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Abstract
Weconsider the problem of sampling random supersingular elliptic curves over finite fields of
cryptographic size (SRS problem). The currently best-knownmethod combines the reduction
of a suitable complex multiplication (CM) elliptic curve and a randomwalk over some super-
singular isogeny graph. Unfortunately, this method is not suitable when the endomorphism
ring of the generated curve needs to be hidden, like in some cryptographic applications. This
motivates a stricter version of the SRS problem, requiring that the sampling algorithm gives
no information about the endomorphism ring of the output curve (cSRS problem). In this
work we formally define the SRS and cSRS problems, which are both of theoretical interest.
We discuss the relevance of the two problems for cryptographic applications, and we provide
a self-contained survey of the known approaches to solve them. Those for the cSRS problem
have exponential complexity in the characteristic of the base finite field (since they require
computing and finding roots of polynomials of large degree), leaving the problem open. In the
second part of the paper, we propose and analyse some alternative techniques—based either
on the Hasse invariant or division polynomials—and we explain the reasons why they do not
readily lead to efficient cSRS algorithms, but they may open promising research directions.

Keywords Isogeny-based cryptography · Isogeny graphs · Supersingular elliptic curves
Mathematics Subject Classification 14H52 · 11Y16 · 11T71

1 Introduction

The problem of efficiently sampling random supersingular elliptic curves over Fp2 , or SRS
problem, is not as easy as drawing marbles from a bag. When the prime p is large, the
best known algorithm is only able to ‘directly’ extract a negligible fraction of all the exist-
ing supersingular elliptic curves, by leveraging some classical number-theoretic results (see
[1, p. 4]) or by Bröker’s algorithm [10]. The other curves can be sampled ‘indirectly’ as
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the endpoints of random walks in suitable isogeny graphs. In other words, they cannot be
reached without first passing through one of those few supersingular elliptic curves which
can be sampled directly. This is satisfactory when the only purpose is to efficiently sample
uniformly random supersingular elliptic curves. However, some cryptographic applications
require more: the output curve should be sampled in such a way that its endomorphism ring
remains unknown. This further requirement can be met with the best-known algorithm for
the SRS problem only by means of an oblivious computation, which in turn requires a trusted
authority or a multiparty protocol [3, 44]. Apart from this cryptographic approach, though, a
mathematical solution to the problem of sampling supersingular elliptic curveswith unknown
endomorphism ring, or cSRS problem, is yet to be found.

Although the cSRS problem is often mentioned in the literature [59, p. 71]; [18, p. 3], to
the best of our knowledge no formal definition has been given.

Therefore, the first goal of this article is to formalize the SRS and cSRS problems, with
the definition of the former being instrumental for that of the latter (Sect. 3).

Our second goal is to give a comprehensive and self-contained introduction to the known
results on both the SRS and cSRS problems, which we consider to be still lacking in the
literature. To this end, we provide a detailed description of the best-known algorithm for the
SRS problem and survey some of the known approaches for the cSRS problem (Sect. 4).

In particular, we first give a thorough theoretical explanation of Bröker’s algorithm [10],
which is based on the the deep connection, already observed by Deuring in [24], between
CM elliptic curves over number fields and elliptic curves over finite fields. To be more pre-
cise, it samples a supersingular elliptic curve modulo a large prime p by reducing modulo
p some suitably-chosen CM curve. Then, we discuss why the algorithm which combines
Bröker’s algorithm with random walks in suitable supersingular isogeny graphs solves the
SRS problem but does not solve the cSRS one. In fact, such an algorithm gives information
on the endomorphism ring of the output curve. Later on, we consider some standard char-
acterizations of supersingular elliptic curves, which lead to two highly inefficient methods
for sampling supersingular elliptic curves with unknown endomorphism ring, i.e. exhaustive
search over randomly sampled elliptic curves, and root-finding on a polynomial of large
degree (the Hasse invariant).

In the second part of this work, we propose some alternative approaches to
the SRS and cSRS problems, exploringways to sample supersingular elliptic curveswhich

do not make use of CM curves. In particular, in Theorem 4.18 a classical result about the
Hasse invariant is extended to elliptic curves in Jacobi form. Then,

in Sect. 5, we compute the Hasse invariant of different models of elliptic curves, in order
to assess whether some models lead to sparser Hasse invariants. In Proposition 5.10 we also
prove a special property of theHasse invariant of a supersingular elliptic curve inMontgomery
form - namely, it splits completely over Fp2 .

In Sect. 6.2, we prove the following generalization (Proposition 6.7) of a result in [29],
from which we deduce another explicit characterization of supersingular elliptic curves in
terms of their p-th division polynomial.

Proposition Let E be an elliptic curve over Fp2 , where p is a prime number. Then E is
supersingular if and only if the division polynomial

ψpr with r =

⎧
⎪⎨

⎪⎩

1 if tr(E) = ±2p
2 if tr(E) = 0

3 if tr(E) = ±p

is either 1 or −1 in Fp[x].
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In Sect. 6.3, under an assumption on the shape of the prime p, we formulate a further
characterization (Proposition 6.9) of supersingular elliptic curves based onFp-rational points
of small torsion.

Proposition Let p =∏r
i=1 �

ei
i − 1 be a prime such that

r∏

i=1
�i > 2

√
p, (1)

and denote by r ′ the minimum integer in {1, . . . , r} satisfying the above inequality. An ellip-
tic curve E, over Fp and in Weierstrass form, is supersingular if and only if the division
polynomial ψ�i relative to E has a root (xi , yi ) ∈ E(Fp) for each i ∈ {1, . . . , r ′}.

This characterisation of supersingular elliptic curves provides the following idea to sample
supersingular elliptic curves. Given a prime p = ∏r

i=1 �
ei
i − 1 such that (1) is satisfied for

some (minimal) r ′ ≤ r , then any solution of the system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ�i (A, B, xi , yi ) = 0 for each i ∈ {1, . . . r ′}
y2i − x3i − Axi − B = 0 for each i ∈ {1, . . . r ′}
x p
i − xi = 0 for each i ∈ {1, . . . r ′}
y pi − yi = 0 for each i ∈ {1, . . . r ′}
Ap − A = 0

B p − B = 0

yields the coefficients A, B of a supersingular elliptic curve E : y2 = x3+ Ax + B over Fp ,
togetherwith the coordinates ofFp-rational �i -torsion points (xi , yi ) on E for i ∈ {1, . . . , r ′}.

Unfortunately, none of the proposed alternative approaches leads to a solution of the cSRS
problem, but we hope they may open fruitful research directions.

1.1 Related work

The SRS and cSRS problems are also tackled in an independent work (which was made
public almost simultaneously with the finalisation of our work) by Booher et al. [9].

In [9, §2] the Hasse invariant Hp(λ) is considered for elliptic curves in Legendre form,
with additional remarks on how some root over Fp could be found, by means of an iterative
methodwhich also requires an efficient evaluation of the derivative H ′

p(λ) overFp .Moreover,
some variants of the method which we derive from Proposition 6.9 are illustrated in [9, §4].

The following new approaches are also presented in [9]:

• Computing the roots of gcd (�n(x, x p),�m(x, x p)), where n,m are positive integers
coprime with p and �n,�m denote the modular polynomials of levels n and m, respec-
tively [9, §3]. This amounts to finding j-invariants of elliptic curves having twonon-scalar
endomorphisms of degrees np and mp, respectively. The roots found have good chances
of being supersingular and can be computed in time linear with respect tom, n and log p.
However, since the output curve has a non-scalar endomorphism of degree nm, either m
or n should have the same size as p (otherwise the endomorphism ring can be retrieved
[41], as we will explain more thoroughly in the proof of Proposition 4.14).

• Finding supersingular elliptic curves as components of algebraic varieties of higher
dimension or higher genus [9, §5]. One method consists in performing a random walk
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on the isogeny graph of abelian surfaces, starting from a product of supersingular ellip-
tic curves, until another product of (supersingular) elliptic curves is reached. Another
method starts from Kummer surfaces of superspecial abelian surfaces, and looks for
their components (if any).

• Using a quantum computer to perform a random chain of �-isogeny paths ‘in superpo-
sition’, for some small primes � [9, §5]. This method hides most of the information that
a classic �-isogeny path would otherwise reveal, but requires a quantum computer to be
implemented.

Despite their theoretical interest, none of the methods presented in [9] result in an efficient
algorithm for the cSRS problem.

We stress that, even though [9] and our work bear some similarities, these two works
are complementary as they propose some similar but not identical approaches. Furthermore,
our work aims also at giving a self-contained survey on the topic, while providing the first
formalisations of the cSRS problem.

2 Preliminaries

2.1 Elliptic curves

Let K be a perfect field with char K /∈ {2, 3}. An elliptic curve over K is a projective curve
that can be written, up to isomorphism, as a cubic in A

2(K ) in (short) Weierstrass form

y2 = x3 + Ax + B with A, B ∈ K (2)

having a base point at infinity O and such that the discriminant,�(E) = −16(4A3+27B2),

is not 0. Every elliptic curve E can be endowed with the structure of an abelian group (E,+)

whose zero element is O [53, § III.2].
Since elliptic curves are defined up to isomorphism, there exist various representations

other than the Weierstrass model considered above. In Table 1, we summarize the form of
the affine equation and the corresponding formula for the j-invariant (whose definition is
recalled in the following Sect. 2.2) for some of these alternative models. We also provide the
values of the coefficients A and B of an isomorphic elliptic curve in Weierstrass form.

2.2 Isogenies and isomorphisms

An isogeny between two elliptic curves E1, E2 over K is a morphism

ϕ : E1 → E2

such that ϕ(O) = O . We say that ϕ is a K -isogeny, or that ϕ is defined over K , if the rational
functions defining ϕ can be chosen with coefficients in K . We refer to [53, § III.4] for the
basic properties of isogenies and the definition of degree.

An isogeny of degree 1 is an isomorphism. Every isomorphism class of elliptic curves
over K can be uniquely identified by an element j ∈ K , called the j-invariant. The value of
j can be easily retrieved from the coefficients of any elliptic curve E : y2 = x3+ Ax + B in
the isomorphism class as

j(E) = −1728 (4A)3

�(E)
.
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Table 1 Other models of elliptic curves

Model Affine equation j-invariant Equivalent Weierstrass form

Legendre [53, p. 49] y2 = x(x − 1)(x − λ) 28
(λ2 − λ+ 1)3

λ2(λ− 1)2

⎧
⎪⎪⎨

⎪⎪⎩

A = −λ2 + λ− 1

3

B = −2λ3 + 3λ2 + 3λ− 2

27

Montgomery [20, §2.4] B′y2 = x3 + A′x2 + x
256(A′2 − 3)3

A′2 − 4

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = B′2
(

1− A′2
3

)

B = B′3A′
3

(
2A′2
9

− 1

)

Jacobi [7, §3] y2 = εx4 − 2δx2 + 1 64
(δ2 + 3ε)3

ε(δ2 − ε)2

⎧
⎪⎪⎨

⎪⎪⎩

A = −4ε − 4

3
δ2

B = − 16

27
δ(δ2 − 9ε)

We recall from [53, Prop. III.1.4.b-c] the fundamental properties of j-invariants.

Proposition 2.1 (a) Two elliptic curves over K are isomorphic over K if and only if they
have the same j-invariant.

(b) Let j0 ∈ K. There exists an elliptic curve over K ( j0) whose j-invariant is j0.

Given an elliptic curve E , for each positive integer m, let [m] denote the ‘multiplication-
by-m’ map which is an isogeny from E to itself such that:

[m]P = P + P + · · · + P
︸ ︷︷ ︸

m times

for each P ∈ E . The above definition easily extends to negative integers, setting [−m]P =
−([m]P). For each m ∈ Z, the m-torsion of E is the subgroup E[m] = ker[m].

Let End(E) be the set of endomorphisms of an elliptic curve E (that is, isogenies E → E).
Since End(E) is a torsion-free ring, the map

[ ] : Z → End(E)

m �→ [m]
is injective. Endomorphisms in the image of the injectivemap [ ] are called scalar.Whenever
the map [ ] is not surjective, that is, there exists some non-scalar endomorphism, we say
that E is a CM curve or, equivalently, that E has complex multiplication. CM curves defined
over number fields can be used as a starting point to generate supersingular elliptic curves
over finite fields, as we are going to see in Sect. 4.

