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Abstract In the paper, the influence of stress state and loading directionwith respect
to the principal axes of anisotropy on damage and fracture behavior of the anisotropic
aluminum alloy EN AW-2017A is discussed. The focus is on numerical calcula-
tions on the micro-level considering void-containing representative volume elements
revealing information on damage mechanisms. Using experimental data taken from
uniaxial and biaxial tests, material parameters are identified. Based on numerical
studies on the micro-scale with differently loaded void-containing cubes, it is shown
that the stress state, the load ratio and the loading direction with respect to the prin-
cipal axes of anisotropy have an influence on evolution of damage processes on the
micro-scale and on the corresponding damage strains.
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1 Introduction

Numerical analysis of deformation and failure behavior of complex structures
requires accurate modeling of inelastic behavior of materials. In this context, various
constitutive theories and corresponding robust and efficient numerical techniques
have been discussed during the last decades. For example, failure in ductile metals
is mainly caused by nucleation, growth and coalescence of micro-defects leading to
the evolution of macro-cracks. Therefore, a straight-forward way for the formulation
of appropriate constitutive models should be based on the analysis of the behav-
ior of individual micro-defects in elastic-plastic materials [5, 7]. The results of these
calculations on themicro-scale can then be used to developmacroscopic phenomeno-
logical approaches which, for example, can be used to analyze the deformation and
failure behavior of ductile metals during forming operations.
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To get insight into damage and failure mechanisms in ductile metals and to
examine the behavior of micro-defects caused by various loading conditions, three-
dimensional finite element simulations of microscopic cell models have been per-
formed by different research groups; see, for example, [1, 5, 10, 11, 16–18]. These
investigations based on the assumption of isotropic elastic-plastic material behav-
ior showed that the current stress state remarkably affects the damage and failure
processes on the micro-level as well as the corresponding macroscopic behavior.
The numerical results of the unit cell calculations can be used to propose and val-
idate damage evolution equations in phenomenological continuum models and to
determine micro-mechanically motivated constitutive parameters [5, 7].

Manufacturing processes such as rolling, deep drawing or extrusion cause
anisotropies in ductile metals resulting from internal changes in the crystallographic
structure. These deformation-induced anisotropies must be taken into consideration
in material models used to simulate the deformation and failure behavior of thin
metal sheets. Different anisotropic yield criteria for hydrostatic-stress-independent
material behavior have been presented in the literature based on quadratic [13, 19],
non-quadratic [2, 12, 15] or spline functions [20]. In addition, the Hoffman yield
condition [14] has been developed to take into account the strength-differential effect
in anisotropic materials.

In the present paper,micro-mechanical numerical simulationswith spherical void-
containing representative volume elements are discussed. The plastic anisotropy of
the investigated ductile metal is modeled by the Hoffman yield criterion. Differ-
ent load combinations are taken into account with respect to the principal axes of
anisotropy. Numerical results of these micro-mechanical calculations are used to
reveal the effect of stress state, of load ratio and of loading direction on damage
mechanisms as well as on corresponding damage strains.

2 Constitutive Model

The numerical analysis is based on the continuum damage model presented by [3–5]
which has been enhanced for anisotropic plasticity by [6, 8, 9]. The framework uses
the introduction of the damage strain tensor, Ada , characterizing the formation of
macroscopic strains caused by damage processes on the micro-scale. In addition, the
kinematics take into account the additive decomposition of the strain rate tensor into

elastic, Ḣel , effective plastic, ˙̄Hpl
, and damage parts, Ḣda [3].

Anisotropic plastic behavior of the investigated aluminum alloy EN AW-2017A
is modeled by the Hoffman yield condition [14]

f pl = C · T̄ +
√
1

2
T̄ · D T̄ − c = 0, (1)
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where T̄ denotes the effective Kirchhoff stress tensor defined in the fictitious undam-
aged configuration and the tensor of coefficients

C = Ci
. j gi ⊗ g j = C(i) gi ⊗ gi (2)

with the components (in Voigt notation)

[
Ci

. j

] = [C1 C2 C3 0 0 0]T (3)

has been used. In addition, further material parameters describing the plastic
anisotropy are given by the tensor

D = Di. k
. j. l gi ⊗ g j ⊗ gk ⊗ gl (4)

with

[
Di. k

. j. l

] =

⎡
⎢⎢⎢⎢⎢⎢⎣

C4 + C5 − C4 − C5 0 0 0
−C4 C4 + C6 − C6 0 0 0
−C5 − C6 C5 + C6 0 0 0
0 0 0 C7 0 0
0 0 0 0 C8 0
0 0 0 0 0 C9

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

and
c = co + Roε

pl + R∞
(
1 − e−b ε pl

)
(6)

represents the equivalent yield stress of the undamaged metal. For the investigated
ductile anisotropic aluminum alloy EN AW-2017A the parameters are listed in
Table1.

