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Abstract. Anamorphic encryption (AE) considers secure communica-
tion in the presence of a powerful surveillant (typically called a “dicta-
tor”) who only allows certain cryptographic primitives and knows all the
secret keys in a system. The basic idea is that there is a second (anamor-
phic) mode of encryption that allows to transmit an anamorphic message
using a double key to a receiver that can decrypt this message using a
double key. From the point of view of the dictator the encryption keys
as well as the ciphertexts in the regular and anamorphic mode are in-
distinguishable. The most recent works in this field consider public key
anamorphic encryption (PKAE), i.e., the sender of an anamorphic mes-
sage requires an encryption double key (or no key at all) and the receiver
requires a decryption double key. Known constructions, however, either
work only for schemes that are mostly of theoretical interest or come
with conceptual limitations.
In this paper we ask whether we can design such PKAE schemes without
such limitations and being closer to PKE schemes used in practice. In
fact, such schemes are more likely to be allowed by a cognizant dictator.
Moreover, we initiate the study of identity-based anamorphic encryption
(IBAE), as the IBE setting seems to be a natural choice for a dictator. For
both PKAE and IBAE, we show how well-known IND-CPA and IND-
CCA secure primitives can be extended by an anamorphic encryption
channel. In contrast to previous work, we additionally consider CCA
(rather than just CPA) security notions for the anamorphic channel and
also build upon CPA (rather than just CCA) secure PKE.
Finally, we ask whether it is possible to port the recent concept of
anamorphic signatures, which considers constructing symmetric anamor-
phic channels in case only signature schemes are allowed by the dictator,
to the asymmetric setting, which we denote by public-key anamorphic
signatures (PKAS). Also here we consider security beyond IND-CPA for
the anamorphic channel.
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1 Introduction

Anamorphic encryption, introduced in [30] and subsequently explored in [26, 3,
11, 13, 12, 31], is a very recent concept that allows individuals to confidentially
exchange messages in a very restricted setting where a powerful surveillant (typ-
ically called a “dictator”) has full access to the secret keys in the system. Such
a capability can foster a strong foundation for enabling privacy in the face of a
powerful authoritarian government where every citizen is constantly surveilled.
The basic idea behind a PKE scheme to be anamorphic, is that there is a second
mode of encryption (the anamorphic mode) that allows to encrypt an anamor-
phic message that can be recovered by the legitimate holder of the secret key.
But from the perspective of the dictator, these ciphertexts look indistinguish-
able from regular ciphertexts and so the dictator is oblivious of these anamorphic
messages. Moreover, keys used for the anamorphic mode must also be indistin-
guishable from the ones used for the regular mode. This is achieved by having
a second key (the so-called double key) that can be used by the sender and the
receiver (and has to be exchanged covertly in advance). The general idea is to in-
corporate a covert channel using a symmetric or asymmetric encryption scheme
on top of an existing PKE scheme. While the asymmetric setting will be the
focus of this paper, we want to mention that for a symmetric setting one usu-
ally relies either on some randomness recoverability property of the PKE [3,27],
on hybrid encryption or an IBE-to-CCA transform [11]. Interestingly, there are
well-known CCA-secure public-key encryption schemes (or generic approaches to
construct such schemes) such as the Naor-Yung double encryption paradigm [29],
(RSA)-OAEP [5] or Cramer-Shoup [15] that are inherently anamorphic.

The most recent works in this fast-pacing field focus on schemes with asym-
metric anamorphic channels [11, 31]. Additionally, they investigate the limita-
tions of constructing anamorphic schemes [13,12]. Arguably, asymmetric anamor-
phic channels, so-called public key anamorphic encryption (PKAE), seem to be
superior to symmetric ones. In a PKAE the keys for the anamorphic mode are
asymmetric, i.e., there is an encryption double key dk and a decryption double
key tk. This is beneficial as in the case of multiple senders, no complex key man-
agement is required in order to prevent senders to reading anamorphic messages
sent to the receiver by other senders.

Public-key anamorphism. Persiano, Phan and Yung in [31] propose a vari-
ant of the PKAE notion where dk = ϵ, which interestingly eliminates the need
of communicating the encryption double key dk privately to the receiver. They
complement this by providing a proof of concept of the notion using the CCA-
secure Koppula-Waters (KW) scheme [25]. Additionally, they initiate a theoret-
ical investigation on the link between CPA-to-CCA compilers and public key
anamorphism to extract a set of generic “reduction-based” properties required
in the underlying PKE, satisfied by the KW scheme. Worth mentioning is also
that both the PKAE constructions based on KW proposed in [31] and Naor-
Yung (NY) proposed in [11] rely on a common feature of the underlying PKE
scheme: the setup procedure generates multiple key pairs (ski, pki)i∈[n], while
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retaining only a subset of secret keys ski, which makes them a natural choice for
constructing PKAE by embedding anamorphic message amsg within ciphertext
cti and allowing the receiver to retain the corresponding ski (which ideally should
have been forgotten). Nevertheless, we observe that most of the well-known PKE
schemes and, in particular, practically used ones do not fulfil this property.

In another recent work, Catalano, Giunta and Migliaro [11] design PKAE
schemes, where dk ̸= ϵ, which they call fully-asymmetric AE schemes. Such
schemes are asymmetric but require to share the encryption key to potential
senders. In particular, the authors focus on Homomorphic Anamorphic En-
cryption (HAE) and demonstrate that NY instantiated with any IND-CPA se-
cure fully-homomorphic encryption scheme and fully-homomorphic NIZK [1],
the Gentry-Sahai-Waters scheme [23] and Cramer-Shoup Lite [15] are fully-
asymmetric. Moreover, in a follow-up work Catalano, Giunta and Migliaro [12]
show that such a type of scheme can be obtained from any IND-CPA secure PKE
with sufficiently high min-entropy ciphertexts using iO. Also here it is worth
noting that this does not cover PKE schemes that (or variants thereof) are used
in practice. Importantly, all these constructions in [11] are anamorphic triplets
rather than anamorphic extensions (introduced in [3]), i.e., the double keys have
to be generated at the time the normal keys are generated. However, it is de-
sirable that schemes support on-the-fly anamorphic key generation, i.e., double
keys can be generated based on existing keys of the normal PKE.

Moreover, interestingly all these existing anamorphic schemes build on top of
CCA-secure PKE schemes, but with respect to the anamorphic message (i.e., the
indistinguishability of anamorphic mode from normal mode) they just achieve
protection in the CPA-sense.

This makes us think whether these limiting restrictions, i.e., reduction-based
properties, being limited to anamorphic triplets rather than extensions as well as
relying on CCA-secure PKEs, are inherently linked to the design of asymmetric
anamorphic channels. In particular, we ask

Can we design simple public key anamorphic encryption schemes without such
limitations and ideally based on practically used PKE schemes?

In fact being able to focus on much simpler PKE schemes used in practice (or
variants thereof), are more likely to be allowed by a cognizant dictator. We be-
lieve this is a promising direction to explore in the sense that a positive result
would give us hope towards establishing PKAE as a practical cryptographic
primitive, while a negative result would imply relying on the existence of spe-
cialized PKE schemes, that might be outlawed by the dictator.

Towards an affirmative answer, we first give constructions for PKAE (with
dk ̸= ϵ) based on the ElGamal and Dual-Regev PKE schemes where we embed
an anamorphic message in µ > 1 ciphertexts of the respective PKE (which we
call multi-message extension). Note that ElGamal is used as a KEM in the popu-
lar Elliptic Curve Integrated Encryption Scheme (ECIES) and Dual-Regev is the
basic scheme underlying many modern lattice-based schemes such as Kyber. Sec-
ond, many practically used schemes (such as Kyber) apply the Fujisaki-Okamoto
transform [19, 20] to a weakly (i.e., OW-CPA or IND-CPA) secure scheme to
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obtain an IND-CCA secure one. Here, we show that when the ciphertext of
the underlying PKE is pseudo-random, then together with a suitable encoding,
anamorphic messages can be embedded into the FO-transformed PKE such that
the anamorphic encryption channel achieves replayable CCA (RCCA) [10] secu-
rity. To the best of our knowledge, this is the first work that considers security
stronger than IND-CPA for the anamorphic message (though many works in the
past relied on CCA secure schemes for the normal message).

Identity-based anamorphic encryption. When considering a setting where a
dictator wants to control the entire communication, it seems natural to consider
identity-based encryption [8]. In this setting, there is an entity which generates
the private keys for all the users (identities) from a compact msk and thus there
is an inherent backdoor (this msk) already built into the system. Thus, it seems
likely that a dictator would allow such encryption mechanisms, which in addi-
tion would save the dictator from the effort of collecting all the private keys.
Consequently, it seems natural to ask

Can we port the concept of anamorphic encryption to the identity-based
encryption setting?

We demonstrate how to realize anamorphic channels in such a world and con-
struct identity-based anamorphic encryption (IBAE) based on the Boneh-Franklin
IBE [8]. Moreover, we extend our results on the FO-transform from the PKAE
to the IBAE setting. Interestingly, this allows us to obtain IBAE with strong
security for the anamorphic channel for standardized IBE.

Anamorphic signatures. Besides the dedicated study on encryption, recently
Kutylowski et al. [26] investigated whether such a confidential message trans-
mission can still work in case the dictator forbids the use of encryption, and only
authentication primitives such as signatures are available. They considered sym-
metric anamorphic channels and provided an affirmative answer to that question.
After considering simpler constructions for PKAE is seems natural to ask

Are there public-key anamorphic signatures (PKAS), and can we design such
schemes as a simple combination of existing signature and PKE schemes?

Towards this goal, we introduce a general framework for PKAS and showcase
constructions based on two known signature schemes, one being standardized.

1.1 Our Contributions

In the following we briefly summarize our contributions:
– We introduce the concept of µ-message anamorphic extensions to construct

public-key anamorphic encryption schemes from simple CPA-secure PKE
schemes that (or variants thereof) are used in practice. In particular, both
the encryption of regular messages and anamorphic messages as well as their
decryption should essentially resemble that of a single PKE scheme. This
concept allows to embed an anamorphic message in µ > 1 ciphertexts of a
PKE scheme and we demonstrate such extensions for the well-known ElGa-
mal and the Dual-Regev schemes. We note that our Dual-Regev construction
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can be considered as the first PKAE based on lattices, given the existing con-
structions as either based on groups or SKE. We follow the same approach
for the Fujisaki-Okamoto (FO) transform often found in practical IND-CCA
secure PKE schemes (such as Kyber). Interestingly, although many previ-
ous works used IND-CCA secure PKEs to create anamorphic channels, these
works did restrict to IND-CPA security for the anamorphic message. We also
consider security beyond IND-CPA and show that with our FO-approach,
we can achieve strong RCCA security where strong refers to the model that
provides the secret key of the PKE scheme to the adversary.

– We initiate the study of identity-based anamorphic encryption (IBAE). We
show that the Boneh-Franklin (BF) IBE admits a 2-message IBAE. More-
over, we show that the FO-approach to construct an anamorphic channel can
be equivalently applied to the IBE setting. This covers CCA secure variants
of the BF and the Sakai-Kasahara IBEs which are standardized [18].

– We introduce the concept of public-key anamorphic signature extensions
(PKASE). Our goal here is to combine well-known signature schemes and
PKE schemes in a way that the embedding is simple. We introduce a generic
framework that covers signature schemes which are canonical candidates for
anamorphic extensions and in particular have at least one uniformly random
component. The random components of a few signatures suffice to embed
a pseudo-random ciphertext. We showcase our framework for Waters signa-
tures and linear encryption as well as Boneh-Boyen-Sacham (BBS) signa-
tures, being in the process of standardization, and FO-ElGamal encryption
and achieve security beyond IND-CPA for the latter.

We depict our anamorphic encryption and signature schemes in Table 1.

1.2 Technical Overview

Subsequently, we provide a technical overview of our contributions and how our
approaches work, with details deferred to the respective sections.

µ-message PKAE extensions for simple IND-CPA secure PKE. We
have already discussed that constructing PKAE is known to work when making
an additional assumption such as when relying on PKE where the key generation
algorithm samples various key pairs of the underlying CPA-secure PKE schemes
and a subset of the secret keys is sufficient for decryption, which gives rise to
a public key anamorphic channel. Nevertheless, only theoretically interesting
schemes are known to provide such a feature. Moreover, for the schemes in
[11], despite being not very close to schemes used in practice, the limitation to
anamorphic triplets rather than anamorphic extensions seems inherent.

Alternatively, we could take inspiration from recent works [26,27] construct-
ing secret key anamorphic encryption schemes (i.e., dk = tk) using the random-
ness-recovering properties of PKE schemes. We recall that for such a scheme the
secret key can recover the random coins sampled during encryption. Let r be the
randomness used to encrypt msg by PKE.Enc(pk,msg; r) = ct then there is a ran-
domness recovery algorithm that extracts r along with msg using sk. To create an
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PKAEE

Our Work PKE µ = #ct M̂ Security

Sec. 3.1 ElGamal 2 restricted IND-CPA

Sec. 3.2 DualRegev 2 restricted IND-CPA

Sec. 3.3 FO-HashedElGamal 4 unrestricted sIND-RCCA

IBAEE

Our Work IBE µ = #ct M̂ Security

Sec. 4.1 BF 2 restricted IND-CPA

Sec. F FO-BF 4 unrestricted sIND-RCCA

PKASE

Our Work PKE Sig µ = #σ M̂ Security

Sec. 5.1 LinEnc Waters 3 unrestricted IND-CPA

Sec. 5.2 ElGamal BBS 4 unrestricted IND-CPA

Sec. 5.2 FO-ElGamal BBS 5 unrestricted sIND-RCCA + IND-CCA

Table 1: Our anamorphic encryption and signature schemes. Here, we denote
by #ct and #σ, the total number of (regular) ciphertexts and signatures of the
underlying PKE, IBE and Sig schemes needed to construct our PKAEE, IBAEE
and PKASE respectively; by M̂, the anamorphic message space where “re-
stricted” means polynomial-sized and “unrestricted” means exponential-sized;
by RCCA replayable CCA; by FO Fujisaki-Okamoto; by BF Boneh-Franklin;
by LinEnc linear encryption; “Security” means the security of the anamorphic
message.

anamorphic channel using this property, one needs a symmetric key encryption
scheme SKE to encrypt an anamorphic message amsg and use SKE.Enc(s̃k, amsg)

as the random coins r while computing ct. The secret key s̃k plays the role of
the double key. If the SKE scheme produces pseudorandom ciphertexts then the
dictator remains oblivious about the presence of such an anamorphic message
inside ct having access to (pk, sk, ct). A näıve way to make this work in the case
of PKAE is to replace the underlying SKE having pseudorandom ciphertexts
with a PKE having the same property.

However, our approach towards PKAE is not to use any specific property of
the PKE but to devise an approach that is capable of covering various well-known
PKE schemes that (or variations thereof) are used in practice. Our design goal is
to rely on a single PKE scheme both for the regular and anamorphic messages.
It is however not clear a priori how to embed the anamorphic message amsg
into a single ciphertext ct of the underlying PKE scheme such that decryption
recovers both msg and amsg without relying on aforementioned assumptions or
properties. To get around this apparent constraint, we embed an anamorphic
message amsg within multiple ciphertexts of the underlying PKE. We formalize
this as public-key anamorphic µ-message extension and consequently an anamor-
phic ciphertext consists of µ (not necessarily consecutively sent) ciphertexts of
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the underlying PKE. This can be seen as distributing a ciphertext of the PKE
carrying amsg over µ ciphertexts containing regular messages (m1, . . . ,mµ) gen-
erated with the same PKE. To formally capture this, we additionally introduce
the notion of PKAE-compatibility, which requires to generate double-keys on
the fly, and importantly ciphertext extractibility, demanding that the existence
of an efficiently computable function F such that the anamorphic message amsg
can be computed by the decryption algorithm of the PKE on ciphertext F (act)
computed from the anamorphic ciphertext act, i.e., PKE.Dec(tk, F (act)) = amsg.
Latter ensures that decryption of an anamorphic ciphertext can be performed
using the decryption algorithm of the PKE. We then demonstrate a public-key
anamorphic 2-message extension for the ElGamal and the Dual-Regev encryp-
tion schemes. To give an idea for ElGamal with public key pk = gsk where a
ciphertext to message M is C = (gκ, pkκ ·M) for random κ. We can set the dou-
ble keys as dk = (gα, gα·sk) and tk = α. Embedding an anamorphic message amsg
into two ciphertexts for messagesM1 andM2 will result in (r1, c1) = (gκ, pkκ·M1)
and (r2, c2) = (dkκ1 · gamsg, dkκ2 · pk

amsg ·M2). Decrypting the normal messages
works as usual and the anamorphic message can be recovered by calling ElGamal
decryption on (r1, r2) and finding log gamsg.

Why µ-message extension? One could wonder whether it is hard to em-
bed an ElGamal ciphertext (gκ, gκ·tk+amsg) into a single ElGamal ciphertext
(r1 = gα, c1 = gα·sk+msg). Since α is uniformly random over Zq, it is not possible
to extract something meaningful if we try to embed gκ·tk+amsg into r1. On the
other hand, both gκ and r1 are statistically close. Hence, we can directly set
α = κ for recovering the correct anamorphic message during decryption. Con-
sequently, the only possible option left is to somehow encode gκ·tk+amsg into c1
where α = κ. Thus, we have the following equation κ · tk+ amsg = κ · sk+msg.
Given a pair of messages msg, amsg, this equality cannot hold with high proba-
bility when tk, sk are independently and uniformly sampled from Zq.

Anamorphic Clans. While the entire revolutionary theme of anamorphic cryp-
tography is built on top of a totalitarian government regime, it is quite natural
to imagine a setting where secret rebellious communities exist within. A promi-
nent use-case would be an underground community liaising secretly to advocate
freedom of citizens from the dictatorship rule. Additionally, the members of such
communities must be subject to background checks to avoid infiltration by the
government, and hence managed by a leader; we call such communities anamor-
phic clans.

Having introduced the concept of anamorphic clans, consider a scenario where
the encryption double key dk of an anamorphic clan member is revealed to the
dictator. A dictator could simply procure dk when getting distributed within the
clan, or by corrupting its member(s). Intuitively, one might expect the dictator
to forcefully demand the corresponding decryption double key tk. However, the
dictator may have a stronger motive of silently surveilling the communication
patterns to learn the communicating peers of the alleged clan member, and
hence not demand tk immediately. It could also be the case that the dictator is
unable to link the procured dk to a clan member and hence wishes to investigate
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who is anamorphically communicating with whom. This demands us to study a
stronger security notion which is beyond the usual IND-CPA notion, where the
adversary compromises both ask and dk. Additionally, the dictator could also
learn a list of anamorphic messages and corresponding anamorphic ciphertexts
from a corrupted clan member. This motivates us to consider an even stronger
security notion where we allow the adversary to access an oracle aDec(tk, act)
that decrypts anamorphic ciphertexts. In other words, we consider IND-CCA
security for anamorphic messages.

PKAE extensions with security beyond IND-CPA. Another goal of this
paper is to build PKAE for popular IND-CCA secure schemes using the same
idea of a multi-message extension. Existing results for PKAE based on IND-CCA
secure PKEs are based on theoretical constructions such as Koppula-Waters.
Moreover, and interestingly, previous work though looking at anamorphisms for
CCA secure schemes only guarantee IND-CPA security for the anamorpic mes-
sages and consequently no integrity protection at all. We study the use of the
popular FO transformation which is particular relevant in the construction of
post-quantum PKEs such as Kyber. We recall that FO encrypts a random mes-
sage r with a weakly secure (e.g., IND-CPA secure PKE) using randomness
derived from a hash function H on H(r,m) with m being the message that one
wants to encrypt. The random message r is then used as a basis to derive a key
G(r), with G being another hash function, for a symmetric encryption (SKE)
scheme which then encrypts m. The overall scheme then achieves IND-CCA se-
curity in the random oracle model. The basic idea of our construction is to use
two FO-layers, an inner and outer layer of FO encryption. Basically, the inner-
layer is used to encrypt the anamorphic message amsg where the PKE scheme
and the SKE scheme are required to have pseudorandom ciphertexts. Then we
use a pseudo-random encoding (e.g,. Elligator Squared in case of elliptic curves)
to encode the inner-layer ciphertext into the message space of the PKE of the
outer-layer FO encryption. Due to the property of the FO-transformation, i.e.,
randomness recoverability, we can thus use the randomness obtained from de-
crypting the outer-layer to decode this into a ciphertext of the inner-layer and
decrypt. Interestingly, for such schemes we achieve strong RCCA security for the
anamorphic message.

