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Abstract
With the proliferation of social media, more personal information is being shared online than ever before, raising significant 
privacy concerns. This paper presents a novel approach to identify and mitigate privacy risks by generating digital twins 
from social media data. We propose a comprehensive framework that includes data collection, processing, and analysis, 
with special attention to data standardization, pseudonymization, and the use of synthetic data to ensure privacy compliance. 
We apply and evaluate state-of-the-art techniques such as Large Language Models, Generative Adversarial Networks, and 
Vision-Language Models to generate synthetic but realistic social media data that support the construction of accurate and 
representative digital twins while ensuring strict privacy compliance. Our approach demonstrates the potential for digital 
twins to help identify and mitigate privacy risks associated with social media use. We discuss the value and feasibility of 
this concept and suggest that further refinement of the techniques and conditions involved is needed.

Keywords  Digital twin · Privacy threat · Synthetic data · Social media profiling

Introduction

The Web is the place where people interact, discuss, and 
share various types of information. With many opportuni-
ties, but also risks, this exchange of information on the Web 
is creating a vast, freely accessible data source for a variety 
of data-driven applications. But to what extent can personal 
information from social media be accessed and aggregated? 
Ultimately, how likely is it that personal information, when 
aggregated, will pose a privacy risk to individuals, groups, 

or locations? Through almost every activity on the Web, 
users leave active and passive footprints [1]. These include 
obvious information such as images, text, and video that 
users knowingly upload. They also include information that 
is transmitted without user intervention, such as endpoint 
IP addresses.

Our work focuses on examining how individual pieces of 
information contribute to privacy threats over time, rather 
than just the immediate risk. The evolving potential threat is 
assessed by considering the likelihood that an individual will 
face such risks as more personal information is collected. It 
is assumed that a certain amount or combination of infor-
mation is necessary to pose a significant cyber threat to an 
individual [2]. To address this, we explore four key research 
questions: first, determining the optimal starting point in the 
Social Web for efficiently identifying all relevant pieces of 
information before assembling them into a digital twin (DT); 
second, identifying the pseudonymization steps required 
to comply with privacy regulations; third, evaluating the 
extent to which synthetic data can be used as a substitute or 
complement for (re)training or fine-tuning AI models; and 
finally, understanding how to construct, model, instantiate, 
and enrich a DT from online social networks (OSNs).

We describe our exploratory data engineering approach 
to processing and aggregating social media data, analyze the 
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patterns in which personal data is most commonly shared, 
and finally show how to instantiate a DT if desired. We have 
no interest in collecting personal data. We are even testing 
synthetic data to train AI models. In other words, we are 
interested in learning about the types of information that are 
explicitly or implicitly shared on each social media platform, 
and how easy or difficult it is to link data across platforms 
with some degree of confidence. In order to analyze large 
amounts of data, to make the disclosure of personal data on 
the Web visible, and to hold a mirror up to users, a number 
of data engineering challenges in both natural language pro-
cessing (NLP) and data and knowledge engineering must be 
overcome.

Background

In the following, we provide some background informa-
tion on the use of DTs for mirroring data disclosure and the 
trade-off with synthetic data.

Mirroring Disclosed Data with Digital Twins

The concept of DTs has evolved into a versatile tool used in 
various fields of research and practice. Originally rooted in 
mechanical engineering, medicine, and computer science, 
the term has expanded in scope with advances in artificial 
intelligence (AI) [2–4]. At their core, DTs can be defined as 
virtual representations of physical entities such as objects, 
processes, people, or human-related characteristics [3].

There are three levels of integration for DTs: Digital 
Model, Digital Shadow, and Digital Twin [3]. A Digital 
Model requires manual updates to reflect changes in the 
physical world and serves as a basic representation of a 
physical object or system in the virtual world. With a Digi-
tal Shadow, sensors transmit data to the virtual model, pro-
viding an automatic flow of information from the physical 
world to the virtual world. A complete DT ensures that the 
digital representation accurately reflects the current state of 
its physical counterpart by enabling bi-directional commu-
nication between the virtual and physical environments [3].

In the context of our work [2], DTs refer to digital rep-
resentations of real individuals based on information avail-
able on the Web (Human Digital Twin [4, 5]). DTs focus 
on characteristics that pose a potential threat to individu-
als, although they may not capture the full complexity of 
an individual. DTs make it possible to measure potential 
risks by modeling an individual’s vulnerability. The use of 
semantic web standards such as Schema.org [6] and FOAF 
(Friend of a Friend, [7]) allows DTs to be connected and 
extended. However, there are challenges. These include the 
large number of data sources, data quality, and conflict-
ing information. Research shows that users unknowingly 

disclose a significant amount of information on the Web, 
highlighting the potential risks of aggregating and analyz-
ing this data [8]. In summary, DTs are a powerful tool for 
modeling and understanding the vulnerabilities of individu-
als based on data disclosure. By understanding the impact 
of shared information on the Web, individuals can be better 
protected from potential threats and privacy risks.

Making Trade‑Offs with Synthetic Data

Yet researchers often face barriers to using real data [9]. In 
some cases, the data is closed source, incomplete, unreliable, 
biased, or simply unavailable. There are also cases, such 
as human face datasets [10], where data cannot be shared 
or exchanged due to privacy concerns or potential security 
risks. This applies to almost all datasets we work on. But 
there are also datasets, e.g. photo databases with privacy 
properties [11, 12], that are open to the public. In most cases 
this is not the case. This is where synthetic data can play a 
valuable role in addressing these challenges.

Synthetic data is data that has been generated using a 
purpose-built mathematical model or algorithm with the aim 
of solving a (set of) data science problem(s). [9]. In this way, 
researchers can use synthetic data for various applications 
without compromising the privacy or security of sensitive 
information. It has a wide range of potential applications in 
areas such as privacy, fairness, data augmentation, accelerat-
ing development cycles, and democratizing access to data 
[9].

From a privacy perspective, synthetic data is useful for 
training machine learning models. In addition to protecting 
the privacy of individuals, this allows organizations to com-
ply with privacy regulations such as GDPR1 and HIPAA2 
[9]. Similarly, when dealing with online threats, synthetic 
data can be used to simulate attacks like spearfishing and 
test the effectiveness of security measures without expos-
ing real data. As a result, organizations can identify vulner-
abilities in their systems and develop strategies to mitigate 
potential threats. By using synthetic data, organizations can 
stay ahead of threats and improve their overall security posi-
tion [13].

There are limitations to the use of synthetic data [9] 
despite its value in research. One major concern is that syn-
thetic data may not capture the complexity and nuance of 
real data [10]. Synthetic data can mimic the statistical prop-
erties of real data. However, it may not accurately represent 
the diversity and variability present in real datasets. This can 
introduce bias or inaccuracy into models trained on synthetic 

1  General data protection regulation: https://​gdpr.​eu.
2  Health Insurance portability and accountability act: https://​www.​
hhs.​gov/​hipaa/.

https://gdpr.eu
https://www.hhs.gov/hipaa/
https://www.hhs.gov/hipaa/
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data, potentially compromising analytical effectiveness. 
Despite this assumption, research shows that it is possible 
to synthesize data with minimal domain gap so that trained 
models can generalize to real, in-the-wild data [10, 14].

Related Work

First, we present the state of the art in DT construction, 
before discussing pseudonymization approaches and the use 
of synthetic data in AI research.

Constructing Digital Twins

In a more futuristic view, a DT can be seen as a unique 
cybernetic representation of an individual that is created at 
birth and continuously updated throughout life, reflecting 
both genetic traits and health data [15]. This DT evolves 
synchronously with its human counterpart, capturing inter-
nal and external changes, medical treatments, and personal 
metrics, while adapting to natural growth patterns. Real-time 
data is captured and transmitted to cyberspace where the DT 
is updated, including medical exams, treatments, vaccina-
tions, and other health metrics. This includes the integration 
of sensor data from wearable technology that reports on vari-
ous physiological and emotional states. It can even include 
environmental and lifestyle factors such as diet and exercise 
habits. To ensure privacy and security, DT systems are inter-
active and support logins from individual users or author-
ized individuals using advanced authentication methods. DT 
provides health assessments and diagnostic feedback to both 
individuals and healthcare providers using a combination 
of IoT, big data analytics, and AI techniques such as neural 
networks. Finally, security within the DT system is rigor-
ous. Multi-factor authentication and secure communication 
protocols are used to ensure reliable and protected access to 
DT data. This protects the integrity and confidentiality of 
sensitive personal health information [15]. However, this 
vision goes far beyond the definition of DTs here.

