∗ ⊙ vB ⊙ qIB . (3.4)

A is the subset of H of unit quaternions with positive real part (see Appendix D).

The convention used here is that bold symbols represent quaternions (e.g. q ∈ H), while the
normal-font counterpart (e.g. q ∈ R4) is its vector representation. To illustrate:

q = qr + qii+ qjj + qkk⇒ q =


qr
qi
qj
qk

 . (3.5)

Following this same convention, whenever a symbol that has been previously identified as a
three-dimensional vector (e.g. v ∈ R3) is shown in bold font (e.g. v ∈ H), it represents the
quaternion whose real part is 0 and whose three hyper-imaginary components (i, j and k)
hold the three dimensions of the vector. This is

v =

v1v2
v3

⇒ v = v1i+ v2j + v3k . (3.6)

Furthermore, the ∗ super-index indicates quaternion conjugate. Refer to Appendices C
and D for a detailed description of these conventions, as well as a comprehensive summary
of quaternion algebra H.

If the results of this thesis are to be compared to other works that use different quaternion
conventions, these two final notes need to be considered:

• First, in this work, attitude quaternions represent the rotation between coordinate
frames, opposite to the typical approach on computer graphics where they represent
vector rotations inside a single frame (Solà, 2017). This choice is reflected by the fact
that in Equation 3.4 the conjugate quaternion multiplies on the left, while the non-
conjugate one is on the right. This has the consequence that quaternion composition
goes from left to right (opposite to e.g. direction cosine or rotation matrices). This is,
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the quaternion that transforms from frame B to frame I can be composed by the one
that goes from B to intermediate frame C, and the one from C to I as follows:

qIB = qCB ⊙ qIC . (3.7)

• Second, the vector representation of a quaternion (q in non-bold font) has the real part
in the first position, while the hyper-imaginary parts i, j and k occupy the second,
third and fourth. This is opposite to some literature where the real part is placed at
the end of the vector representation.

With the quaternion representation of attitude, kinematics are defined by the simple
equation

q̇IB = −1

2
ωBB/I ⊙ qIB (3.8)

where the dot indicates derivative over time, and ωBB/I is the instantaneous angular velocity
of frame B relative to frame I, expressed in B coordinates. See Appendix D for the derivation
of this equation.

Attitude dynamics in Newtonian physics can be described by the conservation of angular
momentum of a constant-mass, rigid system as (Wertz et al., 2011)

IBG ω̇
B
B/I = TB − ωBB/I ×

(
IBGω

B
B/I

)
, (3.9)

where T ∈ R3 is the net torque applied to the object, while IG ∈ R3×3 is the tensor of inertia
of the object. Without loss of generality, the rest of this thesis assumes that the body frame
is aligned with the principal axes of the object–i.e. IBG is diagonal. The symbol × indicates
cross product.

3.1.4. Bidirectional Reflectance Distribution Function

This section deals with the object’s surface properties, and how these interact with the light.
This effect is modelled with the Biderectional Refleciton Distribution Function (BRDF),
defined by Nicodemus (1965) as

fr(λ, us, ur) =
dLr,λ(λ, ur)

dEs,λ(λ, us)
. (3.10)

The BRDF represented by fr gives the ratio, in inverse steradians or sr−1, between the
reflected spectral radiance dLr,λ that leaves a surface element dS in the direction ur, in
W/sr/m3, over the spectral irradiance dEs,λ incident on the surface element in the direction
opposite to us, in W/m3. It is dependent on the wavelength of light, λ, hence the spectral
qualification.2 The differential form is commonly used to allow for contributions to the total
Lr,λ other than dEs,λ.

Figure 3.2 shows the same observation geometry from Figure 3.1, but from the point of view
of a surface element of the object with anisotropic directions uu and uv and normal un. The

2The λ subscript indicates derivative over wavelength. From here onward, the explicit dependency on λ will
be dropped from spectral quantities, as it will be implicit in the subindex–e.g. Ls,λ(us) ≡ Ls,λ(λ, us).
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un

uu

uv
ϕb

ϕr

ϕs

θb

ub

θs
θr

us

ur

Figure 3.2.: The observation geometry for a surface element (Vallverdú Cabrera et al., 2021a)

angle pairs (θs, ϕs), (θr, ϕr) and (θb, ϕb) are the spherical coordinates (polar, azimuth) of the
incident, reflected and PAB directions respectively, as seen by the facet coordinate system,
whose base is formed by

[
uu uv un

]
.

Several BRDFs models have been used to simulate light curves in the literature (see
Section 2.1). Henderson (2014) concludes that the Ashikhmin-Shirley (AS) (Ashikhmin
et al., 2000) is the best suited for anisotropic materials. Subbarao et al. (2019) identify the
Cook-Torrance (CT) (Cook et al., 1982) as one of the BRDFs whose observability
conditions are better. These two are often used in other OC-related literature, such as
Wetterer et al. (2009) and Linares et al. (2014a). Furthermore, they conserve energy, which
is a necessary condition for physically realistic modelling (Wetterer et al., 2014). Thus,
they are the ones that have been used as main models within this thesis.

Below follow the equations for these two methods (Wetterer et al., 2014). For both methods,
the BRDF is

fr(λ, us, ur) = dRd + (1− d)Rs , (3.11)

where Rd and Rs are the bidirectional diffuse and specular reflectances, respectively, and d
is the fraction of the total BRDF that Rd represents. In the most general case, these three
parameters may depend on wavelength λ, while only Rd and Rs depend on us and ur. The
dependence of Rd and Rs on λ is implemented through the diffuse ρ(λ) and specular F0(λ)
reflectances of the material.

Ashikhmin-Shirley. The bidirectional radiances of the AS model are

Rd =
28ρ

23π
(1− sF0)

(
1−

(
1− un

Tus
2

)5
)(

1−
(
1− un

Tur
2

)5
)

(3.12)

and

Rs =

√
(nu + 1)(nv + 1)

8π

FAS
cmax (unTus, unTur)

(cos θb)
nu cos2 ϕb+nv sin2 ϕb , (3.13)

where

FAS = F0 +

(
1

s
− F0

)
(1− c)5 (3.14)
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is the Fresnel approximation used, and

c = ur
Tub . (3.15)

The parameters nv ≥ 1 and nu ≥ 1 are called exponential factors and govern the anisotropy
of the surface element, as well as the shape of the reflection hemisphere of the BRDF. This
is, for higher values of nv, the bidirectional specular reflectance along direction uv allows
less energy dispersion away from the plane of pure specular reflection; nu has the same effect
along direction uu.

Cook-Torrance with Lambert diffuse component. For the CT, the bidirectional
reflectances are3

Rd =
ρ

π
(3.16)

and

Rs =
DGFCT

4 (unTur) (unTus)
. (3.17)

The terms in the specular component are the slope distribution function,

D =
exp

(
− tan2 θb

m2

)
πm2 cos4 θb

; (3.18)

the geometrical attenuation factor,

G = min

(
1,

2
(
un

Tub
) (
un

Tur
)

c
,
2
(
un

Tub
) (
un

Tus
)

c

)
; (3.19)

and the Fresnel equation,

FCT =
1

2

(g − c)2

(g + c)2

(
1 +

(c (g + c)− 1)2

(c (g − c) + 1)2

)
, (3.20)

where c is the one defined in Equation 3.15,

g2 = n2i + c2 − 1 , (3.21)

while

ni =
1 +
√
F0

1−√F0
(3.22)

is the index of refraction. Here there is no anisotropy, and the shape of the BRDF is
instead controlled by the facet slope parameter m ∈ [0, 1]. There is a rough equivalence
between the two methods at nv = nu = 2/m2. Thus, for lower values of m, the bidirectional

3Some discrepancy exists between the CT version presented here, the one from Wetterer et al. (2014) (also
used e.g. in Holzinger et al. (2014)), with the original formulation in Cook et al. (1982). Namely, Rs is
not divided by 4 there. Furthermore, other sources differ slightly in other terms. For example, in Coder
et al. (2018) or in Du et al. (2018), Rs is divided by π, instead of by 4. These are all small differences,
which only change how the specular component varies w.r.t. the diffuse one. The shape of the specular
component itself, as well as the properties of the function (non-linearity), are unaffected. For consistency,
in this thesis the version of Wetterer et al. (2014) is used.
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3. Light Curve Model

specular reflectance allows less energy dispersion away from the plane of pure specular
reflection.

The irradiance is computed as the total radiance that is incident on the surface element
orthogonally (Nicodemus et al., 1977). Thus, it can be obtained as

dEs,λ(us) = Ls,λ(us) cos θsdΩs , (3.23)

where Ls,λ is the incident radiance, dΩs is the solid angle element in the illumination direction
and θs = ∠(un, us) is defined as in Figure 3.2.

3.1.5. The Path of Light

This section computes the irradiance received at the location of a distant observer due to
the Sun light reflected by the object, as per the hypotheses that constrain the model used
in this thesis.

First, the illumination source (the Sun) is assumed to emit black-body radiation, then Ls,λ
follows Planck’s law (Planck et al., 1914):

Ls,λ = Bλ(Ts) =
2hc2

λ5

(
exp

(
hc

λkBTs

)
− 1

)−1

, (3.24)

where Ts is the temperature of the illumination source; h, Planck’s constant; c, the speed of
light in vacuum; and kB, Boltzmann’s constant.

Then, assuming a single illumination source, the total spectral radiance reflected by a surface
element can be computed by integrating along the area of the illumination source Ss:

Lr,λ(us, ur) =

∫
Ss

dLr,λ(λ, ur) =

∫
Ss

fr(λ, us, ur)Ls,λ(us) cos θsdΩs . (3.25)

If the surface element is in the vicinity of the Earth, and the single illumination source is
that of the Sun, then the total incident solid angle becomes on average Ωs ∼ 2.72× 10−4 sr.
This value is sufficiently small for θs and us to be considered constant along dΩs. Thus, the
above integral for the scenario studied in this thesis simplifies to

Lr,λ(us, ur) ≃ fr(λ, us, ur) cos θsE⊥
s,λ(us) , (3.26)

where E⊥
s,λ(us) = ΩsLs,λ(us) is the irradiance a surface element orthogonal to us would

receive.

Next, the spectral irradiance produced by the surface element dS, as received from a distant
observer located along the direction of ur, is

dE⊥
r,λ(us, ur) = Lr,λ(us, ur)dΩr , (3.27)

where dΩr is the solid angle element as seen at the observer location. This is, if the observer
is located at a distance dr from the surface element in question,

dΩr =
cos(θr)dS

dr
2 . (3.28)
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Then, the spectral irradiance received at the observer is obtained by integrating
Equation 3.27 along the visible part of each facet. This is

Ea,λ(us, ur) =

Nf∑
k=1

∫
A(k)

cos(θ
(k)
r )

dr
2 L

(k)
r,λ(us, ur)dS , (3.29)

where A(k) is the area of the portion of facet k that is both illuminated by the Sun, and
visible from the observer direction. Again, assuming the object is orders of magnitude
smaller than the distance between object and observer, in this dissertation this integral has
been simplified to

Ea,λ(us, ur) =

Nf∑
k=1

A(k)(us, ur) cos(θ
(k)
r )

dr
2 L

(k)
r,λ(us, ur) , (3.30)

in W/m3.

The total radiance reflected over a certain bandwidth Bλ is obtained by integrating the
spectral one over wavelength, which yields

Lr =

∫
Bλ

Lr,λdλ , (3.31)

in W/sr/m2. Likewise, the total irradiance received at observer location will be

Ea =

∫
Bλ

Ea,λdλ =

Nf∑
k=1

A(k)(us, ur) cos(θ
(k)
r )

dr
2 L(k)

r (us, ur) , (3.32)

in W/m2

Finally, taking into account the above assumptions, apparent magnitude–the logarithmic
measure of an object brightness, as seen from an atmosphere-less Earth (Tassoul, 2004)–can
be computed as

mA = −2.5 log10
(
Ea
Ea,0

)
, (3.33)

where Ea,0 is the irradiance received from the Vega star at the observer location (assuming
no obstructions of any kind).

Except for the computation of A(k), which is covered in its dedicated section (3.3), this
completes the set of assumptions needed by this thesis to compute the power per unit surface
of the Sun light reflected out of the object and received at the observer.

3.1.6. The Sensor

This section deals with the model of the sensor–the optical telescope–, whose task is to
capture this light and register its intensity, so that it can be used by the (computer) OC
algorithms studied and developed in the following chapters.
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This work assumes that the aperture is small enough for Ea,λ to be constant along its
surface. Being the aperture area Aa and normal ua, this assumption yields the spectral flux
that reaches its focal plane:

Φa,λ = Aa cos(θa)Ea,λ , (3.34)

in Wm−1, where θa = ∠(ua,−ur) is the Line of Sight (LoS) angle.

The probability of an incident photon of wavelength λ being detected as an electron is
modelled as the transmissivity τ(λ) for the entire telescope pipeline–it includes quantum
efficiency and other losses (Tobergte et al., 2013). Thus, the spectral electron flux is

Fa,λ = Φa,λτ(λ)
λ

hc
(3.35)

in e− s−1m−1. Next, this thesis assumes the measurement can be obtained by integrating
over some finite bandwidth Bλ. Therefore, the total electron flux in e− s−1 used here is

Fa =

∫
Bλ

Fa,λdλ . (3.36)

It is a function of the received total irradiance Ea (Equation 3.32), although it is not necessary
proportional to it.

Telescope measurements are often expressed in logarithmic scale as instrumental magnitude,
which similar to the apparent magnitude mA (Equation 3.33), is defined as (Tobergte et al.,
2013)

mI = −2.5 log10 Fa . (3.37)

The last assumption made in this section is that the telescope does not compute the electron
flux, but instead it counts the number of electrons accumulated over the integration or
exposure time te. Thus, the flux is approximated as

Fa ≃
Ca
te

, (3.38)

being Ca the number of electrons e− counted during the window te.

3.2. Motivation for a New Solution to the Shadows Problem

This section deals with the problem of finding A(k), the illuminated and visible portion of
the area of each facet k. It has been omitted on purpose in the previous section, because it
constitutes the main scientific contribution of this chapter.

When computing A(k), it is necessary to distinguish between convex and non-convex
objects. In the particular case for convex objects, the computation of A(k) is
straightforward (Piergentili et al., 2017):

A(k) = δ(θ(k)s , θ(k)r )Ak (3.39)

where Ak is the area of the facet and

δ(θ(k)s , θ(k)r ) =

{
1 cos θ

(k)
s > 0 and cos θ

(k)
r > 0,

0 otherwise.
(3.40)
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In words, only the facets that look toward the Sun and the observer at the same time are
fully accounted for, and the rest are ignored.

For non-convex objects, however, this computation complicates greatly, because facets can
shadow each other. The current state of the art uses approximate solutions to solve the
shadows problem for light curve simulation. Ray tracing is expensive to compute, especially
without dedicated hardware–GPUs. Thus, it yields low accuracy because either resolution
must be sacrificed in favour of computational tractability, or an approximate solution has to
be used, such as the hidden vertex removal (Früh et al., 2014). Alternatively, Wang et al.
(2018) check facets overlap in both illumination and reflected directions, but assuming the
facets are small enough to be accounted for as points. This is a good approximation if the
object is defined as a set of many small (triangular) facets. However, it is not efficient for
simple geometries, where a few, big facets suffice to define the object: these facets need to be
divided into smaller ones until the main assumption of the method can be accepted.

Simulating accurate light curves of simplified non-convex objects is beneficial for fast
validation of OC algorithms, especially because resolving the shadows problem is typically
the bottleneck of the whole light curve simulation pipeline–the rest of the model is made of
straightforward analytical equations (see the previous section).

Therefore, this dissertation introduces the new shadow projection algorithm (see Algorithm 1
in the following section) with the aim to approximate a solution to this problem, that fills the
niche where the state-of-the-art methods mentioned above lag behind: simple objects with
a few flat facets. Simulating these kind of simplified objects accurately and inexpensively
contributes to faster prototyping of OC algorithms.

3.3. The Shadow Projection Algorithm

The Shadow Projection algorithm was qualitatively introduced in Vallverdú Cabrera et al.
(2021a) for the first time, the first work published within the scope of this thesis. This
section gives a fully detailed and formal description of the algorithm, instead.

This algorithm is constrained by the following two hypotheses:

1. light rays only bounce once–i.e. they die out upon their second reflection event;

2. the facets that define O can only intersect with each other at their borders–i.e. edges
or vertices.

The output of the shadow projection algorithm is directly the product A(k)
r = A(k) cos(θ

(k)
r ).

The value of A(k) itself is not necessary, since it never appears alone in the reflection formulas
above.

Before addressing the algorithm itself, some auxiliary operations, such as frame
transformations and other geometrical manipulations, need to be introduced.
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3. Light Curve Model

3.3.1. Projection onto a Plane

The first operation needed is the one that projects any point x ∈ R3 onto a plane with its
own coordinate system. In particular, given u ∈ R3, ∥u∥ = 1, the projection plane is

U =
{
x ∈ R3 | uTx = 0

}
. (3.41)

This is, U contains the origin. To define the coordinate system associated to U , one needs
two independent, and preferably orthogonal, vectors e1, e2 ∈ U that act as a base. The goal
is to express the projection of x on U as a linear combination of e1 and e2. One can achieve
this by proposing a frame transformation from the original frame onto some frame whose
base is

[
e1 e2 u

]
, and then losing the u component.

To do so, one can use the quaternion that transforms between two different frames, when
the representations of one vector are known in both (See Appendix D.3). Given

u =
[
u1 u2 u3

]T
, one such frame transformation quaternion can be obtained using

Equation D.16, with v = u, and w =
[
0 0 1

]T
. In other words, one finds a quaternion

that transforms a vector from whatever original frame where the normal of U is u, to a
destiny frame where the normal of U is parallel to the third base axis. This results in

qu =
1√

u12 + u22 + (1 + u3)2


1 + u3
−u2
u1
0

 . (3.42)

This is,

x̂ = (qu)
∗ xqu . (3.43)

After the transformation, the third coordinate of x can be eliminated, yielding

y = Ipx̂ , (3.44)

where

Ip =

[
1 0 0
0 1 0

]
. (3.45)

The projection map that returns y as a function x is defined as πu : R3 → R2. This is,
y = πu(x). Note that this is a linear map, since

y = πu(x) = (IpRu)x , (3.46)

where Ru = R(qu) is the Direction Cosine Matrix (DCM) form of the transformation
quaternion qu (See Appendix C).

Furthermore, it is important to remark that x = πu
−1(y) does not exist, since the solution

is not a unique point in R3, but a whole line orthogonal to U . In the following section, an
alternative to obtain a pseudo inverse of πu is proposed.
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3.3. The Shadow Projection Algorithm

3.3.2. Lifting from the Plane

The second operation that is needed by the shadow projection algorithm is lifting a projected
point (as in the previous subsection) back to some other coordinate system, including 3- or
higher-dimensional ones. As said above, πu

−1 is not defined. However, let V ⊂ RN , for
N ≥ 2, be another plane that is not orthogonal to U . If one demands that the lifted point
is in V , then one can define a unique lifting operation if one knows its inverse. This inverse
is the linear map that transforms from whatever coordinate frame V is expressed in (let its
points be defined as z ∈ V ) to U coordinates (y in the previous section). Let this map be
πvu : V → R2. For the case of V ⊂ R3, this is

πvu(z) = πu(x = z) . (3.47)

The goal is to find πuv = πvu
−1. Since both the domain and the image of πvu are an infinite

plane, πvu
−1 does exist if πvu is linear and bijective–i.e. U and V are not orthogonal. The

method proposed here to solve this problem exploits the fact that any plane can be fully
defined by three of its points that form a non-degenerate triangle (non-zero area). This
approach matches naturally with the fact that the object facets are all triangles.

Let za, zb, zc ∈ V be three such points. Since the triangle Tz formed by these three points
(as vset(Tz) = {za, zb, zc}) is non-degenerate, any two of its edges can be used as a (not
necessarily orthogonal) base of the plane V . This is, any point z ∈ V can be expressed as a
linear combination of one of the triangle’s vertices and the two edges that exit from it. This
is

z = za + t(zb − za) + s(zc − za) , (3.48)

where coefficients t, s ∈ R are the coordinates when using the edges as base vectors.

The fact that πvu is a linear map means that there exists M ∈ R2×N such that

y = πvu(z) =Mz . (3.49)

For the V ⊂ R3 particular case, M can be obtained from Equation 3.47 asM = IpRu. Thus,
Equation 3.48 can be transformed into

y =M (za + t(zb − za) + s(zc − za)) = ya + t(yb − ya) + s(yc − ya) . (3.50)

Effectively, the coordinates (t, s) that represent some point in plane V as a linear combination
of two edges of the triangle Tz defined in V , also represent the projection of that point onto U
as a function of the corresponding edges of the triangle Ty (as vset(Ty) = {ya, yb, yc}).
This means that given za, zb, zc ∈ V , πuv and some point y, one can find t and s by solving
Equation 3.50. This yields

t =
(y − ya)× (yc − ya)
(yb − ya)× (yc − ya)

, (3.51a)

s = − (y − ya)× (yb − ya)
(yb − ya)× (yc − ya)

. (3.51b)

Finally, one can obtain z from Equation 3.48. From here onward, the lifting operation of
point y from the plane represented by triangle Ty to the one represented by triangle Tz shall
be referred to as

z = lift (y;Ty, Tz) . (3.52)
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3. Light Curve Model

3.3.3. Polygon Clipping

Polygon clipping (a.k.a. polygon boolean operations) is the last key point of the Shadow
Projection Algorithm. In particular, polygon intersection and subtraction are needed.

Triangle Intersection Detection

The simplest operation needed is to detect whether two triangles overlap–i.e. whether their
intersection is not null. If the triangles are defined as a set of ordered vertices in R2, this is a
simple task that can be accomplished using the algorithm proposed in e.g. Mol (2022).

Along general lines, this triangle intersection algorithm checks whether any of the edges of
one triangle intersect with the edges of the other. If any do intersect, it means that the
triangles overlap. Refer to Mol (2022) for the exact logic.

This algorithm is interesting to use when one wants to know whether two triangles
intersect, but may not be interested in calculating the actual intersection, which is a slower
process.

Polygon Intersection and Subtraction Calculation

The other necessary processes are, given two polygons P (1), P (2) ⊂ R2, to actually compute
their intersection,

P (1∧2) := P (1) ∧ P (2) , (3.53)

and any of the possible subtractions,

P (1\2) := P (1) \ P (2) (3.54)

and

P (2\1) := P (2) \ P (1) . (3.55)

This can be achieved efficiently with e.g. the algorithms proposed by Vatti (1992).

The general principle of the Vatti (1992) algorithm is to scan the two operand polygons
over the areas formed between horizontal lines that pass through consecutive vertices (in
the vertical sense) of any of the operand polygons. Edge intersections are registered, and
used to form the vertices of the output polygon. Different vertex generation rules are used
depending on the operation (union, intersection or subtraction) being performed. A fully-
detailed explanation can be found in Vatti (1992).

This algorithm can efficiently handle any type of 2-dimensional polygons, including holed,
composed and/or self-intersecting ones. This is its most interesting feature for the case at
hand. As explained below, it is possible that, over the course of the shadow projection
algorithm, several polygons are subtracted from a single triangle. With every subtraction,
the original triangle can acquire dents, holes and even become split in smaller pieces. Thus,
a clipping algorithm that can handle these type of polygons is necessary.
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3.3. The Shadow Projection Algorithm

3.3.4. Algorithm

At the start of the algorithm, each facet F (k) is projected onto the planes Ur and Us, which
are defined by the equations rTur = 0 and rTus = 0, respectively. Let them be called
observer and Sun planes, respectively. To do so, it suffices to transform the vertex sets that
define each facet as follows:

vset
(
F (k)
r

)
=
{
πur(v) | v ∈ vset

(
F (k)

)}
(3.56)

and
vset

(
F (k)
s

)
=
{
πus(v) | v ∈ vset

(
F (k)

)}
. (3.57)

This step is similar to the projections used in Wang et al. (2018).

In the next step, the set {F (k)
r } is copied into what will be the set of output visible portions

of each facet:
V (k) = F (k)

r . (3.58)

Then, the projections on the observer plane are compared against each other. For each

pair j and k, the algorithm finds the polygon intersection F
(j∧k)
r = F

(j)
r ∧ F (k)

r . If the
intersection is not null, it needs to find which of the two facets is in front of the other,

from the point of view of the observer. To do so, first it selects one point of F
(j∧k)
r . The

algorithm uses the arithmetic mean of its vertices (v̄
(j∧k)
r ). Since the intersection of two

triangles will always be a convex polygon, v̄
(j∧k)
r is guaranteed to be inside the polygon

defined by F
(j∧k)
r . By extension, v̄

(j∧k)
r is inside the triangles F

(j)
r and F

(k)
r , too. Then, the

algorithm recovers the points v̄(j) and v̄(k) that are inside the triangles F (j) and F (k), such

that πur(v̄
(j)) = πus(v̄

(k)) = v̄
(j∧k)
r . It does so by using the lifting operation described in the

previous subsection, together with the triangles F (j) and F (k).

At this point, one can compute the relative distance of any point from the observer as

dist(x) = −xTur . (3.59)

This does not mean that dist(x) = 0 implies that the observer is exactly at x; but rather
that if dist(x) > dist(x′), then x is farther from the observer than x′. One can apply this
to v̄(j) and v̄(k) to assess which facet covers which: if dist(v̄(j)) > dist(v̄(k)), then facet j is
behind facet k, from the point of view of the observer, and vice-versa.

Let f be the index of the facet that is farther, while c is that of the one that is closer. Then,
it is necessary to subtract (using polygon boolean operations) the closest facet F (c) from the
visible portion of the farthest one V (f):

V (f) ← V (f) \ F (c)
r . (3.60)

This cycle is repeated for all combinations of j ∈ 1 . . Nf − 1 and k ∈ j + 1 . . Nf . However,
as facets become covered, some visible portions V (k) may become null. Whenever two facets
j and k to be compared have V (j) = V (k) = ∅, the pair is skipped. However, note that if
only one is obscured, the comparison still needs to be done, since it could still happen that
the obscured one is covering the other.
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3. Light Curve Model

At the end of this cycle, the set {V (k)} contains all the polygons that represent the portions
of each facet that are visible from the observer, already projected on the observer plane.
Note that these polygons may not be triangles anymore, or even convex. In fact, some could
even be composed holed polygons. This is not an issue, since they can still be represented
by a set of vertices: two non-intersecting triangles can be represented as a single polygon by
connecting one vertex of each triangle using two overlapping edges, while a holed polygon
can be converted into a non-convex one by joining an inner and an outer vertex in the same
way (Vatti, 1992).