Identity-based anamorphic encryption (IBAE). Deploying anamorphic
clans using PKAE would require the anamorphic clan lead to generate the dou-
ble key-pairs (dk, tk), sending the double decryption keys to the members while
registering double encryption keys for all the clan members. Clearly, such a so-
lution would not be desirable in light of the overall complexity in generating and
storing the double keys, and would additionally lead to scalability concerns. To
overcome this, we could think of using identity-based encryption to establish the
anamorphic channel, where the clan lead generates master key-pairs (mpk,msk),
derives and distributes double private keys skid to clan members. Nevertheless we
are unsure how to realize such an anamorphic IBE channel within the dictator
approved PKE scheme. Thus we ask : could we reformulate anamorphic encryp-
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tion through the lens of identity-based encryption? More specifically, could we
design a covert anamorphic IBE channel within a regular IBE channel? This
would require the dictatorship to authorize identity-based encryption but why
would that be convincing? However, as argued within, and demonstrated by our
following discussion, identity-based encryption could be the most natural way to
formulate anamorphic cryptography. To start, in an identity-based encryption
settings, a dictator would generate private keys associated with the public iden-
tity of its citizens at any stage during the existence of the system. This would
also capture the powerful concept of silent surveillance within a dictatorship
regime as any message encrypted with respect to any id can be decrypted by
the dictator without forcing citizens to submit private keys on demand. Finally,
a dictator can derive private keys as convenient, and hence there is no need to
store the keys, contrary to the realization of an anamorphic clan using PKAE
settings.

Therefore, IBE seems to be a premier candidate for an encryption scheme
allowed by a dictator. We initiate the study of identity-based anamorphic en-
cryption (IBAE) which allows to embed an IBE anamorphic channel inside an
IBE. We present a concrete instantiation of anamorphic IBE based on the sem-
inal Boneh-Franklin scheme [8] using our multi-message extension concept. A
2-IBAE associated with the Boneh-Franklin IBE [8], works roughly as follows.
Unlike the anamorphic extension of the ElGamal encryption scheme where for
two ciphertexts the first components (r1, r2) represent an ElGamal encryption
of the anamorphic message, embedding amsg within two regular Boneh-Franklin
ciphertexts is not that straightforward. We recall that, in Boneh-Franklin cipher-
text C = (r2 = Pκ2 , c2 = msg⊕H2(g

κ2

id )), the group element gκ2

id is not explicitly
available. Rather, it only appears as an input to the hash function H2. Therefore,
if we set κ2 following the ElGamal encryption extension, then it seems impossible
to recover the anamorphic message amsg due to the one-wayness of H2. At this
point, the only solution appears to be encoding amsg outside the hash function
H2. Consequently, we use rejection sampling such that amsg could be extracted
from c2. More specifically, we sample κ2 subject to H2(g

κ2

id ) = amsg ⊕ H2(ĝ
κ1

id );
call it ĉ. We then treat (r1 = Pκ1 , ĉ = amsg ⊕ H2(ĝ

κ1

id )) as a BF ciphertext and
apply the regular decryption algorithm of BF to recover amsg. Using this tech-
nique we can convey anamorphic messages of at most O

(
log λ

)
bits to ensure that

encryption remains polynomial. Similar to PKAE, we then explore the use of
the FO-transformation to create an anamorphic channel which achieves strong
IND-RCCA security and allows for λ-bit anamorphic messages. Standardized
Boneh-Franklin and Sakai-Kasahara are covered by our results.

Public-key anamorphic signatures extensions. Anamorphic signatures are
a recent concept due to [26] but, so far, they are not considered in the context
of asymmetric anamorphic channels. Our aim is to investigate such public-key
anamorphic signatures (PKAS) based on simple combinations of well-known sig-
nature and PKE schemes. Our main observation is that there are well-known
schemes where signatures contain some uniformly random components and the
remaining components can be computed from the former in a “black-box way”
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(e.g., without knowing their DLs). This opens up the possibility to embed
pseudo-random ciphertexts into these random signature components. The num-
ber of random signature components and the number of ciphertext components,
then controls how many signatures are required to transmit one anamorphic
message. We put this intuition into a generic formal framework and show how to
instantiate this framework based on Water’s signatures [36] together with linear
encryption [7] as well as BBS signatures [7, 34], currently being standardized,
together with (FO-)ElGamal encryption, latter with the help of the Elligator
Squared encoding [35]. We note that for signatures we are able to achieve IND-
CCA security for anamorphic messages.

To provide an intuition, for Water’s signatures the hash is computed as
H(m) = h0

∏n
i=1 h

mi
i , where the mi is the i’th bit of message m. A signature is

(gr, gαβH(m)r) for random r, secret key gαβ and public key (gα, gβ , h0, . . . , hn).
Also recall that in linear encryption the public key is pk = (u, v, h) ∈ G3 and
the secret key (x, y) ∈ Zq such that ux = vy = h holds. Encrypting a mes-
sage msg ∈ G amounts to choosing random κ1, κ2 and computing ciphertext
(c1, c2, c3) = (uκ1 , vκ2 , hκ1+κ2 ·msg) which looks pseudorandom under the deci-
sion linear (DLIN) assumption and decryption computes msg = c3 · (cx1 · c

y
2)

−1.
When making the assumption that every user generates its own parameters
for the Water’s hash and thus knows ai such that hi = gai for i ∈ {0, . . . , n}
and this is tolerated by the dictator4, we can construct a simple PKAS. Using
the knowledge of these discrete logarithms allows us to transmit an anamorphic
message amsg by embedding one ciphertext component of a ciphertext (c1, c2, c3)
encrypting amsg into the first components of three Water’s signatures.

2 Public Key Anamorphic Encryption

We now present the relevant notions for PKAE from the literature. We follow
the current line of works on receiver anamorphic encryption introduced in [30],
and subsequently generalized in [3,11,26]. Given our core motivation is to realize
covert channels using an asymmetric variant, we follow the foundational work
on PKAE in [31,3].

At a high-level, a PKAE is a triplet ΠPKAE = (aGen, aEnc, aDec) associated
with a regular PKE ΠPKE = (Gen,Enc,Dec) which operates in either of the two
modes: regular and anamorphic. The regular mode is basically the ordinary en-
cryption scheme ΠPKE where the receiver generates a key-pair (pk, sk) using Gen,
and hands over the secret key sk to the dictator, who can then decrypt any
ciphertext ct meant for the receiver. In the anamorphic mode, the receiver runs
aGen and generates anamorphic key-pair (apk, ask) along with encryption and
decryption double keys (dk, tk). When a sender wants to send an anamorphic
message amsg, she chooses an innocuous-looking message msg and runs aEnc,
such that the output ciphertext act decrypts to amsg using tk on aDec, and msg
using ask on Dec. Additionally, aDec might require to identify the existence of
non-anamorphic messages. This is captured by a notion called robustness (cf.

4 For the second construction based on BBS we do not require such an assumption
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Appendix I) proposed in [3], which essentially requires aDec to return ⊥ when
decrypting a regular message msg encrypted with Enc, with overwhelming prob-
ability. Anamorphic security essentially requires that a PPT dictator should not
be able to tell apart the output distributions of regular and anamorphic cipher-
texts, along with the corresponding key pairs. IND-CPA security for PKAE is
a security property with respect to the group of peers using the anamorphic
channel. Here, an adversary given (apk, dk) must not be able to derive informa-
tion about amsg from a given ciphertext. Below, we also define several (obvious)
security notions beyond IND-CPA.

Definition 1 (Public Key Anamorphic Encryption [11] [31]) A public key

anamorphic encryption (PKAE) scheme with anamorphic message space M̂ as-
sociated with a public key encryption scheme ΠPKE = (Gen,Enc,Dec) with a regu-
lar message spaceM is a triplet ΠPKAE = (aGen, aEnc, aDec) of PPT algorithms
defined as follows:

(apk, ask, dk, tk)← aGen(1λ) : The anamorphic key generation algorithm aGen

takes as input the security parameter 1λ, and outputs an anamorphic public
key apk, an anamorphic secret key ask, an encryption double key dk and a
decryption double key tk.

act← aEnc(apk, dk,msg, amsg) : The anamorphic encryption algorithm aEnc takes
as input the anamorphic public key apk, the encryption double key dk, a reg-
ular message msg ∈M and an anamorphic message amsg ∈ M̂, and outputs
an anamorphic ciphertext act.

amsg← aDec(tk, act) : The anamorphic decryption algorithm aDec takes as in-
put the secret decryption double key tk and the anamorphic ciphertext act,
and outputs an anamorphic message amsg or the symbol ⊥̸∈ M̂ indicating
absence of anamorphic message.

Correctness: We call ΠPKAE correct if for every pair of messages (msg, amsg) ∈
M× M̂, it holds that

Pr

[
amsg ̸= aDec(tk, act) :

(apk, ask, dk, tk)← aGen(1λ)
act← aEnc(apk, dk,msg, amsg)

]
≤ negl(λ)

where the probability is taken over the random coins tosses of aGen and aEnc.

Anamorphic security: ΠPKAE satisfies anamorphic security if for every PPT
dictator D it holds that∣∣∣Pr[GRealDPKE(λ) = 1]− Pr[GAnamD

PKAE(λ) = 1]
∣∣∣ ≤ negl(λ)

where the security games are defined as follows:
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GRealDPKE(λ) :

1. (pk, sk)← Gen(1λ)
2. return DOEnc(·,·)(pk, sk) where

OEnc(msg, amsg) = Enc(pk,msg)

GAnamD
PKAE(λ) :

1. (apk, ask, dk, tk)← aGen(1λ)
2. return DOaEnc(·,·)(apk, ask)

where
OaEnc(msg, amsg)
= aEnc(apk, dk,msg, amsg)

IND-CPA security and beyond: ΠPKAE satisfies IND-CPA security if for every
PPT adversary A there exists a negligible function negl(λ) such that for all
λ ∈ N, the following holds:∣∣∣Pr[GIND-CPAA

PKAE(λ, 0) = 1]− Pr[GIND-CPAA
PKAE(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND-CPAA
PKAE(λ, β) :

1. (apk, ask, dk, tk)← aGen(1λ)
2. (msg, amsg0, amsg1)← A(apk, dk)
3. actβ ← aEnc(apk, dk,msg, amsgβ)
4. return A(actβ)

Let us also consider several new but obvious security notions for ΠPKAE: We
call ΠPKAE IND-CCA secure if the advantage of A in GIND-CPAA

PKAE is negligible
when it is also given access to an aDec(tk, ·)-oracle which decrypts every given
act except for the challenge actβ . To also guarantee IND-CCA security with re-
spect to the dictator who knows ask, we additionally provide ask to A as input
and call the corresponding security notion strong IND-CCA secure (sIND-CCA).
Since, unfortunately, our constructions do not achieve sIND-CCA security, we
define a relaxation in the spirit of Replayable CCA (RCCA) security for PKE
as introduced in [10]: RCCA captures a security notion which is identical to
CCA except for the added ability of the attacker to generate new ciphertexts
that decrypt to the same plaintexts as previously seen ciphertexts. More pre-
cisely, our sIND-RCCA game coincides with the sIND-CCA game, except that the
aDec(tk, ·)-oracle rejects for a given act if aDec(tk, act) results in amsg0 or amsg1.

sIND-RCCA security: ΠPKAE satisfies sIND-RCCA security if for every PPT
adversary A there exists a negligible function negl(λ) such that for all λ ∈ N,
the following holds:∣∣∣Pr[GsIND-RCCAA

PKAE(λ, 0) = 1]− Pr[GsIND-RCCAA
PKAE(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:
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GsIND-RCCAA
PKAE(λ, β) :

1. (apk, ask, dk, tk)← aGen(1λ)
2. (msg, amsg0, amsg1)← AOaDec(tk,·)(apk, ask, dk)
3. actβ ← aEnc(apk, dk,msg, amsgβ)

4. return AOaDec(tk,·)(actβ)
where OaDec(tk, act) = aDec(tk, act) and
OaDec(tk, act) outputs ⊥ if aDec(tk, act) = amsg0 or amsg1.

3 Public Key Anamorphic Encryption Extension

In this section, we present concrete realizations of PKAE based on the well-
known ElGamal [17] and the Dual-Regev [22] cryptosystems as well as the
Fujisaki-Okamoto transformation [19,20].
Recall our previous discussion on embedding amsg within µ ciphertexts of the
underlying PKE, which we now formally regard through the following definition.

Definition 2 (µ-Message Public Key Anamorphic Encryption Extension)
For µ ∈ N, a public key anamorphic encryption extension (µ-PKAEE) scheme

with anamorphic message space M̂ associated with a public key encryption scheme
ΠPKE = (Gen,Enc,Dec) with a regular message space M is a triplet ΠPKAE

= (aGen, aEnc, aDec) of PPT algorithms defined as follows:

(apk, ask, dk, tk)← aGen(1λ) : The anamorphic key generation algorithm aGen

takes as input the security parameter 1λ, and outputs the anamorphic pub-
lic key apk, anamorphic secret key ask, an encryption double key dk and a
decryption double key tk.

act← aEnc(apk, dk,msg, amsg) : The anamorphic encryption algorithm aEnc
takes as input the anamorphic public key apk, the encryption double key dk, a
regular message vector msg ∈Mµ, and an anamorphic message amsg ∈ M̂,
and outputs an anamorphic ciphertext vector act.

amsg← aDec(tk,act) : The anamorphic decryption algorithm aDec takes as in-
put the decryption double key tk and the anamorphic ciphertext act, and
outputs an anamorphic message amsg or the symbol ⊥̸∈ M̂ indicating ab-
sence of an anamorphic message.

We now introduce the PKAE-compatible notion for a PKE. At a high-level, the
notion encompasses two properties. The first property on-the-fly double key gen-
eration captures the essence of anamorphic extension since the double keys dk
and tk can simply be derived from regular key-pairs already in use. More pre-
cisely, for key pairs (pk, sk) and (pk′, sk′) generated by PKE.Gen, we set sk′ as tk,
while dk is set as a function of the key pairs. The second property indicates that
aDec is essentially the same as PKE.Dec under the existence of a publicly known
poly-time function F . In particular, F (act) produces a valid ciphertext that
decrypts to amsg using PKE.Dec. We call this property ciphertext extractibility.
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Definition 3 (PKAE-Compatible) A public key encryption scheme ΠPKE =
(Gen,Enc,Dec) is said to be PKAE-compatible for the triplet ΠPKAE = (aGen,
aEnc, aDec) if the following holds:

– On-the-fly double key generation: A part of output (dk, tk) of PKAE.aGen(1λ)
is the output of PKE.Gen(1λ). In particular, if PKAE.aGen(1λ) = (ask, apk,
dk, tk) and PKE.Gen(1λ) = (pk, sk), PKE.Gen(1λ) = (pk′, sk′) then apk =
pk, ask = sk, tk = sk′ and there exists an efficiently computable function G
such that dk = G(pk, sk, pk′, sk′).

– Ciphertext extractibility: There exist an efficiently computable function F
such that PKE.Dec(tk, F (act)) = amsg, where act = PKAE.aEnc(apk, dk,
msg, amsg).

Throughout the rest of this section, we present PKAE constructions for the
ElGamal and Dual-Regev encryption schemes which follow this notion. The re-
cently proposed simple public key anamorphic construction based on CS-Lite
[11] for instance, however, does not satisfy the PKAE-compatible notion. We
defer the discussion on robustness of our constructions to Appendix I.

3.1 Extension of the ElGamal Encryption Scheme

We now show a concrete PKAE construction based on the well-known ElGamal
encryption scheme [17]. The ElGamal PKE scheme is a triplet of PPT algorithms
ΠEl = (Gen,Enc,Dec) defined over a cyclic group G = ⟨g⟩ of order q. The key
generation algorithm El.Gen on input 1λ, samples a uniformly random x in Zq,
and returns (sk B x, pk B gx). To encrypt a message msg ∈M, whereM is the
group G itself, the encryption algorithm El.Enc selects a uniformly random κ in
Zq, and computes the ciphertext ct as (ct1, ct2) = (gκ, pkκ ·msg). The decryption
algorithm EL.Dec simply recovers msg by computing ct2 · (ct1)−sk. We can also
consider ElGamal for M being a polynomially-bounded subspace of Zq, then
msg can be recovered by computing the DL of ct2 · (ct1)−sk. It is well-known that
ElGamal is IND-CPA secure under the DDH assumption in G.
Recall from our earlier discussions (Section 1.2), that our goal is to embed amsg
within µ ciphertexts. With the ElGamal encryption scheme, we achieve this goal
using µ = 2 ciphertexts. More specifically, we design an ElGamal 2-message
public key anamorphic encryption extension ΠaEl such that it is indistinguish-
able from an ElGamal 2-message encryption.
ElGamal 2-Message Encryption Scheme. The ElGamal 2-message encryp-
tion scheme Π2El = (Gen,Enc,Dec), associated with ΠEl = (Gen,Enc,Dec) does
the obvious: Π2El accepts a message vector consisting of two messages encrypts
them separately using El.Enc and decrypts the corresponding ciphertext vector
by applying El.Dec twice. Obviously, Π2El is also IND-CPA secure under DDH.
ElGamal 2-Message PKAE. We begin with an interesting observation that
the ciphertext ct = (ct1, ct2) output by 2El.Enc precisely contains two uniformly
random group elements κ1, κ2 (first components of ct1 and ct2 respectively). If
we could bias these random choices in a way that it covertly embeds amsg, then
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we would be able to recover amsg by treating κ1 and κ2 as regular ElGamal ci-
phertext components. Additionally, we need to ensure that the biased ciphertext
components are not “much” different from a random output of the regular El-
Gamal encryption scheme, as otherwise the dictator would be able to tell apart
regular and anamorphic instances. We now give more details.

The ElGamal 2-message public key anamorphic encryption extension ΠaEl =
(aGen, aEnc, aDec) works as follows: the key generation algorithm aEl.aGen sets
(apk, ask) = (pk, sk) as in El.Gen. In addition, for a uniformly random α ∈ Zq, it
sets the double keys as tk = α and dk = (gα, gαx). On input a regular message

vector msg = (msg1,msg2) ∈ M2, and an anamorphic message amsg ∈ M̂,

where M̂ is a polynomially bounded subspace of Zq, the encryption algorithm
aEl.aEnc computes ct1 = (r1, c1) using a uniformly random κ on msg1, identical
to 2El.Enc. However, for computing the second ciphertext ct2, instead of choosing
a uniformly random element κ2 in Zq, the algorithm implicitly sets κ2 = α · κ+
amsg and obtains r2 B gακ+amsg and c2 B gx(ακ+amsg) · msg2. The decryption
algorithm aEl.aDec recovers amsg by simply returning the discrete logarithm of
r2 · (r1)−tk, taking advantage of the polynomial message space M̂. Recall that
the dictator has no information on the key pair (tk, dk), and hence is oblivious
to the presence of amsg. We present our construction in Figure 1.

aGen(1λ) :

1. (sk = x, pk = y)← El.Gen(1λ)
2. α← Zq

3. ask B sk, apk B pk
4. dk B (gα, gαx), tk B α
5. return (ask, apk, dk, tk)

aDec(tk,act) :

1. gamsg B EL.Dec(tk, F (act))
2. return log gamsg

aEnc(apk, dk,msg, amsg) :

1. Parse dk = (dk1, dk2)
2. Parse msg = (msg1,msg2)
3. κ← Zq

4. act1 B El.Enc(apk,msg1;κ)
// act1 = (r1, c1)
// r1 = gκ, c1 B apkκ ·msg1

5. act2 B El.Enc(apk,msg2;κα+ amsg)
// act2 = (r2, c2)
// r2 = dkκ1 · gamsg

// c2 = dkκ2 · apkamsg ·msg2
6. return act B (act1, act2)

F (act) :

1. Parse act = (act1, act2)
2. Parse act1 = (r1, c1), act2 = (r2, c2)
3. return (r1, r2)

Fig. 1: 2-PKAEE ΠaEl

Correctness, Compatibility and Security Analysis. We discuss correctness
and the proofs of the following lemma and theorem related to compatibility,
anamorphic security and IND-CPA security of ΠaEl to the Appendix B.
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Lemma 1 ElGamal is PKAE-compatible for ΠaEl described in Figure 1 associ-
ated with the ElGamal 2-message encryption scheme Π2El.