Modeling techniques used for DTs are ontologies and 
knowledge graphs, both of which play a central role in sys-
tem functionality and efficiency [16]. Ontologies are frame-
works that define and categorize data within a domain, 
ensuring consistent interpretation of data across systems. 
This consistency is essential when integrating data from 
disparate sources because all data must be understood in 
the same way. Ontologies facilitate the semantic interop-
erability: The ability of different systems to communicate 
and work together seamlessly using common definitions and 
structures. They also enable the integration of disparate data 
sources, such as sensors and databases. Knowledge graphs 
extend the functionality of ontologies by allowing not only 
the definition and organization of data, but also the direct 

linking of data elements. The result is a network of data 
points that can be traversed and queried, supporting com-
plex data interactions and analysis. Although the technical 
approaches for instantiating the DT modeled by ontologies 
or knowledge graphs are of interest here, the pseudonymiza-
tion of personal data is also crucial for GDPR compliance.

Pseudonymization

Pseudonymizing is a process of replacing personally iden-
tifiable information with a pseudonym or encoded value 
[17]. Mappings between encoded values and original iden-
tifiers are stored separately [17, 18]. Several techniques 
can be used to pseudonymize data, including numbering, 
random numbers or chunks, hashing, and encryption [19, 
20]. Pseudonymization has been applied to various types 
of text using NLP methods in recent years. Recently, pseu-
donymization using large language models (LLMs) has been 
explored. For the CoNLL-2003 dataset, some researchers 
[21] experimented with different models, including spaCy, 
Flair, Seq2Seq, GPT3, and ChatGPT, which detect privacy-
sensitive entities and replace them with items of the same 
type. They report that the LLM-based system has the best 
results for preserving text integrity. Others [22] used GPT-4 
for the recognition and replacement of privacy sensitive 
information in radiology texts and reported the effective-
ness of the named entity replacement by GPT-4. However, 
uploading the data to the server to identify and replace the 
named entities remains another privacy risk [21–23]. Other-
wise, Llama 2 was shown to outperform its counterparts in 
the specific domain when properly fine-tuned [24].

OSNs are modeled by graphs consisting of a set of enti-
ties and the links between them, where the nodes represent 
the entities and the edges represent the relationship between 
the entities [25]. In addition, information about users such 
as age, gender, address, hobbies, education, and work expe-
rience is typically included in social network data. This 
user-related information is called a user profile. Therefore, 
in order to anonymize the graph structure, graph manipula-
tion such as graph modification and graph generalization is 
applied on the one hand [26]. On the other hand, the profile 
data is treated as a table record where the direct identifiers 
and indirect attributes are typically hidden by the generali-
zation, suppression, permutation, and perturbation [26]. In 
the context of pseudonymization, personal data should not 
be identifiable without additional information and must be 
protected as described above or may be replaced by synthetic 
data.

Use of Synthetic Data in AI

In recent years, AI algorithms, mainly using advanced tech-
niques such as Generative Adversarial Networks (GANs) 
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and Variational Autoencoders (VAEs), have been applied to 
various fields. It has been expected to improve privacy, fair-
ness, data augmentation, speed up development processes, 
and broaden data accessibility [9]. The field has developed 
rapidly, starting with the introduction of TextGAN, an algo-
rithm for synthetic text generation through adversarial train-
ing [27]. In the following years, several specialized models 
were introduced [28–30].

However, synthetic data isn’t always a substitute for real 
data. It can be altered to protect privacy and may not account 
for outliers or guarantee privacy without strict controls [9]. 
While synthetic data offers opportunities to improve the 
robustness of machine learning, more research is needed 
to understand its potential and limitations [9]. Recent stud-
ies have shown that the integrity of the performance of the 
model is not compromised if the training data is largely or 
entirely generated [10]. Furthermore, it is not necessary to 
train exclusively synthetic data. There have been studies 
where the training of models is on real data, but the evalu-
ation is on synthetic data. This approach is used to detect 
privacy risks in images of individuals and groups [31].

Methodology

The research objectives and questions are presented below. 
This is followed by the theoretical framework that guides us 
in answering the research questions experimentally. Due to 
the correlational nature of the study and contextual appro-
priateness, a mixed methods approach was chosen.

Research Aim and Questions

Our focus is not on the acute threat, but on the contribution 
of each piece of information to the threat and its evolution 
over time. The potential threat over time is how likely an 
individual is to face a threat to their anonymity and privacy 
as more pieces of personal data are collected. We believe 
that it takes a certain amount of information, or a certain 
combination of information, to pose a cyber threat to an 
individual [2]. 

RQ1	� To efficiently find all relevant pieces of information 
before assembling them into a DT, what is the appro-
priate starting point in the Social Web?

RQ2	� What pseudonymization steps must be taken to com-
ply with privacy regulations and ethical concerns?

RQ3	� To what extent can synthetic data be used as a sub-
stitute or complement for (re)training or fine-tuning 
AI models?

RQ4	� How to construct (i.e., model, instantiate, and enrich) 
a DT from OSNs?

Theoretical Framework

Here we take the approach to actively search, model, meas-
ure and highlight threats on the Web. In order to facilitate 
understanding and reusability, we have based the framework 
development on OSEMN (Obtain, Scrub, Explore, Model, 
and iNterpret) [32], which is a standardized model for data 
science research (Fig. 1).

The first step in the process is to identify relevant data 
sources and acquire enough of them. For us, this includes 
text, images and video from OSNs. Initial data cleansing is 
already included in this step, as the quality of the data can 
vary widely and user-generated data can usually be assumed 
to be of low quality. However, this cleansing is far from suf-
ficient. For example, it does not include steps to normalize 
the data. This is done in the subsequent step. Since the col-
lected data comes from different sources, data preprocess-
ing is essential. Data standardization and pseudonymization 

Fig. 1   Framework for authority-
dependent risk identification 
and analysis [2]

Table 1   Aggregated dataset based on Strava profiles and OSN search

Twitter YouTube Xing Facebook Instagram

Users searched 13,902 13,902 13,902 13,902 13,902
Query limits 20 100 10 – –
Users found 10,549 10,857 7862 – –
Profiles 

retrieved
120,675 487,381 43,804 7970 5732
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are two necessary preprocessing methods. Following stand-
ards and pseudonymization principles makes it possible to 
explore across datasets using existing tools and procedures.

In our use case [2], the most important task is to iden-
tify relevant data points to explore relationships in the 
data. We use a graph database to store and analyze data 
from multiple sources. Thanks to standards compliance, 
missing information, such as location details, can be inte-
grated from other sources (e.g., Linked Open Data). Fur-
thermore, the generated graphs provide a visualization of 
the networks and allow a graphical exploration of the data-
sets. But it is also likely that data collection will become 
a bottleneck. Therefore, it is planned from the beginning 
to generate synthetic data. For this purpose, a model is 
developed that explains the original data as well as possi-
ble. From this model, new data are generated that preserve 
important statistical properties of the original dataset. For 
our approach, it is necessary to identify and compare AI 
methods that are suitable for working with heterogeneous 
data. Using state-of-the-art AI models, we generate addi-
tional knowledge and analyze the relationships between 
user profiles in more detail. This knowledge and analysis 
can be used, for example, to identify groups of people in 
specific locations to detect potential threats. Finally, we 
investigate whether it is possible to identify potential risks 
at an early stage based on the data we generate and collect.

Research Approach

We conduct research in a practical, problem-solving man-
ner. This is why we use mixed methods and take into 
account both quantitative and qualitative data. Our goal is 
to develop effective solutions that can be applied to real-
world situations. By integrating different types of data, we 
aim to answer the above research questions (RQ1 – RQ3) 
experimentally, while pursuing a case study research 
design to address RQ4 and gain an in-depth understand-
ing of DT construction based on personal information in 
OSNs.

Case Study

We implement a longitudinal case design to automatically 
monitor specific sports apps like Strava and analyze the col-
lected data (Table 1).

