
a

b

i
i

ISPRS Journal of Photogrammetry and Remote Sensing 220 (2025) 192–206 

A
0
o

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Synthesis of complex-valued InSAR data with a multi-task convolutional
neural network
Philipp Sibler a,b , Francescopaolo Sica a , Michael Schmitt a ,∗

Department of Aerospace Engineering, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany
Hensoldt Sensors GmbH, Graf-von-Soden-Str., 88090, Immenstaad, Germany

A R T I C L E I N F O

Keywords:
Synthetic aperture radar (SAR)
Deep learning
Multitask learning
Image synthesis
SAR interferometry (InSAR)

A B S T R A C T

Simulated remote sensing images bear great potential for many applications in the field of Earth observation.
They can be used as controlled testbed for the development of signal and image processing algorithms or can
provide a means to get an impression of the potential of new sensor concepts. With the rise of deep learning,
the synthesis of artificial remote sensing images by means of deep neural networks has become a hot research
topic. While the generation of optical data is relatively straightforward, as it can rely on the use of established
models from the computer vision community, the generation of synthetic aperture radar (SAR) data until now
is still largely restricted to intensity images since the processing of complex-valued numbers by conventional
neural networks poses significant challenges. With this work, we propose to circumvent these challenges by
decomposing SAR interferograms into real-valued components. These components are then simultaneously
synthesized by different branches of a multi-branch encoder–decoder network architecture. In the end, these
real-valued components can be combined again into the final, complex-valued interferogram. Moreover, the
effect of speckle and interferometric phase noise is replicated and applied to the synthesized interferometric
data. Experimental results on both medium-resolution C-band repeat-pass SAR data and high-resolution X-band
single-pass SAR data, demonstrate the general feasibility of the approach.
1. Introduction

Synthetic Aperture Radar (SAR) Interferometry is an essential tech-
nique in the field of remote sensing due to its ability to accurately
provide high-resolution topographic information and measure changes
n the Earth’s surface. SAR interferometry (InSAR) utilizes a pair of SAR
mages acquired with a spatial baseline.

Changes in the spatial position or the time of acquisition of the
SAR sensor, forming the spatial or temporal baseline, lead to changes
in the complex reflectivity of a scene that can be evaluated by InSAR
processing. The importance of the InSAR technique lies in its ability
to accurately measure topography and surface deformation, which can
have applications in various fields such as natural hazard assessment,
infrastructure monitoring, change detection, and environmental stud-
ies. SAR interferometry techniques start from combining a pair of
coregistered complex SAR images but, for higher-level InSAR process-
ing, can extend to the processing of a stack of multiple related and
coregistered images.
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E-mail addresses: philipp.sibler@unibw.de, philipp.sibler@hensoldt.net (P. Sibler), francescopaolo.sica@unibw.de (F. Sica), michael.schmitt@unibw.de

(M. Schmitt).

Deep Learning (DL) algorithms have been used to address various
challenges in SAR interferometry, including improving the accuracy
of digital elevation models (DEMs), reducing the complexity of phase
unwrapping, and mitigating phase noise in SAR interferograms. To our
knowledge, the majority of DL algorithms applied in the InSAR realm
are so far based on supervised learning. This type of approach requires
large and diverse sets of labeled data to learn from and generalize
to unseen data. However, acquiring large amounts of labeled InSAR
data can be challenging and even not always possible, as not every
task can be associated with ground truth, such as for InSAR phase
and coherence estimation as well as phase unwrapping. Therefore,
the usually adopted strategy is generating synthetic pairs of true and
noisy signals. Synthetic InSAR data can be generated, for example, by
simulating SAR acquisitions over a virtual terrain, taking into account
various types of scatterers and acquisition geometries. Synthetic data
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eneration can be used to improve the development and evaluation of
Deep Learning-based InSAR algorithms in a controlled environment.

1.1. Synthesis of remote sensing data

The generation of synthetic data for remote sensing applications can
itself be supported by Deep Learning architectures and has already been
performed for numerous EO applications in the past years.

The most direct way to generate artificial images using deep learn-
ng has been offered by Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014) and later by their conditional variants
(cGANs) (Isola et al., 2016; Wang et al., 2018). GANs consist of two
neural networks: a generator network and a discriminator one. The
generator network generates synthetic images, while the discriminator
network evaluates the quality of the synthetic images and provides
feedback to the generator. Conditional GANs can improve the quality of
synthetic images by providing additional information to the generator
network.

This technique has been successfully applied to generate artificially
labeled datasets of optical remote sensing images in Howe et al. (2019)
by applying labeled semantic maps to realistic optical EO images. In
this work, the authors demonstrated that augmenting real datasets with
heir synthetic data increased the accuracy of object detection tasks.
imilarly, in Abady et al. (2022) the authors rely on GANs for land
over and season transfer on hyperspectral Sentinel-2 datasets. The
and cover is used as input to modify image content from vegetation

to barren and vice versa, whereas the season information is used to
erform a transfer of image content from winter to summer or vice

versa.
Moreover, convolutional neural networks (CNN) have been largely

used for image-to-image translation tasks. Among the EO applications,
we can mention the tasks of scene matching between optical and SAR
image modalities (Mou et al., 2017; Merkle et al., 2018; Hughes et al.,
2018), SAR image synthesis (Guo et al., 2017), SAR automatic target
ecognition (ATR) tasks (Shi et al., 2019; Cao et al., 2020; Brosch and
eumann, 2021; Song et al., 2022), aiding interpretation of SAR data

using artificially created SAR patches (Fuentes Reyes et al., 2019), and
ultimodal optical and SAR image synthesis (Baier et al., 2021).

1.2. Synthesis of complex-valued SAR images

The generation of synthetic complex-valued SAR images or complex-
alued SAR interferograms is still a largely unexplored application area
f DL-based methods for Earth observation. The main challenges arise
rom the fact that InSAR data are inherently complex-valued, con-

sisting of amplitude and phase components. Their generation requires
accurate modeling of the underlying physical processes such as radar
scattering, acquisition geometry, and wave propagation. This includes
an appropriate network architecture, loss function, and training data.
Complex-valued convolutional neural networks could be a viable solu-
tion for processing and analyzing complex data. However, they must
be carefully designed to account for the unique properties of InSAR
data, including the preservation of the phase component (Asiyabi et al.,
2023). Furthermore, an appropriate loss function is needed to measure
he similarity between the synthetic and real InSAR data. This loss
unction must take into account the amplitude and phase components
f the data.

Nonlinear activation functions and loss terms are typically non-
olomorphic when applied to complex-valued inputs, meaning they
ack the complex derivatives needed for training. Wirtinger derivatives
an help with this problem (Hirose, 2012).

Despite the rapid growth in the use of complex-valued CNNs, there
s still no approach that can satisfy all of the above criteria, i.e., phase
reservation by the network cannot always be guaranteed, and loss
unctions usually consider only the phasor amplitude, ignoring the
hase. Finding an appropriate way to handle complex-valued data in
193 
eal-valued CNNs is necessary to avoid direct CV-CNN implementations.
n fact, input data with simply concatenated complex channels in CNN
rocessing is prone to suffer from spectral aliasing and modulation
rtefacts caused by nonlinearities in the activation function layers when
raversing the CNN (Sibler et al., 2021).

Therefore, the usual alternative is to resort to real-valued CNNs
nd split the input signal into real and imaginary components after
ecorrelating the two input quantities, as proposed in Sica et al. (2021).