They have been identified by a uniaxial tension test of a flat specimen cut in the
rolling direction of the aluminum alloy sheet. The anisotropy parameters Ci in Eqs.
(3) and (5) are determined considering the stress-strain behavior of uniaxially loaded
specimens cut in different directions with respect to the rolling direction [9]. These
parameters are listed in Table 2.

Based on the yield criterion (1) generalized invariants of the effective Kirchhoff
stress tensor T̄ are defined [9]: the first Hoffman stress invariant is given by

Ī H1 = 1

a
C · T̄ with a = 1

3
trC (7)

Table 1 Plastic material parameters

co [MPa] Ro [MPa] R∞ [MPa] b

RD 333 488 142 19
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Table 2 Anisotropy parameters

C1 C2 C3 C4 C5 C6 C7 C8 C9

–0.0424 –0.0102 0.0000 0.8123 1.3607 1.3103 3.7580 3.0000 3.0000

whereas the second and third deviatoric stress invariants are defined as

J̄ H
2 = 1

2
T̄ · D T̄ (8)

and
J̄ H
3 = det

(D T̄
)
. (9)

Based on these definitions the generalized Hoffman stress triaxiality

η̄H = Ī H1

3
√
3 J̄ H

2

(10)

and the generalized Hoffman Lode parameter

L̄ H = −3
√
3 J̄ H

3

2 ( J̄ H
2 )(3/2)

(11)

are defined to characterize the dependence of anisotropic metals on the current stress
state. Formation of plastic strains is governed by the flow rule

˙̄Hpl = γ̇ N̄ (12)

with the equivalent plastic strain rate γ̇ and the normalized deviatoric effective stress
tensor

N̄ = D T̄∥∥D T̄
∥∥ . (13)

Furthermore, the onset and evolution of damage in plastically anisotropic ductile
materials are modeled by the damage criterion

f da = α I H1 + β

√
J H
2 − σ = 0 (14)

where I H1 and J H
2 are the generalized first and second deviatoric Hoffman invariants

of the Kirchhoff stress tensor formulated with respect to the damaged configurations,
and σ is the equivalent damage stress measure. The parameters α and β depend on
stress state and loading direction and have been identified by a series of experiments
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performed with different biaxially loaded specimens; see [9] for further details. In
addition, the evolution of macroscopic irreversible strains caused by damage mech-
anisms on the micro-level is characterized by the damage rule

Ḣda = μ̇

(
1√
3
α̃1 + β̃N

)
(15)

where

N = devT
‖devT‖ (16)

is the normalized deviatoric part of the Kirchhoff stress tensor and the parameters
α̃ and β̃ represent the stress and loading direction dependence of the damage strain
rate tensor (15).

3 Numerical Analysis

In the proposed continuum framework, the formation of damage is characterized by
the evolution of macroscopic damage strains corresponding to different damage and
failure processes on the micro-level. To detect the stress state and loading direction
dependence of the parameters α̃ and β̃ in the damage rule (15), numerical simula-
tions with a void-containing representative volume element with initial porosity of
3% have been performed undergoing various three-dimensional loading conditions.
One eighth of the unit cell model is shown in Fig. 1. The numerical simulations are
performed using the finite element programANSYS enhanced by a user-defined sub-
routine taking into account the proposed anisotropic continuum model. Eight-node
elements of type SOLID185 are used. With symmetry boundary conditions the unit
cell can be seen as a part of a pre-damaged structural element. The solid elements
are elastically and plastically deformed whereas the changes in size and shape of the
initially spherical void are related to the damage strains. Based on the proposed kine-
matic approach the components of the macroscopic strain rate tensor in the principal
directions (i) are decomposed

Ḣ unit-cell
(i) = Ḣ el

(i) + Ḣ pl
(i) + Ḣ da

(i) (17)

into elastic, plastic and damage strain rates. Elastic and plastic strain rates in the
solid elements on the micro-level, ḣel and ḣpl , lead to the elastic-plastic macroscopic
strain rates

Ḣep = Ḣel + Ḣpl = 1

V

∫
Vmatrix

(
ḣel + ḣpl

)
dv (18)

where V represents the current volume of the representative volume element and
Vmatrix is the current volume of the matrix material (solid elements). With Eqs. (17)
and (18) the macroscopic damage strain rate tensor can be written in the form
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Fig. 1 Finite element mesh
of one eighth of the unit cell

Ḣ da
(i) = Ḣ unit-cell

(i) − Ḣ ep
(i) (19)

leading to the principal components of the damage strain tensor

Ada
(i) =

∫
Ḣ da

(i) dt. (20)

In addition, the void volume fraction f of the unit cell is determined using the
volumetric part of the damage strain rate tensor leading to

ḟ = (1 − f ) trḢda (21)

and

f =
∫

ḟ dt, (22)

see [3] for further details. In the numerical analysis, the amount of strains and their
rates are taken to be described by corresponding scalar-valued measures, the equiv-
alent strain rate

ε̇eq =
√
2

3
Ḣ · Ḣ (23)

and the equivalent strain

εeq =
∫

ε̇eqdt. (24)
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Fig. 2 Formation of
principal components of the
damage strain tensor for
ηH = 0.389 and
LH = −0.731
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4 Numerical Results

The effect of different load ratios Fx/Fy/Fz on the damage behavior of the unit
cell has been examined. In the present paper, two cases are discussed. The numer-
ical results are compared with experimental observations reported in the literature.
For example, in [6] the X0-specimen had been biaxially loaded with the load ratios
F1/F2 = 1/0 and 1/–1 leading to tensile and shear dominated stress states, respec-
tively.

