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Abstract

With more and more remote sensing data available on a global scale, the Earth observation community strives to harness
the power of modern deep learning techniques by developing globally applicable models. However, remote sensing images
exhibit strongly heterogeneous, geolocation-dependent characteristics, making this a challenging endeavor. In this paper,
we introduce the geolocation-aware deep coding strategy to incorporate geolocation information of remote sensing data
into the training of the deep learning models. The proposed method consists of defining regional subnetworks dedicated to
each subset of the dataset with similar geolocational characteristics. Using two application examples, namely the mapping
of building footprints from multi-spectral Sentinel-2 imagery, and the task of forest detection from single-channel thermal
infrared Landsat imagery, we show that the proposed deep coding strategy stabilizes the training performance and can also
improve the predictive power of deep neural networks designed for remote sensing data analysis.

Keywords Geolocation-aware Deep Coding - Global Training - Remote Sensing

1 Introduction

During the last decade, deep learning has become an es-
tablished paradigm in the world of remote sensing (RS)
wherein classically, the focus is on a specific scene or re-
gion of interest. Recently, the growing number of available
datasets and the power of deep neural networks have initi-
ated an interest in training more generic and global mod-
els (Schmitt et al. 2021; Hooker et al. 2018; Chen et al.
2021; Bastani et al. 2023; Vega et al. 2017; Fritz et al.
2017; RoBberg and Schmitt 2023). The global models are
trained on datasets containing data from different regions all
over the world and are expected to perform reasonably well
in all locations. However, due to the geolocation-dependent
characteristics of RS images, it is non-trivial to train a well-
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performing global model that consistently delivers optimal
results across all regions (Beery et al. 2022).

Being a physical measurement of the Earth’s surface,
the appearance of an RS image is highly influenced by the
geographical location of the scene. For instance, optical im-
ages of circular farmlands in Kansas, USA seem relatively
different from flower farmlands in Hillegom, Netherlands
in terms of shapes and colors (see Fig. 1 first row). Ur-
ban areas, and specifically the roofs of the buildings, are
dissimilar in cities such as New York, USA and Munich,
Germany (see Fig. 1 second row). Concurrent thermal im-
ages from a tropical forest in South India and a boreal forest
in Alaska have varying gray value distributions (see Fig. 1
last row). Therefore, it is essential to take the geolocation-
specific characteristics of RS data into account when train-
ing a global Earth observation (EO) model.

In addition to the appearance of the imagery, the distri-
bution of the labels in the EO tasks can be greatly geoloca-
tion-dependent. For example, the distribution of crop types
in different regions of the globe is very inconsistent as can
be seen from Fig. 2. This complicates the task of classifying
crop types from RS data on a global scale without consider-
ation of regional characteristics. Except for the close-to-per-
fect sampling of the whole globe, adding more data to the
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Fig. 1 Remote sensing images with geolocation-dependent appearance
differences. The first row: Sentinel-2 image from farmlands in Kansas,
USA (left) and in Hillegom, Netherlands (right) in the spring (2022).
The second row: Sentinel-2 image from Munich City Center, Germany
(left) and New York City Center, USA (right) in the spring (2022).
The last row: The histograms of Landsat band 10 thermal images from
forests in South India and Alaska in January (2021)

training of a classifier with location-dependent distribution
will not boost the model predictions and purely data-driven
approaches may result in unsatisfactory results (Von Rue-
den et al. 2019).

Typically, a machine learning model achieves better re-
sults when trained on a specific region—resulting in a so-
called regional or region-specific model—and tested on the
same region because of a certain amount of geospatial over-
fitting. On the other hand, for global implementation of EO
tasks, it is usually not favored to train numerous region-
specific models. Thus, to achieve desirable inference perfor-
mance on a global scale, geolocational information should
be embedded into the training of global models.

Due to the georeferenced nature of RS data, the geolo-
cation of the image is typically known and provides valu-
able information about the image content e.g., the possi-
bility of the presence of land cover classes, distribution of
crop types, probability of flood or volcanic explosions, tem-
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perature range, etc. Therefore, instead of multiple regional
models, it is preferred to train one geolocation-aware global
model with an improved understanding of geolocation-re-
lated appearance and distribution differences.

The insertion of geolocation information can be real-
ized in different levels of processing (Von Rueden et al.
2019; Camps-Valls et al. 2021). The infusion can be im-
plemented at the data input level, where one or several lay-
ers containing geolocation information are concatenated to
the input image channels. For instance, Mahara and Rishe
(2023) convert location information, namely latitude and
longitude values to geohash codes and add them as an ex-
tra raster layer concatenated to the extracted feature map.
Similarly, Liu et al. (2018) add two rasters including scaled
cartesian coordinates to the input image and feed all to-
gether to the rest of the network. Alternatively, Zhang et al.
(2021) create coordinate vectors from location information
and then convert them to coordinate features by passing
them through fully connected neural nodes. The location
feature vector is then stacked with the spectral feature vec-
tor and passed through the rest of the network. While the
methods above are relatively simple to implement, there is
a neglected problem with directly inserting coordinate val-
ues into a network. The direct coordinate values are not the
optimal representors of the geolocational properties of RS
data. The reason is that both cartesian and latitude/longitude
coordinates are designed to enable locating in a three- or
two-dimensional grided space, however, they do not neces-
sarily reflect the geolocational similarities and differences
of data with diverse microclimates caused by geographical
features e.g., mountains, valleys.

