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Abstract

Due to the increasing use of load-bearing glazing in structural engineering, the residual load-
bearing capacity of laminated glass is increasingly coming into focus. This is currently assessed
exclusively on the basis of large-scale component tests. However, this approach is associated
with high costs, a great deal of time and the use of materials. One way to save these resources is
to theoretically characterize the residual load-bearing capacity. However, a the moment there
is no reliable calculation model. In order to develop such a model, it �rst makes sense to
divide the residual load-bearing behavior into three mechanisms: the behavior of the polymer
interlayer, the bond between the �lm and the glass, and the interaction of the glass fragments
or the fracture edges. The subject of this work is the characterization of the interlayer material
polyvinyl butyral (PVB), which can be classi�ed as an amorphous thermoplastic. To this
end, the material is investigated experimentally and described mechanically. The work can
therefore be roughly divided into an experimental part and a modeling part. The modeling
part is supplemented by some engineering approaches.
In the experimental part of the work, uniaxial tensile tests up to failure, relaxation tests and

cyclic tests are carried out, in each case at room temperature. Strain rates, load levels and load
reversal points are varied. As part of the subsequent modeling, a thermodynamically consistent
material model of �nite, non-linear viscoelasticity is constructed. The structure of the model
is represented by a discrete spectrum of three networks, each with several Maxwell elements
described by di�erent potential and viscosity functions. The individual viscosity functions
are constructed in such a way that they can represent the time-dependent mechanisms of the
material. This generally formulated model is then reduced to the uniaxial stress state under
the assumption of incompressible material behavior and implemented numerically. Following on
from this, the various material parameters of the potential and viscosity functions are calibrated
using the test data from the experimental part of the work. The results show a very good
agreement between simulation and experiment, i.e. the model is very well suited to reproduce
the time-dependent behavior of PVB at room temperature up to large deformations.
The modeling section is supplemented by three engineering approaches. Firstly, a method is

presented for using relatively short tests to infer the long-term behavior of a polymer under large
deformations and to model it without taking the time dependency into account. In addition,
a simpli�ed analytical approach for modeling the residual load-bearing capacity of laminated
safety glass made of coarse breaking glass with an intermediate layer of PVB is presented. This
approach is based on a simpli�ed version of the previously constructed material model. Finally,
a resistance value for PVB under uniaxial loading is calibrated based on the failure tests.
Overall, the construction of this material model for PVB and the engineering approaches de-

rived from it represent an important milestone on the way to a numerical residual load-bearing
capacity model. With the help of this material model, it is not only possible to accurately de-
scribe the behavior of PVB at room temperature, but also to better characterize other necessary
material parameters such as the bond between glass and interlayer.
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Zusammenfassung

Durch den zunehmenden Einsatz von lastabtragenden Verglasungen im konstruktiven Inge-
nieurbau rückt die Resttragfähigkeit von Verbundglas zunehmend in den Fokus. Diese wird ak-
tuell ausschlieÿlich auf Grundlage von Groÿbauteilversuchen beurteilt. Diese Herangehensweise
ist jedoch mit hohen Kosten, groÿem Zeitaufwand und Materialeinsatz verbunden. Einen Weg
zum Einsparen dieser Ressourcen stellt die theoretische Charakterisierung der Resttragfähigkeit
dar. Aktuell fehlt dafür jedoch ein zuverlässiger Berechnungsmodell. Um ein solches Mod-
ell zu entwickeln ist es zunächst sinnvoll, das Resttragverhalten in drei Mechanismen zu un-
terteilen: das Verhalten der polymeren Zwischenschicht, den Verbund von Folie und Glas sowie
die Interaktion der Glasbruchstücke bzw. der Bruchkanten. Gegenstand dieser Arbeit ist die
Charakterisierung des Zwischenschichtmaterials Polyvinylbutyral (PVB), das den amorphen
Thermoplasten zugeordnet werden kann. Dafür wird das Material experimentell untersucht
und mechanisch beschrieben. Die Arbeit lässt sich daher grob in einen experimentellen Teil,
und einen Modellierungsteil untergliedern. Der Modellierungsteil wird dabei noch um einige
ingenieurmäÿige Ansätz ergänzt.
Im experimentellen Teil der Arbeit werden einachsige Zugversuche bis zum Bruch, Relax-

ationsversuche sowie zyklische Versuche, jeweils bei Raumtemperatur, durchgeführt. Dehn-
raten, Belastungsniveaus sowie Lastumkehrpunkte werden dabei variiert. Im Rahmen der an-
schlieÿenden Modellierung wird ein thermodynamisch konsistentes Materialmodell endlicher,
nichtlinearer Viskoelastizität konstruiert. Die Struktur des Modells wird durch ein diskretes
Spektrum, bestehend aus drei Netzwerken mit jeweils mehreren Maxwell-Elementen und unter-
schiedlichen Potential- sowie Viskositätsfunktionen dargestellt. Die einzelnen Viskositätsfuntio-
nen sind dabei so konstruiert, dass sie die zeitabhängigen Mechanismen des Materials abbilden
können. Dieses allgemein formulierte Modell wird anschlieÿend unter der Annahme inkom-
pressiblen Materialverhaltens auf den uniaxialen Spannungszustand reduziert und numerisch
implementiert. Daran anknüpfend werden die verschiedenen Materialparameter der Potential-
und Viskositätsfunktionen an den Versuchsdaten des experimentellen Teils der Arbeit kalibri-
ert. Es zeigt sich dabei eine sehr gute Übereinstimmung zwischen Simulation und Versuch, d.h.
das Modell eignet sich sehr gut, um das zeitabhängige Verhalten von PVB bei Raumtemperatur
bis hin zu groÿen Verformungen abzubilden.
Der Modellierungsteil wird um drei ingenieurmäÿige Ansätze ergänzt. Zum einen wird ein

Verfahren vorgestellt, um mit relativ kurzen Versuchen auf das Langzeitverhalten eines Poly-
mers bei groÿen Verformungen zu schlieÿen, und dieses, ohne Berücksichtigung der Zeitab-
hängigkeit, zu modellieren. Drüber hinaus wird ein vereinfachter analytischer Ansatz zur Mod-
ellierung der Resttragfähigkeit von VSG aus grobbrechenden Gläsern mit Zwischenschicht aus
PVB vorgestellt. Dieser Ansatz basiert auf einer vereinfachten Version des zuvor konstruierten
Materialmodells. Schlieÿlich wird auf Grundlage der Bruchversuche ein Widerstandswert für
PVB unter uniaxialer kalibriert.
Insgesamt stellen die Konstruktion dieses Materialmodells für PVB sowie die daraus abgeleit-

eten ingenieurmäÿigen Ansätze einen wichtigen Meilenstein auf dem Weg zu einem numerischen
Resttragfähigkeitsmodell dar. Mit Hilfe dieses Materialmodells ist es nämlich nicht nur möglich,
das Verhalten von PVB bei Raumtemperatur genau zu beschreiben, sondern auch andere
notwendige Materialparameter wie den Verbund von Glas und Folie besser zu charakterisieren.

iv



Contents

1. Introduction 1

1.1. Residual Load-Bearing-Capacity - Experimental Approaches . . . . . . . . . . . 2
1.1.1. LSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3. Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4. Interlayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2. Residual Load-Bearing-Capacity - Numerical Modeling Approaches . . . . . . . 7
1.2.1. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2. Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3. Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.4. Interlayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3. Residual Load-Bearing-Capacity - Analytical Modeling Approaches . . . . . . . 16
1.3.1. Equivalent Sti�ness Approaches . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2. Explicit Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Methodology 22

2.1. Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.1. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2. Strain Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3. Stress Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.4. Objective Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.5. Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.6. Principles of Material Modeling . . . . . . . . . . . . . . . . . . . . . . . 30

2.2. Material Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1. Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2. Incompressible Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3. Compressible Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4. Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.5. Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.6. Finite Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.7. Finite Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3. Numerical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.1. Euler Backward Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.2. Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3. Newton's Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4. Parameter Identi�cation - Optimization . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1. Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.2. Local Solver - fmincon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1. Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.2. Standard PVB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

v



Contents

2.5.3. Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.5.4. Laminated Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.1. General Polymer Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3. Experiments 63

3.1. Specimen Preparation and Conditioning . . . . . . . . . . . . . . . . . . . . . . 63
3.1.1. Test Series One - Geometry Type A . . . . . . . . . . . . . . . . . . . . . 63
3.1.2. Test Series Two - Geometry Type B . . . . . . . . . . . . . . . . . . . . . 64

3.2. Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.1. Test Series One - Geometry Type A . . . . . . . . . . . . . . . . . . . . . 64
3.2.2. Test Series Two - Geometry Type B . . . . . . . . . . . . . . . . . . . . . 67

3.3. Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1. Control Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2. Tension-Tests until Failure . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.3. Cyclic-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3.4. Relaxation-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.5. Staircase-Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. Modeling 84

4.1. Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2. Uniaxial Reduction and Numerical Implementation . . . . . . . . . . . . . . . . 93

4.2.1. Incompressibility Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.2. Uniaxial Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.3. Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.1. Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.2. Finite Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.3. Finite Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4. Investigations on the Viscosity Functions . . . . . . . . . . . . . . . . . . . . . . 107
4.4.1. Considerations regarding the loading behavior . . . . . . . . . . . . . . . 107
4.4.2. Considerations regarding the unloading behavior . . . . . . . . . . . . . . 108
4.4.3. Considerations regarding the relaxation behavior . . . . . . . . . . . . . 110

4.5. Parameter Identi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.1. Matlab - Globalsearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5.2. Matlab - Globalsearch adapted . . . . . . . . . . . . . . . . . . . . . . . 112

4.6. Model Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.1. Recalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.6.2. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.6.3. Precalculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5. Engineering Approaches 128

5.1. Hyperelastic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2. Simpli�ed Residual Load Bearing Model . . . . . . . . . . . . . . . . . . . . . . 129
5.3. Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6. Discussion 138

6.1. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

vi



Contents

6.3. Engineering Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.1. Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.2. Residual Load-Bearing Model . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.3. Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7. Conclusion and Outlook 147

A. Experimental Results 168

A.1. Control Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
A.2. Tension until Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.3. Cyclic Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
A.4. Relaxation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

A.4.1. Strain Rate 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.4.2. Strain Rate 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.4.3. Strain Rate 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.5. Evaluation of Hystereses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.6. Staircase Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.7. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B. Analytical Calculations 181

B.1. Analytical Solution of di�erential equation of linear viscoelasticity . . . . . . . . 181
B.2. Analytical Solution of the functional of �nite linear viscoelasticity . . . . . . . . 183

C. Publications and Presentations 186

C.1. Journal Articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.2. Contribution to Year Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.3. Conference Papers & Presentations . . . . . . . . . . . . . . . . . . . . . . . . . 186

vii



List of Figures

2.1. Transformation between Reference and Current Con�guration . . . . . . . . . . 23
2.2. Qualitative Overview of di�erent strain and stress measures of 1D truss; initial

length 10 [mm], initial crosssection 10 [mm²], force [-50:200] [N] . . . . . . . . . 26
2.3. Transformation-Properties for Deformations . . . . . . . . . . . . . . . . . . . . 32
2.4. Transformation-Properties for Deformation-Rates . . . . . . . . . . . . . . . . . 32
2.5. Transformation-Properties for Stresses . . . . . . . . . . . . . . . . . . . . . . . 33
2.6. Rheological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7. Approaching Treloar's data with the 8-chain model . . . . . . . . . . . . . . . . 36
2.8. Approaching Treloar's data with several invariant based models . . . . . . . . . 38
2.9. Approaching Treloar's data with the Ogden model . . . . . . . . . . . . . . . . . 38
2.10. Neo Hookean Model (µ = 1) for di�erent compression moduli . . . . . . . . . . . 39
2.11. Newton Raphson Algorithm; Starting Value -4.5 (left), 4.5 (right) . . . . . . . . 51
2.12. Structure of a Polymer at di�erent scales, after Bergström [24] . . . . . . . . . . 53
2.13. Structures of Polymers, after Domininghaus [96] . . . . . . . . . . . . . . . . . . 54
2.14. Float Process, after Schneider et al. [227] . . . . . . . . . . . . . . . . . . . . . . 55
2.15. Residual Stresses Induced by Thermal and Chemical Prestressing . . . . . . . . 56
2.16. Di�erent Fracture Patterns for di�erent Levels of Prestress . . . . . . . . . . . . 56
2.17. Principle Sketch of a Laminated Glass . . . . . . . . . . . . . . . . . . . . . . . 57
2.18. Specimens geometry: Specimen Typ A (left); Specimen Type B (right); thickness

of both Specimens is 1.52 [mm] and the unit within the drawing [mm] . . . . . . 58
2.19. Stamping machine setup from from Star cutting technology . . . . . . . . . . . . 59
2.20. Universal testing machine Z2.5 from ZwickRoell GmbH & Co. KG . . . . . . . . 59
2.21. Mechanical Clamping Device from ZwickRoell GmbH & Co. KG, article number

316322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.22. Force Transducer from A.S.T GmbH (left); Displacement Transducer from Zwick-

Roell GmbH & Co. KG, article number 024895 (right)) . . . . . . . . . . . . . . 61
2.23. Thermoelement Typ K (left); Climate Sensor from Voltcraft, model DL-121TH

(right)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.24. Climatic chamber for conditioning of the specimens (left); Climatic container for

testing the specimens (right)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1. Test Procedures: Tension until Failure . . . . . . . . . . . . . . . . . . . . . . . 65
3.2. Test Procedure: Cyclic Tests at di�erent Strain Rates . . . . . . . . . . . . . . . 66
3.3. Test Procedure: Cyclic Tests at the same Strain Rate . . . . . . . . . . . . . . . 66
3.4. Test Procedure: Relaxation Tests at di�erent Strain Rates . . . . . . . . . . . . 67
3.5. Test Procedure: Relaxation tests at the same Strain Rate . . . . . . . . . . . . . 67
3.6. Test Procedure: Staircase Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7. Mean values for tests with and without clamps (left); points of failure (right) . . 68
3.8. Mean values for di�erent strain rates (left); points of failure (right) . . . . . . . 69
3.9. Box plots of stresses at failure (left); box plots of strains at failure (right) . . . . 69
3.10. Statistical evaluation of the stresses at failure . . . . . . . . . . . . . . . . . . . 70
3.11. QQ-plots of the stresses at failure . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.12. Statistical evaluation of the strains at failure . . . . . . . . . . . . . . . . . . . . 72

viii



List of Figures

3.13. QQ-plots of the strains at failure . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.14. Statistical evaluation of the Cauchy stresses at failure . . . . . . . . . . . . . . . 73
3.15. QQ-plots of the Cauchy stresses at failure . . . . . . . . . . . . . . . . . . . . . 73
3.16. "B" = Bennison: 0.07, 0.7 [1/s]; "H" = Hooper: 0.2 [1/s]; "D" = Del Linz: 0.01,

0.02, 0.1, 0.2 [1/s]; "X" = Xu: 0.001, 0.01, 0.1, 1 [1/s]; "P" = Pauli: 0.001, 0.01,
0.1 [1/s] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.17. "Ku" = Kuntsche: 5, 50, 200 [mm/min]; "I" = Iwasaki: 10, 50, 100, 200
[mm/min]; "Kn" = Knight: 50 [mm/min]; "L" = Liu: 10, 50, 100, 200 [mm/min];
"P" = Pauli: 0.001, 0.01, 0.1 [1/s] . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.18. "C" = Centelles: 10, 50, 100 [mm/min]; "P" = Pauli: 0.001, 0.01, 0.1 [1/s] . . . 76
3.19. Mean values for di�erent strain levels (left) and di�erent strain rates (right) . . 77
3.20. "E" = Elziere: 0.001, 0.01, 0.1 [1/s]; "P" = Pauli: 0.001, 0.01, 0.1 [1/s] . . . . . 78
3.21. Mean values of di�erent strain levels in standard (left) and logarithmic represen-

tation (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.22. Mean values of di�erent strain rates in standard (left) and logarithmic represen-

tation (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.23. "S" = Schuster; "E" = Elziere; "P" = Pauli . . . . . . . . . . . . . . . . . . . . 80
3.24. Summary of all cyclic and relaxation tests and the tests until failure at the

corresponding strain rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.25. Results of Staircase-Test: Stress over Strain (left), Stress over Time (right) . . . 81
3.26. Results of Staircase-Test: Stress over Strain (left), Stress over Time (right);

location marked for exemplary evaluation . . . . . . . . . . . . . . . . . . . . . . 81
3.27. Curve-Fit of relaxation pair: double logarithmic scale (left); normal scale (right) 82
3.28. Intersection of exemplary point on logarithmic time scale (left), Plot of intersec-

tion points within initial stress strain curve (right) . . . . . . . . . . . . . . . . . 82
3.29. Extrapolation of Intersection Points (left), Poly-Fit within Mean of Measurement

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1. Maxwell Element - small Deformations . . . . . . . . . . . . . . . . . . . . . . . 85
4.2. Maxwell Element - large Deformations . . . . . . . . . . . . . . . . . . . . . . . 85
4.3. Examplary calculation for the �rst viscosity element . . . . . . . . . . . . . . . . 87
4.4. Examplary calculation for the second viscosity element . . . . . . . . . . . . . . 88
4.5. Examplary calculation for the third viscosity element . . . . . . . . . . . . . . . 88
4.6. Rheological elements of the Network Model . . . . . . . . . . . . . . . . . . . . . 89
4.7. Examplary calculation for the fourth viscosity element . . . . . . . . . . . . . . 89
4.8. Rheological elements of Network A . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.9. Rheological elements of Network B . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10. Examplary calculation for the �fth viscosity element . . . . . . . . . . . . . . . . 91
4.11. Network C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.12. Flow chart of exemplary implementation of Network A . . . . . . . . . . . . . . 99
4.13. Comparison of analytical, numerical ,and solution from [24] (left); Error with

respect to the analytical solution (right) . . . . . . . . . . . . . . . . . . . . . . 101
4.14. Comparison of analytical, numerical ,and solution from [24] (left); Error with

respect to the analytical solution (right) . . . . . . . . . . . . . . . . . . . . . . 103
4.15. Solution of example for �nite viscoelastic approach (left); Comparison of results

of linear viscoelastic, �nite linear viscoelastic and �nite viscoelastic approach for
the benchmark example (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.16. Evaluation of the Structure Variable q for healing (D = 0, ξ = 10) (left) and
destruction (D ̸= 0, τq = 10000) (right) . . . . . . . . . . . . . . . . . . . . . . . 105

ix



List of Figures
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1. Introduction

With today's demands for ever-slimmer and more transparent buildings, structural glass design
has become increasingly essential and continues to grow in signi�cance. Initially, glazing was
used mainly as an in�ll element. However, it is used today, and will continue to be used in
the future, as a structural element in façades, in fall-protecting balustrades, and for roo�ng,
sometimes even walkable or drivable. Therefore, laminated glass (LG) is used for increased
safety requirements (e.g., overhead or fall-protection glazing). According to DIN EN ISO 12543-
1:2022-03 [85], laminated glass must consist of one glass-ply attached to a polymer interlayer
or several glass-plies joined by one or more interlayers. If the laminated glass meets increased
safety requirements in the event of breakage, such as reducing the opening in the pane, retaining
glass splinters, reducing the risk of cuts, and ensuring a speci�c residual load-bearing capacity, it
is declared laminated safety glass [85, 86]. According to DIN EN ISO 12543-2:2022-03 [86], the
pendulum impact test (cf. [76]) is used to di�erentiate between LG and LSG. Glass laminates
with PVB interlayer are generally considered laminated safety glass.
According to CEN/TS 19100-1:2024-01 [44], there are di�erent Limit State Scenarios (LSS)

which demand di�erent veri�cations of the safety requirements. DIN 18008-1:2020-05 [68], DIN
18008-5:2013-07 [69], DIN 18008-6:2018-02 [70] regulates the examination of the broken state
in the case of overhead (part 1), accessible (part 6), and walk-on glazings (part 5). The
various breakage patterns of di�erently toughened glasses and the complex material behavior
of the polymeric interlayers play a crucial role in assessing the residual load-bearing behavior of
laminated safety glass and give reason to examine this condition more closely. CEN/TS 19100-
1:2024-01 [44] distinguishes between the Fracture Limit State (FLS) and the Post Fracture
Limit State (PFLS). The FLS describes the state during breakage and is thus de�ned as a
state where the risk of injury caused by broken glass shards, and the risk of falling through the
glazing is no longer prevented, and the ability of limiting the failure to that glass component
is no longer ensured. The PFLS describes the state after the breakage and thus the condition
of an entirely broken glazing, where redundant load transfer and alternative load paths are no
longer possible.
CEN/TS 19100-1:2024-01 [44], CEN/TS 19100-2:2024-01 [45], CEN/TS 19100-3:2024-06 [46]

requires that su�cient safety is ensured for a certain duration (Time to secure the environ-
ment, to replace the broken pane, to remove load, etc.) in the PFLS. Verifying the safety
requirements within the PFLS can be done theoretically or experimentally. In the case of ex-
perimental veri�cation, it is crucial to ensure a su�ciently accurate representation of reality
and a representative number of test repetitions. Theoretical approaches that are only allowed
for loads perpendicular to the pane according to CEN/TS 19100-2:2024-01 [45] must consider
all possible actions and be equivalent to the experimental approaches. According to CEN/TS
19100-2:2024-01 [45], "the mechanical behavior of glass in the PFLS is governed by the size and
shape of the shards (glass type), type and thickness of the interlayer, the bond between inter-
layer and glass," and "the delamination depth of the interlayer in contact of the single shards."
Accordingly, di�erent load transfer mechanisms are required to verify the PFLS theoretically.
From a scienti�c point of view, this approach goes along with the de�nitions of Kott [157], who,
besides the intact state State I, de�ned a partially broken state, State II, where at least one
glass pane is intact, and a completely broken state, State III, where all glass plies are broken.
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Delincé [67] followed Kott [157] but emphasized the interlayer's role that changes signi�cantly
from State I (intact state [157]) to State III. It provides a shear bond between the individual
glass panes in the intact state and shows a bridging behavior in the broken state.
Several approaches have to be taken into account to approach the topic of the theoretical

description of the residual load-bearing capacity of laminated glass. Besides the investigations
on the overall behavior of fully fractured LG, the individual load-bearing mechanisms, inter-
layer, bond between glass and interlayer, and contact of single glass shards, listed by CEN/TS
19100-2:2024-01 [45] must be examined in detail. The following sections present an overview of
several approaches achieved by various research groups over the last decades, categorized into
experimental investigations, and numerical and analytical modeling approaches.
As experimentally proving residual load-bearing capacity is common practice in structural

glass design, research on experimentally characterizing laminated glass in the broken state is
presented in the �rst of the following sections. The �rst part describes various experiments
on glass laminates to represent the overall behavior in the fractured state, and the second
part presents experiments to isolate the broken laminate's load-bearing mechanisms such as
interlayer, bond between glass and interlayer, and friction between glass shards. All presented
experimental approaches are concerned with quasistatic loads.
Subsequently, numerical modeling approaches for the whole fractured laminate, and the single

load-bearing mechanisms are described, considering both quasistatic and dynamic approaches.
Overall modeling approaches, however, mainly exist for dynamic loadings, whereas approaches
describing the individual load-bearing mechanisms exist for quasistatic loads. In addition to
the main applications in civil engineering (load-bearing capacity of LSG under static loads
according to CEN/TS 19100-1:2024-01 [44], DIN 18008-1:2020-05 [68]), examples for modeling
broken LSG from mechanical engineering and structural protection are presented. The choice
of the application is crucial, as the type of loading decides the material and interface models.
The third section describes the analytical modeling approaches, considering quasistatic loads

only. There are two general approaches: the equivalent sti�ness models and the explicitly
de�ned models. The decision between the two methods depends on the degree of prestress in
combination with the thickness or, rather, the type of the breakage pattern. Coarse breakage
patterns accompany an explicit description, and �ne breakage patterns accompany equivalent
sti�ness approaches.
The �rst chapter concludes with a discussion of the presented methods and �ndings. Based

on this discussion, the motivation and the resulting questions aimed at being solved in this
thesis are derived and presented.

1.1. Residual Load-Bearing-Capacity - Experimental

Approaches

The �rst section of this chapter presents several experimental investigations on laminated glass
or its components considering quasistatic loading that various research groups have carried out
in recent years. These investigations are categorized into four groups:

� The overall behavior of broken laminated glass

� The adhesion between glass and interlayer

� The interaction of the glass fragments

� The mechanical behavior of the interlayer
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1.1.1. LSG

Several tests, such as 3- or 4-point bending with in-plane and out-of-plane loading or uniaxial
and biaxial tension or compression tests, are possibly carried out on broken glass laminates.
Bennison et al. [21] carried out tests on circular laminated glass panes consisting of annealed

glass with PVB interlayer (ANG/PVB/ANG) subjected to equi-biaxial loading utilizing an
articulated loading punch and a rigid three-ball support. They investigated the failure of the
laminates under di�erent loading rates in combination with high (50◦C) and low temperatures (-
60◦C) and the location of the �rst crack initiation. By analyzing the test results, they observed
that laminates with full shear coupling (high rate, low temperature) promote �rst cracking
at the bottom side of the lower ply, while laminates without shear coupling (low rate, high
temperature) promote �rst cracking at the bottom side of the upper glass ply (facing the load).
Kott and Vogel [158] conducted out-of-plane tests on laminated glass panes. They considered

4-sided line supports and 4-point bending conditions under various loading situations. The
laminates, composed of annealed, heat-strengthened (HSG), or thermally toughened glasses
(TTG) with a PVB interlayer, were pre-damaged to produce di�erent fracture patterns, leading
to distinct residual support mechanisms. The pre-damaged specimens were then subjected to a
displacement-controlled load with constant velocity at room temperature. After the breakage of
both plies, three scenarios emerged: immediate collapse, continued loading to failure, and dead
load loading, with the time to failure measured. Only laminated glass with a coarse breakage
pattern (ANG, HSG) could provide a residual load-bearing capacity.
Feirabend and Sobek [105] investigated the pre- and post-breakage behavior of laminates

made from two plies of thermally toughened glass with both PVB and SG interlayers reinforced
by stainless steel meshes. They carried out 4-point bending tests under di�erent temperatures
and constant, displacement-controlled testing velocities on pre-damaged laminates until failure,
measuring load, time, and displacement. The laminates with reinforced interlayer showed a
considerably better residual post-breakage behavior, especially at high temperatures, however,
at the price of poorer transparency compared to the non-inforced con�guration.
Castori and Speranzini [42] performed four-point bending tests (out-of-plane) with constant

displacement-controlled velocity on LSG with two layers of annealed glass joined by di�erent
types of interlayers (PVB, SGP, EVA, trilayer with a layer of PET between two layers of
EVA (XLAB)) with various thicknesses (single, double, triple) until the breakage of all glass
plies. Subsequently, they conducted the same test at a higher velocity on the fully broken
samples until failure, constantly measuring displacement, strain, and force throughout the test
procedure. Concerning the SG, EVA, and PVB, the highest initial and residual loads were
observed for the SG interlayer laminates, followed by EVA and PVB. However, the evaluation
of the test results of the XLAB laminates resulted in an even higher initial load but with a
signi�cantly reduced load in the fractured state. Overall, the laminates with the EVA interlayer
achieved the lowest, and those with the SG interlayers achieved the highest mean de�ections
but, on the other hand, also the highest residual loads.
Wellersho� et al. [266] carried out the Bulge Test on fully broken laminates made of two

plies of TTG bonded with PVB interlayers. The bulge test requires a circular-shaped specimen
clamped along the edge, loaded with a constantly increasing air pressure. At the same time,
an optical measurement system monitors the corresponding deformation of the specimen. For
this study, they conducted the tests at a constant pressure rate considering di�erent temper-
atures. Subsequently, they evaluated the micro-delamination between the glass fragments and
the interlayer and derived the biaxial stresses depending on deformation.
Biolzi and Simoncelli [26] investigated the residual strength of thermally toughened glass with

di�erent interlayers (PVB, DG41, and SG). To this end, they conducted tests on rectangular
plates supported on two sides with simple bearings subjected to an incremental line load in an
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out-of-plane direction. After breaking the lower ply, they established two series, both loaded
until failure with the force and displacement continuously monitored for all tests: one with the
crack in the top ply (series 1) and one with the crack in the bottom ply (series 2). Load and
displacement at total collapse revealed that the specimens of series 2 reached higher de�ections
and lower forces than those of series 1. However, the de�ections and forces of the di�erent
laminates were in the same range for series 2. They varied for series 1, with the PVB laminates
showing the lowest force and the highest de�ection at failure.

1.1.2. Interface

Some methods for the experimental investigation of the bond between interlayer and glass are
presented below. A good overview of the methods available for investigating the adhesion
behavior of laminated glass can be found in Schuster et al. [232]. In the industry, pummel,
compressive shear, and peel tests are standard methods for quality assurance and quantifying
adhesion between glass and interlayer in laminated glass. However, this establishment is mainly
caused by the easy handling of these tests, which have limitations. For example, the force
measured in the peel test includes the inelastic work generated by the deformation of the
interlayer and the cohesive energy. Therefore, it is di�cult to distinguish which part is how
large [115, 14], which is particularly problematic when determining energy release rates and
interfacial fracture toughness. Furthermore, the highly subjective nature of the Pummel test is
an obstacle to objective quanti�cation of adhesion [232]. Although several approaches, such as
[232, 54], who used a mechanized Pummel apparatus, and Kraus and Drass [160], who proposed
an evaluation method based on arti�cial intelligence, have increased the objectivity of the
Pummel test in recent years, it still provides too little information about mechanical adhesion
behavior. Therefore, the Pummel test is not considered further. Due to these limitations within
the industrial tests, various academic ways of experimentally investigating the bond between
interlayer and glass have evolved over the years.

Through Crack Tension Sha et al. [238] developed a tensile adhesion test to investigate
the bond between glass and interlayer. The test is based on a three-point bending test of a
glass laminate with coincident cracks, called the �exural adhesion test. A rectangular sample
of laminated glass, consisting of two layers of glass joined by an interlayer, is cracked on
both sides and subjected to an in-plane tensile load. They carried out this test on standard
PVB with three di�erent levels of adhesion, constantly tracking load over displacement. They
concluded that this test approach gives more realistic and promising results than the widely
used peel and pummel tests. Muralidhar et al. [185] further developed this test to represent
the polymer ligaments in cracked laminates and proposed the Through Crack Tension (TCT)
test, which other researchers have since used. Iwasaki and Sato [140] used the TCT test to
conduct experimental investigations on the interfacial fracture toughness of LSG made from
PVB and found that the fracture toughness is strongly related to the applied strain rate.
Delincé [67] presented a large experimental study of TCT testing with di�erent con�gurations
and a wide range of temperatures in two series. The �rst series included creep tests, and
the second included tests at di�erent constant displacement rates. Franz [107] provided TCT
tests on di�erent interlayer materials, performed at di�erent strain rates at standard climate.
Del Linz et al. [65] conducted TCT tests displacement controlled at velocities from 0.01 to
10 [m/s] for di�erent interlayer thicknesses. Chen et al. [52] built on the tests of Franz [107]
and conducted further TCT tests at di�erent strain rates, interlayer thicknesses, and adhesion
levels. They constantly tracked the deformation using digital image correlation and measured
the delamination length and angle. They found that the strain rate signi�cantly a�ects the
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interfacial fracture energy of laminated glass with a PVB interlayer. Furthermore, the adhesion
level dominates the delamination ability. However, the in�uence of PVB thickness on the energy
release rate was insigni�cant.

Through Crack Bending Franz [107] adopted the �exure adhesion test described by Sha et al.
[238] and changed the mode from three to four-point bending on broken glass laminates with a
coincident crack at a small scale (lmax=200 mm), referring to the test as Through Crack Bending
Test (TCB). Franz [107] subjected the specimens at a constant speed to a speci�ed de�ection
and held them in this position for one hour (relaxation) at room temperature, constantly
measuring the load. After the tests, he evaluated the area of delamination and the stress within
the interlayer. Subsequently, he transferred the test to a larger scale (1100 mm x 3600 mm) to
gain further insight into the residual load-bearing behavior of laminated glass. Botz [30] built
on these larger-scale tests but conducted the tests at a constant force level (creep) for 24 hours,
investigating di�erent temperatures and, in addition to coincident fractures, fractures with a
crack o�set, and fractures caused by ball drop. Both examined di�erent interlayers. Angelides
et al. [6] performed three-point �exure tests (see �exure adhesion test) at a low strain rate and
a low temperature (-100◦C) on laminates randomly cracked at several locations to evaluate the
response of laminates subjected to blast at average temperatures. Angelides et al. [7] extended
the series of tests performing three and four-point bending tests at the same low temperatures
for di�erent randomly distributed randomly cracked laminates. They were able to signi�cantly
increase the ultimate load capacity compared to that at low strain rates at room temperature.

Compressive Shear Another approach is the Compressive Shear Strength (CSS) test, com-
monly used in the polymer industry. A 2-ply laminate is subjected to combined compression
and shear at a speci�ed angle to the loading direction to investigate the adhesion between a
polymer and a rigid substrate. Force, de�ection, and crack length are measured during the test,
serving as the basis for calculating a speci�c energy release rate that can be derived. Jagota
et al. [141] used this test to investigate the interfacial adhesion between glass and standard
PVB at di�erent shear strain rates. Furthermore, interlayer manufacturers use this test for
quality control.

Peel The Peel Test, based on DIN EN 1895:2002-02 [80], is conducted on a (glass/foil/aluminum-
foil) laminate with a crack in the glass, separating it into two parts only connected by the
interlayer-aluminum-composite. The �rst part is �xed by horizontal roller supports preventing
vertical movement, and the second part is clamped at an angle of 90 degrees to be moved by a
testing machine. By moving the cylinder, the interlayer is separated from the glass, while the
aluminum acts as a sti� backing foil to prevent large deformations in the interlayer. The Evalu-
ation of forces, displacement, and detached area gains information about the fracture toughness
of the interface of glass and interlayer. Pelfrene et al. [202] used this test to investigate the
delamination of PVB-glass-laminates at a constant test velocity for di�erent adhesion levels.

1.1.3. Glass

When investigating the fracture behavior of glass, it is essential to distinguish between di�erent
types of glass. For rough-breaking glasses (ANG, HSG), predicting the breakage pattern caused
by a de�ned fracture event is almost impossible due to its stochastic nature. There is, however,
an approach to determine a conservative fracture pattern based on Johann's Yield Line Theory
[237, 157, 5]. This approach is no longer practical for �nely refracted glass (TTG). However,
other approaches are possible due to the almost homogeneous crack distribution. For example,
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Nielsen et al. [189] investigated the general fracture behavior of thermally toughened soda
lime glass using specimens of 300 x 300 mm with di�erent thicknesses and levels of thermal
toughening. Using optical measuring instruments such as high-speed cameras and a scanning
electron microscope (SEM), they discovered a speci�c adhesion between the fragments after
fracture, known as microscale crack bridging, which is an exciting aspect, especially regarding
the residual load-bearing capacity. Furthermore, Nielsen and Bjarrum [188] determined the
remaining strain energy after breakage within thermally toughened soda lime glass by measuring
and calculating the remaining stress within a single fragment. They used a Scattered Light
Polariscope (SCALP) to measure and the numerical model established by Nielsen [187] to
calculate the stress. Additionally, they recorded the geometry and texture of the surface using
3D scans.
Pourmoghaddam and Schneider [207] presented a di�erent approach to determining the frac-

ture pattern of thermally toughened soda lime glass by evaluating the relation between thickness
and residual stress before and fragment size after fracture. They measured the prestress of in-
tact monolithic glasses of di�erent thicknesses and levels of prestress using a SCALP, broke
the glass panes, and recorded scans of the fracture patterns. Based on the recorded fracture
patterns, they derived the correlation between residual stress and fragment density. With these
investigations, Pourmoghaddam et al. [208] formulated an algorithm based on linear fracture
mechanics, spatial point processes, and Voronoi tesselations to predict the macroscale breakage
pattern of TTG. Using this method in combination with the approaches of Nielsen [187], Nielsen
and Bjarrum [188], Nielsen et al. [190] derived the in-plane expansion of the thermally tough-
ened glass in case of fracture.
Utilizing fragments extracted from broken monolithic glasses of di�erent thicknesses and pre-

stress, left from the study presented by Pourmoghaddam and Schneider [207], Pauli et al. [201]
investigated the friction between single glass fragments using shear frame tests in accordance
with DIN EN ISO 17892-10:2019-04 [88].

1.1.4. Interlayer

There are several methods and procedures to investigate the bulk interlayer material experi-
mentally. Bergström [24] gives a good overview of possible strategies for investigating polymer
materials. It is crucial to distinguish between investigating the intact behavior or failure and
damage mechanisms. Di�erent methods and procedures are feasible, depending on the case.
There is a general distinction between di�erent stress states (uniaxial, biaxial, planar, pure
shear, simple shear) in tension and compression and various times (velocity, relaxation, creep),
all procedures possibly combined with di�erent temperatures and levels of humidity. The fol-
lowing is an overview of the recent investigations carried out on PVB.

Quasistatic Tensile Tests A dogbone sample, cut from a plane sheet of bulk material, is
clamped on both sides within a testing machine. The machine's cylinder moves within a
respective time scheme, subjecting the specimen to a tensile load, while the respective course of
load and time follows a user-de�ned speci�cation. Constantly tracking force and displacement,
the test velocity is controlled via the measured displacement or force over time. Displacement
control is typically preferred. However, force control is recommended for creep tests. In addition
to the measuring devices incorporated in the machine, a mechanical or optical measurement
should measure deformation without possible slippage.
Elzière [103] carried out uniaxial tension tests with di�erent strain rates and temperatures

with loading and unloading.
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Bennison et al. [22], Iwasaki and Sato [140], Liu et al. [172], Hooper et al. [134], Kuntsche
[165], Del Linz et al. [64] conducted uniaxial tension tests with di�erent strain rates until
failure. Xu et al. [270] conducted uniaxial tension tests on PVB at di�erent strain rates and
temperatures until failure.
Centelles et al. [43], Knight et al. [152] carried out uniaxial tests at low and high strain rates

under a constant temperature on PVB, EVA, and SGP interlayers subjected to environmental
aging (under high temperature, high humidities, and humidity and temperature cycles).
Botz et al. [31] conducted creep tests on PVB specimens under di�erent temperatures and

humidities. Schuster [231] carried out relaxation tests at di�erent load levels and temperatures.

Dynamic-Mechanical-Thermal Analysis Dynamic-mechanical-thermal analysis (DMTA) is
a method to investigate a material's time- and temperature-dependent behavior. The spec-
imens are subjected to a harmonic oscillating, sinusoidal excitation while the corresponding
response is measured constantly. From the amplitude of excitation and response, the so-called
complex modulus is calculated. Considering a complex plane, this modulus is expressed as a
complex pointer with an inclination corresponding to the phase shift between excitation and
response. The triangle, spanned by the complex pointer and the real axis, represents the storage
(along the real axis) and the loss modulus (along the imaginary axis). The storage modulus
(conservation of energy) represents the elastic behavior of the material, and the loss modulus
(dissipation of energy) represents the viscous behavior of the material. Repeating this proce-
dure for a particular spectrum of frequencies leads to curves representing complex, storage, and
loss modulus. Repeating this procedure for di�erent temperatures yields several curves of dif-
ferent sti�ness aligned to the respective temperature for each modulus. By assigning a reference
temperature and shifting all sti�ness curves with lower sti�ness (at higher temperatures) to the
left (lower frequency equivalent to longer duration) and the curves with higher sti�ness to the
right (higher frequency equivalent to shorter duration), the other curves extend the reference
curve, resulting in a master curve for each modulus. These master curves represent the moduli
for a respective temperature over a broad span of frequencies. The shift of the curves follows
the time-temperature superposition principle that considers the analogy of time and temper-
ature based on temperature-dependent molecular movements. Commonly used principles are
the WLF and the Arrhenius equation.
Hooper et al. [134], Kuntsche [165], Elzière [103], Schuster et al. [233], Kraus and Niederwald

[161] carried out DMTA tests on PVB. Kraus and Niederwald [161] developed a straightforward
method to derive Prony parameters from a DMTA measurement, employing an equation system
solved by a linear regression analysis. This method is much less time-consuming than, for
example, the method proposed by Kuntsche [165], and provides results with the same accuracy
as Kuntsche [165].

1.2. Residual Load-Bearing-Capacity - Numerical

Modeling Approaches

Besides the di�erent experimental approaches, which primarily aim to characterize the behav-
ior of fractured laminated glass and its single load-bearing mechanisms, there are several ap-
proaches to numerically describe or even predict the behavior observed during the experiments.
The subsequent presentation of the approaches of various research groups on the numerical
modeling of the residual load-bearing capacity of laminated glass or numerically describing the
single load-bearing mechanisms is organized utilizing the following categories:

� The overall behavior of broken laminated glass
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� The adhesion between glass and interlayer

� The interaction of the glass fragments

� The mechanical behavior of the interlayer

1.2.1. Methods

The governing, physical problems in civil and mechanical engineering can be described as a
structure subjected to a particular load. Idealizing such a physical problem into a mathematical
model leads to a description by di�erential equations. There are several methods to evolve the
solution to such problems. In the following, the Finite Element Method (FEM), the Extended
Finite Element Method (XFEM), and the Discrete Element Method (DEM), which are the
most common approaches in modeling the residual load-bearing capacity of laminated glass,
are presented along with respective examples from the literature.

FEM The Finite Element Method (FEM), introduced by Zienkiewicz and Cheung [280], as
one of the �rst, is the most widely used method for accounting for this. The method involves
dividing a complex area into a �nite number of elements connected via nodes. The single
elements are solved locally and merged into a global system. [17].
The �nite element method is the approach that is mainly used in modeling glass laminates,

especially under dynamic loads. However, there are di�erent con�gurations to describe the
glass laminates. Du Bois et al. [100] simulated two-layer laminated glass under impact loading,
using one shell element representing both glass plies and a membrane element representing
the interlayer connected by �xed coincident nodes. Timmel et al. [247] resumed this model
for the same application but added a second shell element for the glass, also connected with
shared nodes. They considered a brittle failure for the glass ply exposed to tension. In the
case of failure, one ply is completely erased. The di�erent Young's moduli are calculated such
that both shell elements together (EII + E∗) represent the intact state, and the resisting one
(EII) represents the broken state. Larcher et al. [166], Hooper et al. [135] simulated two-layer
laminated glass windows exposed to blast loads using a model with three layers of shell elements.
Larcher et al. [166] used an element deletion method to consider the failure of the laminate,
Hooper et al. [135] separated the analysis into a pre- and a postcrack model. They assumed a
linear elastic material law for the glass and the interlayer in the cracked model, zero sti�ness
for the glass (mass is contained), and a rate-dependent Johnson-Cook plasticity law [148] for
the interlayer in the post-crack model. Pelfrene et al. [203], Alter et al. [2] modeled two-layer
laminated glass with shell elements for the glass and solid elements for the interlayer, Pelfrene
et al. [203] in the context of blast loads, and Alter et al. [2] in the context of slow velocity
impact, both enabling glass fracture using the element deletion method. Hidallana-Gamage
et al. [128], Chen et al. [49], Osnes et al. [197], Hála et al. [121] used solid elements for glass and
interlayer. However, Hidallana-Gamage et al. [128] used the element deletion method, Chen
et al. [49] cohesive elements, Osnes et al. [197] a speci�c node separation technique and Hála
et al. [121] utilized a smeared crack model to describe the breakage of the laminate.

XFEM When modeling cracks within a �nite element model, a detailed representation re-
quires a very �ne mesh in the vicinity of the crack, which causes a large amount of computation
time. XFEM can be used to make such problems numerically e�cient and save computation
time without losing accuracy. Originally developed by Moës et al. [182] to model cracks in-
dependently of an FE mesh, XFEM extends a conventional FE model in the areas of cracks
using special ansatz functions to allow modeling cracks without re�ning the FE mesh [47].

8



1. Introduction

The method is used by Xu et al. [268, 271] for the analysis of the slow velocity impact on
coarse-breaking laminated glass.