For the load ratio F1/F2 = 1/0, the Hoffman stress triaxiality ηH = 0.389 and
the Hoffman Lode parameter LH = –0.731 had been predicted in corresponding
numerical simulations [6]. For comparison, the unit cell is loaded by the load ratio
Fx/Fy/Fz = 1/0/0 leading to the same stress parameters ηH and LH . The formation of
the principal values of the damage strain tensor Ada

(i) (20) versus the equivalent strain
measure (24) is shown in Fig. 2. In particular, Ada

x increases up to 0.035 whereas Ada
y

and Ada
z show a small decrease up to –0.006 and –0.01, respectively. This behavior

is nearly identical for the different loading directions with respect to the rolling
direction. In addition, the formation of the void volume fraction f (22) is shown in
Fig. 3. Nearly identical behavior can be seen for the loading directions 0◦ and 90◦

Fig. 3 Formation of the void
volume fraction for
ηH = 0.389 and
LH = −0.731
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Fig. 4 Formation of
principal components of the
damage strain tensor for ηH

= 0.0 and LH = 0.0
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with maximum values of 0.0415 whereas for loading direction 45◦ the porosity only
reaches 0.040. This damage behavior was also visible in the pictures of scanning
electron microscopy in [6] where large pores occur for loading in rolling (0◦) and in
transverse (90◦) direction and less and smaller voids were visible after loading in a
diagonal direction (45◦). These damage mechanisms on the micro-level correspond
to the slightly smaller macroscopic damage strain components and the smaller void
volume fraction f numerically predicted for the diagonal direction.

For the biaxial experiments with the load ratio F1/F2 = 1/–1, the Hoffman stress
triaxiality ηH = 0.0 and the Hoffman Lode parameter LH = 0.0 had been predicted
in corresponding numerical simulations [6]. These stress parameters have also been
achieved in the unit cell calculations with the load ratio Fx/Fy/Fz = 1/0/–1. The
evolution of the principal values of the damage strain tensor Ada

(i) (20) versus the
equivalent strain measure (24) is shown in Fig. 4. In this shear loading case, the
damage strain component Ada

x increases up to 0.017 and Ada
z shows a decrease

up to –0.032 whereas the component Ada
y remains 0.0. This means that during shear

loading the initially spherical void is deformed into an ellipsoid. The void volume
fraction f shown in Fig. 5 only shows a slight decrease of the initial void. In both

Fig. 5 Formation of the void
volume fraction for ηH = 0.0
and LH = 0.0
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figures, nearly no effect of the loading direction on the macroscopic strain behavior
can be seen. This damage behavior had also been seen in the pictures of scanning
electron microscopy published in [6]. The photos showed predominant shear mech-
anisms on the micro-scale with only a few initial voids which were remarkably
deformed in shear direction. These damage processes on the micro-scale correspond
to the numerically predicted macroscopic principal damage strain components and
the void volume fraction representing shear mechanisms on the macro-level with
slight compression (decrease in the void volume fraction).

5 Conclusions

In the present paper, the effect of the stress state and the loading with respect to the
rolling direction on damage and failure of the aluminum alloy EN AW-2017A has
been examined. The results of two load cases corresponding to biaxial loading sce-
narios of the X0-specimen have been discussed. The stress state was characterized
by the generalized stress triaxiality and the generalized Lode parameter expressed
in terms of stress invariants based on the Hoffman yield criterion for anisotropic
materials. Elastic-plastic constitutive parameters for the investigated ductile metal
were taken from experiments performed with specimens cut from sheets in differ-
ent directions with respect to the rolling direction. These parameters were used in
numerical calculations considering void-containing representative volume elements.
Different three-dimensional load ratios have been taken into account. Numerically
predicted formations of the principal components of the damage strain tensor and
of the void volume fraction as well as the corresponding damage and failure mech-
anisms on the micro-level have been discussed. These numerical results have been
qualitatively compared with pictures from scanning electron microscopy published
in the literature. The numerically predicted formation of damage strains can be seen
as quasi-experimental results. They can be used to develop laws for the damage strain
rates which will be taken into account in numerical simulation of experiments which
will be used to validate the proposed rules for the damage strain rates with stress state
and loading direction dependencies. This will be discussed in a forthcoming paper.
Furthermore, the validated laws can then be used to numerically predict the defor-
mation and failure behavior of structural components built with anisotropic sheet
metals.
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