Following the same principle, preliminary work shows that the use
f real-valued CNN can be further applied to the generation of complex
nSAR data (Sibler et al., 2021). The authors propose an upsampling
nd modulation approach that converts a data set from complex to
eal values while preserving all spectral information: The complex
nalytic image is upsampled by a factor of 2 and modulated to the
enter of the Nyquist zone. By enforcing the symmetry of its discrete
ourier spectrum the full spectral content of the image is preserved,
nd a purely real-valued image is retrieved. Thus, real-valued network
odels can be used. However, this approach has limitations due to the

eduction of usable image size by the upsampling factor of 2 and in its
bility to replicate high-frequency image content.

For super-resolution applications on complex SAR data (Addabbo
t al., 2023) are employing a split network architecture with separated
etworks for the real and imaginary parts. In an attempt to properly
reserve phase information also in the high-resolution complex output
mages they only allow for a single crossover connection and thus a
imited sharing of information between both networks. Apart from this
onnection both networks are trained and operated individually.

.3. Paper contributions

In this manuscript, we aim to provide a DL-based methodology
or the generation of synthetic complex interferometric SAR data. We
pproach this task by using a CNN and formulating the complex sig-
al estimation by retrieving reflectivity, coherence and phase images
eparately. The correlation of these three quantities allows us to for-
ulate the problem as a multitask optimization problem and to use

a multi-objective loss. We show that the proposed approach provides a
general framework for interferogram generation that can be adapted to
ifferent types of datasets if properly trained for each specific scenario,
ncluding variations in acquisition modalities, resolution, spatial and
emporal baselines.

We extend the topic of complex-valued CNN synthesis for SAR
pplications by providing the following main contributions:

1. Synthesis of artificial complex-valued SAR interferograms in
ground coordinates on a multitask CNN and a supervised train-
ing approach

2. Prediction of the achievable coherence level for SAR interferom-
etry of a given scene

3. Synthesis of artificial speckle and interferometric phase noise
based on scene coherence

As an additional remark on the employed coordinate system we see
o general limitation for generating artificial complex-valued SAR data
n the original sensor slant range-azimuth coordinate system. However,
s all input constraint images are referenced to a ground coordinate
ystem, they can directly be interpreted and further processed in this

system using a variety of tools, and as SAR data can readily be projected
to ground coordinates, working in ground coordinates appeared as a
reasonable basis for the general approach presented in this paper.

Moreover, by directly using ground coordinates we aimed to avoid
back-geocoding input constraint information to sensor coordinates,
with the risk of introducing errors due to imperfect knowledge of the
local topography, especially as the typical resolution of available DEMs
is much lower than the information within the input data.

The manuscript is structured as follows: Section 2 introduces InSAR
imaging and its statistical model, Section 3 gives a complete description
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Fig. 1. InSAR acquisition geometry.
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of the proposed methodology. Section 4 describes all the materials used,
including the datasets used and the preprocessing applied. The experi-
mental results and discussion follow in Sections 5 and 6, respectively.
Finally, Section 7 presents the conclusion and future work.

2. InSAR data model

2.1. Complex-valued InSAR data model

Complex-valued SAR imagery is acquired from a moving radar
sensor in a side-looking configuration that repeatedly and coherently
illuminates the scene with pulses in its side-looking direction (range)
and collects echo vectors along its direction of motion (azimuth). Fo-
cusing algorithms compress the pulse bandwidth in the range direction
and compensate for the Doppler shift of the scattered echoes in the
azimuth one. By compressing the resulting Doppler bandwidth of the
echoes in the azimuth direction as well, a two-dimensional SLC image
𝑢 is generated (Bamler and Hartl, 1998; Fornaro and Pascazio, 2014).

If the same scene is imaged on two nearby parallel trajectories
separated by a spatial baseline 𝐵, a range difference 𝛥𝑅 to a scatterer
between the two SAR sensor positions is transformed by interferometric
processing into a measured interferometric phase 𝜙12. This type of
interferometry is also called across-track interferometry.

The formation of an interferogram 𝒗 from two co-registered
complex-valued images 𝒖𝟏, 𝒖𝟐 ∈ C is achieved by

𝒗 = 𝒖𝟏 ⋅ 𝒖𝟐∗ = |

|

𝒖𝟏|| ||𝒖𝟐|| ⋅ exp
(

𝑗 𝜙12
)

(1)

with the interferometric phase

𝜙12 = 𝜑1 − 𝜑2. (2)

The phase terms of the two images are given by

𝜑1 = −4𝜋
𝜆
𝑅1 + 𝜑1,𝑠 (3)

𝜑2 = −4𝜋
𝜆
𝑅2 + 𝜑2,𝑠, (4)

where 𝑅𝑛 is the distance to the scatterer for image 𝑛 and 𝜑𝑛,𝑠 is the
phase shift caused by the scatterer itself. If the scatterer phase shift 𝜑
𝑛,𝑠
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can be assumed to be the same for both images, and with 𝛥𝑅 = 𝑅2−𝑅1
the interferometric phase can be written as

𝜙12 =
4𝜋
𝜆
𝛥𝑅. (5)

For two scatterers at a constant range 𝑅 but a topographic height
difference 𝛥𝑧 the phase-to-height sensitivity for an InSAR acquisition can
be found with some derivations from the acquisition geometry, with 𝐵⟂
as the perpendicular baseline and 𝜃 as sensor observation angle.
𝜕 𝜙
𝜕 𝑧 = 4𝜋

𝜆
𝐵⟂

𝑅 sin𝜃
(6)

A local topographic height change 𝛥𝑧 thus translates to a change of
𝛥𝜙 in the interferometric phase according to Eq. (6). Often, the height
of ambiguity for a full fringe (2𝜋) of interferometric phase is provided
to characterize the height sensitivity and the non-ambiguous height
interval of the interferogram for the acquisition geometry depicted in
Fig. 1.

𝑧2𝜋 = 𝜆
2
𝑅 sin𝜃
𝐵⟂

(7)

Especially for single-pass interferometry, based on two SAR sensors
separated by a spatial baseline 𝐵 but receiving parallel in time, the

agnitudes |

|

𝒖𝟏||, |

|

𝒖𝟐|| of both SLCs can be assumed similar or almost
qual. Under that assumption a general scene reflectivity 𝛽 can be
stimated from both SLC amplitudes as (Deledalle et al., 2011; Sica

et al., 2018)

𝛽 = (|
|

𝒖𝟏||
2 + |

|

𝒖𝟐||
2)∕2 (8)

2.2. SAR image statistics

The SAR signal is nowadays well-known and statistically tractable.
The statistical properties in terms of amplitude and phase, as well as
in terms of real and imaginary parts, and the statistical dependen-
cies linking these quantities have been extensively studied in several
publications since the pioneering work in Bamler and Hartl (1998).
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In general, two opposite cases are considered that can describe
the majority of situations found in real SAR images: (1) distributed
Gaussian scattering and (2) point scattering. While a point scatterer can
be treated as a deterministic complex-valued response of a dominant
target in the scene, Gaussian scatterers are formed by a coherent
superposition of an arbitrary number of sub-scatterers within a res-
olution cell. These individual contributions are unknown and cannot
be reconstructed individually. For a sufficiently large number of sub-
scatterers, and if there is no dominant scatterer in the resolution cell,
the central limit theorem holds and the SAR pixel 𝑧 can be assumed to
be a circular Gaussian random variable. The Gaussian scattering model
typically holds for homogeneous scenes, such as rural or vegetated
areas, or almost for any land cover type for low-to-medium resolution
SAR imagery.

The circular Gaussian statistic translates in random variations of
the magnitude of the SAR image, generating a pseudo-noise behavior
defined as ‘‘speckle’’. Being an intrinsic characteristic of the radar
scattering mechanism, speckle can provide useful information about the
imaged targets. In fact, for interferometric applications this information
content is essential as speckle patterns with strong correlations between
the images are a sign that the contributions of the individual scatterers
in both their amplitude and phase relations within certain resolution
cells are relatively similar, hence the scene is not decorrelated in
the backscatter superposition of its elements, which is also reflected
by a high coherence magnitude for this area. On the other hand,
speckle for other applications more interested in image intensity often
impairs the visual understanding and interpretation of SAR images and
is therefore considered as noise and filtered out through despeckling
procedures (Goodman, 1975).

