
Universität der Bundeswehr München
Fakultät für Informatik

Consistent Document Engineering

Jan Scheffczyk

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

1. Berichterstatter: Prof. Dr. Uwe M. Borghoff
2. Berichterstatter: Prof. Dr. Wolfram Kahl

Neubiberg, den 03. Dezember 2004

Contents

1 Introduction 2
1.1 Criteria for Pragmatic Consistency Management 2
1.2 The Approach in this Thesis . 3
1.3 Objectives . 5
1.4 Outline . 5

2 Introductory Survey 9
2.1 The Running Example for this Thesis 9
2.2 Formalizing Consistency Rules 10
2.3 Finding Inconsistencies . 12
2.4 Repairing Inconsistencies . 14

I Consistency Checking: Finding Inconsistencies 19

3 Consistency-Aware Document Management Systems 21

4 Formalizing Consistency Rules 24
4.1 Informal Overview . 25
4.2 Abstract Syntax . 27
4.3 Writing Proper Consistency Rules 29
4.4 Summary . 44

5 Finding Inconsistencies 45
5.1 Informal Overview . 46
5.2 Validity of Rules . 48
5.3 Generating Consistency Reports 50
5.4 Examples . 53
5.5 Formal Structures for Report Generation 56
5.6 Computing Values . 62
5.7 Summary . 64

6 Speeding up Consistency Checking 66
6.1 Informal Overview . 67
6.2 Static Analysis . 69
6.3 Incremental Consistency Checking 75
6.4 Formalizing Efficient Consistency Rules 87
6.5 Summary . 87

2

CONTENTS 3

II Consistency Maintenance: Repairing Inconsistencies 88

7 Towards Consistency Maintenance 90
7.1 How Can We React to Inconsistencies? 90
7.2 Generating Repairs — A First Account 93
7.3 Feasible Document Repair Generation: A Two-Step Approach . 93
7.4 Consistency Maintaining DMSs 95

8 S-DAGs: Towards Efficient Document Repair Generation 97
8.1 Informal Overview . 97
8.2 Hints for Better Repair Actions 101
8.3 Describing Repair Actions by S-DAGs 104
8.4 Generating S-DAGs . 108
8.5 Interactive Repair . 122
8.6 Summary . 127

9 Repair Collections 129
9.1 Informal Overview . 130
9.2 Deriving Repair Collections from S-DAGs 133
9.3 Repairing Repositories . 145
9.4 Summary . 147

III Case Study: Maintaining Consistency in
Industrial Software Specifications 149

10 Analysis Modules 151
10.1 Industrial Specifications are Heterogeneous Document Sets . . 151
10.2 Analysis Modules and Consistency Requirements 152
10.3 Summary . 165

11 Formalizing Consistency Rules 167
11.1 Developing the Language SDM 167
11.2 Formalizing Consistency Rules 172

12 The Ski School 179
12.1 The Ski School Specification . 179
12.2 Developing the Specification . 191
12.3 Sample S-DAGs . 197
12.4 Sample Repair Collections . 208
12.5 Performance Summary . 211

13 Costs and Benefits of Consistency Management 215

4 CONTENTS

IV Conclusions 218

14 Comparison with Related Work 219
14.1 Consistency Checking . 219
14.2 Incremental Evaluation . 221
14.3 Consistency Maintenance . 223
14.4 Software Engineering Tools . 225

15 Conclusions and Outlook 227
15.1 Summary . 227
15.2 Future Research . 229
15.3 Applications . 230

A Notation 232

B Implementation 234
B.1 Consistency Checking in Practice 235
B.2 Accessing Repositories . 236
B.3 Haskell Meets Subtypes . 237
B.4 Defining Symbol Semantics . 240

C Proofs 244

List of Figures 253

List of Tables 256

List of Definitions and Theorems 257

Bibliography 258

Abstract
When a group of authors collaboratively edits interrelated documents, con-

sistency problems occur almost immediately. Current document management
systems (DMSs) provide useful mechanisms such as document locking and ver-
sion control, but often lack consistency management facilities. At best, con-
sistency is “defined” via informal guidelines, which do not support automatic
consistency checks.

In this thesis, we complement traditional DMSs by consistency management.
We propose to use formal consistency rules that capture semantic consistency
requirements. Rules are formalized in a variant of temporal logic. A static type
system supports rule formalization, where types also define (formal) document
models. In implementing a tolerant view of consistency, we do not expect
that the documents satisfy consistency rules. Instead, our novel semantics pre-
cisely pinpoints inconsistent document parts and indicates when, where, and
why documents are inconsistent. Speed is a key issue in consistency manage-
ment. Therefore, we develop efficient techniques for consistency checking while
retaining our tolerant semantics.

Just pinpointing inconsistencies is, however, insufficient for flexible consis-
tency management. We extend our consistency checking approach towards
suggesting repairs, which resolve inconsistencies. The critical issues are to sug-
gest only some of the best (i.e., least costly) repairs and to generate repairs
efficiently. Therefore, we develop a new two-step approach. First, we employ
directed acyclic graphs (DAGs) to carry repairs. These graphs are called sug-
gestion DAGs (short: S-DAGs). In contrast to the enumeration of all possible
repairs, S-DAGs provide a suitable means to generate repairs efficiently and
to limit the search space for good repairs. Second, from S-DAGs, we derive
one repair collection for all consistency rules. Due to the separation of repair
derivation from S-DAG generation, the repository is locked during the compu-
tationally cheap S-DAG generation only.

We have implemented a prototype of a consistency management tool. Our
case study in the field of software engineering shows that our contributions can
significantly improve consistency management in document engineering and
scale to a practically relevant problem size.

Chapter 1

Introduction

Larger bodies of writing, such as books, technical documentations, or software
specifications, contain many interrelated documents. Typically, a whole team
of authors is responsible for producing these documents. In supporting a multi-
author environment, document management systems (DMSs) store documents
in repositories. On the one hand, DMSs provide fundamental management
facilities, e.g., version management, access control, or deployment management.
On the other hand, DMSs fail to manage semantic domain-specific consistency
requirements. Usually, authors aim to produce an overall consistent work, i.e.,
certain relations between the documents are maintained. These relations are,
however, mostly implicit and vague, e.g., “Links within documents must have
a valid target.” In order to achieve consistency, authors have to spend plenty
of time re-reading and revising their own and related documents. Worse, each
check-in to the repository potentially violates consistency. Larger companies
define guidelines and policies for writing; but still a human reviewer is needed to
maintain them. What prevents automatic consistency checks is that guidelines
are implicit or at best informal.

Inconsistencies are major obstacles causing time-consuming manual effort,
which results in either schedule delays or budget holes or both. Thus, it is high
time to integrate consistency management into DMSs. On the other hand,
inconsistencies are natural in a multi-author environment. Neither can they be
ignored, nor can they be forbidden.

1.1 Criteria for Pragmatic Consistency Management

A pragmatic consistency management approach detects inconsistencies auto-
matically and suggests appropriate inconsistency handling strategies [SZ01]. In
the literature, detecting inconsistencies is often referred to by the term “con-
sistency checking;” handling inconsistencies is often referred to by the term
“consistency maintenance.”

Most importantly, consistency management should help authors, i.e., it must
not hinder their work nor enforce new document editing practices. In order to
accomplish integration into document engineering processes and work flows,
consistency management should support to restrict the evolution of documents
over time. Of course, this is the main reason for extending DMSs, instead of
developing a stand alone consistency management tool. The market for DMSs
and revision control systems is large, as is the variety of document models and
document formats (although we recognize a strong tendency towards XML).
Therefore, consistency management should only make a few assumptions about
the underlying DMS, document formats, and document models. Naturally, in-
consistencies are major obstacles in larger document engineering projects only.

2

1.2 The Approach in this Thesis 3

Thus, consistency management must scale to a practically relevant problem
size, where the term “problem size” means the number of documents, their
heterogeneity, and the number of consistency requirements. Speed is a key
to user acceptance. After a check-in to the repository, authors want to know
almost immediately whether this check-in is accepted and how it meets the
consistency rules.

In many areas, (temporary) toleration of inconsistencies is considered vital
for flexible consistency management [Fin00, NER00]. For example, if doc-
uments evolve at different rates, enforcing consistency may cause deadlocks.
Consistency requirements may be too strict for some purposes — an inconsis-
tency may indicate an exception or a design alternative. Finally, the impact of
an inconsistency can be low compared to the costs of resolving it. Thus, the
central questions are about how inconsistent a repository is and what can be
done to handle inconsistencies. We do not ask whether inconsistencies occur
at all — we know that already. For flexible inconsistency resolution, domain
knowledge should be incorporated into consistency management. Also, resolu-
tion strategies may change as the documents evolve in time.

Clearly, the above criteria call for a tradeoff between formality and pragma-
tism. Entirely formal approaches provide strong means for consistency man-
agement, but severely hinder the work of authors. Informal approaches have
proven insufficient for consistency management.

1.2 The Approach in this Thesis

In this thesis, we develop a formal consistency management approach that is
built on top of informal document engineering processes. We propose the use of
explicit formal consistency rules to capture informal consistency requirements.
We do not require any adaptions to editing practices of authors. One can
consider our approach located “between” formal consistency management and
informal consistency management: Our rules are formal, the documents may
be informal.

By “consistency checking” we mean to determine how the repository con-
forms to the rules. This is in contrast to classic logic, where “consistency check-
ing” means to determine whether a set of formulae has a model, i.e., all formulae
can be fulfilled at once. We smoothly integrate consistency checking into arbi-
trary DMSs without requiring adaptations to document engineering processes.
Consistency rules can express intra- and inter-document requirements regard-
less of the document model and the document format used. Strong rules must
be adhered to, whereas weak rules may be violated. Rules can restrict how doc-
uments evolve in time — hence, we formalize rules in a temporal logic. Since
rule design is a complex task, a static type system helps to define syntactically
well-formed consistency rules. Being aware that check-ins potentially violate
consistency rules, we refine traditional boolean semantics by a novel semantics:
Consistency reports pinpoint inconsistencies within documents precisely. Since
the time needed for consistency checking is crucial, we develop methods that

4 Introduction

evaluate consistency rules efficiently. In contrast to many other consistency
checking approaches, we retain our tolerant semantics.

Checking consistency is, however, only the first step towards flexible con-
sistency management. In this thesis, we also propose strategies to repair in-
consistencies. Exponential computational complexity of repair enumeration
motivates our new two-step approach: In the first step, we describe repair ac-
tions by directed acyclic graphs (DAGs). We call these DAGs suggestion DAGs
(short: S-DAGs). S-DAGs are optimized for efficient generation and also pro-
vide a convenient way to visualize inconsistencies and repair actions. A major
advantage of S-DAGs is that they can be reduced effectively, such that only
the best repair actions remain. Annotations to consistency rules guide S-DAG
generation and make domain knowledge available for generating useful repair
actions. From S-DAGs, authors can choose actions. S-DAGs provide a com-
putationally tractable approach to generating useful repair actions, but they
suffer from an inherent weakness: Authors pick actions separately for each rule,
independent of their effect on other rules. If, however, many rules are violated
the interaction between actions and potential impacts regarding overall consis-
tency remain unclear. Therefore, in the second step, we derive a single repair
collection for all consistency rules.1 The repair collection consists of alternative
repair sets, each of which contains repairs that resolve all inconsistencies in the
repository. The collection can be sorted w.r.t. user-defined metrics, based on
repair ratings. Since the repair collection is derived from S-DAGs only, the
repository does not need to be locked during repair derivation.

We implement our consistency checking and consistency maintenance ap-
proaches in a prototype system. This thesis provides a case study, in which we
apply our consistency maintenance techniques to a document based approach to
software specifications developed at sd&m, a well-established German software
company.2 Inconsistencies are major obstacles in industrial software specifi-
cations. Our case study gives strong evidence that our tolerant consistency
maintenance approach is a feasible way to handle inconsistencies. The case
study also shows that our techniques are a useful aid and scale to a complex
scenario. Efforts for formalization remain within reasonable limits. The per-
formance of our prototype system is satisfactory.

In this thesis, we use and adapt techniques known from databases and a
recent approach towards consistency management for distributed XML docu-
ments. Usually, databases implement a strict view of consistency and benefit
from a formal database model and a formal update model. In contrast, we
implement a tolerant view of consistency and apply our techniques to hetero-
geneous documents managed by a DMS. The toolkit xlinkit [NEF01, NCEF02,
DENT02, NEF03, PNEF03] can be used to manage consistency between dis-
tributed documents. Xlinkit tolerates inconsistencies, too. Distribution of doc-
uments and thus lack of control prohibits temporal consistency rules and hin-

1Throughout, we use the term “repair collection” to mean a set of sets of repairs.
2sd&m: software design & management AG (a company of Capgemini),

see www.sdm.de and www.capgemini.com

1.3 Objectives 5

ders efficient consistency checking techniques. For readability, we postpone a
detailed discussion of related work to Chapter 14.

With kind permission of Universität der Bundeswehr München, preliminary
results of this thesis have been published as [SBRS03a, SBRS03b, SBRS04c,
SBRS04b, SBRS04a, SSBS04].

1.3 Objectives

The objectives of this thesis are as follows:

• We smoothly integrate tolerant consistency management into arbitrary
DMSs without requiring adaptations in document engineering practices
already used. Our approach is independent from specific document for-
mats and models. Thus, we facilitate heterogeneous repositories.

• We capture semantic consistency requirements within and between doc-
uments by user-defined consistency rules. Strong rules must be adhered
to; weak rules may be violated.

• We point out exactly when, where, and why documents are inconsistent
w.r.t. the formalized rules.

• We develop techniques to efficiently check consistency, where our tolerant
semantics is retained. We conjecture that our techniques are useful for
other research areas as well.

• We introduce effective and efficient methods to derive repairs that can
resolve inconsistencies. We establish a new two-step approach: During
consistency checking, we generate for each rule an S-DAG. On author de-
mand, we derive a single repair collection from all S-DAGs. Annotations
to consistency rules guide S-DAG generation and repair derivation.

• We prove the usefulness of our techniques by a case study in a complex
scenario: industrial software specifications.

Throughout this thesis, an important constraint guides our action: Our tech-
niques must be applicable and useful in practice.

1.4 Outline

This thesis is organized as follows: In Chapter 2, we introduce our running
example that we use throughout for illustrating our techniques. We also survey
the most important results of this thesis from the user perspective. The actual
thesis is divided into four parts.

In Part I, we develop methods to check consistency in heterogeneous repos-
itories. In Chapter 3, we show how our approach is integrated into arbitrary
DMSs. Chapter 4 is concerned with the syntactical issues of rule formaliza-
tion. We present our abstract syntax and a static type checking algorithm,

6 Introduction

which ensures well-typedness of rules. In Chapter 5, we introduce our new
tolerant semantics and define a basic consistency checking algorithm. In Chap-
ter 6, we concentrate on efficiently checking consistency rules against a het-
erogeneous repository. Preliminary results of this part have been published as
[SBRS03a, SBRS03b, SBRS04c].

In Part II, we complement our consistency checking approach by consistency
maintenance. In Chapter 7, we discuss basic design decisions and show how
we integrate consistency maintenance into the every-day work with a DMS.
Chapter 8 is concerned with S-DAGs as a means to effectively model inconsis-
tencies and repair actions. For efficient S-DAG generation, we use techniques
from Chapter 6. In Chapter 9, we derive repair collections from S-DAGs. Pre-
liminary results of this part have been published as [SBRS04b, SBRS04a].

In Part III, we prove the usefulness of our techniques, developed in the
previous parts, by our case study. We apply consistency maintenance to indus-
trial software specification documents. In Chapter 10, we introduce analysis
modules, developed at sd&m, as a means to build specifications for large sys-
tems. Also, we identify consistency requirements between these modules. In
Chapter 11, we formalize some of these requirements by consistency rules. In
Chapter 12, we develop an example specification and show how software engi-
neering can benefit from our consistency maintenance approach. In Chapter 13,
we summarize the most important lessons learnt from our case study. A sketch
of our case study is published as [SSBS04].

Part IV concludes this thesis. We discuss related work in detail in Chap-
ter 14. In Chapter 15, we summarize this thesis, explore directions for future
research, and outline possible applications. Moreover, we give advice to readers
about how they can benefit from the contributions of this thesis.

Throughout this thesis, we use formal notations necessary for our algorithms.
In App. A, we list these notations briefly, such that the reader can look up
notations quickly. The implementation of our prototype is outlined in App. B.
For brevity, we give a short presentation only, which also may become out of
date. Therefore, we would like to point the reader to our project WWW site

www2-data.informatik.unibw-muenchen.de/cde.html
for up-to-date information. App. C contains proofs of theorems.

Throughout this thesis, dependency graphs indicate relationships between
chapters. Of course, one can read this thesis chapter by chapter. In addition,
we provide three alternative reading orders, depending on whether the reader’s
focus is on consistency checking, consistency maintenance, or the application
of consistency maintenance to software engineering. Fig. 1.1 shows the global
dependency graph for this thesis, which will be refined in the individual chap-
ters. Each node represents a chapter; it may be annotated by a reference to
a publication about the chapter’s topic. Bold edges between nodes represent
recommended reading order; dotted edges denote additional content dependen-
cies. For example, when reading Chapter 8 (S-DAGs) readers should have read
Chapter 1 (introduction), 2 (survey), and 7 (repair options). They might also
want to lookup some content in Chapter 4 (abstract syntax) and 6 (efficient
consistency checking).

1.4 Outline 7

1

2

3

7

10

4

8

11

5

9

12

15

6

I. consistency

II. consistency

III. case

IV. conclusions

checking

[SBRS03a]

[SBRS04b]

[SBRS04a]

[SSBS04]

[SBRS03b,SBRS04c]

maintenance

study

13

14

Figure 1.1: Relationships between chapters (bold edges point downwards and
denote recommended reading order, dotted edges denote additional content
dependencies)

Acknowledgements

Many people have provided most valuable ideas for this thesis. For brevity, I
cannot list all of them; some colleagues, however, should receive special men-
tion. First of all, I would like to thank my supervisor Uwe M. Borghoff. He
has spent considerable effort in pointing me to “the right directions” and in
discussing my half-baked ideas. I am grateful to my advisor Wolfram Kahl
for his invaluable comments and advice about how to express practical prob-
lems by sound formalisms. The staff at the Institute for Software Technology
provided a good research climate. In particular, I would like to thank Lothar
Schmitz, Peter Rödig, and Michael Ebert for many fruitful discussions. I am
confident that without intellectual support from sd&m this thesis would lack
a lot of practically relevant contributions. Christiane Stutz, Johannes Sieder-
sleben, and Andreas Birk contributed precious experience from practice, which
“forced” my theoretical thoughts to a practical setting. Also, I would like to

8 Introduction

thank the anonymous reviewers from conferences and journals who provided
valuable comments on our submissions. Finally, I am grateful for financial sup-
port from the Universität der Bundeswehr München for conference and journal
contributions, and for the publication of this thesis.

Chapter 2

Introductory Survey

In this chapter, we survey major results of this thesis by a small and simple
example, which we shall use throughout. Far more complex examples that
raise closely related consistency problems can be found in [Min83, SWJF96].
Although our example may appear too simple at first sight, we use it in order
to illustrate our formal approach. We shall see that even this simple example
causes interesting consistency issues. For a more realistic scenario, see our
case study in Part III. First, we introduce our running example. In Sect. 2.2,
we present formalized versions of consistency requirements in this example.
Sect. 2.3 illustrates how inconsistencies are presented to users. Sect. 2.4 outlines
our approach towards consistency maintenance. Fig. 2.1 illustrates the context
of this chapter.

2.1 The Running Example for this Thesis

Assume that we want to archive manuals over a long period of time. Documents
(and manuals) reference manuals through keys (see Fig. 2.2). Since names and
kinds of manuals may change over time, we need key resolvers mapping keys to
their semantics, i.e., manual kind and name. Multiple key resolvers may exist.
Their actual names are hidden from authors. In order to ensure consistency,
we require that (1) (two-step) links to manuals are valid and (2) names and
kinds of manuals are invariant over time. A reference to a key k is valid, if k
is defined in a key resolver and this definition points to an existing manual of
the correct kind.

Let a toy repository develop as shown in Fig. 2.2. Initially, the repository
consists of a plain text document doc1.txt and two XML documents: a key
resolver keys.xml and a technical manual man1.xml. The kind of man1.xml is
changed towards field manual by the second check-in. By the third check-in, a
new text document doc2.txt is added. Then some new manuals are checked in.
Finally, a new key resolver keys2.xml is added and the key definition for the
key kaA3 in keys.xml is changed. Such a sequence of check-ins may appear,
e.g., if text documents, manuals, and key resolvers are maintained by different

2.1
2.2

2.3 2.4

1

3 7
consistencyconsistency
maintenancechecking

Figure 2.1: Chapter 2 in context

9

10 Introductory Survey

set of all documents
in the repository manualskey resolverskey

key

name
kind+

Check-in Document Modifications
Kind Details

1 doc1.txt add ...as shown in manual kaA3 ...
keys.xml add <kDef key="kaA3"

kId="man1.xml"
kKind="technical M."/>

man1.xml add <man kind="technical M."> ...
2 man1.xml change <man kind="field M."> ...
3 doc2.txt add ...as shown in manual kaA2 ...
4 man2.xml add <man kind="field M."> ...

man3.xml add <man kind="field M."> ...
man4.xml add <man kind="field M."> ...

5 keys.xml change <kDef key="kaA3"
kId="man1.xml"
kKind="field M."/>

keys2.xml add <kDef key="kaA2"
kId="man2.xml"
kKind="field M."/>

Figure 2.2: Example repository for this thesis

authors. As it stands, our repository violates the consistency requirements.
For example, the second check-in introduces two inconsistencies: (1) the key
reference to kaA3 is inconsistent, because the kind of man1.xml is different from
the kind of the key definition for kaA3; (2) the kind of the manual man1.xml
has changed.

One might argue that, instead of our tolerant approach, stricter control over
the kinds of manuals should be employed. For a repository in development,
however, this is infeasible, because changes in the manual kinds are sometimes
necessary resulting in the need to change the key resolver entry as well. We
shall see later that, in general, we cannot employ automatic repairs (as done
in active databases) because of the complex informal semantics of documents.

2.2 Formalizing Consistency Rules

In order to detect inconsistencies automatically, we must capture our consis-
tency requirements formally. As shown in Fig. 2.3, we formalize our require-
ments via formal consistency rules using a certain kind of predicate logic.

Rule φ1 first quantifies over all repository states,1 provided by repStates.
We obtain the current documents for a state t by repDs(t). For each document
x, the variable k comprises the referenced keys, computed via refs(x). Key

1A repository state corresponds to a snapshot of the repository at a given time. A check-in
to the repository causes a state transition.

2.2 Formalizing Consistency Rules 11

(1) Always links must be valid :
At all states t, we have for all documents x at t that for all their referenced
keys k there exists a key definition d (in one of the resolvers) for k and there
exists a manual m with name and kind as defined by d.
φ1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •

∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d) ∧ dId(m) = kId(d) ∧ kind(m) = kKind(d)

(2) Names and kinds of manuals are invariant over time:
At all states t1, we have for all manuals m1 at t1 that at all future states t2
there exists a manual m2 that has the same name and the same kind as m1.
φ2 = ∀ t1 ∈ repStates • ∀ m1 ∈ repManDs(t1) • ∀ t2 ∈ repStates •

t1 < t2 ⇒
(∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

Figure 2.3: Formal example rules

definitions in the resolvers are computed with the help of concatMap, which
applies kDefs to each key resolver, returned by repResDs(t). When applied to
a key resolver, kDefs returns a list of key definitions. Finally, the resulting lists
are concatenated. Thus, d ranges over the key definitions from all key resolvers.
The variable m ranges over all manuals at state t, obtained by repManDs(t).
We require that the key k equals the key defined by the key definition d, and
the name of the manual m equals the name d points to,2 and the kind of m
equals the kind d points to. In some cases it might seem appropriate to neglect
the case of letters when comparing manual kinds; then we would simply use
another predicate symbol, say ≡, which neglects case. Clearly, this is beyond
the possibilities offered by link checkers.

In rule φ2, we twice quantify over time, because we have to relate different
versions of manuals: the old version at state t1, the new version at state t2.

The rules in Fig. 2.3 appear more complex than the vague requirements in
the previous section. Formal rules are much more precise than informal guide-
lines and give no room for misinterpretations: When formalizing consistency
rules, we have to decide what is actually required in our application. In our
experience, formalization has contributed to a common understanding of what
consistency means. This is vital for any collaborative work.

Formalizing consistency rules may become complex. Therefore, we divide
formalization into different tasks and supply tools to every stake-holder. Chap-
ter 3 shows how consistency rules are formalized in a multi user environment
and how we integrate consistency checking into the every-day work with a
DMS. In particular, if complex higher-order functions and predicates are used,
formalization of rules is prone to errors. Therefore, we provide users with a
static type system, which indicates syntactic formalization errors at the time

2By dId(m) we denote the name of the document m; dState(m) denotes the check-in state
of m.

12 Introductory Survey

Consistency report for rule φ1 at state 2(
False,

{(
IC,
{
t 7→ 2, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)})

Consistency report for rule φ2 at state 2
False,






 IC,

{
t1 7→ 1, t2 7→ 2,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}










Figure 2.4: Example consistency reports at state 2

of rule definition, i.e., prior to evaluating the rules. We discuss the syntax part
of our approach in Chapter 4.

2.3 Finding Inconsistencies

Our consistency checker can perform a consistency check after a check-in to the
repository. This means to pinpoint the trouble spots that make a repository in-
consistent w.r.t. the rules formalized. Our primary goal is to provide minimum
information that precisely characterize when, where, and why a repository is in-
consistent. For each rule, we compute a consistency report containing a boolean
result (representing boolean truth semantics) and a diagnosis set. Each diag-
nosis consists of a (redundant) consistency flag, a variable assignment, fulfilled
atomic formulae, and violated atomic formulae.3 A diagnosis (IC, η, pst, psf)
reads: “The processed rule is violated (InConsistent) for the variable assign-
ment η, due to fulfilled atomic formulae in the set pst and violated atomic
formulae in the set psf .” The assignment η binds variables of rules to concrete
values, i.e., repository states, documents, or document content. Due to quan-
tification over repository states, it indicates when and where a rule is violated.
The sets pst and psf give reasons for rule violation.

At the first state, both consistency rules are fulfilled. Hence, our consistency
checker generates the report (True, ∅) for each consistency rule.

At the second state, our consistency checker generates the consistency re-
ports shown in Fig. 2.4. The report for rule φ1 reflects the inconsistency in-
troduced by the wrong kind of man1.xml. The report’s assignment does not
contain the variables d and m: The repository is inconsistent w.r.t. φ1 for
all possible bindings to d and m. The report also lacks the atomic formulae
k = key(d) and dId(m) = kId(d): The key resolver contains a definition for
the key kaA3, but this definition is inconsistent. This means that manuals m
with the correct name were found but that they have the wrong kind: The first
step of the link is consistent, the second step is inconsistent. The inconsistency
introduced by the change of the manual kind is reflected by the report for rule

3In the final consistency report, consistency flags are redundant, because they are equal
for all diagnoses. We will see, however, that consistency flags are important for generating
consistency reports.

2.3 Finding Inconsistencies 13

Consistency report for rule φ1 at state 3


False,





< diagnoses for state 2 from Fig. 2.4 >(
IC,
{
t 7→ 3, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 3, k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,

∅, {k = key(d), kind(m) = kKind(d)}
)








Consistency report for rule φ2 at state 3
False,





< diagnoses for state 2 from Fig. 2.4 >
 IC,

{
t1 7→ 1, t2 7→ 3,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}











Figure 2.5: Example consistency reports at state 3

Consistency report for rule φ1 at state 4


False,





< diagnoses for state 3 from Fig. 2.5 >(
IC,
{
t 7→ 4, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 4, k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,

∅, {k = key(d), kind(m) = kKind(d)}
)








Consistency report for rule φ2 at state 4
False,





< diagnoses for state 3 from Fig. 2.5 >
 IC,

{
t1 7→ 1, t2 7→ 4,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}











Figure 2.6: Example consistency reports at state 4

φ2: For the manual man1.xml at state 1, no manual at state 2 could be found
with the same kind. The report does not include dId(m1) = dId(m2), because
there exists a manual man1.xml at state 2: Its kind is wrong only.

At the third state, our consistency checker generates the reports shown
in Fig. 2.5. They contain all diagnoses from the previous consistency check,
because our rules quantify over all repository states. Adding the document
doc2.txt introduces a new inconsistency w.r.t. rule φ1: There is no key resolver
defining the key kaA2. The other diagnoses are already known: They directly
follow from inconsistencies introduced in previous repository states. Previous
inconsistencies are still present, because we did not resolve them. Incremental
consistency checking, discussed in Chapter 6, exploits this natural property.