DEM In addition to classical FEM and XFEM, it is also possible to solve physical problems
in engineering using the Discrete Element Method (DEM). The idea behind DEM, initially
developed by [60] for granular assemblies, is to divide a domain into discrete elements (particles)
connected by contact. Their motion is modeled explicitly, particle by particle, governed by
Newton's second law. The method is mainly used to solve non-continuous problems such as
discontinuous materials (granular, powder) [144].
This method has been used extensively and is still used to model the low-velocity impact

on laminated glass, mainly in the context of automobile glass. Zang et al. [275] developed a
three-dimensional DEM model to simulate impacts on laminated safety glass in automotive
engineering. They found that DEM can represent the interactions between cracks well but has
problems representing large deformations. Lei and Zang [168], therefore, formulated a model
combining FEM and DEM in which the FEM domain is connected to the DEM domain via a
penalty function. DEM represents the glass, and FEM represents the intermediate layer. Xu
et al. [269] also used a combination of FEM and DEM to be numerically e�cient. Therefore, in
the initial state, the model is completely described in terms of �nite elements. After reaching a
yield criterion based on the tensile strength of glass, the model is divided into two subdomains:
the �nite element model and the discrete element subdomains. Wang et al. [264] uses the same
approach. However, the case for laminated glass is more precise as it considers delamination
and more accurate material formulations.
Baraldi et al. [15] used the Discrete-Element-Method to simulate the residual load-bearing

capacity of balustrades made of laminated glass with TTG. However, only a respective two-
dimensional cross-section of a balustrade (cantilever and two-sided supports) with �nite thick-
ness in the direction perpendicular to the plane is modeled. The two layers of broken LG
are composed of rigid elements of the same width and length (glass fragments), longitudinally
connected by a continuous interface layer (interlayer), and transversely connected by discrete
interfaces for each contact (glass-glass). Vertical interfaces do not support any tensile forces
but are considered to possess in�nite compressive strength. Horizontal interfaces possess ten-
sile and compressive strength related to the sti�ness of the interlayer and independent shear
strength, representing the limit of delamination. Rotational sti�ness and frictional e�ects are
not considered. The general behavior of the interface, describing the interlayer, is governed by
an elastoplastic material law with a yield criterion similar to the Mohr-Coulomb criterion. The
initial elastic sti�ness of glass is considered 103 higher than the initial sti�ness of the interlayer.
Wang et al. [265] introduced a similar model based on a combined Voronoi and FEM/DEM

approach, considering only the already broken state of laminated glass made of TTG. They used
cohesive zone elements with bilinear separation-traction to represent the interaction between
the single glass fragments, ensuring a smooth transition from cohesive-dominant to friction-
dominant behavior. Furthermore, the respective glass fracture morphology is considered to
evaluate the particle sizes, and 50 �nite elements discretize each glass fragment. They used a
plastic material law for the interlayer and described the bond between the interlayer and the
glass based on fracture energy. However, they did not consider partial debonding.

1.2.2. Interface

Besides the overall modeling of laminated glass in the fractured state, one crucial aspect is the
description of the bond between glass and interlayer. The level of adhesion in�uences the de-
formability of the interlayer and, therefore, the amount of energy dissipated during fracture. At
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an adhesion level that is too high, the interlayer reaches its fracture strain almost immediately.
However, at too low adhesion, the overall de�ection of the laminate might be too high in the
broken state. Regarding numerical modeling, this problem is perceived as separating a bonded
contact. Three approaches are commonly used to model this behavior [51, 178]. The simplest
techniques are the "shared node method," where the elements of glass and interlayer share the
same nodes on the interfaces, and the constraint-based method, which is a similar approach. A
more advanced method is using penalty springs to connect glass and interlayer. However, the
cohesive zone modeling approach is the method that allows for the most realistic presentation
of adhesion.

Shared-node and constraint based method The shared-node method, where the elements
at the interaction surfaces share their nodes, is the simplest way of modeling the permanently
e�ective, complete bond between separate elements. Liu et al. [173], Zhao et al. [278] used this
method to simulate the fracture behavior of windscreens under dynamic impact. This method is
numerically very e�cient, requiring no additional interface treatment. However, it is impossible
to model delamination or any other realistic adhesion behavior with this approach, as relative
displacements between interlayer and glass are impossible. The constraint-based method is
similar. However, the connected elements do not share the nodes; the individual nodes are
�xed to each other, utilizing explicit constraints applied to the nodes on the interface. Pyttel
et al. [209], Peng et al. [205] used this formulation to model low-velocity impacts on windshields.
After glass failure, the contact between the glass and interlayer is erased, and all connected
glass elements fail. Deleting the contact after the failure of the aligned elements is an advantage
over the shared node approach. However, modeling realistic delamination is not possible with
that approach either.

Penalty-based approach The penalty formulation involves the introduction of additional
terms containing virtual springs into the equations of motion. These springs enforce contact
constraints by generating forces to prevent penetration or sliding between contacting surfaces.
They are calculated from the relative displacement between connected nodes and a penalty
parameter governing the sti�ness of the virtual springs. One approach to model delamination
is deleting contact elements when the penalty forces reach a particular failure criterion. Zhang
et al. [277] used this approach and de�ned a failure criterion depending on normal and shear
stresses on the interface. After reaching this criterion, the contact between the glass and the
interlayer is erased. Pelfrene et al. [203] used a similar method but added a cohesive zone at
the interface to account for a particular traction separation relation. Besides these applications
in the context of FEM, there also exist approaches within DEM or FEM/DEM. For example,
Lei and Zang [168] used penalty springs to connect glass represented by discrete elements and
interlayer represented by �nite elements in the context of the FE/DE method.

Cohesive Zone Elements The most realistic approach to modeling delamination is the in-
terelement crack method using cohesive zone models [243]. This method, originally proposed
by Dugdale [101], Barenblatt [16], requires additional nodes at the interfaces. Fracture is mod-
eled through the separation of elements along their edges. A traction separation law governs
crack propagation and starts when the force at the cohesive zone overcomes a particular co-
hesive strength [246]. There are two di�erent basic approaches [164]: the intrinsic approach
(initially elastic) and the extrinsic approach (initially rigid). The intrinsic method was �rst
introduced within the context of FEM by Needleman [186]. There is no traction at the begin-
ning, followed by an increased traction resistance for increasing separation. After reaching a
speci�c failure strength, the traction resistance decreases with further separation. The extrinsic
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method, based on the original approach [101, 16], further developed by Camacho and Ortiz [40],
considers the traction strength to be maximal initially, decreasing with increasing separation.
However, in both approaches, the area under the traction separation curve corresponds to the
fracture toughness of the interface.
Many researchers used intrinsic cohesive elements to describe the delamination behavior of

laminated glass based on experimental investigations and derive respective material parameters
such as the fracture toughness and the energy release rate. Rahul-Kumar et al. [211], Pelfrene
et al. [202] used peel tests, Jagota et al. [141], Rahul-Kumar et al. [212] compressive shear
tests and Muralidhar et al. [185], Franz [107], Del Linz et al. [65], Chen et al. [53] TCT tests.
D'Ambrosio et al. [61] numerically investigated the shapes of the detached areas on idealized
elementary cells representing LSG for di�erent parameters (interlayer thickness, size, shape
of glass fragments, and debonded area). Based on the TCT tests performed by Franz and
Schneider [108], Chen et al. [53] carried out a numerical study on the delamination behavior
of LSG and observed that, under the assumption of stable delamination, the cohesive strength
mainly in�uences the peak force, and the fracture energy dominates the plateau force. Other
researchers also used intrinsic cohesive elements to describe the delamination within the mod-
eling of laminated glass in case of fracture. Chen et al. [50], Wang et al. [264] simulated the
impact damage of laminated glass in the context of FEM and FEM/DEM using a mixed mode
failure criterion based on the model of van den Bosch et al. [260] and Wang et al. [265] simulated
glass laminates under quasistatic loading in the context of FEM/DEM.
On the other hand, several approaches use extrinsic cohesive models. Pelfrene et al. [203],

Osnes et al. [197] carried out �nite element simulations in the context of laminated glass windows
subjected to blast loads, Gao and Zang [113] simulated glass beams exposed to dynamic impact
in the context of FEM/DEM.
However, according to Chen et al. [51], Martín et al. [178], the intrinsic approach should be

preferred in modeling the adhesion between glass and interlayer.

1.2.3. Glass

In numerically modeling the bulk glass material in modeling LSG in the fractured state, distin-
guishing between quasistatic and dynamic cases is crucial. When considering the post-fracture
behavior of laminated glass under quasistatic loading, further described in the following, the
glass is already considered broken, emphasizing the importance of describing the contact and
friction between glass shards. A respective fracture pattern can be derived from yield line
theories [146] for coarse breaking glass and from statistical methods and fracture mechan-
ics [208, 190] for �ne breaking glass. Using �nite element analysis and experiments, Nielsen
[187], Nielsen and Bjarrum [188] determined the changes in a fragment's surface shape and the
remaining stresses and deformations. Pauli et al. [201] investigated the friction between single
glass fragments utilizing shear frame tests on the same glass fragments of di�erent thicknesses
and initial prestress, [207] presented in their study. A FEM simulation of the shear frame tests,
based on a Mohr-Coulomb yield criterion, led to promising results.
However, concerning dynamic impacts or blasts, the fracture process of the glass is modeled in

particular. Song et al. [243] provided a list of possible approaches. The element deletion method,
in which the sti�ness of elements is set to zero once they have reached a particular failure
criterion, was used by Larcher et al. [166], Hidallana-Gamage et al. [128] to simulate the blast
resistance of laminated glass windows, and Peng et al. [205], Liu et al. [173] to model the low-
velocity impact on laminated glass windshields. The continuum damage mechanics approach,
in which the damage is taken into account directly in the constitutive law (compare Kachanov
[150]), was used by Zhao et al. [278] to model the fracture of laminated glass windshields under
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head impact. The smeared crack model, introduced by Hillerborg et al. [129], was used by
Pelfrene et al. [204], Hála et al. [121] to simulate the low-velocity impact on laminated glass.
Xu et al. [272] proposed an intrinsic solid-shell cohesive zone model for the impact fracture of
laminated glass windshields. [269, 264] implemented an extrinsic cohesive fracture model into
a DEM model to describe the gradual glass-ply cracking process. Chen et al. [49] modeled the
breakage of LSG caused by a low-velocity impact as a gradual separation of the area immediately
before the crack front, considering frictional sliding e�ects between the cohesive elements.

1.2.4. Interlayer

The PVB intermediate layer is a polymer, more precisely an amorphous thermoplastic. Boyce
et al. [33] describe amorphous thermoplastics as a combination of physical entanglement of
polymer chains, multiple rigid links between the entanglements, and intermolecular interac-
tions. Their mechanical behavior is governed by an initial strain rate-dependent pressure,
temperature-dependent yielding followed by true strain softening and rate-, and temperature-
dependent hardening at larger strains. Depending on the application, the spectrum of modeling
approaches in the literature ranges from linear elastic to nonlinear viscoplastic. Haupt [123]
suggested the following separation between the single material modeling approaches of solids
concerning their strain and stress relation:

� Elasticity, rate-independent without static hysteresis

� Plasticity, rate-independent with static hysteresis

� Viscoelasticity, rate-dependent without static hysteresis

� viscoplasticity, rate-dependent with static hysteresis

Structural glass engineering requires various considerations for modeling the pure intermedi-
ate layer. Apart from the di�erentiation on the time scale, a distinction must be made between
the intact and broken state. In the intact state, the shear modulus of the interlayer decides a
corresponding shear bond between the individual plies, depending on the load duration and the
temperature. It can be described by the theory of linear viscoelasticity using a Prony series in
combination with a time-temperature shift principle when considering di�erent temperatures.
This approach is su�ciently accurate, and no further considerations regarding the intact state
are necessary. However, in the broken state, large deformations prevail, resulting in the need
for other modeling approaches. Dividing the state of large deformations into quasistatic and
dynamic loading leads to some simpli�cations. In the dynamic case (impact, blast), the load-
ing rate is so high that temporal e�ects have a much smaller in�uence than in the quasistatic
case. Models of elasticity, hyperelasticity, or plasticity, therefore, seem acceptable. However, for
quasistatic considerations, temporal e�ects must be considered strictly, which requires models
containing time dependency. Models of �nite deformation viscoelasticity or -plasticity account
for that.

Elasticity Linear Elastic material behavior, also referred to as Cauchy Elasticity, can be rhe-
ologically described in terms of a Hooke's spring. Many structural glass design and mechanical
engineering approaches follow the assumption of linear elastic material behavior for the PVB
interlayer for modeling laminated glass in the fractured state. Examples of structural glass
design considering quasistatic loads are the works of Seshadri et al. [237], Bennison and Stelzer
[20], Galuppi and Royer-Carfagni [110, 111, 112]. Furthermore, Xu et al. [269] used this ap-
proach to model laminated glass under low-velocity impacts and Hooper et al. [135] for blast
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loads.

Hyperelastic, referred to as Green Elasticity, incorporates the Cauchy Elasticity but is sub-
ject to the stricter requirement that it must be derived from an energy potential. There are
several approaches for such potentials: incompressible approaches, based on statistical mechan-
ics [261, 251, 11], based on a description of invariants [216, 183, 274, 151] and models based on
principal stretches [194]. Furthermore, there are compressible approaches [195, 4, 27].
Du Bois et al. [100], Wang et al. [264], for instance, used hyperelastic materials to describe

laminated glass exposed to blast and low-velocity impact.

Plasticity Elastoplastic material behavior is the expansion of elasticity concerning inelastic
deformations without considering time dependencies. A standard description is the formulation
of a set of equations, known as Prandtl Reuÿ equations, di�erentiating between di�erent cases,
e.g., the elastic and the plastic case. If a particular yield and a loading condition are satis�ed
simultaneously, the initially elastic material behavior becomes plastic, following a respective
�ow rule. However, this �ow is formulated independently of the velocity of a deformation pro-
cess, and therefore, neither deformation rates nor relaxation properties are represented by that
theory. [125]

Kott [157], Belis et al. [19] assumed elastoplastic material formulations for the PVB inter-
layer for the analytical modeling, and Baraldi et al. [15], Wang et al. [265] for the numerical
modeling of the residual load-bearing capacity of laminated glass subjected to quasistatic load-
ing. Furthermore, Timmel et al. [247], Larcher et al. [166], Hidallana-Gamage et al. [128] used
elastoplastic material behavior for the numerical simulation of laminated glass subjected to
dynamic loads.

Viscoelasticity The formulation of viscoelasticity is similar to that of elastoplasticity, as it
follows the same principle. However, compared to elastoplastic material behavior, governed
by a "strong memory" and therefore showing a rate-independent hysteresis, viscoelastic ma-
terial is governed by the "principle of fading memory" and therefore shows a rate-dependent
hysteresis [125]. One crucial aspect in modeling the behavior of laminated glass interlayers
subjected to quasistatic loads is the time dependency of the interlayer, an aspect that elastic
or elastoplastic approaches can not cover, making the viscoelastic material description an aus-
picious approach. The classi�cation of viscoelasticity proposed by Reese and Govindjee [214]
is a signi�cant framework that divides the �eld into linear, �nite linear, and �nite approaches
and is a decisive starting point for the following considerations.

The theory of Linear Viscoelasticity is based on small deformations and the assumption of
a linear relationship between stresses and strains, yielding the coincidence of all stress and
strain measures Tschoegl [257]. Furthermore, the theory of linear viscoelasticity is the founda-
tion of describing a time-dependent modulus, described by the commonly known Prony series,
a widespread approach in structural glass design. Kuntsche [165], Kraus [159], Schuster [231]
provided Prony parameters based on DMTA tests, Rahul-Kumar et al. [211], Pelfrene et al.
[202] used linear viscoelasticity to describe the interlayer in the context of delamination. How-
ever, the theory is limited to small deformations and, therefore, is not valid for describing glass
laminates in a broken state.

The theory of Finite Linear Viscoelasticity describes linear time-dependent material behavior
considering large deformations. It was originally proposed by Lubliner [176], and further de-
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veloped and implemented numerically by Simo [240], Holzapfel and Simo [132], Holzapfel [130].
From a rheological point of view, it is described by combining a single hyperelastic spring,
representing the initial sti�ness, and a Prony series, representing the sti�ness decay over time.
This approach is used extensively in modeling laminated glass subjected to blast [203, 64] and
slow velocity impact [222, 2]. Furthermore, Del Linz et al. [65] used this approach to model
the delamination in laminated glass. Sticking to the general theory but applying a di�erent
framework, Kolling et al. [154] proposed a tabulated hyperelastic material model accounting
for rate-dependent material behavior.

The theory of Finite Viscoelasticity can be seen as the physically consistent extension of linear
viscoelasticity to �nite deformations based on the dissipation inequality and a multiplicative
split of the deformation gradient. Haupt and Tsakmakis [126] gave an overview of physically
consistent relations of stress and strain measures within this theory. From a rheological point
of view, these models consist of one or more Maxwell elements in parallel with a single spring in
parallel. The Maxwell element represents the "non-equilibrium behavior," the time-dependent
response of the material, and the single spring represents the time-independent "equilibrium
behavior." Arbitrary hyperelastic potentials govern the springs, and the dampers depend on
the evolution equation derived from the dissipation inequality, which incorporates particular
viscosity functions. These functions are mathematical formulations of material-speci�c time
scales and possibly depend on process variables such as strain rate or stress. One crucial aspect
is the treatment of the volumetric material behavior, which can be assumed incompressible
or compressible. Incompressibility utilizes Lagrange multipliers that represent the hydrostatic
pressure; compressibility requires a split of the deformations into isochoric and volumetric
parts. Along with the split of the deformations goes the split of the corresponding hyperelastic
potentials and the evolution equations.
Reese and Govindjee [214] proposed a well-known framework for modeling rubbers based

on the structure of the three-parameter Maxwell model, considering compressible material
behavior.
Sedlan and Haupt [236] adopted a modeling approach of �nite viscoelasticity for carbon

black-�lled rubber material based on the general framework presented by Lion [170], under
the assumption of incompressible material behavior. In their model, the viscosity function
is intricately linked to an internal variable that captures the in�uence of thixotropy and two
additional process variables that account for the rate and magnitude of deformation. For the
equilibrium component of their model, they extended the Mooney-Rivlin model [183, 216], for
the non-equilibrium parts, they used the Neo-Hookean model [250].
Hoo Fatt and Ouyang [133] proposed a hyper-viscoelastic constitutive equation to describe

the material behavior of Styrene Butadiene Rubber at high strain rates. They proposed new
hyperelastic potentials for the equilibrium and the instantaneous response of the material,
assuming incompressible material behavior.
Koprowski-Theiÿ et al. [156] proposed a model designed to capture the complex behavior of

non-linear �nite viscoelasticity in rubber containing porous carbon black, taking into account
the compressible material behavior. This model establishes the equilibrium component based on
the potential formulation introduced by Yeoh [274], and the non-equilibrium behavior by a set
of modi�ed Neo-Hookean elements. The viscosity function is in�uenced by process-dependent
relaxation times, depending on the amount and the rate of deformation experienced by the
material.
Sche�er [225] extended the basic framework established by Koprowski-Theiÿ et al. [156] under

the assumption of incompressible material behavior. They supplemented the Neo-Hookean
elements originally proposed by Koprowski-Theiÿ et al. [156] with a modi�ed Yeoh potential.
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Furthermore, they chose a di�erent formulation of the viscosity functions.
Justine [149] proposed an approach for describing mineral nonwovens for a wide temperature

range under the assumption of compressible material behavior and thermal e�ects. She used
the compressible formulation of Blatz and Ko [28] and applied a �ow rule incorporating a
temperature-dependent viscosity and a structure variable to account for thixotropic e�ects.
However, this model is only capable of isothermal considerations.
Schröder et al. [228] developed a more general model based on the relevant quantities of the

second law of thermodynamics. They used a compressible formulation for the equilibrium re-
sponse and assumed incompressibility for the non-equilibrium components, both formulations
following the Neo-Hookean potential. Furthermore, they expanded the structure of the gener-
alized Maxwell element by a thermocouple. They applied the Williams-Landel-Ferry (WLF)
formulation [267] for the description of the relation between time and temperature.
Del Linz et al. [64] used the model proposed by Hoo Fatt and Ouyang [133] to model the

behavior of laminated glass under bast loads.

Viscoplasticity The theory of viscoplasticity is the enrichment of the theory of plasticity
by a rate dependency within the �ow rule. The proportionality factor relating the inelastic
deformation rate with the stress within the theory of plasticity is replaced by a material func-
tion accounting for rate dependency. This material function contains a physical quantity that
represents the viscosity [125]. The kinematics and the modeling of compressibility or incom-
pressibility follow the same rules as within the theory of �nite viscoelasticity.
To describe the behavior of glassy polymers such as polymethylmethacrylate (PMMA), Boyce

et al. [33] proposed a material model consisting of two networks that follow the rheological
structure of a three-parameter Maxwell element. The intermolecular resistance (network A)
is covered by an elastic spring derived from the elastic modulus tensor acting on the natu-
ral logarithmic strain [3] and a viscoplastic damper in parallel following a plastic �ow based
on the double kink model [10]. The temperature-dependent entropic hardening (network B)
is represented by a Langevin spring based on non-Gaussian statistics Wang and Guth [263]
model. Boyce et al. [34] built upon this approach, modifying the description of network B
using the hyperelastic model presented by [11] and a viscoplastic damper to express the molec-
ular network resistances. Dupaix and Boyce [102] built up on that model [34] describing the
experimental investigations on the �nite strain behavior of poly(ethylene terephthalate) (PET)
and poly(ethylene terephthalate)-glycol (PETG). However, they used a strongly temperature-
dependent shear modulus for the initial sti�ness of the elastic spring of network A. Mulliken and
Boyce [184] modeled polycarbonate (PC) and poly(methyl methacrylate) at high strain rates
or low temperatures. They used the model structure proposed by Boyce et al. [33], but de-
composed the intermolecular network resistance (network A) into two rate-activated processes
represented by two Maxwell elements in parallel, each utilizing a viscoplastic damper. The �rst
part considers rotations of the polymer chain segments, and the second considers intermolecular
resistance. A model for polyetheretherketone (PEEK) and (PC), following the same principle
structure, was proposed by Zhu et al. [279].
Like these models, Polanco-Loria et al. [206] proposed a model consisting of two networks,

A and B, representing the intermolecular and the network resistance. Network A comprises a
spring, representing the initial sti�ness, modeled by the Neo-Hookean model, in series with a
Bingham element to ensure that viscous e�ects only occur over a particular resistance threshold.
The friction element is represented by a yield stress and an equivalent stress criterion [210],
the damper follows a non-associative �ow rule incorporating a plastic strain-rate tensor derived
from a plastic potential. Network B is characterized by a hyperelastic spring based on the
formulation of Anand [4]. Garcia-Gonzalez et al. [114] extended this model by a thermoelement,
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accounting for entropy and temperature changes. Johnsen et al. [147] used a similar approach
to Mulliken and Boyce [184]. However, they considered only one elastic Hencky spring in series
with two dampers [213] in parallel, representing the intermolecular network of low-density cross-
linked polyethylene (XLPE) for main and secondary relaxation processes. They considered the
entropic strain hardening using the 8-chain model [11]. Their model accounts for strain rate,
temperature dependency, and self-heating at elevated strain rates.
The well-known Bergström-Boyce model [25] was developed to describe the mechanical be-

havior of carbon-�lled black rubber. It has the same structure as the model proposed by Boyce
et al. [33]. However, for the description of the intermolecular resistance, they created a di�er-
ent plastic �ow rule, including reptational motion and contour length variations, considering
Brownian motion within a constrained tube. The elastic part of the intermolecular resistance
and the network resistance are modeled using the 8-chain model [11]. A similar approach, also
for carbon-�lled black rubber, was proposed by Lion [169]. However, he separated viscoelastic
and plastic behavior and extended the three-parameter Maxwell model by a Prandtl element in
parallel. Additionally, considering thermal e�ects, a similar model is presented by Lion [171].
Osnes et al. [197] used the model proposed by Bergström and Boyce [25] to model the

resistance of laminated glass windows subjected to blast.

1.3. Residual Load-Bearing-Capacity - Analytical

Modeling Approaches

Concerning the modeling of laminated safety glass, it is essential to di�erentiate between �ne
and coarse-breaking glass, especially when considering analytical approaches. Di�erent ap-
proaches are utilized, depending on the fracture. Laminates consisting of �ne-breaking glass
are modeled by assuming an equivalent sti�ness, and laminates consisting of coarse-breaking
glass are modeled explicitly, considering all load-bearing mechanisms individually.

1.3.1. Equivalent Sti�ness Approaches

Bennison and Stelzer [20] proposed a homogenized approach to analytically model the residual
load-bearing mechanism of laminated safety glass utilizing an e�ective modulus for LSG made
of TTG.
Galuppi and Royer-Carfagni [110] introduced an analytical approach to model the behavior

of broken laminated, heat-treated glass (TTG), assuming a symmetric crack pattern (cracks are
parallel, and glass fragments are quadratic) under plane strain and plane stress conditions. The
approach is an extension of the simple approach of an e�ective sti�ness for broken laminated
glass proposed by Bennison and Stelzer [20]. In contradiction to Bennison and Stelzer [20],
they took the length of detachment between the glass and interlayer and the size of the glass
fragment into account. Therefore, they added a correction term to the formulation of the
e�ective sti�ness depending on the detachment length and fragment size. That term considers
the tension sti�ening of the glass shards due to the bond between glass and interlayer. It
is treated as di�usion of the axial stresses and modeled as a perturbed stress �eld (corrective,
�ctitious out-of-plane stress) [122], which is described by non-dimensional shape functions. The
complementary energy function is minimized, and the lower bound for the e�ective sti�ness is
derived and fed into the correction term (sti�ening coe�cient) to �nd the optimal set of shape
functions for the respective loading situation. However, for simpli�cation, the adhesion between
glass and interlayer was considered perfect in the bonded zones and zero in the debonded zones,
and linear elasticity was assumed for all materials.
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Galuppi and Royer-Carfagni [111] extended the model proposed by Galuppi and Royer-
Carfagni [110] to equi-biaxial stress states. Based on numerical investigations of the delami-
nation considering a traction-separation law, the shape of the detachment zone is assumed to
be circular. In this approach, the complementary energy function depends on the radius of the
bonded area, the interlayer's thickness, and the glass fragments' length. It can be observed
that, depending on the ratio of the radius of the bonded region and the fragment size, the
model's response is either governed by the elastic properties of the interlayer or the sti�ening
e�ect of the glass fragments.
Galuppi and Royer-Carfagni [112] provided a di�erent extension to Galuppi and Royer-

Carfagni [110], presenting a smeared view of the crack pattern. They modeled the highly
non-linear behavior of the interlayer, using a secant modulus for a linear elastic approach.
Based on these considerations, they calculated e�ective bending sti�nesses for in and out-of-
plane loading. The bending moment due to in-plane-loading is presented by a compressive
force, modeled by the sound glass, and tensile force, modeled by e�ective modulus [110]. The
bending moment for out-of-plane-loading is based on an internal equilibrium, in which com-
pressive stresses arise from direct contact with glass shards and tensile stresses arise from the
interlayer, sti�ened due to tension-sti�ening e�ects.
D'Ambrosio et al. [61] provided a simple, analytical approach similar to those introduced

by Bennison and Stelzer [20], Galuppi and Royer-Carfagni [110, 111, 112], to estimate the
residual load-bearing capacity of laminated heat-treated glass (TTG) for engineering practice.
The approach is based on the ratio of the total area to the area of detachment derived from a
numerical case study [62]. This ratio is contained in a speci�c factor that yields a lower bound
of the e�ective sti�ness of the broken LSG by multiplying it with the sti�ness of the interlayer.

1.3.2. Explicit Modeling Approaches

Seshadri et al. [237] proposed an analytical approach to describe the post-breakage behavior of
rectangular-shaped glass/PVB/glass laminates with hinged support along the edges, exposed to
a centric single out-of-plane load. The shape of the broken glass shards is considered triangular,
and only rigid body motions are possible for the glass shards�the interlayer acts in a membrane
state. As frictional e�ects are not considered in the model, the overall energy is split into strain
energy, resulting from large strains within the interlayer and adhesion energy, that must be
applied to overcome the fracture resistance. The rate dependency arising from the viscoelastic
e�ects of the interlayer and the fracture energy is gathered in one factor. The governing
kinematic mechanisms are the in-plane opening between the glass shards and the out-of-plane
deformation of the laminate.
Kott [157] proposed an analytical approach to calculate the residual load-bearing capacity

based on the yield line theory, originally introduced by Johansen [146]. Several plastic hinges
within the broken laminate must be formed depending on the boundary conditions (bear-
ing, loading) to allow the respective kinematic mechanisms. He de�ned several conditions,
named: fans mechanism, pyramid mechanism, edge mechanism for 4-side supported bearings,
and several line mechanisms for 2-side supported bearings, amongst others. Based on these
considerations, he derived di�erent ultimate load-bearing capacities. Moreover, he discovered
that the residual load capacity can be signi�cantly enhanced by increasing the thickness of the
interlayer and adopting an asymmetric construction of the laminate. This �nding opens up
exciting possibilities for improving the design and performance of laminated glass. However,
it's crucial to note that these enhancements in residual strength can only be achieved if appro-
priate �ow joints are formed and fracture mechanisms are adjusted. Therefore, understanding
the in�uence of di�erent loads and glass types on fracture patterns is crucial to maximizing the
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residual strength of laminated glass.
Belis et al. [19] further developed the concept proposed by Kott [157], making use of the one

introduced by Seshadri et al. [237] to consider local delamination. However, in contrast to Kott
[157], they only considered the line mechanism achieved by the 4-point bending test and its
respective boundary conditions.

1.4. Motivation

As presented in the last sections, extensive studies investigating the residual load-bearing ca-
pacity of laminated glass have been conducted in the past decades and are still carried out
today. However, although theoretical approaches are allowed by [44], in practice, it is still
state of the art to evaluate the residual load-bearing capacity of laminated safety glass under
quasi-static loads experimentally because none of the existing modeling approaches is capable
of a su�cient description of the complex behavior. The experimental investigation, however,
is very time- and cost-intensive and consumes a lot of resources, a fact unacceptable regarding
sustainability. This thesis aims to enable a theoretical evaluation.
Several experiments on glass laminates, considering residual load-bearing behavior, such as

equal-biaxial �exure [21], 4-point bending tests untils failure [42], bulge tests [266] revealed
the decisive importance of the interlayer. Acting as a bridging ligament between the broken
glass shards [67], the knowledge of the behavior of the bulk material and of the bond between
interlayer and glass, which, if too soft, causes failure due to large de�ections of the overall system
and, if too strong, causes failure due to exceeding the elongation at the break of the interlayer,
is of crucial importance. Another extensive study on breakage of 2-ply-glass laminates with
PVB interlayer under various loading and bearing con�gurations, conducted by Kott and Vogel
[158], revealed that only coarse-breaking glass (ANG, HSG) could provide residual load-bearing
capacity. The observations made during the experiments emphasized that the interlayer, the
bond between glass and interlayer, and the nature of the glass shards are the key elements to the
residual load-bearing capacity of laminated safety glass, which goes in line with the de�nition
of [45].
PVB has been extensively investigated in recent years, considering its e�ect within the intact

and fully fractured state of laminated glass. The investigations of the impact on the intact state
are primarily limited to DMTA [103, 161] tests to derive time- and temperature-dependent val-
ues for the shear modulus and model the shear transfer between intact glass plies for numerous
loading conditions. These tests revealed an intensely time- and temperature-dependent ma-
terial behavior [165, 231]. Tensile tests carried out until failure generally serve to investigate
its behavior within the post-fracture state, where �nite deformations must be taken into ac-
count. PVB showed a strong rate dependence and a highly non-linear stress-strain relationship
[134, 64, 270] with almost no changes in volume [165]. In addition to the rate dependence,
the hysteresis formation and, thus, the ability of the material to dissipate energy was inves-
tigated utilizing cyclic tests consisting of a single loading and unloading [103]. PVB formed
large hystereses, characterized by a crucial di�erence between the loading and unloading paths.
However, the most critical behavior regarding residual load-bearing capacity is the material's
reaction to constant loading over time, such as creep [31] or relaxation [231]. PVB showed a
striking drop in stress in the relaxation test and an increase in elongation in the creep test
immediately after reaching the desired load level, followed by an almost asymptotic behavior
with a low gradient. Besides the reaction to creeping loads, Botz et al. [31] also revealed a
strong dependence on moisture. Generally, its behavior is considered isotropic and viscoelastic
[231].
There are several modeling approaches to describe the bond between glass and interlayer, like
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the shared node [209, 205] and the penalty-based approach [168, 277], both used for modeling
low-velocity impacts on windshields and the cohesive zone elements, following intrinsic [50, 264]
or extrinsic approaches [197, 203], for modeling slow velocity impacts on glass windshields
[50, 264], glazings subjected to quasistatic loads [265] and blast loads [197, 203]. Chen et al.
[51], Martín et al. [178] recommended using cohesive zone elements with intrinsic approaches.
However, these models must be calibrated using experiments. The most promising experimental
approaches are the peel [202] and the TCT test [65, 52], both utilized to evaluate the laminate's
interfacial fracture energy. Besides modeling the interface, modeling the interlayer is necessary
to identify parameters for the fracture energy. [107, 53] calibrated intrinsic cohesive zone
element on TCT tests using hyperelastic material laws for the interlayer, [65] used a �nite
linear viscoelastic model.
Furthermore, there are investigations into the glass shards. When considering the nature of

these glass shards, it is crucial to di�erentiate between �ne- and coarse-breaking glasses. Due
to the stochastic fracture pattern occurring in coarse-breaking glass, most approaches reduce
the fracture to yield lines [237, 157, 5]. On the other hand, �ne breaking glass has been studied
in more detail [207, 188]. [208] even proposed an approach to anticipate the breakage pattern
of TTG based on its thickness and level of prestress. Furthermore, there exist several numerical
modeling approaches for describing the actual breakage of glass under dynamic impacts, such
as the element deletion method [166, 128, 205, 173], continuum damage approaches [278] or
even cohesive zone models [269, 264].
Likewise, several modeling approaches for PVB interlayers exist to describe low-velocity im-

pacts on windshields, explosion impacts on windows, and residual load-bearing capacity under
quasi-static loads. These range from elastic approaches for analytical equivalent sti�ness mod-
els considering quasi-static loads [20, 110, 111, 112] or numerical models for blast [135] through
plastic approaches for analytically explicitly formulated models considering quasi-static loads
[19, 157] and numerical models considering blast [247, 166, 128] to viscoelastic approaches
for numerical models considering low-velocity impact [222, 2] or blast [203, 64] and even vis-
coplastic approaches for numerical models considering explosion [197]. Furthermore, a �rst
investigation and modeling approach of the nonlinear viscoelasticity exists [231]. Most mate-
rial models describing the interlayer are calibrated on uniaxial tension tests at di�erent strain
rates [2, 66, 197].
As the previous considerations revealed, it is essential to di�erentiate between dynamic and

quasi-static loading conditions when modeling broken laminated glass. Besides the dependency
of the glass breakage on the load, this is mainly because of the interlayer, which shows a
strongly nonlinear, time-dependent behavior at �nite deformations. For dynamic loading, the
material dependency on high strain rates plays a predominant role; for quasi-static loading, rate
dependency on low strain rates in combination with creep and relaxation behavior is decisive.
Within both considerations, �nite deformations of the interlayer must be considered. However,
this thesis aims to provide a contribution to the modeling of residual load-bearing capacity
within structural glass design concerning quasi-static loads. As the bridging element between
the glass shards in the case of breakage [67], the behavior of the interlayer is governed by its bulk
material and adhesion, and is considered an essential part of modeling the residual load-bearing
behavior. However, as investigations on the interface between glass and interlayer revealed
[107, 103, 53], a crucial part of calibrating respective material parameters is the modeling of
the bulk interlayer material; a description of the interlayer is considered the most critical part
of modeling the residual load-bearing capacity. The approaches in structural glass design used
to model the interlayer so far cannot describe the complex behavior of PVB at �nite strains
concerning time. However, several models and modeling frameworks are qualitatively capable
of providing the required description of polymers. Approaches for elastomers [169, 25, 236, 226,
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149] and models for thermoplastics [33, 34, 184, 279] exist. These models follow very complex
formulations designed for speci�c materials under de�ned circumstances, making a transfer to
PVB a tedious task. However, besides the models accurately tailored to a particular material,
there are also general frameworks for describing viscoelastic materials at �nite strains [214, 180].
This thesis aims to contribute to the theoretical description of the residual load-bearing

capacity by the characterization and modeling of PVB concerning the most critical in�uences.
It creates a test database to describe the time-dependent behavior of PVB at large deformations
considering time and rate dependency for the quasistatic loading. It proposes a corresponding
model formulation to describe this behavior. Furthermore, it presents an engineering approach
that connects the description of complicated material behavior with a simple model. This
research presents a novel approach to the theoretical evaluation of the residual load-bearing
capacity of laminated safety glass, explicitly focusing on the time-dependent behavior of the
PVB interlayer at large deformations.
For a clear understanding there is a tabularized structure of the thesis on the next page.
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2. Methodology

There are several vital elements to consider when creating a model tailored to a speci�c ma-
terial. Besides the experimental investigations, serving to calibrate the material parameters
and validate the model, the general kinematics and constitutive equations play a crucial role.
Furthermore, several numerical tools are needed to implement the model and identify the ma-
terial parameters. Therefore, this chapter lays the groundwork of mechanical and numerical
fundamentals necessary to construct and implement a material model for large deformations,
considering time-dependent e�ects. Furthermore, laminated glass and its components, focusing
on PVB, are brie�y described, as well as the experimental apparatus and measuring equipment
used to characterize the material presented.

2.1. Continuum Mechanics

Continuum mechanics considers the physical quantities at a material point, consistently repre-
sented by continuously di�erentiable tensor functions of the place. The material point inside a
body and its environment represents a complete model of the material behavior at this point.
Furthermore, in the mathematical model, it is the carrier of all physical state variables, such as
stresses, distortions, and temperature. The property of continuity requires continuous function
curves of the state variables and their continuous and su�cient di�erentiability to calculate
derivatives at the material point. In this way, any intrinsic structure of the material is ab-
stracted and homogenized. Consequently, a simple transfer of the methods and concepts of
continuum mechanics (e.g., elasticity theory) to investigations in which the micro- or mesome-
chanical structure of the material is essential is not possible. The most important equations and
relations will be explainedHowever, a certain level of prior knowledge in continuum mechanics
is required. For a more detailed description, the reader is referred to the fundamental works in
that �eld [256, 255, 109, 120, 125, 198, 244, 48, 1], to name just some examples. The following
relations mainly follow the considerations of Haupt [125] and Parisch [198].

2.1.1. Kinematics

The fundamental principle of continuum mechanics is the assumption of matter being contin-
uously distribued in space, represented by individual material points, the places of physical
processes. Describing their change in place with respect to time is the task of kinematics.

2.1.1.1. Description of Deformation

The following considerations are based on observations within Euclidean space, although this
assumption is by no means obligatory and in the context of intermediate con�gurations, for
example, not applicable [125]. Two reference systems are required to describe the movement of
a body, each of which has a position vector. Below, the two reference systems are assumed to be
two superimposed cartesian systems to simplify matters, i.e., both position vectors start in the
same reference system (EK). The position vector X(t = 0) describes the con�guration of the
undeformed body (0C) and assigns a vector to each material point. Its coordinates are referred

22



2. Methodology

to as material coordinates, and the associated con�guration is called reference con�guration.
The position vector x(t > 0) describes the movement of the material points in space as a
function of the time. Its coordinates are referred to as spatial coordinates, and the associated
con�guration is called current con�guration (iC). Although the choice of material and spatial
coordinates, is arbitrary in general, in the following convective coordinates are assumed. They
have the property that the coordinate lines in the current con�guration are material lines. In
simple terms, this means that the coordinate lines are attached to a material body and deform
together with it.
The movement in space is de�ned by the two reversible, unique, non-linear mappings x =

x(X, t) and X = X(x, t), respectively. The mapping x = x(X, t) tracks a �xed material point
over time and is called the Lagrangian approach (observer sits in a boat and observes the water),
the mapping X = X(x, t) tracks all material points over time that pass a speci�c location and
is called the Eulerian approach (observer stands on a bridge and observes the water).

X

x

0C iC

u

E1

E2

E3

ξ1
G1

G3 G2

ξ2
ξ3 ξ1

ξ2ξ3

g3

g1

g2

Figure 2.1.: Transformation between Reference and Current Con�guration

Under the request that the reference con�guration coincides with the material body at time
t = t0, motion can be expressed in terms of the reference con�guration X and the displacement
�eld u:

x(X, t) = X+ u(x, t) (2.1)

The transformation between the con�gurations takes place using the Jacobian matrix J, whereby
its determinant J must be unequal zero to create a unique solution. It describes the transfor-
mation of the description of a body in the reference system to the description in the current
system. To represent the Jacobian concerning the description of deformations, the deformation
gradient F, an invertible, second-order tensor is de�ned. It can be expressed as the derivative
of the current with respect to the reference con�guration:

F =
dx

dX
=

du(X, t)

dX
+

dX

dX
= H+ 1 (2.2)

where H equals the displacement gradient and I equals the unity matrix (F = F k
Lgk ⊗GL =

∂xk

∂XLgk ⊗GL). Using the relations of Eq. 2.2 two operations are de�ned:

� push forward Φ∗(·) : Φ∗(dX) = FdX = dx

� pull back Φ∗(·) : Φ∗(dx) = F−1dx = dX
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2. Methodology

In structural mechanics, the deformation of a body can thus be described unambiguously by
comparing the reference and current con�gurations. Two local, mutually dual basis systems
derived from the parameter lines of the convective coordinates ξK are de�ned for expressing
these con�gurations. This results in a covariant basis system, spanned by the vectors that
form tangents to the parameter lines (GK , gK), and a contravariant basis system, spanned
by the vectors that are formed from the gradients of the parameter lines (GL, gL). The
covariant vectors, tangential to the parameter lines, are assigned contravariant coordinates; the
contravariant vectors, normal to the coordinate surfaces, are assigned covariant coordinates.
This crosswise pairing ensures that the vectors are invariant under coordinate transformations
(GK ·GL = gK · gL = δ L

K ). A metric tensor formed from the scalar products of the individual
basis vectors can be formulated for each basis system (gKL, gKL, GKL, GKL) and contains
the dimensions of the basis vectors and angles to each other. The deformation of a body can
thus be formed by comparing the metric of the reference con�guration and the metric of the
instantaneous con�guration.
Considering the position vectors X = X(ξK) with respect to the reference con�guration and

x = x(ξK) with respect to the current con�guration, the di�erentials of the position vectors
result in:

∂x

∂ξK
= gK

∂ξK

∂X
= GK ∂X

∂ξK
= GK

∂ξK

∂x
= gK

GK and gK are the tangent vectors on the parameterlines ξK with respect to the reference and
the current con�guration, GK and gK are the gradient vectors on the parameterlines ξK with
respect to the reference and the current con�guration. Employing the deformation gradient
that represents the transformation between reference and current con�guration yields:

F =
∂x

∂ξK
⊗ ∂ξK

∂X
= gK ⊗GK F−1 =

∂X

∂ξK
⊗ ∂ξK

∂x
= GK ⊗ gK (2.3)

With the introduction of the dual basis systems, some further considerations regarding the
pull back Φ∗(·) and push forward Φ∗(·) operations are necessary, as they di�er for co- and
contravariant coordinate representations. Q, representing an arbitrary second-order tensor,
follows a covariant representation for ()♭ and a contravariant representation for ()♯. The push
forward and pull backward operation utilizing the deformation gradient yields:

Φ∗(Q
♯) =FQ♯FT Φ∗(Q

♭) = F−TQ♭F−1 (2.4)

Φ∗(Q♯) =F−1Q♯F−T Φ∗(Q♭) = FTQ♭F (2.5)

After describing the kinematics in general terms, Cartesian reference systems are assumed to
increase clarity for the following sections. However, the general deformation and stress measures
formulated in index notation are given for information.

2.1.1.2. Polar Decomposition

Invertible second-order tensors can be decomposed multiplicatively into symmetric and orthog-
onal parts. Applying a multiplicative decomposition to the deformation gradient F, leads the
symmetric parts U and V and the orthogonal part R.