Data is collected using either an API (Application Pro-
gramming Interface), if available, or a hand-crafted crawler 
(Fig. 2). However, crawlers are limited in how much data they 
can collect in a given timeframe, so they may not capture all 
data points. We focus on retrieving users from an initial plat-
form, in this case Strava. For users who registered through 
Facebook, Strava profiles contain specific information. We 
perform a direct image comparison using histogram and tem-
plate matching techniques by searching for the username on 
Facebook and Instagram using a handcrafted crawler. Conse-
quently, we only list profiles identified on these platforms. On 
other platforms, we use APIs to search usernames that return 
large numbers of results faster than our crawler. All discovered 
profiles are subsequently extracted, stored, and later pre-pro-
cessed and matched. This allows us to cluster individuals and 
retrieve further information from the platforms (e.g., Twitter, 
see Table 2). This allows us to identify potential targets and 
assess their risk potential. This is done by processing text (e.g., 
tweets), images (e.g., selfies in front of buildings, maps), and 

Fig. 2   Data collection and 
preprocessing pipeline

Table 2   Twitter dataset statistics

Statistics #

Tweets 24,105,016
Total users 5,013,209
Tweets per user (min) 1
Tweets per user (mean) 3.57
Tweets per user (max) 4.77
Links per tweet (min) 0
Links per tweet (mean) 1.19
Links per tweet (max) 11
Links per user (min) 1
Links per user (mean) 6
Links per user (max) 51,575
Unique Linktree links 540,830
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geospatial information (e.g., running routes). In other words, 
we are dealing with a heterogeneous dataset. Due to its com-
position, the requirements for processing methods are very 
different. During data analysis and knowledge extraction, a DT 
can be constructed. This generates extremely sensitive (meta) 
data. This information can be correlated with other data to 
determine the plausibility of a threat to a person or group of 
people. The technical implementation will combine methods 
from information retrieval with approaches from forensic lin-
guistics and will use methods from network analysis and clus-
tering to create new evaluation functions for the identification 
of subjects (people, places, etc.) on the basis of the disclosed 
information.

Data Collection

In general, we follow the data collection and processing pipe-
line shown in Fig. 2.

For this study, we used Twitter data with Linktree links 
from January 1, 2022 to February 23, 2022. We collected addi-
tional data for a longer period of time, from January 1, 2022 to 
April 19, 2023, to further validate our findings and expand our 
analysis. The result is a more comprehensive dataset, which is 
presented in Table 2.

We explored ways to collect data more efficiently and more 
effectively (Sect. Identify an Appropriate Entry Point for Col-
lecting Data.) Therefore, in recent work [33], we evaluated the 
potential of social media landing pages as an entry point for 
data collection, resulting in the following dataset (Table 3).

Data scraping for scientific purposes is regulated by the 
GDPR in Art. 89, which provides exceptions for the processing 
of personal data for scientific purposes in the public interest. 
In particular, the collection of data without the participation 
of the data subject is subject to an exception for purposes of 
scientific research pursuant to Art. 14 GDPR. Accordingly, 
the provision of information is not required if it would make 
the objectives of the data processing for scientific research 
purposes impossible or seriously impair them. It will not be 
practically possible to inform all data subjects in the case of 
mass quantitative analysis of publicly accessible personal data, 
for example from OSNs (including Twitter) and other pub-
lic portals on the Internet. Moreover, at least in the case of 
data that is not exceptionally sensitive, the benefit of inform-
ing the data subject would not be proportionate to the effort 
required to inform him. The information obligation under Art. 
14 GDPR is therefore not applicable.

For particularly risky data processing, the GDPR requires 
a data protection impact assessment to be carried out (Art. 
35 GDPR). This is necessary, for example, if extensive spe-
cial categories of personal data (Art. 9 GDPR) are processed 
such as health data or data relating to religious or philo-
sophical beliefs. We do not process data revealing racial or 
ethnic origin, political opinions, religious or philosophical 
beliefs, trade-union membership, nor does it process genetic 
data, biometric data for the purpose of uniquely identifying a 
natural person, health data, or data concerning the sex life or 
sexual orientation of a natural person. However, due to ethi-
cal concerns, we will pseudonymize the names of individu-
als and their identifying attributes (Sect. Pseudonymization).

Modeling and Instantiating the Digital Twin

Our goal is to create a comprehensive and sophisticated 
DT that captures many facets of a person’s digital presence. 
Based on state-of-the-art literature (Sects. Mirroring Dis-
closed Data with Digital Twins and Constructing Digital 
Twins), a basic, simplified model of the core elements and 
their interrelationships within our envisioned DT is illus-
trated in Fig. 3. It includes entities such as “Person”, “Onlin-
eAccount”, “EducationalOrganization”, “Organization”, 
“SocialMediaPosting”, and other related schemas connected 
by attributes and relationships such as “hasRole”, “hasEdu-
Org”, “hasAccount”, and more. This model will be used as 
a template to develop a more complex and full-featured DT.

It is possible to create an initial DT for an individual by 
aggregating cross-platform data. In our previous research 
[34], we introduced a theoretical approach for linking user 
profiles across different platforms. This approach involved 
tracking and merging activities into DTs. In this study, we 
selected appropriate data points for profile matching, includ-
ing names, usernames, location data, and images, using the 
previously created Linktree dataset.

Table 4 provides an overview of the data points available 
for profile matching and the number of data points included 
in the dataset. We use several techniques to assess the simi-
larity of user profiles across social media platforms.

The degree of similarity between names and usernames 
is quantified using the Jaro–Winkler distance, a metric that 
calculates the proximity and shared characters between two 
strings, giving more weight to similarities near the beginning 
of the strings. This metric is used to assess the similarity 
of names and usernames because it effectively captures the 
partial similarity of shorter strings and giving more weight 
to initial characters [35], a feature particularly useful for 
handling variations in names and usernames. The thresh-
olds of 0.75 for names and 0.60 for usernames are derived 
from previous research and empirical evaluations [36–38] 
and ensure a balance between precision and recall. These 
values were chosen based on studies suggesting that names 

Table 3   Aggregated dataset based on Linktree links

Twitter LinkedIn Facebook Instagram

Profiles searched 5284 5069 5446 5583
Profiles retrieved 4956 4264 4909 4630
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typically require a more stringent match than usernames, 
reflecting the greater variation found in usernames. As a 
result, the chosen thresholds strike an optimal balance, 
maintaining high precision while allowing for the necessary 
flexibility. This balance is critical to accurately identifying 
matches without overly constraining the algorithm, which 
would lead to missed legitimate matches.

For image similarity evaluation, both color and grayscale 
histograms as well as template matching techniques were 
implemented to improve the accuracy. We constructed a 
compact dataset of 100 entries to evaluate the image simi-
larity metrics. The grayscale histogram threshold of 0.77, 
which achieved an F1 score of 91% and a precision of 96%, 
proved to be effective in discriminating similar images even 
in the presence of low-resolution noise. The stringent thresh-
old of 0.22 for the color histogram is also consistent with 
this emphasis on precision, ensuring that false positives are 
minimized despite a lower F1 score. In addition, the template 
matching threshold of 22, while resulting in an F1 score of 
68%, provides a very high precision of 99%, confirming the 
effectiveness of this technique for robust identity matching.

Location-based matching uses geographic distance with 
a threshold of 18.35 km based on empirical geocoding 

evaluation results, which is consistent with the accuracy 
generally observed in Twitter-based geocoding studies. 
This ensures a reliable, yet flexible approach to handling 
small geographic discrepancies due to variations in textual 
location data. Overall, these carefully tuned thresholds and 
metrics are designed to mitigate the noise and potential 
inaccuracies inherent in cross-platform data aggregation, 
ensuring a robust foundation for the construction of com-
prehensive DTs.

Data and Knowledge Engineering

To analyze the data and validate our hypotheses, we will 
apply the chosen methodology (Fig. 4). The instantiated 
variant of the DT presented in the previous section will be 
enriched with additional information. This data and knowl-
edge engineering process can be divided into phases, each 
with specific challenges.