The geolocation information can also be incorporated
into the learning process wherein a mathematically de-
signed module is infused into the model architecture. The
mathematical formula may be derived from the formation
of the natural phenomena or statistics and added to a spe-
cific depth in the model. Liu et al. (2023) design a multi-
modal fine-grained dual network (Dual-Net), which takes
dual-date images and predicts land cover maps. They em-
bed modal information (dates and geo-locations) into the
model using a position-aware adaptive block. To dehaze op-
tical RS images, Wen et al. (2023) define a physics-aware
intralevel fusion module that compensates for insufficient
elimination of haze-degraded information. The module al-
lows the dehazing process to also consider the location-de-
pendent parameters such as the transmission map of each
pixel into account. To estimate the urban surface temper-
ature in a high resolution, Chen et al. (2022) insert a so-
called global physics feature perception branch into their
network. The branch inputs atmospheric variables as well
as location information—high-precision 3D point clouds
representing the land surface geometry—and the authors
believe that this adds a global physics guide to their model.
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Authors in Ekim and Schmitt (2024) use the cyclic coordi-
nate encoding to infuse two additional latent feature maps
derived from coordinates and extended scene content into
their classification model to improve the model’s predic-
tive performance. Such models often need extra information
(e.g., time, multi-temporal images, atmospheric variables,
extended scene content) in addition to the geolocation pro-
perties to provide promising results. Also, the design of
such modules is often very complex and sometimes not
feasible. For instance, framing the EO tasks such as the
classification of land covers into a mathematical formula-
tion is not trivial. Additionally, the insertion of topograph-
ical information into training does not always improve the
understanding of the model concerning the geolocational
characteristics of data.

Another way of adding awareness to the model is defin-
ing a physics-related penalty to the target optimization func-
tion (Takeishi and Kalousis 2021; Diligenti et al. 2017). The
effort is spent interpreting physical criteria as an optimiza-
tion term to add to the optimization process. Wei et al.
(2022) integrate an aerosol optical depth propagation equa-
tion to optimization function to compensate for the hetero-
geneous characteristics of multi-source RS data such as dif-
ferent data missing rates and measurement errors. Inspired
by the fact that neighboring pixels tend to have similar land
cover class labels, Cao et al. (2018) add a label smooth-
ness prior to the optimization penalty. To better reconstruct
the could mask, Wang et al. (2023) design a CloudMask
loss consisting of two knowledge-informed loss terms to
estimate cloud thickness and the number of layers. Design
and optimization of a target penalty is highly task-specific
and demanding in terms of fine-tuning and balancing be-
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tween the labels-related penalties and the physics-related
penalties.

Inspired by the research demands mentioned above, the
main contributions of this work can be summarized as fol-
lows:

o We introduce a novel approach to infuse geolocation in-
formation into a deep learning architecture. The proposed
approach requires the clustering of datasets into subsets
with similar characteristics. Using the deep coding strat-
egy, the model will have dedicated branches for each sub-
set. The proposed model architecture in Sect. 2 enables
the training of one global model that benefits from ex-
posure to all global samples while also concentrating on
geolocation-specific details.

e In Sect. 2.1, we explain our approach regarding the sub-
division of a dataset and provide insights on how the
division can be realized for different types of datasets.
We also demonstrate two model architectures in Sect. 2.2
where deep coding modification is used to incorporate
geolocation information.

e In Sect. 3.1, we utilize the proposed method to detect
building footprints from Sentinel-2 bands for two cities.
We illustrate that training a geolocation-aware model
achieves more desirable qualitative and quantitative per-
formances compared to a model with no geolocation-
awareness, and a model with cyclic coordinate encoding
(see Sect. 3.1.3).

e In addition, we also investigate the impact of geolocation
awareness in the difficult problem of land cover classi-
fication from a single-channel image. More specifically,
we intend to improve the mapping of the “tree cover”
class from a single thermal infrared (TIR) satellite im-
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age by adding geolocation awareness to the model (see
Sect. 3.2). The proposed model is compared to globally
trained models that are not geolocation-aware, and to ge-
olocation-specific models. Inspired by Ekim and Schmitt
(2024); Mai et al. (2023) and Liu et al. (2023), we also
compare our results to the cyclic coordinate encoding
strategy. The experiments are evaluated qualitatively and
quantitatively (see Sect. 3.2.3).

2 Geolocation-Aware Deep Coding

In this section, we explain our approach to inputting the
geolocation information into the model with the deep cod-
ing strategy. The proposed method is built upon the well-
known UNet architecture (Ronneberger et al. 2015) as the
backbone since it is one of the best-established deep learn-
ing models and is frequently used in RS. Nevertheless, the
deep coding strategy is model agnostic and can be imple-
mented on other architectures such as ResNet (He et al.
2016), AlexNet (Krizhevsky et al. 2012), and VGG (Si-
monyan and Zisserman 2014) as well.