Consistency reports at state 4 can be found in Fig. 2.6. Fig. 2.7 shows the
consistency reports at state 5. At that state, all links are consistent.

We detail our algorithm for generating consistency reports in Chapter 5.
As one would expect, speed is a critical issue when generating consistency
reports, because the repository must be locked during a consistency check. In

14 Introductory Survey

Consistency report for rule φ1 at state 5
(False, {< diagnoses for state 4 from Fig. 2.6 >})

Consistency report for rule φ2 at state 5
False,





< diagnoses for state 4 from Fig. 2.6 >
 IC,

{
t1 7→ 1, t2 7→ 5,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}











Figure 2.7: Example consistency reports at state 5

Chapter 6, we develop methods that significantly reduce the time needed for
report generation.

2.4 Repairing Inconsistencies

Consistency reports point out inconsistencies precisely. A consistency report is,
however, no constructive means — it just shows deficiencies in the repository.
In this section, we explore aids to resolve inconsistencies. We use a two-step
approach towards generating repairs. The main reason is that we want to
efficiently generate a few repairs that make sense. In the first step, we describe
for each rule possible repair actions by an S-DAG. In the second step, we derive
a single repair collection from all S-DAGs. Chapter 7 shows how we integrate
this two-step approach into the every-day work with a DMS.

2.4.1 S-DAGs

The structure of an S-DAG resembles that of a consistency rule. Nodes rep-
resent logical connectives or atomic formulae; edges target the subformulae of
a connective. We distinguish the following kinds of nodes: Universal nodes
∀© and existential nodes ∃© represent universal and existential quantification,
respectively. Outgoing edges carry value bindings to the quantified variable.
A value represents a repository state, a document, or document content. Con-
junction nodes ∧© and disjunction nodes ∨© stand for conjunctions and disjunc-
tions, respectively.4 A predicate leaf contains an atomic formula φ that causes
an inconsistency, the truth value of φ, and a predicate suggestion collection.5

The predicate suggestion collection contains alternative suggestion sets, each
of which contains suggestions that indicate how the truth value of φ can be
changed.

From the user perspective, a universal node represents inconsistencies re-
sulting from dubious document content. Each edge blames a value for inconsis-
tencies represented by the edge’s target S-DAG. An existential node represents

4Implications are replaced by disjunctions: For formulae φ and ψ, φ⇒ψ is equivalent to
¬φ ∨ ψ. Also, we will see that negation nodes are not necessary.

5Throughout, we use the term “predicate suggestion collection” to mean a set of sets of
predicate suggestions.

2.4 Repairing Inconsistencies 15

k kaA3 k kaA2

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.]}}

{d key = kaA3, kId = man1.xml,
kKind = technical M. {

kaA3
kaA3

Del

x {dId = doc1.txt, dState = 2}

x {dId = doc1.txt, dState = 2}

x {dId = doc2.txt, dState = 3}

{dId = doc1.txt, dState = 2}

{dId = doc1.txt, dState = 2}

{dId = doc2.txt, dState = 3}Del

Del

Del

t 2 t 3 t 4

key = kaA2, kId = man1.xml,
kKind = technical M. {{

False: k = key(d)

{ {{d.key [kaA3 kaA2]}
{k [kaA2 kaA3]},

Chg

Chg

m dId = man1.xml, dState = 2, {{kind = field M.
m dId = man1.xml, dState = 2, {{kind = field M.

dId=man1.xml, dState = 2,
kind = technical M. {{Chg dId=man1.xml, dState = 2,

kind = technical M. {{Chg

{d key = kaA3, kId = man1.xml,
kKind = technical M. {

Figure 2.8: S-DAG for rule φ1 at state 4

False: kind(m) = kind(m)

{{m .kind [field M. technical M.]}}

dId=man1.xml, dState = 2,
kind = technical M. {{

m dId = man1.xml, dState = 1, {{kind = field M.

m dId = man1.xml, dState = 2, {{kind = field M.

t 11

t 2 t 4t 32 22

1

1 2

2

2

Chg

True: t < t1 2

Figure 2.9: S-DAG for rule φ2 at state 4

an inconsistency resulting from missing document content. This content could
be either really missing or it could be regarded as missing, because one of the
edges carries defective content. Below both conjunction nodes and universal
nodes each S-DAG must be repaired. In contrast, it is sufficient to repair only
one S-DAG below a disjunction node or an existential node.

Fig. 2.8 shows the S-DAG for rule φ1 at state 4. In the leaves, we find
inconsistent atomic formulae and the reasons for their failure. For example,
the left hand leaf indicates that the atomic formula kind(m) = kKind(d) is
violated, if m is bound to the manual man1.xml and d is bound to the key
definition for kaA3. We can grasp these bindings by following the paths from
the S-DAG root to this leaf. Quantifier edges also carry repair actions marked

16 Introductory Survey

repChgman1 = Rep repManDs(4)
Chg {dId = man1.xml, dState = 2, . . .}.kind Ã technical M.

repChgdoc2 = Rep refs({dId = doc2.txt, dState = 2})
Chg kaA2 Ã kaA3

repChgkeys = Rep concatMap(kDefs, repResDs(4))
Chg {key = kaA3, . . .}.key Ã kaA2

repDelkaA2 = Rep refs({x 7→ {dId = doc2.txt, dState = 3}})
Del kaA2

repDeldoc2 = Rep repDs(4)
Del {dId = doc2.txt, dState = 3}

Figure 2.10: Repairs generated for rules φ1 and φ2 at state 4

grey. An action proposes to either add a value to (Add), or change a value
within (Chg), or delete a value (Del) from the quantifier sphere. For example,
we propose to change the key kaA2 to kaA3 or to delete the document doc1.txt.
Fig. 2.9 shows the S-DAG for rule φ2 at state 5. Here, we have replaced the
implication t1 < t2 ⇒ ∃ . . . by the disjunction ¬(t1 < t2) ∨ ∃ Notice the
sharing below the universal node for the variable t2.

S-DAGs only contain repair actions that propose minimal changes to the
repository. For example, the S-DAG for φ1 does not propose to change the
name and the kind of the manual man2.xml, in order to repair the broken
key definition for kaA3. Also, the S-DAG for φ2 does not propose to change
repository states. In Chapter 8, we discuss the challenge of how to generate
meaningful S-DAGs.

S-DAGs contain repair actions already. It remains, however, unclear which
actions must be applied together, in order to resolve all inconsistencies w.r.t.
the corresponding rule. In our interactive approach, authors walk through S-
DAGs and choose actions manually. Our system can apply an action to its
associated S-DAG, which results in an empty S-DAG if all inconsistencies are
resolved. Otherwise, the remaining inconsistencies can be resolved by choosing
another action.

2.4.2 Repair Collections

Instead of using the above trial and error approach to determine reasonable
repairs, we can also derive a repair collection for all rules automatically. The
collection consists of repair sets, each of which is an alternative. Repair sets
contain repairs that must be performed together, in order to resolve all incon-
sistencies for all rules.

Fig. 2.10 shows some repairs derived from our example S-DAGs at state
4. The first component of a repair constitutes its sphere, the second com-
ponent denotes the proposed action. For example, the repair repChgman1 pro-
poses to change the kind of the manual man1.xml towards technical M., where
man1.xml resides in the sphere calculated via repManDs applied to the state 4
(i.e., man1.xml is one of the manuals at state 4).

2.4 Repairing Inconsistencies 17

φ1 = ∀ tKEEP ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d)

{ {k ; key(d) False },
{d.key ; k False }

}
∧

dId(m) = kId(d) {{m.dId ; kId(d) False }} ∧
kind(m) = kKind(d) {{m.kind ; kKind(d) False }}

φ2 = ∀ tKEEP
1 ∈ repStates • ∀ mKEEP

1 ∈ repManDs(t1) • ∀ tKEEP
2 ∈ repStates •

t1 < t2 ⇒
∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) {{m2.dId ; dId(m1) False }} ∧
kind(m1) = kind(m2) {{m2.kind ; kind(m1) False }}

Figure 2.11: Formal example rules with hints

The sorted repair collection below shows how the repairs in Fig. 2.10 should
be best combined, in order to resolve all inconsistencies at state 4.

1.) {repChgman1, repChgdoc2},
2.) {repChgman1, repChgkeys},
3.) {repChgman1, repDelkaA2},
4.) {repChgman1, repDeldoc2}

The collection above implies a preference between the repair sets. In our exam-
ple, we change a document rather than deleting it. Changing a text document
is preferred to changing a key definition within a key resolver. In addition, we
prefer deleting some content within a document to deleting a whole document.

There are some critical issues to consider when generating repair collections:
Is every repair set a new alternative? Within a repair set, can all repairs
be applied altogether? Are repairs compatible with the document structure?
Throughout, we have assumed that we want to repair all inconsistencies at
once; under heavy pressure of time and cost, however, we might want to repair
the most troubling inconsistencies only. We tackle these and other challenges
in Chapter 9.

2.4.3 Hints

The reader may ask how we could generate the above S-DAGs and repair
collections as we support arbitrary function symbols and predicate symbols
within rules. In order to generate meaningful repairs, we need to incorporate
domain knowledge into repair generation. Users may annotate rules by hints,
which indicate how truth values of atomic formulae can be inverted. Hints also
serve to prevent the generation of repair actions that are unwanted in specific
situations. In Fig. 2.11, we have annotated our rules by hints. In rule φ1,
consider the annotation for the atomic formula k = key(d):
{
{k ; key(d) False },
{d.key ; k False }

}

18 Introductory Survey

It proposes changes to one of the variables k or d, in order to invert the truth
value of k = key(d), if its boolean result is False. We either set the key k to
key(d) or set the key of the key definition d to k. Clearly, then k and key(d)
are equal. The hint for the atomic formula dId(m) = kId(d) sets the field
dId of the manual m only; we would never change the key definition d in case
dId(m) = kId(d) is violated.

Annotations for rule φ2 follow the above shape. We have annotated some
variables by KEEP, in order to prevent generation of repair actions for them.
This is useful, because, in general, our algorithm generates repair actions even
for atomic formulae not annotated by hints, e.g., t1 < t2 in rule φ2. Hints
are the basis for high-level repairs. For example, we can react differently to
the same inconsistency depending on the development state of a document
engineering project.

We discuss hints in detail in Chapter 8 — they are an important prerequisite
to deriving meaningful S-DAGs.

Part I

Consistency Checking:
Finding Inconsistencies

19

20

In the first part of this thesis, we examine how we can find inconsistencies
and show them precisely to users. In Chapter 3, we show how we integrate
our approach to consistency checking into the every-day work with a DMS.
That way we provide users with a tool to check consistency that does not
require adaptations to their document engineering practices. In Chapter 4,
we show how consistency rules are formalized. We also detail our static type
checking algorithm, which ensures well-typedness of rules. In Chapter 5, we
define our basic algorithm to generate consistency reports. A report shows
precisely to users when, where, and why a consistency rule is violated. Finally,
in Chapter 6, we develop methods to speed up consistency checking, which is of
major importance, because the repository is locked during a consistency check.

Chapter 3

Consistency-Aware
Document Management Systems

In this chapter, we describe how we integrate consistency checking into main-
stream DMSs. Fig. 3.1 illustrates the context of this chapter. We do not
develop a stand-alone consistency checker but extend a DMS, because DMSs
are widely used for document engineering and provide a useful basis for manag-
ing, e.g., different document versions, author’s access rights, and the document
engineering process itself. In addition, a DMS provides the basis for formalizing
temporal consistency rules and efficient consistency checking. In this thesis, we
follow a conservative approach: Neither do we require end users to change their
habits in working with a DMS, nor do we expect special services from a DMS.
We design our consistency checker in a way that makes only few assumptions
about the DMS. We require only

• access to each version of a document that has been checked in,

• a facility (plug-in mechanism) to call our consistency checker at a check-
in,

• a locking mechanism, which prevents check-ins during a consistency
check, and

• information about which documents have been modified by a check-in
(this is important for efficient consistency checking).

In particular, we make no assumptions about the document model of the DMS,
such that our extensions also apply to revision control systems like CVS [C+02],
subversion [CSFP04], or DARCS [Rou04].1

Formalizing consistency rules causes complexity in various problem areas.
Therefore, we divide formalization into different tasks and supply tools to every
stake-holder (see Fig. 3.2).

1Currently, we do not support branching in repositories, which would require an extension
to branching time logic.

2

4

3

7

Figure 3.1: Chapter 3 in context

21

22 Consistency-Aware Document Management Systems

access

distributions / replica / backups

check in

instance of

generate

formalized

implemented

check out

typeuse

use
check

documents

choose / adapt

author

manager
project

designer
rule

language
designer

rules
project

rules
consistency

templates
document

consistency
report

templates
project

repository
(DMS)

consistency
check

Haskell

type system

partly
derived

external libs
(XPath, heuristics, ...)

language function sym.

predicate sym.types

temp. logic

Figure 3.2: Overview of a consistency-aware DMS (ovals mark fixed compo-
nents; rectangles mark customizable components)

From a repository, authors typically check out working copies of documents,
modify them, and check them in again. From the repository perspective, au-
thors add, modify, or delete documents. Among other things, a classic DMS
manages concurrent check-ins, author’s permissions, version control, reposi-
tory backup, and repository distribution. From the author perspective, a
consistency-aware DMS behaves like a traditional DMS, with the only exception
that the former provides authors with consistency reports.

The rule designer plays an important rôle: He formalizes consistency rules.
Rules define what consistency means — they reflect wishes from an “admin-
istrator” perspective. We distinguish between strong rules, which must be
adhered to, and weak rules, which may be violated. The repository is checked
for consistency at given events, e.g., document check-in. For each rule, our con-
sistency checker generates a consistency report, to which we can react in various
ways. On violation of a weak rule, the system could inform those authors who
have checked out (now) inconsistent documents. If, however, a strong rule is
violated, the system rejects the check-in in question. In addition, the rule de-
signer creates templates for documents. These will be DTDs or Schemas, if
XML is used as document format [W3C01, W3C04].

Consistency rules use function symbols and predicate symbols from domain-
specific languages. This makes the rules independent of concrete document

23

formats, which can be changed without affecting rules. A static type system
ensures that rules are well-typed w.r.t. the language used. For example, the
predicate symbol = requires two arguments of the same type. The careless
application of = to a number and a document must be rejected, because it
is meaningless. Thus, without accessing repository data, our static type sys-
tem decides on the syntax level whether a consistency rule can possibly make
sense. For convenience, we provide a basic language Prelude, which defines
fundamental function symbols, predicate symbols, and types.

In user-defined languages, a language designer declares domain-specific func-
tion symbols, predicate symbols, and types. The semantics of function and
predicate symbols is defined in Haskell [PJ03] — a statically typed purely
functional programming language.2 As described in Chapter 6, Haskell’s ref-
erential transparency supports efficient consistency checking.3 Also, Haskell
provides access to other libraries via a foreign function interface [C+03]. Such
libraries offer sophisticated functionality, e.g., for parsing documents or heuris-
tics for semantic content analysis [Sal88, WS99, MPG01, FGLM02, BHQW02,
BQBW03, AL03a]. Formal document types (usually corresponding to docu-
ment templates) can be expressed by record or variant types. This makes our
approach independent of any particular document format and facilitates het-
erogeneous repositories. If XML is used as document format, document types
and parser functions can be derived from DTDs [WR99]. Notice that complex
programming tasks are hidden from the rule designer who only needs temporal
logic.

For specific projects, a project manager chooses consistency rules. In some
cases adaptations will be necessary, e.g., the document templates use another
company sign or some rules are weakened. Of course, major changes to the
document templates cause adaptations to the corresponding formal document
types, which may involve further changes in the language. But in our experience
most projects require layout related adaptations only.

In the next chapter, we focus on the work of the rule designer (formalizing
rules) and the language designer (defining languages).

2For example, the language designer would declare = to have the polymorphic type
∀α.α×α → Bool (α denotes a type variable, × separates argument types, Bool denotes the
type for boolean values). A Haskell function then defines the meaning of =, e.g., via instances
of the type class Eq.

3The use of Haskell is not obligatory; our approach depends on referential transparency
only.

Chapter 4

Formalizing Consistency Rules

In this chapter, we formalize consistency rules by using first-order temporal
logic. Our experiments have shown that we need expressive means to formal-
ize consistency rules. We require a temporal component as well as complex
functions and predicates. Also, rule design should be comfortable: Once de-
fined, we want to re-use functions and predicates. This is why we have decided
to employ full first-order temporal predicate logic.1 We support polymorphic
(even higher-order) functions and predicates, which facilitate comfort and re-
use. The challenge is, therefore, to smoothly combine a first-order logic with
higher-order functions and predicates. We achieve this by our type checker.

We start this chapter with an informal overview in Sect. 4.1. Sect. 4.2
introduces the abstract syntax of consistency rules. In Sect. 4.3, we tackle the
problem of “writing proper consistency rules;” we define typing rules and a type
checking algorithm. Type checking might appear a rather complex matter; it
is, however, essential for a sound semantics for our rules (this is similar to
the rôle type checking plays for programming languages). Notice that rule
designers and language designers are not affected by the complex formal issues
in Sect. 4.3; they just enjoy the features. Sect. 4.3 is not essential for the further
understanding of this thesis, but it is necessary to ensure the soundness of our
approach.2 Finally, we summarize this chapter in Sect. 4.4. Fig. 4.1 illustrates
the context of this chapter. In the next chapter, we detail how consistency
rules are evaluated.

1We employ a first-order logic only, because, based on our experiments, we have not seen
the need for higher-order logic (see Part III for a case study).

2Type checking is, however, important for the type checking of hints, discussed in
Sect. 8.2.2.

4.1
4.2

4.3
4.4

3

5

8 8.2.2

skip type
checking

type checking
hints

Figure 4.1: Chapter 4 in context

24

4.1 Informal Overview 25

(1) Always links must be valid :
At all states t, we have for all documents x at t that for all their referenced
keys k there exists a key definition d (in one of the resolvers) for k and there
exists a manual m with name and kind as defined by d.
φ1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •

∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d) ∧ dId(m) = kId(d) ∧ kind(m) = kKind(d)

(2) Names and kinds of manuals are invariant over time:
At all states t1, we have for all manuals m1 at t1 that at all future states t2
there exists a manual m2 that has the same name and the same kind as m1.
φ2 = ∀ t1 ∈ repStates • ∀ m1 ∈ repManDs(t1) • ∀ t2 ∈ repStates •

t1 < t2 ⇒
(∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

Figure 4.2: Formal example rules

4.1 Informal Overview

Consistency rules may quantify over repository states,3 which we also call time-
stamps, because they represent given points in time. Our abstract syntax con-
sists of two parts: (1) the rule designer expresses consistency rules in a first-
order temporal logic; (2) the language designer declares function symbols and
predicate symbols (that can be used in rules) and implements their semantics
in Haskell. Throughout, we use the term “symbols” to refer to both predicate
symbols and function symbols.

Rule designers formalize consistency rules in a variant of the two-sorted tem-
poral first-order predicate logic with linear time and equality [Eme90, AHV95,
AHV96]. The two-sorts approach to temporal logic introduces a new temporal
sort Time. To each non-temporal symbol a timestamp is added. Fully tem-
poral symbols have temporal arguments (and results) only. Quantifiers iterate
over variables of the sort Time, too. We use a variant of the two-sorts ap-
proach, because (1) timestamp variables make temporal logic more expressive
[HWZ00], (2) rule designers do not need to learn temporal connectives, and
(3) the introduction of types makes the two-sorts approach straightforward.

We model time by discrete repository states, expressed through natural num-
bers for simplicity.4 The type State is interpreted as repository state. To
simplify notation, type checking, and our semantics we omit the timestamp
parameter of symbols that do not depend on time. A distinction between fully
temporal symbols and partially temporal symbols is not necessary in our set-
ting.

The rule designer defines our example consistency rules as shown in Fig. 4.2.
Binary predicate symbols are written in infix notation for better readability.

3A state represents a repository snapshot at a given point in time. A check-in causes a
state transition. State transitions in the induced state automaton connect states in ascending
order.

4We do not model real time. Some DMSs can map real time to repository states.

26 Formalizing Consistency Rules

In rule φ1, we first quantify over all repository states, provided by repStates.
Then, for each state t we need the current documents x, obtained by repDs(t),
and the referenced keys k therein, computed via refs(x). For every refer-
enced key k, there must exist a key definition d, such that the key defined by
d (computed via key(d)) equals k. In addition, there must exist a manual m
whose name equals the identifier mentioned by d and whose kind equals the
kind d points to (we obtain the current manuals by repManDs(t)). The cur-
rent key definitions d are computed via concatMap(kDefs, repResDs(t)), which
gets the current key resolver documents (repResDs(t)) and applies kDefs to
each resolver. Applied to a resolver document, kDefs returns a list of key def-
initions. Finally, all lists are concatenated. Essentially, concatMap behaves
like a universal quantifier here.5 Since quantified variables provide pointers to
inconsistencies, rule designers must be careful replacing quantifiers by using
concatMap.

In rule φ2, we twice quantify over repository states, because we have to
relate different versions of manuals: the old version at state t1 and the new
version at state t2.

For the formalized rules, the language designer defines the language Survey,
which contains symbols and types as shown in Fig. 4.3. Survey imports the
predefined language Prelude, the relevant part of which is also shown in Fig. 4.3.
For simplicity, our formalism neglects import relations between languages. We
let <S denote an explicit subtype relation between record types; a record type
may have multiple supertypes.

The variant list type [α] is declared as usual in functional programming
[MTH90, PJ03]; the variant constructors are [] (empty list) and (:) (add an
element to the front of a list). The record type Doc stands for a formal docu-
ment, carrying a name (of type String) and a check-in state (of type State).
That way we distinguish different document versions. We require that each
document type is a subtype of Doc. This is important for efficient consis-
tency checking. The record type ResD resembles the key resolver structure (see
Fig. 2.2 on pg. 10). ResD inherits all record labels from its supertype Doc.
Our notion of subtyping resembles XML Schema subtyping via extension and
restriction [W3C01]. Record and variant type definitions induce new function
symbols (labels and constructors, respectively). For example, ResD induces
kDefs : ResD→ [Item].

We regard predicate symbols as function symbols with a boolean result
type, denoted by Bool. Function symbols starting with rep provide access to
documents within the repository at a given state. Notice that these functions
return lists of documents — in formulae we quantify over lists, instead of sets,
because we expect lists to be more familiar to (beginner) Haskell programmers
(our language designers) than sets. For a document d, refs(d) returns all
referenced keys. concatMap(f, xs) applies the function f to each member of the

5concatMap is a higher-order symbol, i.e., it takes a function as argument. We apply some
restrictions to function types that ensure that our logic remains first-order.

4.2 Abstract Syntax 27

Extract from language Prelude (predefined)
Type definitions
String strings
[α] = [] | (:) α×[α] Haskell like lists
Doc = Doc {dId : String, dState : State} documents
Predicate symbol definitions
= : ∀α.α×α→ Bool equality
≤ : ∀α.α×α→ Bool less than or equal
< : ∀α.α×α→ Bool less than
Function symbol definitions
concatMap : ∀α, β.(α→ [β])×[α]→ [β] Haskell like concatMap
repStates : [State] all repository states

Language Survey, defined by the language designer (imports Prelude)
Type definitions
ManD<S{Doc} = Man {kind : String} manual documents
ResD<S{Doc} = Res {kDefs : [KDef]} key resolver documents
KDef = KDef {key : String, kId : String, kKind : String}

key definitions
Function symbol definitions
repDs : State→ [Doc] get all documents in the repository
repManDs : State→ [ManD] get all manual documents
repResDs : State→ [ResD] get all resolver documents
refs : Doc→ [String] keys referenced in a document

Figure 4.3: Example types and symbols (the operator : separates a symbol
from its type, → separates the argument types of a function type or predicate
type from the result type, × separates argument types)

list xs and concatenates the result lists. Record labels can serve as parameter
for concatMap, e.g., in concatMap(kDefs, repResDs(t)).

In addition, the language designer defines the semantics of the symbols in
our new language Survey. Currently, symbol semantics is defined in Haskell.
Since this programming task depends on the current implementation of our
prototype, we shall neglect this matter for the moment. We will discuss the
definition of functions and predicates in App. B, which outlines our current
prototype implementation.

4.2 Abstract Syntax

In this section, we describe the formal abstract syntax of consistency rules. Rule
designers and language designers define rules and languages via some concrete
syntax, which is converted to the abstract syntax described in this section.
The formal abstract syntax is a fundamental prerequisite for typing consistency
rules, which we describe in the next section, and evaluating consistency rules,
which we describe in Chapter 5.

28 Formalizing Consistency Rules

Formulae F
φ, ψ ::= p(e1, . . . , en) | ¬φ atomic formula Fat; negation

| φ ∨ ψ | φ ∧ ψ | φ⇒ψ disjunction; conjunction; implication
| ∃ x ∈ e • φ existentially quantified formula
| ∀ x ∈ e • φ universally quantified formula

Terms T
e ::= x | s variable X ; symbol S (s ∈ {f, l, k})

| s(e1, . . . , en) symbol application
| KR {li = ei} record construction
| case(e, {ki → si}) variant deconstruction
| case(e, V, {ki → si}) variant deconstruction for variant constructor V
| e :: τ type annotation with type τ

Figure 4.4: Abstract syntax of formulae F and terms T (types τ are defined in
Fig. 4.6 on pg. 32)

Fig. 4.4 summarizes the abstract syntax of consistency rules — the rule
designer’s tool set. More often than not, consistency rules are standard first-
order formulae.6 A quantifier (∀ or ∃) introduces a bound variable x, restricted
by a term e that evaluates to the sphere of x. We use terms for quantifier
restrictions, in order to easily identify variable spheres.

Restricting quantifier spheres is known from many applications of logic, e.g.,
via access paths in Access Limited Logic [CK91] or formulae in applications
of temporal logic for planning [BK00]. The consistency management toolkit
xlinkit [NCEF02] uses XPath statements for restricting quantifiers. We gener-
alize this approach towards terms. We argue that explicit notation of quantifier
spheres by terms7 has several advantages in our setting:

• Rule designers can easily identify variable spheres in a formula at the
point where variables are introduced and do not need to “search” for
implicit bounds.

• Explicit quantifier spheres accelerate consistency checking.

• Restriction of quantifier spheres via terms is already used in XPath
[W3C99b, W3C03]; therefore, our rule syntax should appear natural to
rule designers.

Without restriction to generality, we only permit formulae in which each quan-
tifier binds a different variable. Such formulae are commonly called rectified. In
our sense, closed rectified formulae are consistency rules. We call a non-empty
finite set of consistency rules a rule system. Notice that a consistency rule

6Similar to classic predicate logic, we could replace binary logical connectives and negation
by implication only. For better comprehension, we choose not to do so.

7Our abstract syntax provides no means to quantify over the complete domain of a type.
This has to be accomplished by a special function symbol, which of course may be derived
automatically. We regard this feature, however, as syntactic sugar, which usually is neglected
in abstract syntax.

4.3 Writing Proper Consistency Rules 29

corresponds to a sentence and a rule system corresponds to a theory in classic
logic. Typically, a rule contains additional metadata, e.g., whether it may be
violated and its priority. We let F denote the set of all formulae, Fat ⊂ F is
the set of all atomic formulae. For easy lookup, App. A lists references to the
definitions of all notations.

In the logic used here, it is undecidable whether a formula is satisfiable. This
is, however, no issue in our setting, because rules are evaluated against con-
crete repositories, i.e., finite structures. What we are interested in are concrete
inconsistency pointers generated from complex consistency rules. Therefore,
we sacrifice decidability for expressivity. For some applications, it might be
interesting to know whether the rules are satisfiable or whether some rules are
implied by others. Both questions reduce to the implication problem, which has
been proven undecidable in full first-order predicate logic (see, e.g., [Men87]).8

Thus, we only perform analyses that detect some cases of rule contradiction
and implication, but not all of them (see Sect. 6.2.2).

We define terms similar to Nordlander’s Haskell extension O’Haskell [Nor98,
Nor99, Nor02], which extends the Haskell type system with subtypes. Thus,
we regard function symbols f , record labels l, and variant constructors k as
terms, too. In contrast to O’Haskell, we let an explicit record constructor KR
construct a record of type R, in order to guide type inference; KR takes a set
of label bindings {li = ei} as argument. In a case statement, the case scrutinee
e must have a variant type. The second argument of a case statement is a set
of bindings {ki → si} that associate each of e’s variant constructors ki with a
symbol si: If e is constructed by ki, then si is applied to the arguments of ki.9

An optional variant type constructor V uniquely identifies the type of e, thus
avoiding ambiguities that may arise from subtyping. Any expression can be
annotated with a type, in order to guide type inference. We denote the set of
all terms by T , where X ⊂ T is the set of all variables and S ⊂ T is the set of
all symbols.