The initial phase focuses on collecting the necessary 
data, with an emphasis on determining appropriate entry 
points (RQ1). It is important to identify data repositories 
and sources that meet the research needs. With a clear under-
standing of the data, the next step is to build models that can 
simulate real-world behavior, protect personal information 
through pseudonymization (RQ2), and generate synthetic 
data (RQ3). This requires the selection of appropriate algo-
rithms and tools that generate high-fidelity synthetic data 
while preserving the privacy of the original data sources. 
Finally, interpretation involves deriving actionable insights 
from the synthetic data. However, data enrichment to link 
the new information gained from profile extraction and 

Fig. 3   Simplified model of the 
DT

hasAccount

schema:
Person

hasBizLoc

schema:
Organization

hasEduLoc

schema:
EducationalOrganization

hasPosting

hasRole

hasEduOrg

hasBirthPlace

hasBizOrg

hasContactPoint

hasInteractionCounter

foaf:
OnlineAccount

schema:
Occupation

hasOccupation

schema:
Role

hasVideohasImage

hasPostingLoc

schema:
SocialMediaPosting

schema:
PostalAddress

schema:
ImageObject

schema:
VideoObject

hasAddress

schema:
Place

schema:
ContactPoint

schema:
InteractionCounter

Table 4   Available data points for profile matching

# Twitter LinkedIn Facebook Instagram

Name 4956 4264 4909 4630
Username 4956 4264 4909 4630
Location 4261 – 1369 –
Image 4562 4028 4908 4606
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matching with open knowledge resources available on the 
Semantic Web is essential for the construction of the digital 
twin (RQ4). Therefore, we show how to obtain structured 
data from user-generated content and visual information 
from images for ontology integration.

Identify an Appropriate Entry Point for Collecting 
Data

To address our first research question (RQ1) experimen-
tally, we test our hypothesis that Linktree is an appropriate 
starting point for a comprehensive search of linked personal 
information in different OSNs. Linktree is an SMRLP, which 
allows users to aggregate various links on a single page, 
thus requiring only one central link to access all of a user’s 
profile links. We chose Linktree based on an initial analysis 
that showed it had a significantly higher link count in tweets 
compared to other existing platforms such as BrideURL, 
Linkin.bio, or ManyLink [39]. In addition, Linktree is the 
most prominent of the current SMRLPs, with over 30 mil-
lion users worldwide.3

For this study, we obtained 540,830 links from our Twit-
ter dataset (Table 2). In addition, we first collected data from 
all Linktree pages and extracted links to various platforms 
of interest, including Instagram, Facebook, Twitter, and 
LinkedIn (as shown in Fig. 5). We then analyzed the inter-
sections of the provided links within each Linktree page. 
In Table 5, we can see that Instagram and Twitter contain 
the highest number of links, followed by Facebook, while 
LinkedIn has significantly fewer links. For further analysis, 
we limited our focus to personal links only. We were able 
to distinguish between personal and corporate accounts by 
examining URLs such as “linkedin.com/in” for individuals 
and “linkedin.com/company” for companies. There were 
6,076 links to personal profiles and 6,237 links to company 
profiles in our dataset. After extracting the links, we applied 

a data collection and preprocessing pipeline (Fig. 2) to col-
lect personal profiles from Twitter, LinkedIn, Facebook, and 
Instagram.

Fig. 4   Guiding questions in the 
data and knowledge engineering 
workflow

Fig. 5   Linktree data acquisition strategy

Table 5   Link overlaps within the resolved links

Platforms # Links

Instagram 265,300
Facebook 136,743
Twitter 262,746
LinkedIn 37,626
Instagram ∩ Facebook 118,235
Instagram ∩ Twitter 201,791
Instagram ∩ LinkedIn 31,112
Facebook ∩ Twitter 103,817
Facebook ∩ LinkedIn 25,178
Twitter ∩ LinkedIn 20,262
Instagram ∩ Facebook ∩ Twitter 93,769
Instagram ∩ Facebook ∩ LinkedIn 22,747
Instagram ∩ Twitter ∩ LinkedIn 26,409
Facebook ∩ Twitter ∩ LinkedIn 21,504
Instagram ∩ Facebook ∩ Twitter ∩ LinkedIn 19,740

3  https://​produ​ctmint.​com/​linkt​ree-​stati​stics/, accessed: 2024-05-21.

https://productmint.com/linktree-statistics/
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Linktree is an appropriate entry point for data collec-
tion because the large number of links to different OSNs 
from a single profile indicates that Linktree can significantly 
improve the speed of user profile acquisition, matching, and 
validation (Table 5). For the platforms of interest here, the 
links include three of the top five OSNs. LinkedIn is still in 
the top twelve, as shown in Table 6.

Pseudonymization

In what follows, we answer our second research question 
(RQ2) by explaining what steps need to be taken to achieve 
compliance with the GDPR and with ethical principles. 
However, to avoid adversely affecting pre-trained profile 
matching algorithms and NLP approaches when using 
pseudonyms, we propose that semantic entities4 should 
be treated differently from non-semantic entities when 
pseudonymizing.

Since the main purpose of pseudonymization is to con-
nect users across different OSNs, the data points in Table 7 
are pseudonymized.

Pseudonymization of Semantic Entities

Semantic entities were pseudonymized by semantically 
equivalent substitution, which was obtained by locally 
querying the LLM Llama 3.5 This is possible because the 
OSN profile data is mostly structured and thus the named 
entity can be preidentified, but there are some exceptions 
that can be identified by preprocessing using simple regular 

expressions or applying NLP methods (e.g., worked as 
Digital Marketing Lead at Microsoft). Given the semantic 
entities, we build an additional information table by query-
ing Llama 3 for the semantically equivalent entities. For all 
Llama 3 queries, we set the inference parameters as follows:

temperature: float = 0.1
top_p: float = 0.3
max_seq_len: int = 4,096
max_batch_size: int = 10

The use of an LLM to generate a semantically analo-
gous substitution is very promising, as explicitly shown in 
Table 8. If we cluster two groups of person names using 
k-means6 applied to vectors generated by e.g. GPT2,7 we get 
two clearly distinct clusters per country as shown in Table 9. 
These are more potential replacements.

Pseudonymization of Non‑Semantic Entities

There are two classes of non-semantic named entities. One 
is numeric only. This is usually the case with user IDs or 
other OSN IDs, for example. The other is alphanumeric. 
Examples include user names, email addresses, and web 
pages.

Table 6   The top twelve 
domains on Linktree

Platform # Links

Instagram 319,007
Telegram 298,828
Twitter 290,852
YouTube 285,464
Facebook 146,805
clicktotweet 104,856
TikTok 102,848
Spotify 68,038
bitly 61,354
Discord 47,236
Apple 41,988
Linkedin 40,476

Table 7   Data points of profile data

DI direct identifier, IA indirect attribute

Data type Entity type

User ID DI Non-semantic
Username DI Non-semantic
Cellphone DI (Non-)semantic
E-mail DI Non-semantic
Website DI Non-semantic
OSN ID DI Non-semantic
Display name IA Semantic
Short name IA Semantic
Nickname IA Semantic
Location IA Semantic
Organization IA Semantic
College IA Semantic
Secondary school IA Semantic
Date of birth IA Semantic
Address IA Semantic

4  A semantic entity is defined as a named entity with a natural, 
social, and geo-located reference in the real world. Thus, the typical 
named entities for person, organization, and location fall into this cat-
egory. User ID and username, which exist only in the online world, 
are in the non-semantic category.

5  https://​llama.​meta.​com/​llama3/.
6  https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​clust​er.​
KMeans.​html.
7  https://​github.​com/​openai/​gpt-2.

https://llama.meta.com/llama3/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://github.com/openai/gpt-2
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In general, the pseudonymization of a non-semantic 
entity is performed by applying the addition and modulo 
operation to the given units. In the case of digit units, the 
operation is much simpler because the digit is replaced by 
another digit. To disguise this simple pseudonymization, 
we add a special digit to the beginning of the number so 
that the whole number can be changed. For addition and 
modulo operations, we use the prime number. The size 
of the prime number is easily adjustable. As shown in 
Table 10, the country code is treated as a special entity 
for the mobile phone and for WhatsApp. Although it has 
no direct referent in the real world, it denotes an artificial 
geolocation. Therefore, it should be treated as a kind of 
semantic entity.

For the pseudonymization operation on the alphanumeric 
entities, we have adapted Hill’s cypher algorithm. However, 
while Hill’s cryptography works on a single letter [40], we 
have developed a system that works on chunks of the alpha-
bet. Besides the chunk size, our method differs from Hill’s 
cryptography in two other aspects. First, the block size is not 
fixed, resulting in the variable block size. We determine the 
block size as the sentence size obtained by applying NLP 

to the given text. To specifically apply the variable block 
size to our profile data, it does not need a size limit due to 
its one-unit property. Second, we tokenize the given string 
according to our split mechanism. It divides the given string 
into two blocks consisting of consonants and vowels. The 
splitting is done by a simple regular expression that includes 
all vowels from the ISO-8859 language group. The alphabet 
‘y’ is treated as a vowel in our method.

