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Abstract 

Cyber-physical systems are becoming increasingly complex and prone to faults. To effec-
tively handle these faults, online identification and reconfiguration of the system are cru-
cial. This paper proposes a method for controlling reconfiguration by identifying faults 
in cyber-physical systems online. The approach utilizes sparse regression (SINDYc) to 
identify the system dynamics, including faults, and adjusts the control law accordingly 
by leveraging plant redundancies. 

To illustrate the fault handling approach, the study focuses on a well-known control 
systems example, the inverted pendulum on a cart, which is nonlinear and unstable. By 
injecting a perturbation signal, the closed-loop system dynamics are separated into input 
and system dynamics. The SINDYc algorithm is then applied to the measurement vectors 
of input and output signals, generating an up-to-date dynamic model that incorporates 
possible faults. In the event of an actuator fault, the identified model is used to reconfig-
ure the control using the Pseudo-Inverse method, optimizing the utilization of available 
redundancies. Both abrupt and incipient faults in the actuator dynamics are considered 
in this study. 
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The online identification is limited to linear models in this work, and a full-state 
feedback controller is reconfigured under the assumption of full observability of the 
system. A parameter study demonstrates the influence of perturbation signal power and 
measurement noise on the identifiability of the closed-loop system. Based on the results, 
it is concluded that the online control reconfiguration approach satisfactorily handles 
actuator faults in the studied use-case. Furthermore, it can be easily extended to nonlinear 
model identification and subsequent reconfiguration of nonlinear controllers, such as 
MPC or INDI. 
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1 Introduction 

Cyber Physical Systems (CPS) are prone to various faults caused by failing actuators, 
sensors, or structural components. Modern systems are becoming increasingly larger and 
complex, making manual fault handling costly and time-consuming. To enable systems to 
adapt autonomously to faults, fault-tolerant control (FTC) is necessary. For severe faults, 
such as the loss of a complete actuator, a new control law is required. This process is called 
reconfiguration and has the goal of identifying a new valid control law that can restore 
operation [ 1]. 

Due to the immense cost reduction and miniaturization of embedded controllers and 
sensors in the last decade, data and computational resources are widely available. This 
allows for computationally expensive algorithms to be incorporated in CPS of arbitrary 
size and led to the development and implementation of advanced model-based fault-tolerant 
control architectures, such as explicit model following (EMF), Linear Virtual Actuators 
(LVA) or Fault-tolerant Model Predictive Control (MPC) approaches [ 2]. 

However, all these model-based FTC strategies rely on accurate dynamic models to 
reconfigure the controller that is handling the faulty system. Generally speaking, the impact 
of various faults on the system dynamics are not known a-priori. Thus, when developing a 
comprehensive fault handling strategy, a model of the dynamics of the faulty system needs 
to be identified online. This requires the algorithm for model identification to be executed 
online and to rapidly convergence (low data requirement) to allow for a quick reconfiguration. 
Additionally, a high robustness against noise is desirable to be applicable in practice. In the 
last years, the well-established research field of system identification has received renewed 
attention with the rise of data-driven modeling, advanced machine learning algorithms and 
new findings in the area of compressed sensing [ 3]. In this paper we strive to present a model-
based fault handling strategy for a classical control system, the Inverted Pendulum on a Cart 
(IPoC) with threefold actuator redundancy. The required dynamic model of the faulty system 
is identified online through the sparse regression algorithm SINDYc [ 4]. The identified
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model of the faulty system is then used for a model-matching reconfiguration algorithm, 
the Pseudo-Inverse Method [ 5, p. 391] to reconfigure a full-state feedback (FSF) controller. 
In this work, we will limit our online identification to linear models, although SINDYc 
readily extends to nonlinear models. Further, we assume full observability of the system. 
The continuous plant model, the discrete controller and reconfiguration are implemented in 
MATLAB/Simulink. In the following we aim to address the following research questions: 

1. Are sparse regression algorithms, such as SINDYc, suited to identify models of closed-
loop CPS online? 

2. What perturbation strategy ensures continuous and adequate identification of the faulty 
system dynamics? 

The paper is structured as follows: After a section on the related work 2, we will first describe 
the IPoC system followed by a brief overview of the SINDYc algorithm. Section 5 describes 
the control reconfiguration methodology and architecture. The results will be discussed in 
Sect. 6 and followed by a discussion and conclusion. 