Proposition 2.2 Let ϕ : E1 → E2 be a nonconstant isogeny of degree m. Then there exists a
unique isogeny

ϕ̂ : E2 → E1

such that ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [m].
Proof See [53, Thm. III.6.1.a]. 	


The isogeny ϕ̂ is called the dual isogeny of ϕ. We also define [̂0] = [0].
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2.3 Endomorphism rings

In this section we summarize some fundamental facts about the structure of End(E) for
an elliptic curve E . We first recall that an algebra B over a field K (with char K �= 2) is a
quaternion algebra if there exist i, j ∈ B such that 1, i, j, i j form a basis for B as a K -vector
space and

i2 = a, j2 = b, j i = −i j (3)

for some a, b ∈ K ∗. Let B be an algebra of finite dimension n over Q. An order O ⊂ B is a
Z-module of rank n which is also a subring.

Theorem 2.3 (Structure of End(E)) Let E be an elliptic curve over K . ThenEnd(E) is either
Z, an order in an imaginary quadratic extension of Q, or an order in a quaternion algebra
over Q. If K has characteristic 0, the last case never occurs.

Proof [53, Cor. III.9.4]. 	

Corollary 2.4 (Characteristic polynomial of an endomorphism) Let ϕ be an endomorphism
of an elliptic curve E over K , and define

d = deg(ϕ) and a = 1+ deg(ϕ)− deg(1− ϕ).

Then

ϕ2 − [a] ◦ ϕ + [d] = [0]. (4)

Proof This can be checked directly using the properties of dual isogenies. 	

The integer a fromCorollary 2.4 is called the trace of ϕ and denoted by tr(ϕ). In particular,

when E is over a finite field Fq of characteristic p, the endomorphism

ϕq : E → E

(x, y) �→ (xq , yq)

is called the q-th power Frobenius endomorphism of E , and its trace is the trace of E over
Fq . Moreover, its degree equals q [53, Prop. II.2.11], so that the following yields

(
xq

2
, yq

2)− [tr(ϕq)](xq , yq)+ [q](x, y) = O

for each (x, y) ∈ E(Fq).

2.4 Supersingular elliptic curves

We will now recall some characterizations of supersingular elliptic curves. Such criteria for
supersingularity will be exploited in Sects. 4, 5 and 6 to generate supersingular curves. In the
following, we will use p for a prime number larger than 3 and q for a generic power pn with
n ∈ N.

Theorem 2.5 (Definitions of supersingular elliptic curve) Let E : y2 = x3 + Ax + B be an
elliptic curve over Fq . The following are equivalent:

(a1) E[pr ] = {O} for some r ≥ 1.
(a2) E[pr ] = {O} for each r ≥ 1.
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(b) The endomorphism [p] : E → E is purely inseparable1 and j(E) ∈ Fp2 .
(c) End(E) is an order in a quaternion algebra over Q.
(d) #E(Fq) ≡ 1 mod p.

If an elliptic curve satisfies oneof the above conditions, it is called supersingular. In particular,
the set of supersingular j-invariants, i.e.

{ j(E) | E is supersingular over K },
lies in Fp2 .

Proof See [53, Thm.V.3.1];[61, Prop. 4.31]. 	


We highlight that every supersingular elliptic curve is a CM curve (this actually holds
true for every elliptic curve defined over a finite field). Non-supersingular elliptic curves are
called ordinary.

Corollary 2.6 Every supersingular elliptic curve over a field of characteristic p is isomorphic
to a supersingular elliptic curve over Fp2 .

Proof This is an immediate consequence of part (b) of the previous theorem and the properties
of j-invariants in Proposition 2.1. 	


2.5 Supersingular �-Isogeny Graphs

Supersingular �-isogeny graphs are a major object of study in isogeny-based cryptography.
Their vertices represent (isomorphism classes of) supersingular elliptic curves, while their
edges are isogenies of degree � for some prime � �= p. For � ∼ log p, one can ‘walk’ on the
supersingular �-isogeny graph in such a way that

• each step can be performed quickly (via Vélu’s formulae, see [35, §25.1.1];[58]);
• starting from a given supersingular elliptic curve, every other supersingular elliptic curve

can be reached within a ‘small’ number of steps;
• the endpoints of ‘long enough’ random walks have an ‘almost uniform’ distribution

(rapid mixing).

In this section, we provide a general introduction to random walks over graphs, showing the
relation between the ‘randomness’ of a random walk and the structure of the graph. Finally,
referring to a famous result due to Pizer [47], we show that random walks on suitably-chosen
supersingular �-isogeny graphs end on ‘random’ vertices.

2.5.1 Randomwalks

Let G be a graph with set of vertices V = {v1, . . . , vn} and set of edges E. A random walk
on G is the stochastic process (Xt )t≥0 defined as follows:

• each state Xt is a vertex of G;
• the starting node X0 is any vertex of G;

1 We refer to [53, p. 21] for a precise definition of purely inseparable isogenies.
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• for each pair of vertices vi , v j ∈ V ,

Pi→ j =
{

#{edges between vi andv j }
#{edges starting from vi } if there is an edge between viand v j ,

0 otherwise,

where Pi→ j denotes the probability that, given Xt = i for some t ≥ 0, the next state
Xt+1 equals j .

The length of a random walk is the (possibly infinite) number of its states.
The above definition implies that a random walk is a Markov chain. If G is k-regular, then

its transition matrix T is closely related to the adjacency matrix A, namely:

T = 1

k
A.

Since the adjacency matrix encloses all information about the structure of G, it is natural
to ask which assumptions on G ensure that a sufficiently-long random walk on the graph
approaches the uniform distribution, no matter how the starting vertex is chosen. To address
this question, we call a probability function a non-negative map p : V → R such that
∑n

i=1 p(vi ) = 1. We represent p as a vector (p1, . . . , pn) where pi = p(vi ).

Remark 2.7 Let n be the number of vertices of G, and suppose that we are able to sample
a starting node X0 in G according to a certain probability function p = (p1, p2, . . . , pn).
Then, a random walk from X0 of length t and transition matrix T on G allows us to sample
vertices with probability distribution T t p.

Theorem 2.8 Suppose that the graph G = (V , E) is connected, non-bipartite and k-regular
with n vertices. Let A be its adjacency matrix and T = (1/k)A the Markov transition matrix.
Then, for every probability function p on G we have

lim
t→∞ T t p = u

where u is the uniform distribution u = (1/n, . . . , 1/n).

Proof See [57, Thm.6.1]. 	

A classical way to enforce a fast convergence to the uniform distribution is to consider

only non-backtracking random walks, i.e. random walks (Xt )t≥0 such that Xt �= Xt+2 for
each t ≥ 0. The rate of convergence in this particular case is quantified in [2] by considering
the mixing rate. Given a k-regular graph G = (V , E) with n vertices, the mixing rate of a
non-backtracking random walk on G is defined as

ρ = lim sup
t→∞

max
i, j

(∣
∣P[Xt = vi | X0 = v j ] − 1/n

∣
∣
) 1
t ,

The convergence of a non-backtracking randomwalk to the uniform distribution is closely
related to the absolute values of the eigenvalues of the adjacency matrix.

Theorem 2.9 Suppose that the graph G = (V , E) is connected, non-bipartite and k-regular
(k ≥ 3) with n vertices. Define ψ : [0,∞) → R by:

ψ(x) =
{
x +√

x2 − 1 if x ≥ 1,

1 if 0 ≤ x ≤ 1.

123



On random sampling of supersingular elliptic curves

Then its mixing rate ρ satisfies

ρ =
ψ
(
max(|λ2|,|λn |)

2
√
k−1

)

√
k − 1

,

where λ1 = k > λ2 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix of G.

Proof See [2, Thm 1.1]. 	

Building on the above theorem, [2] proves that the mixing rate of a non-backtracking

random walk may be up to twice as fast as the mixing rate ρ′ of a generic random walk. In
particular, the maximum value of the ratio ρ/ρ′ is achieved when the k-regular graph G is
Ramanujan, i.e.

max(|λ2|, |λn |) ≤ 2
√
k − 1.

2.5.2 Rapid mixing on isogeny graphs

Let � and p be two distinct primes, p ≥ 5 and q = pn for some non-zero n ∈ N. By Tate’s
theorem [56, §3], two elliptic curves over Fq are Fq -isogenous if and only if they have the
same trace over Fq . We can thus define the �-isogeny graph G�(Fq , a) as follows [1, §3]:

• its vertices are the Fq -isomorphism classes of elliptic curves over Fq with trace a. For
each vertex we set a representative and we denote by V�(Fq , a) a complete set of repre-
sentatives;

• given E, E ′ ∈ V�(Fq , a), the edges between the corresponding vertices are the isogenies
E → E ′ over Fq of degree �, modulo post-composition with an Fq -automorphism.

An easy consequence of Tate’s theorem is that two curves in the same �-isogeny graph
are either both supersingular or both ordinary, depending on whether their trace over Fq

is a multiple of p. From now on we will focus on supersingular �-isogeny graphs (more
information about the ordinary case can be found in [39, 55]).

In order to represent the set of supersingular j-invariants in Fp2 (see Theorem 2.5) in
terms of an �-isogeny graph, we wonder if the trace a can be chosen in such a way that the
vertices of G�(Fp2 , a) are in bijection with the supersingular j-invariants. We address this
question by rephrasing a result in [1].

Proposition 2.10 Let a ∈ {2p,−2p}. Then, each supersingular j-invariant j0 ∈ Fp2 is
represented by exactly one vertex in G�(Fp2 , a).

Proof See [1, pp. 5-6]. 	

An alternative supersingular �-isogeny graph, denoted by G�(Fp), can be defined as fol-

lows:

• its vertices are the Fp-isomorphism classes of elliptic curves over Fp . For each vertex
we set a representative (defined over Fp2 ) and we denote by V�(Fp) a complete set of
representatives;

• given E, E ′ ∈ V�(Fp), the edges between the corresponding vertices are the isogenies
E → E ′ over Fp of degree �, modulo post-composition with an Fp-automorphism.

Working with G�(Fp) or with G�(Fp2 ,±2p) is actually the same.
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Theorem 2.11 G�(Fp) and G�(Fp2 ,±2p) are isomorphic.
Proof See [1, Thm.6]. 	


G�(Fp), or equivalently G�(Fp2 ,±2p), enjoys the very properties which ensure ‘good
mixing’ of random walks. First of all, we consider the regularity of the graph.

Proposition 2.12 Every vertex of G�(Fp2 ,±2p) has outdegree �+ 1.

Proof Let E be a vertex and α be a degree-� isogeny starting from E . Then ker α has order
� [53, Thm. III.4.10]; in particular,

ker α ⊆ E[�].
By [53, Cor. III.6.4], the �-torsion of E is

E[�] ∼= Z
��Z

× Z
��Z

,

and so it has exactly �+1 subgroups of order �. For eachfinite groupG of E , the quotient curve
E ′ = E/G (i.e. the image of the isogeny with kernel G) is unique up to post-composition
with an isomorphism [53, Prop. III.4.12]. 	


Actually, with the possible exception of the vertices 0 and 1728 and their neighbours [1,
Thm.7], we can consider G�(Fp) as an undirected (�+ 1)-regular graph. In [47], a stronger
result is proven.

Theorem 2.13 G�(Fp) is Ramanujan.

Further results about the Ramanujan property of isogeny graphs have recently appeared.
For instance, in [14, Cor. 1.8], the authors prove that this property holds for a larger family
of isogeny graphs with level structure.

A fundamental feature of Ramanujan graphs, which is particularly relevant for crypto-
graphic applications, is their rapid mixing property. This property can be also seen as a
particular case of a more general statement proven in [48, Thm.3.10]. Here we focus on
non-backtracking random walks on G�(Fp), as their mixing rate improves that of generic
randomwalks (see Theorem 2.9). Notably, the length of non-backtracking randomwalks can
be explicitly related to their rate of convergence to the uniform distribution.