Using background knowledge and dictionary attack [25, 
41], pseudonymized data can be exploited. In this paper, 
we present methods for pseudonymizing data that not only 
make pseudonymized data more real, but also make it more 
secure, since it is more difficult for attack models to associ-
ate pseudonymized data with original data. After applying 
the aforementioned pseudonymization strategies to our data 
collection, we were unable to measure any negative impact 
on profile matching or other NLP approaches. As a result, 
we have demonstrated that these pseudonymization steps 
are feasible for personal data on OSNs. They are also GDPR 
compliant and meet ethical concerns.

Synthetic Data Generation

Synthetic data is important for training machine learning 
methods and for research to compensate for rare data types 
or to study sensitive datasets. As mentioned in Sect. Making 
Trade-Offs with Synthetic Data, in the context of privacy 
risk mitigation and DT construction, it is important to rec-
ognize the potential biases and inaccuracies inherent in the 
use of synthetic data. One prominent limitation is that while 
synthetic data mimics real-world data, it does not always 
capture the full complexity, variability, and nuance of real 
human interactions and behaviors. This can result in models 
that are not fully representative of the real population, poten-
tially introducing bias into both the data and the results of 
the analysis. However, despite these limitations, the use of 
synthetic data presents a necessary trade-off and compelling 
benefits, particularly when dealing with sensitive personal 
information. The ability to train and validate models without 
risking the exposure of individual identities is paramount 
to complying with privacy regulations, such as GDPR, and 
ensuring ethical research practices. In addition, as synthetic 
data generation techniques, such as those using GANs and 
other cutting-edge methods, advance, the fidelity and rep-
resentativeness of synthetic datasets continue to improve. 

Table 8   Example of a prompt request and response by Llama 3

Request
Role System
Content You always answer me with five person names 

that are as requent as the given person name 
in the same country. The generated names 
should have different first name and surname 
to each other. The output should follow the 
following json format: {“country”: country, 
“input”: input, “output”: list_of_person_
names}.

Role User
Content Alessandro Brofferio
Response
Role Assistant
Content {country: Italy, input: Alessandro Brofferio, 

output: [“Andrea Bianchi”, “Luca Ferrari”, 
“Giovanni Rossi”, “Marco Conti”, “Franc-
esco Marino”]}

Table 9   Cluster samples of generated names by country

Cluster 1 Cluster 2

Ahmed Benjelloun Andrea Bianchi
Omar Elghazi Luca Ferrari
Mohammed Amari Giovanni Rossi
Abdelhakim Rais Marco Conti
Youssef Ziani Francesco Marino

Country Morocco Italy

Table 10   Numeric examples and aliases

Attribute Value Pseudonym

User ID 100000656079902 24071379947782631
Mobile phone + 5546997087922 + 552703024916093
WhatsApp + 4915175895942 + 492402202724013
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While synthetic data are not perfect, they allow researchers 
to develop and refine privacy-preserving techniques and DT 
models more responsibly and ethically than would be pos-
sible with real data. It provides a pragmatic balance between 
the need for comprehensive data science and the imperative 
to protect individual privacy, making it an indispensable tool 
in current and future research efforts. In the following, we 
explore the extent to which synthetic data can be used to 
fine-tune AI models (RQ3). Below, we show how we use 
synthetic data in the context of image recognition and social 
media content.

Face Extraction and Generation

Investigating the ability of vision-language models (VLMs) 
to identify and extract sensitive personal information from 
images shared on OSNs is an important question that we 
have pursued in previous work [31]. To this end, we have 
evaluated new state-of-the-art VLMs, including BLIP-2 and 
InstructBLIP. In recent years, a number of VLMs have been 
introduced to advance multimodal deep learning, including 
vision transformer (ViT) [42], Contrastive Language-Image 
Pre-Training (CLIP) [43], and Bootstrapping Language-
Image Pre-Training (BLIP) [44]. These models are capa-
ble of addressing a variety of challenges in both computer 
vision (CV) and NLP. BLIP introduces a novel approach for 
handling noisy web data through a method called Caption-
ing and Filtering (CapFilt), which improves the quality of 
the training data. It also introduces a multi-modal mixture 
of encoder-decoders (MED), a multitask model that oper-
ates in three modes: unimodal encoder, image-based text 
encoder, and image-based text decoder [44]. The unimodal 
encoder for text and images is trained using an Image-Text 
Contrastive (ITC) loss, similar to the pre-training of the 
CLIP model. The image-grounded text encoder incorpo-
rates additional cross-attention layers to capture interactions 
between image and text, and is trained with an Image-Text 
Matching (ITM) loss to distinguish between positive and 
negative image-text pairs [44]. For image-based text decod-
ers, it replaces bidirectional self-attention layers with causal 
self-attention layers, and uses the same cross-attention layers 
and feed-forward networks as encoders. The decoder uses 
LM loss to produce labels for given images.

BLIP-2 and InstructBLIP extend the integration of cur-
rent VLMs with LLMs. BLIP-2 combines frozen image 
encoders with LLMs for pre-training, based on an archi-
tecture centered around the Querying Transformer (Q-For-
mer), which effectively bridges the gap between visual and 
language modalities. Q-Former allows pre-trained vision 
and language models to be used for downstream tasks such 
as visual question answering and image-text generation 
without weight updates. This architecture’s two-stage pre-
training procedure results in outstanding performance across 

a variety of vision-language tasks. It supports zero-shot 
image-to-text generation with natural language instructions 
and has fewer trainable parameters than previous models. 
As a result, the model is capable of context-aware responses 
to text prompts. When using LLMs such as OPT and T5, 
BLIP-2 is limited to a context length of 512 tokens, which 
must be taken into account when creating detailed prompts 
and expected responses. InstructBLIP further refines BLIP-2 
through instruction tuning, which uses an instruction-aware 
feature extraction method with Q-Former. This transforms 
data from 26 datasets into an instruction-based format and 
uses a balanced sampling strategy for the training dataset 
to optimize learning, improve zero-shot performance, and 
achieve state-of-the-art results when fine-tuned for spe-
cific tasks. InstructBLIP is compatible with models such 
as Vicuna [45], which in turn has been fine-tuned using the 
Llama base model [46].

We investigated the effectiveness of the model in follow-
ing prompts to provide constrained and accurate responses. 
The methodology employed involves the use of an artificial 
dataset, derived from the Visual Privacy (VISPR) dataset 
and enriched with various privacy-related attributes, to 
extract relevant human attributes and sensitive information 
from images. In order to evaluate and improve our recogni-
tion methods, [31] we generate synthetic images of indi-
viduals with different attributes such as age and hair color 
(Fig. 6). These artificial images are generated using sophis-
ticated algorithms incorporated into methods such as GANs 
[47], diffusion models, VAEs, and neural style transfer [48]. 
Tailored to specific goals and applications, each of these 
approaches offers unique advantages and presents different 
challenges.

We found that VLMs, especially those based on BLIP, are 
highly effective at recognizing people in images and identi-
fying specific characteristics of people, such as age, gender, 
and eye color. However, challenges remain in recognizing 
documents, particularly country-specific documents such 
as driver’s licenses. The models also showed shortcomings 
when dealing with synthetic images, suggesting that further 
refinements are needed to ensure accurate DT representa-
tions and to protect privacy.

Social Network Content Generation

We conducted experiments using current LLMs, such as 
GPT-4, to create synthetic tweets. We aimed to create a 
spectrum of tweets that could be used to build comprehen-
sive user profiles, including profile data, images, and diverse 
content. Throughout our experiments, we carefully crafted 
prompts to elicit information across many categories, includ-
ing family, health diagnoses, birthdays, age, job, employer, 
location, events, friends, and government. We used LLM’s 
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sophisticated capabilities to provide tweets in JSON. The 
tweets were generated in batches of 50, and at the end of our 
experiment, we identified a significant challenge: many of 
the tweets had semantic similarities, and about 15% of the 
tweets were exact duplicates. Thus, RQ3 could not be ade-
quately addressed here and will need to be explored further.