Next, we discuss type checking of consistency rules, which is a fundamental
prerequisite for the soundness of consistency checking. Type checking might
appear a rather complex matter. It is, however, not essential for the further
understanding of this thesis. Thus, readers disinterested in these technical
details might want to skip the following section and to continue with the chapter
summary (Sect. 4.4, pg. 44).

4.3 Writing Proper Consistency Rules

The motivation behind type checking consistency rules is that we can give a
reasonable semantics for well-typed terms and formulae only. Since we permit
language designers to define complex domain-specific functions and predicates,

8There exist decidable subsets in temporal predicate logic [HWZ00]. A restriction to these
subsets would, however, severely limit the range of applications using our approach.

9We associate variant constructors with symbols rather than with expressions for technical
(and implementation) reasons. Since we prohibit rule designers to define new symbols (e.g.,
via let or λ expressions), this might require to define new symbols in a language.

30 Formalizing Consistency Rules

the rule designer’s task of writing meaningful consistency rules becomes more
complicated and must be supported. Our example rules in Fig. 4.2 are well-
typed. If, however, we erroneously omit the function symbol key within k =
key(d) then a type checker ought to warn us that this atomic formula is ill-
typed. The type checker we have developed supports basic subtyping and
higher-order functions, and guarantees first-order properties of formulae.

Our combined type checking and type inference algorithm assigns a mono-
morphic type to each term. Monomorphism is important since it facilitates
to treat types like primitive sorts, which can be omitted. In conjunction with
some restrictions we put on function types, this retains compatibility with
traditional first-order logic and supports simple set theoretic semantics. As
usual, we separate well-typedness rules (Sect. 4.3.2) from the type inference
algorithm (Sect. 4.3.3). Both are extensions to [Nor99], the major adaptations
being:

• We extend the algorithm to the typing of formulae; a quantified formula
roughly corresponds to a let construct in a programming language.

• We require that each term has a monomorphic type, in order to support
simple set theoretic semantics.

• We prohibit partial application.

Before we discuss type checking in detail, we introduce some formal means
necessary.

4.3.1 Preliminaries:
Signature, Types, Type Declarations, Environments

In this section, we define the formal notion of signature, which carries predicate
symbols, function symbols, and types. Our system derives a signature from the
languages defined by the language designer. From the user perspective, a sig-
nature appears unnecessary. It includes, however, information about symbols
and types that are essential for type checking. In addition, we define our notion
of type formally and outline user-defined subtyping. The following subsections
contain our definitions in a top down manner.

Signature

Within a signature, the type constructor set T carries all type constructors
defined in the corresponding languages; T also contains document type con-
structors, modeling document templates. The type structure Ω(T) contains
all types properly constructed from the type constructors in T and type vari-
ables; usually, Ω(T) is infinite. The subtype theory S contains subtype ax-
ioms, which define subtype relationships between record and variant types,
respectively. S is induced by user-defined subtype relationships, which we will
explain below. A record type constructor definition R induces a record con-
structor KR and a label environment

∏
bR containing record labels and their

4.3 Writing Proper Consistency Rules 31

T = {[], Doc, String,State}
S = ∅∏

=
∏
cDoc∏

cDoc = {dId : Doc→ String, dState : Doc→ State}∑
=
∑
b[]∑

b[]
= {[] : [α], (:) : α×[α]→ [α]}

P = Pα×α→Bool ∪P[α]→Bool

Pα×α→Bool = {=,≤}
P[α]→Bool = {null} is a list empty?
F = F[State] ∪ FState ∪ FState→State ∪ FState→[Doc] ∪ FDoc→String

F[State] = {repStates} all valid states in the repository
FState = {repHead, repInit} last (first) valid state in the repository
FState→State = {next, prev} next (previous) repository state
FState→[Doc] = {repDocs} all documents at a given repository state
FDoc→String = {docContent} content of a document

Figure 4.5: Base signature

types; this also includes the labels from the supertypes. For example, the label
environment

∏
R̂esD

contains kDefs : ResD→ [KDef], dId : ResD→ String, and
dState : ResD→ State. A variant type constructor definition V induces a con-
structor environment

∑
bV containing variant constructors; this also includes

constructors from subtypes. For example, the constructor environment
∑
b[]

contains [] : [α] and (:) : α×[α] → [α]. We will define environments shortly.
The set P carries predicate symbols; F carries function symbols. As usual in
many sorted logics, we partition symbol sets w.r.t. the type of the symbols they
include. This is necessary for our semantics.

Definition 4.1 (Signature) A signature Σ = (T,S,
∏
,K,
∑
,P,F) contains:

• a type constructor set T;

• a subtype theory S holding subtype axioms over Ω(T);

– S is a set of axioms τ1<Sτ2, where either
– both τ1 and τ2 are record types, or
– both τ1 and τ2 are variant types.

• a record type label environment
∏
bR ∈

∏
and a record constructorKR ∈ K

for each record type constructor R ∈ T;

• a variant type constructor environment
∑
bV ∈

∑
for each variant type

constructor V ∈ T;

• predicate symbols p ∈ P; where P =
⋃

Pτ1×...×τn→Bool(τi ∈ Ω(T)) con-
tains predicate symbols of type τ1× . . .×τn → Bool;

• function symbols f ∈ F; where F =
⋃

Fτ1×...×τn→τg (τi, τg ∈ Ω(T)) con-
tains function symbols of type τ1× . . .×τn → τg. 2

Each signature includes types and symbols shown in Fig. 4.5, i.e., it is an
extension of the base signature. In Sect. 5.5, we assign a fixed meaning to

32 Formalizing Consistency Rules

T ::= A0 | Rn | Vn type constructors (atomic; record; variant)
τg, ρg ::= α | β ground type variable

| Tn τg1 . . . τgn constructed type
| State | Top repository state; supertype of all types
| Bool boolean type

τ, ρ ::= τg | ν ground type; type variable
| τ1× . . .×τn → τg function type

τp ::= τ1× . . .×τn → Bool predicate type

D,C ::= {τi ≤ ρi} subtype constraints
σ ::= ∀ᾱ.(τ p C) function type scheme
σp ::= ∀ᾱ.(τp p C) predicate type scheme

Figure 4.6: Abstract syntax of types

the symbols in P and F, respectively. The function symbols are necessary
for accessing the repository. For the type State, the predicate symbol ≤ is
interpreted by the natural linear ordering relation on natural numbers. That
way we support linear time.

Types

We now introduce the formal notion of types. In the following sections, we
describe how type constructors in the set T are defined, and how constructor
environments

∏
bR and label environments

∑
bR are built. We need these en-

vironments for type checking. Our static type system is based on functional
programming languages, such as Haskell [PJ03] or ML [MTH90]. Since many
ideas carry over from [Nor99], we concentrate on important aspects and show
our adaptations only. Our type system slightly differs from ML and Haskell,
particularly, because we prohibit overloading and partial application.10

Fig. 4.6 summarizes our type language. Type constructors T ∈ T have a
fixed arity. Atomic type constructors A introduce atomic types (like String);
we identify nullary type constructors by the types they represent. Record
type constructors R build record types, variant type constructors V introduce
variant types — see below for a detailed description. A ground type may be
either a ground type variable, or it may be constructed by a type constructor.
The type State models discrete repository states. We distinguish a special type
Top, which is supertype of all types.

We apply some restrictions, in order to ensure that (higher-order) function
symbols result in ground types τg only and thus the type system supports first-
order logic properties: We do not quantify over functions. In contrast to many
functional programming languages, we restrict ourselves to full application of

10Haskell permits to apply the binary function (+) to one argument only: (+) 0.0 ::

Float -> Float. In our type system, however, (+) requires exactly two arguments: (+Float)
(0.0,1.0) :: Float. In addition, we do not support ad-hoc polymorphism, which is
achieved via type classes in Haskell. Therefore, we annotate (+) with its result type —
here Float.

4.3 Writing Proper Consistency Rules 33

a type constructor to argument types11 and full application of symbols to ar-
gument terms. To simplify notation, we use uncurried syntax in function and
predicate types. We distinguish between ground types τg and general types
τ , in order to ensure that the result type of a function symbol is not a func-
tion type. Notice the difference between ground type variables α and general
type variables ν. General type variables ν are reserved for type inference only;
ground type variables can be used by the language designer to define poly-
morphic symbols. This restriction is necessary to guarantee that polymorphic
functions symbols have a ground type as result type. As usual, function and
predicate type schemes (σ and σp) are universally quantified over all their type
variables. A subtype constraint τ ≤ ρ requires that the type τ is a subtype of
the type ρ. We use the shorthand notation {τi ≤ ρi} to denote a set of subtype
constraints.

Type Declarations

Records and variants are well known from programming languages and are
(in conjunction with user declared subtyping) a key ingredient to make our
approach to typed formal consistency rules viable. In this section, we shortly
review the abstract syntax of type declarations.

A record type is defined via some concrete syntax, which we abstract as
follows (tv(τ) denotes the free type variables of the type τ , tv(τ̄) denotes the
free type variables of a family of types τ̄):

Rn ᾱ<S{Si ρ̄gi} = KR {lj : τgj} where
⋃

tv(ρ̄gi) ∪
⋃

tv(τgj) ⊆ ᾱ.

The above declaration introduces the n-ary record type constructor Rn, param-
eterized over type variables ᾱ; only these type variables can be used within the
record type declaration. The type R ᾱ is a subtype of each record type Si ρ̄gi
— we support multiple inheritance. Each record label lj has a ground type τgj
and can be used as a regular function symbol, which selects a component from
the record. The so declared record type inherits all labels from its supertypes.
If new labels are defined, we say that the declared record type is a specialization
of its supertypes. If no new labels are defined and R ᾱ has only one super-
type, R ᾱ is considered isomorphic to its supertype. The record constructor
KR, applied to a set of label bindings, constructs a record term. In contrast to
O’Haskell, we require an explicit constructor for a record, in order to prevent
ambiguity that may occur if we define record subtypes without adding new
labels. This situation may occur frequently when document types are defined.
Also, explicit record constructors are more in the spirit of traditional Haskell
requiring explicit record constructors, too.

Our abstract syntax of variant type declarations closely follows the O’Haskell
syntax for data type declarations:

Vn ᾱ>S{Si ρ̄gi} = kj : τ̄gj where
⋃

tv(ρ̄gi) ∪
⋃

tv(τ̄gj) ⊆ ᾱ.
11Partial type constructor application would require a kind system similar to that of Haskell.

34 Formalizing Consistency Rules

The above declaration introduces the n-ary variant type constructor Vn, param-
eterized over type variables ᾱ; again, only these variables can be used within
the declaration. The type V ᾱ is a supertype of each variant type Si ρ̄gi. A
variant constructor kj builds a term of the type V ᾱ and can be used like
a regular function symbol. The subtype/supertype relation for variant type
declarations is “reversed,” compared to record type declarations. Since the de-
clared variant type inherits all constructors from its subtypes, it is a superset of
all its subtypes. Variants can be deconstructed by one of the case statements.

Record labels, record constructors, and variant constructors share the name
space of all symbols and must be globally unique. Notice, that we only support
subtype relationships between record types and variant types, respectively. We
prohibit subtype relationships involving atomic types, in order to simplify our
semantics.

Label Environments and Constructor Environments

We now outline how record label environments, variant constructor environ-
ments, and function symbols are induced by record type declarations and vari-
ant type declarations, respectively.

Consider a record type declaration R ᾱ<S{Si ρ̄gi} = KR {lj : τgj}, where
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, i.e., the type R ᾱ has n supertypes and m
new labels. Then we define the following:

1. A type scheme for each label, such that lj : ∀ᾱ.R ᾱ→ τgj can be used as a
regular function symbol (with the built-in semantics to select a component
from a record value).

2. A set SR ⊂ S of transitively closed subtype axioms:

SR =
{
R ᾱ<SSi ρ̄gi
| i ∈ {1, . . . , n}

}
∪ ⋃

{
R ᾱ<S[ρ̄gi/β̄](S′j τ̄g)∣∣ (Si β̄<SS

′
j τ̄g) ∈ SSi , i ∈ {1, . . . , n}

}

The right hand set above represents the subtype axioms induced by tran-
sitivity; S′j denote the supertypes of R’s supertypes Si. These axioms are
instantiated with the argument types of Si in the subtype declaration. By
[ρ̄gi/β̄] we denote a type substitution that replaces the type variables β̄
with their corresponding argument types ρ̄gi. As done in [Nor99], we pro-
hibit cycles in the subtyping axioms and require that the subtype theory
S is closed under transitivity.

3. A label closure R̂ = {lj | j ∈ {1, . . . ,m}} ∪
⋃{Ŝi | i ∈ {1, . . . , n}},

which represents the full record including inherited record labels from
the supertypes Si.

4. A label environment

∏
bR =

{
lj : ∀ᾱ.R ᾱ→ τgj
| j ∈ {1, . . . ,m}

}
∪ ⋃

{
l : ∀ᾱ.R ᾱ→ [ρ̄gi/β̄]τ∣∣∣ (l : ∀β̄.Si β̄ → τ) ∈∏cSi , i ∈ {1, . . . , n}

}

4.3 Writing Proper Consistency Rules 35

representing the instantiated type schemes of the labels in R’s label clo-
sure R̂. Similar to above, the right hand set denotes record labels induced
by transitivity from the supertypes Si. In the type schemes of inherited
labels, we replace the argument types Si β̄ with the declared type R ᾱ.

Consider a variant type declaration V ᾱ>S{Si ρ̄gi} = kj : τ̄gj , where i ∈
{1, . . . , n} and j ∈ {1, . . . ,m}, i.e., the type V ᾱ has n subtypes and m new
variant constructors. Then we define the following:

1. A type scheme kj : ∀ᾱ.τg1× . . .×τgn → V ᾱ for each new variant con-
structor, which can be used as a regular function symbol (with the built-in
semantics to construct a variant).

2. A set SV ∈ S of transitively closed subtype axioms:

SV =
{
Si ρ̄gi<SV ᾱ
| i ∈ {1, . . . , n}

}
∪ ⋃

{
[ρ̄gi/β̄](S′i τ̄g)<SV ᾱ∣∣ (S′ τ̄g<SSi β̄) ∈ SSi , i ∈ {1, . . . , n}

}

The right hand set above represents the subtype axioms induced by tran-
sitivity. These axioms are instantiated with the argument types of Si in
the supertype declaration.

3. A constructor closure V̂ = {kj | j ∈ {1, . . . ,m}} ∪
⋃{Ŝi | i ∈ {1, . . . , n}},

which represents the full variant type including inherited constructors.

4. A constructor environment
∑
bV =

{
kj : ∀ᾱ.τg1× . . .×τgnkj → V ᾱ | j ∈ {1, . . . ,m}

}
∪

⋃
{
k : ∀ᾱ.[ρ̄gi/β̄](τg ′1× . . .×τg ′nk)→ V ᾱ∣∣∣ (k : ∀β̄.τg ′1× . . .×τg ′nk → Si β̄) ∈∑cSi , i ∈ {1, . . . , n}

}

representing the instantiated type schemes of the variant constructors in
V̂ . In the type schemes of inherited constructors, the result types Si β̄
are replaced with the declared type V ᾱ.

4.3.2 Typing Consistency Rules

Fig. 4.7 shows the well-typedness rules for terms and formulae, which follow
the shape

A1, . . . , An
B

The judgements A1 through An must hold,
in order to infer the judgement B.

Well-typedness rules define a desired property of terms and formulae. This is in
contrast to type checking, which tries to infer types for terms. A well-typedness
judgement for a term follows the pattern C, Γ, ∆ `S e : σ and reads: “In the
subtype theory S, under subtype constraints C, variable assumptions Γ, and
symbol assumptions ∆ the term e has the type scheme σ.” A judgement for a
formula C, Γ, ∆ `S φ ensures that the formula φ is well-typed. The context
∆ holds the types of all symbols in a signature Σ. Γ holds the types for variables

36 Formalizing Consistency Rules

C, Γ ∪ {x : σg}, ∆ `S x : σg
TypVar

C, Γ, ∆ ∪ {s : σ} `S s : σ
TypSym

C, Γ, ∆ `S s : τ1× . . .×τn → τg C, Γ, ∆ `S ei : τi
C, Γ, ∆ `S s(e1, . . . , en) : τg

TypSymApp

∏
bR = {li : ∀ᾱ.R ᾱ→ τgi}

C, Γ, ∆ `S ei : [ρ̄/ᾱ]τgi
C, Γ, ∆ `S KR{li = ei} : [ρ̄/ᾱ](R ᾱ)

TypStruct

C, Γ, ∆ `S e : [ρ̄/ᾱ](V ᾱ)∑
bV = {ki : ∀ᾱ.τg1× . . .×τgni → V ᾱ}

C, Γ, ∆ `S si : [ρ̄/ᾱ](τg1× . . .×τgni)→ τg

C, Γ, ∆ `S case(e, {ki → si}) : τg

TypCase

C, Γ, ∆ `S e : [ρ̄/ᾱ](V ᾱ)∑
bV = {ki : ∀ᾱ.τg1× . . .×τgni → V ᾱ}

C, Γ, ∆ `S si : [ρ̄/ᾱ](τg1× . . .×τgni)→ τg

C, Γ, ∆ `S case(e, V, {ki → si}) : τg

TypCaseV

C, Γ, ∆ `S e : τ tv(τ) = ∅
C, Γ, ∆ `S (e :: τ) : τ

TypAnno

C ∪D, Γ, ∆ `S e : τ ᾱ /∈ tv(C) ∪ tv(Γ)
C, Γ, ∆ `S e : ∀ᾱ.τ p D TypGen

C, Γ, ∆ `S e : ∀ᾱ.τ p D C `S [τ̄ /ᾱ]D
C, Γ, ∆ `S e : [τ̄ /ᾱ]τ

TypInst

C, Γ, ∆ `S e : τ C `S τ ≤ τ ′
C, Γ, ∆ `S e : τ ′

TypSub

C, Γ, ∆ `S p : τ1× . . .×τn → Bool C, Γ, ∆ `S ei : τi
C, Γ, ∆ `S p(e1, . . . , en)

TypPredApp

C, Γ, ∆ `S φ

C, Γ, ∆ `S ¬φ
TypNot

C, Γ, ∆ `S φ C, Γ, ∆ `S ψ

C, Γ, ∆ `S φ · ψ TypBin

C, Γ, ∆ `S e : [τ] C, Γ ∪ {x : τ}, ∆ `S φ

C, Γ, ∆ `S Q x ∈ e • φ TypQuant

Figure 4.7: Well-typedness rules for terms and formulae

4.3 Writing Proper Consistency Rules 37

introduced by quantifiers. For brevity, we denote multiple judgements by the
shape C, Γ, ∆ `S ei : σi, where i is clear from the context.

Next, we discuss some of the typing rules. TypVar, TypGen, TypInst, and
TypSub directly carry over from [Nor99], where TypSub defines subsumption
through subtyping (see below for a definition of the subtyping relation ≤).
TypSym introduces typings of function symbols and predicate symbols, respec-
tively; recall that we regard record labels and variant constructors as regular
function symbols. Symbol application in rule TypSymApp corresponds to gen-
eral term application in [Nor99] (where it is called TypApp). We only support
full application of a symbol to argument terms, in order to ensure the first-
order properties of our logic. The rules TypStruct, TypCase, and TypCaseV
deviate from their corresponding rules in [Nor99], due to the use of explicit
record constructors and variant type constructors. We use explicit record con-
structors, in order to uniquely determine the type of a constructed record. In
rule TypCaseV , the variant type constructor V determines the type of the
case scrutinee e. We only permit type annotations with monomorphic types,
because, finally, each term must have a monomorphic type, in order to sup-
port first-order semantics of our rules. We reflect this in rule TypAnno, which
corresponds to TypSig in [Nor99].

Typing rules for formulae are straightforward. For negated formulae (Typ-
Not) and binary connectives (TypBin), we require that their subformulae are
well typed. We use the symbol “·” as an abbreviation for logical binary connec-
tives, namely ∨, ∧, and ⇒. From the typing perspective, a quantified formula
roughly behaves like a let construct in a functional programming language. A
quantifier introduces a new variable x and makes this variable available in the
subformula φ. When the quantifier is evaluated, x iterates over all values in
the list, calculated by the term e. Rule TypQuant deviates from rule TypLet
in [Nor99], because the quantifier sphere term e must have the list type [τ],
if the quantified variable x has the type τ . Clearly, e can be regarded as a
“container” holding the values for x.12 In contrast, in a let construct x and e
must have the same type. In rule TypQuant, we let Q denote either a universal
or an existential quantifier.

The well-typedness rule TypSub uses the subtype relation ≤, in order to
determine whether two types are related by subtyping. As usual, ≤ is an
ordering relation, induced by the subtype axioms in a signature. Since ≤
carries over from [Nor99], we give its derivation rules for completeness only. A
judgement in Fig. 4.8 follows the shape C `S τ ≤ ρ reading: “In the subtype
theory S, under the subtype constraints in C, τ is a subtype of ρ.” Notice the
overloading of the symbol `S, which is used for both well-typedness judgements
and subtyping relation judgements. We do so for simpler notation.

In our setting, all type constructors are covariant; they comprise record
types and variant types only. As usual, function types are covariant in their
result types and contravariant in their argument types. Recall that we regard
predicate types as special function types with result type Bool. Rule SubConst

12Recall, that we expect Haskell programmers more familiar with lists than with sets.

38 Formalizing Consistency Rules

C ∪ {τ ≤ ρ} `S τ ≤ ρ SubHyp

C `S τ ≤ τ SubRefl

C `S τ ≤ ρ C `S ρ ≤ τ ′
C `S τ ≤ τ ′ SubTrans

C `S ρi ≤ τi C `S τg ≤ ρg
C `S τ1× . . .×τn → τg ≤ ρ1× . . .×ρn → ρg

SubFunPred

C `S τgi ≤ ρgi
C `S T τg1 . . . τgn ≤ T ρg1 . . . ρgn

SubDepth

τ <Sρ
C `S θτ ≤ θρ SubConst

Figure 4.8: Subtype relation

relates the subtype relation ≤ to the subtype axioms in the subtype theory S.
If a type τ is defined to be a subtype of a type ρ, then any instantiation θτ is
a subtype of the instantiation θρ, where θ is a type substitution.

4.3.3 Type Inference

Our type inference algorithm detects whether a consistency rule is well typed.
With each term the algorithm tries to associate a monomorphic type. Al-
though Nordlander’s type inference algorithm is incomplete [Nor99], we use
it because it is fast and easy to comprehend. The algorithm does not in-
volve sophisticated constraint solving, as proposed by many other authors
[Smi91, Smi94, Hen96, MW97, Pot98, HPT98, Pot01]. Whereas complete sub-
type inference is NP-hard [LM92], Nordlander’s quasi-linear algorithm is almost
as fast as standard Hindley-Milner type inference. The major source for the
algorithm’s incompleteness is partial application of terms, which we exclude. In
addition, we use explicit record constructors and an annotated case statement,
providing further guidance. Notice that our type inference algorithm is still
incomplete; we show an example below.

Applied to a formula φ, our type inference algorithm returns a type substi-
tution θ that should instantiate all type variables in φ to monomorphic types,
which is not always possible for well-typed formulae (see below). Fig. 4.9 shows
our type inference algorithm. Rule judgements for terms follow the pattern

↓
C,

↑
Γ,
↑
∆ °S

↑
e :

↓
θ (
↑
σ)

where up-arrows denote inputs to the algorithm and down-arrows denote out-
puts. It is easy to follow these arrows: in a derivation, inputs move up and
outputs move down the derivation tree, where the root is at the bottom of a
derivation. The above rule judgement reads: “Given variable assumptions Γ,
symbol assumptions ∆, a subtype theory S, an expression e, and an expected

4.3 Writing Proper Consistency Rules 39

type scheme σ, return subtype constraints C and a type substitution θ, in-
stantiating σ.” Then, we assign the (preliminary) type scheme θσ to e. This
type scheme may become more concrete by other type inference steps. The
subtyping constraint set C is built by variables that are bound to polymorphic
terms. This allows to instantiate the types for such variables “later” (see the
discussion about the rule ChkQuant below). In rule judgements for formulae,
we omit expected type schemes; these judgements indicate that type inference
has succeeded. For our type inference algorithm, we regard type variables ν as
fresh, i.e., they do not occur in the derivation before. Similar to the previous
section, ∆ holds assumptions about symbols in the signature, Γ holds assump-
tions about variables introduced by quantifiers. As usual, every well-typedness
rule from the previous section has a corresponding type inference rule. No-
table exceptions are the well-typedness rules TypGen, TypInst, and TypSub.
They are represented by solving subtyping constraints, built by the other type
inference rules; we define resolution of subtyping constraints below.

The rules ChkVar and ChkSym correspond to the rule ChkVar in [Nor99].
For better comprehension, we delay a detailed discussion about ChkVar un-
til after we have discussed the rule ChkQuant (see below). Function symbols
have a fully quantified type, consequently they do not introduce new subtyping
constraints. ChkSymApp infers the type for a symbol application, where we
permit full application only. Type checking record constructions and variant
deconstructions is straightforward, where the only critical rule is ChkCase. In
ChkCase, we “guess” the variant type Vj ᾱ by its environment. Of course, if a
signature includes multiple variant types with the same symbols in the environ-
ment, by ChkCase we cannot infer a correct typing although the term may be
well typed. Explicit annotation of a case construct can avoid this confusion. In
a type annotation, we require that the annotated type is monomorphic. This
simplifies type checking since it prohibits subtyping constraints introduced by
user type annotations. Similar to [Nor99], user supplied type annotations are
propagated down the term structure as an aid to type inference.