Theorem 2.14 Let ϕ : E → E ′ be a non-backtracking random walk of length h on G�(Fp).
Then, for all ε ∈]0, 2], the distribution of E ′ has statistical distance Õ(p−ε/2) to the uniform
distribution in G�(Fp), provided that h ≥ (1+ ε) log� p.

Proof See [22, Prop. 29]. 	


3 Motivation

The mathematical properties of supersingular elliptic curves go far beyond the results in the
previous section. We believe that the appeal of this topic, from a theoretical perspective,
needs no further evidence.

However, there are also practical reasons for considering supersingular elliptic curves,
since they are widely used in isogeny-based cryptography. We present the main hard mathe-
matical problems on which the security of isogeny-based cryptography is based in Sect. 3.1.
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Then, in Sect. 3.2, we provide some examples of cryptosystems whose security is affected
by the (partial) knowledge of the endomorphism ring of the starting supersingular elliptic
curve. Finally, in Sect. 3.3, we come to the formulation of the SRS and cSRS problems, to
which the remainder of this article is devoted.

3.1 Hard problems for supersingular elliptic curves

The following mathematical problems are considered computationally hard [34, §2.2].

Problem 1 (�-IsogenyPath) Let p and � be distinct primes. Given two uniformly-random
supersingular elliptic curves E and E ′ over Fp2 , find an �-isogeny path between them, i.e. a
path

E → E1 → · · · → E ′

on G�(Fp2 , 2p).

Problem 2 (EndRing) Given a prime p and a uniformly-random supersingular elliptic
curve E over Fp2 , compute End(E), i.e. find four endomorphisms that generate End(E) as
a Z-module.

There exist supersingular elliptic curves whose endomorphism rings can be easily com-
puted; namely, those having non-scalar endomorphisms of small degree. We will discuss this
in Sect. 4.3.2.

Solving either �-IsogenyPath or EndRing turns out to be the same.

Theorem 3.1 �-IsogenyPath and EndRing are computationally equivalent under heuristic
assumptions or Generalized Riemann Hypothesis. More precisely:

• if two elliptic curves E, E ′ are given together with their endomorphism rings End(E)

and End(E ′), then an �-isogeny E → E ′ can be computed in polynomial time;
• if an elliptic curve E is given together with an �-isogeny E → E ′ and the endomorphism

ring End(E ′), then End(E) can be computed in polynomial time.

Proof This was proven first under heuristic assumptions in [31, §5.5], and later in [62]
under the Generalized Riemann Hypothesis. 	


3.2 Cryptographic applications

Hard mathematical problems can often be exploited to construct secure cryptographic proto-
cols, and �-IsogenyPath and EndRing are no exceptions. Here we provide some examples,
which will naturally lead us to the formulation of the SRS and cSRS problems in Sect. 3.3.
In particular, concerning the cSRS problem, we will discuss how a naive choice of the super-
singular elliptic curves involved in some of these protocols can heavily undermine their
security.

The digital signatures SQIsignHDand SQIsign2D-WestMany of the isogeny-based digital
signatures that have been recently proposed (see, for example, [4, 5, 22, 26, 36]) are built on a
�-protocol (between a Prover and aVerifier) by using the Fiat-Shamir transform. The base�-
protocol is required to satisfy some security properties for the resulting digital signature to be
resistant against forgery attacks. More precisely, the �-protocol should be special sound and
honest-verifier zero knowledge (HVZK). The latter property guarantees that no information
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Fig. 1 The path followed by the CGL function within the graph G2(Fp) for the bitstring 101

is leaked about the secret material during the interaction between prover and verifier. This
usually translates in the need, for the first message of the interaction (the commitment), to
be uniformly distributed over a public set. For example, in SQIsignHD [22] and SQIsign2D-
West [5], the distribution of the commitment should be close to uniform among supersingular
elliptic curves over a given finite fieldFp2 . The special-sound property of the base�-protocol
is backed by the hardness of EndRing.

CGL hash function TheCGL function [15] is a hash function based on the �-isogeny graph
G�(Fp) for some small prime � �= p. Such function is outlined in Algorithm 1 for the case
� = 2. Figure1 depicts the path in G2(Fp) determined by the computation of the image of
the bitstring 101.

Algorithm 1: CGL hash function
Input: A supersingular elliptic curve E0 over Fp2 ; a bitstring m of n bits, i.e. m = b1b2 · · · bn .
Output: CGL(m).
Choose a 2-torsion point P of E0;
Compute the isogeny ϕ0 : E0 → E0/〈P〉 with kernel 〈P〉;
Set E1 = E0/〈P〉;
for i ∈ {1, . . . , n} do

Find the 2-torsion points of Ei , other than O;
Rule out the 2-torsion point P such that the map Ei → Ei /〈P〉 with kernel 〈P〉 is the dual of ϕi−1;
Label the remaining 2-torsion points by P0, P1 (according to some convention);
Compute the isogeny ϕi : Ei → Ei /〈Pbi 〉 with kernel 〈Pbi 〉;
Set Ei+1 = Ei /〈Pbi 〉;

end
Set CGL(m) = j

(
En+1

)
;
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In this setting, a collision happens whenever the same curve En+1 can be reached through
two distinct �-isogeny paths starting from E1. Therefore, the hardness of �-IsogenyPath
ensures that the CGL function is, in general, collision resistant (see [15, §5]).

However, Theorem 3.1 suggests that the starting curve E0 for the CGL hash function
should be chosen carefully. Namely, if computing End(E0) is by any chance easy, then
finding collisions becomes easy as well.

VDF based on �-isogeny graphs A function is called a verifiable delay function (VDF)
[8] if it requires a specified number of sequential steps to be evaluated (independent of the
hardware architecture used for the computation) and it is possible to efficiently verify that
a value is the correct output of the function. In particular, evaluating a VDF over any input
should not be significantly easier if parallel computation is employed.

In [25, §3,§5], De Feo et al. construct a VDF that consists in evaluating at some point
Q ∈ E ′(Fp) a given �T -degree isogeny ϕ̂ : E ′ → E between two supersingular elliptic
curves defined over Fp . Such evaluation requires, in general, polynomial time in T .

However [25, §6.2], if End(E) is known, an auxiliary isogeny ψ : E → E ′ of small
degree can be precomputed and exploited to speed up the computation of ϕ̂(Q), breaking the
sequentiality of the VDF. Therefore, as in the previous example, E should be chosen in such
a way that no information about its endomorphisms can be retrieved easily.

Delay encryption The same computational challenge described above—i.e. evaluating at
some point Q ∈ E ′(Fp) a given �T -degree isogeny ϕ̂ : E ′ → E between two supersingular
elliptic curves defined over Fp—is also exploited in [6] to instantiate a new cryptographic
primitive called delay encryption, used to produce encrypted messages that can be decrypted
(by anyone) only after a given amount of time T . In this case, too, the choice of E is
problematic for the same reasons described in the previous paragraph, so that anyone knowing
End(E) would be able to decrypt messages earlier than expected.

Public-key cryptosystemsUntil July 2022, the key encapsulation mechanism SIKE, based
on the public-key cryptosystemSIDH [27],was one of the flagships of isogeny-based cryptog-
raphy. Its fall was due to three attacks [13, 43, 49], the latter of which proved that randomizing
the starting curve is not enough to avoid the attack. However, new protocols are still rising
from the ashes of SIKE: two examples that require random supersingular elliptic curves
among their parameters are IS-CUBE [45] and M-SIDH [33, §7].

Other applications We have already observed that the knowledge of End(E) can be
exploited to speed up the computation of isogenies starting from E . When this fact does not
represent a security issue, it provides on the contrary a good motivation for using E instead
of some other supersingular elliptic curve with unknown endomorphism ring. This is the case
for SQISign [26] and SQISignHD [22], and also CSIDH [12], the VDF in [21] and many
other isogeny-based protocols. However, we cannot exclude that the discovery/refinement of
attacks might eventually force the use of supersingular elliptic curves with unknown endo-
morphism rings for some of these protocols, too.

3.3 SRS and cSRS problems

In this sectionwe formalize the problemof (almost) uniformly sampling supersingular elliptic
curves over Fp2 , in two different flavours:

• the first, weaker, version solely focuses on the mathematical problem;
• the second, stronger, version adds some further requirements which take into account the

cryptographic applications.
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A supersingular random sampler is a randomized algorithm A, on input a prime p and a
random seed s, that produces a supersingular elliptic curve E over Fp2 in such a way that the
output distribution of A – as s varies—is computationally indistinguishable from the uniform
distribution over the set of all supersingular elliptic curves over Fp2 .

Remark 3.2 Suppose that A′ is a deterministic algorithm that, on input a prime p, produces
a supersingular elliptic curve E over Fp2 . Then, A

′ can be easily turned into a supersingular
random sampler A thanks to the rapid mixing property of Theorem 2.14. Namely, on input
p and a random seed s, A simply performs the CGL hash of s

starting from E ← A′(p).

The first problem we define is named Supersingular Random Sampler (SRS in short)
problem:

Supersingular Random Sampling (SRS) problem
Construct a supersingular random sampler whose time complexity is polynomial

in log p.

Remark 3.3 The SRS problem finds a cryptographic application, for example, in SQIsignHD
and SQIsign2D-West. In fact, a solution for the problem enforces the Honest-Verifier Zero-
Knowledge property of the base �-protocol in both cases.

In order to formulate a stronger version of the SRS problem, for any supersingular random
sampler A we define a slight variation of Problem 2, relative to A itself.

Problem 3 (EndRingA) Given E ← A(p, s) and the random seed s, compute End(E).

Given a supersingular random sampler A, we say that A is a supersingular random
crypto sampler ifEndRingA is computationally hard. This definitionmotivates the following
stronger version the SRS problem.

Crypto Supersingular Random Sampling (cSRS) problem
Construct a supersingular random crypto sampler whose time complexity is

polynomial in log p.

Remark 3.4 Let A be a supersingular random sampler consisting of a random walk E → E ′
that starts from the output of a deterministic algorithm A′, as described in Remark 3.2. In
this case, the random seed used by A is the random walk itself. It is then clear, in the light of
Theorem 3.1, that computing End(E ′) using the random seed of A is equivalent to computing
End(E). Therefore, if computing End(E) is easy, then A cannot be a supersingular random
crypto sampler.

3.3.1 SRS and cSRS problems over Fp

Our formalisation of the SRS and cSRS problems deals with supersingular elliptic curves
defined over Fp2 , while the majority of applications considered in Sect. 3.2 make use of
supersingular elliptic curves defined over the subfield Fp . Nothing ensures that an efficient
supersingular random (crypto-)sampler can find supersingular elliptic curves over Fp as
efficiently as over Fp2 , since the probability that a random supersingular elliptic curve over
Fp2 is defined over Fp is about 1/

√
p [28, §4]. However, all the methods considered in this

paper can be easily adapted to sample supersingular elliptic curves defined over Fp (in fact,
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most of them can be made more efficient in this way). For this reason we will often switch
between Fp2 and Fp .

It is also worth mentioning that some extra information about End(E) is automatically
knownwhen E is defined over p. To be more precise, the imaginary quadratic orderZ[√−p]
embeds in End(E) via the map

√−p �→ π , where π is the Frobenius endomorphism.
Nevertheless, retrieving the full endomorphism ring of E from this information is considered
a hard problem. In fact, the security of CSIDH relies (also) on it [63, Cor. 5].

4 Known approaches

We now survey some known supersingular random samplers which solve the SRS problem,
showing that none of them leads to a supersingular random crypto sampler.

First, we provide a detailed description of the most efficient, to the best of our knowledge,
supersingular random sampler. It consists of the combination of two building blocks:

• an algorithm due to Bröker, described in Sect. 4.1;
• a random walk over G�(Fp), described in Sect. 4.3.

Our goal for this section is to provide a comprehensive and illuminating explanation of the
combination of these blocks.

In Sect. 4.3.2 we will discuss why the resulting algorithm is not a supersingular random
crypto sampler. Finally, in Sect. 4.4 we present some cSRS algorithms. They are mainly
of theoretical interest, though, since their computational cost is exponential in log p, and
therefore they are not a solution of the cSRS problem.