Theorem 1 Under the DDH assumption for G, the ElGamal 2-message public
key anamorphic encryption extension ΠaEl described in Figure 1 satisfies anamor-
phic and IND-CPA security.

3.2 Extension of the Dual-Regev Encryption Scheme

We now present a PKAE construction based on the Dual-Regev cryptosystem
by Gentry, Peikert and Vaikuntanathan [22]. We focus on a simple version that
encrypts single bits. The Dual-Regev encryption scheme is a triplet of PPT al-
gorithms ΠDReg = (Gen,Enc,Dec) defined over a security parameter λ as follows:
let n = n(λ), q = q(λ) and m = m(λ) be polynomials in λ. Let T = R/Z
denote the group of reals [0, 1) with modulo 1 addition. Then for α ∈ R+,
let Ψα be the distribution on T of a normal variable with mean 0 and stan-
dard deviation α/

√
2π. Following the notations of [22], we set m ≥ 2n log q,

r = ω(
√
logm), q ≥ 5r(m + 1), α ≤ 1/(r

√
m+ 1 · ω(

√
log n)) and the LWE

noise distribution χ = Ψα. The key generation algorithm DReg.Gen randomly
samples vector k ∈ {0, 1}m and a matrix A ∈ Zn×m

q . It then returns sk B k
and pk B (A,b = A · k). On an input msg ∈ M, where M = {0, 1}, the
encryption algorithm DReg.Enc selects a uniformly random vector s ∈ Zn

q , a

vector eT sampled randomly from χm, and an integer y sampled from χ. It then
computes the ciphertext ct as (ct1, ct2) B (sT · A + eT , sT · b + y + msg · ⌊ q2⌋
mod q). The decryption algorithm DReg.Dec is probabilistic, and outputs 0 if
|ct2 − ct1 · k| ≤ q

4 , and 1 otherwise. Note that, |ct2 − ct1 · k| simply reduces to
msg · ⌊ q2⌋ plus an error term (y − eT · k), whose norm is smaller than q

5 with an
overwhelming probability in λ. Dual-Regev using parameters as described above
is IND-CPA secure under the (n, q, χ)-DLWE assumption of dimension m. As in
the case of ElGamal, we can similarly define Dual-Regev 2-message encryption
scheme Π2DReg = (Gen,Enc,Dec) where encryption takes two messages as input.
Dual-Regev 2-Message PKAE. To design a PKAE associated with the Π2DReg

construction, we again replace the random choices made during encryption with
specially chosen values. Intuitively, one might expect to find a solution by tak-
ing an approach identical to our ElGamal anamorphic extension (see Figure 1).
Nevertheless, such a straightforward adaptation does not work, which we now
account in more detail. Recall that in an ElGamal 2-message encryption scheme,
the group elements r1 = gκ1 and r2 = gκ2 (first components of two ciphertexts
ct1 and ct2) are uniformly random. In our ElGamal public key anamorphic 2-
message extension, we set κ2 = ακ1+amsg, where κ1 is uniformly random in Zq,
such that amsg could be recovered by treating (r1, r2) as an ElGamal ciphertext
and executing the regular decryption algorithm EL.Dec. This worked fine as an
ElGamal ciphertext indeed contains two group elements. However, if we proceed
in a similar manner for our Dual-Regev anamorphic construction, i.e., bias the
randomness s2 in r2 = sT2 ·A + eT2 (first component of regular Dual-Regev ci-
phertext ct2) such that amsg is encoded within, then we are not able to recover
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amsg since s2 cannot be extracted from r2. One could aim for a better approach
by encoding amsg in sT2 ·A + eT2 and treating (r1, r2) as a regular Dual-Regev
ciphertext. But this again fails as a Dual-Regev ciphertext comprises of a vector
r and a scalar c. To get around this apparent constraint, we compute s2 such
that the first element of the vector r2 is sT1 · b̂+ ŷ+amsg · ⌊ q2⌋, which we then ex-
tract (call it “c”) to recover the anamorphic message using a regular Dual-Regev
decryption algorithm on (r1, c). We now give more details.

The Dual-Regev 2-message public key anamorphic encryption extension ΠaDReg

= (aGen, aEnc, aDec) works as follows: the key generation aDReg.aGen sets (apk,

ask) = (pk, sk) output by DReg.Gen. It then selects a secret vector k̂, and

sets tk B k̂, dk B (A, b̂ = A · k̂). To encrypt a regular message vector
msg = (msg1,msg2) ∈ M2, along with an anamorphic message amsg ∈ M̂,
where M = M̂ = {0, 1}, the anamorphic encryption algorithm aDReg.aEnc
samples a uniformly random s1 in Zn

q , e
T
1 , e

T
2 from χm and ŷ from χ. It then

computes act1 = (r1, c1) as DReg.Enc(apk,msg1; s1, e
T
1 ). To encode amsg in r2

(first component of act2), it first computes a non-zero solution to a1 ·x = sT1 · b̂+
ŷ + amsg · ⌊ q2⌋ − e2,1 mod q, where A = [a1, . . . , an]

T and eT2 = [e2,1, . . . , e2,m],
and sets s2 = x. We know that such a solution exists (by the rank-nullity theo-
rem). Then, act2 = (r2, c2) is computed as DReg.Enc(apk,msg2; s2, e

T
2 ). Finally,

the anamorphic ciphertext act is (act1, act2). Let proj : Zm
q → Zq be a projection

onto Zq. To recover amsg, the anamorphic decryption algorithm aDReg.aDec ex-
tracts the first element of r2 as ĉ = proj1(r

T
2 ), followed by computing DReg.Dec

on r̂ = r1 and ĉ, using tk. We note that amsg is hidden from the dictator’s view
as it has no information on the double keys. See Fig. 2 for our construction.

Correctness, Compatibility and Security Analysis. We discuss correct-
ness and the proofs of the following lemma and theorem related to compatibility,
anamorphic security and IND-CPA security of ΠaDReg to the Appendix C.

Lemma 2 Dual-Regev is PKAE-compatible for ΠaDReg described in Figure 2
associated with the Dual-Regev 2-message encryption scheme Π2DReg.

Theorem 2 Let us consider m ≥ 2n log q, r = ω(
√
logm), q ≥ 5r(m + 1),

α ≤ 1/(r
√
m+ 1 · ω(

√
log n)) and χ = Ψα. Then, under the (n, q, χ)-DLWE as-

sumption of dimension m, the Dual-Regev 2-message anamorphic encryption
extension ΠaDReg described in Fig. 2 satisfies anamorphic and IND-CPA security.

3.3 Extension of FO-Based PKE

The well-known Fujusaki-Okamoto (FO) transformation [19,20] allows to turn a
weakly secure PKE and SKE into a PKE that is IND-CCA secure in the Random
Oracle Model. Let ΠPKE = (Gen,Enc,Dec) and ΠSKE = (Gen,Enc,Dec) be the un-
derlying encryption schemes. Then the FO transformation converts them into a
scheme ΠFO = (Gen,Enc,Dec) as follows: FO.Gen(1λ) simply executes (pk, sk)←
PKE.Gen(1λ). FO.Enc(pk,msg) returns c := (c1, c2) := (PKE.Enc(pk, r;H(r,msg)),
SKE.Enc(G(r),msg)), where r ← MPKE is randomly chosen from the message
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aGen(1λ) :

1. (sk B k, pk B (A,b = A·k))←
DReg.Gen(1λ)

2. k̂← {0, 1}m
3. ask B sk, apk B pk
4. tk B k̂, dk B (A, b̂ = A · k̂)
5. return (ask, apk, tk, dk)

aDec(tk,act) :

1. amsg B DReg.Dec(tk, F (act))
2. return amsg

F (act) :

1. Parse act = (act1, act2)
2. Parse act1 = (r1, c1),

act2 = (r2, c2)
3. r2 = [d1, . . . , dm]
4. ĉ B proj1(r

T
2 ), r̂ B r1

5. return (r̂, ĉ)

aEnc(apk, dk,msg, amsg) :

1. Parse msg = (msg1,msg2)
2. s1 ← Zn

q , e
T
1 , e

T
2 ← χm, ŷ ← χ

3. A = [a1, . . . , an]
T , eT

2 = [e2,1, . . . , e2,m]
4. for i ∈ {1, . . . ,m− 1}: xi ← Zq

5. xm = (
∑m−1

i=1 xiai + sT1 · b̂ + ŷ + amsg ·
⌊ q
2
⌋ − e2,1) · a−1

m mod q
6. x = (x1, . . . , xm)
7. s2 B x
8. act1 B DReg.Enc(apk,msg1; s1, e

T
1 )

//act1 = (r1, c1)
// r1 = sT1 ·A+ eT

1

//c1 = sT1 · b+ y1 +msg1 · ⌊
q
2
⌋ mod q

9. act2 B DReg.Enc(apk,msg2; s2, e
T
2 ))

// act2 = (r2, c2)
// r2 = sT2 ·A+ eT

2

// c2 = sT2 · b+ y2 +msg2 · ⌊
q
2
⌋ mod q

10. return act B (act1, act2)

Fig. 2: 2-PKAEE ΠaDReg

space of PKE, and H and G are hash functions (modelled as random oracles)
mapping to the space of random coins RPKE of PKE and the key space KSKE of
SKE, respectively. To decrypt, FO.Dec(sk, c) computes r := PKE.Dec(sk, c1) and
returns SKE.Dec(G(r), c2) if c1 = PKE.Enc(pk, r;H(r,msg)).

The idea to turn ΠFO into an anamorphic public key encryption scheme is
simple: The FO transformation provides us with the recoverable randomness
r ←MPKE which we can use to embed the components of a ΠFO ciphertext for
amsg. For this purpose, the ciphertext components need to be pseudo-random.
More precisely, we require IND$-CPA security for ΠPKE and wIND$-CPA security
for ΠSKE, both saying that its hard for an adversary to distinguish the encryption
of a chosen message from a random ciphertext. In the wIND$-CPA game, no
encryption oracle is given. For both definitions please refer to Appendix A.5.
Besides ciphertexts being pseudo-random, they also need to be compatible with
MPKE. To ensure the latter, we require the existence of a pair of PPT algorithms
(Encode,Decode) that allows us to encode ciphertexts from CFO = CPKE × CSKE
to plaintext vectors from Mµ

PKE for some small µ ∈ N (cf. Definition 4). The
resulting µ-message anamorphic extension ΠFO is given in Definition 3.

Definition 4 (Pseudo-Random Encodings) Let Setup(1λ) be a PPT algo-
rithm that outputs (polynomial-size descriptions of) two sets X and Y which both
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allow for efficient uniform sampling. Let (Encode,Decode) be a pair of PPT
algorithms such that Encode takes an element x ∈ X as input and outputs an
element y ∈ Y or ⊥ and Decode takes an element y ∈ Y as input and outputs
an element x ∈ X or ⊥. We call this pair a pseudo-random (X,Y)-encoding
associated with Setup, if it satisfies the following properties:

1. Correctness: For any (X,Y)← Setup(1λ), it holds that

Pr
[
x ̸= x′ : x← X, y ← Encode(x), x′ ← Decode(y)

]
≤ negl(λ)

2. Pseudo-randomness: For any (X,Y) ← Setup(1λ), and any PPT algorithm
A holds that

Pr

[
b = b′ :

x← X, y0 ← Encode(x), y1 ← Y,
b← {0, 1}, b′ ← A(X,Y, yb)

]
≤ 1

2
+ negl(λ)

aGen(1λ) :

1. (ask, apk)← FO.Gen(1λ)
2. (tk′, dk)← FO.Gen(1λ)
3. tk B (ask, tk′)
4. return (ask, apk, dk, tk)

aDec(tk,act) :

1. for j ∈ {1, . . . , µ}:
Parse actj = (c1, c2)
rj B PKE.Dec(ask, c1)
if rj = ⊥ return ⊥

2. c B Decode(r1, . . . , rµ)
3. if c = ⊥ return ⊥
4. return FO.Dec(tk′, c)

aEnc(apk, dk,msg, amsg) :

1. Parse msg = (msg1, . . . ,msgµ)
2. c← FO.Enc(dk, amsg)
3. (r1, . . . , rµ)← Encode(c)

// In the negligible event that
// Encode(c) = ⊥, we return to 2.

4. for j ∈ {1, . . . , µ}:
actj B FO.Enc(apk,msgj ; rj)

5. return act B (act1, . . . , actµ)

Fig. 3: µ-PKAEE ΠFOAE

It is not hard to see that ΠFO satisfies anamorphic security as the embedded
ciphertexts components containing amsg are indistinguishable from a regular
r ← MPKE. Moreover, the IND-CCA security of ΠFO for encrypting amsg (i.e.,
the “inner” layer encryption) implies sIND-RCCA for the overall construction
ΠFOAE. Roughly speaking, that means that an adversary (including the dictator)
is not able to maul amsg but it may tamper with the “inner” and “outer” layer
ciphertexts. Note that ΠFOAE does not satisfy IND-CCA security as aDec does not
check the integrity for the “outer” layer ciphertexts actj . Hence, if the underlying
ΠPKE is homomorphic, components of actj could be re-randomized. We prove the
following theorem in Appendix D.
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Theorem 3 Let ΠFO be an IND-CCA secure FO-based PKE where the under-
lying PKE ΠPKE is IND$-CPA secure and has an exponentially large message
space MPKE (i.e., |MPKE| ≥ 2poly(λ) for non-constant poly), and the underlying
SKE ΠSKE is wIND$-CPA secure. Furthermore, let (Encode,Decode) be a pseudo-
random (CFO,Mµ

PKE)-encoding, where CFO denotes the ciphertext space of ΠFO.
Then ΠFOAE as defined in Figure 3 is a µ-message anamorphic extension satis-
fying anamorphic security and sIND-RCCA security in the ROM.

An exemplary instantiation: FO of Hashed ElGamal and XOR. Let us
consider an instantiation of ΠFO based on hashed ElGamal as PKE and XOR
for the SKE part. Hashed ElGamal satisfies IND$-CPA security under DDH in
the ROM and XORing a message with a random key of the same length satisfies
wIND$-CPA security. In this case, FO.Enc(pk,msg) would produce a ciphertext

c = (gH(r,m), H ′(pkH(r,m)) ⊕ r,G(r) ⊕m), where H : {0, 1}∗ × {0, 1}∗ → Z|G|,

H ′ : G → {0, 1}ℓ1 , G : {0, 1}∗ → {0, 1}ℓ2 , and G is the group over which
ElGamal is defined. To obtain ΠFOAE, we also need instantiate an appropriate
pseudo-random encoding. For this, certain parameters need to be fixed: Let us
assume G = E(Fp) is an elliptic curve group of prime order q, where p is an
λ-bit prime. Furthermore, let us set ℓ1 = ℓ2 = λ (but also different parameter
settingss like ℓ1 = λ

c1
and λ

c1c2
for c1, c2 ∈ N s.t. ℓ1, ℓ2 ∈ N are possible). In this

case, we have to encode random elements of CFO = E(Fp) × {0, 1}λ × {0, 1}λ
as random elements ofMµ

PKE = ({0, 1}λ)µ for some µ ∈ N. Obviously, the only
difficulty here is encoding the first component, i.e., a random point of E(Fp)
by one or more random λ-bit strings. For this purpose, we can deploy Elligator
Squared [35]. This is a suitable encoding for essentially arbitrary elliptic curve
groups E(Fp) (also pairing-friendly) to F2

p. Encodings of random curve points can
be efficiently computed and are statistically indistinguishable from uniformly
random elements of F2

p. Moreover, [35] describes how encodings can be turned

into random bit strings. For instance, if p is very close to 2λ (which is often
the case for standardized curves), and we use the basic λ-bit representation for
elements of Fp as integers from {0, . . . , p − 1}, then we can simply interpret
the output of the encoding as (statistically close to) uniform bitstrings from
{0, 1}λ×{0, 1}λ. In this way, we can obtain a pseudo-random encoding of E(Fp)×
{0, 1}λ × {0, 1}λ elements as ({0, 1}λ)4 elements.

4 Identity-Based Anamorphic Encryption Extension

In this section, we formally regard our new concept of reformulating public key
anamorphic encryption through the lens of IBE. We further show how to realize
this notion using the Boneh-Franklin IBE in Section 4.1. Appendix F shows how
standardized IBE schemes based on the FO transformation can be turned into
anamorphic schemes.

At a high-level, an IBAE is a quadruplet of PPT algorithms ΠIBAE = (aSetup,
aKeyGen, aEnc, aDec) associated with a regular IBE ΠIBE = (Setup,KeyGen,Enc,
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Dec) which could be deployed in either of the two modes : regular and anamor-
phic. In the regular mode, a dictator computes the master key-pairs (mpk,msk)
using the Setup algorithm, and publishes the master public key mpk. It then
derives user-specific private keys skid based on the public identity id of users,
using the master secret key msk on the KeyGen algorithm. A message msg can
be encrypted with respect to id of a receiver using mpk on the Enc algorithm,
which can eventually be decrypted using the respective private key skid on Dec
algorithm. As one can clearly see the dictator along with the receiver can recover
msg since it generates the user-specific private keys. In the anamorphic mode,
while the dictator generates the anamorphic master key-pairs (ampk, amsk) and
derives the anamorphic private keys askid, the anamorphic clan lead generates
the double master key-pairs (dmpk, dmsk) and the double private key dskid of
a user with identity id who is also an anamorphic clan member. To encrypt a
regular message msg along with an anamorphic message amsg with respect to id,
sender runs aEnc such that the output ciphertext decrypts to amsg using dskid
on aDec and msg using askid on Dec. Anamorphic security essentially requires
that the dictator should not be able to tell apart the output distributions of
regular and anamorphic ciphertexts, along with the corresponding private key
pairs. We now proceed more formally.

Definition 5 (µ-Message Identity-Based Anamorphic Encryption Extension)
For µ ∈ N, a µ-message anamorphic identity-based encryption extension (µ-

IBAEE) with an anamorphic message space M̂ associated with an identity-
based encryption scheme ΠIBE = (Setup,KeyGen,Enc,Dec) with a regular mes-
sage spaceM is a quadruplet of PPT algorithms ΠIBAE = (aSetup, aKeyGen, aEnc,
aDec) defined as follows:

(ampk, amsk, dmpk, dmsk)← aSetup(1λ) : The anamorphic key setup algorithm

aSetup takes as input the security parameter 1λ, and outputs an anamorphic
master public key ampk, an anamorphic master secret key amsk, a double
master public key dmpk and a double master secret key dmsk.

dskid ← aKeyGen(dmsk, id) : The anamorphic key generation algorithm aKeyGen
takes as input the double master secret key dmsk and an arbitrary id ∈ ID,
and outputs an double private key dskid associated with id.

act← aEnc(ampk, dmpk, id,msg, amsg) : The anamorphic encryption algorithm
aEnc takes as input the anamorphic master public key ampk, double master
public key dmpk, an identity id, a regular message vector msg ∈ Mµ, and
an anamorphic message amsg ∈ M̂, and outputs an anamorphic ciphertext
vector act.

amsg← aDec(askid, dskid,act) : The anamorphic decryption algorithm aDec takes
as input an anamorphic private key askid, a double private key dskid and the
anamorphic ciphertext vector act, and outputs an anamorphic message amsg
or the symbol ⊥.

Furthermore, the algorithms must satisfy the following properties.
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Correctness: For every pair of messages (msg, amsg) ∈ Mµ × M̂, and for
every identity id ∈ ID, the following holds:

Pr

amsg = aDec(askid, dskid,act) :

(ampk, amsk, dmpk, dmsk)← aSetup(1λ)
askid ← KeyGen(amsk, id)
dskid ← aKeyGen(dmsk, id)

act← aEnc(ampk, dmpk, id,msg, amsg)

 = 1

where probability is taken over the random coin tosses of aSetup and aEnc.