2 Related Work 

2.1 Model-Based Fault Tolerant Control 

To achieve fault tolerance, technical systems are typically augmented with a Fault Detection, 
Identification and Recovery (FDIR) scheme. If the fault is severe (e.g. actuator breakdown) 
and requires a redesign of the control-loop, control reconfiguration is necessary. Otherwise, 
a control accommodation approach is sufficient by means of robust or adaptive control. 
Blanke et al. [ 5] have described multiple approaches to model-based control reconfiguration 
[ 5]. Generally, the model-matching design is prevailing in the literature, where the controller 
of the faulty plant is reconfigured, so that the closed-loop characteristics of the system are 
consistent to the non-faulty behavior. Beside the Pseudo-Inverse approach presented in this 
work, the Markov Parameter approach or Linear Virtual Actuators (LVA) approach are 
alternative model-based reconfiguration methods [ 5]. In the aerospace sector, a historically 
strong field of applied FTC, many control architectures and approaches have been developed, 
as exemplified in [ 6]. Lombaerts et al., for example, applied a the model reference adaptive 
control approach to a flight control [ 7]. 

Beside the classical FTC approaches originating from control theory, another research 
field has evolved, mainly dealing with hybrid systems and employing Formal Methods to 
find a valid configuration [ 8]. For example, the AutoConf algorithm by Balzereit et al. 
transfers the reconfiguration problem into a logical formula, which then can be solved using 
Satifiability Theory (SAT) [ 9]. Despite the many different approaches to model-based control
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reconfiguration, the need of an up-to-date system model is ubiquitous, since a system subject 
to faults is inherently time-variant and faults are not known beforehand. 

2.2 Online, Closed-Loop System Identification 

Closed-loop online system identification has been of interested in many areas. Ljung renders 
a comprehensive view on system identification and specifically covers the problem of iden-
tifiability of closed-loop systems [ 10, Sect. 13.4]. Leveraging advances in sparse sensing 
and machine learning, Brunton, Proctor and Kutz have developed the Sparse Identification 
of Nonlinear Dynamics (SINDy) algorithm [ 11]. The algorithm employs the thresholded 
sequencial least-squares regression algorithm, resulting in models that are sparse and thus 
balance model complexity with descriptive ability. The algorithm then has been further 
developed to include forced nonlinear systems by extending the function base to include 
control inputs [ 4]. The resulting SINDYc formulation has been applied to numerous prob-
lems, including a Model Predictive Control (MPC) in the low-data limit by Kaiser, Kutz and 
Brunton [ 12]. However, to the best of our knowledge, data-driven sparse regression system 
identification techniques, such as SINDYc, have not yet been employed explicitly in the 
context of online closed-loop Control Reconfiguration specifically. 

3 System Description and Modeling 

Figure 1 shows the redundantly actuated IPoC system, which will constitute the use-case in 
this study. 

Fig. 1 Redundantly actuated 
Inverted Pendulum on a Cart 
(IPoC)
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Mathematically, the IPoC is described by the following differential equations [ 3]: 

.

ẋ = v

v̇ = −m2 l2 g cos(θ) sin(θ)+ m l2 (m l ω2 sin(θ)− δ v)+ m l2 (1/D) Ft
m l2 (M + m (1 − cos(θ)2))

θ̇ = ω

ω̇ = (m + M)m g l sin(θ)− m l cos(θ) (m l ω2 sin(θ)− δ v)− m l cos(θ) Ft
m l2 (M + m (1 − cos(θ)2))

(1) 

where . x is the cart position, . v is the velocity, . θ is the pendulum angle, .ω is the angular 
velocity. The parameters describe pendulum mass. m, the cart mass. M , pendulum arm length 
. l, gravitational acceleration. g, and the velocity-proportional (Stoke’s law) friction damping 
. δ on the cart. The system control input .Ft =  i=1 Fi is compound force applied to the 
cart and is a linear combination of the three redundant actuators. The actuators are modeled 
as ideal linear force actuators, not introducing any additional dynamics into the plant. The 
system is implemented as a nonlinear system in MATLAB/Simulink. 