Given two single-look complex images 𝒖𝟏, 𝒖𝟐, the interferogram 𝒗 is
computed as the complex conjugate product of the two: 𝒗 = 𝒖𝟏 ⋅𝒖𝟐∗ and
given the circular Gaussian statistic of the SLCs, its PDF is given by:

𝑃 𝐷 𝐹 (𝒗) = 1
𝜋2det (𝑪)

exp
(

−𝒖𝐻𝑪−1𝒖
)

. (9)

with 𝒖 =
( 𝑢1
𝑢2
)

and is fully characterized by its complex covariance
matrix

𝑪 = E{

𝒖𝒖𝐻
}

=
(

𝐼1 𝛾12𝐼
𝛾∗12𝐼 𝐼2

)

(10)

with 𝐼 =
√

𝐼1𝐼2 =
√

E
{

|

|

𝒖𝟏||
2
}

E
{

|

|

𝒖𝟐||
2
}

and 𝐼𝑖 as the expected value

f the intensities over a set of pixels of the image 𝑢𝑖. With the definition
f complex coherence

𝛾12 =
E
{

𝒖𝟏𝒖𝟐∗
}

√

𝐼1𝐼2
= |

|

𝛾12|| exp
(

𝑗 𝜙12
)

(11)

the expected value of the interferogram 𝑣 = 𝑢1𝑢∗2 can directly be found
as

E {𝑣} =
√

𝐼1𝐼2 ||𝛾12|| exp
(

𝑗 𝜙12
)

(12)

For the special case of multi-looking, where the expected value
ctually is approximated by averaging over neighboring pixels, the
ulti-looked interferogram �̃� thus actually can be written as:

�̃� ≈
√

𝐼1𝐼2 ||�̃�12|| exp
(

𝑗�̃�12
)

≈ |

|

�̃�1|| ||�̃�2|| ||�̃�12|| exp
(

𝑗�̃�12
)

(13)

with �̃�, �̃� as the averaged magnitude and phase, and �̃� as the local
coherence estimate for an averaged pixel.

2.3. InSAR phase statistics

With the complex coherence 𝛾12 defined in (11) it can be seen that
𝜙12 is the phase of the interferogram pixel or interferometric phase.
The coherence magnitude |𝛾 | is related to the noise content of the
| 12|
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interferometric phase 𝜙12: As it was shown (Bamler and Hartl, 1998)
the marginal PDF for the phase drawn from the joint PDF (9) can be
written as

𝑃 𝐷 𝐹 (𝜙12) =
1 − |

|

𝛾12||
2

2𝜋
1

1 − |

|

𝛾12||
2 cos2

(

𝜙12 − 𝜙0
)

⎛

⎜

⎜

⎜

⎝

1 +
|

|

𝛾12|| cos(𝜙12 − 𝜙0)ar ccos(− |

|

𝛾12|| cos(𝜙12 − 𝜙0))
√

1 − |

|

𝛾12||
2 cos2

(

𝜙12 − 𝜙0
)

⎞

⎟

⎟

⎟

⎠

(14)

From this rather involved expression two extreme cases w.r.t. |
|

𝛾12||
can be derived: for |

|

𝛾12|| = 0 (minimum coherence) the phase is a
uniform distribution, for |

|

𝛾12|| = 1 (maximum coherence) the PDF tends
to a Dirac delta distribution at mean phase 𝜙0.

3. InSAR data synthesis with multitask CNN

In this section, we present our solution for the generation of syn-
thetic complex-valued InSAR data. Specifically, we address this prob-
lem with a multitask encoder–decoder convolutional neural network
(MED-CNN). We exploit a complex-valued InSAR data model and in-
troduce basic statistics on SAR images and the SAR interferometric
noise. Thus, we provide a rationale for the multitask encoder–decoder
architecture that we employ to synthesize the components of complex-
valued InSAR data and the subsequent model to reproduce speckle and
artificial phase noise on the synthesized components.

Our InSAR data synthesis approach thus is structured in two stages
(see Fig. 2):

First, the basic multitask encoder–decoder architecture is based on
the single-task generator structure, as similarly done in Baier et al.
(2021). We extend it with a multitask learning approach and dedicated
loss terms for InSAR data synthesis.

Second, to conclude our approach we disentangle the synthesized
InSAR information to virtual single-look complex (SLC) images, simu-
late and re-apply speckle behavior onto their magnitudes and introduce
interferometric phase noise based on the synthesized scene coherence
magnitude.

Moreover, for this publication we define the term ‘‘renoising’’ as
both the introduction of speckle behavior, although speckle is not con-
sidered noise as stated before, and the introduction of artificial interfer-
ometric phase noise to synthesized InSAR data.

3.1. Multitask InSAR image synthesis

Considering the discussed limitations of CNN signal synthesis, we
propose a multimodal, multitask synthesis architecture for complex-
valued, geocoded SAR interferograms inspired by the network architec-
ture proposed in Baier et al. (2021). The basic encoder and decoder ar-
chitecture and the connecting ResNet body for the generator is re-used,
however, it is further extended to allow the prediction of scene reflec-
tivities, achievable coherence magnitudes and interferometric phases
of a given SAR scene. Moreover, we introduce a domain-specific train-
ing loss for the interferometric phase based on available DEM data.
In contrast to Baier et al. (2021), we abandon the use of GANs as
the basic network topology, skipping the use of a discriminator net-
work for adversarial training, but employ a multitask encoder–decoder
architecture. As our proposed solution skips the adversarial aspect
of the network architecture instabilities observed during training of
adversarial networks, such as mode collapse, are avoided.

As input features, we exclusively use DEM rasters and the semantic
land cover maps, which are fed into a multitask CNN encoder–decoder
architecture.

In this first stage of InSAR signal synthesis we rely on the assump-
tion that the magnitude responses |

|

𝒖𝟏||, |

|

𝒖𝟐|| of both SLCs are almost
similar. Thus we synthesize not both magnitudes directly but combine
them to a scene reflectivity as introduced in Eq. (8). Disentanglement
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o two synthesized SLCs ̂
|

|

𝒖𝟏||, ̂
|

|

𝒖𝟐||, related to each other by their
nterferometric phase ̂𝜙12, is then performed in the second renoising

stage of InSAR signal synthesis.
To overcome the limitations of direct complex-valued synthesis in

CNNs, in this work we split the task into independent decoder networks
or the real-valued parts of scene reflectivity 𝛽, coherence magnitude
̂

|

|

𝛾12||, and phase images ̂𝜙12 of artificial SAR interferograms, fed by
a common encoder network and a ResNet body that encodes input
information to be sourced by all decoder outputs. While the decoder
stage is composed by different heads allowing the generation of output
variables with different physical meanings and dynamic ranges, the
training with a common encoder and a multi-objective loss function
ensure the interdependence between these variables.

Treating the different contributing real-valued channels in this way
not only results in an architecture that is easy to use, but also allows us
to understand its different physical output quantities. Since each of the
decoder outputs has its own interpretable physical meaning, additions
that affect the properties of these physical parameters can be applied
directly to these individual elements of the network architecture.

3.2. InSAR data renoising

Based on the theoretical models in Sections 2.2 and 2.3, the ap-
proximation for speckle content and interferometric phase noise as
characterized by its PDF in (14) is applied on a model discussed in Sica
et al. (2021). The model operates on the synthesized scene reflectivity
𝛽 and synthesizes the two constituent SLCs by

• respeckling the amplitude on multiplicative circular Gaussian
processes, and

• renoising the synthesized interferometric phase ̂𝜙12 with respect
to the estimated coherence magnitude ̂

|

|

𝛾12||.