Anamorphic security: For every PPT dictator D it holds that∣∣∣Pr[GRealDIBE(λ) = 1]− Pr[GAnamD
IBAE(λ) = 1]

∣∣∣ ≤ negl(λ)

where the security games are defined as follows:

GRealDIBE(λ) :

1. (mpk,msk)← Setup(1λ)
2. return DOEnc(·,·,·)(mpk,msk)

where OEnc(id,msg, amsg) = ct,
cti = Enc(mpk, id,msgi),
msg = {msgi}i∈[µ], ct = {cti}i∈[µ]

GAnamD
IBAE(λ) :

1. (ampk, amsk, dmpk, dmsk) ←
aSetup(1λ)

2. return DOaEnc(·,·,·)(ampk, amsk)
where
OaEnc(id,msg, amsg)
= aEnc(ampk, dmpk, id,msg, amsg)

We now formally regard the IBAE-compatible notion for an IBE. Building
upon our previous insight, the notion captures two properties: on-the-fly double
key generation property simply points out that the double master key pairs
(dmpk, dmsk) can simply be derived from the regular IBE master key pairs
(mpk,msk), while the ciphertext extractibility property invariably indicates that
IBAE.aDec is essentially the same as IBE.Dec under the existence of an efficiently
computable function F . More explicitly, F (askid,act) produces a valid ciphertext
that extracts to amsg using dskid on IBE.Dec.

Definition 6 (IBAE-Compatible) An identity-based encryption scheme ΠIBE =
(Setup,KeyGen,Enc,Dec) is said to be IBAE-compatible for the quadruplet ΠIBAE =
(aSetup, aKeyGen, aEnc, aDec) if the following holds:

– On-the-fly double key generation: A part of output (dmpk, dmsk) of IBAE.
aSetup(1λ) is the output of IBE.Setup(1λ). In particular, if IBAE.aSetup(1λ) =
(ampk, amsk, dmpk, dmsk) and IBE.Setup(1λ) = (mpk,msk), IBE.Setup(1λ) =
(mpk′,msk′) then ampk = mpk, amsk = msk, dmpk = mpk′, dmsk = msk′

and there exists an efficiently computable function G such that dmpk =
G(mpk,msk,mpk′,msk′).

– Ciphertext extractibility: There exists an efficiently computable function F
such that IBE.Dec(dskid, F (askid,act)) = amsg, where act = IBAE.aEnc(ampk,
dmpk, id,msg, amsg) for an id ∈ ID.
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4.1 Extension of the Boneh-Franklin BasicIdent Scheme

We now present an IBAE construction based on the seminal Boneh-Franklin
basic IBE scheme [8]. We focus on a simple version that encrypts single bits.
The BasicIdent identity-based encryption scheme [8] is a quadruplet of PPT
algorithms ΠBF = (Setup,KeyGen,Enc,Dec) defined over a security parameter
λ ∈ N as follows: let prime q > 2λ be a polynomial in λ. The setup algorithm
Setup on input 1λ samples groups G and GT of order q and a bilinear map
e : G × G → GT , along with an arbitrary group generator P ∈ G. Define
H1 : {0, 1}∗ → G∗, H2 : GT → {0, 1}. Then for a uniformly random s in Z∗

q ,
compute Ppub B P s. The algorithm finally returns a master secret key msk B s
and a master public key mpk B (G,GT , P, e, q, Ppub,H1,H2). The key generation
algorithm KeyGen on input id ∈ {0, 1}∗ and msk, computes Qid B H1(id), and
returns a private key skid B Qs

id corresponding to id. To encrypt a message msg ∈
M towards a public identity id, whereM = {0, 1}, the encryption algorithm Enc
samples a uniformly random κ in Z∗

q and returns ciphertext ct as (ct1, ct2) =
(Pκ,msg ⊕ H2(g

κ
id)), where gid = e(Qid, Ppub). The decryption algorithm Dec

simply recovers msg by computing ct2 ⊕ H2(e(skid, ct1)). The BasicIdent scheme
is known to be IND-CPA secure under the DBDH assumption for G. Following
our prior formalization, we can similarly define the Boneh-Franklin 2-message
IBE scheme Π2BF = (Setup,KeyGen,Enc,Dec) which encrypts two messages at
once.

Boneh-Franklin 2-Message IBAE. To design a 2-IBAE associated with Π2BF,
we again bias the random choices made during encryption. Nevertheless, we note
that the adaptation is not much identical to our PKAE constructions, and in-
volves some subtleties. Elaborating on this, in our anamorphic extension of the
ElGamal encryption scheme, we embed amsg within two regular ciphertexts
(ct1, ct2) by sampling their first components r1 = gκ1 and r2 = gκ2 such that
κ2 B α · κ1 + amsg, where κ1 is a uniformly random element of Zq. We then re-
cover amsg by treating (r1, r2) as an ElGamal ciphertext, which works because
r2 is explicitly available in ct2. However, embedding amsg within two regular
Boneh-Franklin ciphertexts is not that straightforward. Observe that, in Boneh-
Franklin ciphertext ct2 = (r2 = Pκ2 , c2 = msg⊕H2(g

κ2

id )), the group element gκ2

id

is not explicitly available. Rather, it only appears as an input to the hash func-
tion H2, which is modeled as a random oracle in the security proof. Therefore, if
we set κ2 following the ElGamal encryption extension, then it seems impossible
to recover the covert amsg due to the one-wayness of H2. At this point, the only
solution appears to be encoding amsg outside the hash function H2. Then, a nat-
ural idea would be to apply rejection sampling technique such that amsg could
be extracted from c2 at the time of decryption. More specifically, we sample κ2

subject to H2(g
κ2

id )) = amsg ⊕ H2(ĝ
κ1

id ); call it ĉ. We then treat (r1 = Pκ1 , ĉ =
amsg ⊕ H2(ĝ

κ1

id )) as a Boneh-Franklin ciphertext and apply the regular decryp-
tion algorithm BF.Dec to recover amsg. While we present a 2-IBAE construction
that supports anamorphic messages of single bits for the simplicity of exposition,
nevertheless we remark that one could extend our construction to convey at most
O
(
log λ

)
bit-long anamorphic messages to ensure that encryption remains poly-
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nomial. We now present more details. The Boneh-Franklin 2-IBAE extension
ΠaBF = (aSetup, aKeyGen, aEnc, aDec) works as follows: the anamorphic key gen-
eration algorithm aBF.aSetup initially sets (ampk, amsk) = (mpk,msk) as in the
regular BF.Setup, following which it samples a uniformly random α ∈ Z∗

q , and
sets the double master secret key dmsk B α and the double master public key
dmpk B Pα. The anamorphic key generation algorithm aBF.aKeyGen takes as
input dmsk and the user identity id and generates the double private key dskid as-
sociated with id. On input a regular message vector msg = (msg1,msg2) ∈M2,

and an anamorphic message amsg ∈ M̂, where M = M̂ = {0, 1}, the anamor-
phic encryption algorithm aBF.aEnc computes act1 = (r1, c1) using a uniformly
random κ1 on msg1 as BF.Enc(ampk,msg1, id;κ1). However, for encoding amsg
in c2 (second component of act2), the algorithm chooses κ2 subject to the con-
straint H2(g

κ2

id ) = amsg ⊕ H2(e(Qid, ampk)κ1) and computes act2 = (r2, c2) as
BF.Enc(ampk,msg2, id;κ2). Finally, the anamorphic ciphertext vector is act =
(act1, act2). To recover amsg, the anamorphic decryption algorithm aBF.aDec
first extracts H2(g

κ2

id ) by computing H2(e(askid, r2)). Note that H2(g
κ2

id ) is set to
be equal to amsg ⊕ H2(e(Qid, ampk)κ1), call it ĉ. Then it computes BF.Dec on
r̂ = r1 and ĉ. Recall that the dictator has no information on the double private
key dskid associated with id, and hence is oblivious to the presence of amsg. We
present our construction in Figure 4.
Correctness, Compatibility and Security Analysis. We discuss correctness
and the proofs of the following lemma and theorem related to compatibility,
anamorphic security and IND-CPA security of ΠaBF in Appendix E.

Lemma 3 Boneh-Franklin is IBAE-compatible for ΠaBF described in Figure 4
associated with the Boneh-Franklin 2-message encryption scheme Π2BF.

Theorem 4 Under the DBDH assumption for (G,GT , P, e, q), the Boneh-Franklin
2-message identity-based anamorphic encryption extension ΠaBF described in Fig.
4 satisfies anamorphic and IND-CPA security (Definition 5 and Appendix A.6).
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aSetup(1λ) :

1. (mpk B (G,GT , P, e, q, Ppub,H1,H2),
msk B s)← BF.Setup(1λ)

2. α← Z∗
q

3. ampk B mpk, amsk B msk
4. dmpk B Pα, dmsk B α
5. return (ampk, amsk, dmpk, dmsk)

aKeyGen(dmsk, id) :

1. Qid B H1(id)
2. dskid B Qα

id

3. return dskid

aDec(askid, dskid,act) :

1. amsg B BF.Dec(dskid, F (askid,act))
2. return amsg

aEnc(ampk, dmpk, id,msg, amsg) :

1. Parse msg = (msg1,msg2)
2. Qid B H1(id)
3. ĝid B e(Qid, dmpk), gid B

e(Qid, Ppub)
4. κ1, κ2 ← Z∗

q s.t. H2(g
κ2
id ) = amsg ⊕

H2(ĝ
κ1
id )

5. act1 B BF.Enc(ampk,msg1, id;κ1)
// act1 = (r1, c1)
// r1 = Pκ1 , c1 = msg1 ⊕ H2(g

κ1
id )

6. act2 B BF.Enc(ampk,msg2, id;κ2)
// act2 = (r2, c2)
// r2 = Pκ2 , c2 = msg2 ⊕ H2(g

κ2
id )

7. return act B (act1, act2)

F (askid,act) :

1. Parse act = (act1, act2)
2. Parse act1 = (r1, c1),

act2 = (r2, c2)
3. H2(e(askid, r2)) = H2(g

κ2
id ) =

amsg ⊕ H2(ĝ
κ1
id )

// askid ← BF.KeyGen(amsk, id)
4. r̂ B r1, ĉ B amsg ⊕ H2(ĝ

κ1
id )

5. return (r̂, ĉ)

Fig. 4: 2-IBAEE ΠaBF

5 Public Key Anamorphic Signature Extension

In this section, we formalize the notion of µ-message anamorphic extension of
a signature scheme along with definitions of its security. For brevity, we refrain
from defining public key anamorphic signatures first and immediately establish
security notions for the extension. To keep our exposition and constructions of
this new concept simple, we refrain from considering a robustness notion for now.
However, Appendix J will informally discuss such a notion and the difficulties
to achieve it regarding our designs.

Definition 7 (µ-Message Public Key Anamorphic Signature Extension)
A tuple ΠPKASE = (aGenS, aGenR, aSig, aDec) of PPT algorithms is a µ-message
public key anamorphic signature extension (µ-PKASE) with anamorphic mes-

sage space M̂ associated with a signature scheme ΠSS = (Setup,Gen, Sig,Verify)
with normal message spaceM and is defined as follows, where gp← SS.Setup(1λ):
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(ask, avk, td)← aGenS(gp) : The anamorphic key generation algorithm aGenS is
executed by the sender of the signature, takes as input the global parameters
gp generated by Setup of the associated signature scheme, and outputs a
signature key pair (ask, avk) as well as some secret trapdoor information td.

(dk, tk)← aGenR(gp) : The anamorphic key generation algorithm aGenR is exe-
cuted by the receiver of the signature, takes as input the global parameters gp
generated by Setup of the associated signature scheme, and outputs a double
key pair (dk, tk).

asig← aSig(ask, td, dk,msg, amsg) : The anamorphic signing algorithm aSig takes
as input the sender’s signing key ask with associated trapdoor information
td, and the receiver’s encryption double key dk, a regular message vector
msg ∈Mµ and an anamorphic message amsg ∈ M̂, and outputs an anamor-
phic signature vector asig.

amsg← aDec(tk, avk,asig,msg) : The anamorphic decryption algorithm takes
as input the receiver’s secret decryption double key tk, the sender’s signature
verification key avk, and an anamorphic signature vector asig along with a
message vector msg, and outputs an anamorphic message amsg or ⊥.

It must satisfy the following properties.

Correctness: For all λ ∈ N, gp← Setup(1λ), (msg, amsg) ∈Mµ×M̂, it holds
that

Pr

amsg ̸= aDec(tk, avk,asig,msg) :
(ask, avk, td)← aGenS(gp)

(dk, tk)← aGenR(gp)
asig← aSig(ask, td, dk,msg, amsg)

 ≤ negl(λ)

where the probability is taken over the random coins of aGenS, aGenR, aSig.

Anamorphic security: For every PPT dictator D it holds that∣∣∣Pr[GRealDSS(λ) = 1]− Pr[GAnamD
PKASE(λ) = 1]

∣∣∣ ≤ negl(λ)

where the security games are defined as follows, and Sig(sk,msg) := (Sig(sk,
msg))msg∈msg:

GRealDSS(λ) :

1. gp← Setup(1λ)
2. (sk, vk)← Gen(gp)
3. return DOSig(·,·)(sk, vk) where

OSig(msg, amsg)
:= Sig(sk,msg).

GAnamD
PKASE(λ) :

1. gp← Setup(1λ)
2. (ask, avk, td)← aGenS(gp)
3. (dk, tk)← aGenR(gp)
4. return DOaSig(·,·)(ask, avk) where

OaSig(msg, amsg)
:= aSig(ask, td, dk,msg, amsg).

Anamorphic security roughly guarantees that the two distributions {sk, vk, Sig(sk,
msg)} and {ask, avk, aSig(askS , dkR,msg, amsg)} are indistinguishable.
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Preserving EUF/SUF-CMA security. We note that anamorphic security
clearly also holds for an adversary not having access to sk. Such an adversary
does not notice whether it interacts with the regular signature scheme or the
anamorphic version. This clearly implies that the EUF-CMA or SUF-CMA secu-
rity of ΠSS carries over to the individual signatures of the anamorphic extension.
Choice of gp. As opposed to PKAE, the benefits of deploying asymmetric
crypto to realize the anamorphic channel for signatures would be highly reduced
if each and every signer chose its own unique gp. In this case, a receiver of an
anamorphic message needs to generate an individual key pair (dk, tk) for each
signer it wants to receive anamorphic messages from. To this end, we make the
realistic assumption that signers only choose from a small set of gp settings, e.g.,
standardized elliptic curves, or the dictator fixes some gp for everyone.

IND-CPA security of anamorphic signatures. Another natural security
property for an anamorphic signature scheme is to guarantee that within a group
of people that communicate via this embedded covert channel, no information
about a message is leaked to parties other than the intended receiver. More
concretely, if a party A knows dkB of party B because it previously has sent a
hidden message to it, then no information about the hidden message contained
in an anamorphic signature from party C to party B should be leaked to party
A. This notion is captured by the following IND-CPA-style security definition.

Definition 8 (IND-CPA Security for PKASE) A µ-PKASE scheme ΠPKASE

associated with signature scheme ΠSS is said to satisfy IND-CPA security if for
every PPT adversary A it holds that∣∣∣Pr[GIND-CPAA

PKASE(λ, 1) = 1]− Pr[GIND-CPAA
PKASE(λ, 0) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND-CPAA
PKASE(λ, β) :

1. gp← Setup(1λ)
2. (ask, avk, td)← aGenS(gp)
3. (dk, tk)← aGenR(gp)
4. (msg, amsg0, amsg1)← AOaSig(·,·)(avk, dk)
5. asigβ ← aSig(ask, td, dk,msg, amsgβ)

6. return β′ ← AOaSig(·,·)(asigβ) where
OaSig(msg, amsg) := aSig(ask, td, dk,msg, amsg).

(s)IND-(R)CCA security of anamorphic signatures. Similar to the anamor-
phic encryption case, we can also define stronger security properties for anamor-
phic signatures by providing a (restricted) aDec oracle or ask as input to A. So
we define IND-CCA security by providing an aDec(tk, avk, ·, ·) oracle (rejecting
if queried with challenge (asigβ ,msg)), sIND-CCA by additionally giving ask as
input to A, and sIND-RCCA like sIND-CCA but restricting the oracle to reject if
aDec(tk, avk,asig,msg) ∈ {amsg0, amsg1}.

28



5.1 Waters Signatures with Linear Encryption

Subsequently, we present a PKASE construction based onWater’s signatures [36]
and linear encryption (LE) [7]. LE is a variant of ElGamal relying on the Decision
linear (DLIN) assumption that can be instantiated in a group G where the DDH
assumption is easy, e.g., in symmetric pairing groups. We consider the Waters
scheme over symmetric pairings groups (G,GT , g, e, q) for simplicity, but it can
straightforwardly be translated to an asymmetric pairing setting (e.g., type-3
pairings). However, we note that the anamorphic extension still requires LE.5

We first recall that Waters signatures are pairing-based signatures EUF-CMA
secure under the CDH assumption. They rely on the Waters hash H(m) B
h0

∏n
i=1 h

mi
i , where mi denotes the i’th bit of message m ∈ {0, 1}n and hi ← G.

A signature consists of (σ1, σ2) B (gr, gαβH(m)r) for random r ∈ Zq, secret key
gαβ and public key (gα, gβ , h0, . . . , hn). A signature is verified by checking the
equality e(gα, gβ) · e(σ1, H(m)) = e(g, σ2). Also recall that in linear encryption
the public key is (u, v, h) ∈ G3 and the secret key (x, y) ∈ Zq such that ux =
vy = h holds. Encrypting a message m ∈ G amounts to choosing random κ1, κ2

and computing ciphertext (c1, c2, c2) B (uκ1 , vκ2 , hκ1+κ2 · m) and decryption
computes m = c3 · (cx1 · c

y
2)

−1. LE is IND-CPA secure under DLIN.
The essential idea is to embed a ciphertext (c1, c2, c3) of an anamorphic mes-

sage amsg as the first components of three Waters signatures as this component
is uniformly chosen from G and a LE ciphertext is indistinguishable from a ran-
dom G3 element under DLIN (cf. IND$-CPA, Definition 19). However, we face the
problem that the discrete logarithm r of this component is needed to compute
the second component of the signature and for the ci the DLs are unknown. To
circumvent this problem, we make the assumption that every user generates its
own parameters for the Waters hash and thus knows ai such that hi = gai for
i ∈ {0, . . . , n} and that this is accepted by the dictator.6 Using the ai allows us
to compute the second signature component without knowing the DL r.

The resulting scheme is presented in Figure 5. We note that the same strategy
can also be applied to the SUF-CMA secure variant by Boneh, Shen and Waters
[9]. The security of anamorphic signature extensions following this strategy is
implied by our master theorem (Theorem 5) presented in Section 5.3.