Inspired by the term “hard coding” from software de-
velopment practices, we introduce the deep coding modifi-
cation to a deep convolutional neural network. The deep
coding modification is essentially creating separate sub-
branches within the deep blocks of the model to demand
extra focus on geolocation-specific details. The proposed
methodology consists of two main steps. The first step is
to conduct an initial analysis of the dataset to provide in-
formation concerning the data characteristics, biases, and
distributions. Based on the outcome of the initial analy-
sis, the dataset will be divided into subsets (i.e. regions)
with similar characteristics. The term “similarity” stands
for a location-dependent property of data that are not the
target ground truth labels, but may be highly correlated to
them. The next step is the infusion of the geolocation in-
formation e.g., regional clustering into the deep learning
architecture. Firstly, in Sect. 2.1, we explain how to sub-
divide the dataset into regions, and next, in Sect. 2.2 we
describe how the model’s geolocation awareness is imple-
mented.

2.1 Subdivision of the Data

A major step in the proposed methodology is to define
the so-called “regions”. The term region in the context of
this paper is referred to as a spatial subdivision of a global
dataset. This step requires domain knowledge about the task
and a deep understanding of the geolocational characteris-
tics of the input images and the target ground truth labels.
The dataset should be studied for its geolocational similari-
ties which are correlated to the target labels and can be used
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for dataset clustering and performance improvement of the
model. The geolocational similarities, for instance, can be
considered as the target object’s shape, color, temperature,
material, height, appearance in the image, etc.

The geolocation of an image can provide a wide range
of information. It defines the climate properties of location
and expected temperature range. It gives hints on the prob-
ability of existing land cover classes, farmed crop types, the
used material in the construction, possible types of natural
hazards, etc. However, where to put the boundaries and sep-
arate one region from the other is highly dependent on the
tasks and the target labels. For instance, a region can be de-
fined as a continent, country, city, climate region, geohash,
etc. depending on the target labels’ granularity, similarity,
and distinction. For instance, if the task is to classify the
crop types, climate regions will provide beneficial informa-
tion on the distribution of crops and is a reasonable choice
to cluster the global dataset. In the case of building footprint
detection, city borders can be a wiser choice as they clarify
the available construction material, culture, and policies.

A very important aspect of clustering the dataset into
regions is that the characteristics of the data—from which
the subsets are defined—should be known in the inference
mode. The reason is the region-specific branches of the
model to which the input image is forwarded depending on
its georeferencing information.

When deciding on defining the region boundaries, the
tradeoff between the number of regions (i.e. the granularity
of clustering) as well as the density of data in each region
should be well observed. The reason is that in the proposed
architecture, each of the regional branches is only trained
with the data from the corresponding region. In contrast to
the global models where the loss from forwarding every
single image is backpropagated through the whole model,
in this scenario, not every single image contributes to im-
proving the weights of the whole network. Suppose we have
a dataset with m subdivisions, each of them having n,, im-
ages. In this case, every part of a global model is updated
Y i, ny times after each epoch. In contrast, the regional
branches in the geolocation-aware model are updated n,,
times after each epoch. Therefore, low-density regions may
be combined with the most similar data to have a reasonable
performance in all regions. For example, having several re-
gions with thousands of data samples and one region with
only five samples is not recommended. Drastic imbalances
in the input size of each region will be further discussed in
the experiment of Sect. 3.2.2.

After deciding on the number of regions, images in the
dataset will be clustered to each region based on their ge-
olocation and assigned a region index (e.g. 0, 1,2, ..., m).
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Fig.3 Geolocation-aware deep coding modifications to the UNet backbone. a Original UNet architecture used as the backbone, b Geolocation-
aware deep coding modifications to UNet with halved feature sizes in the latter layers of the network for m = 2, ¢ Geolocation-aware deep coding
modifications to UNet with halved feature sizes in the intermediate layers of the network for m =3

2.2 Insertion of Geolocation Information into the
Network

The deep coding strategy is used to have a globally trained
geolocation-aware model. The deep coding of geolocation-
dependent data clustering is realized by sub-branching deep
blocks of the network. As mentioned above, we use the
U-Net architecture as the backbone for our proposed deep
coding strategy. UNet architectures use multiple convolu-
tional neural network (CNN) blocks to extract features from
input images and then apply additional CNN blocks to-
gether with skip connections to provide predictions. Fig. 3a
shows the original UNet architecture. The subbranching of
the model can be implemented at different levels of depth
and length. It should be ensured that the branching starts
where the model already has enough time to see and extract
mutual features, and the branched part is also long enough
to process region-specific features. The feature map size of

the branches is halved to avoid the space complexity of the
model.

The first implementation of deep coding modification
is shown in Fig. 3b with m = 2. The architecture shares
its first five CNN blocks with UNet, and it is divided
into two different subnetworks (starting from the 6th CNN
block) to predict the output. Each subnetwork is desig-
nated to the data from each clustered region and is only
activated—backpropagated in the training phase—when
images from the associated region index are fed into the
model. The subnetworks therefore are exposed to less data
compared to the first and last CNN blocks.