To simulate speckle and noise contributions, signals �̃�, �̃�, ̃𝑐 , 𝑑 are
drawn independently from Gaussian random processes  (𝜇 = 0, 𝜎2 =
1) ∈ R𝑁𝑣×𝑁ℎ . Approximating the resolution characteristics of the real
SAR sensor for renoising, the Gaussian processes are filtered with a 2D
convolution kernel ℎ ∈ R30×30 as

𝑎 = (�̃� ∗ ℎ)∕𝜎�̃�∗ℎ (15)
⋮

𝑑 = (𝑑 ∗ ℎ)∕𝜎𝑑∗ℎ (16)

Division by their own 𝜎�̃�∗ℎ,… , 𝜎𝑑∗ℎ ensures unit standard deviations
or all filtered noise signals. This resolution approximation intentionally

is performed on projected signals in geo-coordinates and not on signals
in original sensor coordinates, inevitably having some limitations in
matching the real resolution characteristics.

𝐻 is generated in the discrete Fourier domain by the inverse trans-
formation of a Hamming-windowed response function with 𝑓𝑐 ,𝑣 =
𝑓𝑠,𝑣∕2𝑟𝑣 as vertical, 𝑓𝑐 ,ℎ = 𝑓𝑠,ℎ∕2𝑟ℎ as horizontal corner frequency, and
𝑓𝑠,𝑣 as the vertical, 𝑓𝑠,ℎ as the horizontal spatial sampling frequency,
respectively. The resolution parameters 𝑟𝑣, 𝑟ℎ are manually chosen for
each dataset.

Applying the filtered random signals we retrieve two independent
random circular Gaussian processes

𝒙𝟏 = (𝑎 + 𝑗 𝑏)∕
√

2 (17)

𝟐 = (𝑐 + 𝑗 𝑑)∕
√

2 (18)

Using the synthesized denoised scene reflectivity 𝛽 and interfero-
etric phase ̂𝜙12 the respeckled InSAR SLCs, coupled by their renoised

nterferometric phase, can be approximated (Sica et al., 2021) as

̂𝒖 = 𝒙
√

𝛽 (19)
𝟏,𝒓 𝟏
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Table 1
Encoder and ResNet body architecture.

Layers No. out channels

𝐶7×7, ReLU 64

𝐶↓2
3×3, SPADE normalization, ReLU 128

𝐶↓2
3×3, SPADE normalization, ReLU 256

𝐶↓2
3×3, SPADE normalization, ReLU 512

𝐶↓2
3×3, SPADE normalization, ReLU 1024

9 × ResNet Block 1024

Table 2
Decoder architecture.

Layers No. out channels

Nearest Neighbor ↑ 2, ResNet block 512
Nearest Neighbor ↑ 2, ResNet block 256
Nearest Neighbor ↑ 2, ResNet block 128
Nearest Neighbor ↑ 2, ResNet block 64
𝐶3×3, Sigmoid (𝛽′ , ̂

|

|

𝛾12||), Tanh ( ̂𝜙12) 𝑁𝑜

̂𝒖𝟐,𝒓 = 𝒙𝟏
√

𝛽 ̂
|

|

𝛾12||exp
(

−𝑗 ̂𝜙12
)

+ 𝒙𝟐

√

𝛽
(

1 − ̂
|

|

𝛾12||
2
)

(20)

3.3. Architecture

To implement the multitask architecture for our generative model,
he decoder stage of the original generator is split into three individual

decoders for 𝛽, ̂𝜙12, ̂
|

|

𝛾12||. All three decoders are fed with information
enerated by a common encoder network followed by a ResNet body
hat encodes the two inputs: DEM raster and semantic land cover data.
s in the original architecture, the ResNet architecture is included to

mprove the expression and flow of information through the layers
f the body (He et al., 2016). Each ResNet block in the generator
etwork is composed from two subsequent convolutional layers with
eLU activations and SPADE normalization layers, and a residual skip
onnection.

Although the discriminator network from the reference GAN archi-
ecture is omitted we still use the term ‘‘generator’’ as a synonym for
ur entire multitask generative model for the rest of this paper.

Based on the positive experience in Baier et al. (2021), the semantic
and cover data is not concatenated and introduced directly at the
enerator input, but is fed into the network by replacing the batch
ormalization layers (Odena et al., 2016) with SPADE normalization
ayers (Park et al., 2019) that present the land cover information to
ach layer of the network. SPADE layers are designed to transform
 semantic mask into tensors that are modulated to pass information
etween subsequent layers of a CNN. In this way, semantic data can
e combined with higher-level structural information and preserved
hroughout the network. In our experiments, introducing semantic
nformation with SPADE layers leads to improved results, especially for
he reflectivity and coherence channels, and to a lesser extent for the
hase channel, but is retained as a replacement for batch normalization
ayers (Ioffe and Szegedy, 2015) in the encoder and all decoders.

The encoder directly follows the architecture of Baier et al. (2021):
EM input images are downsampled through a cascade of stepped
onvolution layers. Within the stages, feature maps are normalized
y SPADE layers and fed through ReLU activations, finally feeding a
-stage ResNet body.

All decoders are fed from the same output of the ResNet body. The
psampling stages in the decoders use nearest-neighbor interpolation
o avoid checkerboard artifacts in the feature maps. Each upsampling
ayer is followed by a ResNet block with SPADE normalization that syn-
hesizes the feature maps to output images at their original resolution
see Tables 1 and 2).
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Fig. 2. Principal synthesis architecture using a common encoder and ResNet body feeding four separate generator networks, generating scene reflectivity 𝛽, coherence magnitude
stimate ̂

|

|

𝛾12||, and interferometric phase ̂𝜙12. DEM information is presented at the input, semantic land cover information is fed indirectly to SPADE normalization layers at all
tages of the networks. After generating those channels renoised versions of the complex-valued SLCs ̂𝒖𝟏,𝒓, ̂𝒖𝟐,𝒓 are produced as a function of 𝛽 for the speckle characteristics and
̂

|

|

𝛾12|| for the phase noise. Their normalized magnitudes ̂
|

|

𝒖𝟏,𝒓||
′
, ̂
|

|

𝒖𝟐,𝒓||
′

and interferometric phase ̂𝜙12 are shown in this diagram.
b

e
i
e
c

o
t
D

𝜙

To get to the complex-valued, renoised SLCs ̂𝒖𝟏,𝒓, ̂𝒖𝟐,𝒓 the output
channels of the multitask generator are used in the renoising step:
Applying the outputs to the model as given by Eqs. (19) and (20) both
complex SAR SLCs can be synthesized. The SLCs are respeckled and are
phase-coupled by their noisy interferometric phase
̂𝜙12,𝑟 = ar g ( ̂𝒖𝟏,𝒓 ⋅ ̂𝒖𝟐,𝒓∗

)

(21)

3.4. Loss functions

For the multitask generator different loss configurations were eval-
ated, and finally, for all four decoder networks, we found a common
ultitask loss term 𝑀 𝑇 , which combines the classical L1 and L2 loss

terms. All decoders use the same hyperparameters 𝜆𝐿1, 𝜆𝐿2. The loss
erm is applied individually to the four decoder outputs.