4.1 Bröker’s algorithm

For any given prime p ≥ 5, at least one supersingular j-invariant over Fp2 can be efficiently
found thanks to Bröker’s algorithm [10], whose core is the reduction of a suitable CM elliptic
curve. We recall that an elliptic curve E over a number field K has a good reductionmodulo
P if the P-adic valuation of �(E) does not equal 0 (see [53, §VII.5] for more details).
In particular, this means that the coefficients of E can be seen as elements of some finite
extension of Fp , and they define an elliptic curve Ẽ called the reduction of E modulo P.

Theorem 4.1 (Deuring) Fix a prime p ≥ 5. Let E be an elliptic curve over a number field K ,
with End(E) isomorphic to an order O in an imaginary quadratic field k. Let P be a prime
of K over p, and suppose that E has a good reduction modulo P, which we denote by Ẽ.
Then Ẽ is supersingular if and only if p has only one prime of k above it (that is, p does not
split in k).

Moreover, let E be an elliptic curve over a field of characteristic p with a non-scalar
endomorphism α0. Then there exists an elliptic curve E defined over a number field K , an
endomorphism α of E and a good reduction Ẽ of E at a primeP of K over p, such that E is
isomorphic to Ẽ and α0 corresponds to α̃ (the reduction of α at P) under the isomorphism.

Proof See [24, 40, Thm.13.12 and 13.14]. 	

The first part of Deuring’s theorem provides a criterion for determining whether the

reduction modulo a suitable prime ideal P of a CM curve is supersingular or not, while the
second part ensures that every supersingular elliptic curve can be expressed as the reduction
modulo a prime ideal P of a CM curve.
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4.1.1 Finding CM curves with supersingular reduction

By Deuring’s Theorem, constructing a supersingular elliptic curve over Fp is equivalent to
constructing a CM curve E—over some number field—such that p does not split in End(E).
Equivalently, if we denote by k the imaginary quadratic field which End(E) is an order of,
and by D the discriminant of k, p does not split in k if and only if

(
D

p

)

�= 1, (5)

where the left-hand expression denotes the Legendre symbol [17, Prop. 5.16, Cor. 5.17].
Once a quadratic field k satisfying (5) is fixed, the goal is to determine the CM j-invariants

whose endomorphism rings lie in k. To this end, a deeper insight into the link between elliptic
curves and lattices over C is needed.

From complex lattices to complex elliptic curves Let x1 and x2 be two R-linearly inde-
pendent vectors in the complex plane C (viewed as a 2-dimensional R-vector space). The
complex lattice generated by x1 and x2 is the set

� = {z1x1 + z2x2 | z1, z2 ∈ Z} .
Two lattices �1,�2 are homothetic if there exists β ∈ C \ {0} such that �2 = β�1.

We will now recall how an elliptic curve E over C can be constructed from a complex
lattice�, and also howEnd(E) can be retrieved from�. For this part we follow [17, §10];[53,
§C.11];[61, §9.1−9.3, 10.1] (see also [35, §16.1] for a general overview on lattices in R

n).
Let� be a complex lattice generated by x1, x2 ∈ C. The quotientC/� is a complex torus.

For each integer k ≥ 3, the Eisenstein series

Gk(�) =
∑

ω∈�
ω �=0

ω−k

converges [61, Lem.9.4]. In order to ease the notation, 60G4(�) and 140G6(�) are usually
denoted by g2(�) and g3(�), respectively.

Finally, the j-invariant of a complex lattice � is defined as

j(�) = 1728
g2(�)3

g2(�)3 − 27g3(�)2
. (6)

Theorem 4.2 Two complex lattices are homothetic if and only if they have the same j-
invariant.

Proof See [17, Thm.10.9] 	

As the use of the word ‘ j-invariant’ suggests, complex lattices and elliptic curves (over

C) are closely related.

Theorem 4.3 Let � be a complex lattice, and define the elliptic curve

E� : y2 = 4x3 − g2(�)x − g3(�).

Then the groups C/� and E(C) are isomorphic. Moreover, the map

{Homothety classes of complex lattices} → {Isomorphism classes of elliptic curves over C}
� �→ E�

is well defined, one-to-one and j(�) = j(E�).
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Proof See [61, §9.2 and 9.3]. 	

The following proposition clarifies the connection between a complex lattice � and the

endomorphism ring of E�.

Proposition 4.4 Let � be a complex lattice, and E� the corresponding elliptic curve as in
Theorem 4.3. Then

End(E�) ∼= {β ∈ C | β� ⊆ �}. (7)

Proof See [61, Thm 10.1]. 	

Therefore, for a complex lattice � such that Z � {β ∈ C | β� ⊆ �}, the correspond-

ing elliptic curve E� has complex multiplication. In fact, every such � is homothetic to a
fractional ideal in some imaginary quadratic field, as we are going to prove in Corollary 4.9.

Proposition 4.5 Let O be an order in an imaginary quadratic field k. Then every non-zero
fractional ideal of O is a complex lattice.

Proof See [17, §10.C]. 	

Remark 4.6 On the other hand, a complex sublattice of an imaginary order O is not, in
general, a fractional ideal, nor even a subring, ofO. For example, consider k = Q(

√−1) and
the sublattice � generated by 2 and i in the ring of integers of k. The square of the second
generator is −1, which does not lie in �. Therefore, � is not closed under multiplication.

Let S be the right-hand side of (7), i.e.

S = {β ∈ C | β� ⊆ �},
and assume that � is a fractional ideal of an order O in a quadratic imaginary field. The
inclusion O ⊂ S holds trivially. The other inclusion needs not to be true, though [17, §7.A].
When it is (i.e. � is not a fractional ideal of any order greater than O), � is called a proper
ideal.

Proposition 4.7 LetO be an order in an imaginary quadratic field k, and� a proper non-zero
fractional ideal in O. Then End(E�) ∼= O.

Proof It follows immediately from the definition of proper ideal and Proposition 4.4. 	

The above result provides a class of complex elliptic curves whose endomorphism ring is

exactly O, that is those of the form E�, where � is a proper fractional ideal of O. Actually,
up to isomorphism, there are no other complex elliptic curves with endomorphism ring O.

Theorem 4.8 Let � be a complex lattice, and α ∈ C \Z. Then, the inclusion α� ⊂ � holds
if and only if there exists an order O in an imaginary quadratic field k such that α ∈ O and
� is homothetic to a proper fractional ideal of O.

Proof See [17, Thm.10.14]. 	

Corollary 4.9 Let O be an imaginary quadratic order and E a complex elliptic curve with
End(E) ∼= O. Then there exists a proper fractional ideal of O, say �, such that E ∼= E�.
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Proof Theorem4.3 ensures that E ∼= E�′ for some complex lattice�′. Sincewe are assuming
that E is a CM curve, by (7) there exists α ∈ C\Z such that α�′ ⊆ �′. FromTheorem 4.8 we
know that there exists an imaginary quadratic order O′ containing α and �′ is homothetic to
a proper fractional ideal of O�, which we denote by �. By Proposition 4.7, End(E�) = O′.
Moreover, since � and �′ are homothetic, the curves E� and E�′ are isomorphic. Hence,
their endomorphism rings are isomorphic too, i.e.

O = O�. 	

Corollary 4.10 Let O be an order in an imaginary quadratic field. Then the map f : � �→
j(E�) yields a one-to-one correspondence between the ideal class group C (O) and the
j-invariants of CM curves with endomorphism ring O.

Proof It is easy to prove that two proper fractional ideals ofO determine the same class if and
only if they are homothetic as complex lattices. Therefore, f is well-defined on equivalence
classes of ideals, and by Theorem 4.2 it is also injective. Proposition 4.7 ensures that f (�)

is actually a CM j-invariant and that the image is a set of j-invariants of CM curves with
endomorphism ring O. Finally, surjectivity follows from Corollary 4.9. 	


Hilbert class polynomials Corollary 4.10 alone does not provide an explicit strategy to
compute CM j-invariants. In fact, even though a suitable complex lattice � can be easily
determined, the infinite sums g2(�) and g3(�) involved in (6) make any direct computation
quite impractical. Furthermore, a priori it is not ensured that the CM j-invariants considered
in Corollary 4.10 are algebraic overQ. In fact, this is a necessary condition to applyDeuring’s
theorem, since the CM curve (and therefore its j-invariant) is required to be defined over
some number field. The latter problem is addressed in the following proposition.

Proposition 4.11 Let O be an order in an imaginary quadratic field k, and denote by
�1,�2, . . . , �h a complete set of representatives for the ideal class group C (O). Then
the polynomial

PO =
h∏

i=1

(
X − j(E�i )

)
(8)

has integer coefficients. In particular, theCM j-invariants j(E�1), . . . , j(E�h )are algebraic
over Q.

Proof See [17, Thm.13.2]. 	

The polynomial PO defined in (8) is called Hilbert class polynomial (or ring class poly-

nomial, whenever O is not maximal) of the imaginary quadratic order O.
There exist several algorithms to compute the Hilbert class polynomial of a given imag-

inary quadratic order O in time Õ(discO). For the sake of completeness we sketch below
the classical approach from [16, §7.6.2]:

(1) Compute a set of representatives �1,�2, . . . , �h for C (O). Equivalently, following
[16, §5.3.1], enumerate all the positive-definite reduced integral binary quadratic forms
aX2+bXY +cY 2 of discriminant D = disc(O), i.e. the triples of integers (a, b, c) such
that

• |b| ≤ a ≤ c,
• if |b| = a or a = c, then b ≥ 0,
• b2 − 4ac = D.
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(2) Let (a, b, c) be one of the triples from the previous step. Then the corresponding rep-

resentative is � = Z + τZ with τ = −b+√D
2a , and j(�) can be approximated via the

expansion

j(τ ) = 1728

(
1+ 240

∑∞
k=1

k3qk

1−qk
)3

(
1+ 240

∑∞
k=1

k3qk

1−qk
)3 −

(
1− 504

∑∞
k=1

k5qk

1−qk
)2 , (9)

where q = e2π iτ [61, Prop. 9.12].
(3) If the approximations j̃1, . . . , j̃h from the previous step are ‘good enough’, thanks to

Proposition 4.11 the exact Hilbert class polynomial of O can be found by rounding the
coefficients of

∏h
i=1(X − j̃i ) to the nearest integers. More precisely, the closeness of j̃i

to j(�i ) depends on both the partial sums from (9) considered for the approximation,
and the precision used for numerical computations. While the impact of the first choice
is limited by the rapid convergence of (9), the second one requires a deeper analysis of
the coefficients of PO [32, §4].

4.1.2 The algorithm

To summarize, in Sect. 4.1.1 we have depicted the following strategy to generate a supersin-
gular j-invariant in Fp2 for a fixed prime p ≥ 5:

(1) Choose an imaginary quadratic field k whose discriminant D satisfies equation (5);
(2) Choose an order O in k;
(3) Compute the Hilbert class polynomial PO;
(4) Consider the reduction modulo p of PO and find one of its roots.

Bröker’s algorithm, which is summarized in Algorithm 2, is just a special case of the above
strategy. In particular, it performs steps (1) and (2) in such a way that the computation time
is polynomial in log p, and the j-invariant found lies in Fp . This is achieved by executing
the following steps:

• compute the smallest prime q ≡ 3 mod 4 such that
(−q

p

)
�= 1;

• set k = Q(
√−q);

• set O = Z[(1+√−q)/2], that is the maximal order of Q(
√−q).

In particular, the fact that q is the smallest possible ensures that O is uniquely determined by
p, and for this reason we will denote it by Op in the following. Thus, the output of Bröker’s
algorithm depends only on p and the root of PO chosen at step (4).

According toBröker’s analysis in [10, Lem.2.5], the expected running time ofAlgorithm2
is Õ

(
(log p)3

)
due to the following reasons:

• heuristically, q is likely to be below 50 for p ∼ 2256. This fact seems reasonable, since
half of the elements of Z/pZ are quadratic non-residues. In [42] it is proven that, under
the Generalized Riemann Hypothesis, q has size O

(
(log p)2).