Another example of deep coding modification with m =
3 regions is demonstrated in Fig. 3¢ where the subdivision
occurs by the end of feature extraction blocks (starting from
the 3rd CNN block) and the first blocks of outcome pre-
diction (ending in the 7th CNN block). The prior blocks
of the network see images from all locations and therefore
can extract the common features. In the later part of the
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network, the blocks merge to output the final prediction via
the two last blocks. The suggested depth of subdivision in
both designs is derived empirically.

As exposure of the model to many samples robustifies the
feature extraction model, we avoid placing the branching
very close to the model input. The skip connections of the
architecture are carried on in the deep coding modification
to ensure the information flow through the whole network
as well as each regional branch. The dimensions of CNN
blocks stay unchanged as of the original UNet architecture
for both feature extraction and reconstruction levels. Each
regional subbranch will have different weights by the end
of training.

3 Example Applications

We verify the validity of our method in two use cases. First,
we incorporate geolocation awareness in detecting building
footprints from Sentinel-2 images in the cities of Stuttgart,
Germany, and San Francisco, USA. Next, we illustrate the
effect of infusing geolocation awareness in the global clas-
sification of forests from single thermal bands of Landsat
8. For both applications,

o We compare the proposed geolocation-aware model to
regional models, as well as a global model—referred
to as the model which is fed with images from all
available regions of interest—and another state of the
geolocation-aware model containing cyclic coordinate
encoding (Ekim and Schmitt 2024; Mai et al. 2023)
infused to UNet. In the cyclic coordinate encoding
strategy, three extra rasters containing the values of
latitude, the sin(27 x longitude/180), as well as the
cos(2m x longitude/180) are fed into an encoder block
(Geogpe). The extracted features from Geog,. are then
concatenated to the extracted image features in the
pseudo bottleneck stage of UNet and forwarded to the
prediction CNN blocks.

e The average Intersection over Union (IoU) is used as an
established measure for the quantitative evaluation of bi-
nary segmentation tasks.

e Training is conducted on NVIDIA®A100 80GB PCle
GPU.

3.1 Building Footprint Detection Using Sentinel-2
Images

Detection and monitoring of building footprints are es-
sential in urban planning and reconstruction, illegal build-
ing detection, three-dimensional city modeling, and disaster
monitoring and response applications. While major compa-
nies such as Google and Microsoft use high-resolution RS
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imagery to provide building footprint data available for dif-
ferent locations such as Africa (Sirko et al. 2021; Microsoft
2022), many research studies extract and update building
footprints using freely available Sentinel-2 data (Prexl et al.
2023; Prexl and Schmitt 2023; Corbane et al. 2021). The
global free-of-charge availability, decent resolution (10 me-
ters), and the 5-day revisit time of Sentinel-2 images make it
a great source to extract building footprints and update them
for general purposes. However, the worldwide differences
in the appearance, the construction material, and the sur-
roundings of buildings complicate the training of a global
building footprint detection model.

In this experiment, we challenge the incorporation of ge-
olocation of information when detecting building footprints
in two cities with a strongly heterogeneous appearance of
their buildings.

3.1.1 Dataset Creation and Subdivision

A dataset containing Sentinel-2 data for Stuttgart, Ger-
many, and San Francisco, USA is downloaded together
with their corresponding Microsoft building footprints (Mi-
crosoft 2022) from the year 2021. Similar to the examples
shown in the second row of Fig. 1, the cities have relatively
different appearances in the images in terms of roof colors,
materials, and average building heights. The scenes cover
mostly central urban areas and are cut into 600 patches of
256 x 256 pixel images for each city. Inspired by Prexl and
Schmitt (2023), both the labels as well as all 13 Sentinel-2
bands are resampled to 2.5 m GSD using bi-cubic resam-
pling. In this experiment, the subdivision of the dataset is
considered by the city boundaries.

3.1.2 Experiment

To conduct the experiments, a typical UNet as shown in
Fig. 3ais used as a benchmark for regional and global (here:
a dataset containing both cities) training. To incorporate the
geolocation information, we use the deep-coded modifica-
tion of UNet from Fig. 3b with two branches—each be-
longing to a city—in the prediction phase. For each city,
the training and validation data includes 500, and 100 of
256 x 256 patches from the Sentinel-2 image of the city.
All trainings are run for 100 epochs with a fixed learning
rate of 0.001.

For all experiments, the loss function, optimizer, and
batch size are set as Binary Cross Entropy loss, Adam op-
timizer, and 64 image samples.

3.1.3 Result

To evaluate the performance of the models, we conduct
qualitative and quantitative evaluations of the validation
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Fig.5 Performance of the trained models on the validation data

data from both cities. The quantitative evaluation of all
trained models is shown in Fig. 4 for each step of train-
ing on the evaluation set of each city. Because the num-
ber of training images is different in regional training than
in other configurations, the evaluations are conducted after
each step rather than epoch. As the batch size of all training
is set to 64 images, a step represents the model performance

: .. .