F = RU = VR (2.6)

R is the orthogonal rotation tensor, representing rigid body motions, U = +
√
C is the right,

and V = +
√
b is the left stretch tensor. A reasonable strain measure should not contain rigid
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body motions, so the right and left Cauchy Green tensors are introduced based on the right
and left stretch tensors. Considering the relation of a normalized, orthogonal (orthonormal)
rotation tensor RRT = 1, it is fairly obvious that all rigid body motions are canceled out, in
the representation of the right C and left b Cauchy Green tensor

C = FTF = UTRTRU = UTU; b = FFT = VRRTVT = VVT , (2.7)

where C = (GK ⊗ gK)(gL ⊗GL) = gKLG
K ⊗GL and b = GKLgK ⊗ gL.

2.1.2. Strain Measures

There are several deformation measures to describe the strain within a body. These measures
can be de�ned concerning di�erent con�gurations. The Green Lagrange strain tensor E, oper-
ating on the reference con�guration, and the Euler Almansi strain tensor a, operating on the
current con�guration, are derived as follows:

E =
1

2
(C− 1) a =

1

2
(1− b−1) (2.8)

Both of these measures are de�ned with respect to a contravariant basis system (E = 1
2
(gKL −

GKL)G
K ⊗GL and a = 1

2
(gKL−GKL)g

K ⊗gL). Furthermore, deformation measures exist that
are not clearly de�ned by the reference or the current con�guration. They are referred to as
Engineering or Biot strain B and as True or Hencky strain ε:

B = C
1
2 − 1 ε =

1

2
ln(1+ 2E) =

1

2
ln(C) (2.9)

A qualitative overview of these stress measures is given within Fig. 2.2. However, di�erentiating
between these measures only plays a role for large strains. In the case of small deformations
all strain measures coincide. This phenomenon is explained below using the example of the
linearization of the Green Lagrange strain tensor:

E =
1

2
(C− 1) =

1

2
(FTF− 1) =

1

2
[(H+ 1)T (H+ 1)− 1] =

1

2
[H+HT +HHT ] (2.10)

For small deformations, the term HHT is small of higher order and can be omitted. Thus, the
linearized stretch tensor holds:

e =
1

2
(H+HT ) (2.11)

2.1.3. Stress Measures

If a body in equilibrium with an external force is cut through, corresponding forces act on the
cut surface ∆a, summarized in a force vector ∆fs. According to Cauchy, the following limit
value exists, which leads to the traction vector t:

lim
∆a→0

∆fs
∆a

=
dfs
da

= t(x,n) (2.12)

The intersection surface through the body is de�ned by an outwardly directed normal vector
n. The traction vector acts in the direction of the acting force and can be calculated from
the cutting force dfs and the surface element da. Three such perpendicular intersections are
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Figure 2.2.: Qualitative Overview of di�erent strain and stress measures of 1D truss; initial
length 10 [mm], initial crosssection 10 [mm²], force [-50:200] [N]

su�cient to fully describe the stress state of a body. The nine coordinates of the traction vector
correspond to the entries of the stress tensor at the material point.

t = σ · n (2.13)

The associated Cauchy stress tensor operates on the current con�guration, measuring with the
deformed surface and acting on the deformed solid element. Considering the polar decom-
position, the internal force dfs undergoes a change in length in addition to the rotation, and
the surface element undergoes a distortion in addition to the rotation. The normal vector is
rotated with the rotation matrix R, and the surface element is distorted with JV−T . The
corresponding transformation rules result in:

dFs = F−1 · dfs = RTV−1 · dfs (2.14)

nda = JF−T ·NdA = JV−TR ·NdA (2.15)

These rules can be used to determine other measures of stress. The Cauchy stress tensor σ is
the thermodynamically conjugated counterpart to the Euler-Almansi strain tensor a, operating
on the current con�guration. In contrast, the thermodynamically conjugated counterpart to
the Green-Lagrange strain tensor, operating on the reference con�guration, is the 2nd Piola
Kirchho� (2ndPK) stress tensor T. They can be connected by the 1st Piola Kirchho� (1stPK)
stress tensor P, which relates the force at the current con�guration to the undeformed area of
the reference con�guration and is referred to as "Engineering stress":

T = F−1P σ = J−1PFT (2.16)

where T = JσIJGI ⊗GJ , σ = σIJgI ⊗ gJ , and P = JσIJgI ⊗GJ . Furthermore, the weighted
Cauchy stress tensor Jσ is commonly summarized to the Kirchho� stress tensor τ = Jσ. A
qualitative overview of these stress measures is given within Fig. 2.2.

2.1.3.1. Related Measures

For many materials, it is reasonable to split the deformation into shape-changing and volume-
changing parts. Metals, for example, are considered resistant to hydrostatic pressure but sen-
sitive to deviatoric stresses. Furthermore, treating incompressible material behavior, which
many polymers show, requires a split into deviatoric and volumetric parts. Considering the
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deformation gradient F and the Cauchy stress tensor σ and using J = det(F) leads to the
following relations of conjugated parts of stress and deformation:

F = FisoFvol Fiso = J− 1
3F Fvol = J

1
31 (2.17)

σ = σdev + σvol σdev = σ − 1

3
Sp(σ)1 σvol =

1

3
Sp(σ)1 (2.18)

2.1.4. Objective Rates

In many cases, it is not su�cient to only describe the amount of deformation. In addition,
the time taken to apply the deformation is of essential interest, especially regarding material
modeling. The deformation gradient depends on time and deformation. The time derivative of
the deformation gradient F leads to the spatial velocity gradient L:

Ḟ =
∂ẋ

∂X
=

∂ẋ

∂x

∂x

∂X
= LF → L =ḞF−1 (2.19)

1̇ =
d

dt
(FF−1) = ḞF−1 + F(F−1)̇ = 0 → (F−1)̇ =− F−1ḞF−1 (2.20)

The spatial velocity gradient can be divided into a symmetric part, called deformation rate
tensor D, and a skew-symmetric part, called spin tensor W:

D =
1

2
(L+ LT ) W =

1

2
(L− LT ) (2.21)

Under the assumption of irrotational deformations, W = 0 can be assumed. This approach is
commonly used in the modeling of viscoplasticity [34, 184].
However, an objective tensor �eld must have an objective time derivative to represent an

objective material formulation. The time derivative of a Lagrangian Tensor �eld is objective
because it is de�ned on the reference con�guration. However, the time derivative of an Eulerian
Tensor �eld is not objective because it is de�ned on the current con�guration. To achieve a
time-derivative of a tensor �eld that is not objective, a Lie derivative [273] must be carried out:

LΦ(·) = Φ∗[
d

dt
Φ∗(·)] (2.22)

This derivative contains three steps:

1. pull back operation from a tensor of the current con�guration to a tensor on the reference
con�guration (e.g. E = Φ∗(a))

2. objective time derivative on the reference con�guration (e.g. d
dt
E = Ė)

3. push forward operation to the current con�guration (e.g. D = Φ∗(Ė))

Applying the Lie derivative to the Euler Almansi strain measure and the Cauchy stress, results
in the Oldroyd rate of the deformation and the stress:

LΦ(σ) = Φ∗[
d

dt
Φ∗(σ)] =

∇
σ = F[

d

dt
(F−1σF−T )]FT = σ̇ − Lσ − σLT (2.23)

LΦ(a) = Φ∗[
d

dt
Φ∗(a)] =

∆
a = F−T [

d

dt
(FTaF)]F−1 = ȧ+ LTa+ aL (2.24)

This relation also holds for any intermediate con�guration concerning the particular transfor-
mation tensors and, therefore, is used within the concept of Dual Variables.
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2.1.5. Balance Equations

In the following, the balance equations of mechanics and thermodynamics are introduced. They
act as boundary conditions for each di�erential element and must be ful�lled either in weak
(integral) or strong (equilibrium) form. Furthermore, they will be the foundation of the material
model derived in this thesis.

2.1.5.1. Balance of Mass

The �rst theorem of balance postulates that the mass, described by the steady scalar density
ρ = ρ(x, t) with respect to the volume, within a continuum is constant over time dv = JdV :

dm

dt
=

d

dt

∫
ρdv = 0 (2.25)

After some manipulations, Eq. 2.25 results in the balance of mass:

ρ̇+ ρ(∇ · v) = 0 (2.26)

2.1.5.2. Balance of Momentum

Following Newton, the sum of all forces acting on a continuum must be equal to the change
of momentum concerning time. Considering the surface force t̃(x, t), the volume force b̃(x, t),
and the velocity v, the balance of momentum results in:∫

t̃da+

∫
b̃dv =

d

dt

∫
vρdv (2.27)

The surface integral is converted into a volume integral using the theorem of Gauÿ, and the
surface forces t̃ are written as σ · n using the Cauchy theorem, which holds for the current
con�guration. Considering these relations and assuming continuous tensor �elds, Eq. 2.27
results in:

ρv̇ = (∇ · σ) + b̃ (2.28)

2.1.5.3. Balance of Angular Momentum

Following Cauchy, in addition to the equilibrium of forces, the sum of the moments acting on
a continuum must equal zero. The balance of angular momentum, based on this requirement,
yields:∫

(x× t̃)da+

∫
(x× b̃)ρdv =

∫
(x× v̇)ρdv (2.29)

Evaluating and rearranging Eq. 2.29 leads to the symmetry of the Cauchy stress tensor:

σ = σT (2.30)

2.1.5.4. First Law of Thermodynamics

The �rst law of thermodynamics called the "balance of energy," states that thermal energy can
be transformed into mechanical energy and postulates energy conservation for a thermodynamic
process. It leads to the assumption that the time rate of the sum of kinetic and internal energy
equals the work done on the system and the thermal energy supplied. Therefore, the speci�c
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internal energy per unit mass e(ν,x, s) is introduced (s equals the entropy and ν equals the
vector of state variables). Using

σ : L = σ : D+ σ : W = σ : D,

as σ is symmetric (balance of angular momentum) and W is skew-symmetric, the �rst law of
thermodynamics states∫

ėρdv =

∫
σ : Ddv −

∫
(∇ · q̃)dv +

∫
rρdv, (2.31)

and for continuous tensor �elds, Eq. 2.31 results in:

ėρ = σ : D−∇ · q̃+ rρ, (2.32)

where q̃ equals the heat �ux vector, r is the heat source related to the unit of mass.

2.1.5.5. Second Law of Thermodynamics

The second law of thermodynamics postulates that the rate of the increase of entropy of a
closed system is equal to or greater than the rate of entropy transferred to the system from
outside. That requirement restricts the direction in which a thermodynamic process can occur
and can be called the "balance of entropy." From the postulate of positive entropy production,
the special form of the Clausius Duhem inequality can be derived [255] in integral form:

d

dt

∫
sρdv ≥

∫
r

θ
ρdv −

∫
1

θ
q̃ · nda (2.33)

For a completely reversible process, the equal sign holds; in any other case, the greater sign
must be considered. Using the balance of energy (cf. Eq. 2.32) to introduce mechanical power
σ : D and internal energy e, Eq. 2.34 yields the second law of thermodynamics in local form,
with the absolute temperature θ and its conjugated quantity, the entropy s:

σ : D− ρ(ė− θṡ)− 1

θ
q̃ · ∇θ ≥ 0 (2.34)

For isothermal processes, the second law of thermodynamics is simpli�ed considerably. To this
end, the Helmholtz Free Energy per unit mass is de�ned via

Ψ = e− θs, (2.35)

with Ψ̇ = ė − θ̇s − θṡ = ė. Considering isothermal processes (θ̇ = 0) leads to Ψ̇ = ė − θṡ.
The resulting expression presents a simpli�ed formulation of the Clausius Duhem inequality
and is an essential formulation for structural mechanics. It contains the potential for elastic
deformations Ψ and is used later in this thesis.

σ : D− ρΨ̇ ≥ 0 (2.36)

A pull-back operation on Eq. 2.36 to the reference con�guration leads to

T : Ė− ρRΨ̇ ≥ 0, (2.37)

where T equals the second Piola-Kirchhho� stress tensor, Ė equals the rate of the Green
Lagrange strain tensor, and ρR = ρ(X, t) equals the density with respect to the reference
con�guration.
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2.1.6. Principles of Material Modeling

Mechanical modeling of solid materials is based on the approach of simple materials. A me-
chanical simple material is de�ned as a material whose stress at a time is determined only by
the strain history [191, 192]. Coleman [56] expanded the "mechanical" theory of simple mate-
rials to the more general "thermomechanical" theory of simple materials. Within this theory,
a thermomechanical, simple material requires that the entropy, the internal energy, the stress,
and the heat �ux be determined by the history of the deformation gradient, the history of the
temperature, and the present value of the temperature gradient [56]. The more general theory
goes along with the Clausius Duhem inequality and is used later in this thesis.
Haupt [125] introduced three levels for modeling material behavior: constitutive equations,

material symmetry properties, and conditions of kinematic constraints. Constitutive equations
formulate the individual response of any material to a given input process. Considering elastic
behavior, they can be described in terms of simple material functions; considering inelastic
behavior, they must be formulated in terms of functional relations. These functional relations
can be implicitly formulated using di�erential equations and internal variables [58, 175, 179]
or explicitly, using integrals over the process history [174]. Material symmetry considers the
material's directionality and holds for stress-strain relations that stay invariant for changes in
the reference con�guration. In general, simple materials can be divided into �uids and solids
each following di�erent properties of material symmetry. Kinematic constraints are restrictions
of a body's movement, de�ned a priori. This concept is independent of any stress-strain relation
and material symmetry. An example of such a restraint is material incompressibility, which
does not allow changes in volume.
For constructing material models on the three levels introduced by Haupt [125], three gen-

eral principles arise, according to Truesdell and Toupin [256], Truesdell and Noll [255]: the
principle of determinism, the principle of local action, and the principle of frame-indi�erence
(objectivity). Thereby, the principle of determinism, stating that the current stress state in
one material point within a body is uniquely de�ned by the history of the motion of the body,
is restricted by the principle of local action, stating that the stress state in one material point
is only in�uenced by the history of motions of its neighboring points. The principle of material
frame indi�erence or material objectivity completes the principles and states that every repre-
sentation of material properties must be invariant concerning any frame change. In other words,
constitutive equations must be independent of the frame of reference. Furthermore, objectivity
must be the requirement for derivatives. Well-known examples satisfying the requirement of
objectivity are the derivatives proposed by [143], Zaremba [276], and Oldroyd [196]. Regardless
of these considerations, every material must satisfy the compatibility with the balance relations
of continuum mechanics (compare Sec. 2.1.5) at any time.

2.1.6.1. Multiplicative Split

Splitting the total deformations into elastic and inelastic parts is necessary to consider inelastic
deformations in elastoplastic, viscoelastic, and viscoplastic modeling. In the regime of small
deformations, linearized strain measures coincide, and this split can be performed additively.
However, considering �nite deformations, an additive decomposition is no longer physically
meaningful, as it leads to two parts that can not be distinguished clearly into elastic or inelastic
parts. A multiplicative split of the deformation gradient overcomes that problem, separating
the deformation into elastic and inelastic parts.

F = FelFin (2.38)
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This approach was proposed by Lee [167] in the context of elastoplasticity, transferred to
�nite linear viscoelasticity by Lubliner [176], and later used extensively in modeling �nite
viscoelasticity and -plasticity [33, 214, 169, 25].

2.1.6.2. Dual Variables

To establish physically consistent material models, especially when using evolution equations
for internal variables, the respective tensors and their derivatives must ful�ll the principle of
objectivity. For establishing physically consistent evolution equations for tensor-valued inter-
nal variables, it is, therefore, obligative to use tensors that, as well as their time derivatives,
remain unaltered during a change of reference. This requirement is given for tensors formu-
lated concerning the reference con�guration. However, a material model exclusively formulated
concerning the reference con�guration is not reasonable, especially when it comes to the formu-
lation of plastic or viscoelastic material models. These models depend on tensor-valued internal
variables that are described by evolution equations, possibly formulated on intermediate con-
�gurations.
Haupt and Tsakmakis [126] provided the framework of Dual Variables, a guideline for assign-

ing kinematic and static variables. They connected di�erent con�gurations, utilizing conjugated
pairs of stress and strain and stress and strain rates, ensuring thermodynamic consistency. Mo-
tivated by the observation that the Jauman rate, which is the simplest objective tensor rate,
produces physically unrealistic results for particular loading conditions, they added guidelines
from the mechanical balance equations to the principle of objectivity within their framework.
Their concept is based on the assumption that the physically signi�cant scalar products of
stress and strain tensors (T : E, Ṫ : E, T : Ė, Ṫ : Ė) remain invariant, when introducing stress
and strain tensors that do not operate on the reference con�guration. For the time-derivatives,
they use the Oldroyd rate [196].

∆
a = ȧ+ LTa+ aL

∇
σ = σ̇ − Lσ − σLT

Initially developed for elastoplasticity and viscoplasticity, this concept is extensively used to
model polymer materials (compare Lion [169], Sedlan and Haupt [236], Sche�er et al. [226]). It
ensures that the constitutive modeling of elastic and inelastic properties can be done separately
without losing consistency regarding stress power and incremental stress power. In other words,
stress power and incremental stress power are invariant within physically reasonable interme-
diate con�gurations. Therefore, they provide a set of con�gurations and transformations for
strains and strain rates as well as stresses and stress rates.
This approach o�ers the possibility of transferring concepts holding for minor strains to

�nite deformation without losing thermodynamical consistency, which is a signi�cant bene�t,
especially for modeling polymers. The transformation concepts are presented in Fig. 2.3 to
Fig. 2.5.

2.1.6.3. Internal Variables

As mentioned, functional relations must be considered for modeling inelastic material behavior.
These relations can be described either utilizing functionals or evolution equations. In this
thesis, the theory of viscoelasticity is described in terms of the concept of internal variables,
introduced by Green and Tobolsky [119]. They explained relaxation phenomena, assuming
that forming new physical bonds and breaking old ones might decrease the stress within chains
subjected to constant extension. They described this mechanism as linear di�erential equations
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utilizing internal variables of the strain type to describe the internal strains of the chains. The
basic concept of internal variables is based on the consideration that the stress tensor can be
represented as a function of the current strain tensor, which depends on a �nite number of
internal variables simultaneously [123].

T = f(E, q1, ..., qn) (2.39)

The parameters q1, ..., qn represent the process history and are called internal variables. They
can be used to describe the memory properties of materials. Ordinary di�erential equations
(evolution equations) must be introduced to determine these internal variables. They depend
on their current values and the input history, which can be presented by the strain tensor E,
for example.

q̇k(t) = fk(E(t), q1(t), ..., qn(t)), k = 1, ..., N (2.40)

They can be interpreted as additional constitutive equations describing dynamical processes
within the material's microstructure by making their macroscopic e�ects visible. One well-
known example of an internal variable is the inelastic strain tensor Ein within the theory of
viscoelasticity or -plasticity.

2.2. Material Modeling

The material formulations used in this work are now to be described with the help of the
Clausius Duhem inequality (Eq. 2.37) and the necessary relationships from continuum me-
chanics (Sec. 2.1). The behavior of PVB under consideration of large deformations and time
dependence will be investigated. The material under large deformations will be described us-
ing hyperelastic models, and the time dependence will be determined using viscoelasticity. The
viscoelasticity theory will be subdivided into linear, �nite linear, and �nite viscoelasticity based
on the de�nition by Reese and Govindjee [214]. The rheological models on which the two ma-
terial formulations are based are shown in Fig. 2.6. The theory of hyperelasticity, which can
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be characterized, among other things, by the fact that the loading and unloading paths lie on
the same line, can be illustrated using Hooke's spring. The theory of viscoelasticity, which can
be characterized by the fact that the loading and unloading paths form a velocity-dependent
hysteresis, can be illustrated using a Maxwell element (spring and damper connected in series).

σ

ε

σ

ε

E

η

E

Elasticity Viscoelasticity

Figure 2.6.: Rheological Models

2.2.1. Hyperelasticity

According to Truesdell [253], elastic materials are referred to as Cauchy-elastic, and hyperelastic
materials are referred to as Green-elastic. Within Green's theory, there must be a strain-energy
function, while in Cauchy's theory, there is not necessarily a strain-energy function. So, the
more general theory of Cauchy incorporates the theory of Green, but not vice versa. Three
work theorems must be satis�ed by hyperelastic materials.
Truesdell and Noll [255] stated:

(1) "The work done by the actual surface tractions in every closed homogeneous deformation
process is non-negative."

(2) "The work done by the actual surface tractions in a homogeneous deformation process
depends only on the initial and �nal con�gurations."

Caprioli [41] stated:

(3) "If there is a con�guration x such that the actual work done in every homogeneous
deformation process from x is non-negative, the material is hyperelastic and its strain
energy function σ satis�es the inequality σ(F) ≥ σ(1) where F is the gradient, with
respect to x as reference con�guration, of any deformation. In addition, the con�guration
x must be a natural state, i.e. the stress corresponding to x is zero."

Coleman [55] stated:

(4) "For any homogeneous deformation process, whose initial and �nal con�gurations are
distinct and di�er by only a pure stretch, the work done by the actual contact force is
greater than the virtual work done if the contact force had been held at their initial values
(dead loading): W12 > W ∗

12"

(5) "The material is hyperelastic, and its strain energy obeys the inequality: σ(F2)−σ(F1)−
tr[σF(F1)

T (F2 − F1)] > 0 whenever F1F2 and G = F1F
−1
2 holds with positive-de�nite

and symmetric G"
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Furthermore, due to the restriction caused by the principle of frame indi�erence, the strain-
energy function must be of the special form that only depends on the deformation gradient
[118], whether through the right or left Cauchy Green tensor. For the additional assumption
of isotropy, it holds the fundamental theorem of Truesdell [254]: If the strain-energy function
σ(F) of a hyperelastic material has a strict minimum at F = 1, the material is a simple solid,
and any minimizing con�guration is a natural state.
Smith and Rivlin [242] stated that the energy function under the assumption of isotropy

is invariant if it can be expressed in terms of several invariant scalars, which satisfy certain
algebraic relations. They showed that a polynomial series can express the energy function
in the invariant scalars. As the energy function can be expressed in terms of the Cauchy
Green tensor, this polynomial series can be explicitly described as a symmetric function of the
principal stretches or as a function of the principal invariants of the stretch tensors [255]. Green
and Adkins [117] suggested corresponding explicit forms of the stress-strain relation. Besides
that, Rivlin [216, 217, 218, 219] derived a general polynomial description of the strain energy
function in the context of large elastic deformations of isotropic materials, a simpli�ed version
of that description is the Neo Hookean model, which is related to the Gaussian model. Further
considerations on the network of long-chain molecules were done by Treloar [249, 250, 252].
Treloar [251] also provided a data set of experiments on vulcanized rubber, a validation base
for new modeling assumptions since then.
Boyce and Arruda [32] showed a good overview of di�erent models of hyperelasticity, divid-

ing them into models that assume incompressible material behavior and models that assume
compressible behavior in general. Furthermore, they showed that the Helmholtz free energy,
which in the case of hyperelasticity equals the deformation energy, can be formulated either
based on statistical assumptions, as a function of invariants, or as a function of the principal
stretches. However, a clear separation is not possible as the statistical models also depend on
principal stretches or invariants.

2.2.2. Incompressible Hyperelasticity

Since the compressive modulus of polymers often exceeds their shear modulus by a multiple,
they can be assumed incompressible in a simpli�ed way. With this assumption, there is no
more volume change, i.e., J = 1, and in consequence, the right Cauchy Green tensor equals
its isochoric part C = C̄. In order to nevertheless ful�ll the force equilibrium, a Lagrangian
multiplier p is introduced. From a physical point of view, this multiplier re�ects the hydrostatic
pressure. The corresponding system of equations concerning the reference con�guration yields:

T = Tiso +Tvol (2.41)

Tiso =
∂Ψ

∂C
(2.42)

Tvol = pC−1 (2.43)

The Lagrangian multiplier is then derived utilizing the respective boundary conditions. Con-
cerning the uniaxial case with a load pointing in xx-direction, the stresses in the transversal
directions must be equal to zero (T<yy> = T<zz> = 0).

2.2.2.1. Statistics-Based Models

The statistical mechanics models are based on the assumption of randomly distributed and
di�erently oriented molecular chains. The simplest model based on this methodology is the
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Gaussian model [261, 251]. It results in:

Ψ =
1

2
Nkθ(IC − 3) (2.44)

where N equals the number of polymer chains, k equals the Boltzmann's constant, θ equals
the absolute temperature, and IC equals the �rst invariant of the right Cauchy Green tensor.
However, this model works only up to moderately signi�cant distortions, and fails to predict the
material response at large deformations. To overcome this problem, non-Gaussian approaches,
utilizing Langevin chain statistics, are common. The respective Langevin function results in:

L(x) = coth(x)− 1

x
(2.45)

A famous example, known for a very accurate prediction of the material response of polymers
up to large deformations is the 8-chain model, introduced by Arruda and Boyce [11]:

Ψ = Nkθλlock

[
βchainλchain + λlockln

( βchain

sinh(βchain)

)]
(2.46)

where βchain = L−1
(

λchain

λlock

)
, λlock is the locking stretch, and λchain =

√
1
3

(
λ2
1 + λ2

2 + λ2
3

)
. For

further examples of statistical models and a detailed overview, the reader is referred to Treloar
[248]. Fig. 2.7 shows the modeling of Treloar's uniaxial tension data using the 8-chain model
with the parameters Nkθ = 0.2787, λlock = 5.0773.

Figure 2.7.: Approaching Treloar's data with the 8-chain model

2.2.2.2. Invariants-Based Models

Symmetrical second-order tensors in three-dimensional space can be transformed from a co-
ordinate matrix by principal axis transformation Q = Qijei ⊗ ej to the diagonal matrix
Q =

∑3
i=1 λin

i ⊗ ni. This transformation corresponds to a rotation of the basis vectors ei
into the main directions ni. The coordinates Qij become the principal values λi, with the
corresponding values obtained by solving the eigenvalue problem.

(Q− λ1) · n = 0 (2.47)

The solution to this eigenvalue problem leads to the characteristic equation of the second-order
tensor:

λ3 − IQλ
2 + IIQλ− IIIQ = 0 (2.48)
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Since the eigenvalues λi, which represent the solutions of this equation, are base-independent
scalars, the coe�cients of the characteristic equation, which are referred to as invariants of the
second-level tensor, are also base-independent.

IQ = Sp(Q) (2.49)

IIQ =
1

2

(
(Sp(Q))2 − Sp(Q2)

)
(2.50)

IIIQ = det(Q) (2.51)

If Q is in principal axis representation and the eigenvalues (λ1, λ2, λ3) are known, the formula-
tion of the invariants is simpli�ed as follows:

IQ = λ1 + λ2 + λ3 (2.52)
IIQ = λ1λ2 + λ2λ3 + λ3λ1 (2.53)
IIIQ = λ1λ2λ3 (2.54)

Since these relationships can be transferred to symmetric second-order tensors, they can also
be applied to the left or right Cauchy Green tensor. The invariants of the right Cauchy Green
tensor C thus result in IC, IIC, IIIC. Three common hyperelastic potentials that are used in
structural mechanics are presented below. The most simple approach is the Neo-Hookean model
proposed by Treloar [250], Rivlin [216]:

Ψ = C10(IC − 3) =
µ

2
(IC − 3) (2.55)

where C10 = Nkθ can be assumed. Adding the dependence on the second invariant to the
Neo-Hookean model leads to the Mooney-Rivlin model [183, 216]:

Ψ = C10(IC − 3) + C01(IIC − 3) (2.56)

An example of a higher-order formulation concerning the �rst invariant is the Yeoh model [274]:

Ψ = C10(IC − 3) + C20(IC − 3)2 + C30(IC − 3)3 (2.57)

Essential requirements for higher-order models are polyconvexity and Drucker stability. The
latter enforces the tangential sti�ness, represented by the Hessian matrix, to be positive de�nite.
Furthermore, the calibrated material parameters must be physically realistic and yield stable
constitutive responses.
This selection does not purport to provide a comprehensive overview of hyperelastic models

based on invariant-dependent formulations; instead, it presents a subjective choice of several
standard models. Fig. 2.8 illustrates the described models �tted to Treloar's experimental data,
compared with the experimental data itself to provide an impression of the model's quality. The
�ts were generated using Matlab's curve �tting tool with default settings, as the objective here
is solely to demonstrate the qualitative capabilities of the individual models. Fig. 2.8 shows
the modeling of Treloar's uniaxial tension data using the Neo-Hookean (µ = 0.4452), Yeoh
(C10 = 0.1406, C20 = 2.337e − 14, C30 = 2.333e − 05), and Mooney-Rivlin (C10 = 0.2464,
C01 = 2.22e− 14) models.

2.2.2.3. Stretch-Based Models

A similar approach is the formulation of the potential using principal stretches. Here, the
potential is not formulated as a function of the invariants of the characteristic equation, but
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Figure 2.8.: Approaching Treloar's data with several invariant based models

directly with the eigenvalues λi, which represent the solution of the characteristic equation and
coincide with the principal stretches in the case of the right or left distortion tensor. The model
of Ogden [194] represents a very well-known approach to this:

Ψ =
n∑
i

µn

αn

(
λαn
1 + λαn

2 + λαn
3 − 3

)
(2.58)

Fig. 2.9 shows the modeling of Treloar's uniaxial tension data using the 2-term Ogden model
(µ01 = 0.3479, α01 = 1.778, µ02 = 0.0001154, α02 = 6.725).

Figure 2.9.: Approaching Treloar's data with the Ogden model

2.2.3. Compressible Hyperelasticity

For compressible plastics, e.g., foams with a transverse strain coe�cient far below 0.5, the
assumption of incompressible material behavior is insu�cient. A common approach is consis-
tently separating the material response into volume-changing and shape-changing components.
For compressible material behavior, the isochoric stress in Eq. 2.42 depending on the right
Cauchy Green tensor C is replaced by a formulation depending on the isochoric right Cauchy-
Green tensor C̄ and the expression for the hydrostatic pressure in Eq. 2.43 is replaced by a
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volumetric potential depending on the determinant J of the deformation gradient F.

T = Tiso +Tvol (2.59)

Tiso =
∂Ψiso

∂C̄
(2.60)

Tvol =
∂Ψvol

∂J
C−1 (2.61)

Concerning the energy potential, this means de�ning an isochoric and a volumetric potential.
Usually, the isochoric potential depends on the isochoric part of the distortion tensor, and the
volumetric part depends on the determinant of the deformation gradient. A commonly used
version of the Neo-Hookean model results in:

Ψ = Ψiso +Ψvol =
µ

2
(IC̄ − 3) +

κ

2
(J − 1)2 (2.62)

Further examples were provided, for instance, by Ogden [195], Anand [4], Bischo� et al. [27]
amongst others. Fig. 2.10 shows the results of Neo-Hookean models with di�erent compression
moduli (in the �gure represented by the respective Poissons ratio) in comparison with the
incompressible Neo-Hookean model. Fig. 2.10 shows the in�uence of the Poisson's ratio ν on
the stress-strain response compared to the incompressible case (ν = 0.5).

Figure 2.10.: Neo Hookean Model (µ = 1) for di�erent compression moduli

2.2.4. Viscoelasticity

The foundation of viscoelasticity is based on the principle of fading memory [57] and the
dissipation inequality [56].
Lubliner [175], Haupt [123] broke the the modeling of the time-dependent part within the

theory of viscoelasticity down to three approaches: (1) by means of viscous stresses, depending
on the rate of strain as it is done within the theory of Navier Stokes for instance; (2) by means
of the principle of fading memory, introduced by Coleman and Noll [59], where the present
stress is in�uenced by the entire history of strain (explicit, functional approach); (3) utilizing
evolution equations with internal state variables [58, 259] (implicit approach, based on the
description in terms of di�erential equations).
In contrast to that, Reese and Govindjee [214] suggested a separation of the theory of vis-

coelasticity based on its applicability, without considering the actual modeling of the time
dependence in detail: (1) linear viscoelasticity (2) �nite linear viscoelasticity (3) �nite vis-
coelasticity.
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The structure of the following sections is based on the suggestion made by Reese and Govin-
djee [214], utilizing explicit and implicit approaches to explain the three parts of the theory of
viscoelasticity based on the three-parameter Maxwell model.

2.2.5. Linear Viscoelasticity

The theory of linear viscoelasticity, which only applies to small deformations and small per-
turbations outside thermodynamic equilibrium, uses either the overstress or the inelastic strain
as the internal variable. For small deformations, the relationship between these two variables
is linear, and all stress and strain measures coincide. The structure of the evolution equation
is thus apparent [257]. The deformations within the linear viscoelasticity are based on the
linearised strain tensor e (Eq. 2.11), which can be additively divided into an elastic eel and an
inelastic part ein and thus corresponds to the kinematics of the rheological Maxwell model.
The Clausius Duhem inequality with respect to the reference con�guration, considering the

linearized strain tensor into Eq. 2.37, and the free energy per unit volume, yields:

T : ė− Ψ̇ ≥ 0 (2.63)

For the sake of simplicity, the three dimensional expression is reduced to one dimension in the
following, leading:

σε̇− Ψ̇ ≥ 0 (2.64)

Accordingly, the formulation of the potemtial for elastic deformations reads:

Ψ =
1

2
Eε2 +

1

2
Eel(ε− εin)

2 (2.65)

After some manipulations, the time-derivative of the potential reads:

Ψ̇ = Eεε̇+ Eel(ε− εin)ε̇− Eel(ε− εin)ε̇in (2.66)

Inserting Eq. 2.65 into Eq. 2.63 and summarizing it, results in:

σε̇−
[
Eεε̇+ Eel(ε− εin)ε̇− Eel(ε− εin)ε̇in

]
≥ 0 (2.67)

Sorting Eq. 2.67 yields:[
σ −

(
Eε+ Eel(ε− εin)

)]
ε̇+

[
Eel(ε− εin)

]
ε̇in ≥ 0 (2.68)

From Eq. 2.68 the stress and the residual inequality can be derived. The stress leads to:

σ = Eε+ Eel(ε− εin) (2.69)

The residual inequality, represented by the evolution equation of linear viscoelasticity utilizing
the inelastic strain as an internal variable, reads:

Eel(ε− εin)ε̇in ≥ 0 (2.70)

making Eq. 2.70 a quadratic form leads to thermomechanical consistency, represented by the
following evolution equation that contains the inelastic strain as internal variable:

ε̇in =
1

η
Eel(ε− εin) (2.71)
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where the viscosity η must be greater than zero.
Another approach to formulate the constitutive equations of linear viscoelasticity, using the

overstress as an internal variable, can be derived as follows. These corresponding relations
result in the following:

q = Eelεel = ηε̇in (2.72)
q̇ = Eelε̇el (2.73)
ε = εel + εin (2.74)
ε̇ = ε̇el + ε̇in (2.75)

Here, q corresponds to the overstress, representing the Maxwell element's time-dependent stress.
Transforming Eq. 2.72 and Eq. 2.75 and inserting into Eq. 2.73 under the consideration of
τ = η

Eel
, results in the evolution equation of linear viscoelasticity utilizing the overstress as an

internal variable:

q̇ +
1

τ
q = Eelε̇ (2.76)

The analytical solution of Eq. 2.76 results in:

q =

s=t∫
s=0

ER(t− s)
dε(s)

ds
ds (2.77)

with ER equals the time-dependent modulus, represented by the convolution core of the linear
functional of viscoelasticity:

ER(t− s) = Eele
− t−s

τ (2.78)

The total stress results in:

σ = Eε+ q (2.79)

Two possibilities for deriving the material model of linear viscoelasticity were presented: one
approach based on the Clausius-Duhem inequality, which utilizes the inelastic strain as an
internal variable, and the other based on rheological considerations, which utilizes the overstress
as an internal variable. The approach, based on the Clausiusis-Duhem inequality, is used in
the following to derive the equations corresponding to the theory of �nite linear and �nite
viscoelasticity. The theory of �nite viscoelasticity also uses the inelastic strain as an internal
variable, whereas the �nite linear theory uses the overstress.

2.2.6. Finite Linear Viscoelasticity

The modeling of viscoelasticity within the regime of large strains goes back to the model on
the viscoelasticity of polymeric rubber, proposed by Green and Tobolsky [119], who extended
the kinetic theory of Treloar [249, 250] by relaxation e�ects. Valanis [259] and Lubliner [176]
further developed that model. Lubliner [176] used a �rst multiplicative split of the deformation
gradient into isochoric and volumetric parts as suggested by Flory [106] and further suggested a
second multiplicative split of the deformation gradient into elastic and inelastic (viscous) parts,
where the inelastic parts refer to the time-dependent e�ects. Such a procedure was originally
suggested by Lee [167] in the context of elastoplasticity. The internal variables were treated as
functionals of the histories of the external variables. With this, the functionals form solutions
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of rate equations (evolution equations [175]. Within the �nite, linear viscoelasticity theory,
an extension of the model proposed by Lubliner [176] was given by Simo [240] and further
developed and implemented in FE by Holzapfel and Simo [132], Holzapfel [130]. The theory of
�nite linear viscoelasticity is based on a hyperelastic formulation for the equilibrium part and
a convolution integral representing the dissipative part, formulated by inner variables on the
stress type. It can be related to the theory of linear viscoelasticity.
The derivation of the theory of �nite linear viscoelasticity again starts at the Clausius Duhem

inequality concerning the reference con�guration:

T : Ė− Ψ̇ ≥ 0 (2.80)

The strain energy density per unit volume is described by the following potential:

Ψ(C,Γ) = Ψ∞(J, C̄) + Υ(C̄,Γ) = Ψ∞
iso(C̄) + Ψ∞

vol(J) + Υ(C̄,Γ) (2.81)

Where Γ is a non-measurable internal history variable, and Υ is a con�gurational free energy
ensuring a non-negative dissipation (must vanish for t → ∞) and describing the relaxational
state of polymer chains. C̄ is the isochoric part of the right Cauchy Green tensor, and J is
the determinant of the deformation gradient F. Stress is received by deriving energy from the
stretch tensor. The derivative concerning time reads:

Ψ̇ =
∂Ψ∞

iso(C̄)

∂C
:
∂C

∂t
+

∂Ψ∞
vol(J)

∂C
:
∂C

∂t
+

∂Υ(C̄,Γ)

∂C
:
∂C

∂t
+

∂Υ(C̄,Γ)

∂Γ
:
∂Γ

∂t
(2.82)

Inserting Eq. 2.82 into Eq. 2.80 yields:

1

2
T : Ċ−

[∂Ψ∞
iso

∂C
: Ċ+

∂Ψ∞
vol

∂C
: Ċ+

∂Υ

∂C
: Ċ+

∂Υ

∂Γ
: Γ̇
]
≥ 0 (2.83)

Sorting Eq. 2.83 leads to the expression for the stress tensor:

T = 2
[∂Ψ∞

iso

∂C
+

∂Ψ∞
vol

∂C
+

∂Υ

∂C

]
(2.84)

and with q = −2∂Υ(C̄,Γ)
∂Γ

, yields the dissipation inequality:

q : Γ̇ ≥ 0 (2.85)

making it a quadratic form to ensure thermodynamical consistency yields:

Γ̇ =
1

η
q (2.86)

q is an internal variable governed by the di�erential equation of linear viscoelasticity, and η is the
viscosity. Furthermore, q and Γ are de�ned as conjugated variables along with the constitutive
equations q = −2∂Υ(C̄,Γ)

∂Γ
and q̄ = 2∂Υ(C̄,Γ)

∂C̄
, which restrict the internal con�gurational free

energy Υ [130]. The relation between these restrictions can be established employing a Legendre
Transformation [240]. The evolution equation for the overstress is then obtained by:

q̇+
1

τ
q =

d

dt

[
2
∂Ψov

iso(C̄)

∂C

]
(2.87)

with the restriction for Ψov
iso(C̄) [132]:

Ψov
iso(C̄) = βΨ∞

iso(C̄) (2.88)
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The equation for the overstress therefore results in the following convolution integral

q =

s=t∫
s=0

e−
t−s
τ

d

ds

[
2
∂Ψov

iso(C̄)

∂C

]
ds (2.89)

leading to the total stress

T = 2
∂Ψ∞

iso(C̄)

∂C
+ 2

∂Ψ∞
vol(J)

∂C
+ q (2.90)

2.2.7. Finite Viscoelasticity

The theory of �nite viscoelasticity is already discussed Koh and Eringen [153], Haupt [123,
124], by building upon the general framework of linear viscoelasticity but considering large
deformations. However, in contrast to the theory of �nite linear viscoelasticity, which is also
based on the theory of linear viscoelasticity considering large deformations but is restricted
to small perturbations away from the thermodynamical equilibrium, it is not limited by that
restriction and , therefore, is more general. It is based on the approach proposed by Lubliner
[176] following a multiplicative decomposition of the deformation gradient. The considerations
of Haupt [124] were further developed by [169], resulting in a thermomechanical sound model
with excellent accuracy in describing actual experimental data.
The approach used in this thesis follows the general concept proposed by Reese and Govin-

djee [214] and Middendorf [180] using an additive split of the energy into equilibrium and
non-equilibrium parts, utilizing the multiplicative decomposition of the deformation gradient
Lubliner [176], and the concept of Dual Variables [126]. The evolution equation follows the
approach using internal variables [58, 175], considering viscosity formulations similar to that
presented by Sedlan and Haupt [236], Lion [171]. Like the approach for the linear viscoelastic-
ity, �nite viscoelasticity is derived from the Clausius Duhem inequality, which, for the reference
con�guration, results in:

T : Ė− Ψ̇ ≥ 0 (2.91)

Since a description in the Total Lagrangian formulation has some advantages for the later im-
plementation in an FE code, the model is derived below concerning the reference con�guration.
The free energy per unit volume is �rst divided into an isochoric and a volumetric component
to describe the material as generally as possible:

Ψ = Ψiso +Ψvol (2.92)

Furthermore, the energy is split up into a part that is within the thermodynamical equilibrium
( )∞ and a part that is not within the thermodynamical equilibrium ( )ov. Finally, the isochoric
part of the Helmholtz free Energy reads:

Ψiso = Ψ∞
iso(E) + Ψov

iso(Γ̂el) (2.93)

Ψvol = Ψ∞
vol(E) + Ψov

vol(Γ̂el) (2.94)

To follow the kinematics of linear viscoelasticity, which performs an additive splitting of the
strain into elastic and inelastic components, a multiplicative splitting of the deformation gradi-
ent is required for large deformations. This multiplicative division leads to a �ctitious, stress-free
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intermediate con�guration [25]. In this con�guration, an additive split of the distortions into
elastic and inelastic components is possible.

Γ̂ =
1

2

(
FT

elFel − F−T
in F−1

in

)
= Γ̂el + Γ̂in (2.95)

Therefore, the evolution equation, which follows the dissipation inequality, must be formulated
on this intermediate con�guration. Nevertheless, the equilibrium parts of the energy (cf. Eq.
2.93) are de�ned on the reference con�guration, which results in an inadmissible description of
di�erent con�gurations. The total formulation must, therefore, �rst be transformed into the
intermediate con�guration. The kinematics follows the concept of dual variables [126].