The potential solution to these challenges may lie in the 
introduction of additional variables into the tweet genera-
tion process. This could include incorporating randomized 
lists of topics for the LLM to latch onto, which could result 
in more varied content. Real-time data from a variety of 
sources, such as current events or trending popular culture, 
could also be added to the prompts to increase the relevance 
and authenticity of the generated tweets.

Personalization is the key to increasing authenticity. 
One solution could be to include user-specific characteris-
tics in the prompts to instruct the LLM to generate content 
that reflects individual user identities. We are investigating 
various methods to verify the authenticity of these tweets, 
including NLP techniques, to ensure that the generated con-
tent truly simulates real-world tweets.

Building on this, we’re also exploring the idea of using 
transfer learning mechanisms that could help the LLM learn 
from a large dataset of existing real-world tweets and apply 
this learning to the task of generating new tweets. By having 
the LLM extract optimal features from the authentic data 
pool, we can improve both the diversity and authenticity of 
our generated tweets.

Human Digital Twin Enrichment

To address our fourth research question (RQ4), how to 
construct a DT, and in particular how to enrich it, we con-
duct a series of experiments aimed at ensuring that the DT 
is as comprehensive as possible. Our approaches include 
fine-tuning current state-of-the-art LLMs and designing 
specific datasets to evaluate existing VQA techniques. We 
are also interested in using data mining techniques to trans-
form unstructured data consisting of text and images into 

structured data. This transformation allows us to improve the 
usability and interoperability of data in the context of DT by 
integrating it with various ontologies, such as Schema.org 
and FOAF (Sect. Constructing Digital Twins).

Text to Triple Conversion

The huge amount of tweets represents a considerable amount 
of unstructured data in the form of text and images (Table 2). 
The goal of this work is to extract triples from texts such as 
tweets and to integrate them into an ontology-based repre-
sentation. The information can then be used to construct 
a knowledge graph. We use GPT-4 and an open source 
LLM called Miqu-1-70B for instruction fine-tuning in this 
approach, shown in Fig. 7.

To create the dataset, a random sample of tweets from 
300 users was selected from the database. Schema.org was 
used to define the properties of interest. The dataset was 
then created using a few-shot learning approach with GPT-
4. The extracted triples were then manually evaluated in 
terms of the model’s ability to correctly identify subject, 
predicate, and object [23]. The distribution is shown in 
Table 11 with respect to the properties of the final dataset.

Instruction fine-tuning is the process of adjusting a 
model so that it accurately follows and performs spe-
cific tasks as described in the instructions. For example, 
extracting a subject-predicate-object triple from a given 
tweet and defining the desired output to ensure the correct 
response and desired format in JSON. Using the Quantized 
Low-Rank Adaptation (QLoRA) technique in Fig. 7, the 
Miqu-1-70B model is fine-tuned to the dataset. We con-
ducted experiments with different parameters to identify 
those that optimize performance in order to configure the 
training environment for our model. Table 12 shows the 
parameters that were identified.

A manual evaluation was performed on the extracted 
original Miqu-1-70B model as well as on the fine-tuned ver-
sion. Table 13 shows the results of the evaluation with the 
fine-tuned (q4_k_m) model version.

Fig. 6   Attribute extraction 
approach using VLMs [31]
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Improvements in the accuracy of relational triple extrac-
tion were observed after fine-tuning the Miqu-1-70B model. 
The micro and macro averages across all predicates also 
showed significant improvements, indicated in bold. This 
reflects a consistent improvement in the model’s ability to 
accurately extract and categorize information from tweets. 
In both manual and automated evaluations, the fine-tuned 
model was shown to effectively and accurately extract triples 
in JSON format. The model can be used to analyze a large 
number of tweets to create a knowledge graph, as shown in 
Fig. 8.

Structured Data Extraction from Images

Images appear in both profiles and shared content. To further 
complete the DT, it is necessary to process images and rel-
evant features within these images to facilitate further inte-
gration of ontology-compliant data. One approach we have 
identified as a potential solution is based on VQA, which 
allows the generation of answers to sequential questions and 
validations, including in-depth and control questions [49]. 

To evaluate these current VQA models, we developed our 
own dataset with different expressions for privacy attributes, 
based on the VISPR dataset [11, 12], which contains 68 
image attributes suitable for classification tasks. To create 
the dataset, we selected relevant privacy-sensitive attributes, 
focusing on directly visible personal attributes and excluding 
textual information as shown in Table 14.

In addition, for the evaluation of the VQA models, we 
constructed different prompts and classes of interest. We cat-
egorize age into three groups based on [50] to define the val-
ues for the attributes and to maintain clarity and consistency 
in our image annotations: “child” (up to 16 years), “adult” 
(up to 55 years), and “elderly” (55 years and older), exclud-
ing more nuanced age groups to avoid subjective interpreta-
tions. Skin and hair color classifications are based on [51]. 
Simplicity is emphasized by avoiding overly specific color 
values that may lead to inconsistencies. Eye color classifica-
tions are based on [52], which stresses simple and accurate 
classifications. Overall, our approach is to use general cat-
egories for attributes such as age, skin, hair, and eye color. 
This minimizes complexity and increases the reliability of 
our annotations.

Personal attributes and documents were analyzed using 
three VQA models, BLIP [53], BLIP-2 [54], and Instruct-
BLIP [55]. The methodology involved the testing of dif-
ferent prompt variations to optimize zero-shot performance 
and model accuracy in identifying details from visual input 

Fig. 7   Fine-tuning process

Table 11   Property frequencies 
in the Twitter dataset

Property Frequency

s:location 298
s:spouse 227
s:attendee 225
s:colleague 192
s:worksFor 179
s:healthCondition 158
s:parent 139
s:knows 121
s:workLocation 104
s:jobTitle 89
s:sibling 70
s:alumniOf 63
s:diagnosis 52
s:children 51
s:nationality 42
s:birthDate 38
s:contactPoint 4
s:birthPlace 2

Table 12   Model training parameter configuration

Parameter Value

Training batch size 4
Total training steps 700
Learning rate 2 × 10−4

Weight decay 0.01
Optimizer Paged AdamW
LoRA rank 64
LoRA scaling factor 

( lora_alpha)
16

LoRA dropout rate 0.1
LoRA modules q_proj, k_proj, v_proj, gate_projo_proj

up_proj, down_proj, lm_head
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(Table 15). To assess the privacy VQA performance of 
BLIP, BLIP-2, and InstructBLIP, we measured their preci-
sion, recall, and F1 scores. Our experiments were conducted 
using an A6000 graphics card. BLIP is the most compact of 
the three, with a size of 1.54 GB. In contrast, BLIP-2 (flan-
t5-xxl version) and the InstructBLIP model (Vicuna-13b 

version) are significantly larger, at 49.44 GB and 49.49 
GB, respectively. When it comes to processing speed, BLIP 
outperformed the others by completing the task in 1:06 h 
for each attribute with three different prompts. BLIP-2 fol-
lowed, requiring 2:26 h, while InstructBLIP lagged behind 
at 3:15 h. In our analysis of prompt effectiveness, BLIP-2 

Table 13   Precision of the Miqu-
1-70B model before and after 
fine tuning

A triple consists of Subj. = subject, Pred. = predicate, and Obj. = object
The hashtag indicates the number of supports

Property Miqu-1-70B Miqu-1-70B-FT

Subj. Pred. Obj. # Subj. Pred. Obj. #

s:alumniOf 1.0000 0.5273 0.8182 55 1.0000 0.5556 0.8667 45
s:attendee 1.0000 0.9231 0.9231 26 1.0000 0.9565 0.9855 69
s:birthDate 0.9231 0.8462 0.7692 26 1.0000 0.9333 0.8667 15
s:birthPlace 1.0000 0.6667 0.6667 3 1.0000 1.0000 1.0000 4
s:children 1.0000 0.8929 0.8571 28 1.0000 0.9459 0.9189 37
s:colleague 1.0000 0.9412 0.9118 34 1.0000 0.8992 0.8992 119
s:contactPoint 1.0000 0.2000 0.2000 10 1.0000 0.3333 0.6667 3
s:diagnosis 1.0000 1.0000 1.0000 9 1.0000 1.0000 1.0000 11
s:healthCondition 0.9891 1.0000 1.0000 92 1.0000 0.9897 0.9588 97
s:jobTitle 0.8889 0.8889 0.8889 9 0.9565 0.8261 0.8261 23
s:knows 1.0000 0.7740 0.9231 208 1.0000 0.8716 0.9324 148
s:location 0.9834 0.8729 0.9282 181 1.0000 0.9318 0.9545 132
s:nationality 1.0000 0.8889 0.8889 9 1.0000 0.9167 0.9167 12
s:parent 1.0000 0.9722 0.9167 36 0.9811 0.9811 0.9623 53
s:sibling 1.0000 1.0000 1.0000 12 1.0000 0.9615 0.9231 26
s:spouse 1.0000 0.9853 0.9412 68 1.0000 0.9535 0.9302 86
s:workLocation 1.0000 0.7755 0.8367 49 0.9818 0.8727 0.9455 55
s:worksFor 0.9692 0.7077 0.6923 65 1.0000 0.8704 0.9074 54
Micro Avg 0.9902 0.8370 0.8913 920 0.9970 0.9050 0.9312 989
Macro Avg 0.9863 0.8257 0.8423 920 0.9955 0.8777 0.9145 989