5.2 BBS with ElGamal and Pseudo-Random Encodings

BBS signatures, as introduced in [7], are a very well-known signature scheme
and currently in the process of standardization by the IETF [28]. A formal proof
of its SUF-CMA security under the k-SDH assumption in the standard model has
only recently been given in [34]. We consider BBS defined in asymmetric (type-3)
pairing groups (G1,G2,GT , g1, g2, q) of prime order q. The public key is gx2 for
secret key x ∈ Zq. For a signature on message m ∈ Zℓ

q, one samples a random

5 We cannot rely on DDH as elements of the ElGamal ciphertext would be required
in both source groups.

6 We are aware that this is a somewhat strong assumption as this could be suspicious
for the dictator. Our second PKASE from BBS does not suffer from this limitation
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aGenS(gp) :

1. Parse gp = (G,GT , e, g, gT , p)
2. α, β, a0, . . . , an ← Zp

3. h0 := ga0 , . . . , hn := gan and
H : {0, 1}n → G with m 7→
h0

∏n
i=1 h

mi
i

4. ask B gαβ , avk B (gα, gβ ,
h0, . . . , hn), td B (a0, . . . , an)

5. return (ask, avk, td)

aGenR(gp) :

1. Parse gp = (G,GT , e, g, gT , p)
2. (pk, sk)← LinE.Gen(gp)

// a, b, x← Zp, and y B axb−1

// u B ga, v B gb, h B gax

// pk B (u, v, h), tk B (x, y)
3. dk B pk, tk B sk
4. return (dk, tk)

aSig(ask, td, dk,msg, amsg) :

1. Parse msg = (msg1,msg2,msg3)
2. (c1, c2, c3)← LinE.Enc(dk, amsg)

// κ1, κ2 ← Zp

// c1 = uκ1 , c2 = vκ2 ,
// c3 = hκ1+κ2 · amsg)

3. for j ∈ {1, 2, 3}:
sigj := (cj , ask c

a0
j

∏ℓ
i=1 c

ai·msgj,i
j )

4. return asig B (sig1, sig2, sig3)

aDec(tk, avk,asig,msg) :

1. Parse asig = ((c1, s1), (c2, s2), (c3, s3))
2. amsg← LinE.Dec(tk, (c1, c2, c3))

// amsg = c3 · (cx1 · cy2)−1

3. return amsg

Fig. 5: 3-PKASE ΠaWaters

d ∈ Zq and computes σ = (σ1, σ2) = (d,H(m)
1

x+d ) ∈ Zq × G1. Verification is
straightforward by checking whether e(σ2, g2) = e(H(m), gσ1

2 · gx2 ). Regarding
our construction, we may omit the detail that the hash H(m) := g1 ·

∏ℓ
i=1 h

mi
i

is as in Waters scheme (though with mi ∈ Zq) as this irrelevant. We set ℓ = 1
in the following.

The basic idea (to obtain an IND-CPA secure extension) is to apply ElGamal
encryption over G1 and to embed a ciphertext, which is pseudo-random over G2

1

under the DDH assumption, into a random component of two BBS signatures.
The first component d of such a signature is randomly chosen, but unfortunately
over Zq instead of G1. To this end, we need to specify a pseudo-random (G2

1,Zµ
q )-

encoding. Again, we can deploy Elligator Squared [35] which also provides a
suitable encoding for pairing-friendly curves E(Fp) to F2

p. For instance, let us
consider BN curves [4] for instantiating the asymmetric pairing-based setting
of our BBS signatures. Then G1 = E(Fp) is a cyclic group of prime order q.
Note that for a random h ∈ G1, Elligator Squared will return a close to random
element from F2

p but not necessarily F2
q as desired. However, since p is very close

to q, more precisely p−q ≈ √p (cf. Hasse’s bound), the probability, assuming the
standard element representation for Fp and Fq as {0, . . . , p−1} and {0, . . . , q−1},
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that we hit an element which is not in F2
q is negligible, namely at most 2√

p .
7 In

this context, observe that we are actually not forced to do ElGamal encryption
in the pairing group that BBS uses. We could alternatively use ElGamal (or
any other secure encryption) over any other group as long as we are able find a
suitable pseudo-random encoding of a ciphertext as Zµ

q element.
The 4-message anamorphic extension ΠaBBS resulting from a pseudo-random

(G2
1,Z4

q)-encoding (e.g., using Elligator Squared for G1 of BN curves) is shown
in Figure 6. Note that no trapdoor is required here to compute the second sig-
nature component. ΠaBBS achieves anamorphic security and IND-CPA security.
To achieve sIND-RCCA security, it suffices to replace plain ElGamal by an FO-
based PKE from ElGamal and XOR-based symmetric encryption and extend the
pseudo-random encoding described above to also cover the symmetric ciphertext
component. For q close to 2λ, a random bitstring G(r) ⊕ amsg ∈ {0, 1}λ can
simply be interpreted as Fq-element s5 which causes an encoding error (integer
> p−1) with negligible probability. This leads to a 5-message anamorphic signa-
ture extension satisfying sIND-RCCA security. To additionally achieve IND-CCA
security, one needs to make use of the SUF-CMA security of BBS, by checking
the validity of the signatures asig wrt. to the messages msg in aDec.

Also for other variants of BBS signatures like BBS+ [2], such anamorphic
extensions can be obtained in the same way. The security of all these extensions
is covered by our master theorem in Section 5.3.

5.3 Anamorphism-Friendly Signatures with Compliant Encryption

Generalizing the ideas from Section 5.1 and Section 5.2, the following definition
covers signature schemes which are canonical candidates for an anamorphic ex-
tension. The signatures generated by these schemes have at least one uniformly
(and freshly) chosen component and allow the rest of the signature to be com-
puted (cf. RemSig below) by treating the uniform components in a black-box way,
that means, without using additional information related to the generation of
these components (e.g., the DL d used to create a random group element gd). To
enable the latter, some trapdoor information from the key generation might be
used (cf. SS.Gen′ below). An encryption scheme is compliant to such a signature
scheme, in the sense that it easily allows for the construction of an anamor-
phic extension, if its ciphertext components are pseudo-random (IND$-CPA, see
Definition 19) and can be completely embedded in one or multiple signatures.

Definition 9 (Anamorphism-Friendly Sign. & Compliant Enc.) Let ΠSS

be a signature scheme with a signature space that can be written as Se0
0 × . . . ×

S
em−1

m−1 ×R, where Si ̸= Sj and ei > 0, such that the following conditions hold:

1. Random components: m− 1 ≥ 0 and for signatures (s0, . . . , sm−1, r) gener-
ated by SS.Sig holds that all si ← Sei

i are uniformly and freshly chosen.

7 To be compliant to the definition of our pseudo-random encoding, we could output
⊥ in this case.
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aGenS(gp) :

1. Parse
gp = (G1,G2,GT , e, g1, g2, q,H)

2. x← Zq

3. ask B x, avk B gx2
4. return (ask, avk, td)

aGenR(gp) :

1. Parse
gp = (G1,G2,GT , e, g1, g2, q,H)

2. (pk, sk)← El.Gen(gp)
// x← Zq

// pk = gx1 , tk = x
3. dk B pk, tk B sk
4. return (dk, tk)

aSig(ask, td, dk,msg, amsg) :

1. Parse msg = (msg1,msg2,msg3,msg4)
2. c := El.Enc(dk, amsg)

// κ← Zq

// c = (c1, c2) = (gκ1 , dk
κamsg)

3. (s1, s2, s3, s4) B Encode(c)
// In the negligible event that
// Encode(c) = ⊥, we return to 2.

4. for j ∈ {1, 2, 3, 4}:
sigj := (sj , (H(msgj)

1
ask+sj )

5. return asig B (sig1, sig2, sig3, sig4)

aDec(tk, avk,asig,msg) :

1. Parse
asig = ((s1, s

′
1), (s2, s

′
2), (s3, s

′
3), (s4, s

′
4))

2. c B Decode((s1, s2), (s3, s4))
3. if c = ⊥ return ⊥
4. amsg B EL.Dec(tk, c)
5. return amsg

Fig. 6: 4-PKASE ΠaBBS

2. Black-box computation of remainder: There exist two PPT algorithms SS.Gen′,

SS.RemSig such that (sk, vk)
c
≈ (sk′, vk′), where (sk, vk) ← SS.Gen(gp) and

(sk′, vk′, td)← SS.Gen(gp), and

Pr


b = b′ :

gp← SS.Setup(1λ)
(sk, vk, td)← SS.Gen′(gp)

msg← A(sk, vk)
(s0, . . . , sm−1, r0)← SS.Sig(sk,msg)

r1 ← SS.RemSig(sk, td,msg, (s0, . . . , sm−1))
b← {0, 1}

b′ ← A(s0, . . . , sm−1, rb)


≤ 1

2
+ negl(λ)

.

In this case, we call ΠSS anamorphism-friendly. We call an encryption scheme
ΠES compliant to ΠSS if it is IND$-CPA secure and its message space can be writ-

ten as S
e′0
0 × . . .× S

e′m−1

m−1 with e′i > 0.

In this situation, we can securely embed a ciphertext containing the anamor-
phic message into the components of one or multiple signatures. This is specified
by the aSig algorithm in Figure 7. In Step 3, as many ciphertext components
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aGenS(gp) :

1. (ask, avk, td)← SS.Gen′(gp)
2. return (ask, avk, td)

aGenR(gp) :

1. (dk, tk)← ES.Gen(gp)
2. return (dk, tk)

aDec(tk, avk,asig,msg) :

0. for 0 ≤ i ≤ µ− 1: if
SS.Ver(avk, sigi,msgi) = ⊥
return ⊥

1. for 0 ≤ i ≤ m− 1,
0 ≤ j ≤ e′i − 1:
ci,j B s

(⌊j/ei⌋)
i,j mod ei

2. return
amsg← ES.Dec(tk, (ci)i)

aSig(ask, td, dk,msg, amsg) :

1. Parse msg = (msg0, . . . ,msgµ−1)
2. act = (c0, . . . , cm−1)← ES.Enc(dk, amsg)

where ci = (ci,0, . . . , ci,ei−1) ∈ S
e′i
i

3. for 0 ≤ i ≤ µ− 1, 0 ≤ ℓ ≤ m− 1,
0 ≤ j ≤ eℓ − 1:

s
(i)
ℓ,j :=

{
cℓ,ieℓ+j , ieℓ + j < e′ℓ

a← Sℓ, else

4. for 0 ≤ i ≤ µ− 1:
r(i) ← SS.RemSig(ask, td,msgi, (s

(i)
j )j)

sigi B ((s
(i)
j )j , r

(i))
5. return asig B (sig0, . . . , sigµ−1)

Fig. 7: Generic µ-PKASE ΠaGAE and variant ΠaGAE′

as possible are packed into the same signature. As it may happen that the
designated signature components cannot be completely “filled” with ciphertext
components, we use truly random elements in this case. The remainder of the
signature is computed in Step 4 using RemSig. When receiving µ signatures,
the ciphertext components are first unpacked in Step 2 of aDec before amsg
is recovered. By following this blueprint using an anamorphism-friendly signa-
ture and compliant encryption, we obtain a secure anamorphic extension ΠaGAE

also satisfying IND-CPA security. If the underlying encryption additional satis-
fies IND-RCCA security then ΠaGAE achieves sIND-RCCA security. Note that an
IND-CCA secure PKE still leads to an sIND-RCCA but not IND-CCA secure ex-
tension when only following Steps 1 and 2 of of aDec in Figure 7 as the adversary
(against the extension) may tamper with the r(i) of the challenge which would
lead to a different asig decrypting to amsgβ . To additionally achieve IND-CCA
security, aDec needs to verify the signatures asig (Step 0 in Figure 7) and the
signature scheme needs to be SUF-CMA secure. Still sIND-CCA security cannot
be achieved in this way as, given ask, the adversary may re-use the challenge ci,j
to generate a new signature. We prove the following theorem in Appendix G.

Theorem 5 Let ΠSS be an anamorphism-friendly signature scheme and ΠES

an encryption scheme compliant to ΠSS. Then ΠaGAE as defined in Figure 7 is

a µ-message anamorphic signature extension, where µ = max{⌈ e
′
i

ei
⌉}, satisfy-

ing anamorphic and IND-CPA security. If ΠES additionally achieves IND-RCCA
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security then ΠaGAE achieves sIND-RCCA security. Moreover, if ΠES satisfies
IND-CCA security and ΠSS satisfies SUF-CMA security, then the variant ΠaGAE′

in Figure 7 achieves IND-CCA security.

The anamorphic extension of Waters signatures using linear encryption pre-
sented in Section 5.1 is an instance of our general blueprint and thus its security
follows from Theorem 5. The same holds for BBS and the encryption scheme
obtained by combining ElGamal with a suitable pseudo-random encoding from
Section 5.2. We prove the following theorems in Appendix H.

Theorem 6 Waters signatures (as defined in Sec. 5.1) are anamorphism-friendly
and linear encryption is compliant to them under the DLIN assumption.

Theorem 7 BBS signatures (as defined in Sec. 5.2) are anamorphism-friendly
and ElGamal encryption, where ciphertexts are encoded during encryption and
decoded during decryption using a pseudo-random Zk

p-encoding, is compliant to
BBS under the DDH assumption.
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SUPPLEMENTAL MATERIALS

A Additional Preliminaries

A.1 Notation

Let λ ∈ N denote the security parameter. We use PPT to denote a randomized
algorithm running in time a · λc for some constants a and c. A function f :
N→ R+ is called negligible in λ, if it grows slower than λ−c for every constant
c. We use negl(λ) to denote a generic negligible function. We denote the set of
positive integers upto n as [n] B {1, . . . , n}. For a finite set S, we use x ← S
to denote the uniformly sampling x from S. For a probabilistic algorithm A, we
let y ← A(x) denote the process of running A(x) with fresh randomness and
assigning the result to y. We represent empty strings using ϵ. We use lowercase
bold letters to denote vectors (e.g. k) and uppercase bold letters for matrices
(e.g. A).

A.2 Public Key Encryption

We first recall the standard syntax of PKE which we require to have indistin-
guishable encryptions under the chosen plaintext attack (IND-CPA). We note
that the scheme may also be defined with respect to a global setup gp ←
Setup(1λ) generating parameters gp used by Gen.

Definition 10 (Public Key Encryption) We say that a triplet ΠPKE = (Gen,Enc,
Dec) of PPT algorithms with a message space M is an IND-CPA secure public
key encryption (PKE) scheme if the following holds:

(pk, sk)← Gen(1λ) : The key generation algorithm aGen takes as input the secu-

rity parameter 1λ, and outputs a secret key sk and a public key pk.

ct← Enc(pk,msg) : The encryption algorithm Enc takes as input the public key
pk, and a message msg ∈M, and outputs a ciphertext ct.

msg← Dec(sk, ct) : The decryption algorithm Dec takes as input the secret key
sk and the ciphertext ct, and outputs a message msg.

Furthermore, the algorithms must satisfy the following correctness and security
properties.

Correctness: For every message msg ∈M, the following holds:

Pr

[
msg = Dec(sk, ct) :

(pk, sk)← Gen(1λ)
ct← Enc(pk,msg)

]
= 1
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IND-CPA security: For every PPT adversary A, there exists a negligible func-
tion negl(λ) such that for all λ ∈ N, the following holds:∣∣∣Pr[GIND-CPAA

ΠPKE
(λ, 0) = 1]− Pr[GIND-CPAA

ΠPKE
(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND-CPAA
ΠPKE

(λ, β) :

1. (pk, sk)← Gen(1λ)
2. (msg0,msg1)← A(pk)
3. ctβ = Enc(pk,msgβ)
4. return β′ ← A(ctβ)

A.3 Signature Scheme

We now recall the definition of a basic signature scheme and note that the scheme
may also be defined with respect to a global setup with parameters gp.

Definition 11 (Signature Scheme) We say that a triplet Πs = (Gen, Sig,Ver)
of PPT algorithms with a message spaceM is a signature scheme if the following
holds:

(vk, sk)← Gen(1λ) : The key generation algorithm Gen takes as input the secu-

rity parameter 1λ, and outputs a signing key sk and a verification key vk.
sig← Sig(sk,msg) : The signing algorithm Sig takes as input the signing key sk,

and a message msg ∈M and outputs a signature sig.
1← Ver(vk,msg, sig) : The verification algorithm takes input the verification key

vk, the message msg and the signature sig, and outputs 1.

Furthermore, the algorithms must satisfy the following correctness and security
properties.

Correctness: For every message msg ∈M, the following holds:

Pr

[
Ver(vk,msg, sig) = 1 :

(vk, sk)← Gen(1λ)
sig← Sig(sk,msg)

]
= 1

Security: The signature scheme ΠSS is secure against chosen-message attacks
if for every PPT adversary A, there exists a negligible function negl(λ) such that
for all λ ∈ N, the following holds:∣∣∣Pr[GSig-CMAA

ΠSS
(λ) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:
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GSig-CMAA
ΠSS

(λ) :

1. (vk, sk)← Gen(1λ)
2. (msg∗, sig∗)← AOSig(sk,·)(vk)

where OSig(sk,msg) = (msg, sig)
3. if Ver(vk,msg∗, sig∗) = 1 and

(msg∗, sig∗) has not returned by OSig
return 1;
else return 0

A.4 Computational Assumptions

Next, we recall the various hardness assumptions used in our constructions. We
begin with the DDH assumption by Boneh [6], which is used in our ElGamal
based public key anamorphic encryption.

Definition 12 (The DDH Assumption [6]) Let λ ∈ N be the security pa-
rameter and let q be a polynomial in λ. Let G = ⟨g⟩ be a group of order q > 2λ.
Then for all PPT adversaries A, there exists a negligible function negl(λ) such
that for all λ ∈ N, the following holds:

|Pr[a, b← Zq : A(ga, gb, gab) = 1]−Pr[a, b, c← Zq : A(ga, gb, gc) = 1]| ≤ negl(λ)

where the probability is taken over the coin tosses of A and random choices of
a, b, c and g.

We now state the CDH assumption used in our PKAS construction based on
Water’s signatures.

Definition 13 (The CDH Assumption [16]) Let q ∈ N be a large prime and
let G = ⟨g⟩ be a multiplicative cyclic group of order q. Let a, b ← Zq. Then the
CDH assumption is to compute gab.

Next, we recall the DLWE assumption by Regev [32] used in our Dual-Regev
based public key anamorphic encryption.

Definition 14 (The DLWE Assumption [32]) Let q ∈ N be a large prime
and let n,m ∈ N. Let χ be a noise distribution over Zq. The (n, q, χ)- DLWE
assumption of dimension m states that the following distributions are computa-
tionally indistinguishable:

(A, sT ·A+ eT )
c
≈ (A,u) : A← Zn×m

q , s← Zn
q , e← χm,u← Zm

q

We now recall the DLIN assumption by Boneh, Boyen and Shacham [7] used in
our Waters signature based public key anamorphic signature.
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Definition 15 (The DLIN Assumption [7]) Let q ∈ N be a large prime and
let G be a multiplicative cyclic group of order q, where u, v, h are uniformly
random generators of G. Let a, b be uniformly random elements of Zq. Then for
all PPT adversaries A, there exists a negligible function negl(λ) such that for all
λ ∈ N, the following holds:

|Pr[u, v, h← G : A(u, v, h, ua, vb, ha+b) = 1]

− Pr[u, v, h, η ← G : A(u, v, h, ua, vb, η) = 1]| ≤ negl(λ)

where the probability is taken over the uniformly random choice of parameters
to A, and over the coin tosses of A.

Definition 16 (The DBDH Assumption [8]) Let q ∈ N be a large prime and
let (G,GT , g, e, q) be a pairing group, where g is a generator of G. Then for all
PPT adversaries A, there exists a negligible function negl(λ) such that for all
λ ∈ N, the following holds:

|Pr[a, b, c← Zq : A(ga, gb, gc, e(g, g)abc) = 1]−
Pr[a, b, c, t← Zq : A(ga, gb, gc, e(g, g)t) = 1]| ≤ negl(λ)

where the probability is taken over the coin tosses of A, and random choices of
a, b, c, t, g.

A.5 Additional IND-CPA Security Definitions

Definition 17 Let ΠPKE be a PKE with ciphertext space denoted by C. We call
PKE IND$-CPA secure if for every PPT adversary A it holds that∣∣∣Pr[GIND$-CPAA

ΠPKE
(λ, 1) = 1]− Pr[GIND$-CPAA

ΠPKE
(λ, 0) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND$-CPAA
ΠPKE

(λ, β) :

1. (pk, sk)← Gen(1λ)
2. msg← A(pk)
3. ct0 ← Enc(pk,msg)
4. ct1 ← C
5. return β′ ← A(ctβ)

Definition 18 Let ΠSKE be an SKE with ciphertext space denoted by C. We call
ΠSKE wIND$-CPA secure if for every PPT adversary A it holds that∣∣∣Pr[GIND$-CPAA

ΠSKE
(λ, 1) = 1]− Pr[GIND$-CPAA

ΠSKE
(λ, 0) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

41



GIND$-CPAA
ΠSKE

(λ, β) :

1. k ← Gen(1λ)
2. msg← A(1λ)
3. ct0 ← Enc(k,msg)
4. ct1 ← C
5. return β′ ← A(ctβ)

A.6 IND-CPA and (s)IND-CCA Security for IBAE

An IBAE satisfies IND-CPA security if for every PPT adversary A, there exists
a negligible function negl(λ) such that for all λ ∈ N, the following holds:∣∣∣Pr[GIND-CPAA

ΠIBAE
(λ, 0) = 1]− Pr[GIND-CPAA

ΠIBAE
(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND-CPAA
ΠIBAE

(1λ, β) :

1. (mpk,msk, ampk, amsk)← aSetup(1λ)
2. (id∗,msg, amsg0, amsg1)← AOaKeyGen(·)(ampk,mpk)
3. actβ = aEnc(mpk, ampk, id∗,msg, amsgβ)

4. return β′ ← AOaKeyGen(·)(actβ)
where OaKeyGen(id) = aKeyGen(amsk, id)
and id∗ is not queried to OaKeyGen(·).