4 Closed-Loop System Identification with SINDYc 

Sparse Identification of Nonlinear Dynamics with control (SINDYc) extends the original 
SINDy algorithm to include external inputs and feedback control [ 4]. 

4.1 Sparse Identification—SINDYc 

In this section, a brief overview of the sparse regression technique used in SINDYc is 
presented. Given a dynamical nonlinear system of the form. 

.
d

dt
x(t) = f(x(t), u(t)) (2) 

where .x(t) denotes the state of a system at time . t , and the function .f(x, u) describes the 
dynamic constraints. The time-dependency is omitted for better readability. 

Then, to identify the system from data, we first collect .m measurements of the state 
history .X ∈ R

m×n , corresponding to . n state-vector measurements .xi ∈ R
m and the input 

history .ϒ ∈ R
l×m . 

.X =
⎡

⎢
⎣ x1 x2 . . . xn

⎤

⎥
⎦ ,ϒ =

⎡

⎢
⎣u1 u2 . . . ul

⎤

⎥
⎦ , (3)
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These measurement matrices can be expanded with nonlinear candidate functions . f into a 
library matrix . (X,ϒ), 

. (X,ϒ) =
⎡

⎢
⎣ 1 X ϒ . . . f (X,ϒ) . . .

⎤

⎥
⎦ (4) 

which in turn constitutes the function basis to regress upon, so that the regression problem 
is defined as 

.Ẋ = 4 T (X) (5) 

where . denotes the sparse coefficient matrix to be determined, and . Ẋ describes derivative 
of the state history matrix with respect to time, which can be measured or computed. The 
resulting over-determined system can be solved efficiently with the thresholded sequential 
least-squares algorithm, a relaxation of the Sparse Regularized Regression Problem, as 
described by Zheng et al. [ 13]. 

4.2 Identifiability in Closed-Loop Systems 

As shown by Ljung, for a well-defined closed-loop system that exhibits integrative behavior 
(contains a delay) and is stable, the convergence theorem generally holds under the additional 
assumption that the data is informative and the model set contains the true system [ 10, p. 430]. 

Therefore it is possible to identify a system under closed-loop feedback control from 
data. However, it is more challenging to obtain informative data, since an important purpose 
of feedback is to make the closed-loop system less sensitive to disturbances. 

As indicated by Brunton et al. SINDYc can be applied to closed-loop systems, but requires 
an additional input perturbation [ 4]. The key issue is that for closed-loop systems, where 
.u = K(x), with .K being the feedback gain matrix, the regression problem becomes ill-
conditioned and the coefficients matrix.  thus rank-deficient. This is because it is impossible 
to disambiguate the influence of the feedback control and the internal dynamics. The single 
requirement for obtaining informative data from closed-loop systems is that the input must 
be be persistently exciting of a certain order, i.e. that it contains sufficiently many distinct 
frequencies [ 10, p. 415]. In the case of online system identification, the perturbation strategy 
is a tradeoff between optimal identifiability (high input power) vs. optimal reference tracking 
(smallest possible input power). 

5 Control Reconfiguration 

The control reconfiguration architecture is detailed in Fig. 2. Generally, a dynamic system 
can experience faults in three locations: actuator, plant, and sensor faults. Only actuator faults
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Fig. 2 Online Control Reconfiguration architecture for a linear full state feedback controller 

are considered in this work. To reconfigure the controller in the case of a fault, the online 
identification layer first estimates a new system model of the faulty system. ẋ = A f x+B f u
based on recent system behavior, described by the input.u(t) and states.x(t, u, f ) time series. 
To disambiguate between the full state feedback controller dynamics and the plant dynamics 
the perturbation injector excites the system directly and continuously. The new dynamic 
model is then served to the control reconfiguration layer. Depending on the severity of the 
fault, the reconfiguration algorithm reallocates resources by altering the full state feedback 
controller matrix .K f . 