• PO can be computed in Õ(disc(O)) = Õ(q) = Õ
(
(log p)2) time, as we have already

pointed out in Sect. 4.1.1.
• a root of PO in Fp can be found, as described for example in [60, §14.5], in probabilistic

time

Õ
(
deg(PO)(log p)2

)
,
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Algorithm 2: Bröker’s algorithm
Input: A prime p ≥ 5.
Output: A supersingular j-invariant j ∈ Fp .
Set q = 3;

while
(−q

p

)
= 1 do

Assign q to the next prime equivalent to 3 modulo 4;
end
Compute the Hilbert class polynomial PO relative to the quadratic order O of discriminant −q;
Find a root α ∈ Fp of PO modulo p;
Set j = α.

that is Õ
(
(log p)3

)
because deg(PO) = h(O) = Õ(

√
q). The latter equality is a classical

result from [52], where h(O) denotes the class number of the order O).

4.2 Extending Bröker’s algorithm

The output distribution of Bröker’s algorithm is far from being uniform. In fact, for any p, the
output belongs to a pre-determined subset of all possible supersingular j-invariants over Fp2 ,

i.e. the roots of PO in Fp , of which there are Õ(
√
q). In order to construct an SRS algorithm,

we would need to expand this set of possible outputs: it can be done, mathematically, by
applying the general strategy summarized at the beginning of Sect. 4.1.2, but it comes—as
we will now see following [41]—with the price of a major computational tradeoff.

4.2.1 Listing imaginary quadratic orders

Imaginary quadratic orders can be listed according to their discriminants:

Theorem 4.12 Write every integer as f 2D, where D is square-free. There is a bijection

{ Imaginary quadratic orders } ↔ Z<0

O ⊆ Q(
√
D) �→

{
discO if D ≡ 1 mod 4,
discO

4 if D ≡ 2, 3 mod 4

Order of conductor f in Q(
√
D) ← � f 2D.

In particular, if we denote by D the set

D = {discO | O imaginary quadratic order },
we have

D = { f 2d | f , d ∈ Z, d < 0, d square-free and either d ≡ 1mod 4or f is even
}
. (10)

Proof Werecall from [17, §5.B] that every imaginary quadratic field canbewritten asQ(
√
D)

with D negative square-free integer, and its discriminant is

d
Q(
√
D)
=
{
D if D ≡ 1 mod 4,

4D if D ≡ 2, 3 mod 4.
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Let OD be the ring of integers of Q(
√
D). Any positive integer f yields a unique order

O = Z + f OD of conductor f , and every imaginary quadratic order can be constructed in
this way [17, Lemma 7.2].

Finally, the discriminant of an order of conductor f in Q(
√
D) is f 2d

Q(
√
D)

(see [17, p.
134]). Therefore, the maps defined above are one inverse to the other. 	


4.2.2 Increasing the number of outputs

The general strategy outlined in Sect. 4.1.2 consists in choosing a random imaginary quadratic
order O whose discriminant is not a square modulo p, and finding a root of PO modulo p.
Algorithm 3, which we label ‘Extended Bröker’s algorithm’, exactly follows this strategy,
setting a lower bound −4M for discO.

Algorithm 3: Extended Bröker’s algorithm
Input: A prime p ≥ 5 and a positive integer M .
Output: A supersingular j-invariant j ∈ Fp2 .

Choose a random negative integer n ∈ D ∩ [−4M,−3], with D as in (10);

Write n = f 2d with d square-free;

while
(
d
p

)
= 1 do

Choose a new n;
end
Let O be the imaginary quadratic order of discriminant f 2d;
Compute the Hilbert class polynomial PO;
Compute any root α ∈ Fp2 of PO modulo p;
Set j = α.

We stress that M should be large enough so that at least one quadratic discriminant
n ∈ [−4M,−3] is not a quadratic residue modulo p (otherwise the algorithm would run
endlessly). Under the Generalized RiemannHypothesis, it is enough to setM = Õ

(
(log p)2

)

[42].
The analysis of Algorithm 2 can be straightforwardly adapted to show that the expected

running time of Algorithm 3 is Õ
(√

M · (log p)2
)
:

• |n| is at most 4M .
• PO can be computed in Õ(disc(O)) = Õ(M) time.
• a root of PO in Fp2 can be found in probabilistic time

Õ
(
deg(PO)(log p)2

) = Õ
(√

M · (log p)2
)
.

In the light of Theorem 4.1 and since any supersingular elliptic curve is a CM curve,
Algorithm 3 can generate any supersingular j-invariant in Fp2 , provided that M is large
enough. Therefore, it is natural to ask which is the minimum value of M for which this
holds. A first, rough estimate immediately suggests that M must be quite big (a more precise
estimate can be found in [41, Prop.A.5]).

Proposition 4.13 Let N be the number of possible outputs of Algorithm 3. Then N =
Õ(M3/2).
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Proof Let O be any quadratic order whose discriminant lies in the range [−4M,−3]. We
have already observed that the class number h(O), which is equal to the number of distinct
roots of PO modulo p, is Õ(M1/2). If we denote by h(n) the class number of the quadratic
order of discriminant n, then

N =
∑

n∈D−4M≤n

h(n) ≤ 4M · Õ(M1/2) = Õ(M3/2), (11)

where D is defined as in (10). 	

For N to be (close to) the total number of supersingular j-invariants over Fp2 , which is

about p/12 (see Corollary 5.4 and [61, Cor. 4.40]), the previous proposition rules that the
value of M must be Õ(p2/3). In that case, the output distribution of Algorithm 3 is close to
uniform over the set of all supersingular j-invariants over Fp2 , but the running time of the

algorithm is exponential—namely, it is Õ(p1/3).

4.2.3 Endomorphisms of small degree

For values of M that make Algorithm 3 efficient, the output supersingular elliptic curves are
not suitable for cryptographic applications, aswe formally prove in the following proposition.
Informally, the reason is related to the location of these curves within G�(Fp). Specifically,
each output curve is associated with some (small) discriminant d = d

Q(
√
D)
, where Q(

√
D)

is the field in which the smallest non-scalar endomorphism of the curve embeds. It is shown
in [41, Thm. 1.3] that curves associated with the same d are very close to each other in
G�(Fp)—forming a sort of cluster—while curves associated with distinct discriminants are
relatively far apart, though connected by efficiently computable isogenies. Therefore, if M
is chosen such that Algorithm 3 is efficient, output curves distribute uniformly over a subset
of all possible clusters.

Proposition 4.14 If E is an output of Algorithm 3 (on input M polynomial in log p), then
End(E) can be computed efficiently.

Proof The statement is remarked in [41, p. 1], but herewe provide amore explicit explanation.
Following [41], we say that a curve is M-small if it has a non-scalar endomorphism of degree
at most M . Let O be the quadratic order selected at the end of the while loop in Algorithm 3,
and E be an elliptic curve over Fp2 whose j-invariant is the output of the algorithm.

A copy of O is embedded in End(E). To prove this, we recall from Sect. 4.1.1 that j(E)

is the reduction modulo p of some complex CM j-invariant, say j̃ , whose endomorphism
ring is isomorphic to O. Let Ẽ be a complex CM curve with j-invariant j̃ , and suppose that
its reduction is E . The reduction map End(Ẽ) → End(E) is a degree-preserving injective
ring homomorphism [54, Prop. 4.4]. Therefore, O is embedded in End(E).

In particular, E is M-small [41, Prop. 2.4], i.e. End(E) contains a non-scalar endomor-
phism of degree |discO| ≤ M , which can be found applying Vélu’s formulae to every
subgroup of E having order |discO|. This can be done efficiently, since we are assuming that
M is polynomial log p.

In fact, the whole structure of End(E) can be computed as follows:

1) Depending on p, consider a ‘special’ order as in [30, Prop. 1]. By [30, Prop. 3], one can
compute a j-invariant j0 whose endomorphism ring is isomorphic to such order. Let
E0 be a curve of j-invariant j0. By construction, assuming the Generalized Riemann
Hypothesis, E0 is O(log2 p)-small.
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2) [41, §7] shows that isogenies of power-smooth degree between M-small curves can be
computed in polynomial time in log p. Thus, since End(E0) and a power-smooth isogeny
E0 → E are known, End(E) can be retrieved by Theorem 3.1. 	


4.3 Bröker’s algorithm and randomwalks

We will now consider the extended Bröker’s algorithm (Algorithm 3) under the assumption
that M is polynomial in log p (so that the running time is polynomial, too).

The only known algorithm for (almost) uniformly sampling over the set of all supersin-
gular j-invariants over Fp2 [59, p. 71] is constructed according to the strategy described

in Remark 3.2. In particular, it performs a random walk in G�(Fp) (for some small prime
� �= p) starting from an output of Algorithm 3. This algorithm, though, does not solve the
cSRS problem, as we are going to show in Sect. 4.3.2.

Remark 4.15 For some special cases, Bröker’s algorithm is not strictly necessary in order
to determine a random-walk starting point. In fact, it is well known that an elliptic curve
E—over a quadratic finite field Fp2—of j-invariant 0 or 1728 is supersingular if and only if
p ≡ 2 (mod 3) or p ≡ 3 (mod 4), respectively (see Sect. 5.1).

4.3.1 Almost uniform output

Theorem 2.14 shows that, starting from a given supersingular j-invariant in Fp2 (possibly
the output of Algorithm 3), every other supersingular j-invariant in Fp2 can be reached

within log� p steps in G�(Fp) with almost uniform distribution. Thus, the combination of the
(extended) Bröker’s algorithm and non-backtracking random walks solves the SRS problem.
This strategy is employed, for example, in SQIsignHD [22], where a random walk in G�(Fp)

of prescribed length is executed in order to ensure the uniformity of the commitment curve
[22, Prop. 29].

In addition, an analogous of this approach is practically used for SQIsign2D-West [5].
There, the prover generates a random secret isogeny ϕcom : E0 → Ecom, where E0 is a
supersingular elliptic curve—over a given quadratic finite field Fp2—of known endomor-
phism ring End(E0) and such that it has smooth torsion defined over a small extension of
Fp2 . The prime p is chosen so that log2 p ≈ 2λ, where λ is the security parameter. The ran-
dom isogeny is obtained by means of an algorithm, called RandomFixedNormIdeal, which
samples left ideals of End(E0) of fixed norm N with a uniform distribution [5, Alg. 4]. The
norm N is of the form �h for some prime number � and h > 0. Here we note that � is not
a constant, but � ∈ O(

√
p). The sampled ideal is then turned into an isogeny (see [5, Alg.

3]) whose image is at statistical distance Õ(2−λ) from a uniformly random supersingular
elliptic curve if N ≥ 24λ [5, Lemma 20].

4.3.2 Non-minimal output

Unfortunately, combining the (extended) Bröker’s algorithm with random walks does not
solve the cSRS problem. This is a corollary of Proposition 4.14.

Corollary 4.16 Let A be the algorithm that performs random walks starting from an output of
Algorithm 3 (on input M polynomial in log p). Then EndRingA can be solved in polynomial
time in log p. In particular, A is not a supersingular random crypto sampler.
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Proof The argument is the same as in Remark 3.4: once End(E) and an �-isogeny E → E ′
are known, End(E ′) can be computed efficiently by Theorem 3.1. 	


4.4 Exponential-time algorithms

Here we present two alternative approaches to solve the cSRS problem, based on clas-
sic results: exhaustive search via Schoof’s algorithm and computation of Hasse invariants.
Within this section we will also explain why the computational cost of these two methods is
exponential in log p.

4.4.1 Exhaustive search

There exist efficient algorithms to check whether a given elliptic curve E over Fp2 is super-
singular or not. One of them computes the number of Fp2 -rational points of E via Schoof’s
algorithm [50, §3] and checks if it equals 1 modulo p (in the light of Theorem 2.5.d). There-
fore, it is natural to ask if an algorithm to solve the cSRS problem might be as simple as an
exhaustive search, i.e. sampling random elements in Fp2 until a supersingular j-invariant is
found.

Unfortunately, exhaustive search overFp2 is unfeasible because supersingular j-invariants
are ‘rare’, about 1 out of p elements of Fp2 is a supersingular j-invariant, as we are going to
review in Corollary 5.4.