B Analysis of Our ElGamal 2-PKAEE

In this section, we show the correctness and prove Lemma 1, Theorem 1 related
to Section 3.1.

Correctness: We now show the correctness of ΠaEl = (aGen, aEnc, aDec) based
on the ElGamal PKE scheme. Let act = (act1, act2) be the output of aEl.aEnc(apk,
dk,msg, amsg), where act1 = (r1, c1) and act2 = (r2, c2) are generated using ran-
domness κ and dkκ1 ·gamsg. The double encryption key dk = (dk1, dk2) = (gα, gαx).
Therefore, we have r1 = gκ and r2 = gακ+amsg. The anamorphic decryption al-
gorithm knows tk = α, the double decryption key corresponding to dk. Thus,
it can compute gamsg = r2 · (r1)−tk. Since M̂ is polynomially bounded, the de-

cryption algorithm recovers amsg ∈ M̂ by computing the discrete logarithm of
gamsg, which is a poly-time algorithm.

Lemma 1 The ElGamal PKE scheme is PKAE-compatible for the triplet ΠaEl =
(aGen, aEnc, aDec) described in Figure 1 associated with an ElGamal 2-message
encryption scheme Π2El = (Enc,Dec).
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Proof. First, we observe that for the key pair (pk, sk) of a regular ElGamal
PKE scheme, if we set tk as a uniformly random element α in Zq, and dk =

(gtk, pktk), then it satisfies the on-the-fly key generation property. Next, to see
that ΠaEl satisfies the ciphertext extractibility property is pretty straightforward.
The function F defined in Figure 1 extracts the first components r1 = gκ and
r2 = gακ+amsg from act1 = (r1, c1), act2 = (r2, c2). Then, applying the regular
ElGamal decryption algorithm EL.Dec with tk would simply recover amsg by
computing gamsg = r2 · (r1)−tk, which is poly-time as the anamorphic message
space is poly-bounded. □

Theorem 1 Under the DDH assumption in a group G, the ElGamal 2-message
public key anamorphic encryption extension ΠaEl = (aGen, aEnc, aDec) described
in Figure 1 satisfies anamorphic and IND-CPA security (Defined in Appendix A).

Proof. We prove the theorem in two parts.

Anamorphic security. We use a sequence of hybrid games Game 0,Game (1, j)
for j ∈ [0, Q] to prove this theorem. In each hybrid game, we assume D is a PPT
dictator and Q be the total number of queries made by D to the encryption
oracle.

Game 0: This is the anamorphic GAnamD
ΠaEl

(λ). The challenger generates (ask =

x, apk = gx, tk, dk) ← aEl.aGen(1λ), and sends the key pair (apk, ask) to
D. Then, D makes polynomial number of queries to the encryption oracle
with a pair of messages {(msgi, amsgi)}i∈[Q]. At the i-th query, D receives
a ciphertext acti computed as follows:

1. Parse msgi = (msgi1 ,msgi2)
2. α, κ1 ← Zq, κ2 B α · κ1 + amsgi.
3. acti1 B El.Enc(apk,msgi1 ;κ1) = (gκ1 , gxκ1 ·msgi1)
4. acti2 B El.Enc(apk,msgi2 ;κ2) = (gκ2 , gxκ2 ·msgi2)
5. return acti B (acti1 , acti2)

Game (1, j) for j ∈ [0, Q]: We define Game (1, 0) to be identical to Game 0,
and Game (1, j) is exactly the same as Game (1, 0) except that the first j
(anamorphic) ciphertexts {acti}i∈[1,j] are computed as follows:

1. Parse msgi = (msgi1 ,msgi2)
2. κ1, κ2 ← Zq.

3. acti1 B El.Enc(apk,msgi1 ;κ1) = (gκ1 , gxκ1 ·msgi1)
4. acti2 B El.Enc(apk,msgi2 ;κ2) = (gκ2 , gxκ2 ·msgi2)
5. return acti B (acti1 , acti2)

We show that Game (1, j) is indistinguishable from Game (1, j − 1) by the DDH
assumption. The only difference between Game (1, j) and Game (1, j − 1) is in
the computation of κ2. In particular, κ2 is set as (α ·κ1+ amsgi) in Game (1, j−
1), whereas κ2 is sampled uniformly random from Zq in Game (1, j). Thus the
challenger can simulate Game (1, j) with (gα, gκ1 , gt) when t = α · κ1, and
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Game (1, j), when t is uniformly random in Zq. Then by the DDH assumption
in G, the following holds:

|Pr[α, κ1 ← Zq : A(gα, gκ1 , gα·κ1) = 1]−
Pr[α, κ1, t← Zq : A(gα, gκ1 , gt) = 1]| ≤ negl(λ)

Since t = α · κ1 is indistinguishable from uniformly random, κ2 = t + amsgi is
statistically close to t. In other words, the hybrids Game (1, j) and Game (1, j−1)
are indistinguishable.
Finally, we observe that Game (1, Q) is exactly the same as GRealDΠ2El

(λ). This
completes the proof.

IND-CPA security. We prove the theorem by designing a simulator that plays
the role of the challenger in the security game.

We start with a contradiction that there exists a PPT adversary A that
breaks the IND-CPA security of ΠaEl with a non-negligible probability. We then
design a simulator B that given a DDH instance (gκ, gα, gt) in the group G,
interacts with A to solve whether t = ακ or t is uniformly random in Zq.
B prepares the simulation by sampling a uniformly random x, and setting

ask = x, apk = gx, dk = (gα, gαx), and sends (apk, dk) to A. When A returns
(msg, amsg0, amsg1), B calculates challenge ciphertext act∗ = aEl.aEnc(apk, dk,
msg, amsgβ) for a uniformly random bit β ∈ {0, 1}, and sends it to A. Finally
A outputs its guess β′, and B returns (β == β′). The simulation is formally
specified as follows:

Simulator B(1λ, gκ, gα, gt)
1: x← Zq

2: ask B x, apk B gx, dk = (gα, gαx)
3: (msg, amsg0, amsg1)← A(apk, dk)
4: β ← {0, 1}
5: Parse msg = (msg1,msg2)
6: Parse dk = (dk1, dk2)
7: act∗1 B El.Enc(apk,msg1;κ) = (r1 B gκ, c1 B apkκ ·msg1)
8: act∗2 B El.Enc(apk,msg2;κα+ amsg)

= (r2 B dkκ1 · gamsgβ , c2 B dkκ2 · apk
amsgβ ·msg2)

= (r2 B gt+amsgβ , c2 B (gt)x · apkamsgβ ·msg2)
9: β′ ← A(act∗ = (act∗1, act

∗
2))

10: return β == β′

If t = ακ, then the distribution of (apk, ask) and the challenge ciphertext act∗

corresponds exactly to A’s view as in the experiment GIND-CPAA
PKAE(λ, β). This

is because even though x is chosen randomly during simulation, (apk, ask) is a
valid pair, and hence act∗ is a valid encryption of amsgβ . If t ← Zq, then with
all but negligible probability act∗ is neither an encryption of amsg0 nor amsg1.
In fact, t+ amsgβ is uniformly distributed in G, and hence β is hidden from A’s
view. Therefore, if A breaks the IND-CPA security of ΠaEl with a non-negligible
probability then B can also break the DDH assumption with a non-negligible
probability. □
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C Analysis of Our Dual-Regev 2-PKAEE

In this section, we show the correctness and prove Lemma 2, Theorem 2 related
to Section 3.2.

Correctness: We now show the correctness of the ΠaDReg = (aGen, aEnc, aDec)
based on the Dual-Regev PKE scheme. Let the encryption double key be dk =
(dk1, dk2) = (A, b̂ = A·k̂). Let act = (act1, act2) output by aDReg.aEnc(apk, dk,
msg, amsg), where act1 = (r1, c1) and act2 = (r2, c2) generated using random-
ness s1 and s2 such that r1 = sT1 · dk1 + eT1 and r2 = sT2 · dk1 + eT2 , where s2
is set as a solution to a1 · x = sT1 · dk2 + ŷ + amsg · ⌊ q2⌋ − e2,1 mod q, where
dk1 = [a1, . . . , an]

T ∈ Zn×m
q , eT2 = [e2,1, . . . , e2,m] ∈ χm and ŷ ∈ χ. Then, ob-

serve that the first element of the vector rT2 is sT1 · dk2 + ŷ + amsg · ⌊ q2⌋ mod q.

The anamorphic decryption algorithm knows tk = k̂, the decryption double key
corresponding to dk. It calls the function F (act) which extracts the first element
of rT2 using a projection function and assigns the value to ĉ. Thus it can compute
amsg from r̂ = r1 = sT1 · dk1 + eT1 and ĉ = sT1 · dk2 + ŷ + amsg · ⌊ q2⌋ mod q,
by returning amsg = 0 if |ĉ − r̂ · tk| ≤ q

4 , and amsg = 1 otherwise. Note that,

|ĉ − r̂ · tk| simply reduces to amsg · ⌊ q2⌋ plus an LWE noise ŷ − eT2 · k̂ mod q,
whose norm is smaller than q

5 , except with a negligible probability in λ.

Lemma 2 The Dual-Regev PKE scheme is PKAE-compatible for the triplet
ΠaDReg = (aGen, aEnc, aDec) described in Figure 2 associated with a Dual-Regev
2-message encryption scheme Π2DReg = (Enc,Dec).

Proof. First, observe that aDReg.aGen(1λ) outputs ask = k, apk = (A,b = A ·
k), tk = k̂ and dk = (A, b̂ = A · k̂), where k and k̂ are sampled uniformly at ran-
dom from {0, 1}m. Therefore, the key pair (apk, ask) has identical distributions

with {(pk, sk) : sk = k̃, pk = (A, b̃ = A·k̃) s.t. k̃← {0, 1}m}, which is essentially
the distribution of secret and public keys of a Dual-Regev PKE scheme. Hence, it
satisfies on-the-fly double key generation property. Next, observe that the func-
tion F defined in Figure 2 takes as input act← aDReg.aEnc(apk, dk,msg, amsg),
and parses it as act1 = (r1, c1) and act2 = (r2, c2). It then extracts r1 (call it r̂)
and the first component of rT2 (call it ĉ). Note that (r̂, ĉ) is a valid Dual-Regev

ciphertext as r̂ = sT1 ·A+eT1 and ĉ = sT1 · b̂+ ŷ+ amsg · ⌊ q2⌋ mod q. Thus, amsg

can be extracted by executing DReg.Dec using tk = k̂, which implies that the
PKAE satisfies the ciphertext extractibility property. Hence we conclude that the
Dual-Regev PKE is PKAE-compatible. □

Theorem 2 Let us consider m ≥ 2n log q, r = ω(
√
logm), q ≥ 5r(m + 1),

α ≤ 1/(r
√
m+ 1 · ω(

√
log n)) and χ = Ψα. Then, under the (n, q, χ)-DLWE

assumption of dimension m, the Dual-Regev 2-message public key anamorphic
encryption extension ΠaDReg = (aGen, aEnc, aDec) described in Figure 2 satisfies
anamorphic and IND-CPA security (Defined in Appendix A).

Proof. We prove the theorem in two parts.
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Anamoprhic security. We use a sequence of hybrid games Game 0,Game (1, j)
for j ∈ [0, Q] to prove this theorem. In each hybrid game, we assume D is a PPT
dictator and Q be the total number of queries made by the dictator to the
encryption oracle.

Game 0: This is the anamorphic GAnamD
ΠaDReg

(λ). The challenger generates (ask =

k, apk = (A,b = A · k), dk, tk) ← aDReg.aGen(1λ), and sends the key pair
(apk, ask) to D. Then D makes polynomial number of queries to the encryp-
tion oracle with a pair of messages {(msgi, amsgi)}i∈[Q]. At the i-th query,
the dictator receives a ciphertext acti computed as follows:
1. Parse msgi = (msgi1 ,msgi2)

2. k̂← {0, 1}m, s1 ← Zn
q , e

T
1 , e

T
2 ← χm, ŷ ← χ

3. A = [a1, . . . , an]
T ∈ Zn×m

q , eT2 = [e2,1, . . . , e2,m] ∈ χm

4. b̂ B A · k̂
5. for i ∈ {1, . . . ,m− 1}, xi ← Zq

6. end for
7. xm = (

∑m−1
i=1 xiai + sT1 · b̂+ ŷ + amsgi · ⌊

q
2⌋ − e2,1) · a−1

m mod q
8. x = (x1, . . . , xm)
9. s2 B x
10. acti1 B DReg.Enc(apk,msgi1 ; s1, e

T
1 )

= (sT1 ·A+ eT1 , s
T
1 · b+ y1 +msgi1 · ⌊

q
2⌋ mod q)

11. acti2 B DReg.Enc(apk,msgi2 ; s2, e
T
2 )

= (sT2 ·A+ eT2 , s
T
2 · b+ y2 +msgi2 · ⌊

q
2⌋ mod q)

12. return acti B (acti1 , acti2)
Game (1, j) for j ∈ [0, Q]: We define Game (1, 0) to be identical to Game 0 and

Game (1, j) is exactly the same as Game (1, 0) except that the first j (anamor-
phic) ciphertexts {acti}i∈[1,j] are computed as follows:
1. Parse msgi = (msgi1 ,msgi2)
2. s1, s2 ← Zn

q , e
T
1 , e

T
2 ← χm

3. msgi1 ← {0, 1}, msgi2 B msgi ⊕msgi1
4. acti1 B DReg.Enc(apk,msgi1 ; s1, e

T
1 )

= (sT1 ·A+ eT1 , s
T
1 · b+ y1 +msgi1 · ⌊

q
2⌋ mod q)

5. acti2 B DReg.Enc(apk,msgi2 ; s2, e
T
2 )

= (sT2 ·A+ eT2 , s
T
2 · b+ y2 +msgi2 · ⌊

q
2⌋ mod q)

6. return acti B (acti1 , acti2)

We show that Game (1, j) is indistinguishable from Game (1, j−1) by the DLWE
assumption. The only difference between Game (1, j) and Game (1, j − 1) is in
the computation of the vector s2. In Game (1, j), s2 is sampled uniformly at
random from Zn

q , whereas in Game (1, j − 1), s2 is set as x = (x1, . . . , xm) such
that the first (m − 1) elements of the sequence are uniformly random values

in Zq, and xm = (
∑m−1

i=1 xiai + sT1 · b̂ + ŷ + amsgi · ⌊
q
2⌋ − e2,1) · a−1

m mod q,
where the ai’s are uniformly random elements of Zm

q . Note that, by the DLWE

assumption, (sT1 · b̂ + ŷ) mod q is indistinguishable from uniformly random in

Zq. Since (sT1 · b̂ + ŷ) appears uniformly random, and is not present anywhere
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in the game, xm appears uniformly random in Zq. In other words, the hybrids
Game (1, j) and Game (1, j − 1) are indistinguishable.
Finally, we observe that Game (1, Q) is exactly the same as GRealDΠ2DReg

(λ). This
completes the proof.

IND-CPA security. We prove the theorem by showing that an adversary’s
view in the IND-CPA game is computationally indistinguishable from uniformly
random. For the sake of contradiction, suppose there exists a PPT adversary A
that breaks down IND-CPA security of ΠaDReg with a non-negligible probability σ.
Then we design a simulator B that breaks the DLWE assumption. More precisely,
given (A, b̂) with A ∈ Zn×m

q and b̂ ∈ Zn
q , B determines whether b̂ is chosen

uniformly at random or b̂ = A · k̂, where k̂ ∈ {0, 1}m, by interacting with A.
To prepare the simulation, B randomly samples vector k ∈ {0, 1}m, and

sets ask B k, apk B (A,b = A · k), dk = (A, b̂). On feeding A with (apk, dk),
it returns (msg, amsg0, amsg1), and for a uniformly random bit β ∈ {0, 1}, B
calculates the challenge ciphertext act∗ = aDReg.aEnc(apk, dk,msg, amsgβ). Fi-
nally, when the adversary returns β′, B outputs (β == β′). The simulation is
formally specified as follows:

Simulator B(1λ,A, b̂)
1: k← {0, 1}m

2: ask B k, apk B (A,b = A · k), dk = (A, b̂)
3: (msg, amsg0, amsg1)← A(apk, dk)
4: β ← {0, 1}
4: Parse dk = (dk1, dk2)
5: Parse msg = (msg1,msg2)
6: s1 ← Zn

q , e
T
1 , e

T
2 ← χm, ŷ ← χ

7: dk1 = [a1, . . . , an]
T ∈ Zn×m

q , eT2 = [e2,1, . . . , e2,m] ∈ χm

8: for i ∈ {1, . . . ,m− 1}, xi ← Zq

9: end for
10: xm = (

∑m−1
i=1 xiai + sT1 · dk2 + ŷ + amsg · ⌊ q2⌋ − e2,1) · a−1

m mod q
11: x = (x1, . . . , xm)
12: s2 B x
13: act∗1 B DReg.Enc(apk,msg1; s1, e

T
1 ) = (r1, c1)

// r1 B sT1 · dk1 + eT1 , c1 B sT1 · b+ y1 +msg1 · ⌊
q
2⌋ mod q

14: act∗2 B DReg.Enc(pk,msg2; s2, e
T
2 ) = (r2, c2)

// r2 B sT2 · dk1 + eT2 , c2 B sT2 · b+ y2 +msg2 · ⌊
q
2⌋ mod q

15: β′ ← A(act∗ = (act∗1, act
∗
2))

16: return β == β′

When b̂ = A · k̂, then the distribution of (ask, apk) and the challenge ciphertext
act∗ corresponds to A’s view as in the experiment GIND-CPAA

PKAE(λ, β). This
follows from the anamorphic key-pair being perfectly valid, which makes act∗ a
valid encryption of amsgβ under dk = (A, b̂). If b̂ is uniformly random in Zn

q ,

then (in line 10) sT1 · b̂+ ŷ becomes a DLWE sample which is close to uniformly
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random over Zq assuming the LWE assumption. Hence, the challenge ciphertext
act∗ hide amsgβ . Thus, A has no information on the encrypted anamorphic
message. Therefore, if A breaks the IND-CPA security of ΠaDReg with a non-
negligible probability then B can also break the DLWE assumption with a non-
negligible probability. □

D Analysis of Our FO-Based PKAEE

Theorem 3 Let ΠFO be an IND-CCA secure FO-based PKE where the under-
lying PKE ΠPKE is IND$-CPA secure and has an exponentially large message
space MPKE (i.e., |MPKE| ≥ 2poly(λ) for non-constant poly), and the underly-
ing SKE ΠSKE is wIND$-CPA secure. Furthermore, let (Encode,Decode) be a
pseudo-random (CFO,Mµ

PKE)-encoding, where CFO denotes the ciphertext space
of ΠFO. Then ΠFOAE as defined in Figure 3 is a µ-message anamorphic extension
satisfying anamorphic security and sIND-RCCA security in the ROM.

Proof. We prove this theorem in two parts.

Anamorphic Security. In the following sequence of hybrid games let D be a
PPT dictator and Q its total number of oracle queries.

Game 0: This is the real game GRealDFO(λ) in the anamorphic security defini-
tion, where the challenger generates (pk, sk)← PKE.Gen(1λ) and handles en-
cryption queries OEnc(msg, amsg) of the dictator by computing (FO.Enc(pk,
msgi) for 1 ≤ i ≤ µ. The adversary also has access to the random oracles H
and G.

Game 1: In this game the challenger generates the key pair by computing
(apk, ask, dk, tk)← FOAE.aGen(1λ) and provides (apk, ask) as input to D.