2.2.7.1. Transformation to the Intermediate Con�guration

To maintain objectivity, when transforming the formulation of the Clausius Duhem inequality to
an intermediate con�guration, the strain rate tensor must be expressed in terms of an Oldroyd
derivative. The respective equation yields:

T̂ :
∆

Γ̂− ˙̂
Ψ ≥ 0 (2.96)

Using the derivation rules

d

dt
Ψ(E) =

∂Ψ

∂E
:
d

dt
E,

d

dt
Ψ(Γ̂el) =

∂Ψ

∂Γ̂el

:
d

dt
Γ̂el,

and the relations presented in Fig. 2.3 to 2.5 yields the following expression for the Clausius
Duhem inequality on the intermediate con�guration:

T̂ :
∆

Γ̂− Fin
∂Ψ∞

iso(E)

∂E
FT

in :
∆

Γ̂− Fin
∂Ψ∞

vol(E)

∂E
FT

in :
∆

Γ̂− ∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

:
˙̂
Γel −

∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el

:
˙̂
Γel ≥ 0

(2.97)

Eq. 2.97 can be skilfully sorted by reformulating the elastic part of the distortion rate de�ned
on the intermediate con�guration as follows:

˙̂
Γel =

˙̂
Γ− ˙̂

Γin =
∆

Γ̂− L̂T
inΓ̂− Γ̂L̂in − D̂in + L̂T

inΓ̂in + Γ̂inL̂in =
∆

Γ̂− L̂T
in(Γ̂− Γ̂in)− (Γ̂− Γ̂in)L̂in−

− D̂in =
∆

Γ̂− L̂T
inΓ̂el − Γ̂elL̂in − D̂in =

∆

Γ̂− L̂T
in

1

2
(Ĉel − I)− 1

2
(Ĉel − I)L̂in − D̂in =

=
∆

Γ̂− 1

2
L̂T

inĈel +
1

2
L̂T

in −
1

2
ĈelL̂in +

1

2
L̂in − D̂in =

∆

Γ̂− 1

2
L̂T

inĈel −
1

2
ĈelL̂in + D̂in − D̂in =

=
∆

Γ̂− 1

2
L̂T

inĈel −
1

2
ĈelL̂in

Replacing the elastic deformation rate tensor ˙̂
Γel by the corresponding formulation (

∆

Γ̂−1
2
L̂T

inĈel−
1
2
ĈelL̂in) leads to the following expression of the Clausius Duhem inequality:(
T̂− Fin

∂Ψ∞
iso(E)

∂E
FT

in − Fin
∂Ψ∞

vol(E)

∂E
FT

in −
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

− ∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el

)
:

∆

Γ̂+

+
1

2

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

:

(
L̂T

inĈel + ĈelL̂in

)
+

1

2

∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el

:

(
L̂T

inĈel + ĈelL̂in

)
≥ 0

(2.98)
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Considering only the isochoric part of the free energy per unit volume for the overstress and
using A : B = Sp(ATB) leads to:

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

:

(
L̂T

inĈel + ĈelL̂in

)
= Sp

(
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

L̂T
inĈel +

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

ĈelL̂in

)
(2.99)

Using Sp(AB) = Sp(BA), Eq. 2.99 results in:

Sp

(
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

L̂T
inĈel +

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

ĈelL̂in

)
= Sp

(
Ĉel

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

L̂T
in +

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

ĈelL̂in

)
(2.100)

Under the assumption that Ψ̂ov
iso(IĈel

, IIĈel
, IIIĈel

) is an isotropic tensor function which only
depends on the invariants of Ĉel (with Ĉel = Γ̂el), the derivative of the isochoric part of the
free energy per unit volume for the overstress can be expressed as:

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

= α(...)1+ β(...)Ĉel + γ(...)Ĉ2
el + ...+ ω(...)Ĉn

el (2.101)

By means of Eq. 2.101, the following relation can be established

Ĉel
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

=
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

Ĉel (2.102)

and Eq. 2.100 can be rearranged to

Sp

(
Ĉel

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

L̂T
in +

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

ĈelL̂in

)
= Ĉel

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

:

(
L̂T

in + L̂in

)
=

2Ĉel
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

: D̂in

(2.103)

As the same relations hold. for the volumetric part of the free energy per unit volume for the
overstress, the total formulation of the Clausius Duhem inequality yields:(
T̂− Fin

∂Ψ∞
iso(E)

∂E
FT

in − Fin
∂Ψ∞

vol(E)

∂E
FT

in −
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

− ∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el

)
:

∆

Γ̂+

+ Ĉel

(
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

+
∂Ψ̂ov

vol(Γ̂el)

∂Γ̂el

)
: D̂in ≥ 0

(2.104)

Since the variables
∆

Γ̂ and D̂in are independent of each other, Eq. 2.104 is ful�lled, if the �rst
term in brackets is zero, and if the second part is guaranteed to be greater than zero. Setting
the �rst bracket of 2.104 equal to zero leads to the formulation of the stress:

T̂ = Fin
∂Ψ∞

iso(E)

∂E
FT

in + Fin
∂Ψ∞

vol(E)

∂E
FT

in +
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

+
∂Ψ̂ov

vol(Γ̂el)

∂Γ̂el

(2.105)

The second part of Eq. 2.104 must be greater than or equal to zero and thus leads to the
dissipation inequality:

Ĉel

(
∂Ψ̂ov

iso(Γ̂el)

∂Γ̂el

+
∂Ψ̂ov

vol(Γ̂el)

∂Γ̂el

)
: D̂in = ĈelT̂

ov : D̂in ≥ 0 (2.106)

45



2. Methodology

The easiest way to ful�ll this inequality is to transform it into a quadratic form by equating D̂in

with a multiple of ĈelT̂
ov. With the proportionality factor η, which must always be positive,

the dissipation inequality thus results in:

D̂in =
1

η
ĈelT̂

ov (2.107)

The factor η can depend on the thermomechanical process history and must be greater than
zero. Its dimension is stress times time and it can be interpreted as a viscosity function (unit:
[MPa·s]).

2.2.7.2. Transformation to the Reference Con�guration

To obtain the desired total Lagrange formulation, Eq. 2.105 and 2.107 must be transformed back
to the reference con�guration. In this operation, the transformation rules of the concept of dual
variables are applied again. Due to the formulations depending on the co- and contravariant
basis systems, the transformation rules for stress and deformation rate are di�erent (compare
push forward and pull back operations in Sec. 2.1.1.1). The Olydroyd deformation rate, de�ned
in the intermediate con�guration, is considerably simpli�ed in the reference con�guration. The
stress on the reference con�guration results in the following:

T =F−1
in T̂F−T

in =
∂Ψ̂∞

iso(E)

∂E
+ F−1

in

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el

F−T
in +

∂Ψ̂∞
vol(E)

∂E
+ F−1

in

∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el

F−T
in (2.108)

Using FT
inD̂inFin = FT

in

∆

Γ̂inFin = 1
2
Ċin, reduces the Oldroyd derivative of the inelastic stretch

tensor, holding for the intermediate con�guration, to an ordinary time-derivative, Eq. 2.107
yields:

Ċin = 2FT
inD̂inFin =

2

η
FT

inĈelT̂
ovFin =

2

η

(
FT

inF
T
elFelFin

)(
F−1

in T̂
ovF−T

in

)(
FT

inFin

)
=

2

η
CTovCin

(2.109)

The overstress Tov yields Tov = F−1
in

∂Ψ̂ov
iso(Γ̂el)

∂Γ̂el
F−T

in + F−1
in

∂Ψ̂ov
vol(Γ̂el)

∂Γ̂el
F−T

in .

2.2.7.3. Invariant Expression

Since Ψ̂ov
iso(Γ̂el), Ψ̂ov

vol(Γ̂el), Ψ∞
iso(E) and Ψ∞

vol(E) are isotropic tensor functions, they can be
represented in terms of the invariants of the right Cauchy Green tensor C and the elastic
Cauchy Green tensor Ĉel. This thesis solely considers energy potentials that depend on the
�rst invariant, which leads to the following expression of the total stress.

T = 2
∂Ψ∞

iso(IC̄)

∂C
+ 2

∂Ψ∞
vol(J)

∂C
+ 2F−1

in

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂Ĉel

F−T
in + 2F−1

in

∂Ψ̂ov
vol(Ĵel)

∂Ĉel

F−T
in

(2.110)

The corresponding formulation of the evolution equation yields:

Ċin =
2

η
C

(
F−1

in

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂Ĉel

F−T
in + F−1

in

∂Ψ̂ov
vol(Ĵel)

∂Ĉel

F−T
in

)
Cin (2.111)

To carry out the derivative of the energy potentials with respect to the invariants, the following
relations are used [241]:

∂Ψiso(IC̄)

∂C
=

∂Ψiso(IC̄)

∂IC̄

∂IC̄
∂C̄

:
∂C̄

∂C
(2.112)
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∂Ψvol(J)

∂C
=

∂Ψvol(J)

∂J

∂J

∂C
(2.113)

Following Miehe [181] and Simo and Hughes [241], the directional derivative (Gateaux deriva-
tive) of the right Cauchy Green tensor with respect to its isochoric part yields:

∂C̄

∂C
= J−2/3

[
1− 1

3
C⊗C−1

]
(2.114)

The derivatives of the invariatants of the right Cauchy Green tensor with respect to the right
Cauchy Green tensor, yield [131, 241, 48]:

∂IC
∂C

= 1 (2.115)

∂IIC
∂C

= IC1−C (2.116)

∂IIIC
∂C

= IIICC
−1 (2.117)

∂J

∂C
=

J

2
C−1 (2.118)

Applying Eq. 2.112, 2.113, 2.114, and the derivatives of the invariants to Eq. 2.110, and 2.111,
yields:

T = 2J−2/3∂Ψ
∞
iso(IC̄)

∂IC̄

[
1− 1

3

(
C : 1

)
C−1

]
+ 2Ĵ

−2/3
el

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂I ˆ̄Cel

[
C−1

in − 1

3

(
C : C−1

in

)
C−1

]
+

+
[∂Ψ∞

vol(J)

∂J
J +

∂Ψ̂ov
vol(Ĵel)

∂Ĵel
Ĵel

]
C−1

(2.119)

Here, (C : 1) = IC, and (C : C−1
in ) = IĈel

. When introducing a volumetric and deviatoric
split for the �ow rule and thus dividing the viscosity into shape-changing and volume-changing
components, it remains essential to uphold the dissipation inequality. Following the approach of
Justine [149], a proportionality between the volumetric part, denoted as ηV , and the deviatoric
part, represented by ηD, is assumed. It is crucial to note that this relationship between them
must always be positive.

Ċin =
4

ηD
Ĵ
−2/3
el

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂I ˆ̄Cel

[
C− 1

3

(
C : C−1

in

)
Cin

]
+

2

ηV
Ĵel

[∂Ψ̂ov
vol(Ĵel)

∂Jel

]
Cin (2.120)

The viscosities must follow the relation ηV = αηD with α > 0 (cf. Justine [149]).

2.2.7.4. Temperature Expansion

In the context of isothermal processes, it becomes essential to account for temperature-related
e�ects primarily through the viscosity function and the deformation gradient. To establish a
consistent framework, considering deformations due to temperature, the deformation gradient
is partitioned into a mechanical segment and a thermal counterpart (Lion [171]):

F = FθFM (2.121)
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The derivation of the mechanical stretch tensor stems from the mechanical part of the defor-
mation gradient, as elucidated by the following equation:

CM = FT
MFM (2.122)

The thermal component is computed in advance, guided by a priori considerations, while the
mechanical part is subsequently substituted.
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The extension of the evolution equation to encompass thermal processes yields a comprehensive
representation of the system's behavior in response to di�erent, constant temperatures.
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2.3. Numerical Modeling

The theory of viscoelasticity is guided by time-dependent material behavior, which is described
mathematically utilizing di�erential equations. In addition to analytical approaches that lead
to an explicit solution, numerical methods for solving these di�erential equations approximate
the solution by specifying functional values at speci�c points. An exact, explicit solution
is sometimes very time-consuming and not always possible. Numerical solution methods are,
therefore, generally used to solve time-dependent material equations in the context of structural
mechanics.
A method recommended by Middendorf [180], Sche�er [225] for solving models of �nite

viscoelasticity is the implicit Euler method. This method is used for the numerical integration
of the material equations in this work. Furthermore, Newton's method, based on the linear
evolution of a Taylor series, is utilized to solve the equations for each iteration step. Together,
these methods represent a powerful tool for solving di�erential equations in the context of
material modeling.
Another problem in material modeling is determining the material parameters that minimize

the error between model calculation and experiment. This parameter identi�cation is a di�cult
task for models with many parameters, and within this thesis, it is solved using a global
optimization algorithm.

2.3.1. Euler Backward Method

The Euler backward method is an implicit method for solving di�erential equations. In contrast
to explicit methods that solve the individual approximations using an explicit formula from the
approximation of the previous step, implicit methods don't use explicit formulas but relate the
approximations of the individual steps by an equation. Compared to explicit methods, the
advantage of implicit methods is the larger area of stability with the same accuracy. However,
a further approximation method, such as the Newton method, is required to solve this equation
in every step. The basic formulas and relations of the Euler backward method are presented
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below. For more detailed information, the interested reader is referred to Butcher [37], Arens
et al. [9].

Starting with the ordinary di�erential equation

dy

dt
= f(t, y(t)) (2.125)

where y(t0) = y0 holds and integrating Eq. 2.125 within the limits tn to tn+1 = tn + h, yields

y(tn+1)− y(tn) =

tn+1∫
tn

f(t, y(t))dt, (2.126)

wich can be approximately written as

y(tn+1)− y(tn) ≈ hf(tn+1, y(tn+1)). (2.127)

Rearranging Eq. 2.127 and using the big O-notation, that represents the local truncation error
O(h2), leads to

y(tn+1) = y(tn) + hf(tn+1, y(tn+1)) +O(h2). (2.128)

Reordering Eq. 2.128 results in the following iteration-equation for the sequence of approxima-
tions yn at tn:

f(tn+1, yn+1) =
yn+1 − yn

h
(2.129)

Like the explicit Euler method (y(tn+1) − y(tn) ≈ hf(tn, y(tn))), the implicit method has a
convergence order of 1 but has a much larger stability region.

2.3.2. Taylor Series

The Taylor series aims to improve the approximation of a function through linearization using
polynomials of a higher degree. Assume a polynomial with the properties

f (k)(x0) = p(k)n (x0) (2.130)

for the function value k = 0 and the derivatives, of order k = 1, ..., n at the point x0. Then,
for an n-times continuously di�erentiable function f , a Taylor polynomial of degree n can be
formed around the development point x0 (x ∈ R):

pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k (2.131)

For this Taylor polynomial and the function under consideration, the function value and deriva-
tives match up to the developed degree n. f (k)(x0) = p

(k)
n (x0) to the development point x0.

To map the gradient of a function at a speci�c point, a development up to the �rst derivative,
which corresponds to a series developed up to the linear element, is therefore su�cient.

p1(x) =
f (0)(x0)

1
(x− x0)

0 +
f (1)(x0)

1
(x− x0)

1 = f(x0) + f ′(x0)(x− x0) (2.132)

For further details the reader is referred to Arens et al. [9].
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2.3.3. Newton's Method

The solution of an equation in real numbers, which can be summarized as a zero-point task
f(x) = 0, is possible in closed form only in exceptional cases. In all other cases, the problem
must be solved numerically. The most frequently used numerical method for solving non-linear
equations is the Newton's method.
Using Eq. 2.132, which corresponds to a linearization of the function f(x) around the point

x0, and transfering it to the zero point task, results in

f(x0) + f ′(x0)(x− x0) = 0. (2.133)

Assuming that f ′ is di�erent from zero, the following value x1 results from the initial value x0

x1 = x0 −
f(x0)

f ′(x0)
(2.134)

A repetition of this procedure leads to the recursive sequence

xk+1 = xk − f(xk)

f ′(xk)
, (2.135)

where ( )k describes the preceding iteration step, ( )k+1 the following iteration step, and n ∈ N
applies. This iteration procedure now approaches the solution step by step.
This method can solve the equation representing the approximations of the individual steps

inside the implicit Euler method. Therefore, if this concept is transferred to the formulation of
the Euler backward method, the residual Ξ(yn+1) must �rst be set up, which for the Newton's
method is treated like the function f(xn) in Eq. 2.133. First, Eq. 2.129 is converted accordingly:

Ξ(yn+1) = yn+1 − yn − hf(tn+1, yn+1) = 0 (2.136)

The residual Ξ(yn+1) can be approximated with a Taylor series expansion. Ξ is linearized
around ykn+1 cancelling the Taylor series after the linear element:

Ξ(yk+1
n+1) ≈ Ξ(ykn+1) +

∂Ξ(ykn+1)

∂ykn+1

(
yk+1
n+1 − ykn+1

)
= 0 (2.137)

Applying Newton's method, Eq. 2.137 is rearranged in such a way that it equals the form of
Eq. 2.133 while the function f(xk) is replaced by the residuum Ξ(ykn+1) and xk by ykn+1. Finally,
the following relationship holds for the solution of the implicit Euler method:

yk+1
n+1 = ykn+1 −

Ξ(ykn+1)
∂Ξ(ykn+1)

∂ykn+1

(2.138)

Subsequently, a small example determining the zeros of the function f(x) = 5x2−5 is employed
to illustrate the functionality of Newton's method. The zeros [x1, x2] = ±

√
1 are obtained

analytically. The following algorithm is implemented in Matlab:
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1
2 x = [ -4.5;4.5];

3 x_old = 10;

4
5 while abs(x_old -x) > 10^-5

6
7 R = 5*x^2-5;

8 dR = 10*x;

9
10 x_old = x;

11 x = x - (R)/(dR);

12
13 end

The letter R denotes the residual whose zeros are to be determined (in this case, it corresponds
to the function), and dR denotes the analytical derivative of the residual or the function. In
Fig. 2.11, the iterations of the algorithm are graphically illustrated. The algorithm begins with
a user-speci�c starting point and calculates the residual value and its derivative at this point.
A tangent is then formed at the point of the function, and its intersection with the zero line
(function value equal to 0) is determined. This intersection point represents an update for the
starting point. If this update di�ers from the starting point by an amount less than a previously
de�ned tolerance limit (in this case, 10−5), the algorithm is canceled. If the di�erence exceeds
the tolerance, the algorithm continues until the value falls below the limit.

Figure 2.11.: Newton Raphson Algorithm; Starting Value -4.5 (left), 4.5 (right)

Fig. 2.11 shows the functionality of the algorithm for the function f(x) = 5x2 − 5. The
algorithm comes to the same solution as the analytical calculation. However, depending on the
choice of the starting value, the algorithm converges to di�erent solutions, while the accuracy
of the solution depends on the chosen tolerance. However, the presented example is designed
only for demonstration purposes and does not serve as the basis for a sound discussion of the
algorithm's functionality. Nevertheless, it should be remembered that the algorithm's solutions
strongly depend on the choice of the starting value.
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2.4. Parameter Identi�cation - Optimization

When modeling physical problems, the application problems are usually idealized, i.e. approx-
imated using mathematical formulations. This approximation leads to systems with unknowns
that can be equated with material parameters in material modeling. In order to be able to
make the best possible selection of the corresponding parameters, it is necessary to formulate
a so-called target function f , which depends on the unknowns x and evaluates the system by
describing the error between measured variables and calculations. The search for the best pos-
sible combination of the unknowns x results in the mathematical problem of minimizing the
function value f(x) among all x. Taking into account the restrictions that the vector x of the
unknowns is �nite-dimensional and only a �nite number of constraints have to be considered,
the following non-linear minimization problem arises

inf f(x)

x : gi(x) ≤ 0 for i = 1, 2, ..., p

gj(x) = 0 for j = p+ 1, p+ 2, ...,m

x ∈ B

where for the index sets I1 = {1, ..., p} and I2 = {p + 1, ....,m} with 0 ≤ p ≤ m < ∞ and for
the unknowns x ∈ Rn,B ⊂ R\ [142] hold.

2.4.1. Global Optimization

For solving problems with multiple local minima, using global optimization algorithms incorpo-
rating local solvers is a prevalent approach [95]. With the globalsearch algorithm, the software
Matlab provides a powerful tool for this purpose. It combines a heuristic search method and
a local gradient-based solver incorporated in a multi-start procedure to achieve both advan-
tages by avoiding their disadvantages. A multi-start procedure generally searches for a global
solution by starting a local solver from multiple, uniformly distributed start points. Using
the globalsearch algorithm decreases the number of potential starting points considerably by
employing particular constraints. [258]
The heuristic search method is carried out by the scattersearch function, a metaheuristic

algorithm that generates a population of starting points whose elements are maintained and
updated from iteration to iteration. Deterministic combinations of previous members of the
population generate new elements. [116]

2.4.2. Local Solver - fmincon

fmincon (function minimization under constraints) is a sophisticated optimization solver that
employs a combination of optimization algorithms and constraint-handling techniques to ef-
�ciently �nd solutions to a given objective function under a set of equality and inequality
constraints. It adapts its strategy based on the problem structure and user-de�ned options
to achieve convergence to a feasible and optimal solution. There are several optimization al-
gorithms that can be chosen. Within this work the interior point technique [38, 39, 262] is
used.
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2.5. Materials

This chapter provides a brief overview of the materials covered in the thesis, which aims to
contribute to the description of laminated glass in its broken state. The individual components
of LSG glass interlayer are �rst described individually, followed by a detailed analysis of the
product laminated glass.
Solids can be divided into three material groups: metals, ceramics, and polymers. These groups
can be characterized according to their way of connecting the atoms inside the material. Metals
use metallic bonds, ceramics use ionic bonds, and polymers use covalent bonds [221]. These
di�erent bond types and the resulting di�erent arrangements at the molecular level result in
di�erent material properties. Glass and polyvinyl butyral are polymers, which is why the third
material group, the polymers, will be discussed in more detail in the following.

2.5.1. Polymers

Polymers can be characterized at di�erent scales (compare Fig. 2.12). At the micro level, they
consist of monomers formed from groups of atoms. At the meso level, they consist of molecular
chains linked together by connecting the individual monomers via covalent bonds. At the macro
level, they form branched structures of molecular chains linked via primary and or secondary
bonds. The position and conformation of the polymer chains depend on the micro Brownian
motion [234].

Microscale

Monomer

Mesoscale

Polymer-Chain

Macroscale

Solid Polymer

Figure 2.12.: Structure of a Polymer at di�erent scales, after Bergström [24]

2.5.1.1. Syntheses of Polymers

The synthetic form of polymers is called polymerization and occurs when the monomers' func-
tionality is at least two. It consists of polyaddition (free radical, ionic, coordination) and
polycondensation [35]. In the case of an addition, growth occurs via addition reactions, and in
the case of condensation, via condensation reactions in which one molecule is split o� at a time.
However, polycondensation usually proceeds as a step reaction and polyaddition as a chain re-
action [215]. The step reaction consists of successive reactions between functional groups of the
reactants. A reactive center initiates the chain reaction and entails a progressive propagation
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that is terminated only after the destruction of the reactive center. The functionality of the
monomers determines whether the polymer is crosslinked or not. Examples for the simulation
of the synthetic form of polymers can be found in Mark [177].

2.5.1.2. Structures of Polymers

Polymers can be divided into the subgroups of crosslinked ones (elastomers or thermosets) and
non-crosslinked ones (thermoplastics) [234, 24] (cf. Fig. 2.13), both having polymer chains with
primary (covalent) bonds. The bonds between the individual polymer chains, on the other hand,
are partly primary and partly secondary (van der Waals, hydrogen, dipoles) within the group
of elastomers and thermosets, and exclusively secondary within the group of thermoplastics
[35]. However, Elastomers have lower crosslinking than thermosets, resulting in fewer primary
bonds. Crosslinked and non-cross-linked polymers can also be divided into amorphous and
semi-crystalline according to their degree of crystallinity [234].

Elastomer
semi-crystalline

Thermoplastic

amorphous

Thermoplastic
Thermoset

Figure 2.13.: Structures of Polymers, after Domininghaus [96]

2.5.1.3. Aggregate States of Polymers

The aggregate states are closely related to the glass transition, melting and �ow temperatures,
and the associated molecular mobility. The glass transition temperature Tg describes the tran-
sition from the entropy-elastic (rubber state) to the energy-elastic (glass state), the melting
temperature Tm describes the melting of the crystalline phases, the �ow temperature Tf de-
scribes the loosening of the entanglements of the macromolecules. The crystals are solid up
to the melting temperature. The Mirko-Brownian motion thaws in the glass transition region
and fully develops in the rubber and melt states. In contrast to amorphous polymers, semi-
crystalline polymers exhibit individual relaxation processes coupled to the crystalline regions,
each characterized by a decrease in sti�ness. Furthermore, semi-crystalline polymers generally
exhibit higher strengths. [234, 215, 177, 35].

2.5.2. Standard PVB

Standard PVB is the most commonly used material for LG interlayers. It consists of PVB
resin (75 [%]), additives (<1 [%]), and plasticizers (25 [%]). The higher the proportion of
plasticizer, the more the glass transition temperature is reduced. The material is created
by chain polymerization of vinyl acetate, hydrolysis to polyvinyl alcohol, and acetalization
with butyraldehyde. It has no crosslinks and is considered an amorphous thermoplastic. Like
polymers in general, the stochastic arrangement of the polymer chains leads to isotropic material
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behavior. Furthermore, above the glass transition temperature, it shows purely viscoelastic
behavior.[159, 231]
The PVB used in this work is manufactured by the interlayer-company Kuraray and has the

product-speci�c name Trosifol®UltraClear - B200NR. It shows isotropic [103, 231, 165], purely
viscoelastic [165, 231] material behavior and is strongly time, temperature- [165, 103, 161] and
even moisture-dependent [31]. Its glass-transition temperature is around 25 [◦C] [165, 103, 162,
231], and within the glass transition region and above, it shows nearly incompressible behavior
(ν ≈ 0.47 [-] at room temperature) [165], however, the values of the Poisson's ratio strongly
depend on the temperature, taking on values from 0.4 [-] up to 0.49 [-] [231]. Dynamic Scanning
Calorimetry (DSC) and DMTA tests showed that PVB is a rheological simple material [163].
The strain range, the linear viscoelastic theory can be applied in, is limited to 0.5 [%] in the
energy-elastic and 35 [%] in the entropy-elastic range [230, 104, 233]. Beyond the linearity
limits, the material behavior is governed by non-linear viscoelasticity [231]. Its elongation at
breakage strongly depends on the strain rate and can achieve values from 210 [%] up to 300
[%], and the stress at breakage is 25 [MPa] [165]. Its properties are generally not in�uenced by
the lamination process [103].

2.5.3. Glass

Nowadays, glass is mainly produced in the so-called �oat process. In this process, the raw
materials quartz sand (60 [%]), lime and dolomite (20 [%]), and sodium carbonate (20 [%]) are
�rst melted in a melting tank. The molten glass is then fed into a tin bath, where the �oating
melt spreads evenly and is drawn into the cooling area via laterally mounted gear wheels. The
speed of the drawing process determines the glass thickness. As soon as the cooling process is
completed, the glass can be further processed [239, 227]. Fig. 2.14 shows the procedure.
After reaching the melting point, all atomic bonds of the raw material break. The energy

added by heat corresponds to the atomic bonding energy. In the liquid state, the glass then
behaves like a Newtonian �uid. The viscosity is determined by the intermolecular interactions
(friction) and prevents or delays a crystalline arrangement of the molecules during cooling.
The speed of the cooling process, therefore, determines the arrangement of the molecules. The
glass transition slows down the molecular dynamics and, therefore, leads to the state of an
amorphous, disordered solid, also called supercooled melt [245].

Melting Furnace Float Bath Annealing Lehr

Molten Glass

Raw Materials

Molten Tin

1500◦C 1100◦C 1100◦C 600◦C 500◦C 100◦C

Figure 2.14.: Float Process, after Schneider et al. [227]

In a further process step, the glass is tempered, preventing subcritical crack growth in the
stress-free glass and reducing the e�ect of surface damage [229]. The tempering process leads to
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compressive stresses on the surface and tensile stresses inside the glass. Tensile and compressive
stresses are in equilibrium.
There are two ways of tempering. Either thermally, by heating the base glass to about 100

[◦C] above Tg and then rapidly cooling it by blowing in the air, leading to a residual stress
contribution corresponding to the parabolic temperature pro�le. Alternatively, chemically, the
tempering occurs via the near-surface ion exchange of alkali ions, brought about by storing the
glass sheet in a molten salt bath. [239, 227]. A comparison of the resulting residual stress,
induced by thermal and chemical prestressing, is shown in Fig. 2.15.
In this way, di�erent essential products can be distinguished. They start with annealed glass

[82, 83], which is obtained from sodium silicate by the �oat process. At this point, there are
other base products, but these will not be considered here. Thermally toughened glass (TTG)
[72, 73] and heat strengthened glass (HTG) [78, 79] can be produced from the basis glass by
thermal tempering, or chemically tempered glass (CTG) [74, 75] by chemical tempering. The
di�erence in the production of HTG and TTG is the cooling rate during the tempering process.
TTG is cooled rapidly, resulting in high residual stresses, while HTG is cooled more slowly,
resulting in lower residual stresses.

-

-

+

Compression Tension Compressoin
Tension

Thermal Prestress Chemical Prestress

Figure 2.15.: Residual Stresses Induced by Thermal and Chemical Prestressing

The di�erent tempering processes introduce di�erent residual stresses and thus produce dif-
ferent elastic energy densities. The elastic energy density and the glass thickness are decisive
for the fracture structure of glass [207, 208]. Di�erent prestressed glasses, therefore, also exhibit
di�erent fracture patterns. The higher the internal elastic energy, the �ner the fracture pattern
(cf. Fig. 2.16).

Annealed Heat-Strengthened Thermally Toughened

Figure 2.16.: Di�erent Fracture Patterns for di�erent Levels of Prestress
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2.5.4. Laminated Glass

Laminated glass (cf. Fig. 2.17) is de�ned by DIN EN ISO 12543-1:2022-03 [85]:

De�nition 1. as an assembly consisting of a glass pane with one or more panes of glass and/or
glazing material made of plastic, interconnected by one or more intermediate layers

The manufacturing process of laminated glass comprises two stages in which the bond be-
tween the interlayer and the glass is produced. A vacuum or roll pre-laminate is produced
after cleaning the glass and conditioning the interlayer. The choice of the pre-bonding process
depends on the interlayer material. In vacuum pre-laminating, the air between the individual
layers of the laminate is removed utilizing a vacuum bag or circulating hoses. In roll pre-
laminating, the laminate is rolled together using heated rolls. The main composite is then
usually produced in an autoclave, where the laminate is pressed together at a temperature of
approx. 140 [◦C] under the pressure of approx. 12 - 14 [bar]. For some interlayers, it is also
possible to produce the main composite in a vacuum process [239, 227].

Glass

Interlayer

Glass

Figure 2.17.: Principle Sketch of a Laminated Glass

The basic properties and requirements for laminated glass are regulated by DIN EN ISO
12543-3:2022-03 [87]. If a laminated glass with an interlayer of PVB meets the requirements of
DIN EN ISO 12543-2:2022-03 [86], it may be called laminated safety glass. The requirements
include properties of the interlayer that must be met after testing in accordance with DIN EN
ISO 527-3:2019-02 [92] as well as requirements for breakage and adhesion behavior in the soft
body impact tests [76].

2.6. Experiments

For the experimental investigation of polymers, several properties must be considered. In par-
ticular, sensitivity to temperature and humidity requires special attention and leads to strict
test conditions. Furthermore, investigating the time-dependent behavior under large defor-
mations demands precise requirements for the measuring instruments. The following sections
brie�y introduce the corresponding test equipment required to take account of the complex and
highly sensitive material behavior.

2.6.1. General Polymer Testing

There are various standards by which regulations for polymer testing are de�ned. The reg-
ulations can be divided into conditioning [89], testing in the intact state (tensile properties
[90, 91, 92], creep properties [84], dynamic behavior [93, 137, 136]) and tests of material failure
(tear propagation tests).
The climate for conditioning and testing is de�ned as 23±1 [◦C] and 50±5 [%rH] for class

1, and 23±2 [◦C] and 50±10 [%rH] for class 2, respectively [89]. For tensile tests, the testing
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machine must meet the requirements speci�ed by ISO 7500-1:2018-02 [138] (force measuring
device class 1) and ISO 9513:2012-12 [139] and also comply with the tolerances speci�ed by
DIN EN ISO 527-1:2019-12 [90]. The extensometer must comply with class 1 according to ISO
9513:2012-12 [139]. Possible specimen geometries are presented in [92].
The exceptional standard tailored to PVB [77] aims to test the sti�ness properties in the

low strain range to determine the shear bond of laminated safety glass. A standard for testing
PVB in the �nite strain range has yet to be created.

2.6.2. Experimental Setup

In this chapter, the test instruments selected in accordance with the requirements of Sec. 2.6.1
are presented. These instruments include a punching machine for producing the test specimens,
a climate chamber for conditioning the test specimens, a climate container with a constantly
controlled temperature, a universal testing machine, and corresponding measuring sensors to
measure force, displacement, temperature, and humidity.

2.6.2.1. Specimens Geometry

Two di�erent specimen geometries were used, shown in Figure 2.18. Below, the left-hand
geometry is referred to as Type A, the right-hand geometry as Type B. Specimen Type B
equals Type 4 within DIN EN ISO 527-3:2019-02 [92], Type A was developed by Becker [18]
for thermoplastic materials exposed to high strain rates and has already been used by several
researchers for investigations on PVB [165, 162, 30, 231].
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Figure 2.18.: Specimens geometry: Specimen Typ A (left); Specimen Type B (right); thickness
of both Specimens is 1.52 [mm] and the unit within the drawing [mm]

2.6.2.2. Stamping Machine

The type A test specimens were punched out of a PVB roll. A mechanical press (Fig. 2.19 left)
and a cutting die (Fig. 2.19 right) with the dimensions of the geometry of Becker [18], both
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manufactured by the company Star cutting technology, were used for this purpose.

Figure 2.19.: Stamping machine setup from from Star cutting technology

2.6.2.3. Universal testing machine

A single-column material testing machine (Fig. 2.20) from ZwickRoell (Z2.5 zwickiLine) is used
for testing. The maximum reachable force is 2.5 [kN], achieving testing velocities from 0.001 to
800 [mm/min].

Figure 2.20.: Universal testing machine Z2.5 from ZwickRoell GmbH & Co. KG

2.6.2.4. Mechanical Clamping Device

The symmetrically gripping screw grips are single-sided closing grips for static and quasi-static
tensile tests. They clamp up to a test force of 2.5 [kN] and are suitable for tests in a temperature
range from -70 to 250 [◦C]. The minimum initial gauge length L0 is 5 [mm], and the specimen
thickness must not exceed 18 [mm].
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Figure 2.21.: Mechanical Clamping Device from ZwickRoell GmbH & Co. KG, article number
316322

2.6.2.5. Mechanical Sensors

Force Transducer The force transducer converts the physical quantity of force into an elec-
trically measurable voltage. It consists of a mechanical deformation body with bonded strain
gauges and strain-dependent electrical resistors, which are connected to form a measuring
bridge. The value of the measuring voltage at the output of the bridge circuit is analogous to
the force (F) to be measured, which acts on the deformation body and the entire force trans-
ducer system�the sign of the measurement voltage changes with the direction of the load. It
has a nominal force Fnom of 2.5 [kN] and is designed for a temperature range of -20 to 60 [◦C]
with an accuracy class 1 from 0.2 [%] of Fnom (from 5 [N]) and accuracy class 0.5 from 1 [%] of
Fnom (from 25 [N]).

Displacement Transducer The extensometer is a distance-measuring system that determines
the change in length between two points. Its basis is a precision guide pro�le with two weight-
compensated measuring carriages. The measuring system is designed for signi�cant changes
in length with ordinary measuring resolution. It determines the change in length between the
probes by running the measuring slides on two precision columns, using particularly smooth-
running guide elements. This setup ensures low-force transmission of the change in length and
minimizes transmission errors. Counterweights balance the mass of the measuring slides. The
extensometer measures from a deformation of 2 mm with the accuracy required by DIN EN
ISO 527-1:2019-12 [90], which corresponds to class 1 according to ISO 9513:2012-12 [139], with
a resolution of 0.003 [mm/pulse]. The initial gauge length must be between 10 and 200 [mm],
and the cross-section of the sample must not exceed 60 [mm] in width and 20 [mm] in thickness.
The ambient temperature during the test must be between 10 and 35 [◦C]. The extensometer
measures up to a deformed length of 800 [mm], whereby the minimum tensile force transferred
from the grips to the specimens is a maximum of 0.2 [N].
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Figure 2.22.: Force Transducer from A.S.T GmbH (left); Displacement Transducer from
ZwickRoell GmbH & Co. KG, article number 024895 (right))

2.6.2.6. Temperature Sensors

Thermoelement The temperature was constantly tracked by a sensor of the Thermoelement
Typ K type, which consists of (+) leg made from Nickel-Chrom and a (-) leg made from
Nickel-Aluminium.

Climate Sensor To ensure the repeatability of the tests, temperature and relative humidity
were constantly tracked by the use of the temperature-humidity USB meter, Voltcraft DL-
121TH. The sensor covers a temperature range of -40 to 70 [◦C] and a humidity range of 0 - 100
[%] and records up to 16000 data points. The recording is in a measuring interval of 2 [s] to 24
[h] with an accuracy of ±1 [◦C] for temperature and ±3 [%rH] for humidity with a resolution
of 0.1 ([◦C], [%rH]).

Figure 2.23.: Thermoelement Typ K (left); Climate Sensor from Voltcraft, model DL-121TH
(right))

2.6.2.7. Climatic Environment

Climatic Chamber Binder's Model MKF 720 (cf. Fig 2.24) was selected for the conditioning
of the specimens. It is a dynamic climate chamber engineered for precise control in experiments
and tests involving rapid temperature changes and humidity regulation. With temperatures
ranging from -40 to 180 [◦C], this chamber is able to create extremely cold and hot environments,
accommodating diverse testing scenarios. Furthermore, its humidity control capabilities range
from 10 to 98 [%rH], ensuring the maintenance of speci�c humidity conditions.
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To facilitate humidity regulation, the MKF 720 comes equipped with an integrated 20-liter
water reservoir. This reservoir serves to sustain humidity levels within the chamber during test-
ing. Moreover, it provides four potential-free switching contacts, o�ering �exibility for control-
ling external devices or monitoring test conditions. It also features programmable condensation
protection for samples, ensuring that test samples within the chamber are safeguarded from
issues related to condensation, thereby upholding the reliability and accuracy of test results.

Climatic Container Within the climatic container, temperatures between 10 to 50 [◦C] can
be adjusted for theoretically any load duration. (climate homogeneity measurements are contin-
uously taken during each experimental run at two points within the air of the climate chamber
and at one point on each test specimen). The temperature precision of the climate chambers
is ±1 [◦C].

Figure 2.24.: Climatic chamber for conditioning of the specimens (left); Climatic container
for testing the specimens (right))
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This chapter describes the conditioning and preparation of the specimens, the di�erent test
speci�cations, and the experimental investigations. In general, the chapter is divided into two
parts. The �rst part contains a detailed characterization of the time-dependent behavior of
PVB under large deformations. The second part intends to describe the behavior of PVB
under large deformations for a long loading duration using a simpli�ed approach.
The �rst part can be divided again into several phenomena. It is distinguished between a

loading process carried out until failure, a loading process followed by unloading, and a loading
process followed by relaxation. The strain rate tensor D characterizes these processes. The
stretch rate is greater than zero for the loading, smaller than zero for the unloading, and equal
to zero for the relaxation process. According to these processes, three test prescriptions are
de�ned. The �rst prescription (constant positive strain rate) represents a constant uniaxial
tensile loading under seven di�erent strain rates until failure. The results serve as a reference
point for determining a suitable unloading point. For this point, it must be ensured, on the
one hand, that the material does not fail and, on the other hand, that as much of the loading
process as possible is represented. These tests are followed by uniaxial tensile tests with loading
up to a maximum de�ned by the fracture tests and subsequent unloading. The third and �nal
part of the tests consists of relaxation tests (loading process followed by a strain rate equal to
0) at three di�erent strain rates and various loading levels, lasting from one to twelve hours.
To be used within an engineering approach, a test speci�cation should be de�ned as simple

and practicable as possible and provide maximum information about the material behavior for
a reasonable test duration. The one chosen is the so-called staircase test, commonly used to
determine the in�nite sti�ness of elastomers. The test contains loading and unloading branches,
each loaded at an identical strain rate. However, this test is interrupted at certain strain levels
by individual breakpoints at which the strain is held constant for �ve minutes. The duration is
again chosen so that the test can be run in an adequate time frame, but the relaxation behavior
can be characterized as accurately as possible.
The results of the uniaxial tension tests until failure, the cyclic, and the relaxation tests

will be presented in Pauli and Siebert [200], which has been submitted to the journal Glass
Structures & Engineering and is accepted but not published so far.

3.1. Specimen Preparation and Conditioning

The tests can be divided into two test series, with di�erent test specimen geometries used for
each series (compare Sec. 2.6.2.1). The production and conditioning of the test specimens are
described separately below according to these series.

3.1.1. Test Series One - Geometry Type A

The PVB �lm with a thickness of 1.52 [mm] was delivered on a roll and stored in a plastic �lm
in a laboratory environment. A separating layer prevented the �lm from sticking together on
the roll. Sheets from this roll were used to punch out test specimens using a stamp and a cutter
with the geometry type A (compare Sec. 2.6.2.2) and conditioned within a climatic chamber
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(compare Sec. 2.6.2). Within the conditioning process, the temperature was increased to 50
[◦C] at a constant relative humidity of 30 [%rH] and was maintained under these conditions
for 1 hour. Subsequently, the temperature was decreased at a cooling rate of 2.5 [◦C/h], and
the humidity was increased at a humidity rate of 1.67 [%rH/h]. After the temperature reached
20 [◦C] and the humidity reached 50 [%rH], this condition was sustained for a minimum of 12
[h]. However, the test specimens were not subjected to a lamination process with increased
temperature and pressure, as Elzière [103], Schuster [231] found that this did not a�ect the
material behavior.

3.1.2. Test Series Two - Geometry Type B

The PVB �lm was delivered as pre-cut test specimens (type B) with a thickness of 1.52 mm.
The test specimens used in this work were �rst heated to 50 [◦C], cooled slowly to 23 [◦C], and
then kept at a constant 23 [◦C] for 12 [h].

3.2. Test Procedures

Just as the previous chapter was divided into the two test series, the test instructions presented
below are shown separately for the two series.

3.2.1. Test Series One - Geometry Type A

For the testing phase, specimens were extracted from the climatic chamber and individually
transferred to the container where the tests were carried out. It maintained a constant tem-
perature of 20±1 [◦C], with humidity variations of 65+/-5 [%rH]. Temperature and humidity
were constantly tracked by a Thermoelement K sensor and the Voltcraft DL-121TH (cf. Sec.
2.6.2.6). Pliers, stored at 20±1 [◦C], were used to install the specimens to prevent handcontact-
induced heating. Each sample was initially clamped in the upper clamp (cf. Sec. 2.6.2.4) before
the machine's starting position was approached. After reaching a distance of 36 [mm] between
the clamps, the lower part of the specimen was �xed. By tightening the clamps, the samples
buckled in the middle. A pre-force of 5 [N] was applied at a speed of 50 [mm/min] (controlled
via the crosshead) to straighten the specimen. Subsequently, the extensometer clamps (Sec.
2.6.2.5) were attached and centered at a 12 [mm] distance, and the test was started. The
distance between the two clamps constantly controlled the testing speed.
Di�erent scenarios were investigated to characterize the time-dependent behavior of PVB

under large deformations utilizing the strain rate, in the following expressed in terms of the
strain rate tensor D, as the driving quantity:

1. In�uence of Displacement Transducer: It is checked whether the mechanical clamps of
the displacement transducer in�uence the material's behavior in the intact state or its
failure.

2. Rate-dependent Behavior: The stress response under varying strain rates is investigated.

3. Relaxation Behavior: The relaxation behavior concerning di�erent strain levels approached
from di�erent strain rates is explored.

4. Hysteresis Behavior: Examining hysteresis behavior reveals the energy dissipation char-
acteristics of laminated safety glass [103].
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3.2.1.1. In�uence of Displacement Transducer

These tests were carried out at a velocity of 50 [mm/min] until failure of the specimen was
reached. Three tests with and without clamps attached were carried out. Failure was de�ned
as a drop in force of 80 percent compared to the maximum measured force. In contrast to
the other specimens tested within series A, the ones utilized for checking the in�uence of the
displacement transducer did not undergo particular conditioning. However, they were all stored
in the same climate for more than 24 hours.

3.2.1.2. Tests until Failure

The graphical representation in Fig. 3.1 provides a clear visualization of the applied strains
concerning time for the seven test series conducted until failure. Besides the standard scale,
a logarithmic scale is presented to enhance precision and clarity. The curves in Fig. 3.1 are
presented up to a strain level of 300 [%] for clarity and ease of representation. It is essential to
emphasize that no speci�c strain limit was de�ned within the test speci�cation. The procedure
was continued in each test until the specimen reached the point of failure. Failure was de�ned
as a drop in force of 80 percent compared to the maximum measured force. The legends in the
two graphs of Fig. 3.1 show the strain rates in [1/s] applied in the respective test series.