One might wonder if the probability of finding a supersingular j-invariant increases when
the sample space is restricted to the smaller set Fp . The following estimate suggests that this
is true, even though the probability of success is still negligible:

Theorem 4.17 There are O(
√
p log p) supersingular j-invariants over Fp.

Proof See [28, pp. 2-3]. 	

Therefore, a random element in Fp is a supersingular j-invariant with probability about

log p/
√
p. This rules out exhaustive search over both Fp2 and Fp as a solution for the cSRS

problem.

4.4.2 Hasse invariant

Let Fq be a finite field of odd characteristic p. Hasse [37] defines a polynomial Aq ∈
Fq [g2, g3], such that Aq(g̃2, g̃3) = 0 if and only if the elliptic curve over Fq of equation

y2 = 4x3 − g̃2x − g̃3

is supersingular. Below, we generalize Hasse’s characterisation of supersingular elliptic
curves to other models of elliptic curves.

Consider an elliptic curve E over Fq given by an equation

E : y2 = f (x),

where f (x) is a polynomial of degree 3 or 4 as in Table 1. For any k > 0, define

Apk = coefficient of x pk−1 in f (x)(p
k−1)/2.

In particular, we call Ap the Hasse invariant of E .
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The case in which f (x) has degree 3 is considered in [53, Thm. V.4.1.a]. For use in Sect. 5,
we prove here an extension of that case to the polynomials f in Table 1.

Theorem 4.18 Consider a finite field Fq of odd characteristic p and an elliptic curve E over
Fq given by an equation

E : y2 = f (x),

where f (x) is a separable polynomial of degree 3 or 4 as in Table 1. Then E is supersingular
if and only if its Hasse invariant equals 0.

Proof Since the case deg( f ) = 3 is already covered in Silverman’s proof, we assume that E
is in Jacobi form.

First of all, we count the Fq -rational points of E . [7, §3] shows that the points of E are in
one-to-one correspondence with non-zero triplets (X : Y : Z)[1,2,1] which satisfy

Y 2 = εX4 − 2δX2Z2 + Z4, (12)

where (X : Y : Z)[1,2,1], or simply (X : Y : Z), denotes weighted projective coordinates
defined by the equivalence relation

(X : Y : Z) = (X ′ : Y ′ : Z ′) ⇐⇒ ∃ k ∈ Fp
∗
such that

⎧
⎪⎨

⎪⎩

X ′ = kX ,

Y ′ = k2Y ,

Z ′ = kZ .

(13)

The affine points of E are the image of the bijection

{(X : Y : Z)[1,2,1] | Z �= 0} → A
2(Fp)

(X : Y : 1) �→ (X , Y ),

that is, they are the solutions of the affine equation y2 = εx4− 2δx2+ 1. In particular, if we
let χ : F

∗
q → {−1, 0, 1} be the map such that

χ(z) =

⎧
⎪⎨

⎪⎩

−1 if z is not a square,

0 if z = 0,

1 if z is a non-zero square,

we have

#
(
E(Fq) ∩ A

2(Fq)
) =

∑

x∈Fq

(
1+ χ

(
f (x)

)) = q +
∑

x∈Fq
χ
(
f (x)

)
.

The ‘points at infinity’ of E , on the other hand, are triplets (X : Y : 0) satisfying (12).
Notice that X and Y must be non-zero since ε �= 0, so that the equation Y 2 = εX4 yields
two Fq -rational points if ε is a square, zero points otherwise. In conclusion,

#E(Fq) = 1+ χ(ε)+ q +
∑

x∈Fq
χ
(
f (x)

)
. (14)
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Since F
∗
q is cyclic of order q − 1, the equality

χ(z) = z
q−1
2

holds for every z ∈ Fq . In particular, (14) becomes

#E(Fq) = 1+ ε
q−1
2 + q +

∑

x∈Fq

(
f (x)

) q−1
2 .

We stress that, a priori, this is an equality in Fq . However, if we represent equivalence classes

modulo p by integers in {−(p − 1)/2, . . . , (p − 1)/2}, then ε
q−1
2 , ( f (x))

q−1
2 ∈ {−1, 0, 1}

and the above equation holds in Z.
Furthermore, one can prove the following equality [61, Lem.4.35] for every i ∈ N:

∑

x∈Fq
xi =

{
−1 if q − 1 | i,
0 if q − 1 � i .

As a consequence, since f (x) has degree 4, the only non-zero terms in
∑

x∈Fq f (x)(q−1)/2 are
(up to the sign) the coefficients of xq−1 and x2(q−1) in f (x)(q−1)/2. Namely, the coefficient
of xq−1 is Aq by definition, while the coefficient of x2(q−1) is the leading coefficient of

f (x)(q−1)/2, which is ε
q−1
2 . Then we have

#E(Fq) ≡ 1+ ε
q−1
2 − ε

q−1
2 − Aq ≡ 1− Aq mod p.

Moreover, from [53, Theorem V.2.3.1] we know that

#E(Fq) = q + 1− a,

where a is the trace of the q-th power Frobenius endomorphism. By Theorem 2.5.d we can
therefore conclude

E is supersingular ⇐⇒ a ≡ 0 mod p ⇐⇒ Aq = 0.

The implication Aq = 0 ⇐⇒ Ap = 0 follows by induction from the relation

Apr+1 = Apr A
pr
p ,

which can be proven exactly as in the cubic case (see [61, Lemma4.36]). 	

The explicit formula for the Hasse invariant of a generic elliptic curve in Legendre form is

a classical result. Seen as a polynomial in the variable λ, the Hasse invariant can be exploited
to find supersingular elliptic curves by determining its roots.

Proposition 4.19 Let y2 = x(x − 1)(x − λ) be the equation defining an elliptic curve in
Legendre form. Then

Ap = (−1)m
m∑

i=0

(
m

i

)2

λi ,

where m = (p − 1)/2.

Proof See [24, p. 201];[61, Thm.4.34];[53, Thm. V.4.1.b]. 	
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As a polynomial in the variable λ, Ap has the following coefficients (considered modulo
p)2

ci = (m!)2
(i !)2((m − i)!)2

for i = 0, . . . ,m.

It is easy to see that they can be computed recursively, starting from c0 = 1, via the following
formula:

ci+1 = ci · (m − i)2

(i + 1)2
.

In particular, since no coefficient is zero, Ap is far from being sparse and therefore very
impractical to store. In terms of computational complexity, computing the zeroes of Ap

appears to be worse than an exhaustive search of supersingular j-invariants over Fp2

(described in Sect. 4.4.1). We will say more on this subject in Sect. 5.

5 Hasse invariant of other models of elliptic curves

It is natural to wonder whether the Hasse invariant for a generic elliptic curve in a model
other than the Legendre one can lead to a sparser polynomial for which computing roots is
efficient.

In this section, the Hasse invariant Ap (defined in Sect. 4.4.2) is explicitly computed for a
generic elliptic curve in Weierstrass, Montgomery and Jacobi form. Namely, for each model
we construct Ap as a (bivariate or univariate) polynomial whose coefficients lie in Fq , and
whose roots are coefficients of supersingular elliptic curves over (some extension of) Fq .

We make use of the same notation as in Sect. 4.4.2, i.e.

m = p − 1

2

where p ≥ 5 is a prime.

5.1 Weierstrass model

Consider the family of elliptic curves over Fq in Weierstrass form, i.e. the curves of equation
y2 = x3 + Ax + B with A, B ∈ Fq . Thus, the Hasse invariant Ap for a generic curve in this
family can be regarded as a polynomial in Fq [A, B].

Proposition 5.1 The Hasse invariant of an elliptic curve E : y2 = x3 + Ax + B, over Fq

and in Weierstrass form, is

Ap =

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

A2m−3i B2i−m . (15)

2 The factor (−1)m can be neglected, since we are interested in the zeroes of Ap .
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Proof Write

(x3 + Ax + B)m =
m∑

i=0

(
m

i

)

x3i (Ax + B)m−i

=
m∑

i=0

(
m

i

)

x3i

⎛

⎝
m−i∑

j=0

(
m − i

j

)

(Ax) j Bm−i− j

⎞

⎠ .

In each term, the degree of x equals p − 1 if and only if j = p − 1− 3i . Therefore

Ap =

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

A2m−3i B2i−m .

	


The same result can be found also in [11, Lem.8].
In order to find supersingular elliptic curves over Fp2 , we wonder which values of A, B ∈

Fp2 are roots of Ap . The cases A = 0 or B = 0 yield elliptic curves with j-invariant 0 or
1728, for which the following result holds [53, Thm. V.4.1.c];[61, Prop. 3.37, Cor. 4.40]:

E with j-invariant 0 is supersingular ⇐⇒ p ≡ 2 mod 3,

E with j-invariant 1728 is supersingular ⇐⇒ p ≡ 3 mod 4.

A and B may therefore be regarded as elements in the multiplicative group F
∗
p2
. Namely, we

can express A and B as powers of some primitive element g ∈ F
∗
p2
, say

A = gk, B = g� with k, � ∈ {0, . . . , p2 − 2}.
Thus we can rewrite Ap as follows:

Ap =

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

gk(2m−3i)g�(2i−m)

=

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

gm(2k−�)+i(2�−3k)

In order to find the coefficients A, B defining supersingular elliptic curves, it is necessary to
look for values of k, � such that the latter expression is zero. Moreover, by multiplying the
expression by the inverse of gm(2k−�), it is enough to consider

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

gi(2�−3k). (16)

Notice that (16) can be seen as a polynomial over Fp in the variable g2�−3k .
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Lemma 5.2 Let n be a positive integer and fix C ∈ Z
�(pn − 1)Z. Then

2L − 3K ≡ C mod pn − 1 (17)

has pn − 1 solutions in L and K .

Proof Observe that

• if k ≡ C mod 2, the following pairs
(

k,
3k + C

2

)

and

(

k,
3k + C

2
+ pn − 1

2

)

are distinct solutions of (17);
• if k �≡ C mod 2, there is no � ∈ Z/(pn − 1)Z such that (k, �) satisfies equation (17).

Therefore, equation (17) has

2 · p
n − 1

2
= pn − 1

solutions. 	

The zeroes of (16), seen as a polynomial over Fp in the variable g2�−3k , correspond to the

supersingular j-invariants over Fp2 as detailed in the following results.

Theorem 5.3 Let g be a primitive element of Fp2 , and fix C = 2�′ − 3k′ such that gC is a
root of

G(X) =

⌊
p−1
3

⌋

∑

i=
⌈

p−1
4

⌉

(
m

i

)(
m − i

2m − 3i

)

Xi ∈ Fp[X ]. (18)

Denote by

E ′ : y2 = x3 + A′x + B ′

the corresponding supersingular elliptic curve having

A′ = gk
′
, B ′ = g�′ .

Then the elliptic curves over Fp2 and isomorphic to E ′ are exactly the curves of the form
y2 = x3 + Ax + B where

A = gk, B = g�

with

C ≡ 2�− 3k mod p2 − 1.

Proof Let E be a curve over Fp2 and isomorphic to E ′ (over Fp). Therefore the coefficients
of E must satisfy

A = u2A′, B = u3B ′ (19)
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for some u ∈ F
∗
p2

[53, p. 45]. Notice that there are exactly p2 − 1 such curves. In terms of a

given generator g of F
∗
p2
, we have

A = gk = u2gk
′ = g2r+k′ and B = g� = u3g�′ = g3r+�′

for some r ∈ {0, . . . , p2 − 2}. Then
2�− 3k ≡ 2(3r + �′)− 3(2r + k′) ≡ 2�′ − 3k′ ≡ C mod (p2 − 1).

Thus, letting u vary in F
∗
p2
, we have p2 − 1 distinct solutions for the equation in L and K

2L − 3K ≡ C mod (p2 − 1). (20)

Lemma 5.2 ensures that there is no other solution. 	

Corollary 5.4 Let G(X) be the polynomial defined in (18). The non-zero roots of G(X) are
in bijection with the supersingular j-invariants in Fp2 \ {0, 1728}.
Proof Let g be a primitive element of Fp2 . We have already shown that every non-zero root
gC ofG(X) corresponds to some isomorphism class of supersingular elliptic curves. Namely,
if

E : y2 = x3 + gkx + g�

is a representative of this class (in particular, 2k− 3� ≡ C mod (p2− 1)), its j-invariant is

j(E) = 1728 · 4g3k

4g3k + 27g2�

= 1728 · 4
4+ 27g2�−3k

.