Fig. 8   Example of a knowledge 
graph constructed from triple 
extraction
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excelled with simpler and more concise prompts, whereas 
InstructBLIP yielded better results with detailed prompts. 
The results presented below are based on the highest F1 
score achieved with the optimal prompt. While BLIP is a 
small model that uses a text transformer that is initialized 
by the BERT model [56], it is worth noting that BLIP-2 and 
InstructBLIP use much larger LLMs, such as Flan-T5-XXL 
[57] and Vicuna-13b [45]. When evaluating the prompts, we 
found that BLIP-2 performed better with simple and short 
prompts, while InstructBLIP performed better with more 
detailed prompts. The prompt with the highest F1-score is 
used as the basis for the following results. The results of 
person recognition and attribute extraction are shown in 
Table 16. The performance of the top model in each cat-
egory is shown in bold. 

When we analyzed documents, we used a dataset that 
contained 536 different document types. Table 17 shows the 
results for the BLIP-2 model, the best performing model in 

our study. This table provides a detailed breakdown, high-
lighting the progress made in analyzing documents.

Our person detection dataset contained 1000 images, 46 
of which were removed due to ambiguities, such as unrec-
ognizable in certain situations, like racing. As shown by 
the InstructBLIP model, person detection was highly reli-
able. However, for different personal attributes and docu-
ments, the results of the study were inconsistent. For per-
sonal attributes such as “age” and “hair color”, the results 
were generally good, even though these attributes are dif-
ficult to annotate accurately. Without additional context, 
it was difficult to distinguish between age groups and spe-
cific hair colors. The “eye color” attribute was particularly 
challenging, with annotators having to skip over numerous 
images in which it was impossible to accurately determine 
the color, even when using high-resolution images and 
zoom functionality. In contrast, very good or fair results 
were obtained for attributes that required yes/no answers, 
such as “nudity” and “tattoos”. These were easier to anno-
tate. However, the annotation process was complicated by 
the fact that the definition of “semi-nudity” turned out to 
be ambiguous. As a result, cases such as a bare male torso 
were often not recognized by the BLIP model. Due to their 
standardized appearance across countries, “passports” 
and “credit cards” were reliably recognized for document 
identification. However, due to significant variance in 
their appearance across the world, “driver’s licenses” and 
“national identification cards” showed poor recognition. 
The development of an approach specifically for German 
documents is aimed at creating the basis for the possible 
development of tailored approaches for other countries. 
In order to effectively handle the wide variety of docu-
ment formats, the models need to be fine-tuned. So there 
is still a lot of work to be done. Finally, the structured 
data extracted from the DT can now be validated, further 
enriched and used within ontologies.

Table 14   Selected VISPR dataset attributes

Attribute # of Img.

a1_age_approx 1711
a4_gender 1863
a5_eye_color 1348
a6_hair_color 1759
a11_tattoo 45
a12_semi_nudity 247
a13_full_nudity 11
a17_color 1914
a29_ausweis 47
a30_credit_card 97
a31_passport 263
a32_drivers_license 70
a33_student_id 70
a39_disability_physical 41

Table 15   Prompt examples and defined class labels

Attribute Prompt Class Labels

a1_age_approx How old is the person? [Child, adult, elderly]
a4_gender What is the gender of the person? [Male, female]
a5_eye_color What color are the person’s eyes? [Blue, green, gray, brown]
a6_hair_color Which color is the hair of the person? [Black, blond, brown, gray, red]
a11_tattoo Does the person have a tattoo? [Yes, no]
a12_semi_nudity Is the person partially nude? [Yes, no]
a13_full_nudity Is the person fully nude? [Yes, no]
a17_color What is the skin color of the person? [Black, brown, white]
a29_ausweis, a30_credit_card, a31_passport, a32_

drivers_license, a33_student_id
Which document is in this picture? [National identification card, credit 

card, passport, driver’s license, 
student ID]

a39_disability_physical Does the person have a disability? [Yes, no]



	 SN Computer Science          (2024) 5:1109  1109   Page 16 of 20

SN Computer Science

Findings and Discussion

Creating a DT will be a source of sensitive data, and being 
able to correlate this data will become a key enabler of 
data-driven applications. Our work aims to reduce this risk 
by raising awareness of the interrelationships between dis-
parate pieces of public information. We monitor selected 
OSNs, analyze the data they collect, correlate it with 
other social media profiles, and build person-centric data 

networks (i.e., DTs). The goal is to identify potential tar-
gets of cyber threats and classify their potential risk based 
on the available data. This requires pseudonymization and 
the use of synthetic data, as personal data plays a central 
role. But where to start collecting data? What is the right 
starting point to find all the relevant pieces of the puz-
zle before they are assembled into a DT and a (perhaps 
incomplete) picture is created? What does it mean to han-
dle personal data according to GDPR? What privacy and 
ethical measures need to be taken? How can synthetic data 
be used in AI models? And how can we complete the DT 
puzzle?

Research Contributions

In Sect. Research Aim and Questions, we asked the fol-
lowing questions to examine: 

1.	 To efficiently find all relevant pieces of information 
before assembling them into a DT, what is the appro-
priate starting point in the Social Web? [RQ1]

2.	 What pseudonymization steps must be taken to comply 
with privacy regulations and ethical concerns? [RQ2]

3.	 To what extent can synthetic data be used as a substitute 
or complement for (re)training or fine-tuning AI mod-
els? [RQ3]

4.	 How to construct (i.e., model, instantiate, and enrich) a 
DT from OSNs? [RQ4]

Although we were able to provide answers to the afore-
mentioned research questions in Sect. Data and Knowledge 
Engineering, there are significant challenges to imple-
menting DTs while ensuring privacy and complying with 
regulations. The fact that not all data can be used directly 
in the creation of DTs is one of the main challenges. It is 
important to protect the privacy of the individuals repre-
sented by the DTs as well as the research process. This 
requires the development of techniques for the protection 
of sensitive information while still allowing for meaning-
ful analysis and insight. Promising solutions to these chal-
lenges are synthetic data and pseudonymization, as shown. 
In our work, we have developed tools and techniques for 

Table 16   Person detection and attribute results

Precision Recall F1-score Support

Person detection
  BLIP 0.9602 0.9602 0.9602 954
 BLIP-2 0.9503 0.9599 0.9551 954
 InstructBLIP 0.9608 0.9707 0.9658 954

Age
 BLIP 0.9137 0.9345 0.9240 1,666
 BLIP-2 0.9079 0.9286 0.9181 1,666
 InstructBLIP 0.8838 0.9040 0.8937 1,666

Gender
 BLIP 0.9725 0.9824 0.9774 1,766
 BLIP-2 0.9719 0.9807 0.9763 1,766
 InstructBLIP 0.9697 0.9796 0.9746 1,766

Eye color
 BLIP 0.8132 0.8391 0.8260 628
 BLIP-2 0.7708 0.7879 0.7792 628
 InstructBLIP 0.7404 0.7608 0.7504 628

Hair color
 BLIP 0.8798 0.8865 0.8831 1,577
 BLIP-2 0.7202 0.7231 0.7216 1,577
 InstructBLIP 0.7988 0.8032 0.8010 1,577

Skin color
 BLIP 0.9501 0.9645 0.9573 1,858
 BLIP-2 0.8787 0.8889 0.8838 1,858
 InstructBLIP 0.7637 0.7692 0.7665 1,858