Figure 3.1.: Test Procedures: Tension until Failure

3.2.1.3. Cyclic Tests

Fig. 3.2 and 3.3 outline the speci�c protocols employed for the cyclic tests, depicted in standard
and logarithmic scales. The general procedure is to achieve a particular strain level by utilizing
a speci�c strain rate and then releasing the strain with the same strain rate until a lower
force limit is reached. The stress, particularly the di�erence between the loading and unloading
branches, is measured throughout the test. Three distinct strain rates (0.1 [1/s], 0.01 [1/s], 0.001
[1/s]) were explored. For each strain rate, the turning point of the hysteresis was consistently
set at a strain level of 150 [%]. For the middle strain rate of 0.01 [1/s], the strain levels 50,
100, and 200 [%] were additionally chosen as turning points of the hysteresis. All tests were
intentionally concluded when a force of 1 [N] was achieved. This limit ensured the specimens
remained consistently under tensile stress throughout the testing process, providing reliable
and controlled experiment conditions.
The legends in the two graphs of Fig. 3.2 show the strain rates in [1/s] applied in the

respective test series, and the legends in the two graphs of Fig. 3.3 show the strain levels in
[%] applied in the respective test series regarding relaxation.
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Figure 3.2.: Test Procedure: Cyclic Tests at di�erent Strain Rates

Figure 3.3.: Test Procedure: Cyclic Tests at the same Strain Rate

3.2.1.4. Relaxation Tests

Fig. 3.4 and 3.5 show the di�erent test speci�cations for the relaxation tests in standard and
logarithmic scales. The general procedure is to achieve a particular strain level by utilizing a
speci�c strain rate and holding the strain level for a respective amount of time. The stress,
particularly the decay in stress, is then measured throughout the whole test. They encompass
a total of six distinct procedures, with three di�erent strain rates (0.1 [1/s], 0.01 [1/s], 0.001
[1/s]) and four various strain levels (50 [%], 100 [%], 150 [%], 200 [%]). The middle strain rate
(0.01 [1/s]) is explored at all four strain levels, the high strain rate (0.1 [1/s]) at a level of 100
[%] and the low strain rate (0.001 [1/s]) at a level of 200 [%]. All tests are carried out for three
durations: one hour, three hours, and 12 hours. These durations were chosen to analyze the
stress relief in di�erent sections.
The legends in the two graphs of Fig. 3.4 show the strain rates in [1/s] applied in the

respective test series, and the legends in the two graphs of Fig. 3.5 show the strain levels in
[%] applied in the respective test series regarding relaxation. In both �gures, the triangle, the
circle, and the square indicate the duration of the particular relaxation process.
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Figure 3.4.: Test Procedure: Relaxation Tests at di�erent Strain Rates

Figure 3.5.: Test Procedure: Relaxation tests at the same Strain Rate

3.2.2. Test Series Two - Geometry Type B

Each sample was initially attached with the upper clamp before the machine approached its
starting position. After reaching a distance of 98 mm between the clamps, the lower part of the
specimen was �xed. By tightening the clamps, the samples buckled in the middle. A pre-force
of 5 N was applied at a speed of 50 [mm/min] (controlled via the crosshead) to straighten
the specimen. Subsequently, the extensometer clamps were attached and centered at 50 mm,
and the test started. The distance between the two clamps controlled the velocity during the
whole experiment. Temperature and relative humidity were constantly tracked by the use of
the temperature-humidity USB meter, Voltcraft DL-121TH (cf. Sec. 2.6.2).
The performed test is called the "staircase test" in the following, as its test procedure reminds

of a staircase. Usually, this test serves to evaluate the equilibrium response of polymeric
materials, mostly elastomers Bergström and Boyce [cf. 25]. With a displacement-controlled
constant strain rate of 0.01 [1/s], the specimen is loaded to a de�ned maximum value of 190
% technical strain and then unloaded until reaching a force of 5 N. Several holding steps are
de�ned on the loading and unloading paths during this cycle. Within these steps, the current
strain is held constant for 5 min. Fig. 3.6 shows the test procedure with all de�ned steps in
graphical and tabular form.
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B<xx> holding B<xx> holding

[%] time [s] [%] time [s]

5 300 100 300

10 300 125 300

15 300 150 300

25 300 175 300

50 300 190 300

75 300

Figure 3.6.: Test Procedure: Staircase Test

3.3. Test Results

The results of each procedure are presented below. This section shows only the mean value
of the single tests. The Appendix depicts a detailed representation of all the tests, including
mean value and standard deviation (cf. App. A). Some of the results of the tension tests until
failure, the cyclic, and the relaxation tests already have been published in Pauli and Siebert
[200].

3.3.1. Control Tests

Fig. 3.7 shows the result of the control tests carried out at a constant crosshead velocity of 50
[mm/min] with and without attaching the clamps of the displacement transducer. Both tests
were carried out three times. On the left side, the stress-strain course is shown, and on the right
side, the points of failure are presented. For each speci�cation, three repetitions were conducted
(cf. App. A.1). A look at Fig. 3.7 shows very clearly that the clamps of the extensometer do
not in�uence the behavior of the sample.

Figure 3.7.: Mean values for tests with and without clamps (left); points of failure (right)

3.3.2. Tension-Tests until Failure

Uniaxial tensile tests were carried out at seven di�erent strain rates (according to the test
speci�cation, shown in Fig. 3.1) to investigate the rate dependence of standard PVB. The
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results show that the observed material behavior can be divided into three sections. The �rst
section contains an initial sti�ness that increases with increasing strain rate. It follows a region
of low sti�ness, comparable to a �ow plateau, limited to a speci�c stress level. Above this
stress level, there is a sharp increase in sti�ness. However, due to the greater initial sti�ness of
the curves with the higher strain rate tests, the stress increase occurs at locations of di�erent
strains. However, the sharp sti�ness increase (3rd section) is almost parallel for all strain rates.
Fig. 3.8 shows the test results for seven di�erent strain rates [1/s] until the failure of the
specimen. For each speci�cation, a minimum of �ve repetitions were conducted (cf. App. A.2).

Figure 3.8.: Mean values for di�erent strain rates (left); points of failure (right)

Fig. 3.9 shows respective boxplots for the stresses and strains at failure, considering the
results for each strain rate separately and the sum of all results. The boxes limited by the 25th,
indicated by the bottom, and the 75th percentile, marked by the top, represent the interquartile
range of each sample. The horizontal line in between each box represents the median of the
sample. Two whiskers extend the boxes by 1.5 times the interquartile range upwards and
downwards. All values outside the range of the whiskers are indicated as outliers.
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Figure 3.9.: Box plots of stresses at failure (left); box plots of strains at failure (right)

Looking at the failure conditions of the test specimens in Fig. 3.8 (right), it is noticeable
that the elongation at fracture reduces with increasing strain rate. Still, the stress at fracture
stays almost constant. These observations are clearly con�rmed by the box plots.

3.3.2.1. Evaluation of Failure

Besides the material's intact state, the failure is to be evaluated. Knowing the probability
distribution of the test data is crucial to assess a particular failure criterion on a design level.
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For this purpose, the Kolmogorov Smirnov Test (KS-test) is utilized. It is a statistical test
to check whether a random variable follows a postulated distribution. If used as a two-sided
hypothesis test, the KS-test consists of the null hypothesis, stating that the random variable
follows a distinct distribution, and the alternative hypothesis, saying that it does not. The test
compares the cumulative density functions of the test data and the postulated distribution.
It returns the probability p of observing a test statistic as extreme as, or more extreme than,
the observed value under the null hypothesis. Small values of p cast doubt on the validity of
the null hypothesis. Based on a signi�cance level denoted by α, the test decides whether to
reject the null hypothesis. The test fails to reject the null hypothesis for p values above the
α-signi�cance level.
It is important to note that the data is evaluated together, not separately, for the particular

strain rate. For all evaluations, the data is categorized into 20 bins, each containing the values
of a speci�c interval.

Failure - 1stPK Stress A look at Fig 3.8, the stress at the failure level appears almost horizon-
tal with only a small scattering in the vertical direction. This observation seems promising for
the derivation of a failure criterion. In this respect, the categorized data is displayed utilizing a
cumulative and probability density representation to assess the stress values at failure further.
Various distributions are used to approximate the data. Fig. 3.10 illustrated the distribution
of the test results and the respective distribution functions to evaluate the sample distribution.
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Burr

Gamma

20 25 30 35
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Burr
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Figure 3.10.: Statistical evaluation of the stresses at failure

Visually, all distributions are able to approximate the data, although the Burr and the
Weibull distribution appear to be the most promising.
After visual evaluation of the data's distribution, the data is analyzed analytical using the

KS-test function implemented in Matlab. Parameter h indicates if the test rejects the null
hypothesis or not (reject h = 1), parameter p returns the probability of the data following the
respective distribution. Tab. 3.1 displays the results of the KS-test in columns one and two
and the �t parameters of the particular distribution function in columns three to �ve. The
analytical evaluation of the individual distributions con�rms the �ndings obtained from the
visual assessment. The test data could, at a signi�cance level of 5 [%], correspond to each
of the tested distributions, whereby it is most likely that the data follow the Weibull or Burr
distribution.
A Quantil-Quantil-Plot (QQ-plot) helps visually evaluate the respective distributions more

precisely as the inspection of the PDF and CDF plots. This plot displays the quantiles of the
sample data against the theoretical quantiles of a particular distribution. If the data distribution
follows a linear course, it is assumed to follow the respective theoretical distribution. Within
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Table 3.1.: Results for KS-test at a signi�cance level of 5 % and �t parameters for distribution
functions

Distribution h [-] p [%] p1 p2 p3

Normal 0 12.46 27.2761 1.7928

Lognormal 0 8.23

Weibull 0 52.62 28.0646 18.4657

Burr 0 47.32 31.0003 20.0227 8.0538

Gamma 0 9.36 229.1297 0.1190

the plot (compare Fig. 3.11), the data points are displayed by a plus sign marker('+'), and
the theoretical distribution by a straight line, consisting of two parts. The �rst part, depicted
as a solid line, connects the �rst and third quartiles of the data. The second part, represented
by a dashed reference line, displays the data outside the interval limited by the �rst and third
quartiles.
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Figure 3.11.: QQ-plots of the stresses at failure

Again, the evaluation of the QQ-plot con�rms the conclusions drawn from the �rst visual
inspection and the analytical assessment.

Failure - Biot Strain The problem with choosing the 1stPK stress as a failure criterion is that
the stress increase concerning strain increase is not considered. As the Biot strain incorporated
the actual length of the stressed body, this problem does not appear. Again, to evaluate
the strains at failure, the data's cumulative and probability density representation is plotted
together with the same contribution functions used for evaluating the stresses.
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Figure 3.12.: Statistical evaluation of the strains at failure

The �rst visual inspection of Fig. 3.12, as well as the analytical evaluation, represented in
Tab. 3.2, reveal that, except the Weibull distribution, all distributions might represent the test
data. However, the Burr distribution appears to be by far the most promising. It is interesting
to note that all distributions that assume the null hypothesis are at the same level, except
the Burr distribution, which has a strikingly higher value. The conclusion drawn from Fig.
3.12 and Tab. 3.2 are con�rmed by Fig. 3.13, representing the QQ-plots of the considered
distribution functions concerning the failure strains.

Table 3.2.: Results for KS-test at a signi�cance level of 5 % and �t parameters for distribution
functions

Distribution h [-] p [%] p1 p2 p3

Normal 0 10.38 2.3724 0.1931

Lognormal 0 17.06 0.8608 0.0787

Weibull 1 4.27 2.4662 11.3642

Burr 0 97.45 2.2143 46.6722 0.2889

Gamma 0 14.52 161.7556 0.0147
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Figure 3.13.: QQ-plots of the strains at failure

Failure - Cauchy Stress Choosing the Cauchy stress for the failure criterion appears to com-
bine the advantages of the 1stPK stress and the Biot strain, as it is stress-based and considers
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the actual length of the stressed body. Fig. 3.14 and Tab. 3.3 show that all distribution
functions can represent the test data. Interestingly, all distributions display a high probability
except for the Weibull distribution. The QQ-plot (Fig. 3.15) underlines the considerations
drawn from the �rst visual inspection and the analytcal evaluation of the test data.
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Figure 3.14.: Statistical evaluation of the Cauchy stresses at failure

Table 3.3.: Results for KS-test at a signi�cance level of 5 % and �t parameters for distribution
functions

Distribution h [-] p [%] p1 p2 p3

Normal 0 47.17 92.0727 9.0528

Lognormal 0 61.90 4.5179 0.0974

Weibull 0 14.13 96.2429 10.4475

Burr 0 88.79 90.0523 19.4287 0.8264

Gamma 0 59.45 107.3603 0.8576
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Figure 3.15.: QQ-plots of the Cauchy stresses at failure

3.3.2.2. Comparison with Results from Literature

This section compares the test results with various results from the literature to categorize
their quality. However, the comparison is made without judgment, as this will only be made
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in the discussion. Fig.'s 3.16, 3.17, and 3.18 show a selection of the tensile test results up to
failure from the previous section and test results from the literature. The results from the
literature are then described in detail. All considered curves are presented concerning First
Piola Kirchho� or Cauchy stresses and Biot strains to create an equal basis for comparison.
Material incompressibility was assumed to simplify this conversion.
Bennison et al. [22] investigated various interlayers within the context of laminated glass for

blast mitigation. To this end, uniaxial tension tests were conducted on Polyvinyl Butyral and
SentryGlas®, employing a servo-hydraulic test machine. The PVB utilized in the study was of
the Butacide®, con�gured in a dog-bone geometry. Digital recording of specimen deformation
was performed concurrently with synchronized documentation of the applied load. Strain rates
examined encompassed 0.07, 0.7, 8, and 80 [1/s]. However, pertinent details regarding the
control of test velocity and climatic conditions during testing remain undisclosed. Fig. 3.16
(right) shows the test results for the strain rates 0.07 and 0.7.
Hooper et al. [134] examined the mechanical behavior of PVB across varying strain mag-

nitudes and rates. Type 2 specimens, as delineated in BS ISO 37:2005 [36], were cut from a
sheet of PVB (Solutia product number RB-41). Uniaxial tensile tests were executed using the
Instron "VHS" high strain-rate test machine. They explored strain rates ranging from 0.2 to
400 [1/s] without further information on the control of the test velocity. Force measurements
were obtained through a piezoelectric load cell (Model 222B manufactured by PCB Piezotron-
ics Inc). At the same time, deformation tracking employed an optical measurement system
evaluated by the OpenCV computer vision library. The ambient room temperature for testing
was 25 ± 3 [◦C], although information regarding humidity levels is unavailable. The test result
for a strain rate of 0.2 [1/s] is illustrated in Fig. 3.16 (right).
Xu et al. [270] investigated the temperature and strain rate-dependent response of Polyvinyl

Butyral (PVB) under uniaxial tension. Dumbbell-shaped specimens with a thickness of 1.52
[mm], conforming to the speci�cations outlined in DIN 53504:2017-03 [71], were subjected to
testing at various strain rates: 1, 0.1, 0.01, 0.001 [1/s], corresponding to testing velocities of
1.56, 15.6, 156, and 1560 [mm/min]. Di�erent temperatures (-10, 0, 10, 23, 40, 55, 70 [◦C]
ASTM D1349-99:2005 [12]) were explored, with a speci�c emphasis on a temperature of 23 [◦C]
for this thesis. The humidity was not controlled and, therefore, varied from 20 to 30 [%rH]. The
hydraulic testing machine "INSTRON 8872" was employed for the experiments, along with a
temperature controller and a CCD (Charged-coupled Device) camera for data acquisition. The
PVB used was not further speci�ed.

Figure 3.16.: "B" = Bennison: 0.07, 0.7 [1/s]; "H" = Hooper: 0.2 [1/s]; "D" = Del Linz: 0.01,
0.02, 0.1, 0.2 [1/s]; "X" = Xu: 0.001, 0.01, 0.1, 1 [1/s]; "P" = Pauli: 0.001,
0.01, 0.1 [1/s]
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Del Linz et al. [64] investigated the material response of the PVB Sa�ex®RB41 in Blast
Loading Situations. They utilized dogbone specimens according to BS ISO 37:2005 [36] with
a thickness of 1.52 mm manufactured using a cutting die. They used a single column 1 kN
Zwick tensile testing machine to apply strain rates of 0.01 [1/s], 0.02 [1/s], 0.1 [1/s], 0.2 [1/s]
at a temperature of 20 [◦C]. The inbuilt force sensor measured the force during the test; the
displacement was tracked optically similarly to that used by Hooper et al. [134].
Iwasaki and Sato [140] explored the interface fracture toughness of Polyvinyl Butyral (PVB)/glass

under high strain rates using high and low-speed tensile tests. The 0.76 mm thick sheet of S-
LECTM interlayer �lm from Sekisui Chemical Co. Ltd. was cut into the dogbone con�guration
(JIS 2), following the guidelines stipulated in JIS K 7113:1995 [145]. Additionally, the PVB
�lms underwent conditioning at 130 [◦C] for one hour within a vacuum bag. They conducted
the uniaxial tension tests utilizing the "LSC-05/300" test apparatus. They measured the de-
formations using the optical extensometer "SS-220D," both manufactured by Tokyo Testing
Machine Inc. Strain rates examined encompassed 0.0067, 0.033, 0.067, 0.13, and 0.2, corre-
sponding to testing velocities of 10, 50, 100, 200, and 300 mm/min, respectively. However,
there is no information regarding the control of test velocity and the climatic conditions during
testing. Fig. 3.16 (left) shows the test results for the strain rates 0.0067, 0.067, and 0.2 [1/s].
Liu et al. [172] conducted an experimental study on the mechanical behavior of PVB under

various loading conditions. They used a Zwick Roell Z5 testing machine with a 5kN KPA-Z load
cell, engineered by A.S.T. GmbH Dresden to track the force and an optical measurement system
consisting of a cold light illuminator and a CCD (Charge-coupled Device) camera to track the
displacement. They utilized dumbbell-shaped specimens JIS K 7113:1995 [145] with a thickness
of 0.76 and investigated testing velocities of 10, 50, 100, and 200 mm/min corresponding to the
strain rates 0.004, 0.02, 0.04, 0.08 [1/s].
Kuntsche [165] conducted a series of uniaxial tension tests at various displacement velocities

(5, 50, 200, 6000, 60000, 210000 [mm/min]) on specimens of PVB BG sheets manufactured by
kuraray europe gmbh, cut in the geometry proposed by Becker [18] (cf. specimen Typ A). He
executed the tests under controlled conditions with a temperature maintained at 22-23 [◦C] and
a relative humidity of 30-50 [%rH]. Notably, the specimens were conditioned in a climatic box
until just before the commencement of the test. In this study, the universal testing machine
utilized was the "Zwick Z050 THW," equipped with the Load cell "Zwick Roell Xforce K 50
kN" and pneumatic wedge clamping jaws "TH175" from "Grip Engineering." Displacement
measurement was facilitated by the video extensometer "uEye UI-2280SE." Dynamic tensile
tests were conducted at Fraunhofer LBF using the high-speed testing machine Zwick Amsler
HTM 5020, employing manual wedge clamping jaws as the clamping tool. Video extensometry
during dynamic tests involved a black and white high-speed camera operating at 10000 fps with
a resolution of 260 Ö 1060 pixels.
Knight et al. [152] explored the mechanical behavior of laminated glass polymer interlayer

subjected to environmental e�ects. They conducted experiments on 0.76 mm thick Sa�ex/S-
tandard Clear Type IV specimens of ASTM D638-10:2010 [13]. They utilized a temperature
control chamber to adjust the test temperature and maintain isothermal conditions during
mechanical testing. The quasi-static tensile testing was conducted using an electromechanical
static testing frame with load cells and a Linear Variable Di�erential Transformer (LVDT).
They tracked the deformation during the tests using a high-resolution camera. Within this
thesis, only the tests at room temperature without environmental in�uences at a testing speed
of 2 [in/s], with an initial strain rate of 0.333 [1/s] and a �nal strain rate of 0.09 [1/s], are
further considered.
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Figure 3.17.: "Ku" = Kuntsche: 5, 50, 200 [mm/min]; "I" = Iwasaki: 10, 50, 100, 200
[mm/min]; "Kn" = Knight: 50 [mm/min]; "L" = Liu: 10, 50, 100, 200
[mm/min]; "P" = Pauli: 0.001, 0.01, 0.1 [1/s]

Centelles et al. [43] investigated the mechanical properties of laminated glass interlayers
subjected to aging utilizing tensile tests on cured and virgin specimens. In addition to other
interlayers, they investigated BG-R 20, corresponding to the B200NR used in this work. The
specimens were extracted from an interlayer sheet utilizing a cutting die with the shape ac-
cording to ASTM D638-10:2010 [13]. They used a Zwick Roell tensile testing machine to apply
displacement rates of 10, 50, and 100 [mm/min] at a temperature of 24 [◦C].

Figure 3.18.: "C" = Centelles: 10, 50, 100 [mm/min]; "P" = Pauli: 0.001, 0.01, 0.1 [1/s]

3.3.3. Cyclic-Tests

The cyclic tests involved loading at three di�erent, constant strain rates up to a particular
strain and subsequent unloading at the same strain rate. However, the unloading was limited
to a residual force of 1 [N] to ensure that the specimen was constantly under tension and no
stability problems arose. Besides the strain rates, the strain levels, which signal the end of
loading and the beginning of unloading, were varied. For the strain rate 0.01 [1/s], the strain
levels 50, 100, 150, and 200 [%] were investigated, and for the strain rates 0.1 and 0.001 [1/s],
the level 150 [%] (cf. Fig. 3.2.1.3). Fig. 3.19 presents the mean values from at least three
specimens for each test according to the respective speci�cation.
Combined with the �ndings from the fracture tests, which showed a greater sti�ness for

higher strain rates and an increase in sti�ness for higher strains, this observation leads to the
logical conclusion that the hystereses are open further for higher strain rates and at higher
strain levels. Since the area of a hysteresis represents the energy dissipated by the material,
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this �nding suggests that the material dissipates increasingly more energy under loads with
increasing strain rates and up to higher strain levels. In addition to that, it could be observed
that a residual deformation within the sample remained after the test was completed. This
deformation was restored almost completely within approximately one hour after releasing the
specimen, intending that there was no plastic deformation. This observation was also made by
Kuntsche [165] and Schuster [231].
Fig. 3.19 shows the mean values of the test results for the strain rate 0.01 [1/s] loaded to

the strain levels 50, 100, 150, and 200 [%], as well as the strain rates 0.1 [1/s] and 0.001 [1/s]
loaded to a strain level of 150 [%].

Figure 3.19.: Mean values for di�erent strain levels (left) and di�erent strain rates (right)

3.3.3.1. Comparison with Results from Literature

Elzière [103] conducted cyclic tests with controlled displacement speed at varying temperatures
(10, 20, 30, 50, 70 [◦C]) and strain rates (0.001, 0.01, 0.1, 1 [1/s]) on PVB. He did not provide
speci�c details regarding the type and manufacturer of the PVB employed in the study. To
align the outcomes of this thesis with Elzière [103]'s �ndings, only the temperature of 20 [◦C] is
considered. The experimental apparatus comprised a Zwick "Hamsler HC25" hydraulic machine
equipped with a 1 kN load cell and an "Instron 5565" with a 100 N load cell for tests with a
highly soft material response. A closed cabinet and the Eurother Automation thermoregulator
(model 2216L) maintained the temperature regulation during testing. Notably, humidity levels
were neither regulated nor monitored, with an assumed range of 20 to 50 [%rH]. Deformation
of the specimen and the clamp displacement were measured utilizing a video extensometer
featuring the Baumer BM20 camera.
No permanent deformation was observed after the test, even for low temperatures and high

strain rates. Fig. 3.20 compares the test results presented by Elzière [103] for the strain rates
0.001, 0.01, and 0.1 at a respective strain level of 200 [%] with the tests at the strain rates 0.001
and 0.1 [1/s] to a strain level of 150 [%] and the strain rate of 0.01 [1/s] to a level of 200 [%]
conducted within this thesis.
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Figure 3.20.: "E" = Elziere: 0.001, 0.01, 0.1 [1/s]; "P" = Pauli: 0.001, 0.01, 0.1 [1/s]

3.3.4. Relaxation-Tests

By loading the specimens at a constant strain rate up to a particular strain level and keeping
the strain constant at this level for speci�c times, the relaxation tests aim to investigate the
material behavior at a constant strain level concerning time. These tests aimed to measure
the decrease in sti�ness as a function of time. For this purpose, three speci�c intervals were
selected, and the behavior of the stress as a function of time was investigated. The �rst interval
extends from the beginning of the holding phase up to one hour, the second describes the
behavior between one and three hours, and the third includes the behavior from three hours to
a duration of 12 hours.
According to the speci�cations, three di�erent strain rates and four various strain levels were

investigated (cf. Fig. 3.4 and Fig. 3.5). The same qualitative behavior, consisting of a steep
sti�ness loss at the beginning and an almost horizontal course at later times, could be observed
for all con�gurations. The qualitative behavior can be di�erentiated according to the three-
time intervals. The �rst interval represents the most loss in sti�ness, followed by the second
interval, which can be seen as a transition between the �rst and the last section, and the last
interval with a nearly horizontal curve. However, higher initial strain levels appear to cause
a steeper course and a greater inclination at later times. This behavior becomes especially
apparent when looking at the logarithmic representation of the test results. In general, all test
results look qualitatively similar.
Concerning the number of specimens per test set, the following must be noted: Of course,

every test that lasts 12 hours also includes the tests that last one or three hours. However, this
does not apply the other way around. For this reason, there are more test repetitions for the
shorter durations and, consequently, di�erent mean values. For tests with a one-hour duration,
at least �ve repetitions were conducted; for the tests with a three-hour duration, at least three
tests were conducted; for the tests with 12 hours duration, at least two tests were conducted
(cf. A. A.4).
Similar to the cyclic tests, a residual deformation was left in the specimens after removing

them from the test apparatus. Again, this deformation was restored almost completely within
approximately one hour after releasing the specimen [165, 231].
Fig. 3.21 shows the test results for a strain rate of 0.01 [1/s] at the four di�erent strain

levels 50, 100, 150 and 200 [%], presented in standard and logarithmic representation. Fig.
3.22 shows the test results for strain rates of 0.001, 0.01, 0.1 [1/s] at a strain level of 150 [%],
presented in standard and logarithmic representation.
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Figure 3.21.: Mean values of di�erent strain levels in standard (left) and logarithmic repre-
sentation (right)

Figure 3.22.: Mean values of di�erent strain rates in standard (left) and logarithmic repre-
sentation (right)

3.3.4.1. Comparison with Results from Literature

Schuster [231] conducted relaxation tests on various laminated glass interlayers utilizing the
specimen geometry recommended by Becker [18]. However, for this discussion, only the results
of the Sa�ex RB41 interlayer, comparable to the B200 NR explored within this thesis, are
considered. Before testing, all specimens underwent conditioning at 100 [◦C] for one hour and
subsequently storage at the respective testing climate for a minimum of 12 [h]. The experimental
setup featured a Zwick Roell Z050 universal testing machine with a load cell integrated into
the Zwick (50 kN, 0.2% relative uncertainty, class 0.5 according to DIN EN ISO 7500-1:2018-
06 [94]). Deformation measurements were recorded using the Vic-Gauge-2D camera system
from Isi-sys GmbH. The tests were conducted within a climatic chamber to ensure precise
control over temperature and humidity. The considered testing conditions were 20 [◦C] and 50
[%rH]. The specimens were clamped using hydraulic jaws and subjected to a tensile force at a
displacement rate of 400 [mm/min] up to 50, 100, and 125 [mm] deformations. Subsequently,
these displacement levels were held constant for 1-2 [h].
Elzière [103] conducted a relaxation experiment at 20 [◦C] loaded at a strain rate of 1 [1/s] up

to a strain level of 50 [%] holding the applied strain for 1000 [s]. He utilized the test apparatus
described in Sec. 3.3.3.1.
Fig. 3.23 shows the comparison of the relaxation tests conducted in this thesis and the results

of Schuster [231] and Elzière [103]. As the longest duration of the tests from the literature was
two hours, the relaxation tests from this thesis are only presented for three hours. Furthermore,
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assuming incompressibility, the test results from this thesis are transformed to Cauchy stresses
to match the presented con�guration of the literature results.

Figure 3.23.: "S" = Schuster; "E" = Elziere; "P" = Pauli

3.3.4.2. Summary of Experiments

Fig. 3.24 shows the results of all cyclic and relaxation tests and the tests until failure at the
respective strain rate. Firstly, it is evident that the mean values of the individual tests match
each other excellently despite the �uctuations in humidity in the test container. Furthermore,
it is interesting that the stress drop over time, shown in the diagram as a vertical curve,
approximately spans the height of the associated hysteresis (cf. Fig. 3.24 (left)).

Figure 3.24.: Summary of all cyclic and relaxation tests and the tests until failure at the
corresponding strain rate

3.3.5. Staircase-Tests

Fig. 3.25 shows the mean values of 5 tests along for the measure 1stPiola Kirchho� stress over
the corresponding Biot strains (left), and the stresses over time (right). The test results and
the evaluation procedure already have been published in [199].
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Figure 3.25.: Results of Staircase-Test: Stress over Strain (left), Stress over Time (right)

3.3.5.1. Evaluation of the Staircase Test

The experiments were conducted at a temperature of 21.5±1 [◦C] and a relative humidity range
of 42.5±7.5 [%]. Notably, a noticeable buckling phenomenon manifested within the specimens
during the unloading phase, rendering the steps of strain decrease during the unloading cycle
unsuitable for validation purposes. Nonetheless, the relaxation characteristics observed during
the holding stages remained analyzable. Consequently, by considering both loading and un-
loading cycles, it became feasible to derive an equilibrium curve a theoretical state of material
equilibrium governed by elastic principles.
A closer look at Fig. 3.25 shows that the material behavior on the loading branch is di�erent

compared to the behavior on the unloading branch. The specimens relax during the holding
steps on the loading branch, and the stress decreases - however, the stress increases during the
holding steps on the unloading branch. The vertical lines in Fig. 3.25 (left) show the total
stress increase and decrease. Plotted over time (cf. Fig. 3.25 (right)), these vertical lines show
the course of the decaying and increasing curves. As the loading and unloading path steps are,
on purpose, at the same strain value, grouping each holding step at the same strain value in
pairs of two (one loading to one unloading part) is reasonable.

Figure 3.26.: Results of Staircase-Test: Stress over Strain (left), Stress over Time (right);
location marked for exemplary evaluation

The pair of related stress increases and decreases at strain step 100 [%] is considered isolated
to gather a better understanding (cf. Fig. 3.26). The corresponding stress values of the vertical
lines are plotted against the time axis. For a more straightforward presentation, the starting
point of both lines is chosen at a �ctitious time t = 0 [s] (cf. Fig. 3.27).
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Figure 3.27.: Curve-Fit of relaxation pair: double logarithmic scale (left); normal scale (right)

Considering a double logarithmic presentation (cf. Fig. 3.27 (left)), the curve on the loading
branch (upper curve) shows an almost linear course and the curve on the unloading branch
shows a nonlinear course in the beginning, but tends to a linear course at a later timestep.
According to the theory of viscoelasticity, the rate-dependent hysteresis gets smaller and

smaller if the strain rate gets lower until it ends up in a single curve. According to this theory,
the curves on the loading and unloading paths are supposed to meet at some point in time,
which is considered to lie on the equilibrium curve.
The loading and unloading curves are �tted to a polynomial function of the �rst order to

anticipate the courses for longer load durations and �nd the points on the equilibrium curve.
Since the behavior of the curve on the unloading branch shows only linear behavior at the end
of the holding cycle, the inclination at this point is used to extrapolate the course. Employing
the polynomial functions received by the �tting procedure, the intersection of the increasing
and decreasing stress curves is calculated (cf. Fig. 3.28 (left)). This procedure is repeated
for all pairs of increasing and decreasing stress curves, leading to the representation of the
equilibrium curve. Fig. 3.28 (right) shows the points on the equilibrium curve within the total
stress over strain curve.

Figure 3.28.: Intersection of exemplary point on logarithmic time scale (left), Plot of inter-
section points within initial stress strain curve (right)

Notably, only data pairs corresponding to strains equal to or greater than 75 [%] were sub-
jected to the outlined procedure. Values below this threshold were approximated as the mean
between the lowest stress value of the relaxation curve and zero stress because the test stopped
at a strain level of 75 [%] on the unloading path. Additionally, the data point at 190% strain
was excluded from evaluation due to erratic behavior observed in the unloading curve. Nev-
ertheless, the curve is extrapolated linearly to ensure a robust database for material model
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calibration (cf. Fig. 3.29 (left)). This extrapolation involves calculating the slope between the
last and penultimate intersection points, deriving additional stress points to a �nal strain of
300%. Subsequently, a fourth-order polynomial function is �tted to the intersection points and
evaluated at evenly distributed linear points to serve as a comprehensive database for material
model calibration (cf. Fig. 3.29 (right)).

Figure 3.29.: Extrapolation of Intersection Points (left), Poly-Fit within Mean of Measure-
ment (right)
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The phenomena observed in the presented experiments are now to be described with the help of
the mechanical equations and material models from Sec. 2.2 and analyzed using the numerical
methods presented in Sec. 4.3 are calculated. For this purpose, a three-dimensional, compress-
ible material model of �nite viscoelasticity, based on the framework presented in Sec. 2.2.7,
is formulated. The relations within the viscosity functions that represent the time-dependent
behavior are based on considerations of [171, 235, 225]. However, contrary to the micromechan-
ical formulation, which the models designed for thermoplastics, from chapter 1.2.4, are based
on, this model is phenomenologically motivated [169].
The model is reduced to the uniaxial state for the calibration and recalculation of the tests.

This procedure considerably speeds up the parameter identi�cation process and is common
practice in material modeling [235, 225]. In addition, the kinematic constraint of incompress-
ibility is applied, based on the observations of [165], who determined the Poisson's ratio at room
temperature to be nearly 0.5. This boundary condition replaces the volumetric potentials with
a Lagrange multiplier formulation. The implemented model is then validated using examples
from the literature and analytical solutions.
The required material parameters are calibrated using the test data, and the tests are recal-

culated based on the validated model. In addition, the model is validated on tests not included
in the parameter identi�cation process.
The model already has been presented in Pauli and Siebert [200].

4.1. Model Construction

The model's description is based on the rheological concept of a single Maxwell element, which
consists of a spring connected in series with a damper. A spring parallel to the Maxwell
element representing the material's in�nity sti�ness is not employed. This assumption di�ers
from the formulation of the generalized Maxwell model consisting of several Maxwell elements
parallel to a single spring, which was used in the literature for the description of PVB [165,
159, 30]. However, omitting the in�nity sti�ness goes along with the chemical properties of
thermoplastics, which do not show any residual sti�ness for processes of in�nite duration.
The general concept of the Maxwell element illustrates the functionality of linear viscoelastic-

ity and can be transferred to �nite viscoelasticity. However, caution is required when describing
the kinematics in the case of large deformations. The equations for both theories are listed be-
low to illustrate the parallels and di�erences between the linear and �nite theories and thus
demonstrate the transfer from small to large deformations. In both cases, the strain is the
control variable. Subsequently, the individual elements of the model formulation developed in
this thesis are derived individually and combined.
The kinematics for small deformations follow the linearized Green Lagrange strain tensor

e = 1
2
[H +HT ]. Following the rheological model (cf. Fig. 4.1), this is divided additively into

an elastic eel and inelastic part ein.
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eel ein

Figure 4.1.: Maxwell Element - small Deformations

The stress within the Maxwell element depends on the applied strain, which in turn depends
on time. Therefore, the description of the stress leads to a system consisting of the stress
equation and a di�erential equation that describes the time-dependent kinematics within the
Maxwell element. This di�erential equation is derived from the dissipation inequality and can
be solved analytically by integration in the case of small deformations.
Reducing the stress of the three parameter Maxwell model, represented in Eq. 2.71, to the

stress of a single Maxwell element following the same evolution equation (Eq. 2.69), leads to
implicit description of linear viscoelasticity:

σ = Eel(ε− εin) (4.1)

ε̇in =
1

η
Eel(ε− εin) (4.2)

The explicit formulation of the Maxwell element (Eq. 2.77) leads to the following stress expres-
sion

σ =

s=t∫
s=0

Eele
− t−s

τ
dε(s)

ds
ds, (4.3)

where the Kernel function ER(t − s) = Eele
− t−s

τ , presented in Eq. 2.78, corresponds to the
relaxation modulus which is utilized within the Prony series, commonly used to describe the
time-dependent behavior of PVB within the regime of small deformations.
Considering large deformations, however, linearizing the Green Lagrange strain tensor and,

therefore, a simple additive split is no longer possible. Following the general framework
presented in Sec. 2.2.7, the additive split of the deformation is now formulated on a �c-
tive intermediate con�guration between reference and current state. The strain tensor Γ̂ =
1
2

(
FT

elFel−F−T
in F−1

in

)
= Γ̂el+Γ̂in results in an elastic part of the Green type Γ̂el =

1
2

(
FT

elFel−1
)
,

and an inelastic part of the Almansi type Γ̂in = 1
2

(
1−F−T

in F−1
in

)
. The corresponding rheological

model is presented in Fig. 4.2.

Γ̂el Γ̂in

Figure 4.2.: Maxwell Element - large Deformations
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The formulation of the theory of �nite viscoelasticity results in the following system of equa-
tions consisting of the stress formulation (cf. Eq. 2.123) and the evolution equation (cf. Eq.
2.124):

TM = 2Ĵ
−2/3
el

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂I ˆ̄Cel

[
C−1

in − 1

3

(
CM : C−1

in

)
C−1

M

]
+
[∂Ψ̂ov

vol(Ĵel)

∂Ĵel
Ĵel

]
C−1

M (4.4)

Ċin =
4

ηD
Ĵ
−2/3
el

∂Ψ̂ov
iso(I ˆ̄Cel

)

∂I ˆ̄Cel

[
CM − 1

3

(
CM : C−1

in

)
Cin

]
+

2

ηV

[∂Ψ̂ov
vol(Ĵel)

∂Ĵel
Ĵel

]
Cin (4.5)

Following the rheological considerations of the generalized Maxwell model, which contains a
series of single Maxwell elements, leads to the total stress equal to the sum of particular stress
portions, each following a respective evolution equation. Transferring a single Maxwell element
to a series of Maxwell elements applies to small deformations in the same way as for large
deformations. Concerning �nite viscoelasticity, the following system of equations arises:

TM =
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Within this system of equations, the formulation of the potentials and the viscosities is variable.
Furthermore, the number of elements within the sum is freely selectable.
The following selection of the hyperelastic potential functions is based on the possibilities

presented in Sec. 2.2.1, and together with the viscosity formulation and the number of elements,
aims that the model describes the characteristic observations made during the experiments in
the best possible way. Furthermore, the model follows the concept established by Bergström
and Boyce [25], Boyce et al. [33, 34], and the selected potentials and viscosity function are
categorized into a multi-network consisting of three single networks, A, B, and C, each corre-
sponding to characteristics on a molecular level. However, in this case, the characteristic of
each network is based on phenomenological considerations rather than micromechanics.
The main �ndings from the experimental investigations can be categorized according to

the strain rate tensor, the driving quantity, and the corresponding testing procedures. The
investigation of the strain-rate-dependent behavior revealed a rate-dependent initial sti�ness,
followed by a decrease in sti�ness in the regime of moderate deformations and a considerable
hardening concerning large strains. The cyclic experiments exposed a decisive di�erence in
sti�ness for loading and unloading, with unloading showing a much softer material response.
The relaxation processes revealed a sharp drop in sti�ness within the �rst seconds after reaching
the holding strain level. This drop was followed by a transition region concerning moderate
durations and a continuous but weak decline in sti�ness for long durations. However, the
inclination within the regime of long durations strongly depends on the strain level approached
in the relaxation process.
With the Neo Hookean and the Yeoh potential, two functions based on the �rst invariant

of the Cauchy Green tensor are selected, a reasonable assumption concerning the experiments
conducted in the uniaxial stress state. The Yeoh potential, following a polynomial description of
higher order compared to the Neo Hooken model, shows higher accuracy, with the disadvantage
of a more complex formulation. However, in general, both potentials show similar computation
time and convergence performance.
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The viscosity functions within the model are characterized by shear modulus and relaxation
time, enriched by particular tensor functions based on internal mechanisms (cf. [169, 214, 236]).
Individual relaxation times are generally classi�ed into several decades to ensure a smooth
progression across a broad time scale. They are characterized by di�erent relaxation times
and incorporate internal mechanisms. There are several mechanisms that all elements have in
common. However, some are individually engineered for selected elements only. The common
features are introduced brie�y in the following section. The individual components will be
picked up at their respective locations in the description of the single elements.
The �rst scalar-valued tensor function (cf. Eq. 4.6) that is applied to all three networks

ampli�es the viscosity as strains intensify gradually. This approach enhances viscosity in the
regime of increasing strains and was also used by Sedlan and Haupt [236] and Lion [171].

f(||CM ||) = µ
( ||CM ||√

3

)χ
(4.6)

Fig. 4.3 shows an example for Eq. 4.6 for values of CM = [1.7321 : 9.0123], values for
χ = [0.1; 1; 2; 5; 10], and µ = 10. The graph emphasizes the in�uence of the tensor function on
the shear modulus µ with respect to the stretch λ, considering incompressible material behavior
and an uniaxial stress state.

Figure 4.3.: Examplary calculation for the �rst viscosity element

A further key element is the utilization of a signum function, dependent on the Frobenius
scalar product DM : CM of the deformation rate tensor DM and the right Cauchy Green tensor
CM . This scalar-valued tensor function enables a di�erent material response for loading and
unloading behaviors. This procedural concept is a crucial element for capturing the observed
hystereses and was recommended by Bergström [23].

f(CM ,DM) = τ
1

2

(
1 + sign(DM : CM)

)
(4.7)

Fig. 4.4 presents an exemplary calculation for Eq. 4.7 considering values for (DM : CM) = [1]
for t = [0 : 100] and (DM : CM) = [−1] for t = [101 : 200] to illustrate the behavior of
the signums function regarding the relaxation time. The una�ected relaxation time τ equals
constantly 100 [s] while the tensor function forces the relaxatio time to take the value zero for
processes with negative values of the trace of the strain rate tensor.
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Figure 4.4.: Examplary calculation for the second viscosity element

The last key element that is shared by all networks is a scalar-valued tensor function that
utilized a formulation based on an exponential function. It depends on the Frobenius norm
of the deformation rate tensor DM and captures the rate dependency on the unloading paths.
This element was also used by Sche�er et al. [226].

f(||DM ||) = τ + exp
(
ζ||DM ||

)
ξ (4.8)

Fig. 4.5 shows the impact of the third tensor function on the relaxtion time, utilizing parameter
values ξ = [1, 5, 10, 20, 50] considering ||(D)|| = [1].

Figure 4.5.: Examplary calculation for the third viscosity element

These features are designed for one particular temperature and are only valid for this temper-
ature. However, although it is not utilized within this work, the structure to consider di�erent
temperatures is already introduced by incorporating a temperature-dependent viscosity pa-
rameter denoted as η0, as outlined in the works of Lion [171], Heimes [127]. This parameter is
implemented in every network and plays a crucial role in capturing the impact of temperature
variations on the material's behavior. However, it is essential to notice that these considerations
hold for various isothermal temperature processes without considering entropy.
As described in the last paragraphs, the model structure and the respective features serve

as the fundamental framework for each network (cf. Eq. 4.4 and Eq. 4.4). However, in
certain instances, this structure is subject to modi�cations. Consequently, the following sections
provide individual and detailed descriptions of each network.
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Network A Network B Network C

Figure 4.6.: Rheological elements of the Network Model

Network A mainly describes the initial, time-dependent sti�ness and the material softening
in the region of moderate deformations. Its elastic response follows the Neo-Hookean potential,
and besides the mechanisms described in the last paragraph, each viscosity function is enriched
by a scalar-valued tensor function, which aligns with the approach proposed by [169] to facilitate
the rapid decay of initial sti�ness within the region of moderate deformations. It dependes on
the 2ndPK stress tensor and results in:

f(||TM ||) = τexp
(
−||TM ||

s0

)
(4.9)

It employs an exponential function coupled with a stress threshold that, when surpassed, de-
creases viscosity, resulting in a reduced initial sti�ness. To illustrate the functionality of the
tensor function, described in Eq. 4.9, an example is depicted in Fig. 4.7. It shows the course
of a relaxation time τ with respect to a stress tensor of ||TM || = [0 : 50] and values for
s0 = [1; 5; 10; 20; 50].