Therefore the correspondence

{non-zero roots of G(X)} ↔ {supersingular j-invariants in Fp2 \ {0, 1728}}
gC �→ 1728 · 4

4+ 27gC

64 · 4
j

− 4

27
← � j

(21)

is one-to-one. 	

Let

ci =
(
m

i

)(
m − i

2m − 3i

)

be the coefficients of G(X) (equation (18)), for i ∈
{⌈

p−1
4

⌉
, . . . ,

⌊
p−1
3

⌋}
. We have:

ci = m!
i !(m − i)! ·

(m − i)!
(2m − 3i)!(2i − m)!

= m!
i !(2m − 3i)!(2i − m)! .
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We can assume that G(X) is normalized with respect to c⌈ p−1
4

⌉. Therefore, starting from

c⌈ p−1
4

⌉ = 1, every other coefficient can be computed recursively via the following formula:

ci+1 = −12 · (3i + 1)(3i + 2)

(4i + 3)(4i + 5)
· ci . (22)

With the eventual exception of c⌊ p−1
3

⌋, p does not appear within the factors of any ci , and

hence every coefficient ofG(X) is different from0. This implies that obtainingG(X) requires
exponential storage in log p.

5.2 Montgomerymodel

Consider the family of elliptic curves overFq inMontgomery form, i.e. the curves of equation
y2 = (x3 + Ax2 + x)/B with A, B ∈ Fq , B �= 0 and A2 �= 4. Thus, the Hasse invariant Ap

of a generic curve in this family can be regarded as a polynomial in Fq [A, B].
We note that the zeroes of Ap do not depend on B, which is in accordance
with the fact that j-invariants of Montgomery curves depend only on A (see Table 1). We

can therefore assume B = 1 and compute Ap as a polynomial in the only variable A.

Proposition 5.5 The Hasse invariant of an elliptic curve E : y2 = x3 + Ax2 + x, over Fq

and in Montgomery form, is

Ap =
�m

2 �∑
i=0

(
m

i

)(
m − i

m − 2i

)

︸ ︷︷ ︸
ci

Am−2i ,

and its coefficients can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci · (m − 2i)(m − 2i − 1)

(i + 1)2
.

Proof We start by observing that

(x3 + Ax2 + x)m = xm(x2 + Ax + 1)m

= xm ·
m∑

i=0

(
m

i

)

x2i (Ax + 1)m−i

= xm ·
m∑

i=0

(
m

i

)

x2i

⎛

⎝
m−i∑

j=0

(
m − i

j

)

A j x j

⎞

⎠ .

In each term, the degree of x equals p − 1 if and only if m + 2i + j = 2m, or, equivalently,
j = m − 2i . Therefore,

Ap =
�m

2 �∑
i=0

(
m

i

)(
m − i

m − 2i

)

︸ ︷︷ ︸
ci

Am−2i .
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Notice that c0 = 1 is the coefficient of the leading term; the other coefficients can be
computed recursively via the formula

ci+1 = ci · (m − 2i)(m − 2i − 1)

(i + 1)2
.

	

Remark 5.6 The degrees of the terms in Ap have all the same parity. In particular, if A is a
zero of Ap , also−A is. This is, again, in accordance with the fact that j-invariants (and then
isomorphism classes) depend only on A2.

5.2.1 Splitting field of the Hasse invariant

Since every supersingular j-invariant lies in Fp2 by Theorem 2.5.b, the definition of the
j-invariant for Montgomery curves (see Table 1) suggests that the roots of Ap lie in Fp12 .
A stronger result actually holds, as we are going to show in Proposition 5.10, whose proof
requires a few lemmata. The first one is just a special case of [61, Ex.4.10].

Lemma 5.7 Let E : y2 = x3 + Ax + B be an elliptic curve in Weierstrass form over Fp2

with trace a. Then one of its twists has trace −a.
Proof Let γ be a generator for F

∗
p4
. Define

u = γ
p2+1
2

and consider the curve

E ′ : y2 = x3 + u4Ax + u6B.

From [53, p. 45] we know that

ϕ : E → E ′

(x, y) �→ (u2x, u3y).

is an isomorphism defined over Fp4 but not over Fp2 ; in other words, E
′ is a quadratic twist

of E .
Let a′ be the trace of E ′. By [53, Rem.V.2.6] and [38, Prop. 13.1.10] we have

#E(Fp2) = 1+ p2 − a, #E ′(Fp2) = 1+ p2 − a′, #E(Fp2)+ #E ′(Fp2) = 2p2 + 2.

The conclusion follows immediately. 	

Lemma 5.8 Let E : y2 = x3 + A′x + B ′ be a supersingular elliptic curve over Fp2 in
Weierstrass form with j-invariant different from 0 or 1728, and denote by E ′ its quadratic
twist. Then either E[4] ⊆ E(Fp2) or E

′[4] ⊆ E ′(Fp2).

Proof It is well-known [53, Ex.3.32, Ex. 5.10] that the number of Fp2 -rational points of a
supersingular elliptic curve E over Fp2 is p2 + 1− a, where

a ∈ {0,±p,±2p}.
Furthermore, a ∈ {0,±p} if and only if j(E) ∈ {0, 1728} [1, pp. 5-6]. We can therefore
assume that E has trace 2p, while its quadratic twist E ′ has trace −2p by Lemma 5.7.
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From [51, Lemma 4.8.ii] we know the structure of the Fp2 -rational groups of the two
curves:

E(Fp2)
∼= Z

�(p − 1)Z× Z
�(p − 1)Z and E ′(Fp2)

∼= Z
�(p + 1)Z× Z

�(p + 1)Z.

In particular,

• if p ≡ 1 mod 4, then Z/(p − 1)Z has a subgroup of order 4 and such subgroup must
be Z/4Z. Otherwise, E would have more than 4 points of 2-torsion, contradicting [53,
Cor. III.6.4]. Then Z/4Z× Z/4Z is a subgroup of E(Fp2) (up to isomorphism). Equiv-
alently, again from [53, Cor. III.6.4], E[4] ⊆ E(Fp2).

• Similarly, if p ≡ 3 mod 4, one can prove E ′[4] ⊆ E ′(Fp2).

	


Lemma 5.9 Let E ′ : y2 = x3+ A′x+ B ′ be an elliptic curve over Fq . Then E ′ is isomorphic
to a Montgomery curve E over Fq if and only if

(a) E ′ has an Fq -rational 2-torsion point (α, 0),
(b) 3α2 + A′ = s2 for some s ∈ F

∗
q ,

and the coefficients of E are

{
A = 3αs−1,
B = s−1.

Proof See [46, Prop. 4.1, 7.5]. 	


Proposition 5.10 The Hasse invariant Ap for a generic elliptic curve overFq inMontgomery
form splits completely over Fp2 . Equivalently, the coefficient A of any supersingular Mont-
gomery curve lies in Fp2 .

Proof First of all, notice that the j-invariant

j = 256(A2 − 3)3

A2 − 4

of an elliptic curve in Montgomery form E : By2 = x3 + Ax2 + x over Fp2 equals 0 if and
only if A is a square root of 3. Similarly, one can check that j(E) = 1728 if and only if either
A = 0 or A is a square root of 2−1 · 9. In both cases, A lies in Fp2 .

Let E be an elliptic curve representative of supersingular j-invariant j ′ ∈ Fp2 \{0, 1728}.
By Proposition 2.1, E can be written in Weierstrass form over Fp2 :

E : y2 = x3 + A′x + B ′.

ByLemma5.8we can also assume that the 4-torsion points of E areFp2 -rational. In particular,
it has the 2-torsion points (αi , 0) for i ∈ {1, 2, 3}, withαi ∈ F

∗
p2
(they are non-zero, otherwise

B ′ = 0 and j = 1728 which contradicts our assumption). Notice that B ′ can be written as

B ′ = −α3
i − A′αi (23)
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for every i ∈ {1, 2, 3}. Such relation can be used to factor the fourth division polynomial ψ4

(see Sect. 6.1) as follows:

ψ4/2y = 2x6 + 10A′x4 + 40B ′x3 − 10(A′)2x2 − 8A′B ′x − 2(A′)3 − 16(B ′)2

= 2x6 − 40x3α3
i − 16α6

i + 10A′x4 − 40A′x3αi+
+ 8A′xα3

i − 32A′α4
i − 10(A′)2x2 + 8(A′)2xαi − 16(A′)2α2

i − 2(A′)3

= − 2(−x2 + 2xαi + 2α2
i + A′)(x4 + 2x3αi + 6x2α2

i − 4xα3
i +

+ 4α4
i + 6A′x2 − 6A′xαi + 6A′α2

i + (A′)2).

(24)

Since ψ4 vanishes exactly on the x-coordinates of the 4-torsion points (see Proposition 6.5),
for each i there exist two distinct values xi and x ′i in Fp2 such that the first factor of (24) is
zero, i.e.

−x2 + 2xαi + 2α2
i + A′,

or, equivalently, satisfy

A′ + 3α2
i = (x − αi )

2. (25)

Notice that xi − αi is non-zero because xi �= x ′i .
The conditions (a) and (b) from Proposition 5.9 are therefore verified, and E is isomorphic

to elliptic curves, over Fp2 and in Montgomery form, with coefficients

{
Ai = 3αi (xi − αi )

−1

Bi = (xi − αi )
−1

for every i ∈ {1, 2, 3}.
We claim that A2

i �= A2
j for i �= j . Suppose, by contradiction, A2

i = A2
j for some i �= j .

By (25) we can write

9α2
i (3α

2
i + A′)−1 = 9α2

j (3α
2
j + A′)−1

α2
i (3α

2
j + A′) = α2

j (3α
2
i + A′)

α2
i = α2

j ,

but this cannot occur. In fact, αi �= α j by construction, and the assumption B ′ �= 0 together
with (23) implies αi �= −α j .

To summarize, starting from a suitable supersingular elliptic curve in Weierstrass form
with j-invariant j ′ ∈ Fp2 \ {0, 1728}, we have found three distinct solutions A2

1, A
2
2, A

2
3 for

the equation

j ′ = 256(X − 3)3

X − 4
.

Since there could not be any other solution, the coefficient of x2 of an elliptic curve in
Montgomery form with j-invariant j ′ must belong to the set {±Ai | i = 1, 2, 3}, which is
contained in Fp2 . 	


123



On random sampling of supersingular elliptic curves

5.3 Jacobi

Consider the family of elliptic curves over Fq in Jacobi form, i.e. the curves of equation
y2 = εx4 − 2δx2 + 1 with ε, δ ∈ Fq , ε �= 0 and δ2 �= ε. Thus, the Hasse invariant Ap of a
generic curve in the family can be regarded as a polynomial in Fq [ε, δ].

Proposition 5.11 The Hasse invariant of an elliptic curve E : y2 = εx4− 2δx2+ 1, over Fq

and in Jacobi form, is

Ap =
�m

2 �∑
i=0

(
m

i

)(
m − i

m − 2i

)

︸ ︷︷ ︸
ci

εi (−2δ)m−2i

and its coefficients ci can be computed recursively starting from c0 = 1 via the formula

ci+1 = ci · (m − 2i)(m − 2i − 1)

(i + 1)2
.

Proof Similar to the proof of Proposition 5.5. In particular, notice that the coefficients are
the same. 	


5.4 Efficiency analysis

We have found explicit formulas to construct the Hasse invariant Ap for a generic elliptic
curve in different models, in the form of a polynomial. None of them allows for an efficient
construction of Ap . From a computational point of view, even the storage of Ap becomes
problematic when p is of cryptographic size.

However, the combination of (extended) Bröker’s algorithm and random walks, as
described in Sect. 4.3, provides an efficient method to find arbitrarily many roots of Ap .
We cannot rule out that this fact, combined with the recursion formulas for the coefficients of
Ap , might lead to an efficient algorithm to solve the cSRS problem.We leave the investigation
for future work.

6 Torsion points

In this section we provide two distinct characterizations of supersingular elliptic curves over
finite fields in terms of torsion points.