Global (all regions) Cyclic coordinate encoding Geolocation-aware

after seeing 64 samples. Therefore, a stepwise comparison
of the models with varying input sizes is more suitable than
epochwise. Additionally, the stepwise representation allows
the monitoring of the convergence speed and the stability of
the trained models. The plots for each city contain a global
model including both cities in the train set, a regional model
that is only trained on the corresponding city, the cyclic
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coordinate encoded model, and the proposed geolocation-
aware model. The plots are only shown till the convergence
point. The average IoU values of trained models on each
city are also shown in Table 2 for final evaluation.

From Fig. 4, it can be seen that the best-performing
model is the regional model which is trained on the cor-
responding city (see also Table 2). Achieving the highest
IoU values on the validation set, the model outperforms
all other configurations for both Stuttgart and San Fran-
cisco. The regional model that is trained on the nonfamiliar
city, has a relatively weak performance on both regions.
Converging to almost the same IoU value by the end of
the training, the geolocation-aware model outperforms the
global one by 0.01 in the validation set of San Francisco.
While the cyclic coordinate encoding does not change the
performance of the global model, the proposed geolocation-
aware model follows an improved performance average dur-
ing the training in both cities.

To have a visual evaluation, we tested the trained models
on two sample images from each city as shown in Fig. 5.
To have a relative perception of the scene, the RGB chan-
nels of input data are shown in the first column, followed
by the ground truth building footprint labels in the second
row. The predictions of the model which is trained on the
corresponding city are shown in the 3rd column. The global
model contains data from both cities, and the coordinate-
encoded model and the geolocation-aware model are shown
on the 4th—6th columns, respectively. Although the perfor-
mance of all configurations seems to be reasonably good,
there are fewer false positives and more precise predictions
in the geolocation-aware predictions compared to the global
and coordinate encoded models for both cities.

3.2 Forest Classification Using Single-Channel
Thermal Imagery

High-resolution thermal emissions are the key to under-
standing and adapting to climate variability, managing
water resources sustainably for agricultural production, mit-
igating health stress during heatwaves, predicting droughts,
monitoring coastal and inland waters, and addressing
natural hazards such as fires and volcanoes. Therefore,
a range of high-resolution thermal missions including TR-
ISHNA (Roujean et al. 2021), SBG-Thermal (Basilio et al.
2022), and LSTM (Koetz et al. 2018) are planned to be
launched in the coming years. Furthermore, there is an
increasing interest in new space initiatives preparing for
smallSat missions and constellations for high-resolution
thermal observations. As a result of increasing demand
and interest in high-resolution thermal imagery, it becomes
more crucial to have robust, reliable, and well-perform-
ing information extraction models adapted to the thermal
domain.
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Being highly correlated to thermal emissions, land cover
information is implicitly present in a thermal image. A land
cover is distinguishable in the thermal image if, a) the dif-
ference in thermal emission of the land cover to its sur-
roundings is higher than the radiometric resolution of the
sensor, and b) the size of the land cover is greater than
half of the spatial resolution of the imaging sensor. While
mostly used as auxiliary information to improve the land
cover predictions from multispectral imagery (Abdalkad-
hum et al. 2020; Sinha et al. 2015; Eisavi et al. 2015; Zhao
et al. 2019; Sun and Schulz 2015), high-resolution ther-
mal imaging missions enable the classification using single
thermal imagery.

In particular, the correlation between land cover and ther-
mal emissions plays a crucial role when it comes to wildfire
detection. Many imaging methods designed to identify the
heat signature of fires rely on MWIR and TIR sensors.
While smoke can serve as an indicator for detection, it can
also obstruct the view of the flames. TIR imaging offers
a distinct advantage in this aspect as thick smoke remains
transparent at these wavelengths, enabling the detection of
hotspots through smoke. This capability proves valuable in
monitoring active fires and locating spot fires. Additionally,
TIR imaging surpasses shorter wavelength infrared imag-
ing by providing a limited dynamic range in the presence
of fire, thereby facilitating the imaging of both the fire and
background without sensor saturation (Allison et al. 2016).
Therefore, it can be highly beneficial to continuously mon-
itor wildfire-prone areas with thermal sensors.

To identify the presence of a wildfire, initially, the sensor
should detect wildfire-prone areas namely forests. However,
single thermal channel land cover mapping is a complex
task. The reason is that thermal images do not provide rich
spectral and polarization-based feature space. They also
lack sharp textural information and are highly dependent
on the geolocation of images and therefore, the tempera-
ture emissions. On the other hand, contrary to the RGB
data, thermal imaging is also useful during the nighttime.
Therefore, we chose this application to showcase that it is
possible to classify forests from a single thermal image and
evaluate the impact of geolocational awareness of the model
in providing accurate predictions.