Figure 4.7.: Examplary calculation for the fourth viscosity element

Network A: Ψ̂(k)
iso, Ψ̂

(k)
vol, η

(k)
D , η(k)V

Figure 4.8.: Rheological elements of Network A
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The potential and viscosity function of network A apply for �rst �ve (k=1 to 5) Maxwell
element of the model (cf. 4.6) and are presented below.

Ψ̂
(k)
iso =

µ(k)

2
(I ˆ̄C(k)

el
− 3)

Ψ̂
(k)
vol =

κ(k)

2
(Ĵ

(k)
el − 1)2

η
(k)
D = η

(k)
0 µ(k)

( ||CM ||√
3

)χ(k)[1
2
τ (k)exp

(
−||TM ||

s
(k)
0

)(
1 + sign(DM : CM)

)
+ exp

(
ζ(k)||DM ||

)
ξ(k)
]

η
(k)
V = η

(k)
D

κ(k)

µ(k)

Network B is supposed to describe the material behavior over long durations, which is why
the larger relaxation times are assigned to it. Moreover, the viscosity function only contains
the essential elements (tensorfunction 1 - 3) described in the introduction of the general model
structure. The Neo-Hookean potential covers the elastic response.

Network B: Ψ̂(l)
iso, Ψ̂

(l)
vol, η

(l)
D , η(l)V

Figure 4.9.: Rheological elements of Network B

The potential and viscosity function of network B apply the Maxwell elements six to nine
(l=1 to 4) of the model (cf. 4.6) and are presented below.

Ψ̂
(l)
iso =

µ(l)

2
(I ˆ̄C(l)

el
− 3)

Ψ̂
(l)
vol =

κ(l)

2
(Ĵ

(l)
el − 1)2

η
(l)
D = η

(l)
0 µ(l)

( ||CM ||√
3

)χ(l)[1
2
τ (l) ·

(
1 + sign(DM : CM)

)
+ exp

(
ζ(l)||DM ||

)
ξ(l)
]

η
(l)
V = η

(l)
D

κ(l)

µ(l)

Network C adopts a modi�ed Yeoh potential, with coe�cients C10 and C20 set to zero [226].
This modi�cation is utilized to reduce the in�uence of network C on the material response
in the area of small and moderate deformations to a minimum. A further essential addition
to Network C is the enrichment of the viscosity function by a further scalar-valued tensor
function depending on DM . This function is designed to signi�cantly reduce the viscosity
during relaxation processes.

f(||DM ||) = τ
∣∣∣1− exp(||DM ||)

∣∣∣ (4.10)
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The mechanism of Eq. 4.10 ensures that the stress response of Network C is not overestimated,
even though a considerable large relaxation time is assigned to it. Fig. 4.10 illustrates the
impact of the tensor functino on the relaxation time, considering ||D|| = [1] for the time
t = [0 : 100], and ||D|| = [0] for the time t = [101 : 200].

Figure 4.10.: Examplary calculation for the �fth viscosity element

Network C: Ψ̂(m)
iso , Ψ̂

(m)
vol , η

(m)
D , η(m)

V

Figure 4.11.: Network C

The potential and viscosity function of network C apply to the 10th Maxwell element (m=1)
of the model (cf. 4.6) and are presented below.

Ψ̂
(m)
iso = C

(m)
30 (I ˆ̄C(m)

el
− 3)3

Ψ̂
(m)
vol =

κ(m)

2
(Ĵ

(m)
el − 1)2

η
(m)
D = η

(m)
0 µ(m)

( ||CM ||√
3

)χ(m)[1
2
τ (m) ·

(
1 + sign(DM : CM)

)
·
∣∣∣1− γ(m)exp(||DM ||)

∣∣∣+
+ exp

(
ζ(m)||DM ||

)
ξ(m)

]
η
(m)
V = η

(m)
D

κ(m)

µ(m)

In summary, with its diverse potential functions and carefully engineered viscosity mecha-
nisms, this multi-network model presents a robust and adaptable framework for describing the
time- and temperature-dependent material behavior of PVB at large strains.
Finally, the complete model consists of the sum of single stress elements and their respective

evolution equations according to the single networks: Network A consists of 5 elements, network
B consists of 4 elements, and Network C consists of 1 element.
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TM =
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k=1
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(Ĵ

(k)
el − 1)Ĵ
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The evolution equations of the individual networks determined by the corresponding viscosity
functions are presented below for each network (considering µ(m) = 2C

(m)
30 ).
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(l)
el

]
C

(l)
in

η
(l)
0

(
||CM ||√

3

)χ(l)[
1
2
τ (l) ·

(
1 + sign(DM : CM)

)
+ exp

(
ζ(l)||DM ||

)
ξ(l)
]

Ċ
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In order to implement the material model in an FE code, it is useful to bear in mind the primary
considerations of the �nite element method, which is based on the principle of virtual work.
There are several ways to approach the virtual work formulation. However, in the following,
the derivation based on the potential energy is depicted brie�y. The following derivation is
extracted from Bonet and Wood [29], de Borst et al. [63]. The total potential energy at the
stationary point ϕ reads

Π(ϕ) =

∫
V

Ψ(C)dV −
∫
V

b̃R · ϕdV −
∫
∂V

t̃R · ϕdA, (4.11)

and the derivative of Eq. 4.11 in the arbitrary direction δv (subsequently assumed to be a
virtual velocity) results in the expression of the virtual work

DΠ(ϕ)[δv] =

∫
V

T : DE[δv]dV −
∫
V

b̃R · δvdV −
∫
A

t̃R · δvdA = 0, (4.12)
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which can be split into an internal and external part

DΠ(ϕ)[δv] = δW (ϕ, δv) = δWint(ϕ, δv) +Wext(ϕ, δv) (4.13)

In order to solve the problem of virtual work numerically using the Newton-Raphson Method, a
linearization Eq. 4.13 is required. This linearization equals the derivative of the virtual work at
the stationary point ϕ in the direction of the incremental change u. After some reformulations,
the linearized internal work in Lagrangian representation results in

DδWint(ϕ, δv)[u] =

∫
V

DE[δv] : C : DE[u]dV +

∫
V

T : [(∇Ru)
T∇Rδv]dV. (4.14)

Furthermore, assuming the body force b̃ to be the gravity loading ρg̃, and the traction force t̃
to be the uniform normal pressure p, the linearization of the external work yields

DδWext(ϕ, δv)[u] =

∫
V

ρRg̃ · δvdV + F−T
[∫
a

pn · δvda
]
F−1. (4.15)

The linearization of the internal work leads to the sti�ness matrix of the material

C = Cov
iso + Cov

vol, (4.16)

containing

Cov
iso = 2

∂Tov
iso(C,Cin)

∂C
= 2

∂Tov
iso

∂Cin

:
∂Cin

∂C
+ 2

Tov
iso

∂C
, (4.17)

and

Cov
vol = 2

∂Tov
vol(C,Cin)

∂C
= 2

∂Tov
vol

∂Cin

:
∂Cin

∂C
+ 2

Tov
vol

∂C
. (4.18)

The principles presented above represent the fundamental equations of the �nite element
method to give the reader an understanding of the point at which the material model pre-
sented starts. In order to implement this model in a commercial FE code (Ansys, Abaqus)
using a user-de�ned material subroutine (UMat), the tangent operators must be written down
and implemented. This operation is not be explained further. Instead, this work aims to pro-
vide a material model and the corresponding material parameters for PVB considering large
deformations concerning time. For this purpose, only the evolution equation has to be linearized
to describe the inelastic strain's incremental development. Under the simpli�ed assumption of
incompressibility, this operation is carried out in the following sections for the uniaxial stress
state to create the basic framework for parameter identi�cation.

4.2. Uniaxial Reduction and Numerical Implementation

For further investigations and parameter identi�cation, the model is signi�cantly simpli�ed by
assuming incompressible material behavior and reducing it to the uniaxial stress state. Based
on these simpli�cations, the model structure is �nally implemented numerically. Additionally
only one temperature is considered and, therefore, CM and DM are equal to C and D.
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4.2.1. Incompressibility Constraint

So far, the model follows a compressible formulation, resulting in a strict separation into iso-
choric and volumetric parts. However, as investigated by [165] and [231] the Poisson's ratio
of PVB is close to 0.5, and therefore, the assumption of incompressible material behavior is
reasonable. Considering the incompressibility constraint prohibits changes in the volume of
the material. Consequently, the determinant of the deformation gradient J must equal one.
This assumption also holds for the elastic and the inelastic part of the deformation gradient
(J = Jel = Jin = 1). Considering J = 1, the separation of the deformation gradient into
volumetric and isochoric parts as presented in Eq. 2.17 becomes obsolete (C = C̄), and in
consequence, the derivative of the isochoric energy potential (compare Eq. 2.112) simpli�es
considerably:

Tiso = 2
∂Ψiso(IC)

∂C
= 2

∂Ψiso(IC)

∂IC

∂IC
∂C

:
∂C

∂C
= 2

∂Ψiso(IC)

∂IC
(4.19)

However, it is essential to note that the equilibrium requirements must still be satis�ed. A
common approach is replacing the hydrostatic stress derived from the volumetric part of the
energy potential Ψvol by the Lagrange multiplier p. Following the Total Lagrange formulation,
p, de�ned on the current con�guration, is pulled back to the reference con�guration (cf. Eq.
2.4).

Tvol = pC−1 (4.20)

The sum of the isochoric and the volumetric part of the stress results in the following formulation
of the total stress:

T = Tiso +Tvol = 2
∂Ψ̂ov

iso(IĈel
)

∂IĈel

C−1
in + pC−1

Following the incompressibility constraint, which prohibits volumetric deformations, yields a
deviatoric expression of the evolution equation. Based on this consideration, the volumetric
part of Eq. 2.120 is erased, and the evolution equation for incompressible material behavior
results in:

Ċin =
4

ηD

∂Ψ̂ov
iso(IĈel
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∂IĈel

[
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3

(
C : C−1

in

)
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]
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The complete model structure considering the incompressibility constraint results in the fol-
lowing expression:
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4.2.2. Uniaxial Reduction

This section reduces the model to the uniaxial stress state for further consideration and in-
vestigation. This simpli�cation is bene�cial because the tests are also based on uniaxial tests,
and the uniaxial stress state plays a predominant role in considering the residual load-bearing
capacity of LSG.
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∂Ψ̂ov

iso(IĈel
)

∂IĈel
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in + pC−1,<xx>
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[
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3
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(C : C−1

in )C
<xx>
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)]
Satisfying equilibrium within the uniaxial stress state forces the stresses in the transversal
direction to be equal to zero:

T<yy> = 2
∂Ψ̂ov

iso(IĈel
)

∂IĈel

C−1,<yy>
in + pC−1,<yy> = 0 (4.21)

Utilizing this requirement leads to the expression of the Lagrange multiplier p in terms of the
stress in the transversal direction:

p = −
(
2
∂Ψ̂ov

iso(IĈel
)

∂IĈel

C−1,<yy>
in C<yy>

)
(4.22)

Using this expression of the Lagrange multiplier yields the stress in the loading direction:

T<xx> = 2
∂Ψ̂ov

iso(IĈel
)

∂IĈel

(C−1,<xx>
in −C−1,<yy>

in C<yy>C−1,<xx>) (4.23)

The following presents the entries for the deformation gradient and right Cauchy Green stretch
tensor, considering uniaxial tension. The entries of the deformation are equal to the princi-
pal stretches for the respective deformation state. Although they are not displayed here, the
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volume-preserving property is also assigned to the elastic and inelastic deformation and stretch
tensors, whose entries are principal stretches as well (λ = λelλin).

F =


λ 0 0

0 1√
λ

0

0 0 1√
λ

 C =
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0 1
λ

0

0 0 1
λ

 ˙̂
Cin =


2λ̇inλin 0 0

0 − λ̇in

λ2
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0

0 0 − λ̇in

λ2
in


Considering these entries into the representation of the stress in uniaxial direction (cf. Eq.
4.23), yields:
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(4.24)

Calculating the Frobenius scalar product of the right Cauchy Green tensor and the inverse of its
inelastic part considering the uniaxial stress state (C : C−1

in = λ2

λ2
in
+2λin

λ
) leads to the following

expression of the evolution equation:
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Evaluating the �rst entry of the inelastic deformation rate tensor, Ċ<xx>
in , and considering Eq.

4.25, yields:

2λ̇inλin =
4

η

∂Ψ̂ov
iso(IĈel
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Solving Eq. 4.26 for λ̇in, yields:
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(4.27)

Transferring the general formulations of stress and the evolution equation considering incom-
pressibility and assuming an uniaxial stress state leads to the equations of the model, to be
numerically implemented in the following section:
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4.2.3. Numerical Implementation

Based on the assumption of incompressibility, the equations for implementing the model for the
uniaxial stress state are now derived. The individual evolution equations are integrated using
the Euler backward method and then solved using the Newton method (cf. Sec. 2.3). The
corresponding equations are �rst set up for a general potential function, depending on the �rst
invariant of the right Cauchy Green tensor, and then transferred explicitly to the two potentials
used in the model.
In the �rst step, the description of the Euler Backwards algorithm, presented in Eq. 2.129,

is picked up and formulated for the inelastic stretch λin:

f(λin,(n+1), t(n+1)) =
λin,(n+1) − λin,(n)

∆t
(4.28)

Utilizing the formulation of the evolution equation to express the function represented in Eq.
4.28 yields the following equation:
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The representation of Eq. 4.29 in terms of a residuum (cf. Eq. 2.136) yields:
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Subsequently, Eq. 4.30 is expressed in terms of a Taylor series expansion, cut o� after the linear
part (cf. Eq. 2.137), utilizing the Newton Algorithm.
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The derivative of the residuum with respect to the inelastic stretch λin leads to
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and the �nal representation, in accordance with Eq. 2.138, results in:

λ
(k+1)
in,(n+1) = λ

(k)
in,(n+1) −

λ
(k)
in,(n+1) − λin,(n) − 4

3
1
η
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)
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λ
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λ
2,(k)
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)]
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1
η

∂Ψ̂ov
iso(IĈel

)

∂IĈel

[
λ2
(n+1)

λ
2,(k)
in,(n+1)
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λ
(k)
in,(n+1)

λ(n+1)

] (4.33)

Neo Hooke The respective equations for the Neo Hookean potential, the basis of network A
and B, are presented in the following. The respective residuum and its derivative are derived,
being utilized according to Eq. 4.31 for the expression of the inelastic stretch, according to Eq.
4.33. The residuum results in:

Ξ(λ
(k)
in,(n+1)) = λ

(k)
in,(n+1) − λ

(k)
in,(n) − µ

2

3

∆t

η

[ λ2
(n+1)

λ
(k)
in,(n+1)

−
λ
2,(k)
in,(n+1)

λ(n+1)

)]
= 0 (4.34)
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and the derivative of the residuum yields:

∂Ξ(λ
(k)
in,(n+1))

∂λ
(k)
in,(n+1)

= 1 + µ
2

3

∆t

η

[ λ2
(n+1)

λ
2,(k)
in,(n+1)

+ 2
λ
(k)
in,(n+1)

λ(n+1)

]
(4.35)

The �nal expression of the inelastic stretch based on the Neo Hookean potential, assuming
incompressibility, for the uniaxial stress state leads to:

λ
(k+1)
in,(n+1) = λ

(k)
in,(n+1) −

λ
(k)
in,(n+1) − λ

(k)
in,(n) − µ2

3
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(k)
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−
λ
2,(k)
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1 + µ2

3
∆t
η

[
λ2
(n+1)

λ
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in,(n+1)

+ 2
λ
(k)
in,(n+1)

λ(n+1)

] (4.36)

Yeoh The respective equations for the Yeoh potential, the basis of network C, is presented in
the following. The respective residuum and its derivative are derived, being utilized according
to Eq. 4.31 for the expression of the inelastic stretch, according to Eq. 4.33. The residuum
results in:

Ξ(λ
(k)
in,(n+1)) = λ

(k)
in,(n+1) − λ

(k)
in,(n) −

4

3

∆t

η

[
3C30

( λ2
(n+1)

λ
2,(k)
in,(n+1)

+ 2
λ
(k)
in,(n+1)

λ(n+1)

− 3
)2]

·

·
[ λ2

(n+1)

λ
(k)
in,(n+1)

−
λ
2,(k)
in,(n+1)

λ(n+1)

]
= 0

(4.37)

and the derivative of the residuum yields:
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The �nal expression of the inelastic stretch based on the Neo Hookean potential, assuming
incompressibility, for the uniaxial stress state leads to:
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Model Implementation Now that the structure of the material model has been derived, this
section presents a brief representation of the implemented material model. The �ow chart given
in Fig. 4.12 emphasizes the implementation description, by presenting the numerical procedure
exemplarily for Network A.

Compute viscosity

Output: η(k)(i+ 1)

Input: params, ||D(i+ 1)||,

||C(i+ 1)||, ||T(i)||

Compute lambda-in

Output: λ(k)
in (i+ 1)

Input: params, dt(i), λ(i+ 1),

λ
(k)
in (i), η(k)(i+ 1)

Compute single stress

Compute total stress

Output: T<xx>
(k) (i+ 1)

Input: params, λ(i+ 1) , λ(k)
in (i+ 1)

Output: T<xx>(i+ 1), P<xx>(i+ 1)

Input: T<xx>
(k) (i+ 1)

Compute driving quantities

Output: ||D||(i+ 1), ||C(i+ 1)||

Input: params, λ(i+ 1), dt(i)

Output

P<xx>

Input

Inner loop k = 1 to 5

Outer loop i = 1 to time(end)

params, time, λ

Figure 4.12.: Flow chart of exemplary implementation of Network A

The model receives two input vectors: one vector containing the individual material param-
eters, passed in whole in every iteration step, and a vector containing the applied strains and
corresponding times passed iteratively entry by entry. The model iteration consists of one main
loop, referred to below as the outer loop, which contains a loop for each of the individual net-
works, referred to below as the inner loop. Each inner loop consists of a viscosity function, an
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evolution equation representing the inelastic stretch, and a stress equation. After each iteration
within the main loop, the pre-dimensioned result vector, which contains the 2ndPK stresses, is
�lled step by step with the sum of the single stresses. After the last iteration step of the outer
loop, the 1stPK output vector is calculated from the 2ndPK vector.
Within an iteration of the outer loop, several iterations of the inner loops run, depending

on the respective network. These individual iterations all follow the same sequence. Firstly,
the viscosity function is called to transfer the input vectors to it. This function then returns a
viscosity value, passed to the corresponding function of the evolution equation, which calculates
an inelastic stretch and returns it. The inelastic stretch is then used to calculate the value of
the 2ndPK stress for the corresponding iteration of the inner loop. This procedure is carried out
for each iteration of the inner loops until the total value of the 2ndPK stress of the respective
iteration step of the outer loop can be calculated. The outer loop, which performs the actions
described in each iteration step, is then run through until the end of the input vector, which
contains the strains and associated times, is reached. Finally, a 1stPK vector is calculated from
the 2ndPK vector and passed as output.

4.3. Validation

This chapter aims to validate the numerical implementation of the viscoelastic evolution equa-
tion, which utilizes the Euler Backward formulation and Newton method and forms the founda-
tion of the presented material model. Only di�ering in the explicit formulation of the evolution
equation, the numerical formulation of linear, �nite linear, and �nite viscoelasticity follows the
same structure. An example presented in [24] and shown in Tab. 4.1, serves as bench mark
example. It is, therefore, solved for the problem of linear, �nite linear, and �nite viscoelasticity
using the numerical structure implemented within this thesis, and the results are compared
to analytical solutions and the ones presented in [24]. Furthermore, Sec. 4.3.3 provides an
additional validation example concerning �nite viscoelasticity.

Table 4.1.: Boundary conditions for the calculation example

τ [s] Eel, µel [MPa] E, µ [MPa] ε̇<xx> [1/s]

0.1 0.8 0.2 ±0.5

4.3.1. Linear Viscoelasticity

To verify the presented algorithm, the problem of linear viscoelasticity for the one-dimensional
case is solved exemplarily. The result is compared with the analytical solution and the solution
of [24]. Considering Eq.'s 2.77 to 2.79 and, utilizing τ = η

Ê
, leads to the functional of the linear

viscoelasticity

σ(t) = E · ε(t) +
s=t∫

s=0

e−
t−s
τ Eel

dε(s)

ds
ds,

and by considering a constant value of ε̇0, the loading path (t = 0 to t = T
2
) leads to

σ(t) = E · ε(t) + ε̇0η
[
1− e−

t
τ

]
,
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and the unloading path (t = T
2
to t = T ) results in

σ(t) = E · ε(t) + ε̇0η
[
2e

T
2 −t

τ − e−
t
τ − 1

]
.

The solution of the loading and unloading path together form the analytical solution of the
benchmark example considering linear viscoelasticity.
When calculating the numerical solution, time-dependent and -independent behavior are

treated separately, and only the time-dependent part using the Euler Backwards formulation
is implemented into the Newton-Raphson Algorithm. The relation within a single Maxwell
element, considering the inelastic strain as internal variable, results in ε̇in = Eel

η
(ε − εel), and

the �ow rule of linear viscoelasticity yields

ε̇in =
εin,(n+1) − εin,(n)

∆t
=

1

τ

[
ε(n+1) − εin,(n+1)

]
.

The residuum reads

Ξ(εin,(n+1)) = εin,(n+1) − εin,(n) −
1

τ

[
ε(n+1) − εin,(n+1)

]
= 0,

and its derivation results in

∂Ξ(ε
(k)
in,(n+1))

∂ε
(k)
in,(n+1)

= 1 +
∆t

τ
.

The whole formulation of the linear viscoelastic evolution equation, utilizing the Newton
method, yields:

ε
(k+1)
in,(n+1) = ε

(k)
in,(n+1) −

ε
(k)
in,(n+1) − ε

(k)
in,(n) −

1
τ

[
ε(n+1) − ε

(k)
in,(n+1)

]
1 + ∆t

τ

.

Fig. 4.13 shows the analytical, numerical, and solution derived from [24]. The small deviation
of the result of the numerical solution compared to the other two shows that the code works
correctly.

Figure 4.13.: Comparison of analytical, numerical ,and solution from [24] (left); Error with
respect to the analytical solution (right)
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4.3.2. Finite Linear Viscoelasticity

After the algorithm was very well applied to the problem of linear viscoelasticity, its applicability
to the theory of �nite linear viscoelasticity is now to be analyzed. For this purpose, the
numerical calculation result is again compared with the analytical and Bergström's solutions
[24].
Considering incompressible material behavior, the uniaxial stress state results in:

σ<xx> = 2
∂Ψiso(IC)

∂IC
(C<xx> −C<yy>) = µ(λ2 − 1

λ
)

The governing equation of the analytical approach describing �nite, linear viscoelasticity follows
the same principle like the one describing linear viscoelasticity. However, the stresses are derived
from a hyperelastic Neo Hookean potential with the shear moduli µel and µ from Tab. 4.1.
Replacing Eel

dε(s)
ds

by d
ds

[
σov,<xx>(s)

]
, and E ·ε(t) by σ∞,<xx>(t), yields the governing equation:

σ<xx>(t) = σ∞,<xx>(t) +

s=t∫
s=0

e−
t−s
τ

d

ds

[
σov,<xx>(s)

]
ds

Integration by parts and further manipulating this expression leads to the semianalytical de-
scription of the problem of �nite linear viscoelasticity (cf. B.2):

q(t+∆t) = σov,<xx>(t+∆t)− e−
∆t
τ

s=t∫
s=0

1

τ

[
e−

t−s
τ

]
σov,<xx>(s)ds− σov,<xx>(t)

[
1− e−

∆t
τ

]
−

− ∆σov,<xx>

∆t

[
∆t− τ + τe−

∆t
τ

]
,

The total stress yields (cf. Eq. 2.90):

σ<xx> = σ∞,<xx> + q.

The numerical approach includes the solution of Eq. 2.87 describing the evolution of the
overstress within the theory of �nite linear viscoelasticity. Solving the evolution equation again
requires the Euler Backward integration scheme and a solution using Newton's method. The
di�erential equation for the overstress in uniaxial stress considering incompressibility yields:

q̇ =
q(n+1) − q(n)

∆t
=

d

dt

[
σov,<xx>

]
The residuum for applying the Newton Raphson algorithm reads

Ξ(q
(k)
(n+1)) = q

(k)
(n+1) − q

(k)
(n) −∆t

( d

dt

[
σov,<xx>

]
− 1

τ
q
(k)
(n+1)

)
= 0,

and the derivation for the Neo Hookean potential results in

∂Ξ(q
(k)
(n+1))

∂q
(k)
(n+1)

= 1 +
∆t

τ
,

leading to the following expression

q
(k+1)
(n+1) = q

(k)
(n+1) −

q
(k)
(n+1) − q

(k)
(n) −∆t

(
d
dt

[
σov,<xx>

]
− 1

τ
q
(k)
(n+1)

)
1 + ∆t

τ
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which is solved iteratively using the Newton Raphson algorithm.

Figure 4.14.: Comparison of analytical, numerical ,and solution from [24] (left); Error with
respect to the analytical solution (right)

Fig. 4.14 shows the results of the semi-analytical solution, the numerical solution, and the
solution presented by [24]. The small deviation of the result of the implemented algorithm
from the analytical solution and the one from [24], indicates that the code works properly, even
considering hyperelastic material behavior.

4.3.3. Finite Viscoelasticity

Since the numerical algorithm successfully solves problems of linear and �nite linear viscoelas-
ticity, it is crucial to check its applicability to the problem of �nite viscoelasticity. For this
purpose, the benchmark example is solved numerically within the framework of �nite viscoelas-
ticity and compared to the solution of linear and �nite linear viscoelasticity. An analytical
solution of the non-linear di�erential equation is no longer possible.

Figure 4.15.: Solution of example for �nite viscoelastic approach (left); Comparison of results
of linear viscoelastic, �nite linear viscoelastic and �nite viscoelastic approach
for the benchmark example (right)

Fig. 4.15 shows the solutions of the benchmark example utilizing the three theories within
the presented numerical framework. At �rst glance, the three solutions are strikingly di�erent
from one another. However, a closer look reveals some regularities. On the one hand, a
comparison of �nite viscoelasticity and �nite linear viscoelasticity shows that both hystereses
have a similar slope, which is consistent because both theories follow the same hyperelastic
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potential. On the other hand, the linear and �nite theories are similar regarding the shape and
size of the hysteresis, which goes along with the fact that the �nite theory emerges from the
linear theory by extending it to large deformations. Overall, it is apparent that the observations
are consistent with the underlying theory.
However, to verify the fundamental correctness of the numerical implementation of the ma-

terial model, Sedlan's model [236], with its respective potentials, evolution equations, and
viscosity functions presented below, is inserted into the model structure.

� Total Stress:

T = T∞ +
n=3∑
k=1

T(k)
ov + pC−1

M

� Equilibrium Stress:

T∞ = [2C10 + 2C11(IICM
− 3) + 6C30(ICM

− 3)2]1− T(k)
ov = 2µ(k)C−1

in

− [2C01 + 2C11(ICM
− 3) + 4C02(IICM

− 3)]C−1C−1,

� Over Stress:

Ċin = 4
µ(k)

η(k)

[(
CM − 1

3

(
(CM : C−1

in )Cin

)]
, η(k) =

µ(k)||C||

(1/2)ξ(k)
√

sp(C−1Ċ)2 + 1
τ (k)

� Thixotropy:

τ (k) = τmax(1− q) + τminq, q̇ = ξ

√
sp(C−1Ċ)2(1− q)− 1

τq

√
q, 0 ≤ q < 1

In order to reproduce the model numerically, implementing a further di�erential equation
describing the development of a structural variable intended to represent thixotropic e�ects is
necessary. Thixotropy is a rheological phenomenon characterized by a time-dependent and re-
versible alteration in the viscosity of certain substances when subjected to mechanical agitation
or shear forces. Materials exhibiting thixotropic behavior demonstrate a decrease in viscosity
and an increase in �uidity under stress, only to revert to their higher viscosity state upon
cessation of the applied force. This property is commonly observed in colloidal suspensions,
gels, and certain �uids. Thixotropy �nds application in various industrial sectors, such as the
manufacturing of paints, where it facilitates improved application and spreading, as well as in
biomedical contexts for the controlled �ow characteristics of speci�c gel-like substances. For a
more detailed description and further literature concerning this topic, the interested reader is
referred to [235]. The following equations arise describing the structural variable.
The di�erential equation describing the evolution of the structural variable q yields:

q̇ =
q(n+1) − q(n)

∆t
= ξ|D|(1− q

(k)
(n+1))−

1

τq
q
(k)
(n+1) (4.40)

For the numerical implementation, the residuum residuum of Eq. 4.40 must be derived. It
reads:

Ξ(q
(k)
(n+1)) = q

(k)
(n+1) − q

(k)
(n) −∆t

(
ξ|D|(1− q

(k)
(n+1))−

1

τq
q
(k)
(n+1)

)
= 0
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The derivation of the residuum results in

∂Ξ(q
(k)
(n+1))

∂q
(k)
(n+1)

= 1−∆t
(
ξ|D| − ∆t

τq

)
,

and leads to the following formulation for the Newton Raphson algorithm

q
(k+1)
(n+1) = q

(k)
(n+1) −

q
(k)
(n+1) − q

(k)
(n) −∆t

(
ξ|D|(1− q

(k)
(n+1))−

1
τq
q
(k)
(n+1)

)
1−∆t

(
ξ|D| − ∆t

τq

) .

Thixotropic e�ects can be implemented into the viscosity function as process-dependent vari-
ables. Fig. 4.16 exemplarily shows the evolution of the structure variable concerning the
parameters τq and ξ.

Figure 4.16.: Evaluation of the Structure Variable q for healing (D = 0, ξ = 10) (left) and
destruction (D ̸= 0, τq = 10000) (right)

Tab. 4.2 and 4.3 present the material parameters identi�ed by [236] for elastomeric materials:

Table 4.2.: Parameters for Equilibrium Response

C10 [MPa] C01 [MPa] C11 [MPa] C02 [MPa] C30 [MPa]

0.146 0.695 0.403 -0.657 0.019

Table 4.3.: Parameters for Non-Equilibrium Response and Damage Variable

k µ(k) [MPa] ξ(k) [-] τ
(k)
max [s] τ

(k)
min [s]

1 0.3 2 2e2 10

2 0.8 30 2e5 20

3 0.3 10 2e4 20

ζ [-] τq [s]

2.4 4e4

Three di�erent regulations, taking into account di�erent loading rates, relaxation, and unload-
ing, were selected for veri�cation of the material model. Fig. 4.17 (Ḃ<xx> = ±0.003 [1/s]) and
Fig. 4.18 (Ḃ<xx> = ±0.03 [1/s]) show the result of a load with two cycles for two di�erent
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strain rates. Fig. 4.19 shows a simple cycle, interrupted by relaxation steps, comparable to the
staircase tests from Ch. 3.3.5.

Figure 4.17.: Two Cycles with Strain Rate Ḃ<xx> = ±0.003 [1/s] - Comparison (left), Error
(right)

Figure 4.18.: Two Cycles with Strain Rate Ḃ<xx> = ±0.03 [1/s] - Comparison (left), Error
(right)

Figure 4.19.: One Cycle with Holding Steps - Stress over Strain (left), Stress over Time (right)

Fig.s 4.17 to 4.19 show excellent agreement between the calculations using the numerical
structure implemented within this work and the results presented by [235] underlining the
precise functionality of the numerical algorithm.
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4.4. Investigations on the Viscosity Functions

After the construction, numerical implementation, and validation of the model within the pre-
vious sections, this section illustrates the behavior of the particular viscosity functions of the
individual networks. The investigation follows the same phenomenologically motivated ap-
proach as the initial construction of the viscosity functions, utilizing the scalar tensor functions
||D||, (D : C), ||C||, ||T|| as process dependent variables and related material parameters. Goal
of this examination is the evaluation of the The in�uence of these quantities. This description
leads to three processes: Loading, unloading, and relaxation. Following these characteristic
processes, six additional parameters have been introduced for the viscosity functions beyond
the foundational components, relaxation time, and shear modulus, exerting in�uence over dis-
tinct loading modes. Di�erent cases, constructed for every network, each involving the variation
of one parameter while maintaining the remaining parameters constant, aim to represent these
processes. Each case is illustrated in two particular plots. The �rst plot presents the constant
viscosity una�ected by any process variables and the viscosities following the function of the
particular network, in�uenced by the considered parameters. The second plot shows the stresses
corresponding to constant and the varaying viscosities.
All three processes follow the same strain rate of Ḃ<xx> = 0.01 [1/s]. However, the test with

a single loading and the turning point of the cyclic tests, as well as the holding level of the
relaxation tests, was at B<xx> = 200 [%]. For the constant parameters, particular values were
chosen to illustrate the in�uence of the varied parameters in the best possible way.

4.4.1. Considerations regarding the loading behavior

Initially, an analysis of the network A with viscosity function

ηD = η0µ
( ||C||√

3

)χ[1
2
τexp

(
−||T||

s0

)(
1 + sign(D : C)

)
+ exp

(
ζ||D||

)
ξ
]

is conducted regarding the loading behavior with variations in the parameters s0 (cf. Tab. 4.4)
and χ (cf. Tab. 4.5). Firstly, a variation of χ, the parameter of the tensor function f( ||CM ||

)
,

keeping all other parameters constant at the values presented in Tab. 4.4, is carried out.

Table 4.4.: Exemplary Parameters for Network A, with varying χ

τ µ η0 s0 χ ζ ξ

100 25 1 2.5 var. 0.001 1.5

Depending on the size of χ, the magnitude of the viscosity function is increased with escalating
deformation levels. The graphical representation distinctly illustrates that χ exerts negligible
in�uence within the regime of small deformations, yet its impact becomes more pronounced with
increasing distortions (cf. Fig. 4.20). Depending on the exponent value, distinct stress curves
emerge. However, the in�uence of the stress barrier s0, elaborated further in the subsequent
paragraph, is evident in the plot.
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Figure 4.20.: Exemplary Calculation for the Network A, with varying χ; Viscosity (left),
1stPK Stress (right)

The parameter s0 functions as a stress barrier, signi�cantly diminishing viscosity when a
speci�c stress threshold is surpassed. This phenomenon is clearly observable in the graphs.
Upon examining the stress curves, it becomes apparent that those incorporating stress barriers
exhibit an initial sti�ness identical to the sti�ness of the constant viscosity curves. However,
these curves rapidly plateau, resulting in an almost constant course as the stress exceeds a
certain threshold. The slope of this plateau is, in turn, a�ected by the other parameters, which
will not be further expounded upon in this discussion.

Table 4.5.: Exemplary Parameters for Network A, with varying s0

τ µ η0 s0 χ ζ ξ

100 25 1 var. 0 0.001 1.5

Figure 4.21.: Exemplary Calculation for the Network A, with varying s0; Viscosity (left),
1stPK Stress (right)

4.4.2. Considerations regarding the unloading behavior

A noteworthy phenomenon pertains to the disparate behaviors of the hysteresis on the load-
ing and unloading paths. Speci�cally, the viscosity during loading exhibits a marked increase
compared to unloading. A signum function was incorporated into the viscosity function, con-
siderably diminishing viscosity for negative strain rates to depict this behavior with optimal
precision. The in�uence of the relaxation time, τ , is nulli�ed, and the viscosity is thus limited
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to an exponential function contingent upon the parameters xi, zeta, and the norm of the strain
rate tensor, which has a minor in�uence when considering other processes.
Although all networks utilize the formulation with the signum function, network B, with the

respective viscosity function

ηD = η0µ
( ||C||√

3

)χ[1
2
τ ·
(
1 + sign(D : C)

)
+ exp

(
ζ||D||

)
ξ
]
,

is chosen for the exemplary calculations.
ζ is multiplied with the norm of the distortion rate tensor, exerting a crucial in�uence on

the exponent of the exponential function. Fig. 4.22 unmistakably delineates how the loading
path of the hysteresis is particularly a�ected for varying ζ, with the relief path consistently
converging towards zero.

Table 4.6.: Exemplary Parameters for Network B, with varying ζ

τ µ η0 χ ζ ξ

100 25 1 0 var. 1.5

Figure 4.22.: Exemplary Calculation for the Network A, with varying ζ; Viscosity (left), 1stPK
Stress (right)

Conversely, ξ undergoes multiplication with the exponential function and in�uences its mag-
nitude signi�cantly. Fig. 4.23 vividly illustrates the discernible opening or closure of the
hysteresis, contingent upon the value of ξ.

Table 4.7.: Exemplary Parameters for Network B, with varying ξ

τ µ η0 χ ζ ξ

100 25 1 0 0.001 var.
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Figure 4.23.: Exemplary Calculation for the Network A, with varying ξ; Viscosity (left), 1stPK
Stress (right)

4.4.3. Considerations regarding the relaxation behavior

Concerning the relaxation behavior, categorizing the networks into two groups is reasonable.
Group 1, consisting of networks A and B, is distinguished by the nearly uniform distribu-
tion of individual relaxation times, τ , spanning multiple decades to ensure a gradual evolution
across the time spectrum. Group 2, comprising network C, conversely, is characterized by a
pronounced increase in sti�ness under load, followed by a rapid decrease in sti�ness upon initi-
ating the relaxation process, implemented through the term (1−γexp(DM)), which signi�cantly
diminishes the viscosity during relaxation processes, contingent upon the parameter γ.

ηD = 2η0C30

( ||C||√
3

)χ[1
2
τ ·
(
1 + sign(D : C)

)
·
∣∣∣1− γexp(||D||)

∣∣∣+ exp
(
ζ||D||

)
ξ
]

The in�uence of the parameter gamma on the viscosity within network C and the stress is
depicted in Fig. 4.24. However, when calibrating γ, one must be very careful that the value of
the viscosity function does not get negative.

Table 4.8.: Exemplary Parameters for Network C, with varying γ

τ C30 η0 χ ζ ξ γ

100000 0.01 1 7 20 0.01 var.

Figure 4.24.: Exemplary Calculation for the Network C, with varying γ; Viscosity (left),
1stPK Stress (right)
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4.5. Parameter Identi�cation

By utilizing the results of the material characterization experiments and the presented material
model, capable of qualitatively reproducing the phenomena observed during the experiments,
these two elementary components are now to be brought together by adjusting the model
parameters so that the experiments can be reproduced as accurately as possible.
The process of isolating the material parameters that best represent the behavior observed

in the test is called parameter identi�cation. The principle of parameter identi�cation is mini-
mizing the error that results from the di�erence between the model calculation, depending on
the corresponding material parameters and the experimental measurements. The minimization
of this error follows the basic rules of optimization (cf. Sec. 2.4), and depending on the kind of
problem, there are several possible procedures. Global optimization methods are advantageous
for problems dependent on many parameters and can have various local minima. One possibil-
ity for global optimization is the global search algorithm from Matlab, described in more detail
below.

4.5.1. Matlab - Globalsearch

Run Start Point The user de�nes a starting value x0,ini. This initial value has an objective
function value f(x0,ini) and represents a point in the n-dimensional parameter space, where n
equals the number of parameters to be optimized. The local solver fmincon is started from
this initial value. If it converges, the location of the solution point x0,sol and its function value
f(x0,sol) is determined, and a critical distance and a critical function value are initialized as
limits. The critical distance is calculated from a distance between the start point x0,ini and
endpoint x0,sol of this optimization. It forms a basin of attraction around the solution point,
subject to the heuristic assumption that it is spherical with a radius of

r0,sol = |x0,sol − x0,ini| (4.41)

The second limit value, called score of the function, is calculated from the objective function
value at the end of the optimization f(x0,sol) and a weighted portion that takes into account
the sum of possible boundary condition gi(x) violations.

s0,sol = f(x0,sol) + w ·
m∑
i=1

viol(gi(x0,sol)) (4.42)

Considering the possible violation of boundary conditions ensures that the solution points are
feasible and results in a score equal the objective function value.

Create Trial Points In a second step, the scattersearch algorithm creates trial points Num-
TrialPoints that lie within the limits speci�ed by the user and represent potential starting
values. A subset of these trial points NumStageOnePoints is selected and their score evaluated.
The point with the best score serves as the starting value for a further local optimization and
the remaining points of the subset are removed from the list of trial points. If the starting
point x1,ini with f(x1,ini) converges and thus results in another solution point x1,sol with a
corresponding function value f(x1,sol), score s1,sol and distance r1,sol are determined. If both
starting points x0,ini and x1,ini have converged, a �rst limit for a possible function value, called
LocalSolverThreshold, results in min(f(x0,sol); f(x1,sol)). If neither of the two values exists or
they are infeasible, the LocalSolverThreshold corresponds the penalty function value of the
Stage 1 start point s1,ini.
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In addition, two categories of counters are created to ensure the threshold values are �exible.
One counter lists how often the local optimizer was not started because the score of a trial
point is greater than the threshold value (localSolverThreshold). In the other category, each
basin has a separate counter, which is incremented if a trial point is within a corresponding
basin.

Main Loop The individual trial points are analyzed point by point. The population size
and, therefore, the number of trial points can be adjusted in each iteration (see scatter search
[116]). In order to decide whether the local optimization is executed for the corresponding
point, it is �rst checked whether the score of the point exceeds the current threshold value
(localSolverThreshold) and whether the point lies within an existing basin. If the score of the
point does not exceed the threshold nor is within a basin of attraction, the local optimization
is executed.
If the local optimization runs, all counters are set to zero. If the solver converges, the

algorithm checks whether the solution point di�ers from the existing ones. On the one hand,
it checks whether the distance between the solution point and the other solution points does
not fall below a limit value XTolerance and, on the other hand, whether the objective function
value of the solution point (f(xk,sol)) di�ers su�ciently from the function values of the other
solution points. The user can determine the two corresponding limit values with XTolerance
and FunctionTolerance. If neither falls below the limit values, a new element is created in the
solution vector. If speci�c points fall below both limits simultaneously, the solution points are
considered identical, and no new element is created.
If a new element is created, the threshold is simultaneously replaced by the score of the trial

point xk,ini of the current iteration step, and the basin radius for xk,sol is de�ned as the maximum
distance of the current starting point xk,ini to the solution point xk,sol and the maximum radius
of the other points.
If the local solver is not executed, the corresponding counters are incremented, and all others

are set to zero, ensuring that the limit values are only adjusted if a corresponding threshold has
been violated several times in direct succession. If a certain number of consecutive iterations
MaxWaitCycle have taken place without starting the optimization, the limit values are adjusted
to prevent the algorithm from running empty. Two cases are distinguished. If a violation of
the localthreshold is the reason for not running the optimizer, the threshold is adjusted with a
PenaltyThresholdFactor. If a violation of the basin is the reason, the corresponding radius is
adjusted with a BasinRadiusFactor.
This algorithm runs until either the maximum number of iteration steps has been reached,

all start values have been checked or the maximum time has been exceeded.