For simplicity, a model-matching reconfiguration strategy is chosen, based on the Pseudo-
Inverse method detailed in [ 5, pp. 391–394]. Given a linear state-space model of a nonlinear 
dynamic system unsubject and subject (index . f ) to a fault 

.ẋ(t) = A x(t)+ B u(t), ẋ(t) = A f x(t)+ B f u(t) (6) 

a state feedback controller for the faulty plant can be readily expressed. The optimal gains 
are determined by solving the Riccati Equation for a Linear Quadratic Regulator (LQR) [ 3] 

.u(t) = −K f x(t), (7) 

where .K f denotes the control matrix for the faulty plant. To achieve similar closed-loop 
dynamics, the difference between the two system models needs to be minimized. The solution 
to the unknown control matrix .K f is then given by: 

.K f = B+
f (A f − A + B K) f (8)



58 B. Kelm et al.

with the Pseudo-Inverse.B+
f of the input matrix. The resulting control matrix minimizes the 

differences of dynamical properties between the nominal loop and the faulty loop and gives 
the best possible controller design for the linear system subject to a fault. 

6 Results 

This section presents first results of a parameter study for the identification of the IPoC 
system with SINDYc, yet without reconfiguration. The second section then presents the 
results of the complete reconfiguration of IPoC system. 

6.1 Closed-Loop Identification Parameter Study 

There are a variety of parameters that are relevant to the identification process of closed-loop 
systems. In this section we will study effect of the perturbation signal power and the signal-
to-noise ratio (SNR) for the measured sensor signals used for identification. There exists a 
number of different signal types like White Gaussian Noise (WGN), Pseudo-Random Binary 
Sequence (PRBS) or multisine signals. 

However, we found that, for our purpose, the perturbation signal type, after being band-
pass filtered, has only marginal influence on the identification results. To reduce the param-
eter space we will therefore only consider the bandpass-filtered WGN signal. To ensure 
comparability for different frequency bands, the power of the perturbation signal . P(u p)

is normalized. Figure 3 shows the unfiltered and filtered WGN perturbation signal and a 
frequency band of . fb = 2..15Hz. 

For the parameter study the perturbation signal power was varied from . P(u p) =
0.01..0.63 W = 10..28 dBm and a signal-to-noise ratio from .SN Rid = 100 to .10 was 
studied. 

Fig. 3 Filtered White Gaussian Noise (WGN) as perturbation signal
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Fig. 4 Parameter study case for IPoC system identification 

For all experiments, a sinusoidal reference signal with frequency. fr = 0.1Hz is imposed 
on the system. 

Figure 4 shows the simulation and the resulting identification plots for a signal power 
of .P(u p) = 14.5 dBm and a SNR of .100. The states, derivatives and input plots on the 
top show the closed-loop system response to the reference signal. On the bottom left, the 
identified column sum.bi of the input matrix (pertaining to one of the three actuators each) is 
plotted for progressive identification timeframes .nid corresponding to .Nt f = 300 samples 
at a sampling frequency of . fs = 500Hz each. The identified open loop eigenvalues .λi are 
plotted in the bottom center plot, and the closed-loop eigenvalues .λi,cl on the right. 

The input matrix corresponding to the actuator effectiveness is identified correctly 
throughout the experiment and exhibits low variance. The system matrix is not identified cor-
rectly and exhibits high variance for the first few identification timeframes. This is probably 
due to settling effects, i.e. that the systems initial conditions are equal to the “pendulum-up” 
fixpoint, but the reference signal demands a constant velocity initially, resulting in large 
gradients. For later timeframes, however, the system is identified correctly. 

The semilog-plot in Fig. 5 shows the statistical evaluation of the identification results for 
varying perturbation signal power and Signal-to-Noise ratios for a perturbation frequency 
band of . fb = 2..15Hz. The different signal power levels are shown by the different colors. 
The shaded areas correspond to the variance and the solid line to the mean of all . nid = 32
identification timeframes of one parameter set. 