Type checking formulae is straightforward. Predicate symbol introduction
is covered by function symbol introduction (ChkSym); predicate symbol appli-
cation (ChkPredApp) corresponds to symbol application. Our monomorphic
rule ChkQuant deviates from the polymorphic ChkLet rule in [Nor99]. We
infer well-typedness of a quantified formula, if its sphere term e has a list type
[ν] and we can infer well-typedness of the subformula φ under the assumption
that the bound variable x has the type θν. The type substitution θ (returned
from inferring e’s type) instantiates ν. Similar to [Nor99], we solve new sub-
type constraints that reference type variables free in Γ.13 Without generalizing
the type of the bound variable x, we permit the subformula φ to instantiate
the type of x to a monomorphic type. This is not possible in Nordlander’s
polymorphic ChkLet rule. For example, in ∀ t ∈ [] • repDs(t) = [] the type of
t is instantiated to State by the subformula repDs(t) = []. In ∀ t ∈ [] • t = [],

13CΓ returns subtype constraints that do not reference type variables free in Γ:
CΓ = {τ ≤ ρ | τ ≤ ρ ∈ C and (tv(τ) ∪ tv(ρ)) ∩ tv(Γ) = ∅}

40 Formalizing Consistency Rules

β̄ = tv(τ) C = {β ≤ ν}
θ °S {[ν̄/β̄]τ ≤ τ ′}

θC, Γ ∪ {x : τ}, ∆ °S x : θ(τ ′)
ChkVar

θ °S {[ν̄/ᾱ]τ ≤ τ ′}
∅, Γ, ∆ ∪ {s : ∀ᾱ.τ} °S s : θ(τ ′)

ChkSym

Ci, Γ, ∆ °S ei : θi(νi)
C, Γ, ∆ °S s : θ(θ1ν1× . . .×θnνn → τ)
C ∪⋃ θCi, Γ, ∆ °S s(e1, . . . , en) : θ(τ)

ChkSymApp

∏
bR = {li : ∀ᾱ.R ᾱ→ τgi}

θ °S {[ν̄/ᾱ](R ᾱ) ≤ ρg} ρgi = θ[ν̄/ᾱ]τgi
Ci, Γ, ∆ °S ei : θi(ρgi) θ′ °S {θiρgi ≤ ρgi}⋃

θ′Ci, Γ, ∆ °S KR{li = ei} : θ′θ(ρg)

ChkStruct

∑
cVj = {kj,i : ∀ᾱ.τgj,i,1× . . .×τgj,i,nj,i → Vj ᾱ}

C, Γ, ∆ °S e : θ(ν)
θ′ °S {θν ≤ [ν̄/ᾱ](Vj ᾱ)} for exactly one j
θi °S {νi ≤ [ν̄/ᾱ](τgi,1× . . .×τgi,ni)→ ρg}

ρi = θiνi
Ci, Γ, ∆ °S si : θ′i(ρi) θ′′ °S {θ′iρi ≤ ρi}

θ′(C ∪⋃Ci), Γ, ∆ °S case(e, {ki → si}) : θ′′θ′(ρg)

ChkCase

∑
bV = {ki : ∀ᾱ.τgi,1× . . .×τgi,ni → V ᾱ}

C, Γ, ∆ °S e : θ(ν) θ′ °S {θν ≤ [ν̄/ᾱ](V ᾱ)}
θi °S {νi ≤ [ν̄/ᾱ](τgi,1× . . .×τgi,ni)→ ρg}

ρi = θiνi
Ci, Γ, ∆ °S si : θ′i(ρi) θ′′ °S {θ′iρi ≤ ρi}

θ′(C ∪⋃Ci), Γ, ∆ °S case(e, V, {ki → si}) : θ′′θ′(ρg)

ChkCaseV

tv(τ) = ∅ C, Γ, ∆ °S e : θ(τ) θ′ °S τ ≤ τ ′
θC, Γ, ∆ °S (e :: τ) : θ′(τ ′)

ChkAnno

Ci, Γ, ∆ °S ei : θi(νi)
C, Γ, ∆ °S p : θ(θ1ν1× . . .×θnνn → Bool)

C ∪⋃ θCi, Γ, ∆ °S p(e1, . . . , en), θ
ChkPredApp

C, Γ, ∆ °S φ, θ

C, Γ, ∆ °S ¬φ, θ ChkNot

C1, Γ, ∆ °S φ, θ1 C2, Γ, ∆ °S ψ, θ2

θ1θ2(C1 ∪ C2), Γ, ∆ °S φ · ψ, θ1 ◦ θ2
ChkBin

C, Γ, ∆ °S e : θ([ν]) C ′, Γ ∪ {x : θν}, ∆ °S φ, θ′

θ′′ °S C ′ \ C ′Γ
θ′′(C ∪ C ′Γ), Γ, ∆ °S Q x ∈ e • φ, θ′′ ◦ θ′

ChkQuant

Figure 4.9: Combined type inference and type checking algorithm

4.3 Writing Proper Consistency Rules 41

[] °S ∅ CTriv

θ °S C ∪ {τi ≤ ρi}
θ °S C] {T τ1 . . . τn ≤ T ρ1 . . . ρn} CDepth

θ °S C ∪ {ρi ≤ τi} ∪ {τg ≤ ρg}
θ °S C] {τ1× . . .×τn → τg ≤ ρ1× . . .×ρn → ρg} CFunPred

T τ̄ ′<SS ρ̄
′ ᾱ = tv(τ̄ ′) ∪ tv(ρ̄′)

θ °S C ∪ {T τ̄ ≤ [ν̄/ᾱ](T τ̄ ′)} ∪ {[ν̄/ᾱ](S ρ̄′) ≤ S ρ̄}
θ °S C] {T τ̄ ≤ S ρ̄}

CSub

α /∈ tv(τi) ∪ tv(ρi) τ = smallest(
⊔{τi},

d{ρj})
ᾱ = tv(τ) τ ′ = [ν̄/ᾱ]τ

θ °S [τ ′/α]C ∪ {τi ≤ τ ′} ∪ {τ ′ ≤ ρj}
θ ◦ [τ ′/α] °S C] {τi ≤ α} ∪ {α ≤ ρj}

CMerge

θ °S [β/α]C
θ ◦ [β/α] °S C] {α ≤ β} CVar

Figure 4.10: Solving subtype constraints

however, the type of t cannot be instantiated to a monomorphic type; we can
infer t : [α] only. A monomorphic type for t can be achieved with the help of
explicit type annotation, e.g., ∀ t ∈ [] • t : [String] = [].

The rule ChkVar is quite simple in our setting, because variables cannot
have a function type and their type is not generalized. Recall that variables
are introduced by quantifiers only and we prohibit quantification over functions.
The rule ChkVar introduces new subtyping constraints for a variable x, if its
typing in the context Γ is polymorphic, i.e., if the quantifier sphere term for x
is polymorphic. In that case the subtype constraints move down the derivation
tree. They are caught by the quantifier for x as explained above. The reason
for this rather complicated behavior is that the type of a bound variable x can
be instantiated by the subformula of a quantifier.

We only make slight adaptations to the solving procedures for subtyping
constraints (see Fig. 4.10). A constraint solving judgement follows the shape

↓
θ °S

↑
C

reading: “Given a constraint set C and a subtype theory S, return the type
substitution θ.” For simpler notation, we overload the symbol °S, which is
used for both type inference judgements and constraint solving judgements.

Nordlander’s rule CDepth splits into CDepth for covariant type construc-
tors and CFunPred for function types. The rule CFunPred also solves predi-
cate type constraints. We choose to make this adaptation since the only types
with (partially) contravariant behavior are function types and predicate types.
All other type constructors are covariant. In CMerge, the auxiliary function
smallest returns the smaller of two given types. We denote the least upper
bound of some types by

⊔
and the greatest lower bound by

d
. Least upper

42 Formalizing Consistency Rules

bounds and greatest lower bounds, respectively, may not exist in certain sit-
uations, which causes type inference to fail due to ambiguity. This ambiguity
can be resolved by explicit type annotation. The symbol] denotes the disjoint
union between sets. The rule CVar is the major source for the algorithm’s in-
completeness, because in variable-variable constraints type variables are simply
unified. Notice that the order of the solving rules is important. In particular,
CSub must be applied prior to CMerge, which in turn must be applied prior
to CVar.

4.3.4 Examples

In this section, we illustrate our combined type checking and type inference
algorithm. We infer well-typedness of our example rule φ2:

∀ t1 ∈ repStates • ∀ m1 ∈ repManDs(t1) • ∀ t2 ∈ repStates •
t1 < t2 ⇒

(∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

We follow the derivation from the root to the leaves from an initially empty
context Γ. Recall that the contexts Γ and ∆, the expression or formula to type
check, and expected types move up the derivation tree. In contrast, type sub-
stitutions θ move down the derivation tree. Since all quantifier sphere terms in
φ2 are monomorphic, we omit the subtyping constraints C for better compre-
hensibility. We enumerate type variables ν, introduced during type inference,
by consecutive numbers. In addition, we mark the different type substitutions
θ by the symbols or variables, which “produced” these type substitutions.

The root of the derivation employs the rule ChkQuant:

∅, ∆ °S repStates : θt1([ν0])
{t1 : θt1ν0}, ∆ °S ∀ m1 ∈ repManDs(t1) • . . . , θ′

∅, ∆ °S ∀ t1 ∈ repStates • ∀ m1 ∈ repManDs(t1) • . . . , θ′ ChkQuant

The premises of the above rule require for two steps: First, we infer the type
of the term repStates; second, we infer well-typedness of the subformula
∀ m1 ∈ repManDs(t1) •

1. Type inference for the term repStates succeeds with the help of the
rule ChkSymApp, which reduces to ChkSym, because repStates has no
argument terms:

θt1 °S {[State] ≤ [ν0]}
∅, ∆ ∪ {repStates : [State]} °S repStates : θt1([ν0])

∅, ∆ °S repStates : θt1([ν0])

ChkSym
ChkSymApp

The type substitution θt1 results from solving the constraint set {[State] ≤
[ν0]} as follows (the constraint set on the right hand side of a constraint

4.3 Writing Proper Consistency Rules 43

solving judgement moves up the derivation tree; the type substitution on
the left hand side moves down the derivation tree):

[] °S ∅
[] °S {State ≤ State}

[State/ν0] °S {State ≤ ν0}
[State/ν0] °S {[State] ≤ [ν0]}

CTriv
CSub
CMerge
CDepth

We obtain θt1 = [State/ν0] and assign the type [State] to repStates.

2. We infer well-typedness of the formula ∀ m1 ∈ repManDs(t1) • . . . by em-
ploying the rule ChkQuant again. The derivation proceeds similar to
above; therefore, we omit most of it. Instead, we get into type inference
of the atomic formula dId(m1) = dId(m2), i.e., the left hand side of the
conjunction below the existential quantifier for m2. At this point, the
context Γ contains the typings of all quantified variables:

Γ = {t1 : State,m1 : ManD, t2 : State,m2 : ManD}

We proceed using the rule ChkPredApp

Γ, ∆ °S dId(m1) : θ1(ν1)
Γ, ∆ °S dId(m2) : θ2(ν2)
Γ, ∆ °S = : θ=(θ1ν1×θ2ν2 → Bool)

Γ, ∆ °S dId(m1) = dId(m2), θ=
ChkPredApp

which requires three premises.

(a) We infer the type of the term dId(m1), which results in the type
substitution θ1:

Γ, ∆ °S m1 : θm1(ν3)
Γ, ∆ °S dId : θ1(θm1ν3 → ν1)

Γ, ∆ °S dId(m1) : θ1(ν1)
ChkSymApp

The type of m1 is inferred by ChkVar (m1 is already included in the
context Γ)

θm1 °S {ManD ≤ ν3}
Γ ∪ {m1 : ManD}, ∆ °S m1 : θm1(ν3) ChkVar

where the constraint set {ManD ≤ ν3} is solved by applying CMerge,
CSub, and CTriv, similar to above. This results in the type substi-
tution θm1 = [ManD/ν3]. Notice that, if m1 had a polymorphic type
in Γ, we would obtain a non-empty constraint set C from ChkVar.
Now we can infer the type of dId, which involves subtyping, because
we apply dId to a manual (not to a document).

θ1 °S {Doc→ String ≤ ManD→ ν1}
Γ, ∆ ∪ {dId : Doc→ String} °S dId : θ1(ManD→ ν1) ChkSym

44 Formalizing Consistency Rules

We infer θ1 as follows:

[] °S ∅
[] °S {ManD ≤ ManD} ∪ {Doc ≤ Doc}

[] °S {ManD ≤ Doc}
[] °S {ManD ≤ Doc} ∪ {String ≤ String}

[String/ν1] °S {ManD ≤ Doc} ∪ {String ≤ ν1}
[String/ν1] °S {Doc→ String ≤ ManD→ ν1}

CTriv
CDepth (twice)
CSub
CDepth
CMerge
CFunPred

The above derivation infers θ1 = [String/ν1].

(b) Similar to (a) we infer θ2 = [String/ν2].

(c) Finally, we infer the type of the predicate symbol = with the help
of ChkSym:

θ= °S {ν4×ν4 → Bool ≤ String×String→ Bool}
∅, ∆ ∪ {= : ∀α.α×α→ Bool} °S = : θ=(String×String→ Bool)

ChkSym

Our constraint solver infers the type substitution θ= = [String/ν4]
with help of the rules CFunPred, CMerge, CDepth, and CTriv.

4.4 Summary

This chapter is concerned with the syntactic aspects of our approach. Rule
designers formalize consistency rules in a variant of first-order temporal pred-
icate logic with linear time. Our logic comprises a rich vocabulary including
record construction, variant deconstruction via case statements, and higher-
order functions. Parametric polymorphism and Cardelli-style subtyping facil-
itate the re-use of function and predicate symbols. Language designers define
symbols used in rules. Besides symbols, languages also contain type declara-
tions.

The languages induce a signature, which contains theoretical means that
support type checking, e.g., record label environments, variant constructor envi-
ronments, and subtyping axioms. For type checking consistency rules, we adapt
algorithms from Nordlander’s Haskell extension O’Haskell [Nor99]. O’Haskell
supports parametric polymorphism and subtyping, which aids rule formaliza-
tion and reduces the number of symbols to be defined. It turns out, however,
that careful adaptations to Nordlander’s type checking algorithm are necessary,
in order to ensure the first-order properties of our logic.

The formal background behind the formalization of consistency rules may
appear a rather complex matter. Notice, however, that rule designers and
language designers are not affected by these issues. They just define rules
and languages. Our tools derive a signature from these languages and ensure
that well-typed rules can be formalized only. We consider type checking a key
ingredient in our approach, because syntactical well-typedness of consistency
rules is a vital prerequisite for consistency checking, which we discuss in the
next chapter.

Chapter 5

Finding Inconsistencies

In this chapter, we present a tolerant1 semantics for consistency rules that
pinpoints the trouble spots making a repository inconsistent w.r.t. a rule sys-
tem. We do not restrict ourselves to finding out whether a repository violates
certain rules. Instead, we generate consistency reports, which indicate when,
where, and why documents in the repository are inconsistent. Presenting con-
sistency reports to authors, instead of simply rejecting a check-in, is the basis
for consistency-aware DMSs.

Classic set theoretic semantics provides a boolean result only and is, there-
fore, insufficient for our purposes. Evaluation of a predicate logic formula binds,
however, concrete values to quantified variables. The basic idea behind our tol-
erant semantics is to exploit these bindings, in order to indicate inconsistencies.
We have designed our consistency checking algorithm to provide compact in-
formation that precisely characterize inconsistencies. Our tolerant semantics
follows xlinkit [NCEF02], which calculates a set of links, each containing a con-
sistency flag and values that are responsible for the violation of a formula. A
major difference is that we also return those atomic formulae that cause rule
violation. Authors need these details to precisely identify inconsistencies. Con-
sistency rules can grow large and only some of many predicates can falsify a
rule.

In this chapter, we proceed as follows: Sect. 5.1 gives an informal overview
about how consistency reports indicate inconsistencies. In Sect. 5.2, we show
the classic boolean semantics for our rules, i.e., we say when a rule is fulfilled
in a repository. In Sect. 5.3, we define a basic consistency checking algorithm,
which conforms to the boolean semantics. We illustrate report generation by
our running example in Sect. 5.4. In Sect. 5.5, we introduce the formal struc-
tures needed for our approach and show how our tolerant semantics is related
to classic predicate logic. Consistency checking relies on the computation of
values from terms, which we review in Sect. 5.6. The formal details in Sect. 5.5

1Since we borrow many ideas from xlinkit [NCEF02], we adopt the term “tolerant.”

5.2
5.1

5.3
5.4

5.5
5.6

5.7

4

6

6.3.4

skip details about semantics and
value calculation

bounds calculation
incremental

Figure 5.1: Chapter 5 in context

45

46 Finding Inconsistencies

Check-in Document Modifications
Kind Details

1 doc1.txt add ...as shown in manual kaA3 ...
keys.xml add <kDef key="kaA3"

kId="man1.xml"
kKind="technical M."/>

man1.xml add <man kind="technical M."> ...
2 man1.xml change <man kind="field M."> ...
3 doc2.txt add ...as shown in manual kaA2 ...
4 man2.xml add <man kind="field M."> ...

man3.xml add <man kind="field M."> ...
man4.xml add <man kind="field M."> ...

Table 5.1: Example repository up to state 4

and 5.6 are given for completeness; they are not essential for the further un-
derstanding of this thesis.2 Finally in Sect. 5.7, we summarize this chapter.
Fig. 5.1 illustrates the context of this chapter. For the moment, we shall ne-
glect efficiency of consistency checking. In Chapter 6, we will develop methods
to speed-up the basic algorithm introduced in this chapter.

5.1 Informal Overview

Given a repository state, for each consistency rule we generate a consistency
report containing a boolean result (representing boolean truth semantics) and a
diagnosis set. A diagnosis consists of a consistency flag, a variable assignment,
and two sets of atomic formulae. The diagnosis (IC, η,Ft,Ff) reads: “The
processed formula is violated (InConsistent) for the variable assignment η, due
to fulfilled atomic formulae in the set Ft and violated atomic formulae in the
set Ff .” The diagnosis (C, η,Ft,Ff) reads: “The processed formula is fulfilled
(Consistent) for the variable assignment η, due to fulfilled atomic formulae in
the set Ft and violated atomic formulae in the set Ff .” The variable assign-
ment η binds variables to concrete values, i.e., repository states, documents, or
document content. Thus, η indicates when and where a formula is violated.3 If
the consistency flag is IC, the sets Ft and Ff describe why a formula is violated;
otherwise, Ft and Ff indicate why a formula is fulfilled.

Recall our example repository at the fourth state (shown in Tab. 5.1). The
repository contains five inconsistencies w.r.t. rule φ1:

• At state 2, the key reference to kaA3 in the document doc1.txt is incon-
sistent, because the definition of kaA3 in the key resolver keys.xml points
to a technical manual man1.xml, which is, however, a field manual.

2Value calculation is, however, a prerequisite for incremental calculation of quantifier
spheres, discussed in Sect. 6.3.4.

3Recall that we permit rectified formulae only, in which each quantifier binds a different
variable.

5.1 Informal Overview 47

φ1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d) ∧ dId(m) = kId(d) ∧ kind(m) = kKind(d)




False,





(
IC,
{
t 7→ 2, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 3, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 3, k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,

∅, {k = key(d), kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 4, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 4, k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,

∅, {k = key(d), kind(m) = kKind(d)}
)








Figure 5.2: Example consistency report for rule φ1 at state 4

• At state 3, the above inconsistency is still present. In addition, the key
reference to kaA2 in the document doc2.txt is inconsistent, because no
key resolver contains a definition for kaA2.

• At state 4, both inconsistencies from state 3 are still present.

The automatically generated report for φ1 shown in Fig. 5.2 reflects these in-
consistencies. The report’s diagnoses do not include bindings to the variables d
and m: The repository is inconsistent w.r.t. φ1 for all possible assignments to
d and m, respectively. The first diagnosis does not include the atomic formulae
k = key(d) and dId(m) = kId(d): The key resolver contains kaA3, but part
of its definition is inconsistent. At least one manual m with the correct name
was found, but this manual has the wrong kind. In other words, the first step
of the link is consistent, the second step is partly inconsistent. The second
diagnosis indicates that the above inconsistency is still present at state 3. The
third diagnosis indicates that there is no key resolver containing a definition
for the key kaA2, which is referenced in the document doc2.txt. The fourth
diagnosis corresponds to the second diagnosis; the fifth diagnosis corresponds
to the third diagnosis.

Notice that variable assignments within diagnoses contain quantified vari-
ables only. Consequently, the rule designer must be careful when replacing
quantifiers by applications of concatMap.

Authors can react in various plausible ways to the above report. An ap-
propriate action would be to lookup the key definition for the key kaA3 in the
key resolvers and to correct the kind of the manual this definition points to.
In addition, a new key definition for the key kaA2 could be added to one of
the key resolvers. Clearly, this requires good knowledge about the document
structure and the consistency rule φ1. In Part II, we present an approach to
generate concrete repairs, which can resolve inconsistencies. For the moment,
however, we concentrate on pinpointing inconsistencies only.

48 Finding Inconsistencies

5.2 Validity of Rules

In this section, we define a truth value semantics for consistency rules, which
employs an approach adopted from partial first-order predicate logic PFOL
[Far01]. We have to use a partial logic, because function symbols may be
interpreted by partial functions, which in turn means that evaluation of terms
may fail.

As usual, we interpret consistency rules in a first-order structure A induced
by the definitions from the language designer and the check-ins to the reposi-
tory. The structure A interprets types by sets, predicate symbols by relations
(which correspond to total characteristic functions), and function symbols by
partial functions. A record label selects a component from a record value, a
variant constructor builds a variant value. We interpret the type State by the
set of natural numbers N, representing repository states; we interpret the pred-
icate symbol ≤ by the natural “less than or equal” ordering and the symbol =
by structural equality (if both argument terms are defined; otherwise, e1 = e2

and e1 ≤ e2 do not hold). Since we facilitate temporal predicate logic, the
structure A changes over time, which we discuss in Sect. 5.5.

Fig. 5.3 defines when a formula is valid in a structure A. As usual, we denote
validity by the relation |=, where A |=η φ means that the formula φ is valid in
the structure A under the variable assignment η. As usual in predicate logic,
the variable assignment η binds free variables in φ to values, i.e., repository
states, documents, or document content. Type checking guarantees that η
contains a binding of each variable free in φ. We define A and η formally in
Sect. 5.5.

Let pA denote the relation interpreting the predicate symbol p. Then an
atomic formula p(e1, . . . , en) is valid iff the values resulting from evaluating
the argument terms ei are in the relation pA. If any argument term ei is
not defined, we follow [Far01] to define p(e1, . . . , en) as not valid. Since we
support higher-order predicates but want to keep our semantics simple, i.e.,
set theoretic, we have to distinguish symbol arguments from other arguments.
Symbols si are interpreted by their implementation in the structure A, denoted
by sAi . Other terms ei are evaluated using the term evaluation function VAJeiKη,
which evaluates the term ei w.r.t. the structure A and the assignment η; see
Sect. 5.6 for a formal definition. The result of VAJeiKη is called value. Notice
that, due to support for partial functions, V is partial.

For report generation, we need a special predicate symbol ↓ : α that indicates
whether a term is defined: ↓(e) holds iff the value of e can be calculated.4

A negated formula is valid iff its subformula is not valid. A conjunction is
valid iff both subformulae are valid. In contrast, a disjunction is valid already,
if at least one subformula is valid. For validity of an implication φ⇒ψ, we
require that, if the first subformula φ is valid, then also the subformula ψ must
be valid — this is equivalent to validity of the formula ¬φ ∨ ψ.

4We adopt the down arrow ↓ from [Far01] to denote definedness. In contrast to [Far01], ↓
is a predicate symbol and not an abbreviation (↓(e) ⇔ ∃ x • x = e). We do so, because we
want to store atomic formulae of the shape ↓(e) in consistency reports.

5.2 Validity of Rules 49

A |=η ↓(e) :⇔ eA is defined
where eA = sA if e ≡ s

VAJeKη otherwise

A |=η p(e1, . . . , en) :⇔ all eAi are defined and (eA1 , . . . , e
A
n) ∈ pA

where eAi = sAi if ei ≡ si
VAJeiKη otherwise

A |=η ¬φ :⇔ A |=η φ does not hold

A |=η φ ∧ ψ :⇔ A |=η φ and A |=η ψ

A |=η φ ∨ ψ :⇔ A |=η φ or A |=η ψ

A |=η φ⇒ψ :⇔ A |=η ¬φ ∨ ψ

A |=η ∀ x ∈ e • φ :⇔ VAJeKη is defined and
A |=η∪{x 7→ v} φ for every v ∈ VAJeKη

A |=η ∃ x ∈ e • φ :⇔ VAJeKη is not defined, or(VAJeKη is defined and
A |=η∪{x 7→ v} φ for at least one v ∈ VAJeKη

)

Figure 5.3: Classic truth value semantics

For a universally quantified formula ∀ x ∈ e • φ, we require validity of the
subformula φ, where the variable x is bound to every value in the evaluated
quantifier sphere e.5 If its quantifier sphere is not defined, then a universally
quantified formula is not valid. For an existentially quantified formula, it is
sufficient that the subformula is valid for at least one value in the quantifier
sphere. If its quantifier sphere is not defined, then an existentially quanti-
fied formula is valid, which may appear surprising at first sight. We see the
soundness of our definition, if we translate an existentially quantified formula
to classic predicate logic:

∃ x ∈ e • φ ⇔ ∃ x • x ∈ e ⇒ φ

If the term e is not defined, then x ∈ e is not valid, which in turn causes validity
of the implication (independent from validity of φ). Hence, the whole formula
is valid. Due to our definition, negation distributes over quantifiers as in classic
predicate logic:

A |=η ∃ x ∈ e • φ holds iff A |=η ¬ ∀ x ∈ e • ¬ φ holds

By the above classic truth semantics we can easily determine whether a repos-
itory is consistent w.r.t. a rule. Classic truth semantics is, however, insufficient
for describing inconsistencies. Therefore, we calculate consistency reports.

5For convenience, we overload the symbol ∈ to also operate on lists: v ∈ xs means that
the value v is a member of the list xs.

50 Finding Inconsistencies

5.3 Generating Consistency Reports

In this section, we define a basic consistency checking algorithm. Fig. 5.4 shows
the denotational semantics of our report generator R. The function RAJφKη is
defined by structural induction on a formula φ (like in classic boolean semantics
as shown in the previous section) and creates a report for every subformula.
As in the previous section, A denotes a first-order structure; η stands for the
current variable assignment, which binds variables to values. Initially, R is
applied to an empty variable assignment; i.e., RAJφK∅ returns the consistency
report of the consistency rule φ. Next, we describe how R generates reports
(we delay the description of auxiliary functions until Sect. 5.5).

For an atomic formula, we create a new report with only one diagnosis. The
truth value of an atomic formula is computed as usual in partial predicate logic.
Depending on its truth value the atomic formula itself is pushed into one of
the sets Ft or Ff . We store the complete atomic formula, in order to identify
predicate symbols that occur more than once in a consistency rule. If any of
the argument terms ei is not defined, we also store the atomic formula ↓(ei) in
the set Ff , in order to indicate that this exception caused the inconsistency of
the atomic formula.

For a conjunction φ ∧ ψ, we retain the reports of subformulae that are
responsible for the final truth value — this shortens our reports. If φ and ψ
have the same truth value, we compute the cartesian product of their reports
with help of the auxiliary function ⊗. Clearly, in this case both subformulae
are responsible for the final truth value. Otherwise, we retain the report of
the violated subformula only, because it is already sufficient for the violation of
the conjunction. We have to generate a report also if a conjunction is fulfilled,
because it may appear in a negated context. For disjunctions, we use a similar
approach but join reports via ⊕, if both subformulae have the same truth value.

For a universally quantified formula ∀ x ∈ e • φ, we first evaluate the sphere
term e, giving a list of values. For each value v in this list, we compute φ’s
report w.r.t. the assignment extension η ∪ {x 7→ v}. If φ is violated for an as-
signment extension, then the boolean value of the corresponding report is False.
In this case, we push the current variable binding x 7→ v into the variable as-
signment of each diagnosis in φ’s report. Finally, ⊕ joins the resulting reports
in F . If F is empty, then φ is satisfied for each assignment extension. The set
T contains reports of satisfied φ. These reports lack the new variable binding
x 7→ v, which is superfluous here, because φ is fulfilled for every η∪{x 7→ v}. In
a consistency report, we understand omitted variables as universally quantified.
We return the minimized report set T , in order to shorten reports. Minimizing
the report set T means to generate a report containing those diagnoses that
include the minimal number of atomic formulae. We retain the set T , because
a fulfilled formula can become inconsistent by negation. Consider the formula
¬ ∀ x ∈ e • φ. Here, the universal quantifier behaves like an existential quanti-
fier. If ∀ x ∈ e • φ is fulfilled, then its negation is violated. But we do not know
which of the values in the evaluated sphere e is responsible for the violation.
In our approach, we blame those values that caused the “least violations;” i.e.,

5.3 Generating Consistency Reports 51

RAJp(e1, . . . , en)Kη = (True, {(C, ∅, {p(e1, . . . , en)}, ∅)})
all eAi are defined and (eA1 , . . . , e

A
n) ∈ pA

(False, {(IC, ∅, ∅, {p(e1, . . . , en)} ∪ undefs)})
otherwise

where eAi = sAi if ei ≡ si
VAJeiKη otherwise

undefs = {↓(ei) | eAi is not defined}

RAJ¬φKη = flip(RAJφKη)

RAJφ ∧ ψKη = rφ ⊗ rψ if fst(rφ) = fst(rψ)
rφ else if fst(rφ) = False

rψ else if fst(rψ) = False

where rφ = RAJφKη
rψ = RAJψKη

RAJφ ∨ ψKη = rφ ⊕ rψ if fst(rφ) = fst(rψ)
rφ else if fst(rφ) = True

rψ else if fst(rψ) = True

where rφ = RAJφKη
rψ = RAJψKη

RAJφ⇒ψKη = RAJ¬φ ∨ ψKη

RAJ∀ x ∈ e • φKη = (False, {(IC, ∅, ∅, {↓(e)})}) if VAJeKη is not defined
⊕(F) else if F 6= ∅
min(T) else if T 6= ∅
(True, {(C, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,RAJφK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
F = {push(x 7→ v, r) | (v, r) ∈ rs and fst(r) = False}
T = {r | (, r) ∈ rs and fst(r) = True}

RAJ∃ x ∈ e • φKη = (True, {(C, ∅, ∅, {↓(e)})}) if VAJeKη is not defined
⊕(T) else if T 6= ∅
min(F) else if F 6= ∅
(False, {(IC, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,RAJφK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
T = {push(x 7→ v, r) | (v, r) ∈ rs and fst(r) = True}
F = {r | (, r) ∈ rs and fst(r) = False}

Figure 5.4: A basic report generation algorithm (for auxiliary functions see
Fig. 5.10 (pg. 63))

52 Finding Inconsistencies

their diagnoses contain less atomic formulae than other diagnoses. Alterna-
tively, we could retain all diagnoses of the reports in T (by employing ⊕). This
would, however, lead to large and incomprehensible reports. If the sphere of a
universally quantified formula is empty, we generate a new diagnosis indicating
that emptiness of the sphere e is responsible for fulfilling the formula. The
atomic formula null(e) means that the sphere e is empty, where the predicate
symbol null : [α]→ Bool is defined in the language Prelude. If the sphere term
e is not defined, we immediately return a report including one diagnosis. This
diagnosis indicates that it is undefinedness of e, which caused an inconsistency.