At this point, the area of each polygon V (k) is the area of facet k orthogonal to the observer
direction that is visible from the observer. However, it is still necessary to calculate how much
of these areas are actually illuminated by the Sun, too. To do so, the facets are compared

again to each other, but this time using their projections on the Sun plane, F
(j)
s , F

(k)
s . Again,

for every pair where F
(j∧k)
s = F

(j)
s ∧F (k)

s ̸= ∅ and V (j), V (k) ̸= ∅, the algorithm performs the
same lifting operation on a common point to assess which facet covers which, from the Sun
point of view. However, in this second cycle there is the additional difficulty that the facet

F
(c)
s cannot be directly subtracted from V (f), because they exist in different projections.

Instead, the whole intersection polygon F
(j∧k)
r is lifted (vertex by vertex) directly onto Ur.

Since it is a shadow cast on facet f , the triangle pair used for the projection is F
(f)
s and

F
(f)
r . This is, the lifted polygon S(c) is defined by

vset
(
S(c)

)
=
{
lift
(
v;F (f)

s , F (f)
r

)
| v ∈ vset

(
F (j∧k)
s

)}
. (3.61)

It can now be subtracted from V (f):

V (f) ← V (f) \ S(c) . (3.62)

Finally, given vset(V (k)) = {v1, . . . , vNk
} one can compute the total projected area of each

facet that is both visible by the observer and illuminated by the Sun

A(k)
r = cos(θ(k)r )A(k) =

∥∥∥∥∥∥
Nk∑
j=1

vj × v(j mod Nk)+1

∥∥∥∥∥∥ , (3.63)

where Nk here is the number of vertices of V (k), while x mod y returns the modulus of x
divided by y.

Algorithm 1 summarizes the shadow projection algorithm.

Figure 3.3 gives a graphical explanation of the algorithm applied to an object composed by
the three facets F (1) (blue), F (2) (brown) and F (3) (lilac), which extend indefinitely along the
direction perpendicular to the plane. These facets and their projections are represented by

solid lines of the respective colour–and a dot, in the degenerate case of F
(2)
s . The dashed lines

are the projection planes, symbolized by Us and Ur, with normals us and ur, respectively.
Thick grey overlays represent shadows; and the also grey arrows track the shadow projection
between facets and from Us to Ur (the shadow lifting operation). The projections are drawn
with an offset to their respective planes, to indicate the distance w.r.t. the illumination
source or the observer. This notion is key to decide which of the overlapping facets is
shadowing the other. (Vallverdú Cabrera et al., 2021a)
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3.3. The Shadow Projection Algorithm

Algorithm 1 Shadow projection

Input: us, ur, {F (k) | k ∈ 1 . . Nf}
Output: {A(k)

r = cos θ
(k)
r A(k) | k ∈ 1 . . Nf}

1: for k ← 1, Nf do

2: F
(k)
r ← project F (k) onto Ur : r

Tur = 0 (Equation 3.56)

3: F
(k)
s ← project F (k) onto Us : r

Tus = 0 (Equation 3.57)

4: V (k) ← F
(k)
r if δ(θ

(k)
s , θ

(k)
r ) = 1 else ∅

5: end for
6: for all j, k ∈ N | 1 ≤ j < k ≤ Nf do
7: if V (j) = V (k) = ∅ then cycle

8: if F
(j)
r ∧ F (k)

r = ∅ (Mol, 2022) then cycle

9: F
(j∧k)
r ← F

(j)
r ∧ F (k)

r (Vatti, 1992)
10: f, c← FindClosest(j, k, r)

11: V (f) ← V (f) \ F (c)
r (Vatti, 1992)

12: end for
13: for all j, k ∈ N | 1 ≤ j < k ≤ Nf do
14: if V (j) = V (k) = ∅ then cycle

15: if F
(j)
s ∧ F (k)

s = ∅ (Mol, 2022) then cycle

16: F
(j∧k)
s ← F

(j)
s ∧ F (k)

s (Vatti, 1992)
17: f, c← FindClosest(j, k, i)

18: S(c) ← lift F
(j∧k)
s onto Ur (Equation 3.61)

19: V (f) ← V (f) \ S(c) (Vatti, 1992)
20: end for
21: A(k)

r ← Equation 3.63 applied on V (k) for k ← 1, Nf

22: function FindClosest(a,b,d)

23: v̄
(a∧b)
d ← average of vset(F

(a∧b)
d )

24: v̄(k) = lift(v̄a∧bd ;F
(k)
d , F (k)) for all k ∈ {a, b}

25: f, c← a, b if dist(v̄(a)) > dist(v̄(b)) else f, c← b, a (Equation 3.59)
26: return f, c
27: end function
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F (1)

F (2)

F (3)

Us

us

Ur

ur

Figure 3.3.: 2D illustration of the shadow projection algorithm (Vallverdú Cabrera et al.,
2021a)

Following the steps of the shadow projection algorithm in the case of Figure 3.3, first F (1) is
detected to be partially covered by F (2) in the ur direction. In the second part, the algorithm
detects that F (3) blocks some of the incident light from reaching another portion of F (1),
and this shadow is transported all the way to the Ur plane. Thus, V (1) ends up being the

non-shadowed part of F
(1)
r , as shown in the image. In this example, V (2) = V (3) = ∅ due

to Step 4 of Algorithm 1–i.e. F (2) is parallel to the light rays, while F (3) receives the light
from the opposite side from which the observer sees it.

In terms of speed, this algorithm needs to check twice (once in each projection) the
intersection of the 2-combinations of the Nf set of facets. This is, it needs to perform
Nf (Nf − 1) polygon intersection operations plus at most this many polygon subtractions
(one per non-empty intersection) and half as many i → r projections (one per non-empty
intersection on Us). Thus, for big Nf , the computation time scales with O(Nf

2).4

Furthermore, all iterative steps, except the subtraction operation, which occurs only
seldom, could be parallelized. (Vallverdú Cabrera et al., 2021a)

One final advantage of this algorithm is that areas visible from the observer point of view,
regardless of the illumination condition, can be already extracted at Step 4. This is useful
to account for radiated light, more significant in the infrared spectrum. (Vallverdú Cabrera
et al., 2021a)

Compared to the alternatives in the literature, both ray tracing Früh et al. (2014) and
hidden vertex removal Wang et al. (2018) methods provide an approximate solution to the
self-shadowing problem (given the 1-bounce hypothesis). Instead, the algorithm proposed
here gives an exact solution. It does not discretize the surfaces in pixels (Früh et al., 2014),
nor treats the object facets as vertices when checking if they are shadowed or not (Wang
et al., 2018). Instead, the exact shadowed portions of each facet are subtracted, down to
the numerical precision of the machine used. Where this method stands out the most, is
when the object is defined by a few, big facets. In this case, ray tracing would still need

4The term O(g(x)) is the Landau notation that indicates that, if g : Rn → R≥0, there exist δ,M ∈ R>0 such
that |O(g(x))| ≤ Mg(x) for any 0 < |x| < δ.
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to discretize the surfaces thinly to reach acceptable accuracy, and Wang et al. (2018) would
commit huge errors by assuming that facets can be treated as points. The Shadow Projection
algorithm, however, solves such a case with a few iterations, because only a few facets need
to be compared against each other, and gives an exact solution.

3.4. Evaluation

The Shadow Projection algorithm proposed in the previous section has been compared
against the Möller et al. (1997) ray tracing approach used e.g. in Fan (2020). Table 3.1
contains the configuration of the shape used to test these two algorithms. Table 3.1a
contains the list of vertices, while Table 3.1b contains the sets of three vertex indices that
define each of the 14 facets of the shape. The shape is in fact a cube, but where one of its
faces is concave, forming an inverted pyramid whose vertex is at the origin–these are the
last 4 facets in Table 3.1b. Figure 3.4 shows the front and rear views of this shape.

In the test, the following observation (ur) and Sun (us) vectors have been used:

ur =
[
cos θs cosϕs cos θs sinϕs sin θs

]T
, (3.64a)

us =
[
cos θr cosϕr cos θr sinϕr sin θr

]T
, (3.64b)

where θr and θs are the elevations relative to the x-y plane of the body frame, while ϕr and
ϕs are the azimuths around z from x to y.

First, both algorithms have been run against all the possible combinations of
θr, θs ∈ {−90◦,−60◦,−30◦, 0◦, 30◦, 60◦, 90◦} and ϕr, ϕs ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦}.
There are 7 values per parameter, so this results in a total of Nt = 74 = 2401 tests. In the
particular case of the ray tracing algorithm, the pixels used have a resolution of 0.01× 0.01
units squared. This is, one face of the cube is exactly covered by 200× 200 = 4 · 104 pixels.
To compare the two algorithms, their results have been evaluated using the L1-norm of the
facet-by-facet area error, averaged over all tests:

ϵ =
1

Nt

Nt∑
i=1

Nf∑
k=1

∣∣∣A(k)
r,RT −A

(k)
r,SP

∣∣∣ (θ(i)r , ϕ(i)r , θ
(i)
s , ϕ(i)s ) , (3.65)

where Nf = 14 is the number of facets, and the RT (ray tracing) and SP (shadow projection)

subscripts indicate the algorithm used to calculate the projected area (A(k)
r ). Each i indicates

the unique combination of angles that corresponds to test i. The result for this test case is
ϵ ≃ 0.4 square units. For a shape whose characteristic orthogonal projection is of 4 square
units (the area of one of the faces of the cube), this is a 10% average error on recovered
area. Meanwhile, the ray tracing algorithm needed 46 times the computation time of the
shadow projection algorithm, on average.

These results show how the shadow projection algorithm introduced in this dissertation is
clearly superior to the classical ray tracing alternative, when the shape is simply defined by
just a few facets. At 46 times the computational cost of the shadow projection algorithm,
the ray tracing one was able to produce results with an average 10% error. Of course,
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3. Light Curve Model

Table 3.1.: Shadow Projection test shape

(a) Vertices

Vertex x y z

1 −1.0 −1.0 −1.0
2 +1.0 −1.0 −1.0
3 −1.0 +1.0 −1.0
4 +1.0 +1.0 −1.0
5 −1.0 −1.0 +1.0
6 +1.0 −1.0 +1.0
7 −1.0 +1.0 +1.0
8 +1.0 +1.0 +1.0
9 +0.0 +0.0 +0.0

(b) Facets

Facet Vertex 1 Vertex 2 Vertex 3

1 1 3 4
2 1 4 2
3 5 6 7
4 6 8 7
5 1 5 7
6 1 7 3
7 2 4 8
8 2 8 6
9 1 2 6
10 1 6 5
11 3 7 9
12 7 8 9
13 8 4 9
14 4 3 9

(a) Front (b) Back

Figure 3.4.: Shadow Projection test shape
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increasing the ray tracing algorithm resolution would improve upon this error quadratically,
but the computational time needed would also increase quadratically.

To close this section, Figure 3.5 shows the particular result of the shadow projection
algorithm for the case of θr = 60◦, ϕr = 80◦, θs = 20◦ and ϕs = 145◦. The surfaces shaded
in green are the parts directly visible from the observer location (regardless of
illumination), while the orange ones are those visible from the observer and illuminated at
the same time. The green vector indicates the observer direction ur(θr, ϕr), while the
orange one is the Sun direction us(θs, ϕs). In particular, Figures 3.5c and 3.5d are the
views from the observer and Sun points of view (i.e. orthogonal to ur and us), respectively.
This is why the corresponding vectors do not appear in these two figures.5

Examples of the full light curve simulation pipeline are shown in the following chapters, in
the role of input data. Since they do not constitute further innovation, it has been deemed
unnecessary to include these examples in the current chapter.

3.5. Conclusion

This chapter has presented the light curve model that is used in the remaining of this thesis.
It has introduced the foreground, or necessary theory on which the rest of the research
exposed below is based.

The scientific contribution of this chapter is the Shadow Projection algorithm. This
algorithm solves the self-shadowing problem of the rendering step of a light curve. This is,
for non-convex objects, it calculates which parts of an object block the Sun light from
reaching which other parts, and then it finds which parts block the observer from seeing
which other parts. Compared to previous methods, the Shadow Projection algorithm
provides an exact solution, not having to compromise at some finite spatial resolution. It
excels when the object shape can be described as a polyhedron with a few, big triangular
facets. In this case, its computational speed is greater than traditional methods used to
solve the self-shadowing problem for light curve simulation.

The Shadow Projection algorithm has been tested against the traditional ray tracing
approach. For a simple, non-convex test shape, it has been proven to run ∼ 46 times faster
than the ray tracing alternative, for the case when ray tracing could only achieve 10%
projected area error.

5Note that the result of the Shadow Projection algorithm is only the projected areas on observer plane
{A(k)

r }. To obtain this figure, the lifting function described above was used to transport the intermediate
results {V (k)} from Algorithm 1 back to the three-dimensional facets of the object.
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(a) Front (b) Back

(c) Observer (d) Sun

Figure 3.5.: Illumination scenario for θr = 60◦, ϕr = 80◦, θs = 20◦ and ϕs = 145◦, computed
using Shadow Projection
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4. Shape Determination

This chapter studies the light-curve-based shape determination algorithm introduced in
Kaasalainen et al. (2001) discussed in Section 2.2.3, which estimates an Extended Gaussian
Image (EGI) from a light curve, and then uses Minkowski minimization to obtain a unique
convex shape in the from of a polyhedron.

Other than the light curve, this method needs the attitude of the object as an input, which
may not be available for all objects, especially if dealing with e.g. space debris or non-
collaborative satellites. Furthermore, it can only estimate convex shapes. This is, if the
object observed is not convex, a convex-equivalent shape is estimated instead–i.e. the convex
shape that would produce the closest light curve to the measured one.

Nonetheless, this method is still relevant as a potential building block to more complex
approaches that may exploit it directly, which would benefit from the insights gained studying
it. An example is the attitude-shape sequential estimation technique from Linares et al.
(2018), where a similar approach is embedded in a Marginalized PF.

Section 4.1 that follows describes the core algorithm itself, based on the literature. Next,
Section 4.2 proposes a new metric to assess how well the final shape recovered by the
algorithm resembles the true shape. Section 4.3 follows with the derivation of a potential
improvement to the numerical solution to Minkowski minimization: the derivatives the
volume of a polyhedron relative to its supports. It is followed by Section 4.4, which revisits
the observability of th EGI as a function of its tessellation density. Section 4.5 describes
then the multiple scenarios used to assess these potential improvements, and Section 4.6
presents and discusses the subsequent results. Section 4.7 proposes some ways forward to
overcome some of the shortcomings of this method. The chapter closes with Section 4.8,
with a summary of the findings herein.

This chapter is adapted from and expands on Vallverdú Cabrera et al. (2021b), the second
paper published as part of the doctoral research of this thesis. As such, parts of Vallverdú
Cabrera et al. (2021b) are included herein.

4.1. Problem Definition

This section explains the shape determination algorithm that recovers a convex shape from
a light curve, mainly based on the algorithm introduced by Kaasalainen et al. (2001). The
process is divided in two steps:

1. first, an Extended Gaussian Image (EGI) is estimated from the input light curve and
attitude profile;

41



4. Shape Determination

2. second, a shape, formally represented by a convex polyhedron in 3D, is recovered from
the EGI.

The following definition establishes the nomenclature used for a polyhedron for the remaining
of this chapter:

Definition 1. Let P be a polyhedron in R3 whose outer closed surface is bound by Nf flat
facets. Let the facets be indexed within the subspace of the natural numbers

L = {1 . . Nf} . (4.1)

Each facet can then be referred to as F (l) ⊂ δP, being δP the surface of P. Each facet has
area Al and a unit normal vector nl.

4.1.1. Estimating the EGI from a Light Curve

The Extended Gaussian Image (EGI) is a parametrization of a convex shape. Its formal
definition (Horn, 1984) has been included in Appendix E.1. In particular, it can represent a
convex polyhedron (i.e. the particular case of a finite number of flat facets); the EGI of (the
surface of) a convex polyhedron P is (Horn, 1984; Little, 1985):

Definition 2. Given the polyhedron P from Definition 1, the Extended Gaussian Image
of (the surface of) P can be expressed as the set of its normal-area pairs:

EGIP = {Aini | i ∈ 1 . . Nf} . (4.2)

As long as
Nf∑
i=1

Aini = 0 , (4.3)

the EGI uniquely represents a convex polyhedron (Little, 1985)1.

The EGI is estimated from a diverse-enough (Friedman et al., 2019) light curve by solving
the minimization problem

min
a

J =
∥∥∥L − Ŝa∥∥∥2 . (4.4)

where L ∈ RNt contains all the light curve measurements taken at Nt different times; a ∈ Na,
the vector of albedo-area products of an EGI with Na predefined directions; and Ŝ ∈ RNt×Na ,
the reflection matrix.

The EGI needs to be predefined with Na directions, using a tessellation scheme like e.g. the
quad-cube used by Friedman et al. (2019). This scheme is further developed in
Appendix E.2.

Each element Ŝij of the reflection matrix contains all the parameters of the light curve
simulation model from Chapter 3 except for albedo ρ and area A, which are contained in
aj = ρjAj . This method assumes that all the albedo values of each element of the EGI are
equal, ρj = ρ. Then, a can still be used as the areas of an EGI, because isotropic scaling

1See Appendix E.
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does not invalidate the zero-residual condition imposed by Equation 4.3. Thus, its equation
is

Ŝij =
1

ρ
δ(θ(j)s , θ(j)r )

Aa

dr
2 cos θ

(j)
a cos θ(j)r cos θ(j)s

∫
Bλ

f (j)r (λ, us, ur)τ(λ)E
⊥
s,λ(us)

λ

hc
dλ . (4.5)

This minimization must be subject to two constraints that bound a.

• First, it makes no physical sense that either areas or albedos are negative. Thus, the
area-albedo product must be always positive. This is, aj > 0 for all j ∈ 1 . . Na.

• Second, for the EGI to uniquely represent a convex polyhedron, the condition∑Nf

i=1Aini = 0 (See Equation 4.3) needs to be satisfied.

These two points are discussed below, followed by a note on noise-mitigation techniques
within the scope of the light curve to EGI step.

Positivity of a. This regression should be bound so that a > 0, because a negative albedo-
area has no physical meaning. There are different approaches by which this condition can
be achieved.

• Kaasalainen et al. (2001) suggest, for the application of this method on asteroid
shape recovery, to substitute aj by exp(bj), and then optimize for

b =
[
b1 · · · bNa

]T
. This renders the least squares non-linear, which then they solve

using the conjugate gradient method. Optimizing for unlimited b naturally
guarantees positive a. Furthermore, the exponential function being bijective grants
that a unique minimum of J in b corresponds to the same minimum in a.

• For use with artificial satellites, Calef et al. (2006) and Fan et al. (2020) use constrained
optimization directly on a.

The current work employs the Non-Negative linear Least Squares (NNLS) method from
Lawson et al. (1995), which aligns with the second option.

Convexity of the Recovered EGI. If the Recovered EGI is to be translated into a unique
convex polyhedron, the convexity condition expressed by Equation 4.3 has to be observed.
However, the optimal solution to Equation 4.4 does not necessarily comply with this
condition. The possible reasons may be noise in the measurement (Fan et al., 2019; Fan
et al., 2020) or uncertainty in the model. The latter may come from different sources:

• First, the assumptions used to construct Ŝ (i.e. reflective model, attitude, etc.) may
not match the observed object closely enough.

• Second, the tessellation scheme used to generate the EGI may miss important facets
from the observed object, which causes deviations on the convexity condition.

• Third, albedo variegation may cause the recovered EGI not to represent a convex
shape, because the varying albedos of the different facets of the object deform the a
vector out of convexity (Kaasalainen et al., 2001).
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• Finally, noise and biases in the light curve can cause the convexity residual to be
non-zero.

In the implementation evaluated here, deviations from convexity are corrected by using the
simple least squares solution suggested by Little (1985). This is, being a the result of the
unconstrained problem from Equation 4.4 under NNLS, a second least squares is performed
afterwards to find an alternative solution a∗ that does comply with Equation 4.3. This
is

min
a∗

J = ∥a− a∗∥2 ,

subj. to

Na∑
j=1

nja
∗ = 0 . (4.6)

Putting all the normal vectors into a matrix

n =
[
n1 · · · nNa

]
, (4.7)

this has the analytical solution

â∗ = â− nT (nnT )−1nâ , (4.8)

In words, a∗ is the closest approximation to the unconstrained albedo-areas solution a in
the least squares sense that, at the same time, lies within the subspace where Equation 4.3
is true. Although forcing this constraint ensures that the obtained EGI corresponds to a
unique convex shape, it may add unwanted biases to the final solution.

Other solutions exist to enforce this condition. Kaasalainen et al. (2001) use regularization
directly on Equation 4.4 to enforce this condition, while Fan et al. (2021) use a second least
squares approach similar to the one presented above, but that instead seeks to minimize
∥∑Na

j=1 nja
∗∥2 subject to 0 < a∗j − aj < Dj , where Dj is an upper bound for the change in

a. Both approaches seek the same goal as the one used by Little (1985), which is preferred
in the current work because of its analytical solution.

Stability against Noise. To guarantee enough detail on the recovered shape, it is necessary
to sample the EGI on the unit sphere with a tessellation scheme that is dense enough
(Friedman et al., 2019). However, the computational cost of the Minkowski minimization
problem increases with the number of directions of the EGI.

Nonetheless, due to noise in the signal and numerical errors, in practice EGIs recovered
from light curves may present a relatively high number of small, non-zero values. These
destabilize the Minkowski minimization process (Calef et al., 2006), and can be mitigated in
different ways. Fan et al. (2020) do so by artificially zeroing all albedo-area values below a
certain threshold. Furthermore, they deal with noisy light curves by employing two separate
consecutive light curves (Fan et al., 2020) or by wrapping the shape inversion process in a
particle-filter-based estimator using importance resampling (Fan et al., 2021). Calef et al.
(2006) use Tikhonov (a.k.a. ridge) regularization,

min
a
J =

∥∥∥L − Ŝa∥∥∥2 + (α ∥a∥)2 , (4.9)
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and suggest a cross-validation scheme to choose the best value for α. Additionally, this
dissertation proposes Lasso regularization,

min
a
J =

∥∥∥L − Ŝa∥∥∥2 + α

Na∑
j=1

|aj | , (4.10)

to help reduce noise sensitivity, because of its sharpening properties2–artificial objects are
likely to have less, bigger facets than e.g. asteroids, with sharper edges.

4.1.2. Generating a Convex Polyhedron from an EGI

The second step is called Minkowski minimization, and recovers a convex polyhedron from
a finite EGI like the one defined by Equation 4.2.

As explained by Little (1985), if the list of supports and corresponding unitary normals of a
convex polyhedron are known, the vertices, edges and facets of the same can be recovered.
The list of supports describes the location of all the planes that bind the polyhedron to be
recovered:

Definition 3. Given the polyhedron P from Definition 1, the support of the lth facet of P
is defined as

hl = nl
Tx , ∀x ∈ F (l) , (4.11)

where nl is the unitary outfacing normal of the facet F (l). This is, the support of a facet
is the minimum distance between the origin and the plane that contains said facet. (Little,
1985)

The supports are then used to obtain the location of the vertices of the dual of the target
polyhedron.

Definition 4. The dual of a convex polyhedron P is some other polyhedron P ′ such that its
vertices are the set of {nl/hl}, where nl and hl are the normal and support of each facet l
of P–i.e. each facet of P is mapped onto a vertex of P ′. In the same way, the dual of P ′ is
P–i.e. each vertex of P is mapped onto a facet of P ′. (Little, 1985)

Next, the target polyhedron is obtained by performing a convex hull of the locations described
by the supports as vertices, and then calculating the dual of such hull (Little, 1985). The
adjacency information of P (i.e. which vertices belong to each facet, and which facet is
adjacent to each vertex) can be obtained by interchanging facets and vertices in the adjacency
information of said convex hull.

The convex hull operation on a cloud of points can be efficiently obtained with the quickhull
algorithm described in Barber et al. (1996). This produces the facets of said convex hull as
a set of lists of vertices that belong to each facet. Simple iteration through this set provides
the inverse one: the set of lists of facets that touch each vertex.

Overall, this whole operation can be denoted as the function P(h), which obtains the vertices
of a polyhedron and its adjacency information from its list of supports h ∈ RNf .

2More on the results section.

45



4. Shape Determination

Minkowski’s theorem states that only one unique convex polyhedron exists for each EGI.
Since one can recover the polyhedron if one knows its supports, it must be possible to recover
the supports from the EGI. Little (1985) describes this process. As explained therein, the
Brunn-Minkowski theorem states that given two polyhedrons P andQ with the same number
of facets oriented along the same set of normal vectors ni, the product hP

TAQ is minimum
at hP if P and Q are homothetic, given a constant3 volume of P.

Definition 5. Two 3D polyhedrons P and Q are homothetic if there exist s ∈ R>0 and
t ∈ R3 such that

P = {x | x = sy + t, y ∈ Q} , (4.12)

This is, two polyhedrons are homothetic if there exists a scaling and translation
transformation that makes one equal to the other. (Little, 1985)

Thus, he proposes to solve the following minimization problem:

min
h

J = hTAQ ,

subj. to V (P(h)) = 1 ,

h > 0 ,

(4.13)

where AQ is the vector of areas from the EGI. Then, the optimization result hP is the vector
of the supports of a unit volume polyhedron (P) that is homothetic to Q, the one uniquely
defined by the areas of the EGI. The function V (P) returns the volume of the polyhedron P
(Little, 1985):

V (P) = 1

3
hl
TA . (4.14)

This is a problem of constrained convex minimization, and can be solved in various ways.
Little (1985) uses a gradient-based approach by which he first initializes the supports vector
h to unity. Then, he

1. constructs the polyhedron P from h (as explained above),

2. computes the volume V from P and its gradient ∇V with h,

3. scales h by V −1/3 to enforce the unit volume constraint (as per Equation 4.19), and
finally

4. modifies h by a step parallel to ∇V projected onto the hyperplane of V (h) = 1.