In this experiment, we focus on classifying forests from
a single thermal band. For this purpose, a globally dis-
tributed dataset including the Landsat 8 band 10 thermal
images together with their corresponding ESA Worldcover
data (Zanaga et al. 2022) is created in Sect. 3.2.1. The
global, regional, cyclic coordinate encoded, and geoloca-
tion-aware models are trained for the configurations of dif-
ferent subdivisions of datasets in Sect. 3.2.2. The quantita-
tive and quantitative results are presented in Sect. 3.2.1 and
discussed in Sect. 4.
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distribution of images over different climate regions

Table 1 The specifications of training configurations for m = 3 and m = 5 regions

Number of regions Model Learning rate Schedueler No. training images No. validation images

m=>5 Tropical 0.001 None 1677 50
Arid 0.001 Cosine annealing 84 50
Temperate 0.001 None 1190 50
Cold 0.001 Cosine annealing 1540 50
Polar 0.001 Cosine annealing 162 50
Global 0.001 None 4653 250
Geolocatoin-aware 0.0001 None 4653 250

m=3 Tropical 0.001 Cosine annealing 1427 300
Temperate 0.001 Cosine annealing 940 300
Cold 0.001 Cosine annealing 1290 300
Global 0.001 Cosine annealing 3657 900
Geolocation-aware 0.0001 None 3657 900

3.2.1 Dataset Creation and Subdivision

The dataset is created using globally distributed sparse data
points for which Landsat thermal band 10 emissions to-
gether with corresponding ESA world data from 2021 are
downloaded. Images have the size of 512 x 512 pixels and
ESA World Cover data are downsampled to the pixel spac-
ing of 100 meters. The images are selected in a way that
they at least include 5% of tree cover data in their cor-
responding land cover labels. The tree cover class of ESA
land cover contains any geographic area dominated by trees
including forests. Thus, the tree cover class will also be re-
ferred to as the forest class in the context of this paper.
Considering Sect. 2.1 and the significant impact of
the climate on the type, temperature, and appearance of
forests, the well-known Koppen-Geiger climate classifica-
tion scheme (Cui et al. 2021) is used to divide the dataset
into subsets with similar characteristics. The Koppen-
Geiger climate classification consists of 5 major climate
regions namely, tropical, arid, temperate, cold, and po-

lar, each covering several sub-climate regions. The major
climate zones are an indicator of major forest types (i.e.
tropical, temperate, and boreal) (Martone et al. 2018),
and temperature expectations. Therefore, Koppen-Geiger’s
major climate zones are used for the division of the dataset.

The global distribution of the train and validation images
and the distribution of data within 5 major climate regions
are shown in Fig. 6 from left to right respectively. It can
be seen that the majority of forest data are in the topical,
temperate, and cold areas causing high imbalances in the
different subsets.

3.2.2 Experiment

To validate the impact of region awareness through the pro-
posed methodology in Sect. 2, we consider two main train-
ing configurations namely m = 5 and m = 3. The latter
configuration includes data from tropical, temperate, and
cold regions with the highest amount of forest data and
provides a balanced training configuration. In both config-
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Fig.7 The average IoU values on the validation set of each region for regional, global, and geolocation-aware training

urations, a global model—including data from all m re-
gions, a cyclic coordinate encoded model, a geolocation-
aware model, and m regional models—i.e., UNets trained
on the corresponding region—are trained.

@ Springer

All experiments’ loss function, optimizer, and scheduler
(if used) are set as Binary Cross Entropy loss, Adam opti-
mizers, and Cosine annealing respectively. For all the ex-
periments, the batch size is fixed to 64 image samples and
several learning rates with and without a scheduler are used
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Table2 The IoU evaluation of training on the validation set

Applications Regions Global Cyclic coordinate Geolocation-aware Regional
Building footprint Stuttgart 0.56 0.56 0.56 0.57
detection San Francisco 0.56 0.56 0.57 0.59
Forest classification Tropical 0.72 0.72 0.72 0.74
Cold 0.55 0.56 0.56 0.58
Temperate 0.59 0.59 0.60 0.62
Tropical 0.72 0.71 0.72 0.75
Cold 0.57 0.55 0.55 0.57
Temperate 0.59 0.59 0.59 0.64
Polar 0.47 0.41 0.48 0.53
Arid 0.34 0.35 0.37 0.37

and the best-performing ones are selected as final training.
The training parameters for each configuration are illus-
trated in Table 1.

3.2.3 Result

All trained models are evaluated on the validation set of
each region. The quantitative results of the trained mod-
els are illustrated in Fig. 7 where the average IoU of each
model is computed on the validation set after each step. Due
to the varying number of training images in each configu-
ration, the training steps are used to illustrate and compare
the performance of models. This helps to have a compar-
ison point where all models have been fed with a similar
number of images. The plots for each region include the
global model which is trained on all regions, the regional
model which is only trained on the corresponding region,
the cyclic coordinate encoded model, and the geolocation-
aware model. The plots are only shown till the convergence
point. The average IoU values of trained models on each
region are also shown in Table 2 for final evaluation.