With 𝑦 as the real and �̂� as the synthesized output over 𝑁 pixels,
the L1 loss is defined as

𝐿1 =
1
𝑁

∑

𝑁
|�̂� − 𝑦| (22)

and the L2 loss is given as

𝐿2 =
1
𝑁

∑

𝑁
(�̂� − 𝑦)2 (23)

which are combined to the multitask loss term

𝑀 𝑇 = 𝜆𝐿1𝐿1 + 𝜆𝐿2𝐿2

= 𝜆𝐿1
1
𝑁

∑

𝑁
|�̂� − 𝑦| + 𝜆𝐿2

1
𝑁

∑

𝑁
(�̂� − 𝑦)2 (24)

To refine the phase synthesis, an additional, dedicated loss term
𝜙𝐷 𝐸 𝑀 with its own hyperparameter 𝜆𝜙𝐷 𝐸 𝑀 was included in the exper-

ments to further constrain the phase decoder with height information
rom the input DEM. The scene height and (unwrapped) interferometric
hase are closely related by the phase-to-height sensitivity as it was
hown in Eq. (6). Therefore, a new loss term is formed by assuming
hat their statistical distributions are similar for a given scene patch.
o apply this loss, a virtual phase band 𝜙𝐷 𝐸 𝑀 is generated from the
EM information 𝑧 by matching the means and standard deviations of
oth distributions.

Constructing the loss, we generate a virtual continuous (unwrapped)
EM phase band �̃� by estimating the circular mean 𝜇 and
𝐷 𝐸 𝑀 𝜙12
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circular angular standard deviation 𝜎𝜙12 of the phase and the mean 𝜇𝑧
and standard deviation 𝜎𝑧 of the DEM information as given by

�̃�𝐷 𝐸 𝑀 =
(

𝑧 − 𝜇𝑧
)
𝜎𝜙12
𝜎𝑧

+ 𝜇𝜙12 (25)

with the circular mean (Fisher, 1995) defined as

𝜇𝜙12 = ar g
(

∑

𝑁𝑣

∑

𝑁ℎ

exp
(

𝑗 𝜙12
)

)

= ar g
(

𝑅𝜙12

)

, (26)

with 𝑁𝑣 as the number of samples in vertical, 𝑁ℎ as the number of
samples in horizontal direction, respectively.

Starting from (26), �̄�𝜙12 is defined as the mean resultant length of
the complex phasor 𝑅𝜙12 , associated with the mean direction of 𝜙12,
and is found as

�̄�𝜙12 =
|𝑅𝜙12 |

𝑁𝑣𝑁ℎ
. (27)

The circular standard deviation is given by

𝜎𝜙12 =
√

−2 ln �̄�𝜙12 . (28)

For distributions with large �̄�𝜙12 the circular standard deviation can
e approximated to

𝜎𝜙12 ≈
√

2
(

1 − �̄�𝜙12

)

, (29)

sometimes also referred to as angular deviation (Zar, 2014), which in
xperimentation practice led to more stable results and, as a bonus,
s computationally less expensive. Introducing the circular statistic
xpressions into (25) the virtual continuous DEM phase band therefore
an be retrieved as

�̃�𝐷 𝐸 𝑀 =
(

𝑧 − 𝜇𝑧
)
𝜎𝜙12
𝜎𝑧

+ 𝜇𝜙12

=
𝑧 − 𝜇𝑧
𝜎𝑧

√

2
(

1 −
|𝑅𝜙12 |

𝑁𝑣𝑁ℎ

)

+ ar g
(

𝑅𝜙12

)

(30)

Generally, DEM height differences are expected to exceed the height-
f-ambiguity as given by (7) of an InSAR acquisition. To account for
hat, the continuous phase �̃�𝐷 𝐸 𝑀 is re-wrapped to a virtual wrapped
EM phase band

𝐷 𝐸 𝑀 = ar g (exp (𝑗�̃�𝐷 𝐸 𝑀
))

. (31)
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AR datasets.

S-1 Bavaria GeoNRW TDX

Platform Sentinel-1 TanDEM-X
Acquisition dates Mar 29, Apr 4, 2021 Feb 28, 2020
Mode IW Stripmap
Polarization VV HH
Pass Ascending Descending
Spatial sampling 30 m × 30 m 1 m × 1 m

Combining generated phase ̂𝜙12 and wrapped virtual DEM phase
𝜙𝐷 𝐸 𝑀 with an L2 criterion, the dedicated phase loss

𝜙𝐷 𝐸 𝑀 = 1
𝑁

∑

𝑁

( ̂𝜙12 − 𝜙𝐷 𝐸 𝑀
)2 (32)

is formed.
Injecting Eq. (32) to Eq. (24), the full loss term for the phase decoder

results in the following
𝑀 𝑇𝜙

= 𝜆𝐿1𝐿1 + 𝜆𝐿2𝐿2 + 𝜆𝜙𝐷 𝐸 𝑀𝜙𝐷 𝐸 𝑀
= 𝜆𝐿1

1
𝑁

∑

𝑁

|

|

|

̂𝜙12 − 𝜙12
|

|

|

+ 𝜆𝐿2
1
𝑁

∑

𝑁

( ̂𝜙12 − 𝜙12
)2 +

𝜆𝜙𝐷 𝐸 𝑀
1
𝑁

∑

𝑁

( ̂𝜙12 − 𝜙𝐷 𝐸 𝑀
)2

= 𝜆𝐿1
1
𝑁

∑

𝑁

|

|

|

̂𝜙12 − 𝜙12
|

|

|

+ 𝜆𝐿2
1
𝑁

∑

𝑁

( ̂𝜙12 − 𝜙12
)2 +

𝜆𝜙𝐷 𝐸 𝑀
1
𝑁

∑

𝑁

⎛

⎜

⎜

⎝

̂𝜙12 −

ar g
⎛

⎜

⎜

⎝

exp
⎛

⎜

⎜

⎝

𝑗
⎡

⎢

⎢

⎣

𝑧 − 𝜇𝑧
𝜎𝑧

√

2
(

1 −
|𝑅𝜙12 |

𝑁𝑣𝑁ℎ

)

+ ar g
(

𝑅𝜙12

)
⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

2

(33)

4. Datasets

In this section, we present the materials, including the datasets used
nd the preprocessing applied. In the present investigation, we used the

following two datasets:

• Sentinel-1 Bavaria dataset
• Tandem-X GeoNRW dataset
The experiments were based on both a medium-resolution Sentinel-

1 and a high-resolution Tandem-X-CoSSC dataset, demonstrating the
generality of our approach (see Table 3).

4.1. Sentinel-1 Bavaria dataset

For training and testing the multitask generator model with medium
resolution C-band SAR data, a repeat-pass Sentinel-1 interferogram on
SLCs taken on Mar 29 and Apr 4, 2021 of a predominantly rural area of
the German state of Bavaria is augmented with Digital Elevation Model
(DEM) and semantic land cover data. Height information is derived
from the Copernicus DEM as a Digital Surface Model (DSM) with 30 m
ground resolution (GLO-30). In addition to bare topographic height,
DSMs represent the ‘‘populated’’ surface of the Earth, including not only
topography but also height information from buildings, infrastructure,
and vegetation. Semantic land cover information is derived from the
ESA WorldCover map at 10 m resolution (Zanaga et al., 2021).

The DSM information is encoded in meters above sea level, while
the land cover data is encoded according to the level 1 classes of the
ESA WorldCover map, which include different vegetation types, forest,
cropland, urban structures, permanent water bodies, and snow and
ice. The classes are encoded as discrete information and have been

translated from a color map into an RGB image.
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The SLC images 𝑢1, 𝑢2 form the basis for the slant-range interfero-
gram 𝑣, which is added to the dataset in a terrain-corrected form. The
SLCs were acquired by the Sentinel-1A/B SAR instruments on March
29 and April 4, 2021, respectively, in IW (interferometric wide-swath)
mode. The area of interest extends from 11◦E to 13◦E, beginning in an
area north of Munich, Germany, and is covered by the IW1 and IW2
subswaths.

For both SLC images, the VV polarization is chosen: therefore,
both surface scattering and (to some extent) double-bounce dihedral
scattering are expected in these images.