This is repeated until h does not vary significantly.

4.2. Homotheticity Distance

The first scientific contribution of this chapter is to introduce a systematic way to evaluate
the performance of the EGI plus Minkowski minimization method for shape determination,
against any range of scenario parameters and implementation approaches.

3since any constant value works, the simplest possible is used: unity.
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Previous studies (Calef et al., 2006; Fan et al., 2019) on this shape determination method
assess its performance by matching how close the EGI result is (e.g. in root-mean squared
sense) to the known EGI of the test polyhedron. However, this leaves the EGI to polyhedron
step out of the assessment.

To assess the success of each light curve inversion from end to end (from light curve to
polyhedron), this section introduces a new technique to evaluate how close two distinct
polyhedrons are, based on the homotheticity concept (Definition 5). In particular, the
proposed criterion checks how far from homotheticity they are.

To do so, first it is necessary to define the remnant volume operation:

Definition 6. the remnant volume operation ∆V (P,Q) between two polyhedrons P and
Q is the volume of the exclusive logical or (⊻) between P and Q:

∆V (P,Q) := V (P ⊻Q) = V (P) + V (Q)− 2V (P ∧Q) , (4.15)

where ∧ represents the polyhedron clipping intersection and V (P) is the function that returns
the volume of P.
Given two convex polyhedrons defined by their limiting planes, the intersection can be easily
computed e.g. by clipping and capping (Ahn et al., 2008).

Then, the proposed criterion is:

Definition 7. The homotheticity distance is

H(P,Q) = min
s,t

∆V (P, T (Q, s, t)) , (4.16)

where T (Q, s, t) scales Q isotropically by the factor s and translates it by the vector t, as in
Equation 4.12. In words, the homotheticity distance is the volume remnant of P and Q∗,
where Q∗ is scaled and translated from Q so that ∆V (P,Q∗) is minimum.

The homotheticity distance of two homothetic polyhedrons is 0; the higher it becomes, the
farther the two tested polyhedrons will be from homotheticity. In this work, Equation 4.16
is solved with either Powell’s (Powell, 1964) or L-BFGS-B (Zhu et al., 1997) minimization
algorithms.

To be able to compare different target shapes, H(P,Q) is normalized by the volume of
P,

H̄(P,Q) := H(P,Q)
V (P) . (4.17)

4.3. Derivatives of the Volume over the Supports

The second contribution of this chapter is to explore potential improvements on the
Minkowski minimization part of the shape determination algorithm–i.e. from EGI to
polyhedron.

The method proposed by Little (1985) has two points of potential improvement. First,
the gradient calculated in Little (1985) is erroneous, since he differentiates V with h from
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Equation 4.14, but neglecting that Al does depend on h. This is not critical, because
the resulting gradient is a third of the actual one, but still parallel to it. Thus the only
consequence is that the method takes more time to converge. Second, as stated by Little
himself, this method does not exploit the Hessian information of V (h), which can be used
to speed the convergence of the method.

In Kaasalainen et al. (2001) they use a similar method of gradient descent projected onto the
constraint hyperplane, but with a correctly computed gradient. Thus, the first improvement
point is covered.

This is not so for the second point. Following the recommendation from Little (1985),
the present work incorporates the Hessian information, to improve the convergence speed
of the method. In particular, this dissertation uses the trust-region interior point method
described in Byrd et al. (1999), which employs both the gradient and Hessian of the objective
function and the constraints. The objective function has a straightforward solution. Being

J = hTAQ =
∑Nf

i=1 hiAi:
∂J

∂hi
= Ai , (4.18a)

∂2J

∂hi∂hj
= 0 . (4.18b)

Note that the Ai in Equation 4.13 are the area values from vector AQ, not the final areas of
P(h). Thus, these are fixed and do not depend on h.

For the constraint, the derivatives of V with h are deduced below.

To do so, first of all, it is necessary to establish the dependence between the volume of a
polyhedron and its supports. The following is a version of Little, 1985, Eq. 3.1
(A =

∑
i,j cijhihj) expanded to the volume. It will be necessary to find the Hessian with

its supports later, as well as to establish the nomenclature and conventions used.

Theorem 1. Given the polyhedron from Definition 1, there exists a three-dimensional array
C ∈ RNf×Nf×Nf such that the volume V of a polyhedron, as a function of the supports of its
facets, h, is

V =
1

3

Nf∑
k=1

Nf∑
j=1

Nf∑
i=1

hihjhkCijk , (4.19)

for i, j, k ∈ L.

Proof. Let any facet of the polyhedron, identified with index l, have M ≥ 3 edges, which
connect it to M adjacent facets. The first step is to re-index the involved facets using the
alternative indexing subspace Ml = {0 . .M}. This is, given m ∈Ml:

• m = 0 corresponds to facet l;

• m = 1 corresponds to an arbitrary facet that is adjacent to facet m = 0 along one of
its edges;

• m > 1 correspond to the other edge-adjacent facets to facet 0, sorted counter-clockwise
relative to facet 1 (positive sense around the outer normal of facet 0).
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This gives rise to the map Il : Ml → L such that Il(m) gives the corresponding index of facet
m onto the L indexing set of P. Naturally, Il(0) = l. Thus, the edges of facet 0 can be indexed
with m ∈ 1 . .M , where em corresponds to the edge with facet m. Likewise, each vertex of
facet 0, denoted vm, corresponds to the intersection between em and e(m mod M)+1. For the
sake of brevity, from here onward, for any a ∈ N>0, a < M , m+ a implies (m mod M) + a
whenever m+ a > M .

With these definitions, one can express the signed area of facet 0 as

A =
1

2

M∑
m=1

n0
T (vm × vm+1)

T , (4.20)

where {vm} are the vertices of the facet. The operator × denotes the cross product. Note
that each addend of the above equation is in fact the contribution of the area of the triangle
formed between the two involved vertices and the projection of the origin on the plane of
facet 0. Some of these contributions may be negative, if the origin is projected outside the
facet, thus the area itself can be negative.

Now, each vertex m can be defined as a function of the polyhedron supports and facet
outer normals as the solution of the following equation (composed by three instances of
Equation 4.11):  n0

T

nm
T

nm+1
T

 vm =

 h0
hm
hm+1

 . (4.21)

In a more compact way, defining nm :=
[
n0 nm nm+1

]T
and Hm :=

[
h0 hm hm+1

]T
,

this can be solved as
vm = nm

−1Hm . (4.22)

As long as the three involved facets are in different planes, this system always has a unique
solution4.

Substituting into Equation 4.20, after some algebraic manipulation, one obtains

A =
1

2

M∑
m=1

Hm+1
Tnm+1

−1T [n0]×nm
−1Hm , (4.23)

where [·]× is the cross-product matrix, such that [a]×b is equivalent to a× b.
Substituting Equation 4.23 into Equation 4.14 gives

V =
1

3

L∑
l=1

hl

[
1

2

M∑
m=1

Hm+1
Tnm+1

−1T [n0]×nm
−1Hm

]
l

. (4.24)

The [·]l notation in this context implies the indices inside the brackets are expressed in the
Ml system, while elements outside the bracket are indexed in L.

From here onward, it is trivial to prove that a three-dimensional array C such as the one
described above can be constructed by first filling it with zeros, and then adding the

4This implies that any polyhedron with adjacent parallel facets needs to have these facets merged into a
single polygon before it can be used in this context.
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contribution of each
[
1
2nm+1

−1T [n0]×nm
−1
]
l

sub-matrix into the corresponding Cljk

location, for j = {Il(0), Il(m+ 1), Il(m+ 2)} and k = {Il(0), Il(m), Il(m+ 1)}.
It is thus proven that the claimed array C exists.

Regarding the gradient of the volume of a polyhedron relative to its supports, the proper
equation is known (Kaasalainen et al., 2001). However, its proof is used to then deduce the
Hessian. Therefore:

Theorem 2. Given a polyhedron P in R3 with Nf facets, the derivative of its volume V
with the support of its lth facet is equal to the area Al of said facet:

∂V

∂hl
= Al . (4.25)

Proof. Let P ′ be a second polyhedron, which is almost equal to P, with the only difference
that its lth support is varied by h′l = hl + ϵ, with ϵ≪ hl.

x

y

z

(a) Original volume

ϵ

(b) 1st order change (c) 2nd order change (d) 3rd order change

Figure 4.1.: Change of volume of a polyhedron as a function of one of its supports

Figure 4.1 illustrates how such a polyhedron P ′ can be obtained from another polyhedron
P. in three steps. Being Figure 4.1a the original P:

• the first order contribution is the extrusion of the facet l a distance ϵ along its normal,
represented by the yellow volume in Figure 4.1b;

• the second order contributions are the volume differences created by extending the
adjacent facets until they meet the plane of the newly extruded facet l, represented by
the yellow (additions) and green (subtractions) volumes in Figure 4.1c;

• the third order contributions are the volume differences created by extending the facet
vertices along their out-of-facet edges, represented in Figure 4.1d with the same color
code.

This can be represented analytically by the following equation:

V ′ = V +Alϵ+O(ϵ2) , (4.26)

whose first two components are the original volume and the 1st order contribution to the
volume change. The latter is trivial to derive as the volume of the prism formed by the area
extrusion associated to the first order contribution. The error term represents the 2nd order
contribution and higher.
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Applying the definition of the derivative as a limit yields

∂V

∂hl
= lim

ϵ→0

V ′ − V
ϵ

= lim
ϵ→0

Al +O(ϵ) , (4.27)

where O(ϵ) vanishes, so that this evaluates to Equation 4.25.

Next follows an analytical expression for the Hessian, original to this thesis in the context
of light curve to shape inversion. As a preliminary step, the following corollary is
necessary:

Corollary 1. The double derivative of the volume of a polyhedron P with the supports of
two of its facets is equivalent to the derivative of the area of either facet with the support of
the other:

∂2V

∂hlhp
=
∂Al
∂hp

=
∂Ap
∂hh

. (4.28)

Proof. This is trivial to proof using the chain rule of the derivative on Equation 4.25.
Furthermore, the fact that V can be expressed as a function of the polyhedron supports
(Equation 4.19) guarantees that partial mixed derivatives can be interchanged (Aksoy
et al., 2002).

With it, the equation for the Hessian can be deduced:

Theorem 3. Given a polyhedron P in R3 with Nf facets, the double derivative of its volume
V with the support of its lth and pth facets is:

∂2V

∂hlhp
=



−
[
M∑
m=1

∥em∥
n0

Tnm√
1− (n0Tnm)2

]
l

if l = p,[
∥em∥√

1− (n0Tnm)2

]
p

| m = Ip−1(l) if p is adjacent to l,

0 else.

(4.29)

Proof. The proof is split in three parts, one for each case in Equation 4.29.

Part 1: l = p

This proof starts with the l = p case. It is necessary to expand Equation 4.26 to include
second order contributions, too:

V ′ = V +Alϵ−
1

2

[
M∑
m=1

∥em∥
n0

Tnm√
1− (n0Tnm)2

]
l

ϵ2 +O(ϵ3) . (4.30)

The example on Figure 4.2 is used to derive the 2nd order contribution along any edge em.
The figure depicts a zoom on the leftmost edge of the polyhedron in Figure 4.1c, as seen
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x

z

y

n0

nm

ϵn0 s

θ

φem

Figure 4.2.: Zoom on 2nd order contribution to the volume versus support change

from the tip of the y axis. Thus, this volume contribution is none other than the volume of
a prism, obtained by multiplying its length (the facet edge) with the area of its base:

∆V 2nd

0,m =
1

2
em

T (ϵn0 × s) . (4.31)

Note that, from Figure 4.2,
n0

Tnm = cosφ = −sinθ ,
hence

|cos θ| =
√
1− (n0Tnm)2 . (4.32)

Furthermore, by realizing that

∥s∥ = ϵ

|cos θ| ,

together with

n0 × s = ∥s∥ sin θ
em
∥em∥

,

one can easily rewrite Equation 4.31 to look like the third term in Equation 4.30.

Next, it is necessary to define a third polyhedron P ′′ whose lth support is increased by 2ϵ,
so that its volume is

V ′′ = V + 2Alϵ− 2

[
M∑
m=1

∥em∥
n0

Tnm√
1− (n0Tnm)2

]
l

ϵ2 +O(ϵ3) . (4.33)

This is easy to obtain, just substitute ϵ in Equation 4.30 with 2ϵ.

Now one can apply again the limit-definition of the derivative, but this time to the double
derivative:

∂2V

∂hl
2 = lim

ϵ→0

V ′′−V ′

ϵ − V ′−V
ϵ

ϵ
= lim

ϵ→0

V ′′ − 2V ′ + V

ϵ2
=

lim
ϵ→0
−
[
M∑
m=1

∥em∥
n0

Tnm√
1− (n0Tnm)2

]
l

+O(ϵ) . (4.34)

After taking the limit, this is exactly the l = p case of Equation 4.29.
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The same result can be reached if working with the areas, using Corollary 1. From Figure 4.2,
it is trivial to see that the first order area contribution to facet 0 due to the movement of
edge m provoked by the support increase is

∆A1st

0,m = n0
T [(s− ϵn0)× em] = em

T [n0 × (s−��ϵn0)] = 2
∆V 2nd

0,m

ϵ
. (4.35)

This is just the area of the polygon (perpendicular to the plane in Figure 4.2) whose sides are
the edge em and the top of the yellow triangle. The contribution can be positive of negative
depending whether n0 is parallel or antiparallel to the cross product in the equation. As
indicated, this corresponds to the same effect that generates the second order contribution
to the volume.

Thus, ∂2V/∂hl
2 can be computed by taking the limit of ϵ → 0 of the sum of the area

contribution of all adjacent edges:

∂2V

∂hl
2 =

∂Al
∂hl

= lim
ϵ→0

[
M∑
m=1

∆A1st
0,m +O(ϵ2)

ϵ

]
l

. (4.36)

This gives exactly the same result as Equation 4.34.

Part 2: l and p adjacent

Next comes the second case, where p is adjacent to l. One can prove it using Corollary 1
again. From Figure 4.2, it is evident that, when facet 0 increases its support by ϵ, the area
of facet m increases as

A′
m = Am + ∥s× em∥+O(ϵ2) = Am +

∥em∥
|cos θ|ϵ+O(ϵ2) (4.37)

With this, using again the limit definition of the derivative, as well as substituting with
Equation 4.32, it follows that

∂Am
∂h0

= lim
ϵ→0

A′
m −Am
ϵ

= lim
ϵ→0

∥em∥√
1− (n0Tnm)2

+O(ϵ) . (4.38)

Corollary 1 states that
∂2V

∂h0hm

∣∣∣∣
m̸=0

=
∂Am
∂h0

. (4.39)

Therefore, if one considers Figure 4.2 to be indexed in Mp, so that l = Ip(m) and p = Ip(0),
Equation 4.38 becomes the l ̸= p case of Equation 4.29.

Part 3: l and p not adjacent

Finally, for the third case, as long as the adjacency information of the polyhedron does not
change5, it is obvious that changing the support of a facet only affects the area of the facet

5If a change in a support produces e.g. a vertex to become an edge, the derivative of area of some facets
becomes discontinuous. If e.g. a facet becomes an edge, the total number of facets Nf changes and then
even the size of the Hessian of V becomes discontinuous. These are degenerate cases that are ignored
in this work, as the use of the gradient and Hessian of V w.r.t to its supports is used to tune numerical
optimization algorithms, which will likely skip or circumnavigate these singularities with ease, provided
they are stable enough.
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itself, as well as the area of the adjacent facets. Therefore, from Corollary 1 it is obvious
that d2V/dhldhp must be 0 when facets l and p are not adjacent.

Having the vertex-facet adjacency information obtained by the convex-hull-dual process
during the obtention of P(h), one can easily extract the list of edges, as well as which two
facets touch each edge. One needs only to iterate through the vertices of each facet and log
each edge as each adjacent vertex-pair; at the same time, one registers the facet each edge
belongs to. At the end, each edge of the list shall have two facets associated to it. With
this information, one can iterate all edges and compute the appropriate contributions to
∂V/∂hi∂hj from Equation 4.29.

4.4. Observability w.r.t. the EGI Size

Friedman et al. (2019) studied the observability of this inversion problem based on the
Gramian of Ŝ, i.e. G = ŜT Ŝ. The unconstrained (negative values allowed) solution to the
least squares problem stated by Equation 4.4 has a closed form given by

â = G−1ŜTL . (4.40)

Thus, they define the observability of the problem by requiring that G is invertible–i.e. that
it has full rank.

However, as explained above, this problem is rarely solved using Equation 4.40, because
of the positivity restriction imposed on a (see Section 4.1.1). Therefore, the Gramian G is
only a qualitative measure of observability. When either the exponential (Kaasalainen et al.,
2001) or the constrained (NNLS) approach is used to force positivity, the solution to the
problem has no closed form, and must be resolved using some iterative method–i.e. it is not
guaranteed that the properties of G define the observability of a anymore.

In particular, the NNLS approach of Lawson et al. (1995) uses the so called active-set method.
The active-set method divides the dimensions of the search space into an active subspace,
composed by all the dimensions where the positivity constraint is active–i.e. the dependent
variable is 0–, and the passive subspace, with the rest of dimensions where the constraint
is not imposed–i.e. the dependent variable is positive. It does so by first assuming that all
the dimensions are in the active set; then it iteratively selects the best candidate dimension
to change from active to passive and solves the unconstrained least squares problem on the
passive set; if positivity of the solution is maintained, the candidate passive dimension is
accepted. Kim (2011) proved that the sub-matrix of Ŝ projected onto the passive set remains
full-rank until convergence is reached. In other words, a unique solution for a exists despite
G being rank-deficient w.r.t. the number of directions in the EGI.

This implies that, in the noise-free ideal case, G does not need to be full rank, but just have its
rank high enough to capture independent information from each of the actual flat facets that
compose the shape of the object being observed. These, of course, are unknown beforehand,
hence the need for a shape-inversion method. However, especially in the case of objects with
sharp edges and mostly flat facets, one shall expect that most directions in the EGI have zero
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albedo-area, while only a few have significant values. Therefore, for most artificial objects,
indeed a considerably reduced number of directions should suffice to describe a recognizable
shape. In the noise-free scenario, then, it is interesting to tessellate the unit sphere with as
many cells as computationally feasible, because this will ensure that non-zero albedo-area
values are located where the normal is closest to that of the corresponding real facet of the
observed object.

When noise is present, however, the rank-deficient G case can still work, but increasing the
dependent dimensions too much can lead to instability due to high sensitivity to noise (Calef
et al., 2006). In these cases, the noise stabilization methods mentioned above (Calef et al.,
2006; Fan et al., 2020; Fan et al., 2021) should be used.

4.5. Simulation Scenarios

Within the scope of this thesis, the shape inversion from light curves using the EGI plus
Minkowski minimization method has been tested with different shapes, noise scenarios and
ranks of the problem Gramian.

4.5.1. Test Shapes

The shapes being tested are:

• a cube with 4m side–it represents one of the simplest shapes achievable;

• an icosahedron with 1m edges–it represents a slightly more complex, approximately
spherical bus;

• a cylinder with 10m length and 1m radius–analogous to a simplified rocket body; and

• a winged cuboid, whose base is a 4m× 6m× 12.5m cuboid and whose wings on either
side are 6m×9m rectangles without thickness, separated 1m from the base–it emulates
a non-convex object with solar panels.

In this work, the matrix Ŝ used assumes Lambert’s diffuse law of reflection. This is, the CT
BRDF model from Section 3.1.4 with ρ = 1 and d = 1.

Figure 4.3 illustrates these shapes in orthographic projection, conserving the aspect ratio of
each shape. Figure 4.4 shows an example of the corresponding d = 5 EGI for each shape,
both in orthographic and Hammer projections. The color code represents the area of each
cell, as indicated by the color bars. Cell borders are shown as white lines. Additionally, the
latitude/longitude grid is shown in red on the Hammer projections.

Note that for the specific case of the winged cuboid, which is a non-convex shape, the EGI
is generated by assuming that each facet is not obscured along its normal by any other
facet. Because the thickness of the wings is null in the simulation, this assumption does not
introduce any error. However, the EGI to polyhedron algorithm presented above recovers a
convex shape instead (see the results section).
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(a) Cube. (b) Icosahedron (c) Cylinder (d) Winged cuboid

Figure 4.3.: Test shapes, body-frame axis represented in the Cube (cyan is x, magenta is y
and yellow is z) (Vallverdú Cabrera et al., 2021b)

4.5.2. Scenario Geometry

The simulated light curve is measured by a telescope in the location of ART (see
Appendix A.2) between 22:00 of 2019-01-01 and 3:45 of the following day, in Coordinated
Universal Time (UTC). The simulated object always has the same circular Mid Earth
Orbit (MEO) with 26 731 km semi-major axis, 40◦ inclination and 10.94◦ right ascension of
the ascending node. At midnight UTC of the observation night, it has a true anomaly of
67.5◦. All test cases exhibit a nutation, the motion typical of a body with axial symmetry6

whose angular momentum is constant and parallel to the inertial z-axis, with an overall
magnitude of the angular rate of 3.44min−1, nutating with the body z-axis at 70.5◦ from
the angular momentum, at a rate of 2.7min−1. Figure 4.5 shows the simulated light curve
for each test shape: in orange, the light curve without noise; in blue, the light curve
randomized with SNR = 10 (see subsection about measurement noise below). Circles are
data points, and the lines are guides to the eye.

4.5.3. Light Curve Measurement

The light curves are modelled using the model from Chapter 3. For this particular
experiment, source and sensor noise is added from a Gaussian distribution, based on the
median signal level represented by a Signal to Noise Ratio (SNR). This is, the measured

light curve L =
[
L1 · · · LNt

]T
is obtained by polluting each simulated value with

additive noise:

Li = Lsi +N
(
0,

( L̄
SNR

)2
)

, (4.41)

where Ls is a noise-less simulated value, and L̄ indicates the median of Ls. Figure 4.5 shows
an example noisy light curve with SNR = 10 (blue) along its no-noise counterpart (orange),
for each test shape.

6Although some of the shapes introduced above do not present axial symmetry, during the simulations
the same attitude profile has been forced to all of them, to remove the attitude as an added factor of
comparison.
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(a) Cube, Orthographic (b) Cube, Hammer

(c) Icosahedron, Orthographic (d) Icosahedron, Hammer

(e) Cylinder, Orthographic (f) Cylinder, Hammer

(g) Winged cuboid, Orthographic (h) Winged cuboid, Hammer

Figure 4.4.: EGIs of the test shapes, based on a d = 5 quad-cube tessellation (Vallverdú
Cabrera et al., 2021b)
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Figure 4.5.: Simulated light curves (Vallverdú Cabrera et al., 2021b)
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4.5.4. Observability Conditions

This thesis explores the shape recovery performance at different light curve sampling intervals
(which affects the rank of the observability Gramian) and different EGI quad-cube tesselation
divisions. This is quantified by the d parameter defined in Appendix E.2; the number of
cells the resulting EGI is Na = 6d2. For the results in this work, the light curve has been
sampled at Nt ∈ {150, 1000} points, while the EGIs have been divided with d ∈ {3, 5, 7, 9}.
The light curves from Figure 4.5 are sampled at Nt = 1000.

4.5.5. Noise Mitigation

Following the technique used in Fan et al. (2020) and companion papers, in this simulation
the directions of the EGI with an area lower than ϵmax(â) are ignored. This adds stability
to the Minkowski minimization and filters out small area values that arise most likely from
noise only. Then only those directions that survive this criterion are constrained for convexity
with Equation 4.6. This study uses the value of ϵ = 5%}.
Furthermore, the three regularization schemes (none, Tikhonov and Lasso) are compared in
the scenarios of the cube and the icosahedron.

4.5.6. Hessian of the Volume

The results shown are obtained by using the (numerical)
Broyden–Fletcher–Goldfarb–Shanno (BFGS) approach (Nocedal et al., 2006) to compute
the Hessian of the volume constraint. In some cases, noted appropriately below, this has
been compared against using the analytical expression from Equation 4.29.

4.6. Results and Discussion

This section presents and discusses the results of the shape recovery algorithm applied to
the simulation scenarios described in the previous section. First, Table 4.1 shows the rank of
the Gramian for each of the tested scenarios, which mainly depends on the number of cells
of the EGI (Na = 6d2) and the number of samples in the input light curve (Nt). For all the
cases tested, the numeric estimation of the rank always agrees with

rank(ŜT Ŝ) = min(Na, Nt) , (4.42)

which means that the corresponding light curves have no redundant samples. In Table 4.1,
rank-deficient scenarios–i.e. Na > rank(ŜT Ŝ)–are highlighted in red.

4.6.1. Cube

Starting with the cube-shaped object, Figure 4.6 shows the normalized homotheticity
distance H̄(P, P̂) as in Equation 4.17 versus SNR, along different scenarios. P is the
original polyhedron (the cube, in this case), and P̂ is the estimated one. Each plot
corresponds to a light curve sampling density (Nt). Each line corresponds to a specific EGI
sampling d, color coded. Each (SNR, H̄) point (×) on the plots is the result of averaging
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Table 4.1.: Rank of the Gramian (ŜT Ŝ) at different light curve and EGI sampling densities

d Na
rank(ŜT Ŝ)

Nt = 150 Nt = 1000

3 54 54 54

5 150 150 150

7 294 150 294

9 486 150 1000

the individual performance over NMC = 64 runs within a Monte Carlo (MC) simulation,
where the noise is randomly sampled according to Equation 4.41 at each run. This is

µ̂ =
1

NMC

NMC∑
i=1

H̄(P, P̂i) . (4.43)

The vertical bars delimited by opposite triangles indicate the ∼ 95% confidence interval of
µ̂, computed from the unbiased estimation of the standard deviation:

s2 =
1

NMC − 1

NMC∑
i=1

(
H̄(P, P̂i)− µ̂

)2
. (4.44)

To estimate these error bars, it is assumed that µ̂ follows a Normal distribution. Thus, they
span over the range

−1.96 s

NMC
< H̄ − µ̂ < 1.96

s

NMC
. (4.45)
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(b) Nt = 1000

Figure 4.6.: Cube results, averaged over 64 Monte Carlo runs (Vallverdú Cabrera et al.,
2021b)

For the no noise case, the shape can be recovered with maximum fidelity (H̄ = 0), even
when the Gramian is rank-deficient. This steams from two main factors. First, both light
curves (Nt = {150, 1000}) have enough samples, and come from a wide enough range of
attitude states, so that the six facets of the cube are observable. Second, all the quad-cube
tessellation sizes have one cell aligned to each of the six facets of the cube. Thus, all the
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important information goes there, and the rest of the cells are virtually zero–they do not
capture any significant amount of area-albedo that could e.g. affect the shape recovery
differently for different values of Nt or d.