Game (2, j) for j ∈ [0, Q]: In this series of games we slightly modify Game 1.
We define Game (2, 0) to be identical to Game 1. In Game (2, j), the chal-
lenger handles the first j encryption oracle calls as follows: In such a call, the
oracle first randomly chooses an elements c from CFO and applies Encode(c)
to obtain (r1, . . . , rµ). Then the latter values are used as encryption random-
ness: (FO.Enc(apk,msgi; ri) for 1 ≤ i ≤ µ. The remaining oracle calls are left
untouched in comparison to Game (2, 0). Note that in Game (2, Q) we have
modified all encryption computations in this way.

Game (3, j) for j ∈ [0, Q]: In this series of games, we modify Game (2, Q). We
define Game (3, 0) to be identical to Game (2, Q). In Game (3, j), the chal-
lenger handles the first j encryption oracle calls as follows: In such a call,
instead of choosing c fully at random from CFO, we replace the components
representing the ciphertext of PKE by an actual encryption of a random
message r′. That means, we compute c = (cPKE, cSKE) ∈ CFO = CPKE × CSKE
as c = (PKE.Enc(dk, r′), cSKE), where r′ ←MPKE and cSKE ← CSKE.

Game (4, j) for j ∈ [0, Q]: In this series of games, we modify Game (3, Q). We
define Game (4, 0) to be identical to Game (3, Q). In Game (4, j), the chal-
lenger handles the first j encryption oracle calls as follows: In such a call,
we now also replace the components of c representing the ciphertext part of
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SKE. That means, we compute c as c = (PKE.Enc(dk, r′), SKE.Enc(k, amsg)),
where r′ ←MPKE and k ← SKE.Gen(1λ).

Game 5: In this game, in all oracle calls when computing c, the encryption ran-
domness of PKE and the key k of SKE is generated using the random oracles
H and G as in the FO construction, i.e., c = (PKE.Enc(dk, r′;H(r′, amsg)),
SKE.Enc(G(r′), amsg)), r′ ←MPKE.

Game 6: This is the anamorphic game GAnamD
FOAE(λ), where the challenger

generates (apk, ask, dk, tk)← FOAE.aGen(1λ) and handles encryption queries
OaEnc(msg, amsg) of the dictator by computing FOAE.aEnc(apk, dk,msg,
amsg).

Game 0 and Game 1 are identical as (ask, apk) are generated in aGen by
FO.Gen. Game (2, 0) is indistinguishable from Game (2, Q), as a distinguisher D
for Game (2, j) and Game (2, j+1) (for random j ∈ {0, . . . , Q−1}) can be turned
in to an adversary against the pseudo-randomness of the encoding. Similarly,
Game (3, 0) is indistinguishable from Game (3, Q), as from a distinguisher D
for Game (3, j) and Game (3, j + 1) (for random j) an IND$-CPA adversary
against ΠPKE could be constructed. By a similar hybrid argument, Game (4, 0)
is indistinguishable from Game (4, Q), as a distinguisher D for Game (4, j) and
Game (4, j + 1) (for random j) leads to an wIND$-CPA adversary against ΠSKE.
Next, Game (4, Q) and Game 5 are computationally distinguishable: The random
oracle call H(r′, amsg), for uniformly chosen r′, will not result in a freshly chosen
value if (r′, amsg) has been input to H before. If there are QH queries to H in
total, this could happen with probability at most QH

|MPKE| for each call to OEnc

and thus with probability Q·QH

|MPKE| for all calls. Note that our assumption is that

the message space is of exponential size. A similar argument holds for random
oracle calls G(r′). Finally, Game 5 and Game 6 are identical.

sIND-RCCA Security. This follows immediately from the IND-CCA security of
ΠFO. The reduction algorithm B is given dk as input from its IND-CCA challenger
and has access to a Dec(tk′, ·) oracle. It can generate (apk, ask)← PKE.Gen(1λ)
itself, and thus provide (apk, dk, ask) as input to the sIND-RCCA adversary A.

Upon receiving (msg, amsg0, amsg1) from A, B provides (amsg0, amsg1) to its
own IND-CCA challenger to obtain c∗. The ciphertext c∗ is then transformed
into a challenge ciphertext vector act∗ as specified in aEnc in Figure 3.

To simulate the aDec(tk, ·) oracle, where tk = (ask, tk′), B uses the self-chosen
ask to decrypt the public key components of act in order to obtain (r1, . . . , rµ)
(cf. aDec in Figure 3). Then it decodes them to obtain c. If c = c∗, B rejects,
i.e., it sends ⊥ as oracle response to A. Otherwise it queries its own Dec(tk′, ·)
to decrypt c. If this decryption yields amsg1 or amsg2, B sends ⊥ as oracle
response to A. Note that this simulation of an sIND-RCCA aDec oracle is perfect:
The only thing which is done differently by the simulation is that it checks if
c = c∗ and returns ⊥ if this equation holds. However, by correctness of ΠFO it
follows that such a c would have been decrypted to amsg1 or amsg2 and thus the
corresponding act would have also been rejected by the real aDec oracle.

Finally B outputs whatever A outputs.
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E Analysis of Our Boneh-Franklin 2-IBAEE

In this section, we show the correctness and prove Lemma 3, Theorem 1 related
to Section 4.1.

Correctness: We now show the correctness of the ΠaBF = (aSetup, aKeyGen, aEnc,
aDec) scheme based on the Boneh-Franklin IBE scheme. Let act = (act1act2)
be the output of aEnc(ampk, dmpk, id,msg, amsg), where act1 = (r1, c1) and
act2 = (r2, c2). Here, r1 = Pκ1 and r2 = Pκ2 are generated using a uni-
formly random κ1 in Z∗

q , while κ2 is such that H2(g
κ2

id ) = amsg ⊕ H2(ĝ
κ1

id ),
where ĝid B e(Qid, dmpk = Pα) and gid B e(Qid, Ppub = P s). The anamor-
phic decryption algorithm aBF.aDec knows both the anamorphic private key
askid = Qs

id and the double private key dskid = Qα
id. It first calls F (askid,act),

which extracts H2(g
κ2

id ) by computing H2(e(askid, r2)). Note that e(askid, r2) =
e(Qs

id, P
κ2) = e(Qid, P

s)κ2 = (gκ2

id ). Finally, amsg is recovered by executing
BF.Dec on r̂ = r1 and ĉ = H2(g

κ2

id ) = amsg ⊕ H2(ĝ
κ1

id ). To see why it works,
observe that BF.Dec(dskid, F (askid,act)) computes ĉ⊕ H2(e(dskid, r̂)) = amsg ⊕
H2(ĝ

κ1

id )⊕ H2(e(Q
α
id, P

κ1)) = amsg ⊕ H2(ĝ
κ1

id )⊕ H2(e(Qid, P
α)κ1) = amsg.

Lemma 3 The Boneh-Franklin identity-based encryption scheme is IBAE-compatible
for the quadruplet ΠaBF = (aSetup, aKeyGen, aEnc, aDec) described in Figure 4
associated with a Boneh-Franklin 2-message identity-based encryption scheme
Π2BF = (Enc,Dec).

Proof. First, observe that aBF.aSetup(1λ) outputs amsk = s, ampk = (G,GT , P,
e, q, Ppub = P s,H1,H2), dmsk = α and dmpk = Pα, where s and α are uniformly
random in Z∗

q . Therefore, the key pair (ampk, amsk) has identical distributions

with {(mpk,msk) : msk = s̃,mpk = (G′,G′
T , P

′, e′, q′, P ′
pub = P s̃,H′

1,H
′
2) such

that s̃ ← Z∗
q , which is essentially the distribution of master secret and mas-

ter public keys of a Boneh-Franklin IBE scheme. Hence, it satisfies on-the-fly
double key generation property. Next, observe that the function F defined in
Figure 4 takes as input act← aBF.aEnc(ampk, dmpk, id,msg, amsg), and parses
it as act1 = (r1, c1) and act2 = (r2, c2). It then extracts r1 (call it r̂) and
the component H2(g

κ2

id ) = amsg ⊕ H2(ĝ
κ1

id )(call it ĉ). Note that (r̂, ĉ) is a valid
Boneh-Franklin ciphertext as r̂ = r1 and ĉ = amsg ⊕ H2(ĝ

κ1

id ). Thus, amsg can
be extracted by executing BF.Dec using dskid = Qα

id, which implies that the
IBAE satisfies the ciphertext extractibility property. Hence we conclude that the
Boneh-Franklin IBE is IBAE-compatible. □

Theorem 4 Under the DBDH assumption for (G,GT , P, e, q), the Boneh-Franklin
2-message identity-based anamorphic encryption extension ΠaBF described in
Figure 4 satisfies anamorphic and IND-CPA security (Definition 5 and Appendix
A.6).

Proof. We prove the theorem in two parts.
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Anamorphic security. We use a sequence of hybrid games Game 0,Game (1, j)
for j ∈ [0, Q] to prove this theorem. In each hybrid game, we assume D is a PPT
dictator and Q be the total number of queries made by D to the encryption
oracle.

Game 0: This is the anamorphic GAnamD
Π2BF

(λ). The challenger generates (dmsk =

α, dmpk = Pα)← aBF.aSetup(1λ), and sends the key pair (ampk, amsk) to D.
Then, D makes polynomial number of queries to the encryption oracle with
a tuple {(idi,msgi, amsgi)}i∈[Q]. At the i-th query, D receives a ciphertext
acti computed as follows:
1. Parse msgi = (msgi1 ,msgi2)
2. Qidi B H1(idi)
3. ĝidi B e(Qidi , dmpk), gidi B e(Qidi , Ppub)
4. κ1, κ2 ← Z∗

q s.t. H2(g
κ2

idi
) = amsgi ⊕ H2(ĝ

κ1

idi
)

5. act1 B BF.Enc(ampk,msgi1 , idi;κ1)
6. act2 B BF.Enc(ampk,msgi2 , idi;κ2)
7. return acti B (acti1 , acti2)

Game (1, j) for j ∈ [0, Q]: We define Game (1, 0) to be identical to Game 0,
and Game (1, j) is exactly the same as Game (1, 0) except that the first j
(anamorphic) ciphertexts {acti}i∈[1,j] are computed as follows:
1. Parse msgi = (msgi1 ,msgi2)
2. κ1, κ2 ← Z∗

q .
3. acti1 B BF.Enc(ampk,msgi1 , idi;κ1) = (r1 = Pκ1 , c1 = msgi1 ⊕ H2(g

κ1

idi
))

4. acti2 B BF.Enc(ampk,msgi2 , idi;κ2) = (r2 = Pκ2 , c2 = msgi2 ⊕ H2(g
κ2

idi
))

5. return acti B (acti1 , acti2)

We show that Game (1, j) is indistinguishable from Game (1, j−1) by the DBDH
assumption. The only difference between Game (1, j) and Game (1, j − 1) is in
the computation of κ1, κ2. In particular, κ1, κ2 are sampled from Z∗

q such that
H2(g

κ2

idi
) = amsgi ⊕ H2(ĝ

κ1

idi
) in Game (1, j − 1), whereas κ1, κ2 are sampled uni-

formly random from Z∗
q in Game (1, j). We first show that ĝκ1

idi
is indistinguishable

from a uniformly random element in GT in D’s view. Since H1 is modeled as
ROM, we can set Qidi = P r for some r ← Zq. Without loss of generality, we as-
sume that κ1 is first sampled uniformly at random from Zq and then κ2 is picked
from Z∗

q such that H2(g
κ2

idi
) = amsgi⊕H2(ĝ

κ1

idi
) holds. Thus the challenger can sim-

ulate Game (1, j) with (P r, Pα, Pκ1 , e(P, P )t) when t = rακ1, and Game (1, j),
when t is uniformly random in Zq, where it sets ĝκ1

idi
= e(P, P )t. Therefore, by

the DBDH assumption the following holds:

|Pr[r, α, κ1 ← Zq : A(P r, Pα, Pκ1 , e(P, P )r·α·κ1) = 1]−
Pr[r, α, κ1, t← Zq : A(P r, Pα, Pκ1 , e(P, P )t) = 1]| ≤ negl(λ)

Since t = r ·α ·κ1 is indistinguishable from uniformly random and H2 is modeled
as ROM, H2(ĝ

κ1

idi
) ⊕ amsgi is statistically close to H2(ĝ

κ1

idi
). Furthermore, at this

stage, gκ2

idi
and ĝκ1

idi
are independently distributed where κ1, κ2 ← Z∗

q and hence
the hybrids Game (1, j) and Game (1, j − 1) are indistinguishable.
Finally, we observe that Game (1, Q) is exactly the same as GRealDΠ2BF

(λ). This
completes the proof.
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IND-CPA security. We prove the theorem by designing a simulator that plays
the role of the challenger in the IND-CPA security game of the Boneh-Franklin
BasicIdent scheme against ampk, which is IND-CPA secure under the DBDH as-
sumption. Note that, the anamorphic master public key ampk and the master
public key mpk of the BasicIdent scheme are identically distributed since Boneh-
Franklin BasicIdent scheme is IBAE-compatible by Lemma 3. In other words, if
an adversary breaks the IND-CPA security of ΠIBAE then it can be used to break
the IND-CPA security of Boneh-Franklin BasicIdent scheme.

We start with a contradiction that there exists a PPT adversary A that
breaks the IND-CPA security of ΠaBF with a non-negligible probability. We then
design another adversary B that breaks IND-CPA security of the BasicIdent
scheme.

The challenger of A runs aSetup(1λ) and sends (ampk, dmpk) to A. Then,
B receives dmpk from A. Whenever B queries a secret key corresponding to
an identity id, A sends id to it’s challenger and gets a secret key dskid ←
aKeyGen(dmsk, id). As a reply, B receives dskid from A. Finally, B submits a
challenge query for the tuple (id∗, amsg0, amsg1). Then, A prepares its chal-
lenge tuple by sampling a message of the form msg = (msg1,msg2) and sends
(id∗,msg, amsg0, amsg1) to the challenger. The challenger then outputs act =
(act1, act2) where act1 = (r1 = Pκ1 , c1 = msg1 ⊕ H2(g

κ1

id∗)) and act2 = (r2 =
Pκ2 , c2 = msg2 ⊕ H2(g

κ2

id∗). Now, A sets the challenge ciphertext for B as act∗ =
(r1 = Pκ1 , c2 ⊕msg2 = H2(g

κ2

id∗)). Next, B can submit more private key queries
to which A replies as before. At the end, B outputs a bit which is also the output
of A.

We observe that A is a valid IND-CPA adversary of ΠaBF since B can only
query for secret keys corresponding to id ̸= id∗. Next, by construction, we have

c2 = msg2 ⊕ H2(g
κ2

id∗) = msg2 ⊕ amsgβ ⊕ H2(ĝ
κ1

id∗)

where β is the challenge bit used by the challenger of A. Therefore, act∗ =
(r1 = Pκ1 , c2 ⊕ msg2 = amsgβ ⊕ H2(ĝ

κ1

id∗)) is a valid ciphertext of the Boneh-
Franklin BasicIdent scheme encrypting amsgβ using ampk. Therefore, if A breaks
the IND-CPA security of ΠaBF with a non-negligible probability then B can also
break the IND-CPA security of the Boneh-Franklin BasicIdent scheme.

□

F Anamorphic Extension of FO-Based IBE

Variants of the FO transformation are also a viable tool to construct CCA se-
cure IBE schemes. This has started with the intial construction due to Boneh
and Franklin on IBE [8] and several works have explicitly investigated various
FO-type transformations for lifting OW-CPA or IND-CPA secure IBE to CCA
secure ones [21,37,24]. Analogous to the discussion of the FO transformation in
Section 3.3, it is natural to ask whether we can equivalently apply these results
to the AIBE setting. We first want to briefly recall how the variant of the FO
transform that is used in the Boneh-Franklin (BF) IBE and the Sakai-Kasahara
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(SK) IBE [33,14] exactly work. We note that both works as specified below are
suggested in an ETSI technical report for standardization [18]8.

For our presentation let ΠIBE = (Setup,KeyGen,Enc,Dec) and ΠSKE = (Gen,
Enc,Dec) be the underlying IBE and symmetric encryption schemes. Analogous
to Section 3.3 we now denote by ΠFO,IBE = (Setup,KeyGen,Enc,Dec) the IND-
CCA secure version where FOIBE.Setup and FOIBE.KeyGen just run IBE.Setup and
IBE.KeyGen respectively. FOIBE.Enc(mpk, id,msg) returns ciphertext c = (c1, c2)
where c1 = IBE.Enc(mpk, id,msg;σ) and c2 = SKE.Enc(G(r),msg) for uniformly
random r ∈ {0, 1}n (and suitable n) and σ = H(r,msg) ∈ MIBE. Note that H
andG are hash functions modeled as random oracles mapping to the space of ran-
dom coins RIBE of IBE and the key space KSKE of SKE, respectively. For decryp-
tion, FOIBE.Dec(skid, c) parses c = (c1, c2) computes r′ = IBE.Dec(skid, c1) and
msg′ = SKE.Dec(G(r′), c2) and returns msg′ if c′1 = IBE.Enc(mpk, id, H(r′,msg′))
or ⊥ otherwise.

Definition 19 Let ΠIBE be IBE with ciphertext space denoted by C. We call IBE
IND$-CPA secure if for every PPT adversary A it holds that

∣∣∣Pr[GIND$-CPAA
ΠIBE

(λ, 1) = 1]− Pr[GIND$-CPAA
ΠIBE

(λ, 0) = 1]
∣∣∣ ≤ negl(λ)

where the security game is defined as follows:

GIND$-CPAA
ΠIBE

(1λ, β) :

1. (mpk,msk)← Setup(1λ)
2. (id∗,msg)← AOKeyGen(·)(mpk)
3. ct0 = Enc(mpk, id∗,msg)
4. ct1 ← C
5. return β′ ← AOKeyGen(·)(ctβ)

where OKeyGen(id) = KeyGen(msk, id)
and id∗ is not queried to OKeyGen(·).

We present the anamorphic IBE extension based on ΠFO,IBE in Figure 8.

Theorem 8 Let ΠFO,IBE be an IND-ID-CCA secure FO-based IBE where the
underlying IBE ΠIBE is IND$-CPA secure and has an exponentially large mes-
sage space MIBE (i.e., |MIBE| ≥ 2poly(λ) for non-constant poly), and the un-
derlying SKE ΠSKE is wIND$-CPA secure. Furthermore, let (Encode,Decode)
be a pseudo-random (CFOIBE

,Mµ
IBE)-encoding, where CFOIBE

denotes the cipher-
text space of ΠFO,IBE. Then ΠFOAE,IBE as defined in Figure 8 is a µ-message
anamorphic identity-based encryption extension satisfying anamorphic security
and sIND-RCCA security in the ROM.

8 The only difference with the standard, as with the papers, is that they explicitly
consider XOR as symmetric encryption scheme SKE.
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aSetup(1λ) :

1. (amsk, ampk)← FOIBE.Setup(1
λ)

2. (dmsk, dmpk) ←
FOIBE.Setup(1

λ)
3. return (amsk, ampk, dmpk, dmsk)

aDec(askid, dskid,act) :

1. for j ∈ {1, . . . , µ}:
Parse actj = (c1, c2)
rj B IBE.Dec(askid, c1)
if rj = ⊥ return ⊥

2. c B Decode(r1, . . . , rµ)
3. if c = ⊥ return ⊥
4. return FOIBE.Dec(dskid, c)

aKeyGen(dmsk, id) :

1. dskid = FOIBE.KeyGen(dmsk, id)
2. return dskid

aEnc(ampk, dmpk, id,msg, amsg) :

1. Parse msg = (msg1, . . . ,msgµ)
2. c← FOIBE.Enc(dmpk, id, amsg)
3. (r1, . . . , rµ)← Encode(c)
4. for j ∈ {1, . . . , µ}:

actj B FOIBE.Enc(ampk, id,msgj ; rj)
5. return act B (act1, . . . , actµ)

Fig. 8: µ-AIBE ΠFOAE,IBE

The proof of this theorem works analogous to that of Theorem 3 and is thus
omitted. The intuition is that ΠFO,IBE satisfies anamorphic security as the em-
bedded ciphertexts components containing amsg are indistinguishable from a
regular r ←MIBE due to the pseud-randomness of the pseudo-random encoding.
Moreover, the IND-CCA security of ΠFO,IBE for encrypting amsg (i.e., the “inner”
layer encryption) implies sIND-RCCA for the overall construction ΠFOAE,IBE as
an adversary (including the dictator) is not able to maul amsg.