Based on the SLC images, several pre-processing steps have to be
performed in the ESA SNAP 8.0 environment to obtain geo-coded real-
sensor interferogram patches 𝑣 in ground coordinates: The slant-range
real-sensor interferogram 𝑣 is generated with 𝑢1, 𝑢2 co-registration
and back-geocoding (SRTM 3s), forming the raw interferogram with
coherence estimation and multilooking to a spatial sampling of about
70 m × 70 m in slant range and azimuth and applying a subsequent
TOPSAR deburst and subswath merge operation. Finally, the real and
imaginary parts of the interferogram are terrain corrected (SRTM 3s).

To build the final dataset, DEM information is selected at random
positions in the area of interest for image patches of 1000 𝑡𝑖𝑚𝑒𝑠 1000
pixels. The corresponding image patches for the interferogram channels
and land cover information are selected and reprojected onto the same
image grid.

For the renoising operation a single-look version of the Sentinel-1
Bavaria dataset was generated in parallel with, apart from the multilook
operation, the same processing steps and parameters. To compare the
renoising results with real-sensor data this dataset was used.

4.2. TanDEM-X GeoNRW dataset

To generalize the experiments with the multitask generator to high
resolution X-band SAR data, a TanDEM-X bistatic interferogram in and
around the area of Dortmund, Germany, is combined with correspond-
ing DEM and land cover information from the GeoNRW (Baier et al.,
2020) dataset. GeoNRW already contains both DEM and land cover
information in a 1 m × 1 m spatial sampling and in patches of 1000 ×
1000 pixels.

Although GeoNRW covers a large number of cities in the German
state of North Rhine-Westphalia, to demonstrate the basic approach,
we only consider the cities of Dortmund and Hagen with bistatic
interferometric data from TanDEM-X. The resulting dataset with limited
regional coverage will be referred to as GeoNRW TDX in this paper.
With the availability of TanDEM-X data with a wider regional coverage,
GeoNRW TDX can always be extended in a future work.

Covering the area of Dortmund, Germany, a TanDEM-X bistatic
interferogram is processed from a Coregistered Single-Look Slant range
Complex (CoSSC) product acquired in stripmap (SM) mode on February
28, 2020. The acquisition was performed in HH polarization and in
single-pol SM mode, with a spatial resolution of 3 m × 3 m in slant
range and azimuth.

To preserve the spatial resolution, no multilooking is applied to
the two SLC images 𝑢1, 𝑢2 in the GeoNRW TDX dataset. As a prepro-
cessing step, the flat-Earth and topographic phases are removed from
the CoSSC stack. The magnitude information is included ‘‘as is’’ in
the dataset without further processing prior to geocoding, while the
interferometric phase 𝜙12 and coherence |

|

𝛾12|| are estimated by using
the CNN-based estimator Phi-Net (Sica et al., 2021), which provides the
best approximation for noise- and distortion-free phase and coherence
images.

The resulting maps are geocoded in SNAP 8.0 and combined with
DEM and land cover information from GeoNRW, covering the cities
of Dortmund and Hagen. As a final step, the geocoded CoSSC inter-
ferogram components are reprojected onto the grid of the GeoNRW

patches.



P. Sibler et al.

T
T
t
r
t

P

ISPRS Journal of Photogrammetry and Remote Sensing 220 (2025) 192–206 
able 4
raining and renoising parameters for both datasets and training stages, with 𝑁𝑡 as
he number of training patches, 𝑚, 𝑀 as parameters for log-scaling and normalization,
esolution parameters 𝑟𝑣 , 𝑟ℎ, and different 𝜆 values as weights for their respective loss
erms. For experiments without 𝜙𝐷 𝐸 𝑀 applied to the phase decoder, 𝜆𝜙𝐷 𝐸 𝑀 = 0.

S-1 Bavaria GeoNRW TDX

𝑁𝑡 500 542
Mini-batch 8 8
𝑚𝛽 1.0 3.0
𝑀𝛽 9.3 16.0
𝑟𝑣 1.0 1.7
𝑟ℎ 1.0 1.7

Main stage

Epochs 150 150
𝜆𝐿1 100 100
𝜆𝐿2 1 1
𝜆𝜙𝐷 𝐸 𝑀 1 3

Consolidation stage

Epochs 20 20
𝜆𝐿1 10 10
𝜆𝐿2 1 1
𝜆𝜙𝐷 𝐸 𝑀 0.2 0.3

5. Experiments

In this section, we show the results of our investigation on the
synthesis of complex interferometric data from spatial metadata such
as the Digital Elevation Model and Land Cover.

The experiments for both datasets were run on an Intel(R) Xeon(R)
Platinum 8168 2.7 GHz CPU and an Nvidia Tesla V100-SXM3 GPU with
32 GB of RAM. The networks were implemented using the PyTorch
1.10.2 framework. Training was performed for 150 epochs in the main
and for 20 epochs in the consolidation phase, with a mini-batch size of
8 for both datasets. We experimentally found the best balance between
the different losses. All experiments were generated at a learning rate
of 𝛼 = 10−4, and Adam optimization with 𝛽1 = 0, 𝛽2 = 0.9. Table 4
summarizes the training and network parameters that were applied to
achieve the results as they are presented in this paper.

5.1. Training and test

For the training data set, 𝑁𝑡 = 500 patches (1000 × 1000 pixels)
were selected from the Sentinel-1 Bavaria scene at random locations.
For the GeoNRW TDX dataset, 𝑁𝑡 = 542 patches (1000 × 1000 pixels)
were selected for training and distributed over the area of the cities of
Dortmund and Hagen according to their UTM coordinates. From these
patches, further random sub-patches of 𝑁𝑣 × 𝑁ℎ = 256 × 256 pixels
were selected during training for both datasets to match the operational
dimensions of the encoder and decoder networks.

For the Sentinel-1 Bavaria dataset, patches were drawn from the
same scene at random positions and used for testing. For the GeoNRW
TDX dataset, a similar approach was chosen, with patches selected both
from the cities of Dortmund and Hagen that were used to validate the
approach based on high-resolution InSAR data.

The network training was split into a main stage with full loss
hyperparameters 𝜆 and a subsequent consolidation stage with attenu-
ated hyperparameters. Whereas in the main training stage basic net-
work convergence is achieved, the consolidation stage is predominantly
meant to further improve precision and the synthesis of fine-structural
details in all decoders. This strategy is similar to a training regime with
a decaying learning rate, however, allows a finer control of the different
loss terms contributions.

The multitask loss terms 𝑀 𝑇 for the magnitude and coherence
magnitude decoders and 𝑀 𝑇𝜙

for the phase decoder are individually
applied to the decoder outputs. Loss hyperparameters 𝜆𝐿1, 𝜆𝐿2 in both
training stages were found experimentally. Besides the typical L2 (MSE)
199 
loss, which minimizes the root mean square error between real and
synthesized patches and is inherently stable, the L1 loss term generally
is more robust to outliers in the training examples. Moreover, in our
experiments, the L1 loss also enhanced fine structural details in the
generated patches and, eventually, turned out to be the loss term
having a higher influence. Both lambda hyperparameters were tuned
accordingly for training stability and the desired result. Once a stable
setup for 𝜆𝐿1 and 𝜆𝐿2 had been retrieved, 𝜆𝜙𝐷 𝐸 𝑀 was optimized.

As an addition and to conclude the experiments, a small qualitative
ablation study on the individual effects of DEM and land cover input
information was performed on the GeoNRW TDX dataset, with either
land cover information presented or removed from the input of the
generator network. Other than preserving or removing land cover
information from the input, the same network training strategy with
𝐿1, 𝐿2 and 𝜙𝐷 𝐸 𝑀 losses was applied for both runs.