Moving over to the noisy scenarios shown on Figure 4.6, the first noticeable point is that
fidelity decreases with higher SNR values, as expected. Unsurprisingly, the scenario with the
denser light curve produces better fidelity–more samples implies more information on the
object. Regarding the effect of d (or Na), Figure 4.6 shows that, for the cube, a denser EGI
always leads to higher error. Moreover, this trend does not seem to be highly influenced by
whether the scenario is rank-deficient or not. This may again be explained by the affinity
of the cube to the quad-cube tessellation: because the d = 1 EGI is enough to perfectly
capture its six facets, more cells than these are just recipients to be populated by noise, each
of which contributes further to fidelity error on the recovered shape.

(a) No regularization (b) Tikhonov, α = 0.01 (c) Lasso, α = 2

Figure 4.7.: Original (black) versus recovered (red) shape for the cube (Vallverdú Cabrera
et al., 2021b)

The cube, being the simplest shape on the test bench, has been chosen to qualitatively
assess the effects that regularization can have on the recovered shape. While Tikhonov
(Equation 4.9) regularization favors many smaller values in the estimated parameter vector,
Lasso (Equation 4.10) regularization encourages a sparser parameter vector, with a few big
values and the rest almost null. Thus, when recovering an EGI from a light curve,

• shapes estimated using Tikhonov regularization tend to be more rounded, compared
to not using regularization, because the area from big area cells flows into neighboring
ones. In contrast,

• when using Lasso regularization, shapes have fewer facets and sharper edges, because
neighboring cells with similar area values tend to merge into a single cell with bigger
area.

This expected behaviour can be observed in Figure 4.7, where the original (black-edged
frame) and recovered (red-edged frame) for three solutions with different regularization
schemes are shown, in the scenario of Nt = 1000, d = 7 and SNR = 10, for one random
Monte Carlo run. The values of α have been manually tuned to exemplify the features of
each regularization scheme. However, as suggested in Calef et al. (2006), a more rigorous
approach would be to use a cross-validation scheme to choose the ideal value of α.
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Qualitatively, Figure 4.7 shows that the non-regularized shape has some apparently
random deviations from the cube; the Tikhonov solution smoothens them out by rounding
the edges, while the Lasso one removes them by adding them to the biggest facets. In this
case, because the cube is a clear example of a shape with a few big facets, Lasso clearly
outperforms the other two approaches.
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Figure 4.8.: Cube results, 64 Monte Carlo runs, Nt = 1000, different Hessian strategies

Finally, the analytical expression of the volume Hessian (Equation 4.29) has been tested
only against the cube shape, too. Figure 4.8 shows a comparison between both strategies
(BFGS and analytical/exact). Note that Figure 4.8a is exactly the same as Figure 4.6b
above–it has been included again to make visual comparison easier. By comparing it against
Figure 4.8b, it can be seen that both approaches deliver similar results, except for the low
SNR, high tessellation density cases. In particular, SNR = 20 and d = 9, and SNR = 10
and d ∈ {7, 9}. For these cases, some of the Monte Carlo runs have failed to converge,
which resulted in greater average homothetic distances of the recovered shape. This made
the standard deviation of these tests widen significantly, too.

This indicates that the analytical expression from Equation 4.29 may not cover all the corner
cases. In particular, there is the issue that Equation 4.29 assumes the small variations of the
supports do not change the adjacency information of the polyhedron. However, the internal
process to recover the polyhedron from the supports, via the dual transform, could mean
that changing the value of one particular support changes the adjacency information of the
polyhedron (e.g. a new facet appears, or two facets become adjacent, or cease to be so).
Since the BFGS approach is numerical, and treats the whole volume computation from the
polyhedron supports as a black box, it should capture these corner cases without problems,
within numerical accuracy. Intuitively, it is likelier that these corner cases appear for higher
tessellation densities–i.e. more supports to account for means more potential failure points.
Therefore, the fact that the failure happens especially with the higher noise, higher density
cases, constitutes circumstantial evidence to support this hypothesis.

In terms of computational speed, both methods took approximately the same time, meaning
that the analytical and BFGS Hessian calculations cost approximately the same.
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4.6.2. Icosahedron

The next shape on the test bed is the icosahedron, whose results are shown in Figure 4.9
(see Section 4.6.1 for a detailed explanation of the plots).
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Figure 4.9.: Icosahedron results, averaged over 64 Monte Carlo runs (Vallverdú Cabrera et
al., 2021b)

As happened with the cube, with the icosahedron fidelity error increases with higher noise
levels (SNR) and sparser light curves (Nt). However, it differs from the cube in other aspects.
First, with the icosahedron case one does not recover an exact replica of the original shape
(i.e. H̄ > 0) even in the no noise scenarios. This is because the normals of the facets of
the icosahedron are not aligned with any particular direction of the quad-cube tessellation.
Thus, it can be seen that, for the no noise scenarios, the fidelity improves with a denser
EGI, even when the Gramian is rank-deficient. This happens because, for a denser EGI,
the closest direction to each normal of the icosahedron will be closer to it. Thus, the denser
EGIs approximate the icosahedron facets better. For this same reason, at low noise levels
(SNR = 100) denser EGIs still perform better. However, for the noisiest cases (SNR = 10),
noise dominates and the EGI density has no significant impact anymore.

The Icosahedron plot presents some points where the error bars are unusually wide. These are
d = 7, SNR = 20 on the Nt = 150 light curve, and d = {7, 9}, SNR = 20 for Nt = 1000. This
may indicate some instability in the shape recovery process that produces higher variance
homotheticity distance measurements, which should be investigated further with a wider
range of scenarios–e.g. varying noise threshold (ϵ) values.

Regarding regularization, the icosahedron has also been tested qualitatively, for the same
scenario as the cube (see previous section). Figure 4.10 shows the corresponding results.
Opposite to the cube, the icosahedron has more facets with less area. As a consequence,
the non-regularized and the Tikhonov schemes barely differ: the non-regularized solution is
already quite rounded, so ridge regularization has little effect on it. On the contrary, the
Lasso regularization with the same high value of α as in the cube case completely distorts
the recovered shape away from the icosahedron–lower values of α for the Lasso scheme do
not produce important changes w.r.t. the non-regularized case. Thus, the icosahedron is a
good counter example to the regularization results of the cube.
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(a) No regularization (b) Tikhonov, α = 0.01 (c) Lasso, α = 2

Figure 4.10.: Original (black) versus recovered (red) shape for the icosahedron (Vallverdú
Cabrera et al., 2021b)

4.6.3. Cylinder

The last convex shape tested here, the cylinder, has its results in Figure 4.11 (see Section 4.6.1
for a detailed explanation of the plots).

In contrast to the two previous shapes, it has proven to be much more difficult to recover:
H̄(P, P̂) is greater overall. This is probably due to the cylinder having a smooth curvature,
which contradicts (or at least strains) the hypothesis of a shape represented by a polyhedron
built from several flat facets–the side of the cylinder is the limit of infinite facets with
infinitesimal area. Beyond this point, the effects of Nt and SNR share the same trends as
with the cube and icosahedron cases: higher Nt and higher SNR improve fidelity, as is to be
expected.

For the no noise cases, there is no clear trend whether denser EGIs perform better or not,
although for Nt = 150 it seems that rank-deficient cases perform slightly worse. Instead,
moving to the noisy scenarios, as noise level increases, denser EGIs clearly deteriorate fidelity,
regardless of the rank of the Gramian–as with the cube. In fact, the two circles of the cylinder
do match the polar facets of a quad-cube tessellation with an odd value of d, while its sides
all map more or less well to the cells in the equator of the quad-cube. Thus, although the
match is not as close as with the cube, it is plausible that the cylinder maps onto a low d
quad-cube well enough so that the potential benefits of higher density are overrun by a wider
spread of noise. This is, the cylinder is better approximated by a cleaner prism whose base
is a polygon of less vertices, than one whose base has more vertices but is rougher.

Figure 4.13 shows the original (black-edged frame) and recovered (red-edged frame) shapes
for the cylinder case, for Nt = 1000, d = 7 and SNR = 10, an arbitrary Monte Carlo run. A
common feature with most of its iterations, is that the recovered shape is shorter along the
cylinder axis, but wider orthogonality. This agrees with the conjecture that information is
lost due to the real cylinder having infinte flat facets on its sides that are infinitesimally
small, hence the axial shortness. Nonetheless, the recovered shape clearly resembles a
cylinder.
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Figure 4.11.: Cylinder results, averaged over 64 Monte Carlo runs (Vallverdú Cabrera et al.,
2021b)

Figure 4.12.: Original (black) versus recovered (red) shape for the cylinder.

4.6.4. Winged Cuboid

The winged cuboid is a non-convex object. As such, it cannot be uniquely represented by
an EGI, as per Minkowski’s theorem (Minkowski, 1897). Nonetheless, it is still possible to
recover an EGI from its light curve. In fact, in the particular case of the winged cuboid, for
the Nt = 1000, d = 7 and SNR→∞ scenario, the area residual is 4.29 · 10−3, low enough to
pass as a convex object. In other words, Minkowski minimization can be applied to recover
an equivalent convex shape–i.e. the shape that would produce a light curve as similar as
possible to the measured one (Kaasalainen et al., 2001). This recovered shape may be
significantly different than the original one, however. Figure 4.13 shows the original (black-
edged frame) and recovered (red-edged frame) shapes for the winged case, for Nt = 1000,
d = 7 and SNR = 10.

Minkowski minimization only renders convex shapes, hence the recovered shape
approximates a cuboid that significantly differs from the original winged cuboid. Its only
similitude is that the ratio of cross section areas in any two different observation directions
is approximately equal when calculated for the original or for the recovered shape–this is a
necessary condition if the recovered shape has to reproduce the measured light curve as
faithfully as possible. Despite this, the two shapes are clearly far from homothetic. For this
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reason, a wide range of tests to assess the impact Nt, d and SNR on the homotheticity
distance of original and recovered polyhedron has not been performed within the scope of
this thesis.

Nonetheless, this experiment shows that equivalent convex shapes can be recovered even
for non-convex objects. These could be used to help identify, classify or simulate the light
curves of these objects, even if the equivalent convex shape is far from the original shape of
the object.

Another important conclusion from this experiment is that the recovered shape is highly
dissimilar from the convex hull of the original shape, even if scaled, which differs from the
results presented in Kaasalainen et al. (2001), where recovered shapes of asteroid-like non-
convex bodies were found to be close to the corresponding convex hulls. This is an extreme
example of the conclusion therein, which states that the greater the concavities in the original
object, the farther the equivalent convex shape is from the convex hull.

(a) 3D (b) yz-plane (c) xz-plane (d) xy-plane

Figure 4.13.: Original (black) versus recovered (red) shape for the winged cuboid (Vallverdú
Cabrera et al., 2021b)

4.6.5. General Discussion

This subsection closes the results part of the chapter by summarizing and merging the
conclusions extracted from all the tested scenarios together.

Overall, regarding convex shapes, via Monte Carlo simulations of 64 runs each and evaluating
the homotheticity distance, it has been shown that

• the sampling density of a light curve,

• the density of the EGI and

• the noise level present in the light curve

have a strong impact on the shape inversion results. As expected, more samples and less
noise means better results. However, depending on the studied shape, denser or sparser
EGIs can perform better. It has been conjectured that the main reason is the
affinity/dissimilitude of the real shape and the quad-cube tessellation scheme. Further
studies should investigate whether different tessellation schemes, such as the geodesic dome
proposed in Horn (1984) and Calef et al. (2006), lead to significantly different performance
curves–e.g. the icosahedron would have more affinity with an icosahedron-based geodesic
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dome. The rank-deficiency/fullness of the Gramian of the problem has been found to have
a marginal impact, significantly lower than the other aforementioned parameters: similar
trends are observed with Nt = 150, where half of the cases are rank-deficient, and with
Nt = 1000, where all cases are full-rank.

Still on convex shapes, regarding regularization, it has been shown qualitatively that Lasso
stabilizes noisy scenarios for shapes with few, big facets, while Thikhonov is better suited for
naturally rounder shapes. However, care must be used when applying regularization. Both
Lasso and Thikhonov smoothen the parameter vector by adding some bias (sharper/rounder
features). For objects with a priori unknown shapes, it is not possible to know if it is better
to sharpen or to round the noisy recovered shape. Thus, it is not known if the added bias
corrects or further deforms the result. All in all, regularization should only be used if some
a priori information on the general shape of the object is known beforehand–e.g. it is likely
that asteroids are rounder, hence Thikhonov may improve smoothen sharp features that
originate from noise.

Finally, the analytical formula to compute the volume Hessian from the polyhedron supports,
which has been derived in this chapter, has been shown to fail for the most demanding cases.
It has been hypothesised that changes in the adjacency information triggered by support
variations could be the cause.

4.7. Potential Extensions

This section discusses possible extensions to recover additional information, or to improve
the results of the shape inversion method based on EGI estimation plus Minkowski
minimization.

4.7.1. Albedo Variegation

For the case of asteroids, Kaasalainen et al. (2001) propose a regularization scheme in which
they minimize the albedo and area as separate terms so that, when multiplied element-wise,
they are equal to the obtained â. To constrain the infinite-solutions problem, they add
two regularization components, one for the convexity condition, and one that describes how
albedo should vary across the surface of the object.

In the case of asteroids, although albedo distributions are typically unknown, they in
general can be assumed to be smooth enough across different regions of the asteroid.
Therefore, it is plausible to use some constraint that penalizes fast albedo variations in any
direction along the surface (Kaasalainen et al., 2001). Man-made objects, however, cannot
be expected to have constant or smooth albedo distributions; on the contrary, one should
expect artificial satellites to have external components with radically different optical
properties (e.g. solar panel vs. antenna dish vs. multi-layer insulation). This means that,
unless a priori information on the albedo distribution of the particular object is known,
using single-channel7 light curves the albedo-area separation for man-made objects is not

7By single channel, it is meant light curves measured with a single sensor, at a specific single (color) band.
In contrast, multiple channel light curves are simultaneous light curves of the same object, from the same
location, observed through different bands.
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possible.

Research on this line should follow the work of Dianetti et al. (2019) and Dianetti (2020),
which explores using multi-channel and/or polarized light curves to estimate the albedo of
the surface of RSOs.

4.7.2. Non-Convexity

As shown above, the estimated equivalent convex shape of a non-convex object may share
some characteristics with the original one, but has a great homotheticity distance and is, of
course, convex. Kaasalainen et al. (2001) managed to qualitatively characterize concavities
in asteroid-like non-convex objects, not being able to fully recover the depth of the valleys,
but only to infer their presence. They did so by modifying the vertices of the equivalent
convex shape by a set of coefficients, which then they used to optimize, in the least squares
sense, the difference between the measured light curve and the one obtained by simulating
it with the candidate non-convex shape.

However, Viikinkoski et al. (2017) argue that photometric data alone is not enough to
determine a non-convex shape uniquely: one big concavity can be replaced by a set of
smaller concavities that produce the same light curve signature. Thus, non-convex shape
recovery must involve other types of measurements, which constrain the possible shape
enough to overcome the non-uniqueness of the problem: in Kaasalainen (2016), it is shown
that low resolution images that provide a rough contour of cross-sections of the object can
help toward this goal.

4.8. Conclusion

This chapter has presented the EGI plus Minkowski minimization algorithm to recover
convex shapes from light curves, when the attitude is known. The method has been tested
against several simulated scenarios.

Focusing on its scientific contribution, first a new metric has been introduced, which can be
used to assess how close two polyhedrons are to each other in the homothetic sense. This
metric has been used to assess the accuracy of the EGI plus Minkowski minimization shape
determination.

Second, the expression of the Hessian of the volume of a polyhedron relative to its supports
has been derived. It has been compared against a common numerical alternative: it has
been found to fail for complex cases, probably because it does not account for topological
changes triggered by support variations.

Third, it has been shown, through analysis of the active-set method used in NNLS, that EGIs
with a higher number of tessellation cells than the number of samples in the light curve can
be used, without hindering the observability conditions. This conclusion has been ratified
with simulation results, and put to the test against noisy cases, too. In the particular case
of the icosahedron, whose facet normals do not align with the quad-cube tessellation scheme
naturally, the scenarios with more number of EGI cells outperform the lower-density ones
for high SNR, even when the albedo-areas are not observable according to the rank of the
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Gramian. Meanwhile, performance remained similar across all densities at low SNR, where
noise dominates.

The next step would be to obtain good quality light curves of operated satellites whose
telemetry is known, so that attitude is an input, and test the shape inversion on them.
This would stress the method further, although problems such as albedo variegation and
non-convexity would still have to be addressed.
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This chapter researches a new avenue for sequential Attitude Determination (AD) from
light curves. From Section 2.2.2 of the Literature Review Chapter, it follows that both
the dynamic and measurement models involved in estimating attitude from light are highly
non-linear functions of the state, to varying degrees. Moreover, the attitude state may not
be fully observable in some scenarios (Dianetti, 2020). This leads to the attitude state often
following highly non-Gaussian and potentially multimodal Probability Density Functions
(PDFs). When additional states are estimated simultaneously, this condition aggravates
further (Linares et al., 2018; Yun et al., 2020). The proliferation of advanced non-linear
filtering techniques to approach the light-curve-based AD, summarized in Section 2.2.2, stems
from this additional complexity. The goal of these methods is to 1) outperform the classical
Extended Kalman Filter (EKF)/Unscented Kalman Filter (UKF)1, while 2) reducing the
computational burden of the Particle Filter (PF).

This chapter proposes to use an alternative non-linear filter that has never been applied
before to the problem of AD from light curves: the Adaptive Gaussian Mixtures Unscented
Kalman Filter (AGMUKF). Like some approaches presented in Section 2.2.2, the AGMUKF
approximates the PDF of the state as a Gaussian Mixture (GM). Each kernel is then treated
as a UKF, like in Yun et al. (2020). However, the AGMUKF differs in that it incorporates
a non-linearity assessment metric, based on the Unscented Transform (UT). This metric
is used to detect the rise of non-linearities and split the kernels accordingly. These may
eventually be merged back together as soon as they become too close.

On the one hand, a fine enough GM can represent any arbitrarily complex PDF in L1
sense, something unachievable with classical EKF/UKF. On the other hand, the adaptive
character of this approach strives to reduce the computational burden typical of the particle
or GM filters–it naturally avoids the degeneration problem of the PF, as well as the need
for regularization or other such techniques.

The Gaussian splitting libraries developed by Vittaldev et al. (2016) enable the design of this
filter, which Schiemenz et al. (2020) specialized to perform OD extended with air density
realism. This dissertation adapts these two works to the AD case. Furthermore, refer to
Wu et al. (2005) for a generic definition of the UKF. Analogously, Elfring et al. (2021) is a
hands-on tutorial on the PFs.

Within the scope of this work, the AGMUKF for light-curve-based AD is implemented
assuming that all other factors are known: shape, size, reflective properties, observation
geometry (orbit) and telescope performance parameters.

The rest of this chapter is divided as follows. First, the following Section 5.1 outlines
the non-linear sequential estimation problem, and presents the AD-specific dynamic and

1typical on e.g. the OD problem (Vallado et al., 2013)
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measurement models. Then, Section 5.2 analyses the non-linearity of these models, which
motivates and justifies the AGMUKF proposed in Section 5.3. The AGMUKF is validated
under simulated scenarios in Section 5.4, after which the chapter closes with the chapter
conclusions in Section 5.5.

This chapter is adapted from and expands on Vallverdú Cabrera et al. (2023), the third
and last paper published as part of the doctoral research of this thesis. As such, parts of
Vallverdú Cabrera et al. (2023) are included herein.

5.1. Problem Definition

This section poses the problem of RSO attitude estimation using light curves. Thus, it
defines the conventions, hypotheses, variables, parameters and models involved. In
particular, Section 5.1.1 describes the generic non-linear sequential estimation problem. It
is followed by the detailed description of the attitude dynamic model (Section 5.1.2) and
the measurement model (Section 5.1.3).

5.1.1. Non-Linear Sequential Estimation

This subsection defines the non-linear sequential estimation problem based on Bayes
theorem, as described in e.g. Elfring et al. (2021).

The generic non-linear sequential estimation problem has the goal to estimate the Probability
Density Function (PDF) of some hidden random variableX(t) ∈ Rn that varies with time and
follows a continuous Markov chain, conditional to a sequence of observables Zk ∼ pdf(zk),
which have been measured as zk at times tk, ∀k ∈ 1 . . Nt such that k > l ⇒ tk > tl. This
is

X(tNt) ∼ pdf(x(tNt) | z1, . . . , zNt) . (5.1)

Note that this work assumes the convention that random variables are defined in upper case,
while their realizations are written in lower case. X is often referred to as the state, while
Zk are the measurements. The operator pdf represents some arbitrary Probability Density
Function.

Conditionality on a measurement implies conditionality on the whole sequence of
measurements up to that point. Thus, from here onward,

pdf(· | zk) = pdf(· | z1, . . . , zk), ∀k ∈ 1 . . Nt . (5.2)

Furthermore, since the PDF of X is only evaluated at measurement times tk, it is shortened
as Xk = X(tk). This is, {Xk} is a discrete Markov chain.

The initial PDF
X0 ∼ pdf (x0 | ∅) (5.3)

is known, which is not conditional to any of the measurements, hence the explicit use of
the empty set. The dynamic model that dictates the PDF of the state at some time tk,
conditional to the state at some other time tl, is known, too,

Xk|l ∼ pdf (xk | xl) , (5.4)

72



5.1. Problem Definition

as well as the measurement model that returns the PDF of Zk at time tk, given a known
state xk,

Zk ∼ pdf (zk | xk) . (5.5)

The non-linear filter cycles over two steps, starting from t1, until all measurements are
processed. After the filter is initialized with

Xk−1|k−1 = X0 , (5.6)

these steps are:

• Propagation. During the propagation step, the posterior PDF of the state from
the previous cycle, pdf(xk−1 | zk−1), is brought to the new measurement time tk by
marginalization, obtaining the prior

pdf (xk | zk−1) =

∫
pdf (xk | xk−1) pdf (xk−1 | zk−1) dxk−1 . (5.7)

• Update. In the update step, the new posterior PDF is calculated using the Bayes
rule, from the new information brought by the measurement zk:

pdf (xk | zk) =
pdf (zk | xk) pdf (xk | zk−1)

pdf(zk | zk−1)
, (5.8)

where pdf(zk | zk−1) =
∫
pdf(zk | x′k) pdf(x′k | zk−1)dx

′
k is the PDF of the measurement

zk, conditional to all previous measurements.

After having processed all the measurements, the output of the filter is the PDF of the state at
the last time step, conditioned to the entire sequence of measurements (Equation 5.1).

Different implementations approximate the propagation and the update steps (Equations 5.7
and 5.8) under different assumptions, such as Gaussianity and local linearisation (i.e. EKF),
or by modelling the PDF as a weighted sum of Dirac’s deltas (i.e. PF).

Apart from an initial state, any implementation of a non-linear estimation filter needs to
define the dynamic and the measurement models. Such models for the AD problem are
described in the following subsections.

5.1.2. Attitude Dynamic Model

As indicated in Section 3.1.3, the attitude model represents attitude as the quaternion that
transforms a given vector in body frame B–the frame attached to the object–to the inertial
frame I–the GCRF as defined in Dianetti et al. (2018). This is qIB. Its kinematics and
dynamics follow Equations 3.8 and 3.9, respectively.

However, quaternion representation of attitude conflicts with the non-linear filter scheme
presented above: such filter needs to deal with the fact that, although qIB ⊂ R4, because
∥qIB∥ = 1, there are only three DoFs involved. To guarantee uniqueness of the state, the
state itself should have as many dimensions as DoFs. This problem is often overcome using
Generalized Rodrigues Parameters (GRP), as in e.g. Linares et al. (2014a). This attitude
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representation is described in Appendix D. GRP are defined by the map from
Equation D.7, which transforms from attitude quaternion to GRP, denoted as pa,f , and its
inverse (Equation D.8). These equations are reproduced here for the sake of
readability:

pa,f (q) = f
ℑ(q)

a+ ℜ(q) , (5.9)

and

ℜ(q) =
−a ∥p∥2 + f

√
f2 + (1− a2) ∥p∥2

f2 + ∥p∥2
and ℑ(q) = a+ ℜ(q)

f
p , (5.10)

with a ∈ R≥0 and f ∈ R>0.

The classical UKF (Julier et al., 2004) can then be implemented by using a reference
quaternion plus an error-state based on the GRP (Crassidis et al., 2003; Wetterer et al.,
2009). This is,

x =

[
δp
ωBB/I

]
, (5.11)

where δp = p(δq). The error-quaternion δq transforms from some reference body frame Bref
to the body frame B represented by state x:

qBBref
= δq . (5.12)

Thus, the quaternion represented by the state is

qIB = (δq)∗ ⊙ qIBref
. (5.13)

The dynamic model of the state is represented by

x(t+∆t) = f(x(t), t,∆t, . . . ) + w(t,∆t) , (5.14)

where w is white process noise (typically Gaussian) with zero mean and covariance Q, and
f is the solution to the system of differential equations composed by Equations 3.8 and 3.9,
substituting by Equations 5.9, 5.10 and 5.13 where necessary. All other known parameters,
such as the net torque in body frame TB, are represented by the three dots.