Fig. 7 shows that almost for all regions, the regional
training is not only the quickest to converge but also
achieves higher IoU values after convergence (see also
Table 2). In polar, temperate, and tropical regions, the
best-performing model remains the regional ones. In the
tropical and temperate regions of m = 5 configuration, the
global and geolocation-aware models converge to the same
IoU values. In contrast, in the Polar and Arid regions, the
geolocation-aware model outperforms the global and cyclic
coordinate-encoded models. In the cold climate zone, how-
ever, the global model has a better performance (0.02) than
the geolocation-aware one. In the m = 3 configuration, the
geolocation-aware as well as the cyclic coordinate encoded
models outperform the global model in the Cold region
while converging to the same IoU value in the Tropical re-
gion. The proposed geolocation-aware model outperforms
the other two configurations in the Temperate region. For

each region, the regional training in other regions has the
weakest performance.

To qualitatively evaluate the model, one sample valida-
tion image per region is predicted for the forest class with
global, regional, cyclic coordinate encoded, and geoloca-
tion-aware models as shown in Fig. 9. From the predictions
illustrated in this figure, it can also be seen that the regional
predictions are relatively detailed and close to ground truth
labels. The global model as well as the coordinate encoded
models eliminate details and come up with general predic-
tions. The geolocation-aware outputs, however, are rather
detailed and close to the regional and therefore, the ground
truth labels.

1e9

304 Single Global UNet
’ Geolocation-aware embedded in the end layers
—— Geolocation-aware embedded in the deep layers

2.5 4 —— Region specific model

2.04

1.5

1.0 1

Total trainable paramters

0.5

0.0 4

0 20 40 60 80 100
Number of regions
Fig.8 The comparison of total parameters needed for a single glob-

ally trained UNet, the proposed architectures, and the regional models
trained on each of the divided subsets
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4 Discussion
4.1 Computational Complexity

The computational complexity of proposed deep coding ar-
chitectures is similar to that of standard UNet in the for-
ward pass of batch processing in both training and inference
modes. As the branches with no corresponding input within
a batch are inactive, depending on the batch size bs, there
will be bs times forward passes in both global and geoloca-
tion-aware models. The backward pass however is repeated
k times (k being the number of regions from which the
images are present in the batch). To optimize the backprop-
agation of the network in case large number of regions,
we suggest selecting each batch from one region so that
the the backpropagation will have an equal burden to one
global UNet. To avoid the bias of the feature extractor mod-
ule towards the latest batch, the batches in the last epochs
should have a balanced distribution over regions.

To have an overview of the space complexity of the pro-
posed method, Fig. 8 shows the trainable parameters needed
for a maximum of 100 regions in a single-global UNet, pro-
posed deep-coded architectures, and regional models where
one UNet per region is trained. The deep coding modifica-
tion in the deep layers of the network leads to a higher
number of trainable parameters, whereas the architecture
with the branches in the latter blocks of the network has
a much smaller number of trainable parameters in compar-
ison to the training of multiple regional networks. As the
space complexity of the deep-coded architecture increases
for a large number of regions, the balance between the num-
ber of subdivisions, the sufficient amount of data within
each region, and the space complexity of the model should
be observed when applying the methodology. To avoid an
overcomplex model, we suggest having the deep coding
modification in the latter parts of the network or further
decreasing the feature map size of the branches.

4.2 Experiment Outcomes

Intuitively, very accurate predictions are expected from
a model that is trained on one region and tested on the
same region due to some extent of geolocational overfit-
ting. Therefore, it is anticipated that the regional models
outperform all other models. On the other hand, if a model
is trained on one region and tested on an unalike region,
we will expect a weak performance since the model is
not exposed to any samples from the test region. More-
over, a global model that is exposed to samples from all
regions is expected to be more generalizable and robust
against overfitting. However, when training a global model,
to achieve reasonable results on all regions, the model is
forced to treat the region-specific characteristics as some

sort of augmentation, and therefore overlook the region-
specific features. This unwanted augmentation reduces the
model’s focus on region-specific details and therefore, de-
creases the model’s performance to the regional models.
We contemplate that the geolocation-aware model benefits
from

e being exposed to samples from all regions and therefore,
is generalizable and robust against overfitting

e meanwhile, considering region-specific features and us-
ing them to achieve higher performance in each region.

The plots in Figs. 4 and 7 confirm those assumptions. As
expected, the regional models achieve the highest perfor-
mance in both applications, followed by geolocation-aware
and then either of the global or coordinate encoded models.
The weakest performances belong to the regional models
trained in unmatched regions.

In addition to the quantitative results, the visual results
from Figs. 5 and 9 show that the regional models are ca-
pable of predicting building footprints and forest class with
the highest level of detail, whereas the global and coordi-
nate encoded models tend to generalize the predictions and
eliminate details. The geolocation-aware model is relatively
close to the regional model in catching the details.

Performing nearly as well as the regional ones, geoloca-
tion aware models are less prone to overfitting as they are
fed with a higher number of training samples with diverse
information. This can be observed in Fig. 4, where the re-
gional training of San Francisco tends to overfit towards the
end of the training.

The clustering strategy plays a crucial role in the effec-
tiveness of geolocation-aware model training. In the build-
ing footprint use case, the dataset division is rather trivial
whereas in the second use case, further analyses are needed
for an optimal subdivision. The correlation of the climate
zones to the forest formation and the impact of adding the
climate regions to the training can be sensed from the result
in Figs. 7 and 9. Both visual and graphical results confirm
that when a model is trained on one climate region, it is
better capable of detecting the forest from their thermal
emissions and when the model has not seen data from that
region, it fails to have precise extraction of forest data from
thermal images.