For existentially quantified formulae, we use a similar approach. The rôles of
T and F are, however, “reversed,” because an existentially quantified formula
is satisfied already, if its subformula is fulfilled for one assignment extension.
If an existentially quantified formula is violated, we do not know which values
are responsible for its violation; hence, we minimize the report set F . Notice
that an existentially quantified formula is fulfilled, if its sphere term e is not
defined. In this case, the returned report indicates that undefinedness of the
sphere e is responsible for this fact.

Notice that, by definition, negation distributes over quantifiers:

RAJ∃ x ∈ e • φKη = RAJ¬ ∀ x ∈ e • ¬ φKη

Of course, report generation is sound, i.e., a generated consistency report
satisfies the following properties:

• A False consistency report contains diagnoses indicating inconsistencies
only. A True consistency report contains diagnoses indicating consisten-
cies only.

• In each diagnosis, all predicates in the set Ft are fulfilled and all predicates
in the set Ff are violated.

• A consistency report indicates inconsistencies for a rule φ, if and only if
φ is not valid.

The following theorems formalize the above properties. We prove them in
App. C.

Theorem 5.1 (Generated consistency reports are sound) Let φ be a
formula, A a first-order structure, η a variable assignment, and ds a set of
diagnoses. Then we have:

(RAJφKη = (False, ds) ⇒ ds 6= ∅ ∧ d = (IC, , ,) for every d ∈ ds) ∧
(RAJφKη = (True, ds) ⇒ ds 6= ∅ ∧ d = (C, , ,) for every d ∈ ds)

Proof : The proof proceeds by straightforward induction on the structure of the
formula φ; see App. C, Proof C.1. 2

5.4 Examples 53

Theorem 5.2 (Reasons for inconsistencies are sound) Let φ be a for-
mula, A a first-order structure, η a variable assignment, ds a diagnoses set,
and pst and psf sets of atomic formulae. Then we have:

R′AJφKη = (, ds) ∧
(, η, pst, psf) ∈ ds

=⇒ A |=η φ
′ for every φ′ in pst ∧

A |=η ¬φ′ for every φ′ in psf

The report generation function R′ deviates from R as follows: For an atomic
formula, we push the complete variable assignment into the resulting diagnosis.
For quantified formulae, we do not push bindings into the diagnoses. This is
necessary, in order to ensure that η contains all free variables of the predicate
sets pst and psf .
Proof : The proof proceeds by straightforward induction on the structure of the
formula φ; see App. C, Proof C.2. 2

Theorem 5.3 (Consistency reports indicate real inconsistencies) Let
φ be a formula, A a first-order structure, and η a variable assignment. Then
we have:

not A |=η φ ⇐⇒ ∃ ds ∈ ℘(D) • RAJφKη = (False, ds)

Proof : The proof proceeds by straightforward induction on the structure of the
formula φ; see App. C, Proof C.3. 2

5.4 Examples

In this section, we illustrate report generation for rule φ1 at state 4 of our
example repository. The final report can be found in Fig. 5.2 (pg. 47).

Initially, our report generator R is applied to φ1 and an empty variable
assignment. The quantifier sphere of t evaluates to the states [1, 2, 3, 4]. For
each state v ∈ [1, 2, 3, 4], we extend the variable assignment and compute the
report of the subformula:

RA

u
v
∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d) ∧ dId(m) = kId(d) ∧ kind(m) = kKind(d)

}
~ {t 7→ v}

We obtain the following reports:

{t 7→ 1} (True, ∅)
{t 7→ 2}

(
False,

{ (
IC, {k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,
∅, {kind(m) = kKind(d)}

) })

{t 7→ 3}


False,





(
IC, {k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,
∅, {kind(m) = kKind(d)}

)
,

(
IC, {k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,
∅, {k = key(d), kind(m) = kKind(d)}

)








{t 7→ 4}


False,





(
IC, {k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,
∅, {kind(m) = kKind(d)}

)
,

(
IC, {k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,
∅, {k = key(d), kind(m) = kKind(d)}

)








54 Finding Inconsistencies

VAJrepDs(t)K{t 7→ 4} =




{dId = doc1.txt, dState = 1},
{dId = keys.xml, dState = 1},
{dId = doc2.txt, dState = 3},
{dId = man1.xml, dState = 2},
{dId = man2.xml, dState = 4},
{dId = man3.xml, dState = 4},
{dId = man4.xml, dState = 4}




VAJrefs(x)K{x 7→ {dId = doc1.txt, dState = 1}}
= [kaA3]

VAJrefs(x)K{x 7→ {dId = doc2.txt, dState = 3}}
= [kaA2]

VAJconcatMap(kDefs, repResDs(t))K{t 7→ 4}
=
[{

key = kaA3, kId = man1.xml,
kKind = technical M.

}]

VAJrepManDs(t)K{t 7→ 4} =




{dId = man1.xml, dState = 2, kind = field M.},
{dId = man2.xml, dState = 4, kind = field M.},
{dId = man3.xml, dState = 4, kind = field M.},
{dId = man4.xml, dState = 4, kind = field M.}




Figure 5.5: Example quantifier spheres

For each False report above, we push the corresponding binding for t into the
report’s diagnoses and join the resulting reports by ⊕. That way we obtain the
final report shown in Fig. 5.2.

Next, we detail how the report for {t 7→ 4} is generated. Generation of
reports for the other bindings to t proceeds similarly; in fact, these bindings
are easier to process, because up to state 3 there exists only one manual in
the repository. Fig. 5.5 shows some quantifier spheres, where we consider non-
empty spheres only. For convenience, we restrict variable assignments to the
sphere term’s free variables. In the following, we concentrate on the existential
quantifier for m for the following variable assignments:

ηdoc1 =
{
t 7→ 4, x 7→ {dId = doc1.txt, dState = 1}, k 7→ kaA3,
d 7→ {key = kaA3, kId = man1.xml, kKind = technical M.}

}

ηdoc2 =
{
t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}, k 7→ kaA2,
d 7→ {key = kaA3, kId = man1.xml, kKind = technical M.}

}

First, we consider report generation for ηdoc1. The existential quantifier ex-
tends ηdoc1 consecutively by bindings to one of the manuals man1.xml through
man4.xml. We generate four reports (the conjunction k = key(d) ∧ dId(m) =
kId(d) ∧ kind(m) = kKind(d) is abbreviated by φ∧):

RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man1.xml, dState = 2, kind = field M.}}
RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man2.xml, dState = 4, kind = field M.}}
RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man3.xml, dState = 4, kind = field M.}}
RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man4.xml, dState = 4, kind = field M.}}

For the assignment extension ηdoc1 ∪ {m 7→ {dId = man1.xml, . . .}}, only the
subformula kind(m) = kKind(d) is inconsistent. Thus, we obtain:

RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man1.xml, . . .}}
=
(
False,

{ (
IC, ∅, ∅, {kind(m) = kKind(d)}) })

5.4 Examples 55

In contrast, for the assignment extension ηdoc1∪{m 7→ {dId = man2.xml, . . .}}
two subformulae are inconsistent:

RAJdId(m) = kId(d)K ηdoc1 ∪ {m 7→ {dId = man2.xml, . . .}}
=
(
False,

{ (
IC, ∅, ∅, {dId(m) = kId(d)}) })

RAJkind(m) = kKind(d)K ηdoc1 ∪ {m 7→ {dId = man2.xml, . . .}}
=
(
False,

{ (
IC, ∅, ∅, {kind(m) = kKind(d)}) })

We compute the cartesian product of the above reports and obtain:

RAJφ∧K ηdoc1 ∪ {m 7→ {dId = man2.xml, . . .}}
=
(
False,

{ (
IC, ∅, ∅, {kind(m) = kKind(d), dId(m) = kId(d)}) })

Report generation for man3.xml and man4.xml proceeds similarly and also
results in the report above.

We return to the existential quantifier for m. For each assignment extension,
we obtain a report indicating inconsistencies, thus:

F =
{ (

False,
{ (

IC, ∅, ∅, {kind(m) = kKind(d)}) }) ,(
False,

{ (
IC, ∅, ∅, {kind(m) = kKind(d), dId(m) = kId(d)}) })

}

Clearly, the diagnosis of the first report contains less atomic formulae than the
second report’s diagnosis. Thus, minimizing F drops the second report:

RAJ∃ m ∈ repManDs(t) • φ∧Kηdoc1 = (False, {(IC, ∅, ∅, {kind(m) = kKind(d)})})

Generating the report for the existential quantifier for m w.r.t. the variable
assignment ηdoc2 proceeds similarly to the above generation. Here, however,
also the atomic formula k = key(d) is violated for all bindings to m:

RAJ∃ m ∈ repManDs(t) • φ∧Kηdoc2

=
(
False,

{ (
IC, ∅, ∅, {kind(m) = kKind(d), k = key(d)}) })

The existential quantifier for d does not change the above reports. The universal
quantifier for k pushes the binding k 7→ kaA3 into the report for ηdoc1 and the
binding k 7→ kaA2 into the report for ηdoc2.

We return to the universal quantifier for x, which is violated for the assign-
ments {t 7→ 4, x 7→ {dId = doc1.txt, . . .}} and {t 7→ 4, x 7→ {dId = doc2.txt, . . .}}
(for other assignments the formula is fulfilled), thus:

F =





(
False,

{ (
IC, {k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,
∅, {kind(m) = kKind(d)}

) })
,

(
False,

{ (
IC, {k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,
∅, {k = key(d), kind(m) = kKind(d)}

) })





We join the above reports and obtain the report for the assignment {t 7→ 4}.
Next, we introduce some formal structures and show how our logic is related

to classic predicate logic. Moreover, we define the calculation of values. Since
these technical details are not essential for the further understanding of this
thesis, readers might want to skip the following sections and to continue with
the chapter summary (Sect. 5.7, pg. 64).

56 Finding Inconsistencies

5.5 Formal Structures for Report Generation

In this section, we define the formal structures needed for report generation
and value computation (defined in Sect. 5.6), namely:

• A first-order structure, which interprets types, function symbols, and
predicate symbols. In addition, we show laws for function symbols in
the base signature (see Fig. 4.5, pg. 31).

• A value as our basic semantic object.

• A variable assignment, which binds variables to values.

• A consistency report, which pinpoints inconsistencies.

Finally in this section, we define auxiliary functions needed for report genera-
tion. We define our formal structures in a way that retains compatibility with
already existing logic tools, e.g., theorem provers. In particular, we simulate
parametric polymorphism and subtyping.

We interpret formulae in the current first-order structure, which we call Σ-
algebra. The Σ-algebra changes over time by the check-ins to the repository, see
below. As in many-sorted predicate logic, a Σ-algebra is defined relative to the
signature Σ. A Σ-algebra A contains a universe UA (which includes a domain
τA for each type τ that can be constructed), a set PA (which contains inter-
pretations of predicate symbols), and a set TA (which contains interpretations
of function symbols). For simplicity, we model domains by sets.

Function symbols are interpreted by partial functions over appropriate do-
mains; predicate symbols are interpreted by relations over appropriate domains.
Recall that relations are total by definition. We interpret a function symbol
f : τ ′ by a set of functions. Basically, this is, because in many-sorted logic we
have simple sorts only; hence, we must simulate parametric polymorphism. If
f is polymorphic, we have to provide a function for every possible monomor-
phic instantiation θτ ′ of f ’s type τ ′. Due to subtyping, we have to take every
possible subtype τ of θτ ′ into account. Predicate symbols are interpreted sim-
ilarly by relations. We make the following coherence assumptions: A function
symbol f : τ is not “re-defined” at subtypes of τ . Similarly, a predicate symbol
p : τp is not “re-defined” at subtypes of τp.

Below, we use abbreviated syntax: τAp stands for the cartesian product
τA1 ×. . .×τAn interpreting the predicate type τp = τ1× . . .×τn → Bool; τA stands
for the set of all partial functions from the cartesian product τA1 × . . .× τAn to
the domain τAg interpreting the function type τ = τ1× . . .×τn → τg.

Definition 5.4 (Σ-algebra) Given a signature Σ = (T,S,
∏
,K,

∑
,P,F), we

define a Σ-algebra as a triple A = (UA,PA,FA), where:

• The universe UA contains a domain τA for each monomorphic type τ ∈
Ω(T), i.e., tv(τ) = ∅.

– The domain of an atomic type is a set of discrete atomic values.

5.5 Formal Structures for Report Generation 57

– The domain of a record type is the cartesian product of the domains
of its label result types.

– The domain of a variant type is the union of the domains of its con-
structor argument types.

– The domain of a function type is the set of all partial functions from
the argument type domains to the result type domain.

– The domain of a predicate type is the set of all relations over the
argument type domains.

• The set PA = {p̃A | p ∈ P} contains interpretations of predicate symbols.
Each p̃A is a non-empty set of relations pA

τAp
over the cartesian product τAp

iff p : τ ′p, τp ≤ θτ ′p, and tv(τp) = ∅.
• The set FA = {f̃A | f ∈ F} contains interpretations of function symbols.

Each f̃A is a non-empty set of partial functions fA
τA

: τA iff f : τ ′, τ ≤ θτ ′,
and tv(τ) = ∅.

We let A denote the set of all Σ-algebras. 2

Although a Σ-algebra consists of infinite sets, we can represent these sets
finitely. Relations and functions can be represented by computations in a pro-
gramming language supporting polymorphism and subtyping. Subtyping can
be simulated by explicit coercion functions, which convert a value of type τ
to a value of type τ ′ if τ ≤ τ ′. Coercion functions can be generated, which
guarantees our coherence assumptions above. Indeed, this is actually done in
our implementation, because Haskell lacks subtyping (see App. B). Finally, the
universe UA can be left implicit.

We interpret formulae w.r.t. a Σ-algebra A that evolves over time. Formally,
an abstract state machine (ASM) [Gur00] models the changes to the partial
algebra A. These changes are induced by the check-ins to the repository. Our
ASM is defined by the initial algebra A0 and a transition function δA : A→ A,
which computes a new algebra Ai+1 from a previous algebra Ai.6 In each
algebra, we find functions and domains as illustrated in Fig. 5.6.

In order to model repository behavior, we extend the base signature from
Fig. 4.5 (pg. 31) by two functions addi (modelling documents added by a check-
in) and deli (modelling documents deleted by a check-in). Formally, we assume
the following domains: String denotes all possible strings, State denotes all
possible states (i.e., natural numbers N),7 Doc = String × State denotes the
name and the check-in state of a document, and [α] denotes the set of all
sequences of the domain α. We borrow the symbol →p from the specification
language Z [Spi89] to denote partial functions. An algebra defines at least the
following functions:

6Gurevich uses the symbol τA for the algebra transition function. We use δA, in order to
avoid confusions with our notation of types τ .

7We use an infinite domain, in order to facilitate constant domains, which keeps our ASM
simple.

58 Finding Inconsistencies

current state

initial state

documents in

current algebra

documentthe repository
content(name, check−in state)

repInit

repHead

next prev

repStates{
add, del

repDocs
docContent

Figure 5.6: Temporally evolving algebra

repStates : [State]
repHead : State
repInit : State
next : State→ State
prev : State→p State
repDocs : State→p [Doc]
docContent : Doc→p String
addi : [String× String]
deli : [String]

We assume the natural ≤ ordering for natural numbers, i.e., we facilitate linear
discrete time. The predicate symbol = is interpreted by structural equality.
By next we move one state forward; by prev we move one state backward.
The initial state is given by repInit, the current state is given by repHead.
Notice that prev is not defined for the initial repository state. The function
repStates returns all states between the initial state and the current state,
i.e., those states for which there exists a repository. For each state t up to the
current state, the function repDocs(t) returns the names and check-in states of
the documents in the repository. For states larger than the current state, the
function repDocs is undefined, i.e., there does not yet exist a corresponding
check-in.8 For each document d in the repository, the function docContent(d)

8Alternatively, we could evaluate repDocs to an empty list. Then we could, however, not
distinguish an empty repository from a non-existent repository.

5.5 Formal Structures for Report Generation 59

returns the document content. Recall that we identify documents by their name
and check-in state.

A check-in to the repository at state i is modelled by the functions addi+1

(returning the document names and contents added by some author) and deli+1

(returning the names of documents deleted by some author). In other words,
addi+1 and deli+1 “build” the algebra Ai+1 from Ai. For simplicity, we model
document changes by add and del. Each check-in enhances the current algebra
Ai as follows:

• The repository changes as determined by addi+1 and deli+1.

• The function repHead is updated to return the new current repository
state next(repHead).

• The function repStates now also incorporates the new repository state.

• For the new state, the function repDocs returns the names and check-in
states of all documents in the repository.

• For added documents, the function docContent returns their content.

The new algebra Ai+1 includes the old algebra Ai; Ai+1 deviates from Ai in
the current state, repStates, and repHead only. This important property
guarantees referential transparency of all functions and predicates that do not
use repStates or repHead directly or indirectly.9 Referential transparency is
a prerequisite for efficient consistency checking as described in Chapter 6.

We now define an ASM that specifies how our algebra changes. The func-
tions repInit, next, and prev do not change their behavior over time —
they are static. In contrast, the functions repStates, repHead, repDocs,
and docContent change their behavior over time — they are dynamic. In
the initial algebra A0, all functions are undefined. We regard the functions
addi+1 and deli+1 as inputs to the transition function δA — we do not con-
trol them. They are updated by the environment, i.e., authors who check
in documents to the repository. In addition, we need the domain Mode =
{InitialCheckin,Checkin,Wait}, where InitialCheckin stands for the initial check-
in to the repository, Checkin stands for another check-in to the repository, and
Wait means that the consistency checker waits for a repository check-in. The
function currentMode : Mode models interaction with the repository. We as-
sume that the repository sets the function currentMode to InitialCheckin, if the
author performs the first check-in to a newly created repository; the repository
sets currentMode to Checkin, if the author performs another check-in. At each
of these modes, the ASM program δA reads the inputs addi+1 and deli+1 and
updates the algebra Ai appropriately (see Fig. 5.7, for brevity we omit the
superscript A for functions and relations).

By our ASM we interpret function symbols and predicate symbols always
w.r.t. the current algebra Ai computed by repeatedly applying the algebra
transition function δA to the initial algebra A0, i.e., Ai = δiA(A0).

9Roughly speaking, referential transparency means that the result of a function or relation
depends on its parameters only.

60 Finding Inconsistencies

par
if currentMode = InitialCheckin then
null := {[]}
next(t) := min{t′ ∈ State | t ≤ t′ ∧ t 6= t′}
prev(t) := max{t′ ∈ State | t′ ≤ t ∧ t 6= t′}
repInit := 1
repHead := 1
repStates := [repHead]
repDocs(repHead) := [(n, repHead) | (n,) ∈ addi+1]
if (n, c) ∈ addi+1 then
docContent(n, repHead) := c
endif
currentMode := Wait
endif
if currentMode = Checkin then
repHead := next(repHead)
repStates := repStates ++ [repHead]

repDocs(repHead) :=
[
(n, t)

∣∣∣∣
(n, t) ∈ repDocs(prev(repHead)) ∧
n /∈ deli+1 ∧ (n,) /∈ addi+1

]
++

[(n, repHead) | (n,) ∈ addi+1]
if (n, c) ∈ addi+1 then
docContent(n, repHead) := c
endif
currentMode := Wait
endif

Figure 5.7: Algebra transition δA (++ denotes list concatenation)

Obviously, our ASM preserves the invariants shown in Fig. 5.8. The func-
tions repHead and repStates are not referentially transparent. Then each
symbol is referentially transparent, if it is not defined in terms of repHead or
repStates. Consequently, two algebras Ai and δA(Ai) coincide in all terms
that are defined in Ai and contain referentially transparent symbols only.

Values are the basic semantic objects in the domains of a universe. A value
can be either an atomic value, a record value, or a variant value. For an
easier computation of values, they carry their type constructors. In addition, a
variant value includes its variant constructor. A record value carries bindings
of record labels to values. A variant value carries argument values of its variant
constructor. For brevity, we omit type constructors and record constructors, if
they are clear from the context.

Definition 5.5 (Value) Given a signature Σ = (T,S,
∏
,K,

∑
,P,F), we de-

fine a value vt (where t ∈ T is a type constructor) inductively as follows:

• If A ∈ T is an atomic type constructor, then vA is an atomic value; vTop

and vState are atomic values, too.

• If V ∈ T is a variant type constructor, V̂ = {kj} is its constructor clo-

sure, and vt11 , . . . , v
tnj
nj are values of appropriate types (constructed by type

constructors t1 through tnj), then Var kj (v1, . . . , vnj)
V is a variant value.

5.5 Formal Structures for Report Generation 61

next and prev are injective inverse functions, next is total
next . prev ⊂ id
repInit 6= t⇒ prev(t) is defined
repInit 6= t⇒ next(prev(t)) = t
prev . next = id
repStates returns all states between repInit and repHead
repInit ≤ t ∧ t ≤ repHead⇒ t ∈ repStates
repInit 6= t ∧ t ∈ repStates⇒ prev(t) ∈ repStates
repHead 6= t ∧ t ∈ repStates⇒ next(t) ∈ repStates
for each state in repStates we find the current documents and their contents
t ∈ repStates⇒ repDocs(t) is defined
d ∈ repDocs(t)⇒ docContent(d) is defined
repDocs and docContent respect the check-ins to the repository
addi = (n, c)⇒ (n, i) ∈ repDocs(i)
deli = n⇒ (n, i) /∈ repDocs(i)
addi = (n, c)⇒ docContent(n, i) = c
deli = n⇒ docContent(n, i) is not defined
if defined, repDocs and docContent are referentially transparent over time
repDocsAt(t) = ds ∧ t ≤ t′ ⇒ repDocsAt′ (t) = ds
docContentAt(d) = c ∧ t ≤ t′ ⇒ docContentAt′ (d) = c

Figure 5.8: Repository invariants (free variables are universally quantified:
t, i ∈ State denote repository states, d = (n, i) ∈ Doc denotes a document
(name and check-in state), c ∈ String denotes document content, function
composition is denoted by “.”)

η ::= {bi} variable assignment
b ::= x 7→ v binding X × V (x variable, v value)

Figure 5.9: Variable assignment E

• If R ∈ T is a record type constructor, KR is its record constructor,
R̂ = {lj} is its label closure, and all vtjj are values of appropriate types

(constructed by type constructors tj), then RecKR
{
lj = v

tj
j

}R
is a record

value.

We let V denote the set of all values. 2

A variable assignment binds variables to values. We define a variable as-
signment as a set of bindings (see Fig. 5.9). We denote the set of all variable
assignments by E; the set of all bindings is denoted X × V. A variable as-
signment η induces a partial function η′ : X→p V that maps a variable x to its
current value v (this is more in the sense of classic predicate logic). The as-
signment extension η ∪ {x 7→ v} can be seen as an update to the function η′.
During report generation, a variable assignment is extended by quantifiers. For
well-typed formulae, η is a total function.

A consistency report contains a boolean value and a set of diagnoses:

Definition 5.6 (Consistency Report) A consistency report (b, ds) contains
a boolean value b (representing boolean truth semantics) and a set of diagnoses

62 Finding Inconsistencies

ds ⊆ D, where D = {C, IC} × E × ℘(Fat) × ℘(Fat). A diagnosis (c, η,Ft,Ff) ∈
D contains a consistency flag c, a variable assignment η, and sets of atomic
formulae Ft and Ff . Therefore, B × ℘(D) denotes the set of all consistency
reports. 2

The report generation function R has the type R. J.K. : A×F×E→ B×℘(D).
Notice that R is total, as is the validity relation |=.

Fig. 5.10 includes the definitions of auxiliary functions, needed for report
generation. flip inverts a report by inverting the boolean result and applying
flip to each diagnosis, turning consistent diagnoses to inconsistent diagnoses
and vice versa. Two reports can be combined by ⊗. The resulting report con-
tains the conjunction of the boolean values and the cartesian product of the
diagnoses sets, computed by applying join to each pair of diagnoses. Alterna-
tively, we can join reports via ⊕. ⊗ and ⊕ condense the resulting diagnoses,
such that diagnoses with equal variable assignments are joined. ⊕ folds ⊕ over
a non-empty report set. fold is an instance of (non-deterministically) folding
a function over a list; we use fold with commutative associative function argu-
ments only, which makes our applications well defined. From a set of diagnoses,
the function min retains those diagnoses that contain the minimal sets of atomic
formulae: min groups a set of diagnoses by their assignment and then returns
for each group its greatest lower bound w.r.t. the partial diagnoses ordering v.
push extends the variable assignment of each diagnosis in a report by a variable
binding. In addition, fst and snd decompose pairs as usual.

5.6 Computing Values

In this section, we define how values are computed, which is similar to value
computation in partial predicate logic [Far01]. The evaluation function VAJeKη
returns the value of a term e w.r.t. a Σ-algebra A and a variable assignment η.
Due to support for partial function symbols, V has the type V. J.K. : A×T ×E→p V,
i.e., value computation may fail, if a function is undefined for some arguments.

Fig. 5.11 shows the denotational semantics of V. To simplify notation, we
require that, in order to evaluate a term e, the values of all subterms of e must
be defined; otherwise, the value of e is not defined (we adopt this behavior
from [Far01]). We interpret a variable x by the current variable assignment
η. Since rules are well typed, η contains a binding for x. In Fig. 5.11, we
have annotated function symbols with their type τ . Since our type checker
assigns monomorphic types, the interpretation of function symbols is uniquely
determined. We distinguish the arguments of a symbol application syntacti-
cally: Symbol arguments are interpreted by the corresponding symbols, other
arguments are further evaluated by V. Record construction and deconstruc-
tion are straightforward, where record deconstruction determines the built-in
semantics of record labels. Variant constructors build variant values carrying
their constructor. Record labels and variant constructors are total functions
by construction. Since variant values carry their constructors, case analysis
becomes quite simple. From the evaluation of the case scrutinee e, we obtain

5.6 Computing Values 63

Invert a consistency report
flip : (B× ℘(D))→ B× ℘(D)
flip ((b, ds)) = (¬b, {flip(d) | d ∈ ds})
Invert a diagnosis
flip : D→ D
flip
(
(C, as, pst, psf)

)
= (IC, as, pst, psf)

flip
(
(IC, as, pst, psf)

)
= (C, as, pst, psf)

Cartesian product of reports
⊗ : (B×℘(D))× (B×℘(D))→B×℘(D)
(b, ds)⊗ (b′, ds′

)
=
(
b ∧ b′, condense

{
join(d, d′) | d ∈ ds, d′ ∈ ds′

})

Join diagnoses
join : D× D→ D
join

(
(c, as, pst, psf), (c′, as′, ps′t, ps′f)

)

= (c, as ∪ as′, pst ∪ ps′t, psf ∪ ps′f)
Condense diagnoses
condense : ℘(D)→ ℘(D)
condense

(
(c, η, pst, psf)] ds

)
= fold(join, (c, η, pst, psf), dsη) ∪

condense(ds \ dsη)
where dsη = {(c′, η′, ps′t, ps′f) | (c′, η′, ps′t, ps′f) ∈ ds and η = η′}

Join reports
⊕ : (B×℘(D))× (B×℘(D))→B×℘(D)
(b, ds)⊕ (b′, ds′

)
=
(
b ∨ b′, condense

(
ds ∪ ds′

))

Join a report set by folding (S 6= ∅)
⊕ : ℘(B× ℘(D))→ B× ℘(D)
⊕(S) = fold(⊕, s,S′), where S′ = S] {s}
Fold a set (f symmetric and associative)
fold : ∀α.(α× α→ α)× α× ℘(α)→ α
fold(f, x, ∅) = x
fold(f, x, ({x′}] xs)) = fold(f, f(x, x′), xs)

Minimize reports
min : ℘(B× ℘(D))→ B× ℘(D)
min ((b, ds)] rs) = (b,min(ds ∪ ⋃{ds | (, ds) ∈ rs}
Minimize diagnoses
min : ℘(D)→ ℘(D)
min

(
(c, η, pst, psf)] ds

)
=

d
v dsη ∪ min(ds \ dsη)

where dsη = {(c′, η′, ps′t, ps′f) | (c′, η′, ps′t, ps′f) ∈ ds and η = η′}
Partial order for diagnoses
v ⊆ D× D
(c, η, pst, psf)v(c′, η′, ps′t, ps′f) ⇔ c = c′ ∧ η = η′ ∧ pst ⊆ ps′t ∧ psf ⊆ ps′f

Push an assignment into a report
push : (X × V)× (B× ℘(D))→ B× ℘(D)

push (x 7→ v, (b, ds)) =
(
b,

{
(c, {x 7→ v} ∪ as, pst, psf)
| (c, as, pst, psf) ∈ ds

})

Figure 5.10: Auxiliary functions for report generation

64 Finding Inconsistencies

VAJxKη = η(x)
VA
q
lj(KR{li = ei})

y
η = VAJejKη

VAJk(e1, . . . , en)Kη = Var k (VAJe1Kη, . . . ,VAJenKη)
VAJsτ (e1, . . . , en)Kη = sAτA (eA1 , . . . , e

A
n)

where eAi = sAτA if ei ≡ sτ
VAJeiKη otherwise

VA
q
KR{li = ei}

y
η = RecKR{li = VAJeiKη}

VA
r

case(e, {ki → sτii })
z
η = sA

j τAj
(v1, . . . , vn)

where Var kj (v1, . . . , vn) = VAJeKη
VA
q

case(e, V, {ki → si})
y
η = VA

q
case(e, {ki → si})

y
η

VAJe :: τKη = VAJeKη

Figure 5.11: Evaluating terms

the variant constructor kj . Type constructor annotation in a case statement
and type annotation, in general, are ignored during the evaluation of terms.