5.1.3. Light Curve Measurement Model

Similar to the shape determination case, this chapter uses the light curve model presented
in Chapter 3. The measurement used in this case is the logarithmic version of the brightness
measurement, however. This is instrumental magnitude from Equation 3.37. As explained
in the aforementioned chapter, it can be expressed as a function of attitude, among other
parameters. Thus, in this case, Equation 3.37 can be expressed as

mI = −2.5 log10 Fa = h(qIB, . . . ) , (5.15)

where Fa is the measured photon flux in e−s
−1

. Recall from Chapter 3 that this flux does
not depend only on attitude, though, hence the dots. It changes with the sensor parameters,
which encompass the sensor transmissivity and quantum efficiency; the object shape (a
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closed region in space bounded by flat facets) and reflective properties, which define how the
light is reflected on its surfaces; the relative geometry between object, observer and Sun. All
these factors are considered parameters here, hence their exclusion from the above equation.
Thus, for the case at hand, the attitude of the object qIB, which determines the orientation
of each of the facets of the object, is the independent variable of interest in this model.

As seen in Chapter 3, one of the cornerstones of the measurement model is the choice of the
BRDF that models how light reflects off the surfaces of the object. The AS and CT equations,
like any other physically realistic BRDF, are non-linear with respect to the incident/reflected
directions of each facet.

Another driving factor of the measurement model is the shape of the object and the effect
of self-shadowing, which can be costly to compute for non-convex objects–recall the shadow
projection algorithm (Algorithm 1). For small changes in attitude or the observation
geometry, sharp edges and other shape features can easily result in abrupt changes in the
reflected intensity.

Therefore both the BRDF model and the sensitivity to complex shapes, as well as the
logarithm in Equation 5.15, make the function h(qIB, . . . ) highly non-linear against the
attitude of the object.

To conclude, the measurement space for non-linear filtering is

z =
[
mI

]
, (5.16)

with mI being the instrumental magnitude of the object measured at the telescope. The
hypothesis taken in this work is that the overall noise effects in the measurement can be
modelled as Gaussian noise. Thus, the measurement estimation model is ruled by

z(x) = h
(
q
(
δp, qIBref

)
, . . .

)
+ v(t) . (5.17)

The function q(δp, qIBref
) symbolizes the process of obtaining the attitude quaternion qIB

represented by δp (the first three components of x), by means of Equations 5.10 and 5.13.
The sensor model noise is represented by V ∼ N (v | 0, R), where Rk := R is equal for all
measurements.2

5.2. Motivation for a New Attitude Determination Method

The purpose of this section is to analyse the non-linearities introduced by the dynamic and
measurement models of the AD problem defined above, and to pave the way for an efficient
non-linear filter implementation that is aware of the degree of non-linearity at all times.

For the sake of clarity, the following shorter notations shall be used from here onward:
q ≡ qIB, q̃ ≡ qIBref

and ω ≡ ωBB/I .

2From here onward, in this document, X ∼ N (x | µ, P ) reads as the probability density of a sample x from
the random variable X is that of a normal distribution centred around mean µ, with covariance P .
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5.2.1. The Non-Linearity Index

Vittaldev et al. (2016) propose a Non-Linearity Index (NLI) to assess the degree in which
an arbitrary transformation deviates from linearity along a given direction, by means of a
numerical approximation of the second order derivative of the transformed space against the
original one. Schiemenz et al. (2020) adapt the concept to exploit the sigma points of an
Unscented Transform (UT) (Julier et al., 2004)–see Appendix F for a detailed description
of the UT.

Let X ∈ Rn be a random variable that follows a multivariate normal distribution,
X ∼ N (x | µx, Px), whose mean vector µx and covariance matrix Px are encoded in a
sigma cloud X , as defined by Equation F.2. Let g : Rn → Rm be a map that applies a
non-linear transformation to x–e.g. let it model a physical process whose associated
uncertainty is V ∼ N (v | 0, Pv). Being Y the sigma cloud transformed under g,

Y(i) = g(X (i)), ∀i ∈ 0 . . 2n , (5.18)

which represents the PDF of another random variable Y (under UT assumptions), one can
assess the non-linearity introduced by g along each independent direction of the original
sigma cloud with the NLI ϕ ∈ Rn (Schiemenz et al., 2020):

ϕi =

∥∥∥∥Y(i) + Y(i+ n)− Y(0)
2(n+ λ)

∥∥∥∥ , ∀i ∈ 1 . . n , (5.19)

where λ is the parameter of the UT that controls the size of the sigma cloud (see
Equation F.3). Each dimension i of ϕ, ϕi, corresponds to the NLI associated to the
direction

ui =
Si
∥Si∥

, (5.20)

in the original x space, where Si is the i-th column of the Cholesky decomposition of
Px = SST . This is, each direction ui is the direction along which the pair of sigma points
X (i) and X (i+ n) have been spanned, on opposite sides of X (0).
One problem of this approach is that, when the characteristic dimensions of the state differ
between independent directions, it is difficult to interpret ϕ unless there is some canonical
rescaling that can be applied to Y. The work of Schiemenz et al. (2020) uses a scaling
ad hoc to the OD problem. In the present work, however the NLI is further modified to
circumvent this problem with an elegant and general approach by applying Equation 5.19
to the standardized sigma cloud

Ȳ(i) = T−1Y(i), ∀i ∈ 0 . . 2n , (5.21)

where Py = TT T is the covariance of Y as estimated by the UT, and T its Cholesky
decomposition. This is, if Y were normally distributed as Y ∼ N (y | µy, Py), then
Ȳ ∼ N (ȳ | T−1µy, Im×m).

Using Equation 5.21, one rescales the transformed sigma cloud so that each dimension of
Ȳ is associated to each principal direction of Py, and each of these directions is given the
same importance within the NLI. This re-interpretation of the NLI still assesses non-linearity
by to what extent straight lines in x space become curves in y space, but it considers two
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independent directions equally non-linear if their transformed curves have the same shape
relative to the uncertainty associated to each of them. In practice, this could mean that
even for transformations where Px is very small, high NLI values could rise if g is strongly
non-linear. However, the fact that the transformed Py includes the model noise Pv, even
when Px is small, any curvatures in y of a scale smaller than the error volume of Pv will
yield a relatively low NLI.

With this new NLI, one can compare the non-linearity, not only between two directions with
different characteristic sizes for one given transformation, but also between different models
applied to the same random variable. In the case at hand, for instance, it is possible to
compare how much non-linearity is introduced by the dynamic (f) and the measurement (h)
models relative to each other.

Simple, yet non-linear test functions g (e.g. high order polynomials, exponentials, sines
and logarithms) have been explored within the scope of this thesis. Visually, the density
histogram of a transformed Monte Carlo (MC) sample starts to differ from Gaussianity for
values of ϕ ∼ 0.1, while maximum observed values were around ϕ = 1. These thresholds,
however, still depend on the particularities of each transformation g, and possibly on the
size of its input and output spaces.

5.2.2. Non-Linearity Analysis of the Attitude Determination Problem

This subsection focuses on the analysis of the non-linearities in the problem of AD, using
the NLI (or ϕ) defined in the previous subsection.

Within the AD problem exposed in the previous section, simulation results suggest that
the highest non-linearity contribution to the filtering cycle arises through the measurement
model, not through the dynamic model. This is to be expected, given the highly non-linear
characteristics of the measurement model (Bernard et al., 2018; Yun et al., 2020).

Figure 5.1 shows the evaluation of the NLI along one UKF run on the scenario used by
Wetterer et al. (2009), the details of which are presented below in Section 5.4.1. Each point
is the NLI in the maximum-NLI direction–i.e. max({ϕi}). While blue + marks are the non-
linearity computed for the dynamic model (propagation step), orange × marks are those
that result from the measurement model (update step). It is clear from the plot that the
measurement update has a maximum NLI of at least two orders of magnitude higher than
the prediction step, for this case.

Focusing on the measurement update step, Figure 5.2 shows the estimation of the
probability distribution of the measurement for the cases of k = 1, ..., 5 of the Wetterer
et al. (2009) scenario. In these plots, the grey histogram is a Monte Carlo approximation of
the PDF of the estimated measurement obtained by drawing 100 random samples from
N (xk | x̂k|k−1, Pk|k−1), where x̂k|k−1 and Pk|k−1 are the prior mean vector and covariance
matrix of the state–the histogram contains the magnitude estimated from each random
sample. Then, the dashed green curve is the PDF N (zk | z̃k, Rk), a Gaussian centred
around the measured (sample) z̃k with uncertainty covariance Rk. Finally, the solid orange
one is N (zk | ẑk, P zzk − Rk), where ẑk and P zzk , are the mean and covariance obtained from
applying the UT with the measurement model to x̂k|k−1 and Pk|k−1. In these figures, it is
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Figure 5.1.: Non-linearity index of one UKF run, based on the scenario from Section 5.4.1
(Vallverdú Cabrera et al., 2023)

obvious that the UT-estimated PDF (orange solid curve) and the more realistic
MC-estimated one (grey histogram) are in significant disagreement.

To sum up, the goal of this chapter is to define a non-linear adaptive GM filter architecture
that focuses on dealing with the measurement model non-linearity.

5.3. The Adaptive Gaussian Mixtures Unscented Kalman Filter

This section defines the Adaptive Gaussian Mixtures Unscented Kalman Filter for Attitude
Determination. The algorithm proposed below adapts the idea introduced by Vittaldev et
al. (2016), which Schiemenz et al. (2020) apply to the classical Orbit Determination use
case with density uncertainty realism. The AGMUKF version developed in the present
work focuses on capturing the high non-linearity introduced by the measurement model, as
justified by the non-linearity analysis above.

The working principle of the AGMUKF is to estimate the state PDF as a mixture of Gaussian
distributions, and then to apply normal UKF steps to each member of the mixture. In
contrast to the classical EKF/UKF, which represent the state PDF as a single Gaussian,
the mixture approach can represent arbitrarily complex PDFs. Furthermore, the AGMUKF
is labelled as adaptive because it exploits 1) the NLI defined in Equation 5.19 to refine the
mixture, together with 2) a distance metric to coarsen it. Its aim is for the mixture to
always approximate the state PDF as faithfully as possible, yet with the minimum number
of underlying Gaussian kernels. Thus, careful analysis of the problem is necessary to decide
where in the filter steps refinement and coarsening should happen. If this is done right, the
AGMUKF may be more efficient than other complex-PDF-modelling filters, such as the PF
and its variants (Du et al., 2018; Coder et al., 2017).

In the OD case of Schiemenz et al. (2020), the major non-linearity contribution happens
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Figure 5.2.: Probability density function of ẑk for the first five measurements in the scenario
from Section 5.4.1 when using the UKF. Legend: PDF of the observation (dashed
green line); PDF of the measurement estimated from the state using UT (solid
orange line) or Monte Carlo (gray histogram). Dates in the titles expressed in
ISO format: YYYY-MM-DD hh:mm.ss.fff (f stands for millisecond) (Vallverdú
Cabrera et al., 2023)
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Figure 5.3.: Diagram of the AGMUKF algorithm for AD

within the dynamic model, where orbit propagation over long spans of time is coupled with
realistic modelling of density uncertainty. This motivates the refinement and coarsening steps
to alternate with consecutive propagation steps (without updates in-between). In this case,
the yardstick used to decide whether and how to split is the NLI of dynamic model.

In the AD problem, however, non-linearity comes mainly from the measurement model,
and propagation time spans are relatively short for a dense light curve. Therefore, the
implementation of the AGMUKF for AD introduced here refines the mixture according to
the measurement model NLI, instead, and does so just before the measurement update step.
This way, the measurement PDF is modelled with finer detail. Right after the update,
the filter merges the mixture back, so that the state PDF does not remain oversampled.
Figure 5.3 summarizes this workflow.

Following, each AGMUKF step is described in detail. Of these, the UKF steps of the
AGMUKF are mainly adapted from and inspired by Crassidis et al. (2003), Wetterer et al.
(2009), and Du et al. (2018).

5.3.1. Probability Distribution

Following the non-linear filtering notions introduced in Section 5.1.1, the AGMUKF
estimates the PDF of the state X as a Gaussian Mixture (GM) with M kernels:

X ∼ pdf(x) =

M∑
j=1

wjN
(
x | µj , P j

)
, (5.22)

where wj is the weight of kernel j, which follows a normal distribution with mean vector µj

and covariance matrix P j . Note that wj = pdf(η = j) is the value of the Probability Mass
Function (PMF) of a discrete random variable H ∼ pdf(η), with η ∈ 1 . .M . Thus,

M∑
j=1

wj = 1 . (5.23)

80



5.3. The Adaptive Gaussian Mixtures Unscented Kalman Filter

Furthermore, pdf(x | η = j) = N
(
x | µj , P j

)
, so the expression in Equation 5.22 is just

pdf(x) obtained through marginalization.

The first and second statistical moments of a GM are, then

µ =

M∑
j=1

wjµj (5.24)

and

P =
M∑
j=1

wj
[
P j + (µj − µ)(µj − µ)T

]
(5.25)

respectively (Schiemenz et al., 2020).

5.3.2. Filter Initialization

The filter is initialized with the known PDF of the state at some time t0, represented by the
reference quaternion q̃0, and initial GM with M0 kernels represented by

X0 ∼
M0∑
j=1

wj0N
(
x0 | x̂j0, P j0

)
, (5.26)

where x̂j0 and P j0 are the a priori estimated means and covariances of the state. Each kernel
of the filter is initialized as in the conventional UKF algorithm. This is, the initial sigma
cloud of each kernel, X j0 , composed by 2n+1 points in state space (where n = 6) is obtained
using Equation F.2.

The rest of the steps are executed in a loop until all measurements have been processed.

5.3.3. Propagation Step

For each new measurement sample z̃k, measured at tk, the state PDF first needs to be
propagated from the previous measurement update, at tk−1, to tk. This is, this subsection
deals with obtaining the prior PDF pdf(xk | zk−1) from the last known posterior
pdf(xk−1 | zk−1).

First, the sigma cloud of each kernel is propagated using the dynamic model defined by the
map f : Rn × R× R→ Rn (Equation 5.14). To do so, the δp component of each sigma
point needs to be converted back to quaternion state using Equations 5.10 and 5.13,
obtaining qjk−1|k−1(i). With this, each sigma point is propagated from tk−1 to tk using

Equations 3.8 and 3.9 and a numerical integration routine (Shampine et al., 1975), which
yields qjk|k−1(i).

The prior reference quaternion needs to be redefined, so that the sigma cloud of each kernel,
whose points are in quaternion form, can be converted back to state space–i.e. the GRP
form. To do so, one propagates the first statistical moment of the previous step, a.k.a.
the merged mean x̂k−1|k−1 (obtained from the set {wj , x̂jk−1|k−1} with Equation 5.24) to tk,
using the same method of GRP-to-quaternion as with the sigma points. This yields the
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merged, propagated attitude quaternion estimate qk|k−1, which becomes the new reference
quaternion:

q̃k|k−1 = qk|k−1 . (5.27)

With the new reference, the sigma cloud X jk of each kernel is recovered by using the inverse
of Equation 5.13 followed by Equation 5.9 to obtain the δp representation of each
qjk|k−1(i).

At this point, the estimated prior mean x̂jk|k−1 and covariance P jk|k−1 of each kernel are
obtained with the conventional UT: Equations F.5 and F.6 are used on the propagated
cloud X jk , using the process noise covariance matrix of step k, Qk, as model noise. Note that
for the clouds to include the additional process noise covariance Qk, they need to be redrawn
using Equation F.2 (Wu et al., 2005). Under the assumption that all kernels are affected
by the same process noise, Qk can be added to each one of them with the overall effect of
increasing the merged covariance by the same amount (Schiemenz et al., 2020).

Finally, assuming the propagation is linear enough, the kernel weights can remain constant
(Schiemenz et al., 2020):

wjk|k−1 = wjk−1|k−1 . (5.28)

Likewise, the number of kernels does not change either, so Mk|k−1 = Mk−1|k−1. With this,
the propagated prior state PDF is

Xk|k−1 ∼
Mk|k−1∑
j=1

wjk|k−1N
(
xk | x̂jk|k−1, P

j
k|k−1

)
. (5.29)

5.3.4. Measurement Estimation

The traditional update step of the UKF, where the measurement PDF is used to update the
prior state PDF pdf(xk | zk−1) to the posterior pdf(xk | zk), has been split into multiple
steps, to accommodate the Gaussian splitting and merging strategies that characterize the
AGMUKF for AD.

This section describes the first part of the UKF update step, which consists in applying
the measurement model on the sigma cloud of each kernel, using the map h : R3 × A→ R
from Equation 5.17. This yields the measurement sigma clouds Zjk. Next, the means ẑjk
and innovation covariance matrices P zz,jk are calculated using again the UT (Equations F.5

and F.6), this time applied on Zjk and using the measurement noise covariance matrix Rk to
represent model noise.

This step finishes with an estimation of the innovation PDF,

pdf(zk | xk) =
Mk|k−1∑
j=1

wjk|k−1N
(
zk | ẑjk, P

zz,j
k

)
. (5.30)
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5.3.5. Refinement Step

Because of the high non-linearity of h, before updating the state with the measurement
information, it is necessary to check whether the innovation PDF has become too non linear,
in which case the prior PDF should be split into a finer GM, to minimize the rise of non-
linearities in the measurement estimation step from Section 5.3.4.

To do so, the NLIs of the measurement model in each kernel are computed from each sigma
cloud Zjk with Equation 5.19, using P zz,jk as the scale term in Equation 5.21. These NLIs
are used to decide which kernels should be split, into how many parts, and along which
directions.

The split library used is the one developed by Vittaldev et al. (2016), which is homoscedastic–
meaning that the resulting new kernels have the same common covariance. This library
allows splitting one kernel among up to 39 new ones, only in odd numbers.

Following the implementation in Schiemenz et al. (2020), the split recommendation for kernel
j in each direction i in state space takes the form

nji = odd
(
a
(
log10(ϕ

j
i ) + b

))
, (5.31)

where odd(x) = 2⌈x/2⌉ − 1.

The splitting library works in the standard normal univariate distribution. For a split of
L new kernels, it provides the set of weights and means {w̄l|L, m̄ul|L | l ∈ 1 . . L}, as well
as the covariance σ̄2L, that result in the symmetric univariate GM with merged mean 0 and
covariance 1–i.e. the moments of the standard normal distribution. Therefore, to split along
the direction u ≡ uji (Equation 5.20) from kernel j with weight w = wjk|k−1, mean µ ≡ x̂jk|k−1

and covariance P ≡ P jk|k−1, first the original multivariate normal of the kernel needs to be
projected onto the standard normal along direction u. This is done by linearly transforming
the state using e.g. the Cholesky decomposition S of P = SST (Vittaldev et al., 2016), so
that

ū =
S−1u

∥S−1u∥ . (5.32)

Then, the L ≡ nji new kernels are obtained as the sequence of new weights

wl = w · w̄l|L , (5.33)

means
µl = µ+ µ̄l|LSū (5.34)

and covariances
Pl = S

(
In +

(
σ̄2L − 1

)
ūūT

)
ST (5.35)

for all l ∈ 1 . . L, where In is the n× n identity matrix.

After the split, all the newly created kernels need to have their sigma cloud X jk redrawn
(Equation F.2), so that the measurement estimation step from Section 5.3.4 can be applied
on them, too.

If several directions in the same kernel are recommended for refinement, the split operation
can be applied first in one direction, and then in the other one to the new kernels. As long as
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the directions are orthogonal, the order in which these are applied is irrelevant (Schiemenz
et al., 2020).

Now, the prior and innovation PDF equations are equal to Equations 5.29 and 5.30, with
the difference that there are M ′

k|k−1 ≥Mk|k−1 kernels. This results in a denser mixture that
captures the PDF in measurement space with significantly higher accuracy, even if the PDF
in state space remains virtually the same as before the split.

5.3.6. Update step

Having split the state PDF to mitigate the appearance of non-linearities in each UKF kernel,
one can proceed with the normal UKF steps to obtain the posterior PDF of the state,
pdf(xk | zk).
On a kernel basis, the UKF cross covariance P xz,jk is computed by applying Equation F.8 on

the state X jk and measurement Zjk sigma clouds, in this order. With this, one obtains the
Kalman gains

Kj
k = P xz,jk

(
P zz,jk

)−1
(5.36)

and updates the kernel means and covariances with

x̂jk|k = x̂jk|k−1 +Kj
k

(
z̃k − ẑjk

)
(5.37)

and
P jk|k = P jk|k−1 −K

j
kP

zz,j
k

(
Kk

j
)T

. (5.38)

In the update step, actual new information has been introduced in the state PDF. Thus,
the kernel weights must be updated. This is done by rescaling each kernel weight with the
innovation likelihood of the prior residual (Schiemenz et al., 2020),

wjk|k = wjk|k−1N
(
z̃k | ẑjk, P

zz,j
k

)
. (5.39)

Now, the posterior PDF looks like

Xk|k ∼
M ′

k|k−1∑
j=1

wjk|kN
(
xk | x̂jk|k, P

j
k|k

)
. (5.40)

5.3.7. Coarsening step

After the measurement update, it is often the case that the GM that represents the posterior
state PDF is oversampled, due to all the extra kernels added to the mixture to properly model
the non-linearity in the measurement estimation. Thus, a merge step is performed, where
kernels that are too close to each other in state space are joined within a moment-preserving
merge.

The moment-preserving merge of any two kernels i and j in the mixture is the weight-
normalized version of Equations 5.24 and 5.25 applied to the two kernels only–the subscript
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k|k of weights, means and covariances has been omitted for brevity since it applies everywhere
in this subsection:

wij = wi + wj , (5.41)

µij =
wiµi + wjµj

wij
(5.42)

and

P ij =
wiP i + wjP j

wij
+

wiwj

(wij)2
(µi − µj)(µi − µj)T . (5.43)

To coarsen the mixture, the same strategy used by Schiemenz et al. (2020) is used here. This
is, the first step is to compute the Kullback-Leibler (KL) distance (Runnalls, 2007) between
all kernel pairs (i, j),

B(i, j) =
1

2

[
wij log(

∣∣P ij∣∣)− wi log(∣∣P i∣∣)− wj log(∣∣P j∣∣)] . (5.44)

Then, if the closest pair is at a distance lower than a given threshold, the two affected
kernels are substituted by the new merged one. The distance of the new kernel relative to
all the other kernels is computed anew, and the cycle is repeated until the closest pair is at
a distance greater than the threshold. Refer to Schiemenz et al. (2020) for the reasons to
choose the KL from all the distance metrics available in the literature.

At the end of the merge step, the posterior PDF looks similar to Equation 5.40, but with
Mk|k ≤M ′

k|k−1 kernels due to the merge.

5.3.8. Filter Reset

To close the filtering cycle, the posterior reference quaternion needs to be updated again. To
do so, the merged mean of the posterior state PDF, x̂k|k, is computed as in Equation 5.24,
from which the posterior merged error GRP, δpk|k, is extracted. The merged error quaternion
δqk|k is obtained using Equation 5.10 on δpk|k. Similar to the propagation step, the posterior
reference is computed from the prior one as

q̃k|k = δq̂∗k|k ⊙ q̃k|k−1 . (5.45)

With the new reference, the kernel means need to be shifted, too. In UKF implementations
for attitude states with reference quaternion plus error state (Crassidis et al., 2003), this is
commonly achieved by resetting them with the merged error GRP:

δp̂jk|k ← δp̂jk|k − δpk|k . (5.46)

This process makes the merged mean of the mixture yield exactly δpk|k = 0, meaning that
the reference quaternion is exactly the one represented by the merged mean of the state.
Equation 5.46, however, is only a first order approximation (see Appendix D.4) that is only
valid if both δp̂jk|k and δpk|k are very small. This is appropriate for filters like the plain
UKF, which assume small uncertainties relative to the total surface of the unit quaternion
hypersphere. However, the PDF of the state within the AGMUKF may be composed, at any
given step, by a disperse mixture spanning across wide regions of the attitude space. This
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means that the errors introduced by Equation 5.46 are likely to be significant if used within
the AGMUKF, especially when the second statistical moment of the mixture is relatively
high.

In this thesis, the proposed solution is to exploit the UKF kernel of the AGMUKF to reset
the state of each kernel relative to the new reference quaternion by means of an UT, so that
at least the second order statistical moment of each kernel is preserved. To do so, first, the
sigma cloud of each kernel is redrawn using Equation F.2 from its mean x̂jk|k and covariance

P̂ jk|k. Then, each sigma point i of each kernel j is modified as

δpjk|k(i)← p
((
p−1

(
δpk|k

))∗ ⊙ p−1
(
δpjk|k(i)

))
, (5.47)

which is the actual quaternion composition that ensures that each sigma point still represents
the same quaternion when composing it with the new reference quaternion. Then, the mean
and covariance of each kernel are recovered using the normal UT from Equations F.5 and F.6,
as was done during the propagation step. Due to the non-linearity of this operation, the new
merged mean will not yield exactly δpk|k = 0; but because it will still approach Equation 5.46
for small error states, it will in general imply a reduction of ∥δpk|k∥ proportional to second
order error–i.e. the reference quaternion will still be a closer representation to the updated
merged state than before the reset.

5.4. Simulation Scenarios and Results

In this section, different scenarios of the AD problem are presented and discussed. It is worth
mentioning that all the results shown in this section have been obtained using the Square
Root Unscented Kalman Filter (SRUKF), which is mathematically equivalent to the plain
UKF steps presented in the previous section, but guarantees the positive-definiteness of the
covariance matrix. It synergises well with the AGMUKF, since the Cholesky decompositions
of the covariance matrices are needed anyway to establish the split directions. Refer to Van
der Merwe et al. (2001) for a detailed development of the core SRUKF.

Furthermore, all cases presented here use a = 1 and f = 2(a+ 1) = 4 for the GRP
implementation, as e.g. in Du et al. (2018). The choice of a = 1 prevents the δp part of the
state from tending to infinity at the extremes, in contrast to a = 0 (Crassidis et al., 2007),
while f = 2(a+ 1) = 4 makes it approach Euler angle errors in first-order Taylor expansion
(see Appendix D.4).

5.4.1. AGMUKF vs. UKF

The first validation step of the AGMUKF has been to compare it against a plain UKF,
which is in this case equivalent to the AGMUKF algorithm presented above, with only one
kernel and skipping the splitting and merging steps, plus using Equation 5.46 to reset the
error state.