5.2. Dataset scaling and normalization

To match the value ranges of the decoder output activations, sev-
eral strategies have been found for the channels. To match the [0, 1]
value range of the Sigmoid decoder output activation, scene reflec-
tivity is logarithmically scaled and normalized according to 𝛽′ =
(

ln
(

𝛽 + 10−3) − 𝑚𝛽
)

∕
(

𝑀𝛽 − 𝑚𝛽
)

. Coherence magnitudes |

|

𝛾12|| within
[0, 1] correspond directly to the Sigmoid activation range and were ap-
plied to the network without further transformation. Phase values were
scaled to [−1, 1[ by 𝜙12 = �̃�12∕𝜋 to match their Tanh output activation.
Normalization values were estimated from the dataset distributions and
manually tuned.

As in the original architecture, DEM/DSM input information for
both datasets is applied directly as heights in meters without further
scaling or normalization. During training, the network automatically
adapts to an appropriate normalization of the input. Semantic land
cover information is applied as a class index to the SPADE layers
in their native resolutions. Since land cover data is represented in
discrete classes, nearest neighbor interpolation is used for resampling
to preserve the correct class information.

Moreover, to further reduce speckle contribution and noise and to
train on denoised datasets the scene reflectivity 𝛽 is not directly derived
and applied as in Eq. (8) but denoised by a 3 × 3 boxcar filter before
scaling and normalization.

5.3. Performance metrics

To quantify the performance of the experimental results for the
multitask generator we are applying different metrics:

RMSE The Root Mean Squared Error (RMSE) as defined as

RMSE(�̂�, 𝑦) =
√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
‖�̂�𝑖 − 𝑦𝑖‖2 (34)

with 𝑁 as number of all seen image patches and �̂� as the
synthesized, 𝑦 as the real image patches.

SNR The Peak Signal to Noise Ratio (PSNR) as defined as

PSNR(�̂�, 𝑦) = 10 ⋅ log10
(

MAX2
𝑦

MSE(�̂�, 𝑦)

)

(35)

with MAX𝑦 as the maximum value range of image 𝑦, MSE as

MSE(�̂�, 𝑦) = 1
𝑁

𝑁
∑

𝑖=1
‖�̂�𝑖 − 𝑦𝑖‖

2, (36)

𝑁 number of all seen image patches and �̂� as the synthesized, 𝑦
as the real image patches.
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Fig. 3. Example results of the multitask network described in this paper for the Sentinel-1 Bavaria dataset, training for 150 + 20 epochs, 𝑀 𝑇 with L1 and L2 loss only. Columns
present different scene examples. Rows top to bottom: DEM input, land cover input, synthesized log-scaled and normalized reflectivity 𝛽′, real reflectivity 𝛽′, synthesized coherence
magnitude ̂

|

|

𝛾12||, real coherence magnitude |

|

𝛾12||, synthesized interferometric phase ̂𝜙12, real interferometric phase 𝜙12.
t
a

a
i
o

5.4. Results

In the following, the results obtained for the Sentinel-1 Bavaria
dataset and the TanDEM-X GeoNRW dataset are shown separately.

We evaluated the performance of the proposed method using qual-
itative and quantitative metrics. The former consists of a visual as-
sessment of the spatial features in the generated patches, while the
latter consists of the use of performance metrics that can compare the
generated result with the noisy real interferometric data, such as the
root mean squared error (RMSE) and the peak signal-to-noise ratio
(PSNR).

As the added speckle and phase noise is and cannot be coherent with
the noise content of the real sensor images, which automatically results
in lower performance figures compared to the originally synthesized
results, we refrain from applying those performance metrics to the
renoised images but present only their visual impressions in Figs. 5 and
8.

In Figs. 3 and 4, we show the generated scene reflectivity, phase,

and coherence patches resulting from our network, together with the

200 
corresponding real data for the S-1 Bavaria dataset with and without
the use of the additional loss term 𝜙𝐷 𝐸 𝑀 . Similarly, Figs. 6 and 7 show
he results for the GeoNRW TDX dataset in the two cases mentioned
bove.

Some artefacts are observed at the −𝜋 , 𝜋 phase wrap in Figs. 3
nd 4. These are due to the limitations of the decoder in representing
nstantaneous phase discontinuities. Due to the band-limited nature
f the network, sharp transitions are difficult to reproduce, some-

times resulting in a slight slope at these discontinuities. A possible
solution could be to feed the real and imaginary components of the
complex phasor into the network separately, which warrants further
investigation to improve phase wrap handling.

From a qualitative visual assessment of the synthesized maps, it
can be seen that the synthetic data reflect the general trend of the
real data for all target quantities, including the preservation of point
scatter and sharp edges. The results show that the trained model is able
to reproduce fairly similar backscatter, coherence, and phase values,
including both geometric and radiometric effects typical of SAR data.
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Fig. 4. Example results of the multitask network described in this paper for the Sentinel-1 Bavaria dataset, training for 150 + 20 epochs, 𝑀 𝑇 including 𝜙𝐷 𝐸 𝑀 .
T
A
a

c

able 5
verage performance metrics for the S-1 Bavaria test dataset results shown in Figs. 3
nd 4, using a bare 𝑀 𝑇 loss and a combined 𝑀 𝑇 𝜙

including the 𝜙𝐷 𝐸 𝑀 loss term.

𝛽′ 𝜙12
|

|

𝛾12||
RMSE 15.837 82.608 31.220
PSNR 24.223 27.590 18.366

𝑀 𝑇 + 𝜙𝐷 𝐸 𝑀
RMSE 15.947 75.015 31.323
PSNR 24.172 29.131 18.351

In the results for the GeoNRW TDX dataset in Figs. 6 and 7,
geometric effects can be seen in the reflectivity and coherence maps.
It is possible to observe shadow effects that simulate typical occluded
targets in urban scenarios such as the one considered in this dataset.
imilarly, we also observe radiometric effects such as multiple bounces,
hich are visible as brighter edges on a single side of the buildings,
201 
able 6
verage performance metrics for the GeoNRW TDX test dataset results shown in Figs. 6
nd 7, using a bare 𝑀 𝑇 loss and a combined 𝑀 𝑇 𝜙

including the 𝜙𝐷 𝐸 𝑀 loss term.

𝛽′ 𝜙12
|

|

𝛾12||
RMSE 20.495 50.263 44.504
PSNR 22.231 33.707 15.652

𝑀 𝑇 + 𝜙𝐷 𝐸 𝑀
RMSE 18.045 44.089 40.379
PSNR 23.319 34.842 16.597

simulating the typical backscatter mechanism that occurs on the build-
ing facades exposed to the sensor illumination. The coherence maps
losely follow the behavior of the reflectivity maps, as expected for

urban scenarios. Clean reflectivity returns also show high coherence,
while shadow areas have low coherence values. Similarly, phase values
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Fig. 5. Renoised results of the multitask network for the Sentinel-1 Bavaria dataset, decomposed to the interferogram SLC magnitudes and their interferometric phase, training for
50 + 20 epochs, 𝑀 𝑇 including 𝜙𝐷 𝐸 𝑀 . Rows top to bottom: DEM input, land cover input, synthesized log-scaled and normalized SLC magnitude ̂

|

|

𝒖𝟏||
′
, real SLC magnitude |

|

𝒖𝟏||
′,

synthesized SLC magnitude ̂
|

|

𝒖𝟐||
′
, real SLC magnitude |

|

𝒖𝟐||
′, synthesized interferometric phase ̂𝜙12, real interferometric phase 𝜙12.
p
w
o
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show robust behavior on average across the image and follow a smooth
variation of DEM values.