Due to type checking, applied functions result in a value, not in a function.
Formally, the value of a term is a member of a domain τA in the universe of the
Σ-algebra A. This guarantees that a quantifier never iterates over functions,
such that on the logic level first-order properties are preserved.

5.7 Summary

In this chapter, we show how our new tolerant semantics points out inconsistent
document parts. Instead of a simple boolean value, for each consistency rule,
we generate a consistency report. Report generation is quite similar to classic
evaluation of predicate logic formulae. Our approach deviates mostly in the
treatment of quantifiers: We capture the bindings to values that cause incon-
sistencies. These bindings indicate when and where inconsistencies occur. In
addition, we retain the boolean results of atomic formulae, which give reasons
for rule violation.

Our formal structures for rule evaluation correspond to the formal struc-
tures in partial predicate logic, because we facilitate partial functions. This
compatibility causes, however, some effort, because we also support parametric
polymorphism, higher-order functions and predicates, and subtyping. Our type
checker guarantees that applied function symbols always evaluate to first-order
values (not to functions). This preserves the first-order properties of our logic,
i.e., we do not quantify over functions. But, as pointed out earlier, these issues
are theoretical matters; they do not restrict the practical applicability of our
approach: Language designers simply use Haskell for the definition of symbol
semantics. In the background, our tools simulate Nordlander-style subtyping,
which has as yet not been implemented in a Haskell compiler [Maz03] (see also
App. B).

What really impacts the practical applicability of our approach so far is
the computational expense of report generation. Evaluating our example rules

5.7 Summary 65

Check-in Repository Changes Number of Inconsistencies CPU Time (Sec.)
1 txt: 1n, key: 1n, man: 9n 0 5.23
2 txt: 1c, 4n 4 13.48
3 man: 2c 14 18.95
4 man: 2c 19 26.38
5 txt: 1c 21 33.40
6 txt: 1c 26 41.15
7 key: 1n 31 47.11
8 man: 1n 35 57.34
9 key: 1c 36 67.14

Table 5.2: Brute force consistency checking performance (tests were performed
against a DARCS repository [Rou04] on a Dell X200 laptop; 800 MHz PIII
CPU)

in a brute force manner results in an extremely poor performance. Tab. 5.2
shows the development of a “toy” repository, which we shall use throughout for
performance measurements. The second column shows how many documents
were added (n) or changed (c) by a check-in. We use man for manuals, key
for key resolvers, and txt for plain text documents. Inconsistencies found
when checking the rules φ1 and φ2 are summarized in the third column. The
final column shows the CPU time needed for consistency checking. To a great
extent, CPU time depends on the repository state, because brute force checking
evaluates every repository state.

The results in Tab. 5.2 are unacceptable but they are not surprising. Clearly,
as in classic predicate logic, every quantifier sphere contributes a polynomial
factor; the nesting of quantifiers results in an exponential behavior. In order to
make our approach viable, it is absolutely necessary to develop methods that
reduce evaluation time. In particular, evaluation time should not depend on
the repository state. We discuss efficient report generation in the next chapter.

Chapter 6

Speeding up Consistency Checking

In Sect. 5.7, we have seen that we desperately need methods that reduce the
time needed for consistency checking. In fact, speed is a key to user acceptance.
After a check-in to the repository, authors want to know almost immediately
whether this check-in is accepted and how it meets the consistency rules. In
this chapter, we address the issue of efficiently evaluating first-order linear tem-
poral consistency rules against a heterogeneous repository. In contrast to many
other approaches, we retain our tolerant semantics. We improve efficiency by
two measures: First, we lower checking complexity by static analysis, which is
performed prior to consistency checking. Second, we modify our consistency
checking algorithm. Static rule analysis attempts to reduce the number of rules
to be re-evaluated at a check-in by filtering, and to lower the static computa-
tional complexity of a rule by rewriting. Our modified consistency checking
algorithm dynamically reduces quantifier spheres. Since we tolerate inconsis-
tencies in previous repository states, we employ an incremental algorithm that
makes heavy use of previous consistency reports. In document management,
incremental consistency checking is a real challenge: In contrast to database
approaches, we cannot benefit from a formal document model, a formal up-
date model, and full consistency prior to a check-in. Consequently, we cannot
achieve the high performance of constraint checking approaches for databases.
We argue, however, that DMSs do not have to handle the high loads databases
have to handle. Therefore, our methods suffice.

In this chapter, we proceed as follows: In Sect. 6.1, we explore the effect
of our methods by our running example. We detail static rule analysis in
Sect. 6.2. Sect. 6.3 is concerned with incremental evaluation. In Sect. 6.4, we
give advice to rule designers and language designers about how to formalize
“fast” consistency rules. We summarize this chapter in Sect. 6.5. Fig. 6.1
illustrates the context of this chapter.

6.1
6.2

6.3
6.4

6.5

8

5

14

Figure 6.1: Chapter 6 in context

66

6.1 Informal Overview 67

Check-in Document Modifications
Kind Details

1 doc1.txt add ...as shown in manual kaA3 ...
keys.xml add <kDef key="kaA3"

kId="man1.xml"
kKind="technical M."/>

man1.xml add <man kind="technical M."> ...
2 man1.xml change <man kind="field M."> ...
3 doc2.txt add ...as shown in manual kaA2 ...

Table 6.1: Example repository up to state 3

φ1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) • ∃ m ∈ repManDs(t) •
k = key(d) ∧ dId(m) = kId(d) ∧ kind(m) = kKind(d)

φ2 = ∀ t1 ∈ repStates • ∀ m1 ∈ repManDs(t1) • ∀ t2 ∈ repStates •
t1 < t2 ⇒

(∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

Figure 6.2: Formal example rules

6.1 Informal Overview

Static analysis tries to localize and simplify consistency rules before they are
evaluated against a repository. It is performed exclusively on a syntactical
level. Localizing a rule means to associate it with the set of documents affected
by this rule. This reduces the number of rules to be re-evaluated at a check-
in. A rule is simplified by minimizing its quantifier nesting and thus lowering
the static evaluation time complexity. Our static methods are adaptations to
database techniques [dC86, GSUW94, Pac97] that are already known.

When the DMS signals a check-in to the repository, we want to re-evaluate
only those consistency rules that might be affected by this check-in. With each
rule, we associate a set of affected documents, because we also target revision
control systems, such as CVS [C+02], that lack a formal document model.1 For
example, we associate rule φ1 (see Fig. 6.2) with all plain text documents and
all XML documents {*.txt,*.xml}. Rule φ2 is associated with all manuals
{man*.xml}. At the third check-in (see Tab. 6.1), we do not need to re-evaluate
φ2. Instead, we lift its report to the new repository state.

The computational cost to evaluate a consistency rule depends on its deepest
quantifier nesting, which is minimal if the scope of each quantifier is minimal.
Such formulae are called miniscope [dC86]. Consider the following variant of
rule φ1:

1In more sophisticated DMSs, we could also define document classes (so-called stereotypes)
and associate these classes with consistency rules.

68 Speeding up Consistency Checking

Consistency report for rule φ1 at state 2(
False,

{(
IC,
{
t 7→ 2, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)})

Consistency report for rule φ2 at state 2
False,






 IC,

{
t1 7→ 1, t2 7→ 2,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}










Figure 6.3: Example consistency reports at state 2

Consistency report for rule φ1 at state 3


False,





< diagnoses for state 2 from Fig. 6.3 >(
IC,
{
t 7→ 3, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)
,

(
IC,
{
t 7→ 3, k 7→ kaA2, x 7→ {dId = doc2.txt, dState = 3}} ,

∅, {k = key(d), kind(m) = kKind(d)}
)








Consistency report for rule φ2 at state 3
False,





< diagnoses for state 2 from Fig. 6.3 >
 IC,

{
t1 7→ 1, t2 7→ 3,m1 7→

{
dId = man1.xml, dState = 1,
kind = technical M.

}}
,

{t1 < t2}, {kind(m1) = kind(m2)}











Figure 6.4: Example consistency reports at state 3

φ′1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d) ∧

(∃ m ∈ repManDs(t) •
dId(m) = kId(d) ∧ kind(m) = kKind(d)

)

Here, the existential quantifier for m was moved into the conjunction. Since
in φ′1 the existential quantifier has a smaller scope, φ′1 can be evaluated faster
than φ1. We adapt the techniques in [dC86] to convert our rules to miniscope.

We shall see that static analysis improves performance between 15% and
32% for our running example. These results are, however, unsatisfactory: Still
rule evaluation time depends on the repository state. A major reason is that
we access documents at previous repository states. Usually, a DMS rebuilds
these documents step by step using state transition descriptions, e.g., diffs or
patches. Our incremental consistency checking algorithm attempts to avoid
accessing past document versions, which improves performance significantly.

In our example, the third check-in changes the consistency report for φ1

marginally (see Fig. 6.3 and Fig. 6.4). In fact, the report for state 3 contains
all diagnoses from the previous report (at state 2). Naturally, the report for
state 3 deviates from the previous report, due to the modifications by the third
check-in.

6.2 Static Analysis 69

Symbol Type dAcc sRes accD accI
repDs State→ [Doc] {*.txt,*.xml} ∅ ∅ ∅
repManDs State→ [ManD] {man*.xml} ∅ ∅ ∅
repResDs State→ [ResD] {keys*.xml} ∅ ∅ ∅
refs Doc→ [String] ∅ {∗} {0} ∅
concatMap (α→ [β])×[α]→ [β] ∅ ∅ ∅ {0, 1}
repStates [State] ∅ ∅ ∅ ∅
= α×α→ Bool ∅ ∅ ∅ ∅
≤ α×α→ Bool ∅ ∅ ∅ ∅
< α×α→ Bool ∅ ∅ ∅ ∅

Table 6.2: Example symbol metadata

For static rules like φ1, which do not relate different repository states, a sim-
ple strategy would suffice: Just evaluate the rule for the new repository state
and add the result to the accumulated previous report. Alas this breaks down
for temporal rules like φ2, which relate different repository states. Therefore,
we have developed a general technique that applies to temporal rules, too. As
a result, consistency checking time mostly depends on the check-in and the
number of inconsistencies; the repository state and the size of the repository
influence evaluation time marginally. As usual, it is most challenging to balance
the achieved speedup against the space needed for storing auxiliary informa-
tion. Our approach needs little additional information only (see Sect. 6.3.4).
It exploits previous consistency reports, in order to re-evaluate rules w.r.t. a
part of the documents they affect: If possible, it accesses modified (parts of)
documents only.

In the next section, we detail our methods for static analysis; Sect. 6.3 is
devoted to incremental consistency checking.

6.2 Static Analysis

In this section, we concentrate on static methods that improve the performance
of our consistency checker. Firstly, we show our methods to filter consistency
rules. Secondly, we rewrite rules, in order to lower their static evaluation
time complexity. Finally, we summarize the improvements achieved by static
analysis.

6.2.1 Filtering Rules

At a check-in to the repository, we want to re-evaluate only those rules that
might be affected by this check-in. This requires to associate with each rule a
set of documents, the rule depends on. If a consistency rule does not need to
be re-evaluated, we lift its previous report to the current repository state. Alas
not all rules are subject to rule filtering; we discuss sufficient conditions at the
end of this section.

Rule filtering depends on appropriate metadata for function and predicate
symbols. These metadata are added by the language designer with the help
of static Haskell code analysis of the implementations. Notice, however, that

70 Speeding up Consistency Checking

static analysis of function and predicate implementations only can determine a
superset of the documents a symbol accesses. Tab. 6.2 summarizes the meta-
data for symbols we use for our running example. We distinguish between the
documents a symbol might access (dAcc), the Strings a symbol might result in
(sRes), the formal arguments responsible for direct document access (accD),
and the formal arguments responsible for indirect document access (accI). In-
direct document access is important for higher-order symbols. For example, the
function symbol concatMap does not access documents directly. The function
provided as first argument may, however, access documents the names of which
are given in the second argument. Hence, the first and second argument are
responsible for indirect document access.2 We let regular expressions denote
document sets, because even in a simple revision control system we can identify
documents by name and check-in state.

From these metadata, we determine the documents a formula depends on.
For brevity, we omit a formal definition of our straightforward algorithm that
collects the metadata of used symbols by traversing formulae and terms. For
our example rules, we obtain that φ1 depends on the documents {*.txt,
.xml, man.xml, keys*.xml}; φ2 depends on the documents {man*.xml}.
These document sets do not exactly correspond to our rule dependencies, be-
cause our algorithm collects regular expressions only and does not join them.
This approach suffices, because, at a check-in, we match the names of modified
documents against the document set of a rule. If any of the regular expressions
matches, then the rule has to be re-evaluated.

In our example, the third check-in causes re-evaluation of φ1, whereas φ2

is not re-evaluated. We lift the previous report for φ2 to the new repository
state, because inconsistencies at state 2 are still present at state 3. Basically,
lifting the previous report means to duplicate each diagnosis whose assignment
contains a binding to the previous state. This binding is replaced by a binding
to the new repository state. For φ2, the report at state 2 contains one diagnosis
whose assignment includes the binding t2 7→ 2. We duplicate this diagnosis and
replace the binding t2 7→ 2 by t2 7→ 3. We obtain the report shown in Fig. 6.4.
For brevity, we omit our straightforward report lifting algorithm.

The fundamental prerequisite for rule filtering is that the report change
depends on the modified documents only. Alas we cannot guarantee this as-
sumption for arbitrary consistency rules. Consider the following variant of φ2:

φ2,init = ∀ t1 ∈ init(repStates) • ∀ m1 ∈ repManDs(t1) •
∀ t2 ∈ init(repStates) • t1 < t2 ⇒
∃ m2 ∈ repManDs(t2) • dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

The above rule iterates over all repository states except the current state (the
function init removes the last element of a list, repStates returns states in
ascending order). The report for φ2,init at state 2 is (True, ∅); its report at
state 3 equals the report for φ2 at state 2. Clearly, lifting the previous report
fails here. What prohibits rule filtering is calculation over repository states.

2Arguments are numbered beginning by zero.

6.2 Static Analysis 71

Therefore, we restrict rule filtering to those rules that avoid time calculations.
For this, each symbol has to be annotated whether it involves calculation over
repository states. Similar to the other symbol metadata, static Haskell code
analysis can help the language designer to add these metadata. Since we sup-
port polymorphic function symbols like init : ∀α.[α] → [α], we also prohibit
rule filtering for those rules that contain a polymorphic function symbol whose
result type is instantiated to a state type.3 In the above example, the type of
init is instantiated to [State]→ [State].

6.2.2 Rewriting Rules

The computational expense to evaluate a consistency rule depends on its deep-
est quantifier nesting, which is minimal if the scope of each quantifier is mini-
mal. Such formulae are called miniscope [dC86]. Consider the following variant
of rule φ1:

φ′1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d) ∧

(∃ m ∈ repManDs(t) •
dId(m) = kId(d) ∧ kind(m) = kKind(d)

)

Here, the existential quantifier for m was moved into the conjunction, which is
sound, because k = key(d) does not contain the variable m. Since in φ′1 the
existential quantifier has a smaller scope, φ′1 can be evaluated faster than φ1.
For example, let each quantifier sphere have a cardinality of n and each atomic
formula evaluate in constant time c, then evaluating φ1 costs n5 · 3c, whereas
evaluating φ′1 costs n4 · c+ n5 · 2c only.4

We adapt the techniques in [dC86] to convert our rules to miniscope. Mi-
niscoping also removes implications, pushes negations into formulae, and “flat-
tens” nested conjunctions and disjunctions. Our incremental consistency check-
ing algorithm benefits from these simplifications. For our purposes, we use
terminology from De Champeaux [dC86] and Wang [Wan60]. According to
[Wan60] a predicate logic formula is in miniscope if:

W1. The only logical symbols are ¬ (negation), ∨ (disjunction), and ∧ (con-
junction), where ¬ can occur in front of atomic formulae only.

W2. A subformula of a conjunction (disjunction) is no conjunction (disjunc-
tion), i.e., formulae are “flattened.”

W3. The body of a universal (existential) formula is not a conjunction (dis-
junction).

3Formally, a state type is built from State and any non-atomic type constructor in the
type structure Ω(T) of the used signature (see Def. 4.1).

4Due to our simple example, the speedup is not very impressive. For more complex rules,
we have experienced greater speedups.

72 Speeding up Consistency Checking

W4. If the body of a quantified formula is a conjunction (disjunction), then
each subformula of the conjunction (disjunction) contains the quantifier
variable.

W5. No permutation of a sequence of universal (existential) quantifiers inval-
idates W4.

De Champeaux extends the above miniscope property to compressed miniscope.
A predicate logic formula is in compressed miniscope if:

C1. The formula is closed and each quantifier introduces a unique variable.

C2. No two subformulae of a conjunction (disjunction) are in an Instance
relationship.

C3. No two subformulae of a conjunction (disjunction) are in a half-negated
Instance relationship.

Put roughly, a formula φ is an Instance of a formula ψ iff φ is subsumed by ψ,
i.e., ψ⇒φ. A formula φ is a half-negated Instance of a formula ψ iff ¬φ is an
Instance of ψ, where the negation is pushed inward φ.

At first sight, it appears that we should convert consistency rules to com-
pressed miniscope formulae. We have, however, to adapt the above definitions
for our purposes, which is mainly due to the explicit sphere terms for quantifiers
and that these sphere terms may evaluate to empty spheres. In addition, prop-
erty W3 above is impractical for our purposes, because it implies to distribute
universal quantifiers over conjunctions and existential quantifiers over disjunc-
tions. We drop W3, because it would require re-computation of sphere terms
and introduction of new variables (every quantifier introduces a different vari-
able). In addition, we change the definition of the Instance relationship, which
originally includes quantifier subsumption: For example, let a be a constant,
p a unary predicate, and x a variable. Then p(a) is an Instance of ∀x • p(x).
In our setting, we have an explicit sphere dom for x, say ∀ x ∈ dom • p(x).
Without evaluating consistency rules, we cannot know with certainty whether
a ∈ dom, which is required for making p(a) an instance of ∀ x ∈ dom • p(x). In
our setting, two formulae are in an Instance relationship, if they are equal up
to renaming of variables and permutation of conjunctions and disjunctions.

Formally, we define weak compressed miniscope formulae as follows:

Definition 6.1 (Weak compressed miniscope formula) A formula in
weak compressed miniscope form fulfills the properties W1, W2, W4, W5, C1,
C2, and C3 above, where two weak compressed miniscoped formulae are in
an Instance relationship, if they are equal up to renaming of variables and
permutation of conjunctions and disjunctions. 2

We use the following six-step algorithm, which converts a consistency rule
to weak compressed miniscope form:

1. Replace implications φ⇒ψ by disjunctions ¬φ ∨ ψ.

6.2 Static Analysis 73

2. Push negations into the formula, such that only atomic formulae may
appear in a negated context. As in classic predicate logic, negation dis-
tributes over quantifiers.5

3. Replace cascading conjunctions (φ1 ∧ φ2) ∧ φ3 by flat conjunctions φ1 ∧
φ2 ∧ φ3. Proceed similarly for disjunctions.

4. If below a conjunction or disjunction a subformula φ is in Instance rela-
tionship with another subformula, then remove φ. If below a conjunction
a subformula is in half negated Instance relationship with another sub-
formula, then replace the conjunction by the constant False. If below
a disjunction a subformula is in half negated Instance relationship with
another subformula, then replace the disjunction by the constant True.
In conjunctions, remove all True subformulae. In disjunctions, remove
all False subformulae. If a conjunction contains the constant False, then
replace the conjunction by False. If a disjunction contains the constant
True, then replace the disjunction by True.

5. Push quantifiers into the formula (see below).

6. Replace cascading conjunctions (φ1∧φ2)∧φ3 by flat conjunctions φ1∧φ2∧
φ3. This is necessary, because the above step might introduce cascading
conjunctions.

Fig. 6.5 shows our algorithm that pushes quantifiers into a consistency rule
(we adapt the algorithm from [dC86]). The general idea is as follows: Consider
a quantifier over a flat conjunction φ1∧. . .∧φn. This quantifier only affects those
subformulae that contain the quantifier variable. Thus, we push the quantifier
into the conjunction, such that its scope is restricted to these subformulae only.
For disjunctions, we use a similar approach.

Our algorithm deviates from [dC86] mostly in its treatment of existential
quantifiers. An existential quantifier distributes over a disjunction, only if its
sphere contains values. Therefore, we add the formula ¬ null(e), which requires
that the sphere e is not empty (the predicate symbol null : ∀α.[α]→ Bool in-
dicates whether a list is empty). Consider a quantifier Q over a formula φ that
is neither a conjunction nor a disjunction. We first process the subformula φ,
resulting in φ′. If φ′ is quantified by the same quantifier Q, then the outer quan-
tification Q x ∈ e • may be exchanged with the inner quantification Q x′ ∈ e′ •
provided that the quantifications are independent from each other (i.e., x does
not occur in e′). That way the outer quantifier can be pushed further into the
subformula. Notice that different quantifiers are not exchanged.

In rule φ2, miniscoping replaces the implication by a disjunction. Also, the
universal quantifier for m1 is pushed into the right hand side of this disjunction.
This is sound, because the universal quantifications ∀ m1 ∈ repManDs(t1) • and
∀ t2 ∈ repStates • are independent and can, therefore, be exchanged.

5Here, the case for a negated universal quantifier (for existential quantifiers proceed simi-
larly): ¬∀ x ∈ e • φ ⇐⇒ ¬∀x•x ∈ e⇒ φ ⇐⇒ ∃x•¬(¬(x ∈ e) ∨ φ) ⇐⇒ ∃x•x ∈ e ∧ ¬φ ⇐⇒
∃ x ∈ e • ¬φ.

74 Speeding up Consistency Checking

pushQ : F → F

pushQ(∃ x ∈ e • ∨{φ1, . . . , φn})
= ¬ null(e) ∧ (

∨
notx) if hasx = ∅

∃ x ∈ e • ∨ {φ′1, . . . , φ′n} else if notx = ∅
¬ null(e) ∧ ∨ ({quant} ∪ notx) otherwise

where φ′i = pushQ(φi)
notx = {φ | φ ∈ {φ′1, . . . , φ′n} and x /∈ fv(φ)}
hasx = {φ | φ ∈ {φ′1, . . . , φ′n} and x ∈ fv(φ)}
quant = pushQ(∃ x ∈ e • φ) if hasx = {φ}

∃ x ∈ e • ∨ hasx otherwise

pushQ(∃ x ∈ e • ∧ {φ1, . . . , φn})
=
∧

({¬ null(e)} ∪ notx) if hasx = ∅∧
({quant} ∪ notx) otherwise

where φ′i = pushQ(φi)
notx = {φ | φ ∈ {φ′1, . . . , φ′n} and x /∈ fv(φ)}
hasx = {φ | φ ∈ {φ′1, . . . , φ′n} and x ∈ fv(φ)}
quant = pushQ(∃ x ∈ e • φ) if hasx = {φ}

∃ x ∈ e • ∧ hasx otherwise

pushQ(∀ x ∈ e • X {φ1, . . . , φn})
= X notx if hasx = ∅
X ({quant} ∪ notx) otherwise

where φ′i = pushQ(φi)
notx = {φ | φ ∈ {φ′1, . . . , φ′n} and x /∈ fv(φ)}
hasx = {φ | φ ∈ {φ′1, . . . , φ′n} and x ∈ fv(φ)}
quant = pushQ(∀ x ∈ e • φ) if hasx = {φ}

∀ x ∈ e • X hasx otherwise

pushQ(Q x ∈ e • φ) = Q x′ ∈ e′ • if φ′ = Q x′ ∈ e′ • φ′′
pushQ(Q x ∈ e • φ′′) and x /∈ fv(e′)

pushQ(Q x ∈ e • φ′) if φ′ = X ψ1 . . . ψn

Q x ∈ e • φ′ otherwise
where φ′ = pushQ(φ)

pushQ(X {φ1, . . . , φn}) = X {pushQ(φ1), . . . , pushQ(φn)}

pushQ(φ) = φ

Figure 6.5: Pushing quantifiers into formulae (
∨

and
∧

denote disjunction and
conjunction of a set of formulae, respectively; X stands for either

∨
or
∧

; Q
denotes a quantifier).

6.3 Incremental Consistency Checking 75

Check-in Repository Changes Rules CPU Time (Sec.) CPU Time (Sec.)
checked (brute Force) (Static Analysis)

1 txt: 1n, key: 1n, man: 9n φ′1, φ
′
2 5.23 4.47

2 txt: 1c, 4n φ′1 13.48 9.55
3 man: 2c φ′1, φ

′
2 18.95 15.25

4 man: 2c φ′1, φ
′
2 26.38 20.40

5 txt: 1c φ′1 33.40 23.46
6 txt: 1c φ′1 41.15 27.98
7 key: 1n φ′1 47.11 32.50
8 man: 1n φ′1, φ

′
2 57.34 44.66

9 key: 1c φ′1 67.14 45.34

Table 6.3: Performance improvements by static analysis (tests were performed
against a DARCS repository [Rou04] on a Dell X200 laptop; 800 MHz PIII
CPU)

φ′2 = ∀ t1 ∈ repStates • ∀ t2 ∈ repStates •
¬(t1 < t2) ∨

(∀ m1 ∈ repManDs(t1) • ∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

6.2.3 Achievements by Static Analysis

How does static analysis improve evaluation time? The last column in Tab. 6.3
shows benefits between 15% and 32%. Improvements achieved by miniscoping
can be seen in states at which both rules are re-evaluated. But still, the results
are unsatisfactory: Rule evaluation time depends on the repository state. A
major reason is that we access documents at previous repository states. Usu-
ally, the DMS rebuilds these documents step by step using state transition
descriptions, e.g., diffs or patches. Next, we introduce our incremental con-
sistency checking algorithm, which attempts to avoid accessing past document
versions. As we shall see, this improves performance significantly.

6.3 Incremental Consistency Checking

The major goals of incremental consistency checking are: (1) only access docu-
ment versions at the current repository state and (2) whenever possible access
modified documents only. For static rules like φ′1, which do not relate different
repository states, a very simple strategy would suffice: Just evaluate the rule
for the new repository state and add the result to the accumulated previous
reports. Alas this breaks down for temporal rules like φ′2, which relate different
repository states.

Therefore, we have developed a general technique that applies to temporal
rules, too, and also performs better for static rules. As usual, it is most chal-
lenging to balance the achieved speedup against the space needed for storing
auxiliary information. Our approach needs little additional information only
(see Sect. 6.3.4). It exploits previous consistency reports, in order to re-evaluate
rules only w.r.t. a part of the documents they affect. Our strategy is as follows:

76 Speeding up Consistency Checking

1. Keep the old report from the previous consistency check.

2. If possible, re-evaluate a quantifier in a rule for modified sphere values
only. For other sphere values, copy the relevant part from the old report.