The simulated scenario reproduces the exact same case presented in Wetterer et al. (2009).
This is, the Atlas-Centaur II upper-stage with NORAD number 12069 is simulated based
on its TLE, available from Space-Track.org (U.S. Government, 2019). The initial attitude,
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angular velocity, measurement acquisition rate and simulation time span are unchanged w.r.t.
Wetterer et al. (2009). The shape model conserves the same characteristics: a cylinder with
9m length, 1.5m radius, and two caps on either side. In the current work, the caps are
modelled as cones of 1.5m height, instead of flattened hemispherical ones (see Figure 5.4).
Both cylinder and cones are discretized using 100 flat facets each. As in Wetterer et al.
(2009), the sides of the cylinder (blue) follow a Cook Torrance BRDF (Section 3.1.4) with
ρ = F0 = 0.2 and d = 0.3, with m = 0.17. The cones, also Cook Torrance, have the same
m and d = 0.8; one cone has ρ = F0 = 0.6 (orange), while the other one has ρ = F0 = 0.3
(green). The inertia tensor is computed assuming the object is solid, with constant density.
Regarding the filter, the same measurement model uncertainty, initial state uncertainty and
process noise are used. Finally, the simulated observer is the AEOS telescope.

Figure 5.4.: Simulated object shape (Vallverdú Cabrera et al., 2023)

The goal of this experiment is to reproduce the Wetterer et al. (2009) scenario as faithfully
as possible. The main reason is to assess the AGMUKF against a known-working case of
the UKF. However, the UKF is the work-horse underneath the AGMUKF. Therefore, the
second reason is to validate the UKF implementation itself used in this thesis.

The UKF (as well as the AGMUKF) has been tuned with α = 0.5, β = 2 and κ = 0 (refer
to Appendix F). Regarding the parameters only relevant to the AGMUKF, the split criteria
from Equation 5.31 have been set to a = 15 and b = 1. The KL-distance threshold has been
set to 10−4–i.e. kernel pairs at a relative distance of less than that value are merged in the
merge step. These values have been obtained empirically by trying to balance the number of
kernels and filter performance. Additionally, the maximum number of kernels allowed after
any refinement step is set to Mmax = 999. Whenever a split step would generate more than
that, the following measures are taken:

1. The kernels are split by order of decreasing weight. This ensures that the splitting
effort is focused on the kernels with the highest likelihoods.

2. While splitting any particular kernel j, if it would exceed the maximum number of total
kernels, the split recommendation vector is reduced by 2 (i.e. nji ← max(nji − 2, 0))
iteratively until the split operation does not generate more kernels than the threshold,
or until all nji = 0, in which case the kernel is skipped from splitting. The jumps of 2
by 2 arise from the fact that the splitting libraries of Vittaldev et al. (2016) only allow
odd-numbered splits.

3. The kernel splitting step is stopped as soon as the mixture has Mmax−1 kernels, since
the minimum possible split would add 2 new kernels as per the libraries of Vittaldev
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et al. (2016).

From the three available splitting libraries (Vittaldev et al., 2016), the one that yields the
smallest individual kernel covariance is used (σ2 =M−1), because it is the one that can split
a kernel in more pieces (39), and because the purpose of splitting is to reduce the uncertainty
region of each kernel, so that the subsequent UTs are closer to local linearity.

Having set the scenario, a Monte Carlo study of 100 iterations is performed. In each Monte
Carlo iteration, both a UKF and an AGMUKF are initialized with the same random
realization x̂0 from X̂0 ∼ N (x̂0 | µ0, P0), where P0 is the one used in Wetterer et al.
(2009),

P0 = diag
([
4 · 10−2 4 · 10−2 4 · 10−2 10−24 10−24 10−6

])
, (5.48)

while
µ0 =

[
0 0 0 0 0 0.252 rad

s

]T
. (5.49)

The quaternion represented by the δp̂0 portion of x̂0 is set as the initial reference
quaternion,

q̃0 = (q (δp̂0))
∗ ⊙ q0 , (5.50)

after which δp̂0 is reset to 0. The quaternion

q0 = 0.743− 0.171i+ 0.050j − 0.645k (5.51)

is the true initial attitude quaternion of the object. The Wetterer et al. (2009) covariance
P0 is used to initialize the filter–the AGMUKF starts with a single kernel. Measurements
z̃k are likewise realizations of Zk ∼ N (zk | z(tk), Rk), where z(tk) is the true measurement
in the absence of sensor noise at time tk, obtained by propagating the initial true attitude
and angular velocities to tk with Equations 3.8 and 3.9, and then applying the measurement
model from Equation 5.17 with v = 0. Likewise, the filter uses Rk as the measurement
covariance, too.

The first part of this subsection focuses on the analysis of one arbitrary filter run whose
initial reference quaternion and angular velocity are

q̃0 = 0.756− 0.070i+ 0.237j − 0.605k (5.52)

and

ω̂0 =
[
−1.10 · 10−12 −7.79 · 10−13 0.253

]T rad

s
. (5.53)

Both simulation and filter assume zero net torque, and the filter assumes a process noise of
(Wetterer et al., 2009)

Qk = diag
([
4 · 10−8 4 · 10−8 4 · 10−8 10−24 10−24 10−12

])
. (5.54)

The measured (i.e. noisy) light curve is shown in Figure 5.5. In the three plots, the solid blue
line connects the measurements, which are marked with a× symbol. While Figure 5.5a shows
the whole simulation time span, Figures 5.5b and 5.5c contain the first and last 3 minutes,
respectively, so that finer detail can be appreciated. The dashed orange curves symbolize
the upper and lower bounds of the regions under which the cumulative probability of the
measurement is about 99.73%. For the measurement, which follows a Gaussian distribution
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(c) Last 3 minutes

Figure 5.5.: One noisy light curve of the Wetterer et al. (2009) scenario. Blue crosses are
brightness measurements, while the blue line is a visual guide. The orange
dashed line is the 3-σ envelope of uncertainty around the light curve (Vallverdú
Cabrera et al., 2023)
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Figure 5.6.: One UKF run on the Wetterer et al. (2009) scenario.Legend: truth (blue line);
3-σ envelope of the estimated PDF (dashed orange line) (Vallverdú Cabrera

et al., 2023)
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Figure 5.7.: One AGMUKF run on the Wetterer et al. (2009) scenario. Legend: truth (blue
line); 99.73% probability envelope of the estimated PDF (dashed orange line)

(Vallverdú Cabrera et al., 2023)
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with covariance R = 0.32 this is the ±3
√
R region around the measurement realization (solid

blue curve), which acts as an estimated mean in this case.

Figure 5.6 shows the evolution of the estimated state PDF as per the UKF, for this particular
Monte Carlo run, while Figure 5.7 has the same data, but for the AGMUKF. The solid blue
curve in each plot is the true state in the specified dimension–i.e. either error GRP w.r.t. the
reference quaternion of the filter run, or plain angular velocity. The orange dashed curves
enclose the 99.73% cumulative probability of the marginal PDF in that dimension.

For the UKF case, since the PDF is modelled as a Gaussian, for each state i ∈ 1 . . n, this
still is the ±3σi offset from the filter estimated mean x̂i, where σi is the square root of the
i-th diagonal element of P . Note that this applies to all prior and posterior estimations in
all time steps–i.e. here sub-indices do not indicate the time step, as before, but the state
dimension.

For the AGMUKF, however, at each time step of the filter (both prior and posterior), this
region is defined as the sub-set Ωi of the domain of each state such that, for probability
pr = 99.73%,

pr =

∫
Ωi

pdfi (xi) dxi (5.55)

and

pdfi (xi) ≥ pdfi
(
x′i
)
, ∀xi ∈ Ωi ∧ x′i /∈ Ωi , (5.56)

where

pdfi(xi) =
M∑
j=1

wjN
(
xi | x̂ji ,

(
σji

)2)
(5.57)

is the univariate marginal GM of state dimension i. In words, this is the region with
cumulative probability 99.73% such that the PDF at any point within this region evaluates
higher than at any point without. It can be proven that Ωi is unique given pr and pdfi
(Kesemen et al., 2018).

The marginal PDFs estimated by each filter, overall, do not seem to be extremely different
when comparing them within this particular Monte Carlo run. The AGMUKF estimates
the PDF of the angular velocity as a bit more disperse, for the non rotating directions.
Nonetheless, in both filters the truth stays within the 99.73% region for all states, even if it
goes close to the border around the 1500 s for the AGMUKF. Overall, both converge quite
well by the end. Since this is a case tuned to work with the UKF version, it is to be expected
that the AGMUKF reduces to almost a normal UKF.

Despite all this, the fact that each filter converges well once, for a specific initial realization
of the state and a specific realization of the light curve, does not guarantee that the filter
will converge with all combinations. To assess this, the results of the 100 Monte Carlo runs
need to be analysed as a whole, and not individually. This is done with the Log-Likelihood
(LL) of all the Monte Carlo runs (Schiemenz et al., 2020; Vittaldev et al., 2016)

LL =
MC∑
i=1

log
 M∑
j=1

wjN
(
x | x̂j , P j

)
i

, (5.58)
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where the square brackets indicate each distinct Monte Carlo iteration i. In the UKF case,
this reduces naturally to M = 1. In any circumstance, the higher the LL, the likelier it is
that a filter estimates a consistent PDF of the state.

Figure 5.8 shows the LL for the UKF; while Figure 5.9, that of the AGMUKF. In both cases,
the solid blue curve is the LL of the whole state, the orange dotted one is the LL applied
only to the three attitude states, and the green dashed one is that of the angular velocity
states.

These two plots do show a significant performance difference between the two filters. On
the one hand, the LL of the UKF plummets as time goes by, which implies that the filter
diverges in several of the runs. On the other hand, the LL of the AGMUKF steadily increases
over time, indicating that it converges over all runs, consistently closing in around the true
state as simulation time increases. This shows that the AGMUKF is clearly superior to the
plain UKF in terms of stability, and that it is significantly likelier to estimate a consistent
PDF.

The root cause for the superiority of the AGMUKF is likely the fact that it can model the
PDF of the estimated measurement from the state with significantly higher accuracy. This is
demonstrated by the results shown in Figure 5.10, which is the equivalent of Figure 5.2 but for
the AGMUKF case. An additional curve is shown here–dash-dotted cyan–which represents
the measurement PDF before the split. The solid orange one, then, is the measurement PDF
that results after the split. When they coincide, it means that there is no need for splitting
in that particular time step. By comparing Figure 5.2 against Figure 5.10, it is clear that
the AGMUKF is able to model the measurement PDF, which is highly non Gaussian and
frequently multimodal, with a higher degree of accuracy than the UKF.

Figure 5.11 shows the history of the number of kernels for the AGMUKF run in question.
The solid blue curve indicates mixture size over time, while the orange × marks appear
whenever the mixture is refined, right after the split takes place. The first four fifths of the
abscissa, up to the dash-dotted vertical line, is represented in a zoomed scale, to highlight the
first 100 s of simulation, when most of the splits happen. For the rest of the simulation time,
except at the very end, the kernel population gradually decreases as the kernels approach
each other in KL-distance sense, which triggers merges once in a while.

Note, then, that even if at peak moments there are up to 100 kernels active, for the most
part of the run the mixture is composed by less than 20. This demonstrates the efficiency
of the AGMUKF architecture, which refines the mixture only when necessary, coarsening it
as soon as possible to reduce the computational burden. Without parallelization, under a
constant measurement frame rate, the AGMUKF uses approximately c times the
computational resources of the UKF, where

c =
1

tNt

∫ tNt

0
M(t)dt , (5.59)

plus the additional time it takes to split and merge kernels. For the particular run presented
here, this is c ∼ 11.7. In particular, the computational needs of the merge step grow
quadratically with M , since it needs to compute the relative distance between all kernels.
Fortunately, both the merge step and all the kernel-by-kernel steps (e.g. propagation) can be
parallelized, since the operations done on one kernel do not depend on the other kernels for
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Figure 5.8.: Log-likelihood over 100 MC UKF runs for the Wetterer et al. (2009) scenario
(Vallverdú Cabrera et al., 2023)
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Figure 5.9.: Log-likelihood over 100 MC AGMUKF runs for the Wetterer et al. (2009)
scenario (Vallverdú Cabrera et al., 2023)
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Figure 5.10.: Probability density function of ẑk for the first five measurements in the
Wetterer et al. (2009) scenario when using the AGMUKF Legend: PDF of the
observation (dashed green line); PDF of the measurement estimated from the
state using UT before the split (dash-dotted cyan line), UT after the split (solid
orange line) or Monte Carlo (gray histogram). Dates in the titles expressed in
ISO format: YYYY-MM-DD hh:mm.ss.fff (f stands for millisecond) (Vallverdú
Cabrera et al., 2023)
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Figure 5.11.: Kernel number history for one AGMUKF run of the Wetterer et al. (2009)
scenario (Vallverdú Cabrera et al., 2023)

most of the algorithm. Additionally, for each kernel, the UT propagation can be parallelized,
too, since each sigma point can be processed independently from the others. Thus, overall,
the execution time of both the UKF and the AGMUKF can be approximately divided by
the number of available threads.

5.4.2. Highly non-linear case

The other test result studied in this chapter is that of a highly non-linear case, where
the initial uncertainty of the state is greater than the previous case. Keeping on with
the comparison against existing literature of AD using different techniques, this subsection
studies a scenario similar to the one presented in Linares et al. (2014a), Example 2. This
scenario has been chosen for the similarity of the models used therein w.r.t. to the dynamic
and measurement models used here, and because Linares et al. (2014a) use the PF for AD,
the base of the current state-of-the art, and main competitor to the AGMUKF.

The main modification of the scenario used here w.r.t. Linares et al. (2014a) is that a
different shape is used, since they do not provide information on the reflective properties of
the surfaces of their test shape. To follow with the example from the previous section, the
shape used is a 100-faceted cylinder approximation with 9m length and 3m diameter, with
conic caps 1.5m long on either end, like the one in Figure 5.4. The body x axis is parallel
to the axial direction of the cylinder, while y and z lie on the orthogonal plane, forming
a right-handed frame. The same reflective properties as in the previous section have been
used. Regarding the filter, the same UKF- and AGMUKF-specific tunable parameters are
kept from the previous section, too.

In the Monte Carlo run presented here, the filter is initialized with an initial diagonal
covariance, with the δp components being 0.3932 and the ω ones, 2.350 · 10−4rad2/s2, as in
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Figure 5.12.: One noisy light curve of the Linares et al. (2014a) scenario. Blue crosses are
brightness measurements, while the blue line is a visual guide. The orange
dashed line is the 3-σ envelope of uncertainty around the light curve (Vallverdú
Cabrera et al., 2023)
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Figure 5.13.: One AGMUKF run on the Linares et al. (2014a) scenario. Legend: truth
(blue line); 99.73% envelope of the estimated PDF (dark orange region),
95.45% envelope (middle orange region), 68.27% envelope (pale orange region)
(Vallverdú Cabrera et al., 2023)
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Linares et al. (2014a). The initial state is

q̃0 = 0.495− 0.710i+ 0.293j − 0.407k (5.60)

and

ω̂0 =
[
−2.50 · 10−3 1.50 · 10−3 1.31 · 10−3

]T rad

s
. (5.61)

This results in the initial δp̂0 = 0 being at an Euclidean distance of ∼ 1.13 from the true
δp0, in GRP space. Figure 5.12 shows the measured light curve, where the zoomed plots
include the bounds of the 3σ, or 99.73% probability region, with R = 0.052. The process
noise used is

Qk = diag
([
10−12 10−12 10−12 10−14 10−14 10−14

])
. (5.62)

Again, net torque is 0.

Figure 5.13 shows the evolution of the estimated pdf of this particular filter run. In contrast
to Figures 5.6 and 5.7, here the 1σ (Pr = 68.27%), 2σ (Pr = 95.45%) and 3σ (Pr = 99.73%)
probability regions are all represented in solid orange, from lighter to darker tone, instead
of using bounds.

Within this run, the AGMUKF is able to constrain the state pdf well around the truth, as
shown in Figure 5.13. However, due to the high non-linearity of the problem, coupled with
the wide initial uncertainty in attitude, which almost gives no constrain to the initial state,
the filter cannot fully decide among two different modes. These two modes have the same
angular rate and j GRP component, but show a constant offset on the i and k GRP states
(Figures 5.13a and 5.13e). This means that there is a non-negligible probability that the
measured light curve could be the result of either alternative attitude states, as far as the
filter is concerned.

This does not imply that the filter has failed to converge. In fact, the true state stays within
the 1σ (palest orange) region through most of the simulation time. Thus, the mode that
differs more from the truth is the one with a significantly lower share of the total probability.
However, most importantly, the log likelihood of this single run increases throughout the
simulation (Figure 5.14), meaning that the filter tends to converge around the truth as new
measurements come in.

This particular Monte Carlo run has been chosen in this work precisely as a clear example of
convergence around a multi-modal solution, a feature that is enabled by the use of Gaussian
Mixtures.

This stability, however, is not preserved in a 100-samples Monte Carlo study, as in the
previous scenario: while some runs have converged around a single attitude mode, or with
multi-modal PDF, such as the one presented here, some other runs diverge, making the total
LL plummet. The specific ratio of failed runs for this simulation is 14%.

Since the initial greater covariance results in higher NLIs, both in the dynamic and the
measurement models, but especially in the latter (see Figure 5.15), the splitting step
recommends significantly more splits, compared to the Wetterer et al. (2009) scenario.
This is clear in the plot from Figure 5.16, where the first 700 s are zoomed in to show in
more detail the region where most splits happen. The total number of kernels in a given
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Figure 5.14.: Log-likelihood over a single MC AGMUKF run for the Linares et al. (2014a)
scenario (Vallverdú Cabrera et al., 2023)
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(Vallverdú Cabrera et al., 2023)

100



5.4. Simulation Scenarios and Results

0 100 200 300 400 500 600 700 2000 3500
Time [s]

0

200

400

600

800

1000

#
 k
er
ne

ls
 [-
]

# kernels

Figure 5.16.: Kernel number history for one AGMUKF run of the
Linares et al. (2014a) scenario (Vallverdú Cabrera et al., 2023)

time reaches the hard limit of 999 at the very beginning, suggesting that a higher bound
might improve the results for this scenario in a general Monte Carlo sense.

Given that the 100-runs Monte Carlo study does not result in LL convergence, it is clear
that several improvements could be attempted to stabilize the AGMUKF for this kind of
higher initial uncertainty scenario. Some viable options would be to:

• increase the maximum allowed size of the population, as suggested above;

• make the splitting algorithm (Equation 5.31) more aggressive by making it start
splitting earlier (higher b) and at a faster rate (higher a)–this would result in a finer
modelling of the measurement PDF;

• since the NLI is significantly high for the propagation step (Figure 5.15), incorporate
the split/merge strategy around it, too, as in Schiemenz et al. (2020) for the OD case;
in this case, doing multiple prediction steps between measurements could help conserve
a more faithful estimate of the state PDF;

• include better process noise tuning/modelling, as in Crassidis et al. (2003) and Coder
et al. (2017);

• make the filter over-estimate the initial covariance, to ensure outlier initial conditions
are still covered;

• initialize the filter with a GM of more than one kernel, with the goal to off-load
the splitting algorithm with the (currently) inherent limit of 39 splits per direction
per update of the Vittaldev et al. (2016) library; this could be combined with the
Excpectation-Maximizaiton algorithm, as in Yun et al. (2020), to fit the initial mixture
to some arbitrary initial PDF, such as the uniform distribution (Shuster, 2003);

• the 39-splits limit might also be palliated by recursively splitting plus consecutive
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merging–although this is not the optimal split solution, it might still benefit the filter
by reducing the non-linearity of each kernel.

Computationally speaking, applying Equation 5.59 to Figure 5.16 yields an average number
of kernels per iteration of roughly 70. Each kernel consists of an UKF composed by 13
particles (twice the number of error-states plus one). Thus, the results here have been
obtained with an average of 13× 70 = 910 particles. In contrast, the results from Linares et
al. (2014a, Fig. 3) use roughly 20 000 particles, one order of magnitude higher. Further tests
are needed to assess how the AGMUKF and the PF perform in exactly identical scenarios,
and how much of the computational overhead is taken by the AGMUKF splitting/merging
part, versus the resampling and regularization tasks required by the PF. Nonetheless, these
results show significant promise for the AGMUKF, and its potential efficiency benefits w.r.t.
the PF.

5.5. Conclusion

This chapter has introduced the process of non-linear sequential estimation aimed at the
Attitude Determination (AD) of Resident Space Objects (RSOs) using light curves, when
the shape and surface reflectance model is known. The dynamic and measurement models
of the problem have been presented, and their significantly non-linear character has been
emphasized.

An existing Non-Linearity Index (NLI) based on the Unscented Transform (UT) has been
modified to allow comparison between different transformation models. This new NLI has
been used within a Monte Carlo study of the measurement model to assess the inherent
non-linearity of the problem. Results have shown that the measurement model is relatively
less linear than the dynamic one. This has motivated the design of the Adaptive Gaussian
Mixtures Unscented Kalman Filter (AGMUKF) for Attitude Determination (AD), based on
a similar implementation of the AGMUKF for Orbit Determination (OD).

First, the convergence performance and stability of this new filter has been assessed against a
scenario that had previously been proven to converge under the classical Unscented Kalman
Filter (UKF) for AD. The results of a Monte Carlo study have shown that, although the
convergence rate can be similar for particular runs, the AGMUKF is significantly likelier to
always converge than the UKF.

Second, the AGMUKF has been tested against a more demanding scenario, for which the
Particle Filter (PF), its main rival, had been previously proven to work. The AGMUKF
has been shown to converge for an example run with significant initial uncertainty,
successfully capturing the multimodal character of the state probability density function.
Several suggestions have been given to potentially improve its stability against varied
initial and noise conditions.

The results of this chapter have introduced the novel AGMUKF for AD as potential
alternative to PF-derived techniques, since it has been shown to converge in scenarios
where the traditional PF does, too. In contrast to the PF, the AGMUKF manages the
number of kernels (particles in PF lingo) more efficiently, since it can concurrently assess
the non-linearity present in the model. Furthermore, the AGMUKF avoids the PF
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degeneracy problem, as well as its dependence on regularization. Finally, the AGMUKF
naturally avoids the need to marginalize the PF when a part of the state evolves linearly
through the involved models, as in Coder et al. (2017), because the NLI will naturally stay
0 in these directions.

The one caveat of the AGMUKF w.r.t. the PF is that the computational complexity of the
merging step increases quadratically with the number of kernels. Significant improvement
would be achieved by devising more efficient merging criteria.

Further work should include the application of the AGMUKF to other dynamic and
measurement models, which e.g. target agile objects (Holzinger et al., 2012), to include
shape- and reflectance-model uncertainties (Coder et al., 2017) or to fuse attitude and
orbit estimation (Yun et al., 2020), or attitude and shape (Linares et al., 2018). Finally,
the AGMUKF for AD should be tested against real-world data, as in Coder et al. (2018).
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So far, this thesis has researched light curve simulation, plus two state-of-the-art Object
Characterization (OC) methods, one for shape and one for attitude characterization of RSOs.
This chapter explores some use cases for these contributions. Thus, it serves as a wrap-up
of this dissertation, and lays out the ground for further development, too.

In other words, this chapter tackles the last research question: Which SST use cases does
direct Object Characterization enable?

This chapter is divided in three sections. First, Section 6.1 summarizes the different use-
case-enabling OC pipelines researched within this thesis. Then, Section 6.2 demonstrates a
simple use case of using frequency analysis of light curves to deduce properties of the status
of a RSO. Next, Section 6.3 conceptualizes a satellite diagnosis tool that exploits the main
shape and attitude determination contributions of this thesis. Finally, Section 6.4 reviews
other use cases that could benefit from exploiting OC techniques.

6.1. Object Characterization Pipeline

First, this section summarizes the OC pipelines studied within this thesis as a whole, so
that the rest of the chapter can focus on which OC-dervied use cases are enabled as a
consequence.

Figure 6.1 shows a block diagram of said OC pipelines. The undulated blocks to the left
of the vertical dashed line represent the input data used by each pipeline1. To the right of
the line, the different OC pipelines are represented by the interconnected rectangular blocks.
On this side, undulated blocks represent the outputs of each pipeline.

The blocks Frequency analysis and Epoch method that form the middle row represent two
shape-independent Attitude Determination (AD) methods presented in Vallverdú Cabrera
et al. (2021a):

• The Frequency analysis block represents all the Fourier-related methods used to extract
dominant frequencies from light curves and generate phase plots. These capabilities
are demonstrated in the following section.

• The Epoch method block is the shape-independent AD algorithm presented in Hall et
al. (2006) and Hall et al. (2014) that bears this name. As explained in the Literature
Review, it exploits the fact that the apparent period of a light curve changes over
time due to changes of the Sun-object-observer triangle relative to the spin axis of a

1Note that common inputs such as the orbit of the RSO or the properties of the observer are not shown,
since they apply everywhere.
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6.2. Frequency Analysis

spin-stabilized object. This allows the method, under strongly restricting observability
conditions, to recover the inertial period and direction of the spin axis.

Refer to Vallverdú Cabrera et al. (2021a) for a detailed development of this particular
pipeline.

Next, the blocks connected on the top row, LC to EGI and EGI to shape, represent the light
curve to EGI plus Minkowski minimization (EGI to shape) from Chapter 4. Meanwhile,
the bottom block UKF/AGMUKF att. det. is the algorithm from Chapter 5. Finally, the
Coupled estimation block symbolizes the simultaneous characterization of attitude and shape
from a light curve. This is not part of the scope of this thesis, hence the red font, but it has
been included in the diagram in the role of further work.

6.2. Frequency Analysis

This first use case is adapted from Vallverdú Cabrera et al. (2021a, Section 7.1), the first
paper published within the scope of this doctoral research. As such, parts of Vallverdú
Cabrera et al. (2021a) are included in this section. It intends to show one simple use case in
which real observations are used to assess the rotational status of the ISO satellite (Cospar
1995-062A). It is included here to illustrate a simple, yet effective use case for OC, validated
against true measurements.

ISO

Figure 6.2.: Image of the ISO satellite taken with ART.