Instantiation with BF Full-Ident. Let us consider ΠFO,IBE based on Boneh-
Frankin (BF) as IBE and XOR for the SKE part. BF satisfies IND$-CPA secu-
rity under DBDH in the ROM and XORing a message with a random key of
the same length satisfies wIND$-CPA security. When instantiated in type-3 pair-
ings (G1,G2,GT , g1, g2, q), let us assume that c1 elements are in G1 and secret
keys skid are in G2. Note that, FOIBE.Enc(mpk,msg) would produce a ciphertext

c = (g
H(r,m)
1 , H ′(g

H(r,m)
2,id ) ⊕ r,G(r) ⊕ m), where H : {0, 1}∗ × {0, 1}∗ → Zq,

H ′ : GT → {0, 1}ℓ1 , G : {0, 1}∗ → {0, 1}ℓ2 . As for ΠFOAE, we can use Elligator
Squared [35] as the pseudo-random encoding and considering BN curves [4] for
instantiating the type-3 pairing we have G1 = E(Fp) is a cyclic group of prime
order q. Moreover, if we again set ℓ1 = ℓ2 = λ, then we end up with a 4-message
anamorphic extension.
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G Analysis of Anamorphism-Friendly Signatures with
Compliant Encryption

Theorem 5 Let ΠSS be an anamorphism-friendly signature scheme and ΠES

an encryption scheme compliant to ΠSS. Then ΠaGAE as defined in Figure 7

is a secure µ-message anamorphic signature extension, where µ = max{⌈ e
′
i

ei
⌉}.

Moreover, ΠaGAE also satisfies IND-CPA security. If ΠES additionally achieves
IND-RCCA security then ΠaGAE achieves sIND-RCCA security.

Proof. We prove this theorem in two parts.

Anamorphic Security. In the following sequence of hybrid games let D be a
PPT dictator and Q its total number of oracle queries.

Game 0: This is the real game GRealDSS(λ) in the anamorphic security definition,
where the challenger generates (sk, vk)← SS.Gen(gp) and handles signature
queries OSig(msg, amsg) of the dictator by computing (SS.Sig(sk,msgi) for
0 ≤ i ≤ µ− 1.

Game 1: In this game the challenger generates the key pair by computing
(ask, avk, td)← SS.Gen′(gp) and provides (ask, avk) as input to D.

Game (2, j) for j ∈ [0, µQ]: In this series of games we slightly modify Game 1.
We define Game (2, 0) to be identical to Game 1. In Game (2, j), the chal-
lenger handles the first j signature computations (in order to respond to or-
acle calls) as follows: It computes (s0, . . . , sm−1, r) ← SS.Sig(ask,msgj) but
replaces r with r′ ← SS.RemSig(ask, td,msgj , (s0, . . . , sm−1)), i.e., it returns
(s0, . . . , sm−1, r

′). The remaining signature computations are left untouched
in comparison to Game (2, 0). Note that in Game (2, µQ) we have modified
all signature computations in this way.

Game 3: In this game, we modify all signature computations done by the chal-
lenger (in comparison to Game (2, µQ)) at once: instead of calling SS.Sig to
compute (s0, . . . , sm−1) being input to SS.RemSig, we choose them uniformly
at random, i.e., (s0, . . . , sm−1)← Se0

0 × Se−1
m−1.

Game (4, j) for j ∈ [0, Q]: We define Game (4, 0) to be identical to Game 3,
except that the challenger additionally generates the key pair (dk, tk) ←
ES.Gen(gp) of the encryption scheme. In Game (4, j), the challenger handles
the first j oracle calls OSig(msg, amsg) as follows: it computes (c0, . . . , cm−1)
← ES.Enc(dk, amsg) and embeds the ciphertext components into (s0, . . . ,
sm−1) as defined by Steps 2 and 3 of the aSig definition in Figure 7. Then
SS.RemSig is called as in Game 3. Note that in Game (4, Q) we have embedded
ciphertexts in all responses to oracle calls.

Game 5: This is the anamorphic game GAnamD
GAE(λ), where the challenger

generates (ask, avk, td) ← GAE.aGenS(gp), (dk, tk) ← GAE.aGenR(gp) and
handles signature queries OaSig(msg, amsg) of the dictator by computing
aSig(ask, td, dk,msg, amsg).

The indistinguishability of Game 0 and Game 1 follows immediately from the
second property of an anamorphism-friendly signature. Game 1 and Game (2, 0)
are identical.
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Game (2, 0) is indistinguishable from Game (2, Q), as a distinguisher D for
Game (2, j) and Game (2, j +1) (for random j ∈ {0, . . . , µQ− 1}) can be turned
in to an adversary against the black-box computation of remainder property of
an anamorphism-friendly signature. Game (2, µQ) is perfectly indistinguishable
from Game 3 due to the random component property of the signature scheme.
Game 3 and Game (4, 0) are perfectly indistinguishable as the modification is
purely conceptional. Game (4, 0) is indistinguishable from Game (4, Q), as from a
distinguisher D for Game (4, j) and Game (4, j+1) (for random j ∈ {0, . . . , Q−1})
an adversary against the IND$-CPA security of ΠES can be constructed. Finally,
Game (4, Q) and Game 5 are identical.

IND-CPA Security of ΠaGAE. This follows immediately from the IND$-CPA se-
curity of ΠES: Let Game 0 be the IND-CPA game for β = 1. In Game 1, when
computing the challenge signature asig1 ← aSig(ask, td, dk,msg, amsg1), we re-
place the ciphertexts (c0, . . . , cm−1) to be embedded by aSig by randomly chosen
values from the ciphertext space Se0

0 × . . .×Sem−1

m−1 . Game 0 and Game 1 are indis-
tinguishable if ΠES is IND$-CPA. Note that the reduction algorithm can handle
signature queries as it can choose ask, td itself. In Game 2, we immediately re-
vert this change by embedding ciphertexts encrypting amsg0, i.e., the challenger
computes asig0 ← aSig(ask, td, dk,msg, amsg0). Again, Game 1 and Game 2 are
indistinguishable if ΠES is IND$-CPA. Game 2 is the IND-CPA game for β = 0.

sIND-RCCA Security of ΠaGAE. This follows immediately from the assumed
IND-RCCA security of ΠES. The reduction algorithm B is given gp, dk as input
from its IND-RCCA challenger and has access to a Dec(tk, ·) oracle. It can gen-
erate (avk, ask, td)← aGenR(gp) itself, and thus provide (avk, dk, ask) as input to
the sIND-RCCA adversary A. Clearly, B can handle A’s aSig(ask, td, dk, ·, ·) oracle
queries since it knows all necessary inputs. B can also handle aDec(tk, avk, ·, ·)
queries by extracting the ci,j from the given asig as specified in Figure 7 and
querying its own Dec(tk, ·) oracle this input. Clearly, this simulated aDec or-
acle behaves exactly as the real aDec oracle (in particular it rejects an input
exactly when the real one does). To generate the challenge signature for the
given (msg, amsg0, amsg1), B provides (amsg0, amsg1) to its own challenger and
embeds the response into signatures for msg as specified by Steps 3 to 5 of aSig
in Figure 7. Finally B outputs whatever A outputs.

IND-CCA Security of ΠaGAE′ . This proof is similar to the sIND-RCCA security
proof for ΠaGAE we have seen above, where the SUF-CMA security of ΠSS now
ensures that the simulation of the aDec using a IND-CCA Dec oracle works out.

So let us consider how the reduction algorithm B (the adversary against the
IND-CCA security of ΠES) handles A’s queries of the aDec(tk, avk, ·, ·) IND-CCA
oracle: For given (asig,msg), it first checks whether (asig,msg) equals the
challenge signature and message vectors (asig∗,msg∗) and rejects if it does.
Then it verifies each of the µ signatures contained asig and returns ⊥ if at least
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one of these checks fail. Otherwise, it extracts the ci,j from the given asig as
specified in Figure 7 and queries its own Dec(tk, ·) oracle for this input. Obviously,
the only thing this simulation does differently compared to a real aDec oracle
is calling the Dec(tk, ·) oracle instead of executing the Dec(tk, ·) algorithm. This
can lead to the following simulation failure: The Dec(tk, ·) oracle on input of
the challenge ciphertext c∗ = (c∗i,j)i,j (generated by B’s IND-CCA challenger)
will reject while the algorithm will return the corresponding decryption result.
Hence, we need to show that the checks (particularly the signature verification)
performed before this point ensure that the Dec(tk, ·) oracle will never be queried
with c∗ as input.

Let us consider the different inputs (asig,msg) to the aDec oracle which
could lead to c∗:

1. (asig,msg) = (asig∗,msg∗): In this case B immediately rejects.

2. asig = asig∗ and msg ̸= msg∗: In this case, we have at least one verifying
signature sig∗i for a non-challenge message msgi ̸= msg∗i . There is only a
negligible chance that a call to the aSig oracle (including msgi as part of the
input) could have produced the same signature since the used randomness
for producing this signature is freshly chosen. In particular, if we write sig∗i as

sig∗i = ((s
(i)
j , r(i)) as in Figure 7, for the newly produced signature the same

s
(i)
j would need to be chosen. Hence, in this case the SUF-CMA security is
broken and thus we could build a adversary against the underlying signature
scheme.

3. asig ̸= asig∗ and msg = msg∗: In this case, we have at least one signature
sigi ̸= sig∗i which verifies for the challenge message msg∗i . Since also with
this signature sigi, the extraction of the ciphertext need to yield c∗ which is

composed of the s
(i)
j , it holds that at least one of the random components of

sigi needs to coincide with the one of sig∗i . Similar to the previous case, we
can argue that such sigi cannot stem from a call to the aSig oracle and thus
sigi is a forgery of a new signature for the challenge message msg∗i . Thus, in
this case the SUF-CMA security is broken.

4. asig ̸= asig∗ and msg ̸= msg∗: In this case, we are either in one of the
two previous situations (for which we have already shown that they violate
SUF-CMA security) or for all i it holds that sigi ̸= sig∗i and msgi ̸= msg∗i . So
let us consider the latter. Using the same argument as in the previous case,
it follows that there is a negligible probability that sigi stems from a call to
the aSig oracle and thus we either have a signature forgery for a new message
or a message for which the aSig oracle has been queried before. Both cases
violate the SUF-CMA security of the signature scheme.

To summarize, assuming SUF-CMA security, the IND-CCA adversary B against
ΠES can perfectly simulate the aDec oracle for A and thus A’s IND-CCA chal-
lenger for ΠaGAE. Finally, B outputs whatever A outputs.

To make the above argument more formal, one can define a sequence of
games, where the first game is the IND-CCA game for ΠaGAE′ for β = 1 and the
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last game is the IND-CCA game for ΠaGAE′ for β = 0. In the first three interme-
diate games, we modify the aDec oracle by considering the cases 2-4 from above
and let the oracle reject if the corresponding event happens. Indistinguishabil-
ity between the games can then be shown using the SUF-CMA security of ΠSS

(based on the arguments made above). After that, we can be sure that an aDec
oracle can be simulated by a Dec oracle and thus we can change the challenge
message to be encrypted from amsg1 to amsg0 in the next and final game. Here
indistinguishability follows from the IND-CCA security for ΠES.

□

H Analysis of Waters and BBS Anamorphic Signature
Extensions

Theorem 6 Waters signatures (as defined in Sec. 5.1) are anamorphism-friendly
and linear encryption is compliant to them under the DLIN assumption.

Proof. We prove the theorem in two parts.

Anamorphism-Friendliness. The signature space of Waters is G2 where (G,
GT , e, p) is a bilinear group setting. In the notation of Defintion 9, we can write
it as S0 × R, with S0 = G and R = G. Considering only the first component
of a signature (gd, gαβH(msg)d), we observe that it is uniformly and freshly as
d ← Zp. Hence, the first property is satisfied. Regarding the second property,

we observe that gαβH(msg)d = gαβ(h0

∏ℓ
i=1 h

mi
i )d, where hi = gai are elements

chosen during signature key generation, can alternatively be computed by set-
ting td B (a0, . . . , an) and RemSig(ask, td,msg, s = gd) B ask sa0

∏ℓ
i=1 s

aimsgi .
Gen′ outputs a key pair with the same distribution as Gen and additionally td.
This implies the second property.

Compliance of Linear Encryption. It is easy to see that the linear encryp-
tion scheme as defined in Section 5.1 is IND$-CPA over the group G under the
DLIN assumption. The DLIN problem asks an adversary to distinguish hx+y from
hz, where z ← Zp, given (u, v, h, ux, vy), where u, v, h← G and x, y ← Zp. First
we observe that the public key (u, v, h) of the linear encryption scheme can
be generated by choosing a, b, x ← Zp and setting y B axb−1, u B ga, v B gb,
h B gax. In this way, (u, v, h) are indeed random generators as in the DLIN prob-
lem and they satisfy ux = vy = h as needed for decryption. Now, the reduction
to the DLIN assumption is very simple: given an instance of the DLIN problem
(u, v, h, ux, vy, w), we compute the challenge ciphertext for the IND$-CPA adver-
sary as (c1, c2, c3) = (ux, vy, w ·msg) and return the output of the adversary as
our guess. Clearly, if w is random then also the ciphertext, if w = hx+y then it
is a proper encryption of msg. Finally, observe that the ciphertext space of the
linear encryption is G3 and is thus compliant with Waters signature scheme. □

Theorem 7 BBS signatures (as defined in Sec. 5.2) are anamorphism-friendly
and ElGamal encryption, where ciphertexts are encoded during encryption and
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decoded during decryption using a pseudo-random Zk
p-encoding, is compliant to

BBS under the DDH assumption.

Proof. We prove the theorem in two parts.

Anamorphism-Friendliness. The signature space of BBS can be written in
the form of Definition 9 as S0 × R, where S0 = Zp and R = G. As the first

component of each signature (s0, H(msg)
1

x+s0 ) is uniformly and freshly chosen,
the first property is satisfied. The second one is also trivially satisfied by setting

td B ⊥ and RemSig(ask = x, td,msg, s0) B H(msg)
1

x+s0 .

Compliance of ElGamal+Pseudo-Random Encoding. Let us consider El-
Gamal encryption over G1 of an asymmetric bilinear groups setting gp = (G1,
G2,GT , , g1, g2, e, p) and Encode and Decode algorithms mapping elements from
G1 to Zk

p and vice versa. Then the encryption scheme defined by Gen(gp) B
El.Gen(gp), Enc(pk,msg) B (Encode(c1),Encode(c2)), where (c1, c2)← El.Enc(pk,msg),
Dec(sk, (c′1, c

′
2)) B El.Dec(sk, (Decode(c′1),Decode(c

′
2))) has ciphertext space Z2k

p ,
provides correctness up to a negligible error probability, and satisfies IND$-CPA
security. Regarding IND$-CPA security, we first observe that ElGamal is IND$-CPA
secure under the DDH assumption (the proof is similar to the one for linear en-
cryption under DLIN), and that the output of Encode for some uniform ci ∈ G1

is indistinguishable from an uniform element of Zk
p. Finally, observe that the ci-

phertext space of the combined encryption scheme is Z2k
p and is thus compliant

to the signature space component S0 = Zp of the BBS signature scheme. □

I Robustness of Public-Key Anamorphic Encryptions

Additionally, PKAE could also satisfy the following robustness property.

Robustness: For every PPT adversary A, there exists a negligible function
negl(λ), such that for all λ ∈ N, the following holds:∣∣∣Pr[RobustApkae(λ, 0) = 1]− Pr[RobustApkae(λ, 1) = 1]

∣∣∣ ≤ negl(λ)

where the security games are defined as follows:

RobustApkae(λ, β) :

1. (apk, ask, dk, tk)← aGen(1λ)

2. return AOβ(apk,ask,tk,dk,·)(apk, ask) where
O0(apk, ask, tk, dk,msg) = aDec(tk,Enc(apk,msg))
O1(apk, ask, tk, dk,msg) = ⊥

Robustness of ΠaEl from Section 3.1. To obtain robustness in the ElGamal
anamorphic construction, we simply allow the decryption algorithm aEl.aDec to
exhaustively search the anamorphic message space, and return ⊥ if amsg ̸∈ M̂.
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To see why this technique is effective, observe that algorithm 2El.Enc samples
k2 uniformly at random from Zq, which for a fixed α and a fixed amsg, collides
with κα+ amsg with probability 1

q (a negligible function in λ).

Robustness of ΠaDReg from Section 3.2. To obtain robustness in the Dual-
Regev public key anamorphic 2-message extension, we could simply redefine the
anamorphic decryption algorithm aDReg.aDec to include an additional sanity-
check for the ciphertext F (act) = (r̂, ĉ) as follows:

1. if |ĉ− r̂ · k̂| ≤ 7q
10 then

2. return amsg B aDReg.aDec(tk, F (act))
3. else return ⊥

To see why this technique is effective, observe that

|ĉ− r̂ · k̂| = sT1 ·A · k̂+ ŷ + amsg · ⌊q
2
⌋ − sT1 ·A · k̂− eT2 · k̂ mod q

(the anamorphic decryption algorithm knows tk = k̂). If the ciphertext contains

amsg, then sT1 ·A·k̂ cancels out, and the above term reduces to t = ŷ+amsg·⌊ q2⌋−
eT2 ·k̂ mod q. Now, following our parameter choicesm ≥ 2n log q, r = ω(

√
logm),

q ≥ 5r(m+ 1), α ≤ 1/(r
√
m+ 1 · ω(

√
log n)) and χ = Ψα, the norm of the error

ŷ − eT2 · k̂ mod q is smaller than q
5 with overwhelming probability in λ. This

implies that t is upper-bounded by 7q
10 .

When the ciphertext does not contain amsg, then ĉ is a uniformly random
element of Zq, and hence the term sT1 · A · k̂ does not cancel out with high

probability over the choices of A and s, which implies that the norm of ĉ− r̂ · k̂
is larger than 7q

10 .

J Robustness of Public-Key Anamorphic Signatures

For a PKASE or more precisely for anamorphism-friendly signatures with com-
pliant encryption we could define robustness analogous to [3]. This captures that
it must be hard to find µ messages (msg1, . . . ,msgµ) for which when generat-
ing a vector of normal signatures viewed as an anamorphic signature asig =
(SS.Sig(ask,msg1), . . . , SS.Sig(ask,msgµ)), which is then subsequently anamor-
phically decrypted into amsg := aDec(tk, asig), it holds that amsg ̸= ⊥. Formally,
as done for an anamorphic extension of a PKE in [3], this can be done by defin-
ing a distinguishing problem between an oracle implementing the aforementioned
and an oracle that always simply returns ⊥.

Unfortunately, it is not clear how robustness could generically be related
to the IND$-CPA security of the compliant PKE scheme used to construct the
PKASE according to Definiton 9. When looking at our concrete constructions,
however, we can observe the following.

It is easy to see that the 3-PKASE ΠaWaters in Figure 5 uses an ElGamal
type encryption (namely linear encryption) and thus we can follow the ElGamal
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public key anamorphic 2-message extension ΠaEl in Figure 1. Namely, we could
use linear encryption in the exponent, i.e., instead of encrypting amsg ∈ G we
encrypt gamsg for amsg coming from a polynomially bounded subset of Zp, and
follow the exact same idea.

For the 4-PKASE ΠaBBS in 6, although using ElGamal encryption and thus
suggesting the use of the same strategy as above, it is not obvious how to achieve
this. More precisely, when we consider a vector of µ normal signatures, then
elements si, sj , i ̸= j from any such two signatures when decoded, need to yield
a random element in G1. However, this depends on the concrete encoding and
is something that would need to be satisfied by the Elligator Squared encoding
in our specific case or in general by the algorithm Decode of the pseudo-random
Zk
p-encoding.
We leave a thorough study of robustness in context of PKASE and anamorph-

ism-friendly signatures with compliant encryption for future work.
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