6.1 Division polynomials

Following [53, ex. 3.7];[61, §3.2], we introduce division polynomials, which constitute the
main tool for the two characterisations. Let

E : y2 = x3 + Ax + B
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be an elliptic curve over a perfect field K with char K /∈ {2, 3}. For m = −1, 0, 1, 2, . . . we
define the division polynomials ψm ∈ K [x, y], relative to E , as

ψ−1 = −1,
ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx − A2,

ψ4 = 2y(2x6 + 10Ax4 + 40Bx3 − 10A2x2 − 8ABx − 2A3 − 16B2),

and then recursively by means of the following relations:

ψ2n+1 = ψn+2ψ3
n − ψn−1ψ3

n+1 for n ≥ 2, (26)

ψ2n =
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
for n ≥ 3. (27)

For ease of notation, for m ≥ 1 we also define

φm = xψ2
m − ψm+1ψm−1,

2ψ2ωm = ψ2
m−1ψm+2 − ψm−2ψ2

m+1

for m ≥ 1.
We now review somewell-known results about division polynomials, which can be proven

by induction (see [61, Lem.3.3, 3.5]).

Proposition 6.1 For each m > 0, the polynomial ψ2 is an even-degree factor of
{

ψ2ψm if m is even,

ψm if m is odd.

In particular, ψm is a polynomial for each m.

Remark 6.2 If m is odd, ψm , φm and ψ−1
2 ωm are polynomials in K [x, ψ2

2 ]; the same holds,
if m is even, for ψ−1

2 ψm , φm and ωm . As a consequence, when evaluating these polynomials
at points of E , ψ2

2 can be substituted with 4(x3 + Ax + B), so that the variable y no longer
appears. Therefore, by a slight abuse of notation, we will often identify these polynomials
with their representatives in the quotient ring

K [x, ψ2
2 ]�

(y2 − x3 − Ax − B)
∼= K [x].

Proposition 6.3 Consider φm and ψ2
m as elements in K [x]. Then

φm(x) = xm
2 + terms of lower degree

ψ2
m(x) = m2xm

2−1 + terms of lower degree.

Theorem 6.4 (Computation of [m]P via division polynomials) Consider an elliptic curve
E : y2 = x3 + Ax + B over K , a point P = (x0, y0) ∈ E(K ) \ {O} and a positive integer
m such that [m]P �= O. Then, the point [m]P can be calculated as follows:

[m]P =
(

φm

ψ2
m

,
ωm

ψ3
m

)

(28)
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or, equivalently,

[m]P =
(

x0 − ψm−1ψm+1
ψ2
m

,
ψm+2ψ2

m−1 − ψm−2ψ2
m+1

4y0ψ3
m

)

where we denote by φm, ψm and ωm the evaluations φm(x0, y0), ψm(x0, y0) and ωm(x0, y0),
respectively.

Proof See [61, sec. 9.5]. 	

Proposition 6.5 (Characterization of E[m] via division polynomials) Let E : y2 = x3 +
Ax + B be an elliptic curve over K . Then

E[m] = {O} ∪ {(x0, y0) ∈ E(K ) | ψm(x0, y0) = 0}.
Proof See [19, Prop. 9.10]. 	


6.2 p-torsion points

Theorem 2.5 ensures that an elliptic curve E over a field of characteristic p is supersingular
if and only if E[pr ] = {O} for some r ≥ 1. As in Sect. 4.4.2 and Sect. 5, in this section we
construct a polynomial whose zeroes are exactly the pairs of coefficients A and B defining
supersingular elliptic curves in Weierstrass form. In this case, though, the coefficients of the
considered polynomial lie in a much larger set, namely Fp[X ].

Since any non-constant polynomial over Fp has its zeroes in Fp , Proposition 6.5 allows
us to rephrase the characterization given in Theorem 2.5.(a1) as follows:

Proposition 6.6 Let E : y2 = x3+Ax+B be an elliptic curve over a fieldFq of characteristic
p. Then E is supersingular if and only if ψpr (x) is constant for some r ≥ 1.

A refinement of the above result, which we state below in a more general fashion, is given
in [29, Lem.4].

Proposition 6.7 Let E : y2 = x3 + Ax + B be a elliptic curve over Fp2 . Then E is super-
singular if and only if the polynomial

ψpr with r =

⎧
⎪⎨

⎪⎩

1 if tr(E) = ±2p
2 if tr(E) = 0

3 if tr(E) = ±p

is either 1 or −1 in Fp[x].
Proof Suppose that E is supersingular (the other implication is a trivial consequence of
Proposition 6.6). Doliskani’s proof covers the case tr(E) = ±2p, but it can be easily extended
to the other cases, as follows. The characteristic polynomial of the Frobenius endomorphism
ϕp2 of a supersingular elliptic curve E over Fp2 is

⎧
⎪⎨

⎪⎩

X2 ∓ 2pX + p2 if tr(E) = ±2p
X2 + p2 if tr(E) = 0

X2 ∓ pX + p2 if tr(E) = ±p.
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As a consequence, a suitable r -th power of ϕp2 equals ±[pr ], namely
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕp2 = ±[p] if tr(E) = ±2p

ϕ2
p2
= −[p2] if tr(E) = 0

ϕ3
p2
= ∓[p3] if tr(E) = ±p.

Suppose tr(E) = −p. From the latter equations we can write

[p3](x, y) =
(
x p6 , y p

6
)

(29)

for every (x, y) ∈ E , while from equation (28) and Proposition 6.3 we obtain

[p3](x, y) =
(

φp3

ψ2
p3

,
ωp3

ψ3
p3

)

=
(

x p6 + terms of lower degree

p6x p6−1 + terms of lower degree
,
ωp3

ψ3
p3

)

. (30)

Comparing the first coordinates on the right-hand sides of (29) and (30) yields ψ2
p3
= 1. The

other cases can be proven similarly. 	

Proposition 6.7 suggests the following strategy to sample supersingular elliptic curves:

• consider ψp for a generic elliptic curve over a field of characteristic p, i.e. ψp ∈
Fp[A, B, x];

• find pairs (A, B) such that ψ2
p − 1 is zero. Such pairs are coefficients of supersingular

elliptic curves.

Some further assumptions can be made in order to diminish the number of monomials inψp:

• restrict the root finding to A, B ∈ Fp;
• assume B = −1− A.

Equivalently, we consider ψ2
p − 1 as an element of the quotient ring Fp[A, B, x]/J , where

J = (A+ B+1, Ap−1−1). The second assumption is without loss of generality since every
Fp2 -isomorphism class of supersingular elliptic curves over Fp contains at least one curve
such that B = −1− A.

Proposition 6.8 For each supersingular j-invariant j ∈ Fp there is at least one elliptic curve
in Weierstrass form that has j-invariant j , is defined over Fp and passes through (1, 0).

Proof If j = 1728, the elliptic curve of equation y2 = x3 − x has j-invariant 1728 and
passes through (1, 0). Assume j �= 1728 and let E : y2 = x3 + A′x + B ′ be an elliptic
curve, over Fp and in Weierstrass form, of j-invariant j (it is by Proposition 2.1.b that we
can assume E is defined over Fp). Combining Theorem 2.5.d and Hasse’s inequality

|p + 1− #E(Fp)| ≤ 2
√
p

(see [61, Thm.4.2]), we know that any supersingular curve over Fp has exactly p+1 rational
points; in particular,

#E(Fp) is even. Therefore, as O is one of the rational points, and every rational point
(x, y) yields another point (x,−y), every supersingular curve over Fp must intersect the
horizontal axis an odd number of times. Let (x0, 0) be any point in the intersection of the
horizontal axis with E .
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Since j �= 1728, x0 must be non-zero. Let u ∈ F
∗
p2

be a square root of x0−1. Then [53, p.
45] the curve defined by the coefficients

A = u4A′, B = u6B ′

is isomorphic over Fp2 to E and passes through (1, 0) because we have

1+ A + B = 1+ A′

x02
+ B ′

x03

= 1

x03
(x0

3 + A′x0 + B ′)

= 0.

	

As Wouter Castryck pointed out to us, since each coefficient of ψ2

p − 1 (viewed as a
polynomial in x) must be zero for a pair (A, B) to yield a supersingular elliptic curve, every
such coefficient is in fact a multiple of the Hasse invariant computed in Sect. 5.1. Even
more was proven in [23]: the coefficient of x p(p−1)/2 in ψp is equal to the Hasse invariant.
Therefore, there is no hope that working with ψ2

p − 1 can be more efficient than considering
the Hasse invariant from Sect. 5.

6.3 Small-torsion points

In this section, we sketch a new method for sampling supersingular elliptic curves over Fp ,
under the assumption that p + 1 has ‘many’ small factors.

Proposition 6.9 Let p =∏r
i=1 �

ei
i − 1 be a prime such that

r∏

i=1
�i > 2

√
p, (31)

and denote by r ′ the minimum integer in {1, . . . , r} satisfying (31). An elliptic curve E : y2 =
x3 + Ax + B, over Fp and in Weierstrass form, is supersingular if and only if the division
polynomial ψ�i (x, y) relative to E has a root (xi , yi ) ∈ E(Fp) for each i ∈ {1, . . . , r ′}.
Proof Suppose that E is supersingular.

As observed in the proof of Proposition 6.8,
the subgroup E(Fp) has p + 1 elements. In particular, for any prime �i dividing p + 1,

Cauchy’s theoremensures that there exists a subgroup of E(Fp) having order �i . Equivalently,
there exists an Fp-rational �i -torsion point (xi , yi ) of E . Such point is a zero for ψ�i by
Proposition 6.5.

For the converse, the bound (31) is needed. Suppose that there exists an Fp-rational �i -
torsion point of E , and then �i divides #E(Fp), for each i ∈ {1, . . . , r ′}.

Equivalently, by the Chinese Remainder Theorem,

#E(Fp) ≡ 0 mod
r∏

i=1
�i . (32)

Moreover, #E(Fp) must satisfy Hasse’s inequality

|p + 1− #E(Fp)| ≤ 2
√
p. (33)
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Since
∏r ′

i=1 �i > 2
√
p, it is easy to check that the only way for (32) and (33) to both hold is

for #E(Fp) = p + 1. Therefore, E is supersingular by Theorem 2.5.d. 	

Remark 6.10 Some of the primes used in cryptographic applications do satisfy the hypotheses
of Proposition 6.9. For example, the prime p in CSIDH-512 [12, §8.1] is p = 4 · 587 ·
�1 · · · �73 − 1 where �1, . . . , �73 are the first 73 odd primes.

The characterisation of supersingular elliptic curves given by Proposition 6.9 provides a
method to sample supersingular elliptic curves. In particular, given a prime p =∏r

i=1 �
ei
i −1

such that (31) is satisfied for some (minimal) r ′ ≤ r , then any solution of the system of
equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ�i (A, B, xi , yi ) = 0 for each i ∈ {1, . . . r ′}
y2i − x3i − Axi − B = 0 for each i ∈ {1, . . . r ′}
x p
i − xi = 0 for each i ∈ {1, . . . r ′}
y pi − yi = 0 for each i ∈ {1, . . . r ′}
Ap − A = 0

B p − B = 0

(34)

yields the coefficients A, B of a supersingular elliptic curve E : y2 = x3+ Ax + B over Fp ,
together with the coordinates of Fp-rational �i -torsion points (xi , yi ) for i ∈ {1, . . . , r ′}.

6.3.1 Efficiency analysis

The polynomials involved in system (34) have either low degree or sparse coefficients. A
naive use ofGroebner bases or other polynomial-system solvers, though, is far from enough to
turn this method into an efficient algorithm to solve the cSRS problem, due to the exponential
size of the set of solutions of system (34). We leave any improvement of this technique for
future work.

7 Conclusions

We have provided a formalisation for the SRS and cSRS problems, relative to randomly
sampling supersingular elliptic curves. We have surveyed a solution to the first and known
(non-resolving) approaches to the latter, for which we have also presented some new
approaches. A solution for the cSRS problem, though, is yet to be found. We hope that
our formalisation of the problem, along with the analysis of the drawbacks in each of the
discussed approaches, will be a useful starting point for future research on the subject.
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