First, Figure 6.2 is a zoom on one of the images used to build the light curve used for this
analysis. It is part of a series of images obtained by ART (see Appendix A.2) on the night
of 2019-10-06. Each image was exposed for 0.2 s, and the pixels were binned on two by two
squares. In the example image, the ISO satellite is the highlighted dot.
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Figure 6.3.: Light curve of the ISO satellite measured on the morning of 2019-10-06 with
ART (Vallverdú Cabrera et al., 2021a)

As explained in Vallverdú Cabrera et al. (2021a), all the images are reduced with
AstroImageJ (AIJ) (Collins et al., 2017) to obtain the light curve shown in Figure 6.3. The
faded blue squares represent the instrumental magnitude (Equation 3.37), computed from
the electron counts reported by AIJ. These shall be read on the left-side ordinates. The red
triangles, read on the right-side ordinates, are the apparent magnitude as computed by
AIJ–it uses differential photometry to extrapolate the apparent magnitude of the object of
interest, based on the known apparent magnitude of surrounding stars Collins et al. (2017).
The faint blue squares, read on the left-side ordinates, are the same apparent magnutde
samples, but further de-trended with a constant range (observer to object distance) of
1000 km. The black line is a polynomial fit on the apparent light curve.
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Figure 6.4.: Lomb–Scargle periodogram of
the light curve from Figure 6.3,
after detrending (Vallverdú
Cabrera et al., 2021a)
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Figure 6.5.: Phase plot of the detrended
light curve from Figure 6.3
(Vallverdú Cabrera et al.,
2021a)

Figure 6.4 shows the Lomb-Scargle periodogram (VanderPlas, 2018) of this light curve. A
clear series of harmonics can be observed, with a fundamental period of T ≃ 33.51 s. Given
the non-symmetric shape of the ISO satellite, this is probably the actual apparent period at
which it was rotating around itself on the night of observation–symmetries could mean that
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the observed period is a divisor of the actual full rotation of the object shape from the point
of view of the PAB (Linder et al., 2015). Furthermore, no other peaks that are not multiple
of the fundamental frequency appear, which suggests that its rotation is mostly around a
principal axis.

This allows the creation of a phase plot, shown in Figure 6.5. This is a plot of the light curve
against the modulus of the relative time since the beginning of the light curve, divided by the
apparent period, and normalized by the apparent period itself. Blue triangles are individual
light curve points, while the black line is a fit of a Fourier series into the data.

This brief example shows one simple, but effective use case enabled by the most basic and
well established OC applications (Linder et al., 2015). It has proven that frequency-domain
analysis of actual light curves, without quantitative a priori knowledge of the object observed,
can be used to extract qualitative assessments of the status of space object. In this case,
its rotational status. Furthermore, curated data such as the power spectrum (or one of its
generalizations such as the Lomb-Scargle periodogram) or a phase plot can be used as pre-
processed input to ML-based classification algorithms, as suggested in Jia et al. (2018).

6.3. Diagnosis of an Operational Satellite

The use case presented in this section strives to verify the statement from Enomoto et
al. (2016), which suggests that satellite health monitoring can benefit from the outputs of
OC.

On the one hand, the EGI-based shape-determination approach, which this thesis has
revisited and verified in several scenarios, requires knowledge of the RSO attitude. On the
other hand, the AGMUKF for AD, which has been introduced and validated in this
dissertation, needs the shape (and reflective properties) model that represents the RSO as
an input. This makes these two OC methods complementary. Motivated by this, this
section combines these two methods into a demonstrator for a diagnosis tool for
operational satellites.

The use case assumes the scenario in which the attitude of the satellite is known via telemetry
provided to the SST service provider by the operator entity. The design shape model,
including the reflective properties of the satellite surface materials, are provided, too. The
question to answer is: how can one detect whether the surface integrity of the satellite is
intact?

One solution is to exploit the Attitude Determination method developed in Chapter 5. The
hypothesis is that, if the shape/reflective model of the satellite remains valid, the result
of AD should return an attitude state PDF for which the real attitude has a significant
likelihood. Otherwise, the likelihood of the real attitude state for the obtained PDF should
be close to zero.

This section tries this approach via the following example. Observations from the Airbus
Robotic Telescope (ART) are simulated, of a GEO object with the shape of the winged
cube used in Chapter 4 (Figure 4.3d). The design reflectances correspond to Lambertian
diffuse BRDF (Equation 3.16) with ρ = 0.5 on the body, and a specular Cook-Torrance
BRDF(Equations 3.16 and 3.17) with d = 0.25, ρ = 0.45, F0 = 0.75 and m = 1/

√
2 on the
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(b) First 3 minutes.
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Figure 6.6.: One noisy light curve of the diagnosis scenario. Blue crosses are brightness
measurements, while the blue line is a visual guide. The orange dashed line is
the 3-σ envelope of uncertainty around the light curve
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wings. The simulation starts on 2022-07-25 at 23:45:00 UTC (t0 from here onward). At the
time when the first measurement is taken, t0+7.5 s, the object position and velocity GCRF
vectors are

rI =
[
23871.3 −34766.6 −67.5

]T
km , (6.1a)

vI =
[
2.534 1.740 −0.005

]T
km s−1 . (6.1b)

At that time, the attitude state is

qIB = 0.7015− 0.4425i− 0.2896j + 0.4777k , (6.2a)

ωIB/I =
[
−3.947 0.711 2.865

]T ◦ s−1 . (6.2b)

The exposure time is 5 s, and the time between consecutive measurements is 7.5 s. The
attitude during the 3 h long simulation follows torque-free conservation of angular
momentum. It is assumed that the object has a symmetric2 inertia tensor that is diagonal
in body frame, diag =

[
Ixx Iyy Izz

]
, with Izz/Ixx = 5.852 · 10−2 and Ixx = Iyy. This

gives rise to a precession movement in which the angular momentum of the object lies at
87.6◦ from the z-body axis, and rotates around it 2.698 ◦ s−1. In this use case, this is the
attitude reported by the satellite telemetry after e.g. a suspected collision with a piece of
space debris.

Let us imagine that the operators of the satellite want to determine whether the integrity of
the surface of the satellite is intact. One could do so via the AGMUKF for AD algorithm
presented in Chapter 5. To demonstrate, let us assume that the operator can provide the
attitude state of the satellite at a Gaussian 1-σ accuracy of approximately 1◦ in any of the
Euler angles, while the attitude rate error is 0.006 ◦ s−1. It is assumed that the total sensor
noise amounts to a Gaussian covariance of R = 0.032 magnitudes squared. Figure 6.6 shows
the simulated light curve, with the usual zoom at the beginning and the end, to show the
3-σ envelope.

The experiment goes as follows. If the result of AD using the known shape and reflective
model matches the known attitude, it is probable that the satellite integrity is fine. If this
is not the case, this could be an indicator of degraded integrity, because the shape/reflective
model from design is not applicable: some properties have changed. The likelihood metric
can be used for this purpose (Equation 5.58). The filter is tuned as in Section 5.4, but
with diagonal process noise of diag(Q) =

[
4 · 10−8 4 · 10−8 4 · 10−8 0 10−12 0

]
, in the

corresponding Interational System (SI) units.

On the one hand, Figure 6.7a shows the likelihood of one run of the AGMUKF, for the case
when the design shape and reflectance model are true. The likelihood steadily increases. This
is expected of a filter with a correct physical model, where each new piece of information
(each measurement) contributes to keep the hidden state knowledge (the PDF) concentrated
narrowly around the truth. On the other hand, Figure 6.7b shows the same metric, but for
the case when one of the two solar panels has been degraded, in such a way that its specular
reflectance F0 has changed from the design value of 0.75 to the degraded value of 0.15. The
filter still thinks it has the old value, though. This is the reason why this filter run, where

2This assumption may not be exactly realistic with the shape from Figure 4.3d, but it is merely used here as
an artefact to justify a tumbling motion of the object. Without loss of generality, a more detailed inertia
tensor could be used.
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Figure 6.7.: Log-likelihood over a single AGMUKF run for the diagnosis scenario

any other parameters are equal to the case of Figure 6.7a, fails to estimate the true attitude:
the likelihood stays at almost null values for most of the duration of the light curve.

The AGMUKF for AD algorithm used here is rather new. As commented in Chapter 5, there
is ample room for improvement, so that it becomes faster and more robust. This means that
in its current state, a convergence failure of the filter in a real scenario (where it is unknown
whether the actual shape model matches the design one or not), might not be caused by a
degradation of the object surface, but by the instability of the method.

Despite this, this small example still accomplishes the goal to demonstrate, in a simplified
and controlled scenario, how OC algorithms could potentially be used for health diagnosis
of operational satellites. This pipeline could be further automatized by state-of-the art ML-
based analysis, applied either on the results of OC, such as attitude, or on the light curves
themselves. This is e.g. what Kucharski et al. (2021) do to detect attitude anomalies in
mega constellations of satellites.

Finally, this exercise could have been done using the shape determination algorithm,
instead. One would then compare whether the convex-equivalent shape obtained from real
measurements is equal to the one obtained from simulated measurements (where the design
shape is used to simulate them). However, the AGMUKF was chosen to demonstrate the
diagnosis use cases because it can handle non-convex object without having to resort to
convex-equivalent shapes.

6.4. Other Use Cases

Other use cases of Object Characterization (OC) have been suggested in the Literature
Review. In particular, OC for ADR and OC for Orbit Determination (OD).

For the ADR case, the most interesting usage of OC is Attitude Determination (AD)–it
has been shown in Chapter 2 that knowing the attitude state of an ADR target a priori is
key to the mission success. This is, in fact, a direct application of the AGMUKF algorithm
developed in Chapter 5. The algorithm needs to undergo a more in-depth and systematic
tuning process, and can diverge in high-initial-uncertainty cases. Nonetheless, for
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demonstration purposes, Section 5.4 gives a perfectly valid example of the ADR use case
enabled by OC.

Another use case would be to fuse OD with the rest of OC. This would enable enhanced
accuracy Collision Avoidance (CA) and Re-entry Analysis (RE), two of the typical SST use
cases, as pointed out in Chapter 2. Partial solutions to this use case have been
implemented in the literature (Section 2.2.5). However, observability conditions are weak
at best. In fact, most often, the full set of characteristics that would enable enhanced
orbital models (attitude, shape and reflective properties to account for precise perturbation
forces and torques) are unobservable (Section 2.3). This observability weakness might be
improved using multiple simultaneous observers from different locations (different
observation geometries contribute different coverage of the hidden state), mixing sensor
types (e.g. Radar and optical) and/or enhanced light curves (polarized or spectral ones).
Furthermore, OD enhanced by OC requires the merging and coupling of the dynamic and
measurement models of the orbit, attitude, shape and reflective properties estimation
problems.

Providing tangible application examples of this use case falls outside the scope of this thesis.
Nonetheless, this work has advanced the status of some of the individual components that
enable it.
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This is the final chapter of this thesis. It synthesizes the conclusions of this research work
(Section 7.1) and lays out recommendations for future work (Section 7.2). This thesis closes
with a final word in Section 7.3.

7.1. Summary

Motivated by the need to mitigate the ever-growing threat that overpopulation of Earth
orbits poses to humanity, the aim of this research was to advance the technologies used to
characterize the Resident Space Objects (RSOs) that inhabit these orbits–the field known
as Object Characterization (OC). In particular, it explored which characteristics can be
estimated from light curves, how, and under which observability conditions. Additionally, it
sought to determine which Space Surveillance and Tracking (SST) use cases are enabled by
OC.

A thorough literature research on OC has been performed to fetch a preliminary answer to
the research questions of this thesis. The outcome of this effort has lead to the identification
of the particular and specific goals that have driven the core research effort of this work.

First, within the tangential, but necessary field of light curve simulation, a new rendering
algorithm optimized for objects with a few, big flat facets has been developed. This
algorithm, dubbed Shadow Projection, has been proven to outperform the state-of-the-art
ray tracing alternative when rendering simple polyhedrons.

Second, the shape determination algorithm that exploits the Extended Gaussian Image
(EGI) parametrization of arbitrarily complex convex polyhedrons and Minkowski
minimization has been explored. This work has computed the analytical expressions for
the Hessian of the volume of a polyhedron with its supports. It strived to improve upon
previous implementations of this shape recovery algorithm, which used finite differences to
compute the Hessian. However, the accuracy of the algorithm has, at best, stayed the
same. It has been hypothesized that the proposed analytical solution of the Hessian
dismisses the corner cases when facets may appear/disappear upon small changes of
support values–these rare cases would make high-density EGI tessellation cases more likely
to fail.

Still on the shape determination topic, it has been shown that EGI tessellations with more
cells than points in the light curve can be used even when the Gramian of the problem
is rank-deficient, making the hidden state non-observable from the point of view of linear
control theory. This is thanks to the non-negativity constraint imposed on the area values
of the EGI. It has been observed that this property holds even in simulation scenarios with
noisy light curves, depending on the shape of the object.
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The study of the EGI plus Minkowski minimization shape determination algorithm
performed in this thesis has resulted in one final contribution: a technique to
quantitatively assess how close two polyhedrons are from homotheticity. This method
improves upon previous evaluation techniques by assessing the final result of the shape
recovery pipeline (the polyhedron), instead of the intermediate one (the EGI).

Third, this research has explored the sequential estimation approach for Attitude
Determination (AD) from light curves. Sequential estimation being the main choice for
state-of-the-art AD, this dissertation has introduced the new Adaptive Gaussian Mixtures
Unscented Kalman Filter (AGMUKF) for AD. This filter has been adapted from the Orbit
Determination (OD) field from previous research. It models the Probability Density
Function (PDF) of the attitude and angular velocity state of the object with a Gaussian
Mixture (GM), and exploits recent Gaussian splitting libraries that optimize the
management of Gaussian kernels. To adapt the AGMUKF concept to AD, a modified
Non-Linearity Index (NLI) has been introduced, which has been used to assess and
compare the non-linearity present in the attitude dynamic model and the light curve
measurement models. The results obtained have motivated the design of an architecture
that focuses on mitigating the measurement non-linearity.

Simulation results have shown that the AGMUKF for AD is superior to the Unscented
Kalman Filter (UKF) classical alternative for sequential estimation of attitude from light
curves. Furthermore, it has been shown that the algorithm has the potential to handle highly
non-linear models proven to work under the state-of-the-art Particle Filter (PF), but at a
lower computational cost. Although more work is needed to properly tune it for it to be
truly comparable to the PF, the AGMUKF is shown to be a promising competitor in the
field of sequential AD: it would fill the gap between the low-accuracy, low-cost Extended
Kalman Filter (EKF)/UKF families, and the high-accuracy, high-cost PF ones.

Finally, it has been shown how the different OC algorithms introduced throughout this
work, including some mentioned in the Literature Review, have the potential to become
key pieces of the SST service pool. In particular, examples have been included on how 1)
Fourier analysis can be used to obtain rotational properties of objects, and 2) to propose
and demonstrate a simplified architecture that exploits OC algorithms to assess the health
status of an operational satellite.

7.2. Outlook

Object Characterization (OC) as a field has a considerable history, especially rich during the
last three decades. Nonetheless, new methods and technologies keep appearing continuously,
and new insights are being published at SST-related conferences, as well as new issues of
relevant journals. This indicates that there is still work to be done, and that there is still
room for OC to become more mature as a field. This dissertation is no exception. Thus,
this section outlines what short- and mid-term research efforts should focus on, to further
advance the work carried out here. These suggestions are mainly motivated by the results
obtained above.

With respect to the topic of light curve simulation, and rendering in particular, it is
necessary to properly parallelize the Shadow Projection algorithm (Algorithm 1). An
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implementation based on Graphics Processing Units (GPUs) could increase its
computational performance.

Concerning shape determination and the EGI plus Minkowski minimization algorithm, it
would be interesting to see how well the regularization schemes studied in this thesis, as
well as exploiting the analytical version of the Hessian, combine with other extensions of the
algorithm, such as the ones proposed by Fan et al. (2019) and Fan et al. (2021). Furthermore,
the analytical version of the Hessian of the volume of a polyhedron presented in this thesis
needs to be corrected to account for appearing and disappearing facets upon support change,
as suggested in the discussion of the Shape Determination Chapter.

In relation to the attitude estimation algorithm (AGMUKF), this thesis has demonstrated
its potential as a competitor of the PF. However, as a new method in the field of AD, it
has ample room for improvement. As indicated in the discussion of the Attitude
Determination Chapter, some upgrades could be performing a wider Monte Carlo study of
different scenarios, to better tune the splitting and merging thresholds of the algorithm, or
the governing criteria themselves; incorporating split/merging steps around the
propagation step, to support its non-linearities; implement advanced process noise models
from the literature of PF-based AD solutions; initialize the filter with more complex GMs;
or consider recursive splits when the non-linearity is especially high. Furthermore, it is
necessary to pit the AGMUKF against the PF with a formal Monte Carlo study, in the
same way as has been done in this thesis with the UKF. This would narrow down the
advantages and disadvantages of one relative to the other more accurately, and could help
suggest further improvements to either.

The next natural continuation for either of the two OC algorithms studied in this thesis is to
validate them with real measurements from an optical telescope. This would help consolidate
them and detect further paths for improvement.

When looking into the shape and attitude (and reflective properties) determination problem
as a whole, the research carried out in this work could be expanded by coupling the two
estimation problems in one, as done in e.g. Linares et al. (2018). This approach has the
problem of weak observability of the full light curve inversion problem highlighted in the
literature. However, it is worth exploring whether using multiple observers, combined types
of sensors, several time-spaced light curves, or polarimetry and spectral information could
mitigate it. Still within the line of coupled estimations, another potential upgrade to the
developments of this thesis would be to incorporate them into an OD scheme. This would
benefit the accuracy of derived SST services such as Collision Avoidance (CA) or Re-entry
Analysis (RE). This would entail coupling the shape and attitude dynamic and measurement
models with orbital dynamics.

Next, regarding OC-enabled use cases, this thesis has shown only some simple
demonstrations, which prove the value that estimating RSO characteristics has for the
space sector. However, there is work to be done to refine the concept of e.g. the health
monitoring use case, optimize it and integrate it into an end-to-end pipeline, such as the
one presented in Pedone et al. (2021). This applies to other SST use cases, too, such as OC
for Active Debris Removal (ADR) or, as mentioned in the previous paragraph,
OC-enhanced OD for CA and RE.

Moving on to higher-level future work, another potential way forward is to shift the focus

117



7. Conclusion and Outlook

toward less physical characteristics, such as e.g. owner identification, inference of the
capabilities of the spacecraft being observed, or manoeuvre characterization. This could be
approached by using raw sensor data as input, by processing more direct characteristics
(shape or attitude), or by combining both types of data.

Machine Learning (ML) literature is proving that neural networks can handle OC-related
classification problems. Thus, it is worth considering these type of techniques as a tool for
further research. It could either be used as a complement or as an alternative to the shape
and attitude determination algorithms presented here–or to estimate other, more abstract
characteristics (such as e.g. bus type).

7.3. Final Word

Overall, OC is a wide and complex topic. With its contribution, this thesis has taken the
field one small step further. However, there is still need for plenty of scientific work to bring
OC and SST to the point where they need to be. This is, so that they can support, at their
fullest potential, the worldwide effort of keeping the near-Earth space environment clean and
under control. After all, this was the main reason that motivated this doctoral research to
begin with.
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A. Framework

This appendix briefly describes the two main resources that have been used to support the
scientific work presented in this thesis.

These are

• the Special Perturbations Orbit determination and Orbit analysis toolKit (SPOOK),
a SST software framework; and

• the Airbus Robotic Telescope (ART), an optical telescope and main source of real
measurements.

The following two sections describe these two systems in more detail.

A.1. Special Perturbations Orbit Determination and Orbit
Analysis Toolkit

The Special Perturbations Orbit determination and Orbit analysis toolKit (SPOOK) is a
collection of software tools developed by the Security in Space Team of the Future
Programmes department of Airbus Defence & Space GmbH. It provides a wide range of
SST capabilities, the most recent comprehensive summary of which can be found in Pedone
et al. (2021).

Most notably it provides the functionality of an end-to-end SST pipeline that can be used
to create and maintain a catalogue of RSOs using optical and Radar measurements.
Furthermore, it can perform probabilistic conjunction assessment of catalogued RSOs
(Schiemenz, 2021). As a result of this thesis, SPOOK is now equipped with attitude and
shape characterization capabilities, too.

These activities are enabled by a lower level layer of functionalities that include
high-fidelity orbit propagation, sensor simulation (extended to light curve generation
within the scope of this work), observation planning, measurement correlation and Orbit
Determination (OD).

SPOOK itself is composed of two major code-bases that interface with each other: one is
written in Fortran; the other one, in Python. On the one hand, the Fortran part, or Fortran
SPOOK performs the most computationally demanding tasks (e.g. light curve simulation and
sequential Attitude Determination (AD)). As such, it is considered to be the core of SPOOK.
On the other hand, the Python part, or Python SPOOK, complements and extends upon the
Fortran core. It acts as a wrapper of the core functionality provided by Fortran SPOOK,
but also includes other capabilities, entirely independent of the Fortran part (e.g. shape
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A. Framework

determination and frequency analysis of light curves). Furthermore, it is the part responsible
for plot generation, as well as to interface with other third-party tools.

SPOOK has been used to produce all the simulations, numerical analyses and plots of this
thesis.

A.2. Airbus Robotic Telescope

The Airbus Robotic Telescope (ART) is an optical telescope located in Extremadura, Spain.
Its aperture has a diameter of 40 cm, and its f-number is 2.4. It has a rectangular field
of view of 2.15◦ × 1.43◦. ART is equipped with a Charge-Coupled Device (CCD) detector
whose nominal wavelength range spans from 300 nm to 1000 nm. The reader may refer to
Utzmann et al. (2019) for a fully-detailed list of features. Fig. A.1 shows ART.

Figure A.1.: The Airbus Robotic Telescope

Within the scope of this thesis, real ART measurements have been used in Section 6.2.
Furthermore, ART has been used as a simulation model both in the Shape Determination
Chapter and in Section 6.3.
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B. Summary of OC Methods from Light
Curves in the Literature

Tables B.1 to B.5 synthesize the content of Section 2.2 of the Literature Review Chapter for
a quick and compact overview.

Table B.1.: Summary of AD techniques

Characteristic Input Methods Constraints

Apparent
period

Light curve Fourier-based;
epoch folding

No single all-rounder

SLR Direct observation Only collaborative targets

Phase plot Apparent
period;
light curve

Modulus operation

Attitude status Light curve CNN Simulated data

Sidereal period
& spin axis

Light curve Fourier-based;
epoch method

Only under constraining
hypotheses; only spinning
objects

Sidereal period
& spin axis

Light curve Constrained glint
pattern

Only cylinder shapes

Full attitude
state @ one
instant

Light curve Heuristic
optimization

Known shape & albedo

Full attitude
state time
series

Light curve Sequential estimation
(EKF, UKF, PF,
etc.)

Known shape & albedo;
initial estimate necessary

Table B.2.: Summary of shape characterization techniques

Characteristic Input Methods Constraints

Convex-
equivalent shape

Light curve;
attitude

EGI plus Minkowski
minimization

Coupled with albedo

Average
albedo-area

Phase plot Phase plot comparison Only stable GEO objects

Shape Light curve Lower bound intensity
comparison

Only trained shapes

Shape Light curve Convolution Neural
Network

Only trained shapes;
higher success rate
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Table B.3.: Summary of material characterization techniques

Characteristic Input Methods Constraints

Surface material Polarized light curve Multiple-model
adaptive est.

Surface material Spectroscopic light
curve

Surface material
classification

Polarized/spectroscopic
light curve

ML Not implemented in
the literature

Table B.4.: Summary of combined characterization techniques

Characteristic Input Methods Constraints

Attitude & orbit & reflective
properties

Light
curve

PF plus GM Known shape

Attitude & shape Light
curve

Multi-
hypothesis
UKF

Shape must be among
proposed candidates

Attitude & orbit & reflective
properties & dimensions

Light
curve

PF or
batch-UKF

Shape topology restricted
to a cuboid only

Attitude & shape Light
curve

Hamiltonian
PF

Albedo and shape are
coupled

Table B.5.: Summary of abstract characterization techniques

Characteristic Input Methods Constraints

Object class (status,
bus type)

Light curve CNN

Orbit change
manoeuvre

Orbital
ephemeris

Energy assessment; UKF-residual
analysis; ML

Attitude manoeuvre Light curve;
shape

Stochastic attitude model & PF
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C. Quaternion Algebra

This appendix is a summary of quaternion algebra, meant to serve as a quick reference.
Since different quaternion conventions exist in the literature, its second purpose is to define
which exact conventions are used in this thesis. Refer to relevant literature (e.g. Voight
(2021)) for a fully detailed, formal derivation of quaternion algebra.

The quaternion algebra, also known as Hamilton space and denoted here by H, deals with
quaternions, represented as

q = qr + qii+ qjj + qkk =
[
1 i j k

]
q , (C.1)

where i, j,k ∈ H are the three independent hyper-imaginary numbers, or basic quaternions,
and

q =


qr
qi
qj
qk

 ∈ R4 (C.2)

is the vector representation of q. This is the convention adopted in this document:
quaternions are represented in bold font; their vector representation, in normal font.

Analogously, if a 3-dimensional vector v ∈ R3 appears in bold font, it represents a quaternion
with 0 real part whose hyper-imaginary components correspond to each dimension of v:

v =
[
i j k

]
v . (C.3)

The real part of a quaternion is obtained with the map ℜ : H→ R:

ℜ(q) = qr ; (C.4)

and its hyper-imaginary part, with ℑ : H→ R3:

q := ℑ(q) =

qiqj
qk

 . (C.5)

Addition is performed using the same rules for real numbers applied to the real and to each
of the three hyper-imaginary parts,

q + p = (qr + pr) + (qi + pi)i+ (qj + pj)j + (qk + pk)k . (C.6)

Multiplication is governed by the quaternion equation

ii = jj = kk = ijk = −1 . (C.7)
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This is known as the Hamilton convention (Markley et al., 2014). Following these rules,
one can multiply any two arbitrary quaternions by applying associative and distributive
laws to each of the real and hyper-imaginary components. Note, however, that quaternion
multiplication is not commutative. For the sake of clarity, the multiplication of two
quaternions is indicated throughout this thesis with the symbol ⊙, following the
nomenclature for the Hamilton quaternion product used in Markley et al. (2014).1 All in
all, from Equation C.7, the quaternion product used in this thesis becomes

q ⊙ p =qrpr − qipi − qjpj − qkpk
+(qrpi + qipr + qjpk − qkpj) i
+(qrpj − qipk + qjpr + qkpi) j

+(qrpk + qipj − qjpi + qkpr)k .