A fundamental prerequisite to incremental evaluation is that the consistency
report of a formula remains constant, if its quantifier spheres remain constant,
i.e., the report depends on the free variables of a formula only. This requires
that the result of each function and each predicate depends on its parameters
only — a feature called referential transparency in functional programming.
Since language designers use Haskell to define symbol semantics, the above
strategy is sound.6 Notable exceptions are the “unsafe” functions repStates
and repHead, which are not referentially transparent.7

Since rule evaluation time depends mostly on the cardinality of quantifier
spheres, we try to narrow them. We partition a quantifier sphere into four sets:
new contains new values, chg contains changed values, old contains unmodi-
fied values, and del contains deleted values. In addition, we extend variable
assignments, which bind variables to values, to also mark variables as new and
old, respectively. We call these markers variable kinds.

The central idea behind incremental consistency checking is to re-evaluate a
subformula only, if it contains a variable that is marked as new in the current
assignment or if it contains an unsafe symbol. If a subformula contains old
variables and referentially transparent symbols only, we copy part of the old
report and abort re-evaluation of this subformula. Before defining our incre-
mental consistency checking algorithm, we illustrate its effect on our running
example.

6.3.1 Example

We consider re-evaluation of rule φ′1 at the second and third check-in, respec-
tively. Fig. 6.6 shows how our incremental consistency checking algorithm
evaluates φ′1. In the evaluation trees, vertices represent conjunctions, disjunc-
tions, or quantifier spheres. Old values are printed in grey and new values in
black. A path from the root to a leaf stands for a variable assignment. For
convenience, we also show the result report of each copy action.

6In general, Haskell guarantees referential transparency. The use of Haskell is, however,
not obligatory; any referentially transparent programming language (excerpt) suffices.

7We access the repository by some functions to get the repository states of already per-
formed check-ins (repStates), get the state of the current check-in (repHead), get documents
at a given state, and parse documents (see Sect. 5.5). The repository guarantees that, except
for repStates and repHead, interface functions are referentially transparent although they
involve IO. The interface functions repStates and repHead are not referentially transpar-
ent, because they read the states of already performed check-ins directly from the repository.
Thus, their results change between (but not during) consistency checks. Static source code
analysis can determine whether a function or predicate defined by the language designer is
referentially transparent, i.e., it does not call repStates or repHead (directly or indirectly).
Since this is done statically only, such analysis has to be very “pessimistic.”

6.3 Incremental Consistency Checking 77

φ′1 = ∀ t ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d) ∧

(∃ m ∈ repManDs(t) •
dId(m) = kId(d) ∧ kind(m) = kKind(d)

)

({()})
({()})IC, ,

IC, ,

[]

[][]

[]

[] []

t:

t:

k:

k: k:

k:

k:

k:

k:

x:

[,]

[, , 3]

1

1

2

2

kaA3

kaA3 kaA2

[]

[]

[]

[]

copy {t (1,old)}

copy {t (1,old)} copy {t (2,old)}

d:

d:d:

key = kaA3, kId = man1.xml,

key = kaA3, kId = man1.xml,key = kaA3, kId = man1.xml,

kKind = technical M.

kKind = technical M.kKind = technical M.

copy

copy

copy copy

{

{
{

{

{
{

t (1,new), x (...,old),

t (2,new), x (...,old),

t (2,new), x (...,old), {t (2,new), x (...,old)}

k (...,old)

k (...,old)

k (...,old)

[]dId = doc1.txt, dId = man1.xml,dId = keys.xml,
dState = 1 dState = 2dState = 1{

{

{{

{

{{

{{{ {{

re−
evaluate

re−evaluate

Evaluation tree at state 2

Evaluation tree at state 3

(True,)

(True,)

(True,)

(True,)

False,({()}){ }k kaA3,

dState = 1{ {x

,{kind(m) = kKind(d)}

IC, ,

False,

False,

,{kind(m) = kKind(d)}

,{kind(m) = kKind(d)}

dId = doc1.txt,

x: []dId = doc1.txt, dId = man1.xml, dId = doc2.txt,dId = keys.xml,
dState = 1 dState = 2 dState = 3dState = 1{ { {{{ { {{

m: []dId = man1.xml,
dState = 2{ {

m:m: [][] dId = man1.xml,dId = man1.xml,
dState = 2dState = 2 {{ {{

Figure 6.6: Incremental evaluation of rule φ′1 at state 2 and state 3

78 Speeding up Consistency Checking

First, we consider the second check-in. At state 2, the sphere of the variable
t is composed of the sets new = {2}, chg = ∅, old = {1}, and del = ∅. Since
t’s subformula only contains t freely and is referentially transparent, we can
abort re-evaluation for values in old. Instead, we copy the relevant diagnoses
from the old report for t 7→ (1, old), which results in the report (True, ∅). For
t 7→ (2, new), we have to re-evaluate t’s subformula. We review evaluation of
the conjunction below the existential quantifier for d (k = key(d) ∧ ∃ m. . .)
for the variable assignment
{
t 7→ (2, new), x 7→ ({dId = doc1.txt, dState = 1}, old), k 7→ (kaA3, old),
d 7→ ({key = kaA3, kId = man1.xml, kKind = technical M.}, old)

}

For the left hand side of the conjunction, we can copy part of the old re-
port, because all variables in the formula k = key(d) are marked as old in
the current assignment. Notice that we adapt the binding t 7→ (2, new) to the
previous repository state: t 7→ (1, new). Clearly, the old report cannot contain
a binding of t to the new repository state. In addition, we neglect bindings of
existentially quantified variables for copying, because assignments in diagnoses
contain bindings to universally quantified variables only. The right hand side
of the conjunction must be re-evaluated, because it contains the new variable
t freely.

At the third check-in, we copy parts of the old report for the bindings
t 7→ (1, old) and t 7→ (2, old), where the latter results in:
(

False,

{(
IC,
{
k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)})

The above report lacks a binding for t. The current binding for t is pushed in
later by t’s universal quantifier. For the new state 3, t’s subformula must be
re-evaluated. We review evaluation of the conjunction k = key(d) ∧ ∃ m. . .
for the assignment
{
t 7→ (3, new), x 7→ ({dId = doc1.txt, dState = 1}, old), k 7→ (kaA3, old),
d 7→ ({key = kaA3, kId = man1.xml, kKind = technical M.}, old)

}

In Fig. 6.6, this conjunction is on the left hand side. Again, we copy the rel-
evant part of the old report for the left hand side of the conjunction. This
results in a true report although the old report contains a diagnosis with the
assignment {t 7→ 2, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}}. This diag-
nosis, however, does not contain the atomic formula k = key(d). Hence, the
left hand side of the conjunction was not responsible for an inconsistency at
the previous repository state. In contrast, below the existential quantifier for
m (at the right hand side of the conjunction) copying results in the report

(
False,

{(
IC, ∅, ∅, {kind(m) = kKind(d)})})

That is, because kind(m) = kKind(d) is included in the diagnosis above. The
above report does not contain any bindings; they are pushed in by universal

6.3 Incremental Consistency Checking 79

φ′2 = ∀ t1 ∈ repStates • ∀ t2 ∈ repStates •
¬(t1 < t2) ∨

(∀ m1 ∈ repManDs(t1) • ∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) ∧ kind(m1) = kind(m2)

)

{ }

t : [,]211

m : m : m :

m : m : m :

re−evaluate re−evaluate re−evaluate

re−evaluate re−evaluate re−evaluate

1 1 1

2 2 2

t : t :2 2[,] [,]2 21 1

2

copy t (1,old),
t (2,old)
1

(True,)

[]dId = man1.xml,
dState = 1{ {

[]dId = man1.xml,
dState = 1{ {

[]dId = man1.xml,
dState = 2{ {

[]dId = man1.xml,
dState = 2{ {

[]dId = man1.xml,
dState = 2{ {

[]dId = man1.xml,
dState = 2{ {

Figure 6.7: Incremental evaluation of rule φ′2 at state 2.

quantifiers, as done by brute force consistency checking. When we evaluate the
conjunction k = key(d) ∧ ∃ m. . . for the assignment

{
t 7→ (3, new), x 7→ ({dId = doc2.txt, dState = 3}, new), k 7→ (kaA2, new),
d 7→ ({key = kaA3, kId = man1.xml, kKind = technical M.}, old)

}

the left hand side must be re-evaluated, because now k is bound to a new
value. Below the existential quantifier for m (at the right hand side of the
conjunction) we can copy part of the old report, because the variables m and
d are both bound to old values. Notice that for copying we neglect the binding
of k, because it is bound to a new value. Clearly, in the old report we cannot
find a binding of k to the new value kaA2.

Consistency checking for rule φ′2 proceeds similarly (see Fig. 6.7). Alas, copy-
ing parts from the old report is unsound below disjunctions (see the Sect. 6.3.2
for a detailed discussion). Therefore, we evaluate φ′2 non-incrementally below
the disjunction.

We have seen that our incremental strategy also copies parts of the old
report when a rule is evaluated for the new repository state. Clearly, this could
not be achieved by the simple strategy from the beginning of Sect. 6.3. Our
incremental algorithm is quite simple to understand but copying diagnoses from
the old report may become rather complex. That is, because our consistency
checker combines diagnoses below conjunctions.

6.3.2 An Incremental Consistency Checking Algorithm

In this section, we define our new evaluation algorithm — an incremental vari-
ant of brute force evaluation presented in Chapter 5. Recall that we want to
improve the algorithm from Sect. 5.3 as follows:

• We copy those parts from previous reports that have not changed.

80 Speeding up Consistency Checking

η ::= {bi} incremental variable assignment
b ::= x 7→ (k, v) incremental binding (x variable, v value)
k ::= old | new variable kind K

Figure 6.8: Incremental variable assignment Einc

• We partition quantifier spheres into four sets: new, chg, old, and del.
Variable assignments mark variables as new and old, respectively. Our
incremental algorithm deviates from brute force evaluation mostly in the
treatment of quantified formulae.

• Due to miniscoping, only atomic formulae can appear in a negated con-
text. In particular, existential quantifiers cannot “disguise” as universal
quantifiers and vice versa. This considerably simplifies our algorithm.

Fig. 6.9 shows the denotational semantics of our incremental report gener-
ator, which has the formal type IRJ.K : A × F × Einc → B × ℘(D). Einc denotes
the set of all incremental variable assignments (see Fig. 6.8). The function
IRAJφKη is defined by structural induction on a formula φ (like brute force
report generation in Sect. 5.3). Recall that A denotes a first-order structure
and η stands for the current variable assignment. For readability, we introduce
a global variable r, which represents the old report. Superscripts denote the
free variables of a formula; φxs means that the variables from the set xs are free
in φ. For a formal definition of new auxiliary functions see Fig. 6.10 (pg. 83).

For every formula, notEval(xs, η) determines whether (1) its free variables xs
are marked as old in the current assignment η and (2) it contains referentially
transparent symbols only. In this case, we copy the relevant diagnoses from the
old report r. In order to identify relevant diagnoses, copy needs as additional
arguments the current assignment η and the formula for which the report should
be copied. We discuss details about copying below.

Miniscoping also simplifies the handling of conjunctions and disjunctions,
because we have to generate a report only if the formula is violated. Also,
we neglect implications, which are removed by miniscoping. If an atomic for-
mula or a negated (atomic) formula needs to be re-evaluated, we employ non-
incremental report generation. Recall that only atomic formulae can appear
in a negated context; thus incremental report generation performs exactly as
non-incremental report generation for negated formulae. We let ηE denote a
non-incremental variable assignment that contains all bindings from the incre-
mental assignment η without variable kinds.

The subformulae of a disjunction φ∨ψ are evaluated non-incrementally, be-
cause it is unsound to copy parts of the old report. If the disjunction is fulfilled,
one subformula, say φ, might be violated — consistency reports do not store
these information. Consider the situation where a rule containing φ ∨ ψ is ful-
filled. At the next repository state, we might re-evaluate ψ only and copy part
of the old report for φ, which results in (True, ∅). This is unsound, because φ
was violated at the previous state. We could permit incremental evaluation be-
low disjunctions, if we also stored diagnoses for violated subformulae of fulfilled

6.3 Incremental Consistency Checking 81

IRAJp(e1, . . . , en)xsKη = copy(p(e1, . . . , en),r, η) if notEval(xs, η)
RAJp(e1, . . . , en)KηE otherwise

IRAJ(¬φ)xsKη = copy(¬φ,r, η) if notEval(xs, η)
RAJ¬φKηE otherwise

IRAJφ ∧xs ψKη = copy(φ ∧ ψ,r, η) if notEval(xs, η)
rφ ⊗ rψ else if fst(rφ) = fst(rψ) = False

rφ else if fst(rφ) = False

rψ else if fst(rψ) = False

(True, ∅) otherwise
where rφ = IRAJφKη

rψ = IRAJψKη

IRAJφ ∨xs ψKη = copy(φ ∨ ψ,r, η) if notEval(xs, η)
rφ ⊕ rψ else if fst(rφ) = fst(rψ) = False

(True, ∅) otherwise
where rφ = RAJφKηE

rψ = RAJψKηE

IRAJ∀xs x ∈ e • φKη = copy(∀ x ∈ e • φ,r, η) if notEval(xs, η)
(False, {(IC, ∅, ∅, {↓(e)})}) else if

IVAJeKη is not defined
⊕(F) else if F 6= ∅
(True, ∅) otherwise

where (new, chg, old, del) = IVAJeKη
rs = {(v, IRAJφK (η ∪ {x 7→ (v, old)})) | v ∈ old} ∪

{(v, IRAJφK (η ∪ {x 7→ (v, new)})) | v ∈ new∪chg}
F = {push(x 7→ v, r) | (v, r) ∈ rs and fst(r) = False}

IRAJ∃xs x ∈ e • φKη = copy(∃ x ∈ e • φ,r, η) if notEval(xs, η)
(True, {(C, ∅, ∅, {↓(e)})}) else if

IVAJeKη is not defined
(False, {(IC, ∅, {null(e)}, ∅)}) else if T = F = ∅
(True, ∅) else if T 6= ∅
min(F) otherwise

where (new0, chg, old0, del) = IVAJeKη
(new, old) = (new0 ∪ old0 ∪ chg, ∅) if del ∪ chg 6= ∅;

(new0, old0) otherwise
rs = {IRAJφK (η ∪ {x 7→ (v, old)}) | v ∈ old} ∪

{IRAJφK (η ∪ {x 7→ (v, new)}) | v ∈ new}
T = {r | r ∈ rs and fst(r) = True}
F = {r | r ∈ rs and fst(r) = False}

Figure 6.9: An incremental report generation algorithm (r denotes the old
report from the previous consistency check, ηE denotes a non-incremental as-
signment with bindings from η; for auxiliary functions see Fig. 5.10 (pg. 63)
and Fig. 6.10)

82 Speeding up Consistency Checking

disjunctions. This requires, however, to evaluate disjunctions strictly, whereas
in our approach disjunctions can be evaluated non-strictly (i.e., we abort eval-
uation, if we find a fulfilled subformula). Our experiments have shown that
strict evaluation of disjunctions leads to significantly longer times for consis-
tency checking. Therefore, we have chosen to use non-incremental evaluation
below disjunctions in favor of non-strict evaluation.

For a universally quantified formula ∀ x ∈ e • φ, we first compute the sphere
e, resulting in the four sets new, chg, old, and del. They are computed by the
function IVAJeKη, which we discuss in Sect. 6.3.4. Similar to VAJeKη, incremental
quantifier sphere calculation by IVAJeKη is partial. We mark the values in
new ∪ chg as new and the values in old as old. Then the subformula φ is
evaluated for possible assignment extensions to these values: η∪{x 7→ (v, new)}
and η∪{x 7→ (v, old)}, respectively. If φ is violated for an assignment extension,
we push the current variable binding x 7→ v into the variable assignment of each
diagnosis in φ’s report. Finally, ⊕ joins the resulting reports in F .

Evaluation of an existentially quantified formula is slightly more compli-
cated. Here, the above procedure is sound, only if no values were changed or
deleted in the sphere, i.e., chg ∪ del = ∅. Naturally, an existentially quanti-
fied formula, which was satisfied in the previous repository state, can become
violated if values in its sphere are deleted or changed. We do not know which
values in the sphere were responsible for fulfilling the formula (this is quite
similar to disjunctions). Adding new values to the sphere cannot falsify an
existentially quantified formula. Consequently, if chg ∪ del contains values we
must mark every sphere value as new in the assignment extensions. So the
worst cases for incremental evaluation are changed or deleted values in spheres
of existential quantifiers.

We could weaken the above restrictions by adding explicit information to
the reports stating which values in the sphere of an existential quantifier are
responsible for fulfilling its subformula. We would really like to do so but we
found that reports become extremely large, if we store these additional values.
Moreover, this strategy would require strict evaluation of existential quanti-
fiers. Therefore, our tradeoff is to avoid storing these additional information
even though evaluation of existential quantifiers can be slower than evaluation
of universal quantifiers. Universal quantifiers do not suffer from changed or
deleted sphere values, because consistency reports store value bindings of uni-
versally quantified variables — they pinpoint inconsistencies. Also, universal
quantifiers must be evaluated strictly, similar to conjunctions.

For our incremental report generation algorithm, we introduce new auxil-
iary functions (see Fig. 6.10). To large part, incremental consistency checking
depends on copying diagnoses from the previously generated report. The func-
tion copy determines the relevant diagnoses from the old report (b, ds) for a
formula φ w.r.t. the current variable assignment η. From η we extract all bind-
ings to universally quantified variables that are either marked as old, or where
the bound value represents the current repository state. Diagnoses in the old

6.3 Incremental Consistency Checking 83

Copy relevant part of a report
copy : F × (B× ℘(D))× Einc → B× ℘(D)
copy(φ, (b, ds), η) = (True, ∅) if ds′ = ∅

(False, ds′) otherwise
where ds′ = {(c, as′, ps′t, ps′f) | (c, as, pst, psf) ∈ ds and

η′∀v as and ps′t ∪ ps′f 6= ∅}
where as′ = {x 7→ (v,m) |x 7→ (v,m) ∈ as and x 7→ /∈ η}

ps′t = pst ∩ preds(φ)
ps′f = psf ∩ preds(φ)

η′ = {x 7→ (v′,m) |x 7→ (v,m) ∈ η ∧ (m = old ∨ v = current state)}
where v′ = previous check state if v = current state

v otherwise

First assignment subsumes second assignment (preorder)
v ⊆ Einc × Einc

asv as′ ⇔ x 7→ (v,)∈ as ⇒ x 7→ (v,)∈ as′

Collect the atomic subformulae of a formula
preds : F → ℘(Fat)
preds(∀ x ∈ e • φ) = {↓(e)} ∪ preds(φ)
preds(∃ x ∈ e • φ) = {null(e)} ∪ preds(φ)
preds(φ · ψ) = preds(φ) ∪ preds(ψ)
preds(¬φ) = {φ}
preds(φ) = {φ}
Determine whether to re-evaluate a subformula
notEval : ℘(X)× Einc → B
notEval(xs, η) = xsnew = ∅ and xs 6= {∗}

where xsnew = {x | x ∈ xs and x 7→ (, new) ∈ η}

Figure 6.10: Auxiliary functions for incremental rule evaluation ({∗} denotes
that a formula contains an unsafe symbol)

report can contain bindings to universally quantified old variables only. We re-
place bindings to the current repository state with bindings to the state of the
previous consistency check. Clearly, this is the “current” state of the old consis-
tency report. We call this modified assignment η′∀. Then a diagnosis in the old
report is copied if (1) its assignment is subsumed by η′∀ (the diagnosis’ assign-
ment may contain more bindings than η′∀) and (2) some of its atomic formulae
are subformulae of φ. Thus, atomic formulae also identify diagnoses. Finally,
we adapt the assignments of relevant diagnoses to the new repository state and
retain atomic formulae that are subformulae of φ. The function notEval deter-
mines whether a formula should be re-evaluated. We re-evaluate a formula if
(1) all free variables in the set xs are marked as old in the current assignment η
and (2) it contains referentially transparent symbols only (otherwise, the free
variables are denoted by {∗}).

84 Speeding up Consistency Checking

Check-in Repository Changes Rules CPU Time (Sec.) CPU Time (Sec.)
checked (Static Analysis) (Static Analysis &

incr. Evaluation)
1 txt: 1n, key: 1n, man: 9n φ′1, φ

′
2 4.44 4.47

2 txt: 1c, 4n φ′1 9.55 2.33
3 man: 2c φ′1, φ

′
2 15.25 6.45

4 man: 2c φ′1, φ
′
2 20.40 6.58

5 txt: 1c φ′1 23.46 2.68
6 txt: 1c φ′1 27.98 2.53
7 key: 1n φ′1 32.50 3.09
8 man: 1n φ′1, φ

′
2 44.66 4.01

9 key: 1c φ′1 45.34 3.61

Table 6.4: Performance improvements of incremental evaluation over static
analysis

6.3.3 Achievements by Incremental Evaluation

We return to our example repository. What does incremental evaluation buy?
The last column in Tab. 6.4 shows the performance of our consistency checker
using both static analysis and incremental evaluation. Now, evaluation time de-
pends on the changed content rather than on the repository state. Notice that
the primitive strategy described at the beginning of Sect. 6.3 cannot achieve
the following: Except for states 3 and 4 every consistency check is faster than
the initial consistency check although the repository grows. Also, if we add
up the last column, we get an overall incremental checking time of 35.75 sec-
onds. The performance of classic evaluation at state 9 is worse, because it
re-evaluates rule φ′1 for all documents at each repository state. Clearly, in-
crementalization imposes the overhead of reading previous consistency reports.
In this example, however, this overhead is negligible, compared to the perfor-
mance improvements of our incremental algorithm. Our case study in Part III
confirms satisfactory performance of our prototype consistency checker; see
Sect. 12.5 (pg. 211) for a performance summary.

6.3.4 Computing Quantifier Spheres Incrementally

In this section, we discuss computation of quantifier spheres. Recall that, in
contrast to brute force evaluation, a sphere consists of four sets: new contains
new values, chg contains changed values, old contains values that remained
constant, and del contains deleted values.

A simple approach to incremental evaluation would require to store quanti-
fier spheres from the previous evaluation. This is, however, infeasible, because
quantifier spheres can become unexpectedly large since we do not control their
vocabulary. For example, a quantifier might iterate over the complete docu-
ment content. Instead of storing spheres, we memoize certain functions that
occur in quantifier sphere terms [ABH03]. This reduces the space needed for
storing intermediate data and maximizes the benefits for incremental evalua-
tion. We distinguish functions by their result type. Storing repository states is
cheap. We also consider documents by exploiting a natural property of a DMS:

6.3 Incremental Consistency Checking 85

A document can be identified by its name and check-in state. Since we only
need to know whether a document has been modified by a check-in we store
the “Doc-results” of each function the result type of which is a subtype of [Doc].
We neglect additional record labels, such as kind in the record type ManD. In
summary, we memoize each function that occurs in a quantifier sphere term
and has either [State] or a subtype of [Doc] as result type. In our example,
these are: repStates, repDs, repResDs, and repManDs. This rather compli-
cated approach is necessary because DMSs do not provide information about
how the document structure has been changed by a check-in.

The function IV computes the sphere of a quantifier, which results in four
sets. Fig. 6.11 shows the denotational semantics, where we concentrate on sym-
bol application only. As in Sect. 5.6, we require that, in order to evaluate a
term e, the values of all subterms of e must be defined; otherwise, the value
of e is not defined. Evaluations of record constructions and case statements
are straightforward. For the actual computation of a sphere, we use the helper
function IV ′, which returns either a 4-tuple of values (new, chg, old, del) or a pair
containing a value and a variable kind, i.e., new or old. Below, we refer to such
a 4-tuple as an incremental value and to the pair as a non-incremental value.
An incremental value results from evaluating a memoized applied function sym-
bol, whereas non-incremental values result from evaluating other terms. If IV ′
produces an incremental value, then we simply convert this value to the four
sets as required by our incremental consistency checker. Otherwise, we push
the returned value into the old set or the new set depending on its kind.

The helper function IV ′ evaluates variables and symbols as usual. We mark
referentially transparent symbols as old, because their evaluation does not
change. In contrast, “unsafe” function symbols are marked as new, because
their evaluation might have changed since the previous consistency check. For
an applied function symbol s, returning a result of either type [State] or a sub-
type of [Doc], diff calculates four lists new, chg, old, and del from the current
result and the stored result storedRes(s) from the previous evaluation. These
lists are propagated up the term structure. Therefore, some restrictions ap-
ply to quantifier sphere terms. We only permit symbols that treat each list
member separately, e.g., concatMap. Otherwise, if a symbol s is not memoized
then we apply the implementation of s like in classic evaluation but also return
the incremental kind of the result, which is old if each argument value of s is
marked as old and s is referentially transparent.

We apply IV also to sphere terms that lack memoized functions, e.g., refs(x)
in φ1. If a free variable of a sphere term is marked as new in the current
assignment or the term is unsafe, the lists chg, old, and del are empty and
new contains the complete sphere. Otherwise, if all free variables of a sphere
term are marked as old in the current assignment and the term is referentially
transparent, IV returns all sphere values in old leaving new, chg, and del empty.
This is sound, because, due to referential transparency, the sphere cannot have
changed.

86 Speeding up Consistency Checking

IVJ.K : A× T × Einc→p ℘(V)× ℘(V)× ℘(V)× ℘(V)
IVAJeKη = toSet(vsincr) if IV ′AJeKη = vsincr

(∅, ∅, toSet(vs), ∅) if IV ′AJeKη = (vs, old)
(toSet(vs), ∅, ∅, ∅) if IV ′AJeKη = (vs, new)

IV ′J.K : A× T × Einc→p (V× V× V× V) ∪ (V×K)
IV ′AJxKη = η(x)
IV ′AJsτ (e1, . . . , en)Kη

= apply(A, s, [fst(v1), . . . , fst(vn)], resKind) if no vi incremental
applyI(A, s, [toIncr(v1), . . . , toIncr(vn)]) otherwise

where vi = (sAi , old) if ei ≡ si and si ref. transparent
(sAi , new) if ei ≡ si and si not ref. transparent
IV ′AJeiKη otherwise

resKind = new if any vi is new, or s is unsafe
old otherwise

Apply a function to non-incremental values
apply : A× S × [V]×K→p (V× V× V× V) ∪ (V×K)
apply(A, s, [v1, . . . , vn], resKind)

= diff(storedRes(s), sAτA(v1, . . . , vn)) if s memoized
(sAτA(v1, . . . , vn), resKind) otherwise

Apply a function to incremental values
applyI : A× S × [V× V× V× V]→p V× V× V× V
applyI(A, s, [(v1,new, v1,chg, v1,old, v1,del), . . . , (vn,new, vn,chg, vn,old, vn,del)])

=




newnew++chgnew++oldnew++delnew,

newchg++chgchg++oldchg++delchg,

newold++chgold++oldold++delold,

newdel++chgdel++olddel++deldel


 if new incremental

(fst(new), fst(chg), fst(old), fst(del)) otherwise
where new = apply(A, s, [v1,new, . . . , vn,new], new)

old = apply(A, s, [v1,old, . . . , vn,old], old)
chg = apply(A, s, [v1,chg, . . . , vn,chg], new)
del = apply(A, s, [v1,del, . . . , vn,del], old)

Convert a value to an incremental value
toIncr : (V× V× V× V) ∪ (V×K)→p V× V× V× V
toIncr(v, k) = (v, v, v, v)
toIncr(vnew, vchg, vdel, vold)

= (vnew, vchg, vdel, vold)

Figure 6.11: Incremental quantifier sphere evaluation (toSet converts a list to
a set (distributes over tuples), diff determines differences between two lists,
storedRes(s) denotes the memoized result of the symbol s, ++ concatenates
lists, [V] denotes the set of all lists with elements in the set V)

6.4 Formalizing Efficient Consistency Rules 87

6.4 Formalizing Efficient Consistency Rules

We have seen that quite some effort is required to speed up consistency check-
ing. In this section, we shortly review the impact of our techniques to the work
of the language designer and the rule designer, respectively. Generally, rules
should be “local.” Obviously, our techniques described in this chapter perform
better on rules that affect a few documents only.

The language designer should associate with each symbol a narrow docu-
ment set that the symbol potentially accesses. Static analysis of symbol imple-
mentation can determine a superset of these documents only. This also means
to modularize document access functions. Our static analysis methods can then
associate tighter document sets to rules.

The rule designer should formalize local consistency rules. A rule should
concentrate on one requirement only; independent requirements should be for-
malized in different rules. This may also lead to more comprehensible rules.
The rule designer should restrict himself to using referentially transparent sym-
bols. In particular, unsafe symbols below disjunctions and implications prohibit
incremental evaluation.

6.5 Summary

In this chapter, we present methods that speed up consistency checking signif-
icantly. The techniques shown make our tolerant approach viable for general
document management, which is a rather informal application area (as com-
pared to databases).