The left plot shows the identification results of the only the first actuator to reduce 
clutter. For low perturbation signal powers, a significant increase in variance can be seen 
for a .SN R of .30 and below. For higher signal power the identification remains at low 
variance even for very low.SN R. It is important to note, that the algorithm overestimates the 
effectiveness consistently. A similar behavior is observed for the open-loop and closed-loop 
identification of the system matrix. For low perturbation signal powers, the eigenvalues are
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Fig.5 Statistical evaluation of identification quality for varying perturbation signal power and Signal-
to-Noise ratio (SNR) for a perturbation frequency band of . fb = 2..15Hz

poorly identified for a .SN R of .40 and below. For higher perturbation signal powers, the 
eigenvalues are identified with less variance. Here, a clear tendency towards overestimating 
the system dynamics is observed both for lower .SN R as well as lower perturbation signal 
powers. 

Further experiments have shown that there is an optimal frequency band of the pertur-
bation signal. Both very low and very high frequencies lead to identification results with 
significantly higher variance. 

6.2 Closed-Loop Identification and Control Reconfiguration 

In this section we will simulate the complete the identification and reconfiguration strategy 
for the closed-loop IPoC system subject to both abrupt and incipient actuator faults. 

Figure 6 shows the simulated system response of the the closed loop system. The top three 
graphs show the states, the derivatives and the forces on the cart, which are produced by the 
actuators subject to faults. At time .t = 5 s an abrupt fault is introduced to actuator . 3, and  
at time .t = 10 s an incipient fault is introduced to actuator . 2, linearly loosing effectiveness 
over . t = 10 s. 

The bottom three graphs show the online identification and reconfiguration results. The 
input matrix is identified, as expected, with low variance. Both the abrupt and incipient 
actuator faults are caputured well. The system matrix (bottom center graph) is identified with 
high variance, and the corresponding eigenvalues only settle after the faults have transpired. 
The bottom left graph shows the row sums of the reconfigured full state feedback controller 
matrix .K f . The reconfiguration of the relevant entries is clearly seen, as the controller is 
adjusted to changing plant behavior. Despite the full failure of two actuators, the closed-loop 
system remains stable and retains it’s pre-fault characteristics.
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Fig. 6 Perturbed IPoC simulation data with fault injection and reconfiguration, .P(u p) = 20 dBm, 
. SN R = 80

7 Limitations and Outlook 

The presented approach for fault-handling by control reconfiguration via online identifica-
tion with SINDYc has shown general applicability to closed-loop cyber-physical systems, 
such as the Inverted Pendulum on a Cart. In order to successfully identify a closed-loop sys-
tem, the perturbation signal needs to be chosen carefully. It has been shown that the higher 
the perturbation power and signal-to-noise ratio, the better the performance of SINDYc. 
What remains unclear why both the input matrix coefficients and the stability of the system 
(more negative eigenvalues eigenvalues) are overestimated consistently. Also, what has not 
been shown sufficiently is the dependency upon the perturbation frequency-band. Failures 
in plant dynamics (e.g. changing pendulum mass) have also not been considered. However, 
the presented fault handling strategy readily integrates these types of faults as well. 

The presented approach is limited in several ways: First of all, the requirement of full 
observability strongly limits the applicability for many real-world systems. On this end, 
a combination with a estimator-filters (e.g. Kalman filter) would relax this requirement. 
This would also allow for treatment of sensor faults. Second, the requirement of consistent 
excitation compromises tracking capabilities of the system and poses increased strain on the 
actuators. Future implementations could make use of external anomaly detection algorithms 
to trigger a system “self-test” consisting of a perturbation, identification and possible recon-
figuration. Thirdly, the limited identifiability of the system matrix. A restricts the application 
for weakly actuated systems. 

Future research could focus on the implementation of this approach on a real-world sys-
tem with real, noisy data. The influence of actuator dynamics or explicit time-delays on the 
identifiabiliy might be worthwile to study. Further, the identification of the optimal pertur-
bation frequency-band, or alternative perturbation strategies, like a pulsed and synchronized
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perturbation and identification approach, would present an interesting research opportunity. 
Finally, a combination of the presented approach with input linearization techniques, such as 
Incremental Nonlinear Dynamic Inversion (INDI), where only the input matrix is required, 
offers a very promising nonlinear fault-tolerant control strategy. 

Acknowledgements This research is funded by (K)ISS as part of dtec.bw®—Digitization and Tech-
nology Research Center of the Federal Armed Forces of Germany (BMVg) which we gratefully 
acknowledge [ 14]. 
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