4.5.2. Matlab - Globalsearch adapted

The material model depends on 46 parameters, each with its unique role. Among these, the
parameter gamma holds particular signi�cance. It must be chosen carefully to ensure that the
term (1− γexp(DM)) is larger than zero and the viscosity is greater than one. While the other
parameters can be chosen arbitrarily, limiting them to certain intervals of possible values is
reasonable. The selection of these boundaries is a delicate balance between minimizing the run
time of the optimization algorithm and obtaining the best possible values. If the limits are
too large, the algorithm may run for an uneconomically long time. On the other hand, if the
limits are too narrow, relevant values may be overlooked. Within the optimization, the greatest
challenge is overcoming local minima, which are numerous in an n-dimensional parameter space.
Matlab's globalsearch algorithm, utilizing the local optimization solver fmincon, was selected
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to overcome these local minima. As described above, this algorithm performs numerous opti-
mizations by cleverly varying the parameters and saves the one with the best approximation.
The start values and limits of the individual parameters are shown in the following tables. It
is crucial to mention that the parameters are varied on a logarithmic scale. This ensures that
even parameters that di�er by several orders of magnitude can be varied uniformly.
Tab. 4.9 shows the boundary conditions of the global optimization algorithm used for the pa-

rameter identi�cation. These boundaries, in particular, explained in Sec. 4.5.1, were extended
by DistanceThresholdFactor, adjusting the criteria for every basin, PenaltyThresholdFactor,
controlling the respective localSolverThreshold, MaxTime, specifying the maximum time in [s]
the algorithm runs, and StartPointsToRun, deciding whether the start values lie within user-
de�ned boundaries or not.

Table 4.9.: Boundary Conditions for global optimization

NumTrialPoints 3e4 [-]

BasinRadiusFactor 0.5 [-]

DistanceThresholdFactor 0.5 [-]

MaxWaitCycle 50 [-]

NumStageOnePoints 1000 [-]

PenaltyThresholdFactor 0.4 [-]

FunctionTolerance 1e-4 [-]

MaxTime 432000 [s]

StartPointsToRun bounds [-]

XTolerance 2e-4 [-]

The error between the model calculation and the measurement results, which the parameter
identi�cation aims to minimize, is calculated by the evalError function and passed to the
optimization algorithm, comparing the error to a user-de�ned threshold. This function depends
on the test procedure (strain, time), the current parameter vector, and the test results (stress).
The evalError function calculates an error by calculating the model response using strain,
time, and parameter vector and comparing the result to the respective measurement. This
error, directly connected to the parameter vector p, is calculated according to the Euclidean
norm:

err(p) =

√√√√ N∑
i=1

(
P

<xx>,(i)
M,Experiment −P

<xx>,(i)
M,Model(p)

P
<xx>,(i)
M,Experiment

)2

(4.43)

The following diagram (Fig. 4.25) illustrates the essential components of the optimization
process, starting with the measurement data and the initial set of parameters. The measurement
input remains constant, and the parameter vector constantly changes in each iteration step,
aiming to minimize the di�erence between test data and model calculation. The iteration
continues until the error between the model calculation and the measured data is lower than a
user-de�ned threshold, indicating the �nal parameter set.
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Figure 4.25.: Essential components of the optimization algorithm

The optimization procedure unfolds in three steps, sequentially releasing the �nal parameter
set. For each step, the respective test data, which serves as input for the error calculation, and
the particular formulation of the viscosity functions along with the corresponding parameter
set are adjusted. Each step is described individually in more detail below. However, a decisive
step in the optimization procedure is the choice of start values for the particular parameters of
the set. As the set contains physical quantities such as shear modulus, relaxation times, and
the phenomenological derived parameters, the values inside the parameter set di�er by several
orders of magnitude. This large discrepancy between the single values would complicate the
optimization process. Therefore, the parameters are transformed to a logarithmic scale to
overcome this problem. So, inside the optimization algorithm, the parameters appear as the
logarithm (log10) of the individual parameter. However, when calculating the error by utilizing
the error function, the values are passed in logarithmic scale and inside the error function
transformed to standard scale for calculation of the model response.
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Optimization - Step 1 The �rst part of the parameter set p1 = [τ ;µ;C30; s0;χ]
T is identi�ed

by utilizing the viscosity functions

ηD,A = η0µ
( ||C||√

3

)χ[
τ · exp

(
−||T||

s0

)]
ηD,B = η0µ

( ||C||√
3

)χ[
τ
]

ηD,C = 2η0C30

( ||C||√
3

)χ[
τ ·
∣∣∣1− exp(||D||)

∣∣∣+ 1
]

for the model calculation, the results of the failure, and the relaxation tests as input data.
At this point, it is crucial to note that only the 3-hour relaxation tests were considered for
the optimization, as the 12-hour tests will serve validation purposes. Tab. 4.10 shows the
respective parameters, categorized in start values (ini), lower (lb), and upper boundaries (up).
According to the bounds option of the StartPointsToRun boundary, the algorithm only varies
the parameters within these limits, speeding up the optimization process.

Table 4.10.: Parameters for Maxwell elements Network A (k = 1 to 5)

lb -2 -1 0 1 2 3 4 5 6 4

τ ini -1 0 1 2 3 4 5 6 7 6

ub 0 1 2 3 4 5 6 7 8 8

lb -1 -1 -1 -1 -2 -2 -2 -2 -2

µ ini 1 1 1 0.5 -1 -1 -1 -1 -1

ub 2 1.5 1 1 0.5 0.5 0.5 0.5 0.5

lb -3

C30 ini -1

ub 0

lb -1 -1 -1 -1 -1

s0 ini 0 0 0 0 0

ub 1 1 1 1 1

lb 0 0

χ ini 0.5 0.5

ub 1 1

Optimization - Step 2 In the second step, the set of input test data is extended by the
results of the cyclic tests. Expanding the considered test data comes with an extension of the
viscosity function, taken into account for optimization. As the signum function was introduced
to cover the material behavior during unloading processes, the viscosity is enriched by a signum
function. Furthermore, a new vector p2, containing the material parameters ξ aligned to the
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signum functions, is introduced.

ηD,A = η0µ
( ||C||√

3

)χ[1
2
τ · exp

(
−||T||

s0

)(
1 + sign(D : C)

)
+ exp

(
||D||

)
ξ
]

ηD,B = η0µ
( ||C||√

3

)χ[1
2
τ
(
1 + sign(D : C)

)
+ exp

(
||D||

)
ξ
]

ηD,C = 2η0C30

( ||C||√
3

)χ[1
2
τ
(
1 + sign(D : C)

)∣∣∣1− exp(||D||)
∣∣∣+ exp

(
||D||

)
ξ
]

The parameters p1 = [τ ;µ;C30; s0;χ]
T , determined in the �rst step of the optimization, also

serve to calculate the model response within the optimization process. However, they are kept
as identi�ed in the �rst step. The start values and the lower and upper limits of the parameters
to be varied in the second optimization step are plotted in Tab. 4.11.

Table 4.11.: Parameters for Maxwell elements Network A (k = 1 to 5)

lb -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

ξ ini -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

ub 1 1 1 1 1 1 1 1 1 1

Optimization - Step 3 In the third and �nal step of the parameter identi�cation, the same
input test data as used in the second step is utilized. However, the viscosity function is enriched
by two additional parameters, stored in the parameter vector p3 = [ζ; γ]T .

ηD,A = η0µ
( ||C||√

3

)χ[1
2
τ · exp
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−||T||
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)(
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)
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)
ξ
]

ηD,B = η0µ
( ||C||√

3
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)
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)
ξ
]

ηD,C = 2η0C30

( ||C||√
3

)χ[1
2
τ
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1 + sign(D : C)

)∣∣∣1− γexp(||D||)
∣∣∣+ exp

(
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As in the second step, the already identi�ed parameter vectors p1 and p2 are used to calculate
the model response but are not varied.

Table 4.12.: Parameters for Maxwell elements Network A (k = 1 to 5)

lb -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

ζ ini 0 0 0 0 0 0 0 0 0 0

ub 3 3 3 3 3 3 3 3 3 3

lb -3

γ ini 0

ub 3

After the third optimization step, all parameters are stored in the parameter-vector p =
[p1;p2;p3]. Tab. 4.13 and 4.14 contain all identi�ed material parameters, categorized according
to the individual networks.
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Table 4.13.: Parameters for Maxwell elements Network A (k = 1 to 5)

k 1 2 3 4 5

τ (k) [s] 12.11e-2 53.12e-2 51.94e-1 63.16e0 43.93e2

µ(k) [MPa] 25.90e0 73.25e-1 19.17e-1 52.06e-2 22.48e-2

χ(k) [-] 62.26e-1 62.26e-1 62.26e-1 62.26e-1 62.26e-1

s
(k)
0 [MPa] 24.20e-1 57.81e-1 21.83e-1 42.75e-1 15.65e-2

ζ(k) [-] 14.03e-2 30.84e0 42.14e-1 10.00e2 12.41e-3

ξ(k) [-] 11.34e-4 16.97e-4 30.24e-3 16.93e-4 95.07e-1

Table 4.14.: Parameters for Maxwell elements Network B (l = 1 to 4) and Network C (m =
1)

l 1 2 3 4

τ (l) [s] 17.49e3 11.92e4 10.24e5 10.01e6

µ(l) [MPa] 48.11e-3 72.13e-3 94.30e-3 63.65e-3

χ(l) [-] 62.26e-1 62.26e-1 62.26e-1 62.26e-1

ζ(l) [-] 74.37e-2 91.98e1 15.08e-1 36.04e-1

ξ(l) [-] 19.23e-2 10.00e-4 10.00e0 49.40e-2

m 1

τ (m) [s] 80.17e4

C
(m)
30 [MPa] 10.52e-3

χ(m) [-] 69.27e-1

γ(m) [-] 10.00e-1

ζ(m) [-] 21.04e0

ξ(m) [-] 38.74e-4

4.6. Model Calculation

After calibrating the parameters of the material model using the experimental data from Ch. 3,
the agreement of the calculation and the actual measurement are now checked in terms of recal-
culation and validation. For this purpose, the tests considered for the parameter identi�cation
are used for the recalculation, and further tests not considered for the parameter identi�cation
are used for the validation. In both cases, each input for the model calculation follows the
respective experimental test speci�cations. A comparison graph plotting the calculation and
experiment and an error graph plotting the measured and the calculated stresses against the
measured ones illustrate the quality of each calculation. In the best case, if the experiment and
calculation match precisely, the result is a line with a 45° angle.

4.6.1. Recalculation

The recalculation checks how well the parameter identi�cation worked using the same tests
used for model calibration as the basis for the calculation. If the results match precisely, the
model is validated for these tests. However, this does not necessarily mean that the model
works for test speci�cations or loads other than those of the calibration tests.

Tension-Tests until failure The comparison between the experimental data and the model
calculations for the tests until failure demonstrates an excellent agreement up to a strain of
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150 [%] and a stress level of 20 MPa, as shown in Fig. 4.26. Notably, the model's response
generally tends to be sti�er than the measured data. Especially for the highest strain rate of
0.1 [1/s], at higher strains, the calculation overestimated the stress of the experiment up to 20
[%].

Figure 4.26.: Tension until Failure - Comparison (left); Error (right)

Cyclic Tests The cyclic tests have been classi�ed into two pairs, characterized by the applied
strain rate and the turning point, where a "turning point" signi�es the speci�c strain level
reversing the loading direction.
In the �rst group, these tests share a consistent applied strain rate but exhibit variations in

their turning points. Remarkably, the agreement between the test data and the model calcu-
lations is decisive for the turning points corresponding to high strains. However, it is essential
to acknowledge that the relative error tends to increase for turning points associated with
more minor strains, as demonstrated in Fig. 4.27. Despite these variations, the model o�ers a
qualitatively accurate representation of the overall behavior. Notably, the model captures the
intricate shape of the hysteresis, illustrating the distinctive behavior during the transition from
loading to unloading, even for scenarios involving signi�cantly di�erent strain levels.

Figure 4.27.: Cyclic Tests at the same Strain Rate, loaded to di�erent Strain Levels - Com-
parison (left); Error (right)

The second group of tests comprises those with a turning point at the same strain level (150
[%]) but all undergoing varying strain rates. The model calculations exhibit a high agreement
with the experimental data in these tests, particularly for the cases with the highest strain rate.
However, as the strain level decreases, the agreement becomes less accurate. Nevertheless, it is
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essential to note that the qualitative behavior is well-replicated within this second group, just
as within the �rst group of tests (cf. Fig. 4.28).

Figure 4.28.: Cyclic Tests at di�erent Strain-Rates, loaded to the same Strain Level - Com-
parison (left); Error (right)

Tab. 4.15 displays the respective areas of the hystereses of the cyclic tests for the test results
and the model calculation. The size of the area indicates the amount of energy dissipated by
the material. The lower the strain rate and level of the turning point, the bigger the deviation
between calculation and experiment, a conclusion also drawn from the above graphs. A detailed
overview of the respective areas is depicted in the Appendix.

Table 4.15.: Areas of the single hystereses indicating the dissipated energy

Speci�cation AExperiment AModel
AModel

AExperiment
− 1

0.01, 50 0.2931 0.3698 0.2617

0.01, 100 1.2691 1.5682 0.2358

0.01, 150 4.2404 4.7169 0.1124

0.01, 200 11.2302 10.9004 -0.029

0.001, 150 1.4022 2.0208 0.4412

0.1, 150 7.5791 7.7073 0.0169

Relaxation Tests Several relaxation tests were carried out and categorized into two groups.
These groups di�er in the strain rate and the corresponding holding level, which is the point at
which the strain is kept constant. It should be noted that the tests used for the recalculation,
as with the parameter identi�cation, correspond to the tests with a holding time of three hours.
The �rst group comprises four tests, each corresponding to di�erent strain levels (50, 100, 150,

200 [%]) but approached with a consistent strain rate of 0.01 [1/s]. Notably, these particular
tests are synchronized with the cyclic tests performed at the same rate, and their turning points
align precisely with the strain levels encountered in the cyclic tests. The results exhibit excellent
agreement, as depicted in Figure 4.29.
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Figure 4.29.: Relaxation Tests loaded with the same Strain Rate up to di�erent Strain Levels
- Comparison: Normal Scale (left), Logarithmic Scale (right)

Figure 4.30.: Relaxation tests loaded with the same (left) and di�erent strain rate (right) up
to di�erent strain levels - Error

The second group comprises three relaxation tests, each conducted at varying strain rates:
0.1, 0.01, and 0.001, and each loaded to di�erent strain levels, speci�cally 100, 150, and 200.
Notably, the selection of these strain levels was designed to pair the highest strain level with the
lowest strain rate, and so on. This approach was adopted to investigate the distinct response
of the material for similar strain levels but under varying time histories. The relaxation tests,
conducted at various strain rates and levels, as shown in Figure 4.31, also demonstrate excellent
agreement.

Figure 4.31.: Relaxation Tests loaded with di�erent Strain Rates up to di�erent Strain Levels
- Comparison: Normal Scale (left), Logarithmic Scale (right)
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4.6.2. Validation

After successfully demonstrating the quality of the model concerning the recalculation of the
tests included in the parameter identi�cation process, this section aims to check the model's
transferability to loading con�gurations not taken into account in the parameter identi�cation.
Two test cases are analyzed for this purpose: The extension of the relaxation tests to 12
hours from series one and several test speci�cations with an applied constant displacement
rate presented in [193], which is currently under revision, and referred to as test series three.
The tests of test series three followed the same conditioning, using the same testing device
under the same climate as described in Sec. 3.1.1. However, these tests were carried out with
displacement control instead of strain rate control, utilizing an optical measuring device to
track the deformations.

Relaxation Tests - Test Series One The relaxation tests were carried out the same way as
in the previous section, whereby the holding time was increased from 3 to 12 hours. The results
are shown in Fig. 4.32 and Fig. 4.34 as comparison plots in standard and logarithmic scale,
the quality is demonstrated with the help of error plots (cf. 4.33 and 4.35).
The tests with the same strain rate (0.01 [1/s]) show excellent agreement for the holding

levels of 50 to 150 [%]. The curve agrees qualitatively for elongation of 200 [%] but deviates
signi�cantly more overall than the other tests, especially in the area of the �rst sti�ness drop.
In general, the deviation in the area of the �rst striking drop in sti�ness deviates more strongly
with increasing strain levels.

Figure 4.32.: Relaxation Tests loaded with the same Strain Rate up to di�erent Strain Levels
- Comparison: Normal Scale (left), Logarithmic Scale (right)
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Figure 4.33.: Relaxation Tests loaded with the same Strain Rate up to di�erent Strain Levels
- Error

The tests with di�erent strain rates and levels show a varying quality. The tests with the
highest strain rate (0.1 [1/s]) deviate more strongly at the beginning, in the area of the �rst
drop in sti�ness, and then adapt to the experimentally determined curve as the holding time
increases. The test with the lowest strain rate matches the material behavior from the exper-
iments excellently at the beginning but deviates more strongly as the holding time increases.
However, looking at the test curve in the logarithmic scale reveals a strong kink with a decreased
sti�ness, which may indicate an inconsistency during this test. As described in the previous
section, the test with the mean strain rate shows good agreement over the entire range, with
slightly overestimating the sti�ness in the initial range.

Figure 4.34.: Relaxation Tests loaded with di�erent Strain Rates up to di�erent Strain Levels
- Comparison: Normal Scale (left), Logarithmic Scale (right)
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Figure 4.35.: Relaxation Tests loaded with di�erent Strain Rates up to di�erent Strain Levels
- Error

Tension Tests - Test Series Three The tension tests used for validation were carried out
at two constant displacement rates of 5 and 50 [mm/min]. Fig. 4.36 illustrates the resulting
strain applied over time corresponding to the two displacement rates. It is pretty evident that
the strain over time courses, representing the strain rate, is no longer constant and, therefore,
di�ers from the speci�cations used for the parameter identi�cation.

5 [mm/min] 50 [mm/min]

Figure 4.36.: Test procedure for the tension tests at two di�erent di�erent displacement rates

Fig. 4.37 presents the experimental results, the model calculation, and the deviation between
experiment and modeling. There is an almost perfect match for the lower displacement rate
and an ideal coincidence for the high displacement rate up to a strain 200 [%]. However, For
higher strains, the deviation between model and experiment increases to 50 [%].
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Experiment

Model

5 [mm/min] 50 [mm/min]

Figure 4.37.: Tension tests with di�erent constant displacement rates - comparison (left);
error (right)

Cyclic Tests - Test Series Three The cyclic tests of series three show two decisive charac-
teristics: First, they were carried out with a constant displacement rate, which resulted in a
variable strain rate. Second, they have two loading and unloading cycles. Both conditions have
not been considered for parameter identi�cation, so these tests are ideal for validation. Two
distinct displacement rates were considered (O�ereins). Fig. 4.38 displays the test procedures
for a velocity of 5 and 50 [mm/min].

5 [mm/min] 50 [mm/min]

Figure 4.38.: Test procedure for the cyclic tests at two di�erent displacement rates

Fig. 4.39 shows the experimental and modeling results concerning the low displacement rate.
The model results excellently reproduce the test results on the loading paths, but there is a
more signi�cant deviation in the unloading paths. However, the qualitative behavior coincides
quite well.
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Experiment

Model

Figure 4.39.: Cyclic test at 5 [mm/min] displacement rate - comparison (left); error (right)

Fig. 4.40 presents the results for the higher strain rate, showing a perfect coincidence for
the �rst loading path but with a more signi�cant deviation for the second path, especially in
the beginning. However, the representation of the test results on the unloading path is better
concerning the higher displacement rate than the lower one. Again, the qualitative behavior is
presented excellently.

Experiment

Model

Figure 4.40.: Cyclic test at 50 [mm/min] displacement rate - comparison (left); error (right)

Relaxation - Test Series Three The relaxation test approached with a displacement rate
of 50 [mm/min] follows the test speci�cation illustrated in Fig. 4.41, concerning standard and
logarithmic representation.

Figure 4.41.: Test procedure for the relaxation test achieved at a displacement rate - standard
scale (left); logarithmic scale (right)
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The results show pretty similar courses, which excellently represent qualitative behavior.

Experiment

Model

Experiment

Model

Figure 4.42.: Relaxation test - comparison in standard scale (left); in logarithmic scale (right)

However, glancing at Fig. 4.43, the modeling results show lower stresses over the whole
course.

Figure 4.43.: Relaxation test - Error

4.6.3. Precalculation

Relaxation tests are now simulated over 24 hours to visualize the material at the end of a
residual load-bearing capacity test. The strain levels are approached at a strain rate of 0.01
[1/s] and kept constant at the corresponding level. Figs. 4.44 and 4.45 illustrate the simulation
results in standard and logarithmic representation, with the respective strain levels shown in
the legends of the �gures.
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Figure 4.44.: Stress over Time: normal scale (left); logarithmic scale (right)

Figure 4.45.: Stress over Time: normal scale (left); logarithmic scale (right)

Taking each stress-strain pair at the end of a relaxation test, i.e., after a simulated time of
24 h, and plotting them in a stress-strain diagram, the result is similar to that shown in Fig.
3.29.

Figure 4.46.: Stress over Strain (left); strain/stress pairs at 24 h (right)
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After introducing the complex material model describing PVB at �nite strains, three simpli�ed
approaches are presented to assess the problem of residual load-bearing capacity. The �rst
approach utilizes a hyperelastic model based on the evaluation of the staircase test (cf. Sec.
3.3.5.1) and has already been published in Pauli and Siebert [199]. The second approach
presents a model describing the residual load-bearing capacity of coarse-breaking laminates
and is based on a simpli�ed version of the general model presented in Ch. 4. Within the third
part a simpli�ed approach concerning a one-dimensional failure criterion is presented.

5.1. Hyperelastic Approach

The hyperelastic approach, originally published in [199], follows the assumption that a poly-
meric material subjected to prolonged processes can be described by the laws of elasticity. The
evaluation of the staircase test provided a procedure to evaluate the response of PVB for such
slow processes (cf. Sec. 3.3.5). Within the presented approach, a hyperelastic Yeoh model is
calibrated on the curve evaluated from the staircase test (cf. 3.29 (right)). Tab. 5.1 presents
the respective material parameters. The commercial FEM program Ansys (version 2023 R1)

Table 5.1.: Material Parameters for Hyperelastic Approach

C10 C20 C30 κ

0.0823 0.0205 0.0012 100

0.0823 0.0205 0.0012 0.02

[8] served for the following simulations.
A FEM simulation, based on the calibrated material parameters, is carried out using the

geometry of specimen Typ B. Only a quarter of the plane (without considering the clamped
area) and half the thickness of the specimen is modeled to save computation time. Fig. 5.1
shows the respective boundary conditions that ensure the requirements concerning symmetry
and that all planes considered only move in the desired direction.
A comparison of the resulting strain-stress curve and the evaluated points from Fig. 3.29

illustrates the goodness of the simulation. Tab. 5.2 presents the setup of the numerical model:

Table 5.2.: Properties of the FEM model

Elementype Solid185, fully integrated with B̄ method, mixed u-P formulation

Elementsize 1 [mm]

Elementshape rectangle

Solver EQSLV Sparse, LNSRCH On
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Tracking Point
Fixed Displacement
Fixed Rotation
Applied Displacement
Coordinate Direction

y z
x

Figure 5.1.: Boundary conditions of FEM model (cf. [199])

Fig. 5.2 shows the intersection points evaluated from the experiments along with the linear
extrapolation (cf. 3.3.5.1) and the result of the numerical simulation. The comparison of
simulation and evaluated points leads to a decent coincidence.

Figure 5.2.: Modeling Result

5.2. Simpli�ed Residual Load Bearing Model

To directly use the derived material model for engineering practice without a FEM implemen-
tation, in the following a simpli�ed approach, similar to that proposed by Kott [157], Belis
et al. [19], Botz et al. [31], is presented. In contrast to the approach presented by Belis et al.
[19], this model does not account for delamination.
The overall assumption is that coarse-breaking glass commonly forms only a few critical cracks

that cause the collapse of the whole structure. The fracture pattern is predominantly in�uenced
by the loading situation and the support conditions. For two-sided supported glass panes, the
most critical breakage pattern is a single crack in the middle of the supports. This pattern was
observed by Kott [157] and denoted as line mechanism L1. Similar considerations were carried
out by Franz [107], who utilized the TCB test to investigate this condition experimentally. Botz
[30] built up on these investigations. By assuming a perfectly coincident crack, a �ow joint is
formed along the crack. This joint consists of a pair of forces consisting of the broken edge of
the glass and the interlayer. As the glass is sti�er by magnitude compared to the interlayer, the
tensile forces taken by the interlayer are critical and accurate material modeling is compulsory.
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Belis et al. [19] and Kott [157] assumed constant yield stress within the interlayer and assumed
plastic material laws. Belis et al. [19] extended the approach of [157] by taking into account
delamination. However, as plasticity does not cover time-dependent behavior, decisive e�ects
are left out by these approaches.

Network A Network B Network C

Figure 5.3.: Reduced Network model based on Maxwell elements

The model presented in the following is a simpli�ed version of the model derived in Ch. 4
and accounts for time-dependent e�ects. For this simpli�ed approach, the last Maxwell element
of Network A is removed and the viscosity functions aligned to the networks are reduced to the
following description:

ηD,A = η0µ
( ||C||√

3

)χ[
τ · exp

(
−||T||

s0

)]
ηD,B = η0µ

( ||C||√
3

)χ[
τ
]

ηD,C = 2η0C30

( ||C||√
3

)χ[
τ ·
∣∣∣1− exp(||D||)

∣∣∣+ 1
]
,

These descriptions coincide with the representation of the viscosity functions utilized for the
�rst step of the parameter identi�cation (compare Sec. 4.5). As the �rst step of the parameter
identi�cation revealed a good result regarding the description of the relaxation behavior, it
seems promising for the following considerations. Tab.s 5.3 and 5.4 summarize the material
parameters identi�ed in the �rst step of the optimization procedure. As η0 is set to be equal to
one, it is not listed in the subsequent tables. Fig. 5.4 illustrates the modeling of the relaxation
tests utilizing these material parameters compared to the experimental results.

Table 5.3.: Parameters for Kelvin Voigt elements Network A (k = 1 to 5)

k 1 2 3 4

τ (k) [s] 12.11e-2 53.12e-2 51.94e-1 63.16e0

µ(k) [MPa] 25.90e0 73.25e-1 19.17e-1 52.06e-2

χ(k) [-] 62.26e-1 62.26e-1 62.26e-1 62.26e-1

s
(k)
0 [MPa] 24.20e-1 57.81e-1 21.83e-1 42.75e-1

Fig. 5.4 emphasizes the accuracy of the simpli�ed material model in describing the relaxation
behavior of PVB.
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Table 5.4.: Parameters for Kelvin Voigt elements Network B (l = 1 to 4) and Network C (m
= 1)

l 1 2 3 4

τ (l) [s] 17.49e3 11.92e4 10.24e5 10.01e6

µ(l) [MPa] 48.11e-3 72.13e-3 94.30e-3 63.65e-3

χ(l) [-] 62.26e-1 62.26e-1 62.26e-1 62.26e-1

m 1

τ (m) [s] 80.17e4

C
(m)
30 [MPa] 10.52e-3

χ(m) [-] 69.27e-1

Figure 5.4.: Comparison between simpli�ed model and relaxation experiment

It is common practice to formulate viscoelastic material models concerning strains as driving
quantities [236, 226]. However, the load-bearing capacity of laminated safety glass is governed
by creep loads, which makes a direct application of the model, formulated with respect to strains
utilizing the rheological assumptions of the Maxwell model, complicated. However, the Kelvin
Voigt model utilizes stresses as driving forces and, therefore, seems promising for the following
approach. From a rheological point of view, the spring and damper elements connected in series
are replaced by spring and damper elements connected in parallel (compare Fig. 5.5).

Network A Network B Network C

Figure 5.5.: Reduced Network model based on Maxwell elements

In the following, incompressible material behavior is assumed, and only the uniaxial stress
state is considered. Due to the incompressibility constraint, it is further assumed that the
evolution equations representing the time-dependent stretch of the model follow a deviatoric
formulation. This assumption is directly connected to the evolution equations based on the
Maxwell model. Furthermore, the evolution equation is formulated on the reference con�gura-
tion. Due to the di�erent structure of the model, resulting in equal deformations for spring and
damper, a multiplicative split of the deformation gradient is no longer necessary. The governing
equation for a single Kelvin Voigt element considering only the deviatoric parts of the second
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Piola Kirchho� stress tensor, results in:

dev(T<xx>) = dev(T<xx>
el ) + dev(T<xx>

in ) (5.1)

The general description of the deviatoric stress tensor considering only uniaxial loading yields:

dev(T) =


2
3
T<xx> 0 0

0 −1
3
T<xx> 0

0 0 −1
3
T<xx>

 (5.2)

(5.3)

Following Eq. 5.2, the driving stress, results in:

dev(T<xx>) =
2

3
T<xx> (5.4)

The deviator of the elastic part of the stress, represented by the spring, with respect to an
uniaxial stress state, leads to

dev(T<xx>
el ) = 2

∂Ψiso(C)

∂IC

[
1− 1

3
(C : 1)C−1

]
= 2

∂Ψiso(C)

∂IC

[
1− 1

3
(1+

2

λ3
)
]
=

4

3

∂Ψiso(C)

∂IC

[
1− 1

λ3

]
(5.5)

where λ = λel = λin. The deviator of the inelastic part of the stress, represented by the
dashpot, equals the product of the viscosity function and the time derivative of the �rst entry
of the Green Lagrange strain tensor.

dev(T<xx>
in ) =

2

3
ηĖ<xx> =

2

3
η
1

2
Ċ<xx> =

2

3
η
1

2
(λ̇λ+ λλ̇) =

2

3
ηλ̇λ, (5.6)

Merging Eq.'s 5.4 to 5.6, yields

2

3
T<xx> =

4

3

∂Ψiso(C)

∂IC

[
1− 1

λ3

]
+

2

3
ηλ̇λ (5.7)

Rearranging Eq. 5.7 results in the formulation of the evolution equation of the stretch:

λ̇ =
1

η

[T<xx>

λ
− 2

∂Ψiso(C)

∂IC

(1
λ
− 1

λ4

)]
(5.8)

The total model, considering all networks and utilizing the Biot strain as output, leads to the
following:

B<xx> =
4∑

k=1

[
λ(k) − 1

]
+

4∑
l=1

[
λ(l) − 1

]
+

1∑
m=1

[
λ(m) − 1

]
(5.9)

λ̇(k) =

T<xx>

λ(k) − µ(k)
(

1
λ(k) − 1

λ4,(k)

)
η
(k)
0 µ(k)

(
||C||√

3

)χ(k)[
τ (k) · exp

(
− ||T||

s
(k)
0

)] (5.10)

λ̇(l) =

T<xx>

λ(l) − µ(l)
(

1
λ(l) − 1

λ4,(l)

)
η
(l)
0 µ(l)

(
||C||√

3

)χ(l)[
τ (l)
] (5.11)

λ̇(m) =

T<xx>

λ(m) − 6C
(m)
30 (IC − 3)2

(
1

λ(m) − 1
λ4,(m)

)
2η

(m)
0 C

(m)
30

(
||C||√

3

)χ(m)[
τ (m) ·

∣∣∣1− exp(||D||)
∣∣∣+ 1

] (5.12)
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The single di�erential equations, Eq. 5.9 is depending on, are solved with the same Euler
backward integration scheme as utilized for the model based on Maxwell elements (cf. Sec.
4.3). For evaluation of the model, a creep process presented by [193], which is currently under
revision, is predicted by the model. Fig. 5.6 and 5.7 show the results. The qualitative course
is matched in a satisfying way. However, there are deviations between the curves.

Figure 5.6.: Comparison of Creep Test and Experiment in standard and log scale

Figure 5.7.: Modeling Result

In addition to the validation calculation, di�erent load cases were calculated. Each of the
loads was approached with a force rate of 1 [N/s]. Fig. 5.8 shows the results of the numerical
example, considernig creep loads of 25, 50, 100, 200, and 300 [N] for a duration of 24 [h].

Figure 5.8.: Precalculation of Creep Test for �ve di�erent loads in [N]
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As the approach was validated for the uniaxial stress state, it is transformed to the planar
tension state to match the requirement of the considered application more precisely. The total
model, considering planar tension, results in:

B<xx> =
4∑

k=1

[
λ(k) − 1

]
+

4∑
l=1

[
λ(l) − 1

]
+

1∑
m=1

[
λ(m) − 1

]
(5.13)

λ̇(k) =

T<xx>

λ(k) − µ(k)
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η
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0 µ(k)
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3
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0
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λ̇(l) =

T<xx>
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η
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] (5.15)

λ̇(m) =

T<xx>

λ(m) − 3C
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30 (IC − 3)2
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λ4,(m)

)
2η
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0 C
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30

(
||C||√

3

)χ(m)[
τ (m) ·

∣∣∣1− exp(||D||)
∣∣∣+ 1

] (5.16)

This simpli�ed material can now be used for the residual load-bearing model to describe the
deformation within the interlayer caused by force-driven loading situations. Fig. 5.9 shows
the underlying kinematic considerations. The overall system is idealized as a combination of
two simple truss structures. On top of Fig. 5.9, the overall system is depicted. It consists of
two trusses, assumed to be completely rigid, connected by a joint. Furthermore, it is assumed
that the trusses can slide o� the bearings if the de�ection in the middle surpasses a particular
limit. The joint is represented by a force pair consisting of a pressure share represented by
the glass edges and a tensile component represented by the interlayer. The kinematic of the
joint is idealized by another truss model consisting of a completely rigid component in the
vertical direction and a deformable component in the horizontal direction. The deformable
truss element is governed by the material model represented in Eq.'s 5.13 to 5.16. The overall
structure (in the following referred to as the global model) and the representation of the joint
(in the following referred to as the local system) share the same kinematics. Therefore, the
angle α calculated in the local system leads to the displacement in the overall system.

F

FH(t)

d

d

u(t)

α(t)

u(t)

w(t)

α(t)

α(t)

l L

Figure 5.9.: Kinematic of the simpli�ed residual load-bearing model
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The equations describing the kinematic are summarized in the following:

sin(α(t)) =
u(t)

d
(5.17)

cos(α(t)) =

√
d2 − u(t)2

d
(5.18)

FH(t) = F cos(α(t)) sin(α(t)) = F
u(t)

√
d2 − u(t)2

d2
(5.19)

w(t) = tan(α(t))l (5.20)
(5.21)

To start the kinematic, an initial deformation u(t = 0) = u0 must be assumed, which is
considered the interlayer's initial length. By placing a load on the system, the deformation u(t)
increases over time according to the material model, represented in Eq.'s 5.13 to 5.16. Botz
[30] proposed similar kinematic considerations but did not utilize a time-dependent material
model to describe the interlayer. With Eq.'s 5.17 to 5.20, utilizing the kinematic within the
lokal system, all de�ections in the global system can be calculated. Two cases for the collapse
of the system can be de�ned:

� the stress within the interlayer reaches the yield stress (cf. Sec. 5.3)

� the de�ection increases so much that the trusses slip of the supports (if
√
w(t)2 + l2 ≥ L)

5.3. Failure

A material model describing the time-dependent behavior of PVB at �nite strains within the
intact state has been successfully developed, veri�ed, and validated. However, for the actual
design of the material, the intact state and the failure must be considered. The 46 tensile tests
at seven di�erent strain rates conducted until failure serve as a promising database. All stresses
and strains at failure were already evaluated in Sec. 3.3.2. However, in the following sections, a
more precise evaluation will be carried out considering the overall distribution of the data and
suggestions for a failure criterion on the design level according to DIN EN 1990:2021-10 [81].
The test results revealed that the stresses at failure are distributed almost horizontally while

the strains at failure increase with decreasing strain rate. Noteworthy, 1stPK stresses, and Biot
strains were considered at this time. At �rst glance, utilizing the stress at failure seems most
promising, as it is constantly distributed over the strain rates. However, a failure criterion on
the 1stPK stress is not suitable for covering the material's behavior exposed to creep loads, as
it does not consider the actual deformation of the specimens. Utilizing the failure Biot strain
would account for creep loads, but it would also mean including the strain rate in the failure
criterion, a requirement that would complicate the approach. The Cauchy stress, on the other
hand, combines the advantages of both as it accounts for creep loads and can be summarized
into one value.
For the following considerations, the Cauchy stresses at failure are assumed to follow a

lognormal distribution with the my,F = 4.5179 and sy,F = 0.0974. This assumption is based on
the statistical evaluation within Sec. 3.3.2.1. Although the Burr distribution approximated the
data the best, the lognormal was preferred as it is a common approach in structural engineering
practice.
Based on the semi-probabilistic design concept (DIN EN 1990:2021-10 [81], level I), a charac-

teristic strength value and a partial safety factor are calibrated for PVB. DIN EN 1990:2021-10
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[81], Eq. D.1, under the assumption of a lognormal distribution reads:

Xd = ηd
Xk

γm
=

ηd
γm

exp(my − knsy) (5.22)

whereXk is the characteristic strength value represented by the 5 [%] quantile, ηd is a conversion
factor accounting for the kind of experiment and the type of material. Solving Eq. 5.22 for
the characteristic quantity Xk under the consideration of lognormal distribution leads to the
characteristic failure strength of the material. With kn according to DIN EN 1990:2021-10 [81],
Tab. D.1, for an unknown coe�cient of variation Vx and a database with more than 30 values,
the characteristic Cauchy stress of PVB at failure leads to:

Xk = exp(my,Fal. − knsy,Fal.) = exp(4.5179− 1.645 · 0.0974) = 78.08[MPa] (5.23)

According to DIN EN 1990:2021-10 [81], Eq. C.12, for an actual design, the structural resis-
tance, derived by utilizing the factor γRd covering modeling imprecisions, in addition to the
factor γm covering material uncertainties, must be considered.

Rd = R
1

γRd

(
ηd
γm

Xk) (5.24)

The equation for the partial safety factor results in [98]:

γM =
γRdγm
ηd

=
1

ηd
exp(αRβVR − knVF ) (5.25)

According to DIN EN 1990:2021-10 [81], Eq. C.7, under full�lling

0.16 <
σE

σR

< 7.6 (5.26)

the resistance weighting factor results in αR = 0.8 and β = 4.7 under the assumption of a
Resistance Class RC2 considering a target value of the reliability index for one year (DIN EN
1990:2021-10 [81], Tab. C.2). To evaluate the variance of the model V arM , the experimentally
explored failure stresses were compared to the one calculated by the model. The design value
of the failure strength served as the basis for the comparison. However, as the variance of the
model directly in�uenced the calculation of the partial safety factor, which again in�uenced
the design strength, the evaluation of V arM was carried out iteratively. The variance of the
geometry V arG was evaluated according to the parameters presented by [159] who investigated a
mean value of mx,G = 0.767 [mm] with a standard deviation of sx,G = 0.009 [mm] for geometric
measurements of PVB samples. The material variance follows from the failure stresses. In
total, the following variances arise [97]:

V arF =
√
exp(s2y,F )− 1 = 0.0976

V arG =
sx,G
mx,G

=
0.009

0.767
= 0.0117

V arM =

√
1

n−1
(xi,M −mx,M)2

mx,M

= 0.0660

V arR =
√

V ar2F + V ar2G + V ar2M = 0.1184

Considering all these values, the partial safety factor results in the following value [97]:

γM = eαβV arR−knV arF = e0.8·4.7·0.1184−1.645·0.0976 = 1.3294 (5.27)
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The value ηd is a scaling factor [97] which is assumed to be equal to one as the evaluated tests
are close to the real application considered to be con�guration described in Sec. 5.2. The design
value of the resistance results in:

Xd =
Xk

γM
=

78.0770

1.3294
= 58.7294[MPa] (5.28)

Fig. 5.10 shows the design value utilizing the 5 [%] quantile of the Cauchy stress as failure
criterion as the limit of the curves of the experimental results and the modeling results. On the
left, Cauchy stresses are depicted; on the right, 1stPK stresses. It is obvious that only utilizing
the Cauchy stress accounts for the variation in failure strains with respect to the applied strain
rate.

Figure 5.10.: Statistical evaluation of failure stress
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The residual load-bearing capacity of laminated glass is a topic that is receiving more and
more attention with the increased use of glass as a load-bearing element. An experimental
investigation of it is currently common practice but is very time and cost-consuming. A the-
oretical examination of the residual load-bearing capacity of laminated glass would be a more
sustainable approach. However, although it would be allowed by CEN/TS 19100-2:2024-01
[45], a reliable modeling approach still needs to be addressed. Due to the interaction between
the polymeric interlayer and the brittle breaking glass, various complex mechanisms must be
considered, and it is a very complicated task to theoretically describe the residual load-bearing
behavior of laminated glass. Depending on the degree of glass toughening, di�erent patterns
arise during breakage [158, 207], that lead to di�erent characterization approaches. Most ap-
proaches to describe the residual load-bearing behavior are analytical [157, 19, 110, 111, 112].
However, there also exist some numerical approaches [15, 265]. Regarding the analytical ap-
proaches, the residual load-bearing behavior of laminates made from coarse breaking glasses is
described explicitly [157, 19] while laminates made from �ne breaking glass are described with
an equivalent sti�ness [110, 111, 112]. The numerical approaches use a description via DEM
or FEM/DEM. Either way, the interlayer plays a crucial role, being the ligament between the
broken glass shards [67].
Therefore, it is essential to characterize and describe the interlayer under the circumstances

of a broken laminate. The experimental investigation of the residual load-bearing behavior
according to the DIN 18008-1:2020-05 [68] reveals two main characteristics: the large defor-
mation of the interlayer and its dependency on time. There are some investigations of the
relaxation [231] and creep behavior [30] as well as investigations on the unloading behavior
[103]. However, several aspects, such as considering the rate dependency for relaxation or creep
or di�erent load levels for the unloading behavior, still need to be included. Furthermore, the
previously mentioned modeling approaches, which use linear elastic [110, 111, 112] or elasto-
plastic [157, 19, 15, 265] models for the interlayer do not describe its complex behavior su�-
ciently. Even approaches commonly used to describe the interlayer alone such as hyperelasticity
[165, 159], linear viscoelasticity [30], and �nite linear viscoelasticity [203, 2] are not su�cient
to describe PVB [103]. On the other hand, several modeling approaches for di�erent materials
can qualitatively describe some individual characteristics of PVB [33, 34, 236, 226, 279, 228].
However, to the author's knowledge, no material model is precisely tailored to the complex
material behavior of PVB so far. Therefore, this work aimed to �rst characterize the PVB
with respect to large deformations and time dependency and, afterward, to design a model to
describe the observed material behavior.
Following DIN EN 1990:2021-10 [81], there are two fundamental components for a design con-

cept of the residual load-bearing capacity of laminated safety glass: The impacts on the laminate
and its respective response in the fully fractured state and the corresponding resistance. There-
fore, two required explorations arise: The investigation and modeling of the material behavior
in its intact state and the investigation and modeling of failure. In this context, it is important
to note that intact means the undamaged state of the fully fractured laminate, and failure
means its collapse. More precisely, the intact state and failure of the PVB were investigated in
this study. However, the following part is organized into experiments, modeling, and engineer-
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ing approaches. The experiments and the modeling are only discussed for the intact state, as
the failure is discussed within the section concerning the engineering approaches.