Tattoo
 BLIP 0.8222 0.8222 0.8222 90
 BLIP-2 0.8222 0.8222 0.8222 90
 InstructBLIP 0.8555 0.8555 0.8555 90

Semi nudity
 BLIP 0.7974 0.8009 0.7991 462
 BLIP-2 0.8297 0.8333 0.8315 462
 InstructBLIP 0.7780 0.7814 0.7797 462

Full nudity
 BLIP 0.9545 0.9545 0.9545 22
 BLIP-2 0.9090 0.9090 0.9090 22
 InstructBLIP 0.9545 0.9545 0.9545 22

Disability physical
 BLIP 0.7439 0.7439 0.7439 82
 BLIP-2 0.8048 0.8048 0.8048 82
 InstructBLIP 0.8293 0.8293 0.8293 82

Table 17   Detailed results for documents by BLIP model

Precision Recall F1 score Support

Credit card 0.9773 0.9053 0.9399 99
Driver’s license 1.0000 0.6418 0.7818 94
Nat. ident. card 0.2866 0.9574 0.4412 46
Passport 0.9951 0.7739 0.8707 213
Student ID 1.0000 0.6818 0.8108 95
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processing and analyzing text and images from social 
media to create DTs. We have also developed a framework 
to guide this process, from data acquisition to the creation 
of the final DT. Our results show that these approaches 
can extract relevant information and create meaningful 
representations of web users. Thus, the creation of DTs 
from social media data offers a powerful tool for under-
standing and mitigating privacy risks on the Web. How-
ever, realizing this potential will require ongoing research 
and development to address the significant challenges of 
privacy, data quality, and ethical use. By continuing to 
refine our techniques and frameworks, and by engaging in 
multidisciplinary collaboration and public dialogue, we 
can work toward a future where DTs are used to empower 
and protect Web users, rather than to exploit or harm them.

Limitations

However, there are limitations to our current approach. The 
accuracy and completeness of DTs depend on the quality 
and quantity of data available. Not all users have the same 
amount or type of information, which can lead to gaps or 
biases in the resulting DTs. Furthermore, while our tech-
niques aim to protect privacy, there is always a risk that sen-
sitive information could be inadvertently exposed or that the 
DTs could be misused for malicious purposes. To address 
these limitations, future work should focus on refining the 
techniques for data collection and analysis, particularly in 
the areas of text and image processing. This could include 
the development of more advanced NLP and CV algorithms 
that can better understand the context and meaning of social 
media data.

While valuable for research, there are limitations to the 
use of synthetic data [9]. One major concern is that synthetic 
data may not capture the complexity and nuance of real data 
[10]. Synthetic data can mimic the statistical properties of 
real data. However, it may not accurately represent the diver-
sity and variability present in real data sets. This can intro-
duce bias or inaccuracy into models trained on synthetic 
data, potentially compromising analytical effectiveness. 
However, research shows that it is possible to synthesize 
data with minimal domain gap so that trained models can 
generalize to real, in-the-wild data [10, 14].

Using background knowledge and dictionary attack [25, 
41], pseudonymized data can be exploited. Therefore, pseu-
donymized data is stored on encrypted disks and accessible 
only to selected researchers.

Despite the strengths of the evaluation metrics and pro-
file matching thresholds, several open questions remain. For 
example, the impact of different linguistic and cultural name 
variations on the effectiveness of the Jaro-Winkler distance 
warrants further investigation. While the current threshold 
settings work well within the dataset used, extending this 

research to a broader international dataset may reveal the 
need for additional adjustments. Another open question 
concerns the scalability of the image similarity techniques. 
The effectiveness observed with the compact dataset may 
face challenges when applied to larger datasets or images 
with greater variability in resolution and quality. Finally, the 
location-based matching threshold, while based on empirical 
research, could benefit from contextual adjustments depend-
ing on urban density or variations in data quality across 
regions, which may require dynamic thresholds rather than 
a static distance value. Addressing these open questions will 
be critical to refining our approach and ensuring the adapt-
ability and robustness of the digital twin model as it scales 
and evolves.

Privacy and Ethical Concerns

In the case of mass quantitative analysis of publicly acces-
sible personal data, for example from OSNs, it will not be 
practically possible to inform all data subjects. Moreover, we 
do not process data revealing racial or ethnic origin, politi-
cal opinions, religious or philosophical beliefs, trade union 
membership, genetic data, biometric data for the purpose 
of uniquely identifying a natural person, health data or data 
concerning the sex life or sexual orientation of a natural 
person. However, due to ethical concerns, we pseudonymize 
the names of individuals and their identifying attributes 
(Sect. Pseudonymization). Since the GDPR and the require-
ment of data protection by design and by default [18], the 
privacy-preserving data process is an essential component 
of a software development aimed at analyzing the personal 
information. In this paper, we presented methods for pseu-
donymizing data that not only make pseudonymized data 
more real, but also make it more secure, since it is more 
difficult for attack models to associate pseudonymized data 
with original data. They are also GDPR compliant and meet 
ethical concerns.

Synthetic data is useful for training machine learning 
models from a privacy perspective. Similarly, when dealing 
with online threats, synthetic data can be used to simulate 
attacks such as spearfishing and test the effectiveness of 
security measures without exposing real data. But it can even 
play an important role in cyber attacks. There are AI-pow-
ered tools that specialize in social media intelligence, using 
advanced facial recognition algorithms to extract personal 
information from social media platforms [58]. In addition, 
an AI-powered bot operated undetected for an entire week on 
Reddit [59], using synthetically generated data to post com-
ments and engage in conversations with users. Remarkably, 
it was able to convince several people of its human identity. 
For example, automated chatbots can be used to trick users 
and steal personal information. By convincingly mimick-
ing human interactions, these AI-powered entities can gain 
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trust and encourage users to reveal sensitive data such as 
passwords, financial information, or personal identifying 
information [2]. This capability is a serious risk. For this 
reason, our synthetic privacy policy is very strict that data 
is only used for predefined purposes and deleted after use. 
However, despite these limitations, the use of synthetic data 
presents a necessary trade-off and compelling benefits, espe-
cially when dealing with sensitive personal data. To comply 
with privacy regulations, such as GDPR, and ensure ethical 
research practices, the ability to train and validate models 
without risking the exposure of individual identities is cru-
cial. While not perfect, synthetic data allows researchers to 
develop and refine privacy-preserving techniques and DT 
models more responsibly and ethically than with real data.

In combination with other data, even small quantities of 
sensitive data may become hazardous. Sharing sensitive con-
tent can put users at risk of having their personal information 
exposed or misused, which can lead to various threats such 
as deanonymization or doxing [60]. Doxing occurs when 
previously private information about individuals is made 
public, often with the intent to harm, humiliate, or harass 
them. By exposing social media users to a mirror (i.e., a 
DT) that shows the extent to which they voluntarily, and 
sometimes unknowingly, share personal information without 
protection, and by highlighting the potential for misuse, we 
create an awareness of how to be more careful with data in 
the future.

Conclusion and Outlook

Our research focuses on developing DTs that replicate web 
users and their behaviors. This method can make privacy 
risks more visible and help prevent doxing by highlighting 
already available web data. Key challenges include main-
taining privacy and regulatory compliance while building 
DTs. The use of synthetic data, which mimics real data with-
out compromising privacy, and pseudonymization, which 
replaces identifiable information with pseudonyms, are 
promising solutions.

We have developed tools for processing and analyzing 
social media text and images to build DTs, resulting in 
detailed knowledge graphs and enriched image data. Our 
datasets, collected from different platforms and protected by 
pseudonymization, were used to refine our models. Despite 
demonstrating effectiveness, our approach has limitations in 
terms of data quality and completeness, as well as potential 
privacy risks.

Future work should focus on improving data collection 
and analysis methods using advanced NLP and computer 
vision algorithms. Further research should develop robust 
methods for quantifying privacy risks and ensuring that 
they are effectively communicated and mitigated. Ongoing 

advances in pseudonymization, synthetic data generation, 
large-scale language models, and computer vision could 
improve DT capabilities. In addition, a customized threat 
detection scoring system based on the ENISA framework 
could standardize privacy risk assessment.

In conclusion, the creation of DTs from social media data 
is a promising tool for understanding and mitigating privacy 
risks, which requires continuous research and ethical con-
siderations to empower and protect web users.
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