The dataset of building footprint detection and the m = 3
region configurations of forest detection have a relatively
balanced distribution of data over each region, whereas,
in the m = 5 scenario, the polar and arid regions have
drastically fewer images. The comparison of both scenar-
ios shows that the geolocation-aware model can bear some
extent of imbalances in the clustering of the dataset and
perform desirably well. However, we do not recommend
having drastic imbalances between regional subdivisions.
The reason is that the low number of training data for a re-
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gional branch can cause a low amount of backpropagations
in the corresponding branch and can negatively impact the
regional performance of the model. While data imbalance
was not an issue within the scope of experiments in this
paper, we suggest merging very small subsets with well-
represented ones or applying best practices such as data
augmentation, and weighted batch sampling to compensate
for the lack of data in one region.

A critical conclusion that can be derived from compar-
ing both experiments is that if the measurement data itself
does not contain any clue regarding the image geolocation,
the geolocation-aware model can significantly increase the
understanding and therefore the performance of the model
over all regions. For instance, in the forest detection use
case, where only single band thermal emission measure-
ments are provided to the model, realizing the geolocation
of the image is not trivial and geolocation awareness can
significantly increase the prediction performance. However,
in case geolocational clues exist in the original measure-
ments, e.g. by geolocation-specific differences in the visual
appearance of building roofs, the global model can under-
stand and incorporate the image location and improve its
performance after a while. In this case, the geolocation-
aware model reaches higher validation performances in ear-
lier steps and leads to improved overall results. For exam-
ple, in the building footprint application where 13 channels
are fed into the model, the difference in roof colors and
materials will be clear to the model after several epochs
and it decodes the hidden geolocation information. How-
ever, the geolocation-aware model grasps the information
in earlier steps and therefore has a higher IoU average over
the validation set.

The method divides the dataset into hard clusters. How-
ever, geographical features change gradually rather than
abruptly. The common CNN blocks as well as the skip
connections help consider this graduality of transitional ar-
eas in the training and inference phase of the model. In the
case of the neighboring regions with possible transitional
areas as in the experiment of Sect. 3.2, we recommend us-
ing the architecture from Fig. 3¢ with common CNN blocks
in feature extraction and prediction stages to avoid ignoring
subtleties of transitional areas. In case of distinct separation
of regions in the dataset with no neighboring regions similar
to Sect. 3.1 where the cities are further apart, the suggested
architecture in Fig. 3b can also be considered.

Fig. 7 highlights the averaged IoU values on the vali-
dation set. However, the fluctuations can still be seen in
the stepwise predictions. Gradually decreasing over train-
ing, drastic performance fluctuations can be seen for almost
all training configurations. The reason is the random batch
sampling and batch-wise optimization of training after each
step. The geolocation-aware models, however, are relatively
stable with their predictions even in the first epochs of train-
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ing. The reason is that the geolocation-aware model benefits

from seeing more data in the feature extraction module and

vigilant predictions based on the region index of images.
To summarize:

e Advantages. While trained and tested globally, the ge-
olocation-aware model can catch the regional character-
istics and details. It has a higher prediction power com-
pared to the model with cyclic coordinate encoding. It has
a relatively early convergence and enables single global
model training instead of multiple regional models.

e Disadvantages. Additional effort should be made to
thoroughly analyze the dataset and determine the proper
clustering. The tradeoff between the amount of data in
each region and the number of branches should be ob-
served to avoid an ill-posed complex model.

The proposed methodology specifically focuses on spa-
tial information due to its importance in EO data and tasks,
nevertheless, the same strategy can be employed to incorpo-
rate temporal, spatial, and camera-related hyperparameters
such as look angle. To avoid any regional bias in the mu-
tual blocks of the network and further improve the model
performance, a new batch sampling with an equal number
of regional data may be employed.

5 Conclusion

In this paper, we propose a methodology that enables in-
corporating geolocational information into training a global
model for EO tasks. To do so, we first subdivide datasets
into regions with similar characteristics and then, introduce
the deep coding strategy that involves assigning lighter deep
branches to each geolocational region. The deep branches
are only fed with their associated regional data in both for-
ward and backward passes, and the geolocational character-
istics of the corresponding region are implicitly learned. We
examined our methodology in the applications of building
footprint detection from Sentinel-2 bands and forest classi-
fication from a single thermal image. The city boundaries
and climate regions are used for the division of the dataset,
respectively. For both applications, we train and validate
regional, global, and cyclic coordinate encoded, and the
proposed geolocation-aware models, and compare the per-
formances of each region. While regional models always
achieve the best performances, the proposed geolocation-
aware models have a relatively improved performance com-
pared to the global and coordinate-encoded models. The
results show that the methodology can be used to incorpo-
rate the geolocational characteristics of data in the train-
ing while keeping the advantage of model exposure to all
samples. We also illustrated that employing the geoloca-
tion-aware deep coder improves the prediction performance
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of global models by incorporating geolocational informa-
tion.
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