6.1. Experiments

The experimental investigations of the intact state aimed to explore the behavior of PVB up
to �nite strains under the consideration of time dependency. This examination should provide
a sound basis for a mechanical description of PVB in the context of the impact on the load-
bearing capacity of LSG in the fully broken state. In line with DIN 18008-1:2020-05 [68], the
testing conditions were limited to a temperature of 20 [◦C] and 50 [%]. However, it must
be mentioned that each specimen was conditioned to this climate, but the humidity within
the test container could not be controlled and took values of 65±5 [%rH]. As the focus was
on the time dependency of the material, the exploration was limited to the uniaxial stress
state. This assumption goes along with previous investigations on PVB [165, 103, 30, 231]. For
coarse-breaking glass, the only con�guration showing residual load-bearing capacity with PVB
interlayer [157], the predominantly deformation state is uniaxial or planar tension. For several
polymers, planar tension and uniaxial cause similar stresses, with planar tension achieving
slightly higher stresses [251]. More precisely, the investigations were carried out on specimens
punched out from sheets of Trosifol®UltraClear - B200NR PVB in the geometry proposed by
Becker [18].
The experimental study was categorized into three parts, each governed by a phenomenon

directly aligned to the Frobenius scalar product of the deformation rate tensor and the right
Cauchy Green tensor (D : C). Thereby, values greater than zero indicated loading (group 1),
values smaller than zero unloading (group 2), and values equal to zero constant loading (group
3). The tests of group 1 were carried out until failure at seven di�erent strain rates, equally
distributed from 0.001 to 0.1 [1/s]. The tests of groups 2 and 3 were conducted at the strain
rates 0.1, 0.01, and 0.001 [1/s], loaded to di�erent strain levels. All tests were carried out
with the universal testing machine Z2.5 manufactured by ZwickRoell GmbH & Co. KG, and
the deformation of each specimen during the test was measured by a mechanical extensometer
directly attached to the specimen at the respective measuring distance (cf. Sec. 2.6.2.5). A
special feature of that extensometer was the utilization by the testing machine to measure and
control the size and rate of displacement applied to the specimen. The rate was constantly
related to the initial measuring length. This way of controlling the velocity of the test has a big
advantage over control via the crosshead bar of the machine, that observed e�ects can be directly
related to a constant strain rate, which is the driving quantity in rheological considerations (cf.
Sec. 2.2.4). To further categorize and evaluate the experimental results gained by the study that
was presented in Ch. 3, they are compared to results that were obtained from other research
groups currently and over the last years. The considered investigations are summarized in detail
in Ch. 3. Nevertheless, the main �ndings are presented in the following. However, the behavior
of PVB depends on several e�ects, such as precise chemical composition, temperature, humidity,
loading time, and strain rate, which make a comparison of di�erent studies a challenging task.
Although the general chemical composition of standard PVB is equal for any manufacturer,

individual products vary slightly from one manufacturer to another. These minor di�erences
in the composition, however, can in�uence the material behavior. Within the studies under
consideration, several materials, such as Butacide®[22], S-LEX�[140], Solutia®RB-41 [134],
Trosifol®BG [165, 30, 43], and Sa�ex®RB-41 [64, 152, 231], were investigated.
Besides the chemical formulation of the respective materials, the geometry of the specimens

varied among the studies considered. When considering the strain rate as a comparative feature,
the displacement rate of the testing machine and the reference length utilized to derive the strain

139



6. Discussion

inside the specimen must be taken into account to calculate the strain rate. However, di�erent
samples have di�erent reference lengths, and therefore, di�erent strain rates are found when
considering the same displacement rate. In other words, the specimen's geometry directly a�ects
the applied strain rate for displacement-controlled tests. Nevertheless, Kuntsche [165], Botz
[30], Schuster [231] utilized the shape proposed by Becker [18], Iwasaki and Sato [140], Liu et al.
[172] chose the specimen JIS 2 according to JIS K 7113:1995 [145], Hooper et al. [134], Del
Linz et al. [64] chose the Typ 2 according to [36], [270] employed specimens according to DIN
53504:2017-03 [71], and Centelles et al. [43], Knight et al. [152] used specimens according to
ASTM D638-10:2010 [13].
A further decisive parameter is the device measuring the deformation during the test. The

most common approach is a digital recording of the deformation using optical extensometers
[22, 140, 134, 172, 165, 270, 64, 103, 152, 231]. Therefore, common practice is to apply the
displacement rate via the control of the crosshead of the testing machine and to track the
corresponding strains. However, this procedure makes a comparison between the individual
test results quite challenging, as some authors name displacement rates [165, 140, 172, 152]
and others name strain rates [22, 134, 64, 270] although it is not clear how the strain rate is
evaluated. The control of the displacement during the test is directly aligned with measuring
the deformation. However, with the common procedure in optical measuring, it is impossible
to apply a constant strain rate with respect to the reference measuring length, and, as a
consequence, the strain rates of the specimens with di�erent reference lengths di�er.
The last and most crucial in�uence parameter is the testing climate. Of the considered

researches from literature, Hooper et al. [134] conducted their tests at 25±3 [◦C] without
specifying the humidity, Kuntsche [165] at 22.5±0.5 [◦C] and humidities of 40±10 [%rH], Xu
et al. [270] at 23 [◦C] and humidities 25±5 [%rH], Del Linz et al. [64], Elzière [103] at 20 [◦C]
without specifying humidity, Centelles et al. [43] at 24 [◦C], Knight et al. [152] room climate,
and Schuster [231] at 20 [◦C] and 50 [%rH]. These slight variations have a crucial in�uence
on the material behavior, as the respective temperatures are within the glass transition region,
which shows a very steep gradient in sti�ness. Furthermore, as discovered by Botz [30], changes
in humidity can also in�uence material behavior decisively.
All these factors in�uence the results and make the comparison between di�erent research

groups a very challenging task. However, concerning the tensile tests [22, 140, 172, 134, 165,
270, 64, 43, 152], it is noticeable that all curves show the same characteristics. They show
a strongly rate-dependent initial sti�ness, followed by a decisive sti�ness reduction and an
almost horizontal region for intermediate strains, and a substantial increase of sti�ness for
large strains until failure. Furthermore, the tests all lie in the same range of values. The
cyclic tests, consisting of one loading curve followed by an unloading curve, follow the same
behavior as the tensile tests until the turning point is reached. The behavior on the unloading
is characterized by a steep sti�ness drop, followed by an asymptotic approach to zero. The test
results of Elzière [103] and the results of this thesis are in good agreement. They are comparable
as both test series were carried out at 20 [◦C] and the same strain rates. However, [103] used
an optical extensometer and did not specify the used material nor the humidity during testing,
all likely causing the slight variation between the test results. The relaxation tests follow the
same behavior as the tensile tests until the constant strain level is reached and the stress drops
immediately, followed by a slow increase of stress. The tests of Elzière [103], Schuster [231],
and the ones carried out in this work were approached with di�erent rates, a fact which makes
a comparison di�cult as the relaxation behavior strongly depends on the initial strain rate (cf.
Sec. 3.3.4). However, the curves show good agreement, especially with the ones of Schuster
[231].
Overall, the experiments revealed excellent results with slight variations between the single
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samples of one procedure (cf. App. A). The test results serve as a sound basis for characteriz-
ing PVB interlayer considering time-dependent behavior at large deformations under di�erent
loading conditions, such as tension until failure, cyclic, and relaxation, all conditions concerning
di�erent strain rates and, relating to the cyclic and residual tests, to di�erent strain levels. Fur-
thermore, this experimental study reveals decisive insights into laminated safety glass's overall
residual load-bearing behavior as the interlayer plays the most crucial role. Following Kott
[157], laminated with PVB interlayer only shows residual load-bearing capacity when made of
coarse-breaking glasses. As the fracture follows a stochastic pattern, with only a few critical
cracks, depending on the support conditions, uniaxial stress is the predominant state observed
within the interlayer. This stress state aligns with uniaxial or planar tensile deformation de-
pending on the geometric boundary conditions.
However, there are also situations where the interlayer is exposed to stress states other

than uniaxial, which are not covered by this experimental campaign. Furthermore, only one
particular temperature and humidity were investigated, limiting the experimental �ndings to
this speci�c condition. As it is commonly done in investigating material behavior and modeling
it, the strain was the driving quantity, limiting the tests over a long duration to relaxation
without considering Creep tests.

6.2. Modeling

In line with the experimental investigations and according to [81], also the modeling is catego-
rized into the response of the fully fractured laminate to external impacts and its corresponding
resistance. The e�ect on the laminate is directly connected to the impact on the interlayer and
is referred to as the intact behavior in the following. The resistance is described by a failure
criterion based on the experimental investigations. However, considerations regarding failure
are presented in Sec. 6.3.3.
The presented model for describing PVB with respect to �nite strains and time-dependent

e�ects is based on the general structures proposed by Reese and Govindjee [214], Middendorf
[180]. From a rheological point of view, it consists of 10 Maxwell elements in parallel. These
elements follow the same fundamental concepts as described by the theory of linear viscoelas-
ticity; however, they are transformed to �nite deformation utilizing a multiplicative split of
the deformation gradient into an elastic and inelastic part, and the concept of Dual Variables
established by Haupt and Tsakmakis [126]. Furthermore, the elements consist of hyperelastic
springs and nonlinear dampers. Following the network concept proposed by Bergström and
Boyce [25], Boyce et al. [34], the Maxwell elements are categorized into three networks, A, B,
and C, each represented by an individual energy potential and viscosity function. The indi-
vidual viscosity functions are designed based on phenomenological considerations drawn from
the experimental results. Particular components of the viscosity functions represent respec-
tive e�ects and are described as scalar-tensor functions. The right Cachy Green tensor C, the
deformation rate tensor D, and the 2nd Piola Kirchho� stress tensor T are utilized. Some of
these components were speci�cally designed for this model; others were adapted from litera-
ture. These criteria are all based on scalar tensor-functions: A function depending on C utilized
to represent the sti�ness increase for large deformations was adapted from Sedlan and Haupt
[236], a function based on T to model the sti�ness drop directly following the initial material
response from Lion [169], and function containing D from Sche�er et al. [226]. In addition, each
viscosity function is multiplied by a scalar value, designed to consider temperature in�uences
but not utilized in this work.
Furthermore, two components utilizing the strain rate tensor were particularly designed for

this model. Overall, the deformation rate tensor is used as an indicator for di�erent loading
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situations, directly aligned to the three groups of experiments. The energy function of networks
A and B is based on the Neo Hookean potential, and the energy function of network C is based
on a modi�ed Yeoh potential [226]. This model covers rate dependency, loading, unloading,
and relaxation. While many of these parameters lack physical signi�cance, they in�uence the
shape of the viscosity function. The model incorporates 10 Maxwell elements and 45 material
parameters, a considerable number attributable to the diverse phenomena being described and
the time-dependent behavior over an extended period. Ensuring a smooth progression of the
material response necessitates modeling roughly one Maxwell element per time decade. The
number of Maxwell elements follows the consideration of the generalized Maxwell model, which
describes time-dependent material behavior ranging over several decades. It is aligned to the
representation of the interlayer for small deformations using a Prony series [165, 161, 231]. As
the model is based on phenomenological considerations, predicting material behavior beyond
the limits considered for model calibration should be done with caution.
This model di�ers from established models in the �eld of polymer mechanics. In contrast to

models describing elastomers [169, 25, 236, 226, 149], it does not utilize an in�nity sti�ness.
In�nity sti�ness is not confused with in�nite sti�ness and represents the material process at
in�nite slow processes or in�nite long loadings. This coincides with the general behavior of
thermoplastics as non-crosslinked polymers. Compared to the presented model, the models
designed for thermoplastics [33, 34, 184, 279] are based on viscoplastic formulation. This aspect
contradicts the observations of Kuntsche [165], Schuster [231], who discovered that PVB is
purely viscoelastic. In addition, the presented model follows readily designed viscosity functions
that are particularly tailored to describe the behavior of PVB. Furthermore, the presented
model comprises a considerably higher number of Maxwell elements.
In structural glass design, the predominant modeling approaches for PVB under large defor-

mations considering quasistatic loads have traditionally centered around hyperelasticity. Note-
worthy contributions in this �eld encompass the utilization of hyperelastic models by Kuntsche
[165], Wang et al. [264], Kraus [159], Pauli and Siebert [199]. However, recently, Schuster [231]
employed the model proposed by Schapery [223, 224] to capture �nite nonlinear viscoelastic
phenomena. On the other hand, several approaches for dynamic loads exist, such as slow ve-
locity impact [2, 222] and blast [203, 66, 197]. These approaches utilize models of �nite linear
viscoelasticity [203, 2, 222, 66], �nite viscoelasticity [64], and �nite viscoplasticity [197]. How-
ever, as these approaches are concerned with dynamic loads, the loading conditions considerably
di�er from quasistatic considerations.
The recalculation of the test results for calibrating the material parameters yields excellent

results. However, the material response is slightly overestimated at large deformations, espe-
cially for higher strain rates. Furthermore, the representation of the unloading behavior is less
accurate, especially for minor strains and slow strain rates. However, the qualitative shape of
the hystereses is replicated in an acceptable way. Even the prediction of test results that were
not considered for calibration led to reasonable results. More precisely, displacement-controlled
tensile, relaxation and cyclic tests containing two loading and unloading paths were calculated
and compared to test data. Furthermore, the relaxation tests with a duration of 12 [h] were
recalculated and compared to the test results, although only data with a 3 [h] duration was
considered for the parameter identi�cation. Subsequently, these calculations were expanded to
24 [h] to serve as a basis for comparing with the engineering approach discussed in Sec. 6.3.1.
With the separation of the deformation gradient into a thermal Fθ and a mechanical part FM

and the introduction of the scalar factor η0 premultiplied to the viscosity function, the model
has the basic structure to be expanded to describe e�ects related to temperature.
For the overall topic of the investigation of the laminated safety glass in the fully fractured

state, the model is a big step in the direction of the theoretical description of the residual
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load-bearing capacity. On the one hand, it can be used to describe the interlayer within overall
modeling approaches numerical [15, 265] and analytical [157, 19, 110]. On the other hand, the
model can be used to characterize interface parameters to describe delamination. Within this
context, the model parameters are calibrated on the results of TCT [165, 107, 103, 53] or Peel
tests [203]. It is crucial to employ a material model that accurately describes the interlayer
behavior in this procedure to avoid evaluating incorrect interface parameters.
However, besides the signi�cant advantages the presented model brings to modeling the

residual load-bearing behavior of laminated glass, some limitations should also be noted. The
model is designed for one speci�c temperature and humidity that align with the experimental
investigations. This fact limits the model to these particular conditions, which is an explicit
limitation considering the material's sensitivity to temperature [165, 159, 231] and humidity
[31]. A second aspect in line with the experimental investigation based on uniaxial tension is the
choice of the energy functions for the hyperelastic potentials depending on the �rst invariant
of the Cauchy Green Deformation tensor. This reduction to the �rst invariant can lead to
inaccurate results when considering biaxial stress states. Furthermore, the implementation
of the model into commercial FEM software, crucial for complex investigations, such as the
detailed evaluation of the interface behavior or setting up a complex three-dimensional model,
is yet to come.

6.3. Engineering Approach

Three engineering approaches were presented to provide a straightforward description of the
PVB in the context of residual load-bearing capacity. These approaches comprise a method
utilizing a special test procedure to describe the interlayer behavior at long durations, a sim-
pli�ed model for the description of the residual loadbearing capacity of a two-side supported
laminate with coincident crack, and a failure criterion based on the uniaxial test data.

6.3.1. Hyperelasticity

This modeling approach has been originally published in Pauli and Siebert [199].
There are several approaches to model the material behavior of Standard PVB in the regime

of large deformations. One of the approaches, as presented by Du Bois et al. [100], Kuntsche
[165], Kraus [159], Wang et al. [264], is the description with a hyperelastic material model. To
evaluate this approach, a distinction between short-term dynamic loads with high loading rates
and long-term static loads with low loading rates.
For modeling short-term, dynamic loads (e.g., explosions, impacts) characterized by very

high strain rates and extremely short load durations, it can be reasonable to employ a hyper-
elastic material model directly calibrated on test data [100, 264]. This approach is justi�able
because relaxation processes have minimal impact on viscoelastic materials at extremely short
load durations. An appropriate strategy building up on this consideration would be to �t a
hyperelastic material model to data from tests conducted at very high strain rates. Applying
the same approach to residual load-bearing capacity under quasi-static loads, it seems reason-
able to calibrate a hyperelastic material model using data from tests conducted at low strain
rates or velocities [165, 159]. However, it is crucial to acknowledge that this approach tends to
overestimate the sti�ness of the interlayer as it does not consider the relaxation processes that
take predominatly govern the material behavior at long loading durations.
This work introduces a straightforward procedure to characterize and model the long-term

response of Polyvinyl Butyral (PVB) within large deformations. The methodology involves
conducting and evaluating a stepwise relaxation test, termed staircase test (cf. Sec. 3.3.5.1
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for the evaluation procedure). Within this approach, the time-independent response of the
material is isolated, and the viscoelastic hysteresis reduces to an elastic curve. This curve can
serves as the basis for the calibration of hyperelastic material models.
Fig. 6.1 illustrates the approach of this work in comparison to modeling approaches found

in the literature [100, 165, 162, 264]. While each of these works introduces several hyperelastic
material models, for comparison in this study, only one model from each literature source
is selected. Additionally, the curves representing results from the literature were calculated
analytically for the uniaxial stress state using the provided parameters (refer to Table 6.1) and
considering the incompressibility constraint.
Tab. 6.1 shows the material parameters of hyperelastic material models for PVB under

quasistatic conditions found in literature.

Table 6.1.: Parameters, given from literature

Du Bois et al. [100] α1 α2 µ1 µ2

Ogden 2 −2 3.2 −0.12

Kuntsche [165] C10 C20 C30

Yeoh 1.101 0.03638 0.01482

Wang et al. [264] µ1 µ2

Mooney Rivlin 5.212 −3.264

Kraus [159] Ge Gc d b

Extended Tube −0.270 1.641 0.2 9.059

Figure 6.1.: Comparison of Modeling Results

Tt is noteworthy that the modeling approaches presented by [165, 159] consider quasistatic
loads, and the approaches presented by [100, 264] consider dynamic approaches. As the ap-
proach adopted in this work endeavors to minimize time in�uences on the material response
by a special test procedure, it predicts a considerably lower material response than the other
approaches. However, for further discussion of the comparison between the individual groups,
the reader is referred to the original work [199].
Nevertheless, some restrictions of this approach are be pointed out in the following. Con-

sidering thermoplastic material behavior in general, it is obvious that there is no sti�ness left
when time tends toward in�nity. However, two decisive simpli�cations can be considered within
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the context of residual load-bearing capacity. First, only quasi-static loading behavior must be
considered (no cyclic loading); second, according to actual practice, the material behavior must
be predicted for 24 [h] [68]. To evaluate this engineering approach, the Yeoh model derived from
the staircase test is compared with calculations carried out by the �nite viscoelastic material
model derived within this work. Therefore, several relaxation tests were calculated (cf. Sec.
4.6.3) and the stress strain pair for each test was plotted within a strain stress diagram together
with the result of curve evaluated by the staircase test (cf. Fig. 6.2).

Figure 6.2.: Comparison between Model and Enginnering Approach

Comparing the engineering approach to the calculations of the �nite viscoelastic model shows
a very good agreement up to a stress of 100 [%], for larger strains, the engineering approach
overestimates the stress response compared to the FV model. However, for further evaluation,
the curves would have be compared to the values at the end of relaxation tests with a duration
of 24 [h]. Nevertheless, the presented approach seems to be a reasonable method of evaluting
the material behavior of interlayers, not only PVB, by utilizing a single test.

6.3.2. Residual Load-Bearing Model

A straightforward residual load-bearing model for describing laminated glass with fracture
pattern according to the line mechanism L1, de�ned by Kott [157], was presented in Sec. 5.2.
Franz [107], Botz [30] extensively investigated and discussed the same behavior using TCB
test studies. Furthermore, Kott [157], Belis et al. [19] proposed modeling approaches for this
state. The presented approach is built upon these considerations; however, the plastic material
formulation of the interlayer proposed by Kott [157], Belis et al. [19] is replaced by a model of
�nite viscoelasticity to cover time-dependent e�ects, as they predominantly a�ected the residual
load-bearing behavior [30]. However, the presented approach does not cover e�ects caused by
delamination, which is a signi�cant limitation as Franz [107], Botz [30] discovered, delamination
is one decisive for the residual load-bearing capacity and increases with time. Nevertheless, it
could be added to the displacement u, for example, utilizing a similar approach to that proposed
by Belis et al. [19]. Incorporating the delamination, the model could serve as an easy handling
tool to asses the residual load-bearing capacity of two side-supported laminates with PVB
interlayer and coarse-breaking glass.

6.3.3. Failure

The couterpart of the investigations regarding the intact state, which represent the impact
side of the design equation [81], is the the description of the resistance. In the context of

145



6. Discussion

residual load-bearing capacity, it is concerned with the investigation and characterization of
the collapse of fully fractured laminated glass. As the collapse of the laminate within the
ultimate limit state can be directily related to it, the further considerations are based on the
interlayer. Within this section the experimental part of the investigation as well as the modeling
part are described together as they are closely linked with each other. Uniaxial tension tests
were carried out until failure, considering seven di�erent strain rates. The statistical evaluation
of the failure revealed that the distribution of the data could be described as a lognormal
distribution. Furthermore, a direct relation between strain rate and strain at failure could
be observed. Taking this e�ect into account, the Cauchy stress in the uniaxial direction was
chosen as the failure criterion. The transfer from the measured 1stPK stresses was carried out
using the consideration of incompressible material behavior. A one-dimensional criterion is the
most simple case of de�ning a failure criterion. However, in the case of residual load-bearing
capacity, the intermediate layer acts as a bridging element between single glass shards [67] and
carries only tensile loads. For coarse-breaking glass, which is the only con�guration showing
residual load-bearing capacity with PVB interlayer [157], the predominantly deformation state
is uniaxial or planar tension. Therefore, a failure criterion on uniaxial tensile data seems
reasonable. Furthermore, a characteristic failure strength was evaluated, and a partial safety
factor was calibrated based on the assumption of a lognormal distribution. Using the failure
criterion and the partial safety factor in combination with the simpli�ed model presented in
the last section appears to be a promising combination.
However, this topic must be treated cautiously, as the design criterion only holds for the exact

state considered for calibration, so, in this case, the uniaxial stress state. The proposed criterion
can not simply be transferred to other cases where di�erent stress states might occur. A broader
database of test results is required to derive a more general failure criterion applicable to various
stress and deformation states. The stress or strain states to be considered must be chosen
concerning the application. For example, the predominant stress state in a two-side supported
laminated glass is in a uniaxial direction, which is why the suggested failure criterion could be
applied. However, in this case, particular caution regarding the e�ects caused by transversal
contraction is required. Furthermore, for complex considerations utilizing FEM to simulate
a broken laminated, explicitly taking into detail load-bearing mechanisms such as friction of
the glass shards and delamination of the interlayer several stress and deformation states must
be taken into account. A common approach to describe the failure of an isotropic material
is the description within principal stress, strain, or stretch space employing a deviatoric and
hydrostatic split, resulting in a deviatoric plane perpendicular to a hydrostatic axis [155]. Nearly
incompressible elastomers, for example, possess a dilatational failure linked to the hydrostatic
components and a distortional failure related to the deviatoric components as illustrated by
Rosendahl et al. [220]. Di�erent failure stresses or strains are located at di�erent and mark
the edges of the deviatoric plane, representing material failure. The shape of this edge can be
represented by di�erent geometric shapes, which can depend on several parameters. The shape
usually changes along the hydrostatic axis. Various tests must be carried out to approach
the respective geometric failure surface as well as possible. These experiments range from
uni- and biaxial tension over shear to hydrostatic compression. Drass et al. [99] presented a
promising criterion for silicone adhesives based on uniaxial, biaxial, and so-called pancake tests.
In conclusion, additional tests are required for a more general failure criterion and partial safety
factor for PVB accounting for multiaxial loadings.
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The aim of this work was a contribution to the theoretical description of the residual load-
bearing capacity of laminated glass with PVB interlayer. Besides several load-bearing mech-
anisms within the fractured state of the laminate, the interlayer was identi�ed as the most
crucial part. Therefore, acurately describing the material behavior of PVB is considered the
essential part. With regard to the experimental evaluation according to DIN 18008-1:2020-05
[68], the material behavior at 20 [◦C] considering large deformations and time-dependency, was
assumed to be the decisive con�guration.
Therefore, a comprehensive �nite nonlinear viscoelastic model has been developed to e�ec-

tively capture the time-dependent behavior of Polyvinyl Butyral (PVB) concerning this decisive
temperature. This model comprises a network of 10 Maxwell elements connected in parallel,
with each component incorporating both a nonlinear damper and a hyperelastic spring. By
utilizing viscosity functions with internal process variables, the dampers provide a robust and
phenomenological description of the behavior of PVB in the regime of �nite strains. The model
was implemented numerically and calibrated on uniaxial test data under the assumption of
incompressibility. The model's calculations have demonstrated a commendable alignment be-
tween the experimental �ndings and the model's predictions, even for processes not considered
for parameter parameter identi�cation.
Furthermore, an approach was presented to utilize a simpli�ed version of the model within

an engineering approach describing the residual load-bearing capacity of a two-side supported
coincidentally broken laminated glass with PVB interlayer. In addition, a simple failure crite-
rion based on the Cauchy stresses at failure, examined during the experimental investigations,
was proposed for this application. Besides the actual description of time e�ects, an engineering
approach describing the material behavior at long durations by utilizing a hyperelastic for-
mulation was presented. This approach comprised a particular test procedure and evaluation
process.
However, to increase the general applicability of the model, the test data must be expanded

by further experiments considering di�erent temperatures and humidities as well as di�erent
stress states. Based on this database, the potential and viscosity function would have to be
adopted; however, it would have to use the same structure as presented. Furthermore, the
results at di�erent stress states would serve as the basis for a more general failure criterion. In
addition, to utilize the presented model within commercial FEM software, such as Ansys and
Abaqus, the formulation of a particular user subroutine is required. These software tools o�er
the option of implementing specially de�ned material models via a user subroutine based on
the tangent operators of the material model.
In conclusion, a very promising material model for PVB at �nite strains considering time

dependence was derived and successfully calibrated. Furthermore, two di�erent simpli�ed en-
gineering approaches were presented to describe the interlayer within the residual load-bearing
capacity of laminated glass. However, there is still a need for future research, especially con-
cerning the consideration of di�erent climates and multiaxial loading from an experimental
point of view and considering these e�ects within the material model and failure criterion, as
well as implementing these models in FEM.
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A. Experimental Results

A.1. Control Tests

Figure A.1.: Tension until breakage - Ḃ<xx> = 0.01 [1/s]; with attached clamp

Figure A.2.: Tension until breakage - Ḃ<xx> = 0.01 [1/s]; without attached clamp
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A. Experimental Results

A.2. Tension until Failure

Figure A.3.: Tension until failure - Ḃ<xx> = 0.001 [1/s]

Figure A.4.: Tension until failure - Ḃ<xx> = 0.003 [1/s]

Figure A.5.: Tension until failure - Ḃ<xx> = 0.005 [1/s]
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A. Experimental Results

Figure A.6.: Tension until failure - Ḃ<xx> = 0.01 [1/s]

Figure A.7.: Tension until failure - Ḃ<xx> = 0.03 [1/s]

Figure A.8.: Tension until failure - Ḃ<xx> = 0.05 [1/s]
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A. Experimental Results

Figure A.9.: Tension until failure - Ḃ<xx> = 0.1 [1/s]

A.3. Cyclic Tests

Figure A.10.: Cyclic tests - Ḃ<xx> = 0.01 [1/s] (left); Cyclic Ḃ<xx> = 0.01 [1/s] (right)

Figure A.11.: Cyclic tests - Ḃ<xx> = 0.001 [1/s] (left); Cyclic Ḃ<xx> = 0.01 [1/s] (right)
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A. Experimental Results

Figure A.12.: Cyclic tests - Ḃ<xx> = 0.1 [1/s], Cyclic Ḃ<xx> = 0.01 [1/s]

A.4. Relaxation Tests

A.4.1. Strain Rate 0.001

Figure A.13.: Relaxation test - Ḃ<xx> = 0.001 [1/s], B<xx> = 200 [%] (Duration 1h)

Figure A.14.: Relaxation test - Ḃ<xx> = 0.001 [1/s], B<xx> = 200 [%] (Duration 3h)
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A. Experimental Results

Figure A.15.: Relaxation test - Ḃ<xx> = 0.001 [1/s], B<xx> = 200 [%] (Duration 12h)

A.4.2. Strain Rate 0.01

Figure A.16.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 50 [%] (Duration 1h)

Figure A.17.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 50 [%] (Duration 3h)

173



A. Experimental Results

Figure A.18.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 50 [%] (Duration 12h)

Figure A.19.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 100 [%] (Duration 1h)

Figure A.20.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 100 [%] (Duration 3h)
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A. Experimental Results

Figure A.21.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 100 [%] (Duration 12h)

Figure A.22.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 150 [%] (Duration 1h)

Figure A.23.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 150 [%] (Duration 3h)
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A. Experimental Results

Figure A.24.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 150 [%] (Duration 12h)

Figure A.25.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 200 [%] (Duration 1h)

Figure A.26.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 200 [%] (Duration 3h)
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A. Experimental Results

Figure A.27.: Relaxation test - Ḃ<xx> = 0.01 [1/s], B<xx> = 200 [%] (Duration 12h)

A.4.3. Strain Rate 0.1

Figure A.28.: Relaxation test - Ḃ<xx> = 0.1 [1/s], B<xx> = 100 [%] (Duration 1h)

Figure A.29.: Relaxation test - Ḃ<xx> = 0.1 [1/s], B<xx> = 100 [%] (Duration 3h)
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A. Experimental Results

Figure A.30.: Relaxation test - Ḃ<xx> = 0.1 [1/s], B<xx> = 100 [%] (Duration 12h)

A.5. Evaluation of Hystereses

Figure A.31.: Cyclic Tests at di�erent Strain-Rates, loaded to the same Strain Level - Com-
parison (left); Error (right)

Figure A.32.: Cyclic Tests at di�erent Strain-Rates, loaded to the same Strain Level - Com-
parison (left); Error (right)
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A. Experimental Results

Figure A.33.: Cyclic Tests at di�erent Strain-Rates, loaded to the same Strain Level - Com-
parison (left); Error (right)

A.6. Staircase Tests

Figure A.34.: Staircase test - Ḃ<xx> = 0.01

A.7. Temperature

Figure A.35.: Measurement of temperature and humidity, year 2023, KW 30 (left) and KW31
(right)
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A. Experimental Results

Figure A.36.: Measurement of temperature and humidity, year 2023, KW 32 (left) and KW33
(right)

Figure A.37.: Measurement of temperature and humidity, year 2023, KW 34
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B. Analytical Calculations

B.1. Analytical Solution of di�erential equation of linear

viscoelasticity

Boundary conditions of the three-parameter Maxwell model:

σ = σeq + σov (B.1)
σeq = E · ε (B.2)
σov = Eel · εel = η · ε̇in (B.3)
ε = εel + εin (B.4)

Manipulating that system of equations such, that it is only dependent on the stress σ(t) and
the strain ε(t) as well as their derivatives with respect to time, leads results in:

σ̇ = E · ε̇+ Eel · ε̇el (B.5)
ε̇el = ε̇− ε̇in (B.6)

ε̇in =
σov

η
(B.7)

σov = σ − E · ε (B.8)

σ̇ = E · ε̇+ Eel · (ε̇− ε̇in)

= E · ε̇+ Eel · (ε̇−
σov

η
)

= E · ε̇+ Eel · (ε̇−
σ − E · ε

η
)

(B.9)

sorting Eq. B.9 leads to the di�erential equation of linear viscoelasticity:

σ +
η

Eel

σ̇ = E · ε+ η
E + Eel

Eel

ε̇ (B.10)

Solving the inhomogeneous di�erential equation of the type a(x) · y′(x) + b(x) · y(x) = c(x)
yields:
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B. Analytical Calculations

σh(t) = C · e−
∫ b(x)

a(x)
dx = C · e−

Eel
η

t (B.11)

σ̇h(t) = −Eel

η
· C · e−

Eel
η

t (B.12)

σp(t) = c(t) · e−
Eel
η

t (B.13)

σ̇p(t) = ċ(t) · e−
Eel
η

t − Eel

η
· c(t) · e−

Eel
η

t (B.14)

Using σ(t) = σh + σp leads to:

C·e−
Eel
η

t+c(t)·e−
Eel
η

t− η

Eel

·Eel

η
·C·e−

Eel
η

t+
η

Eel

·ċ(t)·e−
Eel
η

t− η

Eel

·Eel

η
·c(t)·e−

Eel
η

t = E·ε(t)+η
E + Eel

Eel

ε̇(t)

(B.15)

Sorting and shortening Eq. (B.15) yields:

η

Eel

· ċ(t) · e−
Eel
η

t = E · ε(t) + η
E + Eel

Eel

ε̇(t) (B.16)

ċ(t) =
EEel

η
· ε(t) · e

Eel
η

t + (E + Eel) · ε̇(t) · e
Eel
η

t (B.17)

using

(
ε(t) · e

Eel
η

t
)̇
= ε̇(t) · e

Eel
η

t + ε(t) · Eel

η
· e

Eel
η

t → ε(t) · Eel

η
· e

Eel
η

t =
(
ε(t) · e

Eel
η

t
)̇
− ε̇(t) · e

Eel
η

t

results in

ċ(t) = E ·
(
ε(t) · e

Eel
η

t
)̇
− E · ε̇(t) · e

Eel
η

t + (E + Eel) · ε̇(t) · e
Eel
η

t

ċ(t) = E ·
(
ε(t) · e

Eel
η

t
)̇
+ Eel · ε̇(t) · e

Eel
η

t

(B.18)

Integrating Eq. B.18 and solving for σp results in:

σp(t) = c(t) · e−
Eel
η

t = E · ε(t) · e
Eel
η

t · e−
Eel
η

t +

t∫
0

Eel · ε̇(s) · e
Eel
η

s · e−
Eel
η

tds =

= E · ε(t) ·+
t∫

0

Eel · ε̇(s) · e−
Eel
η

(t−s)ds

(B.19)

Eq. B.20
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B. Analytical Calculations

σ(t) = σh(t) + σp(t) = C · e−
Eel
η

t + E · ε(t) ·+
s=t∫

s=0

Eel · ε̇(s) · e−
Eel
η

(t−s)ds (B.20)

together with the requirement σ(t = 0) = 0 and ε(t = 0) = 0 leads to the linear functional of
the linear viscoelasticity:

σ(t) = E · ε(t) +
s=t∫

s=0

Eel · e−
Eel
η

(t−s)dε(s)

ds
ds =

s=t∫
s=0

{
E + Eel · e−

Eel
η

(t−s)
}dε(s)

ds
ds (B.21)

Solving the di�erential equation in an integral sense, yields:

σ(t) = E · ε(t) +
s=t∫

s=0

Eel · e−
Eel
η

(t−s)dε(s)

ds
ds =

s=t∫
s=0

[
E + Eel · e−

Eel
η

(t−s)
]dε(s)

ds
ds (B.22)

Solving the integral for the stationary case (ε̇ = ε̇0) yields:

σ(t) = E · ε(t) + Eele
−Eel

η
t

s=t∫
s=0

e
Eel
η

sε̇0ds = E · ε(t) ·+Eele
−Eel

η
t
[ η

Eel

e
Eel
η

sε̇0

]t
0
= (B.23)

= E · ε(t) + Eele
−Eel

η
t
[ η

Eel

e
Eel
η

tε̇0 −
η

Eel

ε̇0

]
= E · ε(t) + ε̇0η

[
1− e−

Eel
η

t
]

(B.24)

For the unloading path of a single, symmetric cycle, under the consideration ε̇0,1 = −ε̇0,2 and
τ = η

Eel
:

σ =

s=T
2∫

s=0

Eelε̇0,1e
− t−s

τ ds+

s=T∫
s=T

2

Eelε̇0,2e
− t−s

τ ds = Eelε̇0e
−t
τ

[ s=T
2∫

s=0

e
s
τ ds−

s=t∫
s=T

2

e
s
τ ds
]
= (B.25)

= Eelτ ε̇0e
−t
τ

[(
e

T/2
τ − 1

)
−
(
e

t
τ − e

T/2
τ

)]
= ηε̇0

[
2e

T/2
τ − e

−t
τ − 1

]
(B.26)

Taking only the time-dependent sti�ness ER(t) = E+Eel · e−
Eel
η

t and normalize it by the use
of the function E0 = E + Eel and with respect to that E

E0
+ Eel

E0
= 1 yields the so called Prony

series:
ER(t)

E0

=
E

E0

+
Eel

E0

· e−
Eel
η

t = 1− Eel

E0

+
Eel

E0

· e−
Eel
η

t = 1− Eel

E0

(1− e−
Eel
η

t) (B.27)

B.2. Analytical Solution of the functional of �nite linear

viscoelasticity

For the following consideration also consider Bergström [24]. Considering again the Prony-
Series, Eq. B.27 and introducing gR(t) =

ER(t)
E0

yields:

σ(t) =

s=t∫
s=0

[ E
E0

+
Eel

E0

e−
t−s
τ

]
E0

dε(s)

ds
ds =

s=t∫
s=0

gR(t− s)E0
dε(s)

ds
ds (B.28)
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Integration Eq. B.28 by parts leads to:

σ(t) = E0ε(t)−
s=t∫

s=0

ġR(t− s)E0ε(s)ds (B.29)

Using the hyperelastic stress function σhyp for E0ε(t) results in:

σ(t) = σhyp(ε(t))−
s=t∫

s=0

ġR(t− s)σhyp(ε(s))ds (B.30)

Introducing g = Eel

E0
and taking only the right side of Eq. B.30 leads to:

s=t∫
s=0

d

ds

[
(1− g) + ge−

t−s
τ

]
σhyp(ε(s))ds (B.31)

Choosing the limits of the integral from s = 0 to s = t+∆t yields:

s=t+∆t∫
s=0

d

ds

[
(1− g) + ge−

t+∆t−s
τ

]
σhyp(ε(s))ds (B.32)

Splitting it up, Eq. B.32 leads to:

s=t∫
s=0

d

ds

[
(1− g) + ge−

t+∆t−s
τ

]
σhyp(ε(s))ds+

s=t+∆t∫
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d
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[
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]
σhyp(ε(s))ds =

=
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g

τ
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τ

]
σhyp(ε(s))ds+

s=t+∆t∫
s=t

g

τ

[
e−

t+∆t−s
τ

]
σhyp(ε(s))ds

(B.33)

Integrating Eq. B.33 separately, yields for the �rst part:

s=t∫
s=0

g

τ

[
e−

t+∆t−s
τ

]
σhyp(ε(s))ds = e−

∆t
τ

s=t∫
s=0

g

τ

[
e−

t−s
τ

]
σhyp(ε(s))ds (B.34)

The second part needs to be integrated by parts. First of all the hyperelastic stress is partly
linearised, as follows:

σhyp(s) = σhyp(t) + ∆σhyp
s− t

∆t
(B.35)

and
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∆σhyp = σhyp(ε(t+∆t))− σhyp(ε(t)) (B.36)
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τ
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][
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(B.37)

The �rst part results in:
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]
(B.38)

Integrating the second part of Eq. B.37 by parts, results in:
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(B.39)

The third part yields:
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Putting the parts together, results in:

g
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In total the result is:

σ(t) = σhyp(ε(t))− e−
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185



C. Publications and Presentations

C.1. Journal Articles

A. Pauli, M. A. Kraus, and G. Siebert. Experimental and numerical investigations on glass
fragments: shear-frame testing and calibration of Mohr-Coulomb plasticity model. Glass Struc-
tures & Engineering, 6:65-87, 2021. ISSN 2363-5142. doi: 10.1007/s40940-020-00143-5.

A. Pauli and G. Siebert. Simpl�ed approach for modeling standard PVB at large deforma-
tions and long-term loading. Glass Structures & Engineering, 9:59-73, 2024. ISSN 2363-5142.
doi: 10.1007/s40940-023-00236-x.

A. Pauli and G. Siebert. Investigations on the �nite strain behavior of standard PVB: exper-
iment and modeling. textitGlass Structures & Engineering, 9:587-606, 2024. ISSN 2363-5142.
doi: 10.1007/s40940-024-00247-2.

D. O�ereins, A. Pauli, and G. Siebert. Mechanical Performance Of Liquid Cold-Poured Inter-
layer Adhesives In Comparison To PVB, EVA, And Ionomers. Glass Structures & Engineering,
9:569-586, 2024. ISSN 2363-5142. doi: 10.1007/s40940-024-00274-z.

C.2. Contribution to Year Books

A. Pauli, M. A. Kraus, M. Drass and G. Siebert. (2020). Simulation von Verbundsicherheits-
glas aus Einscheibensicherheitsglas im gebrochenen Zustand. ce/papers, 4(1):119-129, 2021.

M. A. Kraus and A. Pauli. Konstitutive Modellierung der Bruchfragmente thermisch vorgespan-
nter Gläser innerhalb der Plastizitätstheorie � Experiment und Numerik. ce/papers, 4(5):271-
282, 2021.

C.3. Conference Papers & Presentations

A. Pauli, M. A. Kraus and G. Siebert. Experimental and Methodical Investigations on the Hy-
perelasticity of Standard PVB. Glass Performance Days, Tampere, Finland 26.06 - 28.06.2019

A. Pauli, M. Illguth, F. Wellersho�, G. Siebert and M. A. Kraus. Experimental and Nu-
merical Investigations on the �nite strain viscoelasticity of Standard PVB. Challenging Glass
Conference - Volume 8, Ghent, Belgium, 23.06 - 24.06.2022

186



C. Publications and Presentations

M. Baric, A. Pauli and G. Siebert. Experimental investigations on EVA interlayers in the
regime of large deformations in the context of the examination of the residual load bearing
capacity of LSG. The 9th International Conference On Structural Engineering, Mechanics And
Computation, Cape Town, South Africa, 05.09 - 07.09.2022

A. Pauli, D. O�ereins and G. Siebert. Numerical Modelling of UV-curing acrylate adhesives.
Glass Performance Days, Tampere, Finland, 14.06. � 16.06.2023

A. Pauli and G. Siebert. Structural Design of Glass-Elements in Bridge-Constructions. 13th -
Japanese-German Bridge Symposium, Osaka, Japan, 08.09. - 09.01.2023
A. Pauli and G. Siebert. Investigations on the �nite strain behavior of standard PVB: exper-
iment and modeling. Challenging Glass Conference - Volume 9, Delft, Netherlands, 19.06 -
20.06.2024

187


	Introduction
	Residual Load-Bearing-Capacity - Experimental Approaches
	LSG
	Interface
	Glass
	Interlayer

	Residual Load-Bearing-Capacity - Numerical Modeling Approaches
	Methods
	Interface
	Glass
	Interlayer

	Residual Load-Bearing-Capacity - Analytical Modeling Approaches
	Equivalent Stiffness Approaches
	Explicit Modeling Approaches

	Motivation

	Methodology
	Continuum Mechanics
	Kinematics
	Strain Measures
	Stress Measures
	Objective Rates
	Balance Equations
	Principles of Material Modeling

	Material Modeling
	Hyperelasticity
	Incompressible Hyperelasticity
	Compressible Hyperelasticity
	Viscoelasticity
	Linear Viscoelasticity
	Finite Linear Viscoelasticity
	Finite Viscoelasticity

	Numerical Modeling
	Euler Backward Method
	Taylor Series
	Newton's Method

	Parameter Identification - Optimization
	Global Optimization
	Local Solver - fmincon

	Materials
	Polymers
	Standard PVB
	Glass
	Laminated Glass

	Experiments
	General Polymer Testing
	Experimental Setup


	Experiments
	Specimen Preparation and Conditioning
	Test Series One - Geometry Type A
	Test Series Two - Geometry Type B

	Test Procedures
	Test Series One - Geometry Type A
	Test Series Two - Geometry Type B

	Test Results
	Control Tests
	Tension-Tests until Failure
	Cyclic-Tests
	Relaxation-Tests
	Staircase-Tests


	Modeling
	Model Construction
	Uniaxial Reduction and Numerical Implementation
	Incompressibility Constraint
	Uniaxial Reduction
	Numerical Implementation

	Validation
	Linear Viscoelasticity
	Finite Linear Viscoelasticity
	Finite Viscoelasticity

	Investigations on the Viscosity Functions
	Considerations regarding the loading behavior
	Considerations regarding the unloading behavior
	Considerations regarding the relaxation behavior

	Parameter Identification
	Matlab - Globalsearch
	Matlab - Globalsearch adapted

	Model Calculation
	Recalculation
	Validation
	Precalculation


	Engineering Approaches
	Hyperelastic Approach
	Simplified Residual Load Bearing Model
	Failure

	Discussion
	Experiments
	Modeling
	Engineering Approach
	Hyperelasticity
	Residual Load-Bearing Model
	Failure


	Conclusion and Outlook
	Experimental Results
	Control Tests
	Tension until Failure
	Cyclic Tests
	Relaxation Tests
	Strain Rate 0.001
	Strain Rate 0.01
	Strain Rate 0.1

	Evaluation of Hystereses
	Staircase Tests
	Temperature

	Analytical Calculations
	Analytical Solution of differential equation of linear viscoelasticity
	Analytical Solution of the functional of finite linear viscoelasticity

	Publications and Presentations
	Journal Articles
	Contribution to Year Books
	Conference Papers & Presentations