In this regard, the comparison of Figs. 6 and 7, with the latter con-
sidering the introduction of the 𝜙𝐷 𝐸 𝑀 , shows how this additional loss
greatly increases the performance of our algorithm for interferometric
phase generation. Nevertheless, small phase variations on small re-
gions, such as buildings, are not fully synthesized. This is not surprising
since, on average, only a few buildings show this behavior likely due
to the fact that, in urban scenarios, phase centers can vary randomly
due to the overlap of different backscattered signals within the same
resolution cell. Since this information is usually not described in urban
scenarios and is not provided in the input to the network, a mismatch
between input features and reference data affects the ability of the
network to reproduce this phenomenon.

Comparably good results were obtained for the Sentinel-1 Bavaria
dataset, demonstrating the generalizability of the algorithm to medium
resolution data. Similar to the previous experiments, we observe an
 t

202 
excellent simulation of strong scatterers and multi-bounces over urban
areas. In addition, we observe how well specular reflections over water
are generated, exactly as observed in the real data and as expected for
such a land cover class. The synthesized coherence maps closely follow
the expected trends by correctly simulating coherence averages and
reserving spatial detail. These generated coherence values match very
ell with the expected values given the land cover class. Finally, we
bserve that the synthesized phase closely follows the DEM variations
nd fairly matches the real data with good resolution preservation.

These observations are also supported by quantitative metrics.
able 5 presents the results for the RMSE and PSNR metrics for
he Sentinel-1 Bavaria dataset, while Table 6 includes those for the
eoNRW TDX dataset. On the RMSE metric, it is evident that the

ntroduction of the 𝜙𝐷 𝐸 𝑀 term brought a significant reduction in
he mean error for the interferometric phase 𝜙12 in both datasets.
nterestingly, although this loss term is applied to the simulated in-
erferometric phase, according to the multitask learning construct, the



P. Sibler et al.

n
a
A
b
s
1
i
r

ISPRS Journal of Photogrammetry and Remote Sensing 220 (2025) 192–206 
Fig. 6. Example results for the GeoNRW TDX dataset, training for 150 + 20 epochs, 𝑀 𝑇 with L1 and L2 loss only.
l
n
o
d
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p
t
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p
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etwork optimization takes place for all the branches of the network
nd not only for the one dedicated to the generation of the phase.
s a consequence, the RMSE and PSNR values for the reflectivity
ranch 𝛽 and especially for the coherence magnitude estimate |

|

𝛾12|| are
ignificantly improved for the GeoNRW TDX dataset. On the Sentinel-
 Bavaria dataset, this effect seems to be particularly pronounced on
nterferometric phase as well, but here at a slight cost on the quality of
eflectivity and coherence.

In order to estimate the individual influences of DEM and land
cover information on the synthesis quality, we additionally performed
an ablation study on the GeoNRW dataset, in which we omit the land
cover information. As shown in Fig. 9, the reconstruction is degraded
compared to the proposed solution. However, basic illumination and
shadowing effects are still present in the reflectivity and coherence
magnitude channels, while fine structural details and strong backscatter
returns from roads or buildings seem to be mainly brought by the
additional information from the land cover data.
i

203 
6. Discussion

With the presented experiments, we have shown that the multitask
earning strategy and, in particular, the proposed encoder–decoder
etwork architecture can achieve excellent results for the synthesis
f InSAR data, both in terms of accuracy and generalization between
ifferent SAR sensor modes and sensor operating wavelengths. Every
ingle output branch presents high accuracy and all the main geometric
roperties of InSAR data are preserved, as it is possible to observe
he geometric effects typical for InSAR data in the reflectivity and

coherence maps of Figs. 6 and 7. Here, the presence of shadow effects
s well as radiometric effects indicates that the network is able to

correctly infer from the land cover and the DEM the right underlying
hysical scattering mechanism typical for occluded targets or multiple
ounces. Similarly, the decoder branch dedicated to interferometric
hase synthesis shows results that closely follow the DEM variations,
mplying that the network is able to encode the input DEM variation

nto a phase variation and therefore has implicitly learned the InSAR
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Fig. 7. Example results of the multitask network described in this paper for the GeoNRW TDX dataset, training for 150 + 20 epochs, 𝑀 𝑇 including 𝜙𝐷 𝐸 𝑀 .
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hase-height model of Eq. (6). This behavior indicates that the encoder–
ecoder network, in combination with the proposed datasets, is a
uccessful choice for InSAR data generation.

We also provide evidence for the importance of multitask learning
or our goal. We performed experiments with and without the 𝜙𝐷 𝐸 𝑀
erm, which is primarily intended to improve phase synthesis. The
esults show that not only the phase synthesis is improved, as expected,
ut also the whole network delivers better results. The reason is that
hile the loss is applied only to the output of the phase decoder,
ll network weights are updated according to this loss. Thus, on the
ne hand, we prove the validity of our proposed multitask learning
pproach, and on the other hand, we can deduce that the use of
he 𝜙𝐷 𝐸 𝑀 term improves the ability of the network to learn the
EM dependence and thus the InSAR phase-height model of Eq. (6).
t the same time, this experiment tells us more about the relative

mportance between input features. In fact, without the 𝜙𝐷 𝐸 𝑀 term,
hile the phase synthesis is distorted, the reflectivity and coherence

ynthesis still work as desired. This is due to the fact that the reflectivity
nd coherence are highly correlated with land cover, which is used
 b

204 
s a shortcut proxy to get a good result. We have shown further
vidence of this behavior with an ablation study in which the land
over information was not used. From the results shown in Fig. 9 it
s clear how the DEM encodes information about the geometric effects
ypical of an InSAR image. However, additional details can only be
enerated by using the land cover information, which provides further
nformation about the scattering mechanism and decorrelation effects.
his indicates that land cover is initially the dominant input feature,
ut it cannot explain the whole InSAR acquisition model, which can be
earned by using the 𝜙𝐷 𝐸 𝑀 term instead. Consequently, when using
his additional term, the DEM input feature takes on more weight with
espect to the land cover and becomes of paramount importance for the
erformance of the proposed architecture.

Finally, based on the comparative analysis of the results derived
rom the two different datasets, it can be deduced that the proposed
ultitask model exhibits remarkable generalizability across different
ata types characterized by diverse resolutions, operative bands, and
cquisition geometries. This result confirms the effectiveness and ro-
ustness of the proposed methodology.
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Fig. 8. Renoised results of the multitask network for the GeoNRW TDX dataset, decomposed to the interferogram SLC magnitudes and their interferometric phase, training for
150 + 20 epochs, 𝑀 𝑇 including 𝜙𝐷 𝐸 𝑀 .

Fig. 9. Results of an additional ablation study for synthesis quality without (top row) and with (bottom row) land cover information. From left to right: DEM and land cover
input information, the synthesized and real patches for reflectivity, coherence magnitude and interferometric phase, respectively.
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. Summary & conclusion

In this paper, we have addressed the challenge of synthesizing
omplex-valued synthetic aperture radar (SAR) data using a deep neu-
al network. Our proposed approach overcomes the challenges of han-
ling complex data by decomposing SAR interferograms into real-
alued components that are simultaneously synthesized by a multi-
ranch encoder–decoder network architecture. The real-valued compo-
ents are then combined to reconstruct the final complex-valued in-

terferogram. We conducted experiments on medium-resolution repeat-
pass C-band SAR data and high-resolution single-pass X-band SAR data
and obtained promising results, demonstrating the general feasibility
of our approach. We envision its application in various fields, includ-
ing algorithm development, sensor evaluation, and understanding of
SAR data characteristics. Further research can explore optimization
strategies and extend the framework to additional SAR data modalities,
allowing for more comprehensive simulations. By decomposing the in-
terferogram into physically interpretable real-valued components, our
ramework is well suited for future use in physics-informed modeling

for network optimization and design.
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