(C.8)

Note that R ∈ H. Thus, the multiplication of a real number a against a quaternion q is just
a particular case of quaternion multiplication, in which one of the two quaternions has zero
hyper-complex parts. From Equation C.8, in this particular case commutativity is recovered,
so that

qa = aq = aqr + aqii+ aqjj + aqkk . (C.9)

Because of this, the ⊙ symbol is dropped for the scalar-quaternion multiplication, so as not
to abuse it.

It is often most convenient to express this multiplication in vector notation, where it becomes
a matrix-vector product.

q ⊙ p = [q]+⊙ p = [p]−⊙ q . (C.10)

The maps [·]+⊙, [·]−⊙ : H→ R4×4 are the quaternion multiplication matrices:

[q]+⊙ =
[
q Θ(q)

]
(C.11)

and
[q]−⊙ =

[
q Ξ(q)

]
. (C.12)

In turn, the maps Θ,Ξ : H→ R4×3 are

Θ (q) =

[
−qT

qrI3 + [q]×

]
(C.13)

and

Ξ (q) =

[
−qT

qrI3 − [q]×

]
, (C.14)

where In is the n×n identity matrix; [·]× : R3 → R3×3 is the cross-product matrix, a matrix
such that, given v, w ∈ R3,

v × w = [v]×w . (C.15)

This is, for v = [v1 v2 v3]
T ,

[v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 . (C.16)

1In this thesis, the non-Hamiltonian quaternion product, indicated as ⊗ in Markley et al. (2014), is not used
at all.
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Some properties of these matrices are that [q∗]+⊙ =
(
[q]+⊙

)T
and [q∗]−⊙ =

(
[q]−⊙

)T
. Note that

([v]×)
T = −[v]×.

The conjugate of a quaternion is obtained by reversing the sign of the hyper-complex part
only:

q∗ =
[
1 −i −j −k

]
q . (C.17)

With this, the absolute value of the quaternion can be obtained as

|q| =
√

q ⊙ q∗ =
√
q2r + q2i + q2j + q2k . (C.18)

The inverse is such that
q ⊙ q−1 = q−1 ⊙ q = 1 . (C.19)

Using the above definitions, it is trivial to show that

q−1 =
q∗

|q|2 . (C.20)
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D. Extended Attitude Concepts

This appendix gathers attitude definitions and formulas used throughout this thesis. Some
of these formulas vary slightly (w.r.t. other sources in the literature) depending on the
conventions used. In these cases, the key steps necessary to reach the particular variants
used in these dissertation have been reproduced below, too.

D.1. Attitude Representations

Attitude is a parametrization with three Degrees of Fereedom (DoFs) that can be
represented in different formats, including quaternions, Euler-angle representation,
Direction Cosine Matrix (DCM) and others. This section describes briefly these
mathematical entities, as well as the kinematics and dynamics of the attitude of a rigid
solid. Attitude in this thesis is represented by the transformation of a vector in some frame
A to some other frame C. This is, it is fCA : R3 → R3 such that, given any vector
v ∈ R3,

vC = fCA
(
vA
)
. (D.1)

For vectors (e.g. v) the super-script determines in which frame the given vector is represented.
For attitude representations (e.g. f), the transformation goes from the frame in the subscript
to the frame in the superscript. These frame-specification rules are observed throughout the
thesis wherever frames and frame transformations are involved. They shall be omitted
wherever they are implicit from context, to avoid unnecessary clutter.

Refer to e.g. Shuster et al. (1993) and Solà (2017) for a formal proof of the equations shown
below. However, note that the conventions here do not match those taken therein.

D.1.1. Attitude as a Quaternion

The standard attitude representation used in this thesis is the quaternion. Whenever attitude
states need to be propagated over time, the quaternion form is used.

The quaternions needed to represent attitude are only those at the surface of a unit hyper-
sphere in H with positive real part. This is the subset

A = {q ∈ H | ℜ(q) ≥ 0 ∧ |q| = 1} . (D.2)

Given two 3-dimensional coordinate frames A and C, related to each other by a rotation,
the operation that transforms a vector v ∈ R3 from frame A (denoted as vA) to frame C
(vC) can be expressed as

vC =
(
qCA
)∗ ⊙ vA ⊙ qCA , (D.3)
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where qCA ∈ A.

Although quaternions are the preferred attitude representation in this thesis, other formats
have been used at specific points throughout this document. The following subsections
describe them.

D.1.2. Attitude as an Euler Axis-Angle Pair

An attitude quaternion is related to the Euler-angle pair by

qCA =
[
cos
(
ψ
2

)
eT sin

(
ψ
2

)]T
, (D.4)

where e ∈ {u ∈ R3 | ∥u∥ = 1} is the common rotation axis around which frame A needs to
rotate ψ radians to align itself with frame C. From this, it is trivial that qAC = (qCA)

∗.

D.1.3. Attitude as a Direction Cosine Matrix

The same frame transformation can be expressed using a DCM. This is, the matrix RCA that
transforms some vector from frame A to frame C:

vC = RCAv
A . (D.5)

It is related to the attitude quaternion as:

RCA = R
(
qCA
)
= ΘT

(
qCA
)
Ξ
(
qCA
)
= ΞT

(
qAC
)
Θ
(
qAC
)
. (D.6)

This follows from the quaternion multiplication rules in Appendix C, where Θ and Ξ are
defined (Equations C.13 and C.14).

D.1.4. Attitude as Generalized Rodrigues Parameters

One last attitude representation used in this dissertation is the Generalized Rodrigues
Parameters (GRP), obtained from the quaternion with the map pa,f : A → R3, ∀a ∈ R≥0

and ∀f ∈ R>0, defined as (Dianetti et al., 2018)

pa,f (q) = f
q

a+ qr
. (D.7)

The quaternion can be recovered with the inverse map p−1
a,f : R3 → A, whose equations

are

qr =
−a ∥p∥2 + f

√
f2 + (1− a2) ∥p∥2

f2 + ∥p∥2
and q =

a+ qr
f

p . (D.8)
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D.2. Attitude Quaternion Derivative

The attitude quaternion time derivative has a well known equation as a function of the
quaternion itself and the angular rate (Solà, 2017). However, this thesis uses an uncommon
convention for attitude: the quaternion transforms from body to inertial frame, instead of
the more common direction from inertial to body frame. Thus, this section provides the
proof of the attitude quaternion time derivative for this particular convention, based on Solà
(2017).

Theorem 4. The time-derivative of attitude quaternion qIB ∈ A is

q̇IB = −1

2
ωBB/I ⊙ qIB , (D.9)

where ωBB/I ∈ R3 is angular velocity of frame B relative to frame I, expressed in B
coordinates.

Proof. Let

qB
+

B =

 cos
(
∆ψ
2

)
e sin

(
∆ψ
2

) =

[
1

e∆ψ2

]
+O

(
∆ψ2

)
(D.10)

be the quaternion that transforms from frame B at some time t to frame B+ at some time
t+∆t, where e ∈ R3 and ∆ψ are the axis-angle Euler pair representation of qB

+

B .

One can obtain the attitude at time t +∆t from the one at time t by composing rotations
(Equation 3.4):

qIB+ =
(
qB

+

B

)∗
⊙ qIB . (D.11)

The limit definition of the derivative is

q̇IB = lim
∆t→0

(
qB

+

B

)∗
⊙ qIB − qIB

∆t
=

lim
∆t→0

�����
(1− 1)qIB −

(
e∆ψ

2

)
⊙ qIB + (1 + i+ j + k)O

(
∆ψ2

)
∆t

. (D.12)

From Solà (2017),

ωBB/I := lim
∆t→0

e∆ψ

∆t
. (D.13)

Thus, if the body inertia is non-zero, the angular velocity is finite, so the above limit resolves
to

q̇IB = −1

2
ωBB/I ⊙ qIB +

(((((((((((((((((((

lim
∆t→0

(1 + i+ j + k)O

(
∆t2

∥∥∥ωBB/I∥∥∥2) . (D.14)
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D.3. Attitude Quaternion Given Two Vectors

Let v ∈ {x ∈ R3 | ∥x∥ = 1} be a unit vector in some reference frame. Let
w ∈ R3 ∈ {x ∈ R3 | ∥x∥ = 1} be some other unit vector. The goal is to find some frame
transformation f such that w = f(v). This can be done by finding some attitude
quaternion q that satisfies

w = q∗ ⊙ v ⊙ q . (D.15)

There exist infinite solutions, because not enough information is available to determine the
orientation of the axis in the new frame that are orthogonal to w. Nonetheless, it is just
necessary to obtain one such transformation that complies with the above, it does not need
to be unique.

Theorem 5. One such transformation can be realized with the quaternion whose vector form
is

q =
1

∥v + w∥

[
1 + vTw
−v × w

]
, (D.16)

as long as v ̸= −w, which would result in a 0/0 indetermination.

Proof. The proof reproduced here is a variant from Eisele (2008), where it is shown for vector
rotations, instead of frame transformations.

First, the dot product vTw is equal to cosψ, being ψ = ∠(v, w) the angle between the two
vectors. Using trigonometric transformations, 1 + cosψ becomes 2 cos2(ψ/2).

Second, the norm of the cross product v×w is equal to | sinψ|. Thus, it can be rewritten as

v × w =
v × w
∥v × w∥ |sinψ| . (D.17)

Using again trigonometric transformations, this becomes

v × w = 2
v × w
∥v × w∥ cos

(
ψ

2

)
sin

(
ψ

2

)
. (D.18)

Note how the absolute value disappears because ψ/2 can be minimum 0 and maximum
π/2–within this range both sin and cos return a non-negative value.

Third, the Euclidean norm of the sum v + w can be expanded to

∥v + w∥ =
√

(u1 + v1)2 + (u2 + v2)2 + (u3 + v3)2 =

√
∥v∥2 + ∥w∥2 + 2vTw =√
2 + 2vTw = 2 cos

(
ψ

2

)
. (D.19)

The negative root would make the real part of the quaternion become negative later on,
which is not allowed as per the definition of attitude quaternion given in this thesis. Thus,
the positive one is taken.

Putting these three statements together into Equation D.16 yields

q =

 cos
(
ψ
2

)
− v×w

∥v×w∥ sin
(
ψ
2

) . (D.20)
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Finally, by comparing this with Equation D.4, it can be seen that e = −v × w/∥v × w∥ is
the axis around which the original frame needs to rotate ψ degrees for v to become w: it is
orthogonal to the plane that contains both vectors, and indicates that the frame needs to
rotate opposite to the direction from v to w per the right-hand rule. In other words, ψ and
e form the Euler axis-angle pair that represent the desired transformation.

Corollary 2. For the particular case when v = −w, ℜ(q) = 0 while ℑ(q) can be any unit
vector orthogonal to v.

Proof. The proof is trivial from Equation D.4. Since ψ = π, cos(ψ/2) = 0 and sin(ψ/2) = 1.
Then, e must be any axis orthogonal to v so that the frame rotates exactly 180◦ and w
becomes antiparallel to v.

D.4. Generalized Rodrigues Parameters Derivations

D.4.1. Taylor Expansion of the GRP

Given

pa,f = f
q

a+ qr
, (D.21)

Taylor expansion around ψ (see Equation D.4) yields

pa,f = f
eψ

2(a+ 1)
+O(|ψ|3) . (D.22)

Thus, if f = 2(a+1), it cancels with the denominator and makes p equal to eψ up to second
order approximation.

D.4.2. Change of the Reference Quaternion

Let q̃ be a reference attitude quaternion and two other quaternions

q = δq∗ ⊙ q̃ (D.23)

and

q̃′ =
(
δq̃′
)∗ ⊙ q̃ (D.24)

whose GRP error representations are, then, δp = p(δq) and δp̃′ = p(δq̃′). The goal is to find
δp′ that represents the same quaternion q, but using q̃′ as reference quaternion. This is, it
is necessary to find δp′ = p(δq′) such that

δq∗ ⊙ q̃ =
(
δq′
)∗ ⊙ q̃′ ⇒ δq∗ ⊙ ��̃q =

(
δq′
)∗ ⊙ (δq̃′)∗ ⊙ ��̃q , (D.25)

which yields

δq′ =
(
δq̃′
)∗ ⊙ δq ⇒ δp′ = p

((
p−1

(
δp̃′
))∗ ⊙ p−1 (δp)

)
. (D.26)
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This expression can be expanded within first order as

δp′
(
δp̃′, δp

)
=

δp′(0, 0) +
∂δp′

∂δp̃′

∣∣∣∣
0,0

(
δp̃′ − 0

)
+
∂δp′

∂δp

∣∣∣∣
0,0

(δp− 0) +O
(∥∥δp̃′∥∥2 + ∥δp∥2) . (D.27)

The Jacobians involved can be obtained by applying the derivative chain rule, which
yields

∂δp′

∂δp̃′
=
∂δp′

∂δq′
∂δq′

∂δq̃′
∂δq̃′

∂δp̃′
(D.28)

and
∂δp′

∂δp
=
∂δp′

∂δq′
∂δq′

∂δq

∂δq

∂δp
. (D.29)

Starting with the first term in both derivatives, which is the same, one can compute it by
differentiating Equation D.21 with respect to q, as a function of q, which yields

∂p

∂q
(q) =

1

a+ qr

[
−p(q) fI3

]
, (D.30)

where Ii is the identity matrix in Ri×i. The last term can likewise be obtained by finding
the inverse derivative, by differentiating Equation D.8:

∂q

∂p
(p) =

[
g(p)

1
f pg(p) +

a+qr(p)
f I3

]
, (D.31)

where

g(p) =
∂qr
∂p

(p) =

−2a+ f(1− a2)
(
f2 + (1− a2) ∥p∥2

)− 1
2

f2 + ∥p∥2

−2
−a ∥p∥2 + f

√
f2 + (1− a2) ∥p∥2(

f2 + ∥p∥2
)2

 pT . (D.32)

Finally, the middle terms are

∂δq′

∂δq̃′
=

[
δqr δqT

δq −δqrI3 + [δq]×

]
(D.33)

and
∂δq′

∂δq
=

[
δq̃r δq̃T

−δq̃ δq̃rI3 − [δq̃]×

]
, (D.34)

which come from differentiating the multiplication rules defined by Equation C.7, applied to
the vector form of δq′ as defined in Equation D.26.

Evaluating these derivatives at δp̃′ = 0 and δp = 0 and substituting in Equation D.27 results
in

δp′(0, 0) = 0 , (D.35a)
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∂δp′

∂δp̃′

∣∣∣∣
0,0

= −I3 and (D.35b)

∂δp′

∂δp

∣∣∣∣
0,0

= I3 ; (D.35c)

thus
δp′ = δp− δp̃′ +O

(∥∥δp̃′∥∥2 + ∥δp∥2) . (D.36)

Note that this result is reached regardless of the values of a and f .
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E.1. Extended Gaussian Images

From Horn (1984), an Extended Gaussian Image (EGI), is

Definition 8. Let the a convex 3D object be represented by the finite volume O ∈ R3, whose
outer closed surface is δO ⊂ O. Let S be a Gaussian sphere S = {n ∈ R3 | ∥n∥ = 1}. Given
some point x ∈ δO, whose surface unit normal is n, one can map it to the point on S that
has the same surface normal n, which is in fact n itself: n = S(x). If S(x) is invertible, any
point on δO can be obtained as x = δO(n) = S−1(n).

The Extended Gaussian Image (EGI) of δO is the variation of area on δO with the
area of S. This is

EGI(n) =
d

dS
(δO) . (E.1)

It can be understood as a measure of area density on the surface of δO, and is the inverse
of the Gaussian curvature of δO.

Minkowski’s theorem (Minkowski, 1897) states that the EGI exists if δO is convex. In
particular:

Theorem 6. Minkowski’s theorem states that if∫
S

d

dS
(δO)ndS = 0 , (E.2)

then the EGI is a unique representation of a convex closed surface. For a polyhedron, this is

Nf∑
i=1

Aini = 0 . (E.3)

Proof. Refer to Horn (1984) and Little (1985).

The general definition of EGI can be particularized to a polyhedron. From Horn (1984) and
Little (1985):

Lemma 1. Let P ∈ R3 be a convex polyhedron with Nf flat facets. Each facet i has a certain
area Ai and normal ni, for i ∈ 1 . . Nf . The EGI of (the surface of) P can be expressed as

EGI(n) =

Nf∑
i=1

Aiδ(∥n− ni∥) , (E.4)

145



E. Three Dimensional Objects

where δ : R→ R is the impulse function (or Dirac delta). A compact alternative to represent
this equation is to use the set of vectors

EGIP = {Aini | i ∈ 1 . . Nf} . (E.5)

Proof. The proof is trivial. Let Ω ⊂ S be some arbitrary region such that ni /∈ Ω, for all
i ∈ 1 . . Nf . Applying the fundamental theorem of calculus to Equation E.1, the integral of
the EGI of P along Ω must be 0. This is,

0 =

∫
Ω

d

dS
(δO)dS , (E.6)

This is because there is no surface of P orthogonal to any of the n directions in Ω.

Next, given any facet i ∈ 1 . . Nf , let Ωi ⊂ S be some other region such that ni ∈ Ωi, but
nj /∈ Ωi, for all j ∈ 1 . . Nf and i ̸= j. Note that Ωi is only realizable if Nf is finite–
i.e. there is always some n ∈ Ω on the shortest arch that joins ni and nj . Applying again the
fundamental theorem of calculus to Equation E.1, the integral of the EGI along any such
region Ωi must equal the area of facet i. This is

Ai =

∫
Ωi

d

dS
(δO)dS . (E.7)

The above two cases must be true for any possible realization of Ω and Ωi, for all i ∈ 1 . . Nf .
Furthermore, the union of all realizable Ω and Ωi cover the whole of S. Thus, the only
function that satisfies these conditions is the sum of impulses from Equation E.4.

E.2. Sphere Tessellation

This section addresses the fact that the exact set of ni directions that represent the true
polyhedron is not known. Instead, it is necessary to approximate it.

The EGI of a polyhedron can be approximated with a fixed set of Na directions
{nj | j ∈ 1 . . Na} on the unit sphere, which may not necessarily coincide with the set of the
polyhedron facet normals. This is done by associating the outfacing normals of P to the
closest of each of these directions. As a set, this is

ÊGIP =


Nf∑
i=1

ϱj(ni)Ainj | j ∈ 1 . . Na

 , (E.8)

where ϱj(n) is 1 if nj is the closest approximation to n/∥n∥ and 0 otherwise. Depending
on how ϱj(n) is implemented, different definitions of closest may be used. Whatever the
implementation, it is necessary that

∑
j ϱj(n) = 1 for any n ∈ R3.

There are multiple ways to implement ϱj(n). An effective way to decide a good set of {nj}
directions is to work with spherical tessellations. This is, one subdivides the surface S with
non-intersecting geometrical shapes, a.k.a. cells, so that they cover it as homogeneously as
possible. According to Horn (1984), one can define homogeneity in the sense that:
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1. each cell is as close in shape to a circle as possible,

2. any two cells have an area as close to each other as possible,

3. the distance between any two adjacent cells varies as little as possible.

It is impossible to realize this for the surface of a sphere (Little, 1985). However, one can
use tessellations based on regular polyhedrons, such as the icosahedron or the dodecahedron,
and subsequent geodesic polyhedrons generated from these. Regardless of the tessellation
chosen, ϱj(n) can then be implemented by setting it to 1 if, and only if, n falls within cell j;
nj would be then the centroid of cell j.

Another option for ϱj(n) could be, given a set of {nj} as homogeneously distributed as
possible,

ϱj(n) =

{
1 if j = argminj ∥n− nj∥,
0 else.

(E.9)

Whatever the implementation of ϱj(n), if the distribution of cells (or {nj}) is homogeneous

enough, when Na → ∞, then ÊGIP → EGIP . Thus, at the end it is important to choose a
method that is computationally not too expensive. For this particular reason, the tessellation
used to generate an EGI in this dissertation is the so called quad-cube tessellation (White
et al., 1992). It is the one used in Fan et al. (2019), Fan et al. (2020), Fan et al. (2021),
and Friedman et al. (2019), too. To construct the quad-cube tessellation, each edge of
the cube becomes a great circle arc with 90◦ span on the sphere, and each of its faces
becomes a spherical square delimited by four of these great circle arcs. Each cube face
is then subdivided into smaller cells that are as similar as possible to each other (in the
homogeneity sense above).

To do so, first, each of the cube faces is mapped onto the domain γ × β, for all
γ, β ∈ [−45◦, 45◦]. Figure E.1a illustrates this for the cube face that intersects the x axis on
the positive side–the x, y and z axes here represent the body frame. In the figure, cube
edges transformed to great circle arcs are shown as solid arcs–those of the example face are
shown in thicker style. The dashed lines are great circle arcs that indicate constant γ (arcs
that intersect with z) and β (those that intersect with y). As shown in the figure, the γ
coordinate corresponds to the more traditional azimuth or longitude (φ), while spherical
trigonometry can be used to express elevation or latitude (ϑ) as a function of both γ and
β.

This can be achieved by following the steps shown in Figure E.2. This figure highlights the
spherical triangles that relate γ, β and ϑ. First from Figure E.2a, the cosine theorem for
spherical trigonometry applied on β yields

cosβ =������cos
π

2
cos

π

2
+������

sin
π

2
sin

π

2
cos b , (E.10)

while the sine theorem gives
sinβ

sin b
=

sin π
2

sin π
2

= 1 . (E.11)

This is,

b = β . (E.12)
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γ = φ

β ϑ

n

(a) γ × β map on one cube face (b) 5× 5 cells per cube face example

Figure E.1.: The quad-cube tessellation
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(a) First spherical triangle
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2 − γ

ϑ

υ

β

(b) Second spherical triangle

Figure E.2.: Spherical triangles involved in the quad-cube tessellation coordinate system
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Using this result, the sine theorem applied to Figure E.2b gives

sin υ

�
��sin π
2

=
sinϑ

sinβ
. (E.13)

Then, one applies the spherical cosine theorem on Figure E.2b twice, obtaining

cos υ = sin γ cosϑ+
��������
cos γ sinϑ cos

π

2
(E.14)

and
cosϑ = sin γ cos υ + cos γ sin υ cosβ . (E.15)

Note that the equalities cos(π/2−γ) = sin γ and sin(π/2−γ) = cos γ have been used.

Now, substituting Equations E.13 and E.14 into Equation E.15 results in

cosϑ = sin2 γ cosϑ+ cos γ
sinϑ

sinβ
cosβ . (E.16)

Then, dividing by cosϑ and isolating ϑ, one gets

tanϑ =
1− sin2 γ

cos γ
tanβ . (E.17)

Finally, simplifying with cos2 γ = 1− sin2 γ gives the desired result:

ϑ(γ, β) = tan−1 (cos γ tanβ) . (E.18)

The Cartesian position n on the unit sphere is, then,

n(γ, β) =

cosφ cosϑ
sinφ cosϑ

sinϑ

 =
1√

cos2 γ tan2 β + 1

 cos γ
sin γ

cos γ tanβ

 . (E.19)

By combining 90◦ rotations around the x, y and z axes, the same γ × β map can be applied
to each of the other five cube faces. The grid is then created by intersecting great circle arcs
at regular γ and β intervals. Figure E.1b shows an example of this tessellation for the case
where each cube face is subdivided into a 5 × 5 grid of cells, which are delimited by great
circle arcs at γ, β ∈ {−45◦,−27◦,−9◦, 9◦, 27◦, 45◦}. Generalizing, a quad-cube tessellation
whose faces are divided into d× d cells each has a total of Na = 6d2 cells.

Furthermore, when using the quad-cube tessellation to build an EGI, the direction assigned
to each cell is the centre of the cell in the γ × β domain. This is, if a cell is delimited by all

the possible combinations of γ1 < γ2, β1 < β2, the direction it represents is
(
γ1+γ2

2 , β1+β22

)
.

Following this notion, ϱj is defined as

ϱj(n) =

{
1 if γ1 ≤ γ(n) < γ2 and β1 ≤ β(n) < β2 falls within cell j,

0 else.
(E.20)

It is trivial to obtain (γ, β)(n) by reversing Equations E.18 and E.19.
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This section provides a compact reproduction of the Unscented Transform (UT) equations,
for the reader’s reference (Julier et al., 2004).

Let X ∈ Rn be a random variable that follows a statistical distribution whose first (mean)
and second (covariance) moments are µx and Px, respectively. Let f : Rn → Rm be a map
that applies a non-linear transformation to X, such that a new random variable Y ∈ Rm
can be obtained as

Y = f(X) + V , (F.1)

where V ∈ Rm is the random variable that represents the uncertainty associated to the
physical model represented by f , a.k.a as model noise. Its associated distribution has 0
mean and covariance Pv.

The goal of the UT is to obtain the mean and covariance of the distribution associated to
Y . It uses α, β, κ ∈ R as tunable parameters.

First, 2n+ 1 sigma points are computed with

X (0) = µx , (F.2a)

X (i) = X (0) +
√
n+ λSi and (F.2b)

X (i+ n) = X (0)−
√
n+ λSi , (F.2c)

for all i ∈ 1 . . n, where Si is the i-th column of the Cholesky decomposition of Px = SST

and

λ = α2(n+ κ)− n . (F.3)

Then, the sigma cloud is transformed under the map f , obtaining the transformed sigma
cloud

Y(i) = f(X (i)), ∀i ∈ 0 . . 2n . (F.4)

Finally, the mean of the transformed distribution is estimated as

µ̂y =

2n∑
i=0

wm(i)Y(i) (F.5)

and its covariance as

Py =

2n∑
i=0

wc(i) (Y(i)− µ̂y) (Y(i)− µ̂y)T + Pv . (F.6)
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The weights wm and wc are obtained as

wm(0) =
λ

n+ λ
, wc(0) = wm(0) + 1− α2 + β, wm(i) = wc(i) =

1

2(n+ λ)
, (F.7)

for all i ∈ 1 . . 2n.

Likewise, the cross covariance of X and Y may be estimated using the UT as

cov(X,Y ) =

2n∑
i=0

wc(i) (X (i)− µx) (Y(i)− µ̂y)T . (F.8)

The UT preserves the first and second statistical moments of any transformed distribution.
Additionally, proper tuning of the β parameter can guarantee the third and fourth moments
when dealing with Gaussian distributions. The parameters α and κ control the spread of
the sigma points.
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