By exploiting domain knowledge supplied by the language designer, we an-
alyze consistency rules statically: (1) we associate with each rule a document
set the rule depends on; (2) we miniscope rules, in order to lower their static
evaluation time complexity. At run-time, we re-evaluate a rule only on modified
documents if possible. Haskell’s referential transparency is a fundamental pre-
requisite to the soundness of our techniques. Our performance measurements
prove that static analysis combined with incremental evaluation results in a
significant speedup compared to brute force evaluation. We conjecture that
our incremental evaluation algorithm could be of value in other research areas
as well.

So far we have concentrated on showing inconsistencies to authors. In the
next part of this thesis, we extend this approach to also suggesting repairs
that can resolve inconsistencies. We will see that, in order to generate repairs
efficiently, we need to modify our incremental algorithm slightly. Our methods
for static analysis carry over without any adaptations.

Part II

Consistency Maintenance:
Repairing Inconsistencies

88

89

The second part of this thesis is devoted to consistency maintenance. We
extend our consistency checking approach by methods that give advice to au-
thors about how inconsistencies can be resolved. In Chapter 7, we discuss basic
design decisions and show how we integrate consistency maintenance into the
every-day work with a DMS. We shall see that simple repair enumeration is
infeasible due to the large number of possible repair actions. Therefore, we de-
velop a new two-step approach towards efficient repair generation. In the first
step, shown in Chapter 8, we model inconsistencies and possible repairs with
the help of directed acyclic graphs (DAGs). We shall see that we can re-use
many ideas from Chapter 6 to speed up the generation of these DAGs. In the
second step, shown in Chapter 9, we derive a repair collection from DAGs.

Chapter 7

From Consistency Awareness
towards Consistency Maintenance

Up to now we have concentrated on finding inconsistencies. Consistency re-
ports leave it, however, unclear how inconsistencies can be best resolved. In
this chapter, we explore the design space of generating repairs that resolve in-
consistencies. In Sect. 7.1, we determine basic design decisions for document
repair generation. Sect. 7.2 illustrates why repair enumeration is infeasible in
document management. This motivates our new two-step repair generation
approach, which we outline in Sect. 7.3. Finally in Sect. 7.4, we integrate
this two-step approach into our model of consistency-aware DMSs shown in
Chapter 3. Fig. 7.1 illustrates the context of this chapter.

7.1 How Can We React to Inconsistencies?

In this section, we determine basic design decisions that outline the road we
shall follow in the next chapters. In general, there are various ways possible to
react to inconsistencies.

1. Ignore inconsistencies or forbid inconsistencies at all, i.e., reject check-ins
that cause inconsistencies.

2. Permit violation of weak consistency rules and send their consistency
reports to the authors involved. Prohibit violation of strict rules, i.e.,
reject check-ins that raise inconsistencies.

3. Permit violation of weak rules but forbid violation of strict rules. In either
case derive repairs and send them to the authors involved.

4. Prohibit violation of rules, derive repairs for inconsistencies, and apply
these repairs iteratively until the repository is consistent. This strategy
is widely used in active databases.

7.1
7.2

7.3
7.4

8

3
2

Figure 7.1: Chapter 7 in context

90

7.1 How Can We React to Inconsistencies? 91

The first alternative represents the way current DMSs or revision control sys-
tems “react” to semantic inconsistencies. Since it does not contribute to con-
sistency maintenance, we drop this alternative.

The second alternative makes use of our consistency reports, which are gen-
erated as shown in Part I. The rule designer could add metadata to each rule
indicating who should receive which part of the consistency report. In addition,
we could attach the documents that caused inconsistencies.

The third alternative goes beyond consistency reports, which pinpoint in-
consistencies but fail to indicate how these inconsistencies can be resolved. We
shall further explore this idea in this part of this thesis. Similar to the preced-
ing chapters, we borrow ideas from the database community and try to apply
them to document management. It will, however, turn out that, due to less for-
mal documents, a very careful treatment of database consistency maintenance
approaches is necessary.

The fourth alternative appears attractive. This iterative approach is, how-
ever, not guaranteed to terminate, because rule designers can formalize contra-
dicting rules. Clearly, this is due to our expressive rule language, in which it
is undecidable whether for a rule system there exists a repository that fulfills
all rules. In addition, less formal document semantics prohibits the automatic
application of computer generated repairs (see below).

In general, we consider three repair types:

• Delete content from a document or delete a document.

• Change content in a document.

• Add content to a document or add a document. Here, we suffer from lack
of information, because, in general, we do not know where to add new
document content. In contrast to databases, the order of the content in
a document may be significant.

These repairs can be either sent to the authors of the affected documents or we
can try to apply repairs automatically. Whereas the former involves again the
author to resolve inconsistencies, the latter approach does not require author in-
teraction. There are, however, several issues to be dealt with: First, it is known
from database research that on the syntax level we cannot anticipate how a re-
pair for one rule impacts consistency of other rules. Therefore, databases apply
repairs iteratively, i.e., repairs are applied and then the database is checked for
consistency again, which can raise new inconsistencies that must be repaired,
too. Using iterative repair strategies requires sophisticated algorithms that
handle loops and potential deadlocks.

In contrast to constraint maintenance in active databases, we do not aim
at automatic repair. Instead, we only derive some of the best (i.e., least cost)
repairs, from which authors can choose. In document management, automatic
repair is not a feasible option, because (1) document structures are less formal
than database schemata and (2) the order of the content in a document may
be important for its semantics (this is in sharp contrast to relational databases,

92 Towards Consistency Maintenance

where the order of tuples in a table is negligible). In particular, adding new
content suffers from lack of formality, because we do not know where to add
the content.

Of course, repairs must be “correct,” i.e., satisfy the following requirements:

• A repair must resolve an inconsistency. This will be guaranteed by con-
struction.

• A repair must not violate the document structure, e.g., the DTD or
Schema of an XML document. For the majority of repairs, this is guar-
anteed by static type checking.

• A repair must not introduce new inconsistencies. We can determine such
negative impacts only after applying a repair to a document in the re-
pository. Since repairs are applied manually, we cannot guarantee this
requirement automatically.

Intuitively, a set of repairs for some inconsistencies is considered complete, if it
contains all possible repairs that can resolve inconsistencies. It is obvious that
for a violated rule, formalized in first-order logic, we can find infinitely many
repairs. Therefore, completeness is not a desirable option. Instead, we try to
derive some of the best repairs only. This is impossible for our rules as such,
because they employ arbitrary functions and predicates. For example, if an
atomic formula p(x, y) is violated, our system cannot anticipate how to change
x and y, in order to fulfill p(x, y).

Therefore, rule designers may annotate an atomic formula by hints. These
hints guide repair generation by providing domain knowledge. Also, hints sup-
port high-level repairs, which can propose different actions for the same in-
consistency depending on some other condition, e.g., the development state of
a document engineering project. Static type checking guarantees that hints
respect the document structure.

Our design decisions are as follows:

• We derive repairs that can resolve inconsistencies.

• Repairs for a violated rule must resolve inconsistencies for this rule.

• Hints from the rule designer guide repair generation.

• We are not striving for a complete set of all repairs for violated rules.
Instead, we try to find a small set of repairs that proposes small changes
to the repository.

Next, we illustrate an enumeration approach towards repair generation. Al-
though simple repair enumeration is infeasible in our setting, the next section
motivates our new two-step approach towards efficient repair generation, which
we outline in Sect. 7.3.

7.2 Generating Repairs — A First Account 93

7.2 Generating Repairs — A First Account

From the hints of the rule designer, we can derive suggestions for violated
atomic formulae. One might be tempted to enumerate repairs as follows: Sug-
gestions for an atomic formula form a basic repair collection.1 Each repair set
of the collection is an alternative. Within a repair set, all repairs have to be
applied simultaneously, in order to resolve inconsistencies. One could join the
repair collections generated for the subformulae of a disjunction or the subfor-
mula of an existential quantifier. For conjunctions and universal quantifiers,
one could compute the cartesian product of the repair collections generated for
their subformulae (and map binary union over this product). By this algorithm
one would compute the repair collection for each rule. Since a rule system can
be seen as a conjunction of many rules, one could combine these collections as
if the rules were subformulae of a conjunction. In sum, one would arrive at a
repair collection, from which authors could choose an alternative repair set.

The above approach is, however, infeasible due to the large number of re-
pairs in the collections, which lets cartesian products “explode” and causes
exponential running time. For example, assume a conjunction φ∧ψ, for which
we already have computed the following repair collections:

repair collection for φ :
{ {r1, r2, r3}, {r4, r5}, {r6, r7}

}
repair collection for ψ :

{ {r8}, {r9}, {r10}
}

Then, by the above approach, we would compute the following repair collection:



{r1, r2, r3, r8}, {r4, r5, r8}, {r6, r7, r8},
{r1, r2, r3, r9}, {r4, r5, r9}, {r6, r7, r9},
{r1, r2, r3, r10}, {r4, r5, r10}, {r6, r7, r10}



 .

From two collections, each containing 3 sets, we would build a new collection
containing 3 · 3 = 9 sets. This procedure is applied to every conjunction and
every universal quantifier. In sum, inefficient cartesian product calculation
would be applied to very large inputs, if we followed this approach.

Recall that performance of consistency checking is crucial, because the re-
pository must be locked during consistency checking. In addition, interactions
between repairs must be considered: Repairs within a repair set must be ap-
plicable simultaneously, e.g., they must not suggest to delete some content and
at the same time to change this content.

7.3 Feasible Document Repair Generation:
A new Two-Step Approach

In order to handle the large amount of possible repairs, we do not enumerate
them. Instead, in the first step, for each rule we describe repair actions by
a directed acyclic graph (DAG) only. We call these DAGs suggestion DAGs
(short: S-DAGs). S-DAGs are optimized for efficient repair generation and

1Throughout, we use the term “repair collection” to mean a set of sets of repairs.

94 Towards Consistency Maintenance

also provide a convenient way to visualize repairs. From an S-DAG, authors
can choose repair actions interactively. S-DAGs provide a computationally
tractable approach to generating useful repair actions; but they suffer from an
inherent weakness: Authors choose actions for each rule separately, independent
of their effect on other rules. If, however, many rules are violated, interactions
between repair actions and potential impacts regarding overall consistency gain
importance. Therefore, in the second step, we derive a single repair collection
from the S-DAGs of all rules, similarly to the above approach. The repair
collection contains alternative repair sets, each of which contains repairs that
are necessary to resolve all inconsistencies in the repository. Our approach
guarantees the following:

• Repairs really resolve inconsistencies.

• Each repair set contains compatible repairs only, i.e., repairs do not con-
tradict each other.

• Repair sets provide mutually independent alternatives.

The collection can be sorted w.r.t. user-defined metrics that are based on repair
ratings. We rate a repair according to its individual cost, the inconsistencies
it resolves, and the rules that may be violated by applying it. Notice that the
application of repairs might introduce new inconsistencies. From the repair
collection, authors can choose a set of a high ranking and then manually ap-
ply its repairs to the documents in the repository. Since often time and cost
restrictions prohibit the resolution of all inconsistencies, we also support par-
tial inconsistency resolution. Instead of applying a complete repair set, authors
can choose those repairs that resolve the most troubling inconsistencies at small
costs.

In contrast to many other approaches (most notably [NEF03]), we derive
repairs from S-DAGs only. Consequently, no further inspection of the repository
is necessary, i.e., the repository is not locked during repair derivation. This is
essential, because deriving repairs is computationally expensive as compared
to generating S-DAGs. We consider the separation of S-DAG generation from
repair derivation a major feature of our approach. In addition, S-DAGs are
reduced during their generation w.r.t. the criterion of minimal change. Thus,
derived repairs propose small changes to the repository only. Of course, repair
collections are invalidated by further check-ins to the repository, which cause
new consistency checks generating new S-DAGs. This is, however, no issue,
because we derive repair collections on demand only.

We borrow some techniques from the database community. In the database
context, however, active constraint maintenance aims to arrive at a consistent
database state after each update. Therefore, active databases automatically
apply repairs, if an inconsistency occurs. These repairs range from additional
updates to the database towards a complete rollback of the update. Notice
that at least part of the database is locked during constraint maintenance. The
major differences between our approach and constraint maintenance approaches
for databases are:

7.4 Consistency Maintaining DMSs 95

access

check in

check out

instance of

formalized

implemented

typeuse

use
check

documents

choose / adapt

author

manager
project

designer
rule

language
designer

rules & hints
project

rules & hints
consistency

templates
document

templates
project

repository
(DMS)

consistency
check

Haskell

type system

partly
derived

external libs
(XPath, heuristics, ...)

language function sym.

predicate sym.types

temp. logic

generate

derivemerge

S−DAGs

collection

collection

repair

repair

2.) repair set
. . .

1.) repair set

choose
& apply

collection
global repairsort by

user metric

Figure 7.2: Overview of a consistency maintaining DMS (ovals mark fixed
components; rectangles mark customizable components)

• We derive repairs from S-DAGs and not directly from the documents in
the repository.

• Hints guide repair generation and facilitate flexible response to inconsis-
tencies.

• We do not aim at automatic repair but provide authors with a few repair
alternatives, which are prioritized w.r.t. user-defined preference metrics.

• We permit inconsistencies and facilitate partial inconsistency resolution.

Next, we show how we integrate our new two-step repair generation approach
into our model of consistency-aware DMSs shown in Chapter 3.

7.4 Consistency Maintaining DMSs

We extend our DMS model from Fig. 3.2 (pg. 22) as shown in Fig. 7.2. The
rule designer annotates consistency rules by hints that guide S-DAG generation.

96 Towards Consistency Maintenance

For each rule, our consistency checker generates an S-DAG. During consistency
checking, the repository is locked. S-DAGs already contain explicit information
about inconsistencies that have occurred and how individual inconsistencies can
be resolved. From each S-DAG, we derive a repair collection. This and all fol-
lowing steps do not access the repository and are, therefore, independent from
consistency checking. We merge the repair collections, in order to determine a
single repair collection for all rules. Finally, we sort this collection according
to user-defined preference metrics.

We detail S-DAG generation in Chapter 8. In Chapter 9, we show how the
repair collection can be derived from S-DAGs.

Chapter 8

S-DAGs: Towards Efficient
Document Repair Generation

In this chapter, we present the first step of our consistency maintenance ap-
proach. Instead of just finding inconsistencies, we generate useful repair actions
that can resolve inconsistencies. Recall that we tolerate inconsistencies; but we
advise how they can be resolved. The decision to resolve inconsistencies still
lays in the hands of authors. Following our approach in Sect. 7.3, this chapter is
concerned with S-DAGs, which provide a comfortable means to show inconsis-
tencies and possible repair actions to authors. Also, S-DAGs can be generated
incrementally, which is a key to achieve scalability of our approach.

We start this chapter by giving an informal overview in Sect. 8.1. In Sect. 8.2,
we show how hints are formalized and how they guide S-DAG generation. In
Sect. 8.3, we explain S-DAGs in detail and explore how they can be reduced.
We define an (incremental) algorithm for S-DAG generation in Sect. 8.4. In
Sect. 8.5, we show how S-DAGs can be used for interactive repair. Sect. 8.6
summarizes this chapter. Fig. 8.1 illustrates the context of this chapter.

8.1 Informal Overview

In order to generate good repair actions, rule designers should annotate con-
sistency rules by hints; Fig. 8.2 shows the annotated rule φ1.1 Basically, a hint
indicates how the truth value of an atomic formula can be changed. Hints form
a collection.2 In a hint collection, each hint set is an alternative; within each

1We use the miniscoped variant of φ1.
2Throughout, we use the term “hint collection” to mean a set of sets of hints.

8.1
8.2

8.3
8.4

8.5
8.6

9

11 12

4.2
6.3

7

Figure 8.1: Chapter 8 in context

97

98 S-DAGs: Towards Efficient Document Repair Generation

φ1 = ∀ tKEEP ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d)

{ {k ; key(d) False 1},
{d.key ; k False 5}

}
∧

∃ m ∈ repManDs(t) •
dId(m) = kId(d) {{m.dId ; kId(d) False 3}} ∧
kind(m) = kKind(d) {{m.kind ; kKind(d) False 2}}

Figure 8.2: Example rule φ1 (miniscoped) with hints

set, all hints are evaluated simultaneously. For example, the atomic formula
k = key(d) is annotated by
{ { k ; key(d) False 1 },
{ d.key ; k False 5 }

}
.

The above hint collection proposes changes to one of the variables k or d, in
order to invert the truth value of k = key(d), if its boolean result is False.
For this, we could either set the current value of k to the value of key(d) or
set the component key of d’s value to the value of k. Clearly, then k and
key(d) are equal. We assign a cost of 1 to the first hint and a cost of 5 to
the second hint. Changing key definitions is more expensive, because this may
cause further inconsistencies. We annotate the temporal variable t by KEEP,
in order to prevent our algorithm to suggest changing or deleting a repository
state (clearly, in a DMS this hardly makes sense). The hint for the atomic
formula dId(m) = kId(d) sets the component dId of m’s value only; we do not
want to change the key definition d if dId(m) = kId(d) is violated.

For each rule, our system generates an S-DAG, which visualizes inconsis-
tencies and possible repair actions. The structure of an S-DAG resembles that
of a consistency rule. Nodes represent logical connectives or atomic formulae;
edges target the subformulae of a connective. Edges below quantifier nodes
carry bindings of variables to values. A predicate node occurs as a leaf only. It
contains an atomic formula φ responsible for an inconsistency, the truth value
of φ, and the predicate suggestion collection3 resulting from evaluating the hint
collection for φ.

From the user perspective, a universal node ∀© represents inconsistencies
resulting from dubious document content, where each edge blames a value for
inconsistencies represented by the edge’s target S-DAG. An existential node
∃© represents an inconsistency resulting from missing document content. This
content could be either really missing or it could be regarded as missing, because
one of the edges carries defective content. In Sect. 8.5.1, we present heuristics
that recognize which of these possibilities applies. Below conjunction nodes
∧© and universal nodes ∀© each S-DAG must be repaired. In contrast, it is
sufficient to repair only one S-DAG below a disjunction node ∨© and existential
node ∃©, respectively.

3Throughout, we use the term “predicate suggestion collection” to mean a set of sets of
predicate suggestions.

8.1 Informal Overview 99

Check-in Document Modifications
Kind Details

1 doc1.txt add ...as shown in manual kaA3 ...
keys.xml add <kDef key="kaA3"

kId="man1.xml"
kKind="technical M."/>

man1.xml add <man kind="technical M."> ...
2 man1.xml change <man kind="field M."> ...
3 doc2.txt add ...as shown in manual kaA2 ...
4 man2.xml add <man kind="field M."> ...

man3.xml add <man kind="field M."> ...
man4.xml add <man kind="field M."> ...

Table 8.1: Example repository up to state 4

k kaA3 k kaA2

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

m dId = man1.xml, dState = 2,{ }kind = field M.

x {dId = doc1.txt, dState = 2} x {dId = doc2.txt, dState = 3}x {dId = doc1.txt, dState = 2}

t 2 t 3 t 4

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M. { }d key = kaA3, kId = man1.xml,

kKind = technical M.

Figure 8.3: S-DAG for rule φ1 at state 4

At state 4, we generate the S-DAG shown in Fig. 8.3 (for the development of
the repository see Tab. 8.1). In the leaves, we find atomic formulae responsible
for inconsistencies. For example, the right hand leaf indicates that the atomic
formula kind(m) = kKind(d) is violated, if m is bound to the manual man1.xml
and d is bound to the key definition for kaA3. We can grasp these bindings by
following the paths from the S-DAG root to this leaf.

The S-DAG in Fig. 8.3 lacks concrete repair actions, i.e., to add, change, or
delete document content. In order to support interactive repair, we augment
S-DAGs by actions after consistency checking. Fig. 8.4 shows the augmented
S-DAG for rule φ1 at state 4 (where we consider inconsistencies at state 4 only).
Quantifier edges carry actions marked grey. An action proposes to either add
a value to (Add), or change a value within (Chg), or delete a value from the
sphere of this quantifier (Del). An action KEEP indicates that the value must

100 S-DAGs: Towards Efficient Document Repair Generation

k kaA3
k kaA2

kaA3Del

x {dId = doc2.txt, dState = 3}x {dId = doc1.txt, dState = 2}

{dId = doc2.txt, dState = 3}{dId = doc1.txt, dState = 2} DelDel

t 4
KEEP

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M. { }d key = kaA3, kId = man1.xml,

kKind = technical M.

kaA3
Chg

dId=man1.xml, dState = 2,
kind = technical M.{Chg

key = kaA2, kId = man1.xml,
kKind = technical M. {{Chg

m dId = man1.xml, dState = 2,{ }
}

kind = field M.

Figure 8.4: Augmented S-DAG for rule φ1 at state 4

k kaA2

x {dId = doc2.txt, dState = 3}

{dId = doc2.txt, dState = 3}Del

t 4
KEEP

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M.

kaA3
Chg

key = kaA2, kId = man1.xml,
kKind = technical M. {{Chg

Figure 8.5: Augmented S-DAG resulting from changing the kind for the manual
man1.xml towards technical M.

not be changed. For example, we propose to change the key kaA2 to kaA3
or to delete the document doc1.txt. From an augmented S-DAG, authors can
choose actions interactively. Notice that, still, it is unclear which actions in
an S-DAG must be applied together, in order to resolve the inconsistencies.
For example, an author may choose to change the kind of manual man1.xml
towards technical M. Applying this action to the S-DAG in Fig. 8.4 results in
the S-DAG shown in Fig. 8.5. The remaining inconsistency can be resolved by
choosing another action, e.g., by changing the key reference kaA2 to kaA3.

8.2 Hints for Better Repair Actions 101

Notice that the existential quantifier for m does not contain edges for the
manuals man2.xml through man4.xml. We regard changes to these manuals
too expensive; instead, we propose to change the kind of the manual man1.xml
only. Recall that we do not aim to generate the complete set of all repairs but
to present a few repairs to authors. We consider this as a major benefit of our
approach, as compared to alternative approaches towards interactive repair,
e.g., [NEF03].

Compare our S-DAGs with the diagnoses from Part I. From a diagnosis
(

IC,
{
t 7→ 4, k 7→ kaA3, x 7→ {dId = doc1.txt, dState = 1}} ,

∅, {kind(m) = kKind(d)}
)

authors learn about an inconsistent key reference. But they have to find out
resolution actions by themselves, which requires good knowledge about docu-
ment structures and the consistency rule. With an augmented S-DAG at hand,
authors can choose the right action for repair. On the other hand, rule de-
signers must annotate rules by hints. We shift some of the responsibilities for
resolving inconsistencies from authors to rule designers. We argue that this
step is natural, because rule designers know the rules better than authors do.
Also, hints are defined only once together with the rules.

In the next section, we detail how rule designers formalize hints. Sect. 8.3
is dedicated to S-DAGs. We define our (incremental) S-DAG generation algo-
rithm in Sect. 8.4. Interactive repair is discussed in Sect. 8.5.

8.2 Hints for Better Repair Actions

Actions are derived from predicate suggestions, which in turn are generated
from truth values of atomic formulae. A predicate suggestion indicates how the
truth value of an atomic formula should be changed. For example, the key ref-
erence to kaA2 causes violation of the atomic formula k = key(d) for the variable
assignment {k 7→ kaA2, d 7→ {key = kaA3, kId = man1.xml, kKind = technical M.}}.
Then we can generate two predicate suggestions:

Change k from kaA2 to kaA3. or
In d change the field key from kaA3 to kaA2.

Clearly, both alternatives are plausible, because they invert the truth value
of k = key(d) under the given assignment. In some situations, we know that
inconsistencies of the above kind can result purely from a wrong key reference.
Then we would like to generate the first alternative only. For arbitrary predicate
symbols, however, predicate suggestions are not that obvious.

8.2.1 Formalizing Hints

A hint is formalized through a term and has one of the two forms shown in
Fig. 8.6. In a hint x ; e b k c, x is a quantified variable, e is a term that
calculates the new value for x, and b is the truth value of the atomic formula,

102 S-DAGs: Towards Efficient Document Repair Generation

Annotated formulae FH
φ, ψ ::= p(e1, . . . , en)

{
{h}
}

atomic formula with hints
| φ · ψ | ¬φ junction (· ∈ {∨,∧,⇒}); negation
| Q x[a] ∈ e • φ quantified formula (Q ∈ {∀,∃}), annotation a

Hints H
h ::= x ; e b [k] [c] set x to e and assign the cost c if the result of the

atomic formula is b and the kind of x is k
| x.l ; e b [k] [c] set the label l in x to e and assign the cost c

if the formula’s result is b and the kind of x is k
Quantifier annotation
a ::= KEEP | CHG do not repair; force change

Figure 8.6: Abstract syntax of annotated formulae FH and hints H
the truth value of which should be inverted to the opposite of b. The optional
parameter k determines whether this hint applies to new and old variables,
respectively. The optional parameter c assigns a cost to a hint; our simple cost
model comprises natural numbers only. Costs are useful for reducing S-DAGs
(see Sect. 8.4.5) and rating repairs (see Chapter 9). By costs, the rule designer
can gauge potential negative impacts of a repair. If the type of x is a record
type, we support a reduced hint x.l ; e b k c, which applies to a record label
l of x. In the term e, the rule designer can use any quantified variable and any
function symbol (defined by the language designer). A reference to a variable
means the variable’s value prior to evaluating the hint. Thus, we can set the
new value of a variable depending on its current value, which is responsible for
the violation. Hints form a collection. Each hint set is an alternative. Within
a hint set, all hints are evaluated simultaneously. We denote the set of all hints
by H and the set of all annotated formulae by FH.

Quantifier annotations provide further guidance by limiting the kinds of
repair actions derived for quantifier variables. This is important for S-DAG
augmentation (see Sect. 8.5.1) and repair derivation (see Chapter 9). There,
a quantifier variable annotated by KEEP is ignored. For a quantifier variable,
annotated by CHG, we only derive repairs to change the variable.

Incremental consistency checking distinguishes between new (or changed)
and old variables. Rule designers can exploit these information in hints. Thus,
they can “blame” new (or changed) documents for inconsistencies. Consider
the following variant of φ1:

φ1 = ∀ tKEEP ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •
∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d)

{ {k ; key(d) False new 1},
{d.key ; k False new 5}

}
∧

∃ m ∈ repManDs(t) •
dId(m) = kId(d) {{m.dId ; kId(d) False 3}} ∧
kind(m) = kKind(d) {{m.kind ; kKind(d) False 2}}

If either of the variables k and d is modified, then we evaluate one hint only.
If both variables k and d are modified, then we evaluate both hints. The case

8.2 Hints for Better Repair Actions 103

that both variables k and d are marked as old cannot occur (during incremental
consistency checking) since then the atomic formula is not evaluated (instead,
part of the old S-DAG is copied).

Hints are useful for flexible inconsistency handling strategies. For example,
a hint can depend on the current repository state (at which the inconsistency
occurred) or the content of a specific document. That way we can react differ-
ently to an inconsistency depending on the development state of a document
engineering project.

Our static type checker ensures well-typedness of hints, such that predicate
suggestions are compatible with the document structure. Of course, this is
guaranteed only if the document type resembles the document structure cor-
rectly. Our consistency checker evaluates hints and generates the corresponding
predicate suggestions. If no hint is given, we generate a predicate suggestion
that proposes to invert the truth value of the atomic formula. Predicate sug-
gestions do not indicate whether authors should delete, change, or add docu-
ment content. These indications are added during S-DAG augmentation; see
Sect. 8.5.

8.2.2 Type Checking Hints

Of course, hints must be type checked. Since they are formalized with the help
of terms, type checking is straightforward. For a hint x ; e b k c, we require
that x is in scope, e is a well typed term, and x has the same type as e (type
checking ignores the boolean value b, the variable kind k, and the cost c). For
a hint x.l ; e b k c, we require that x is in scope, e is well typed, l is a valid
label in the record type of x (i.e., l is a member of the record label environment
of x’s type), and e’s type equals the result type of l. Fig. 8.7 shows the new well-
typedness rules and the new inference rules for our type checking algorithm.
The judgements follow the shape of judgements for formulae (see Sect. 4.3.2
and 4.3.3). In the type inference rule ChkHint, we expect the instantiated type
θxν of x when inferring the type of e. Similarly, in the type inference rule
ChkHintField we expect the instantiated result type θxτgl of l when inferring
the type of e.

We consider type checking of hints a crucial aspect, because generated repair
actions must be compatible with the document structure, i.e., applying an
action to a document does not invalidate its structure (e.g., a DTD or a XML
Schema). Static type checking is the first step towards this property. We can
guarantee that repairs, proposing to change content, are compatible with the
document structure. For a more detailed discussion see Sect. 8.5.3.

In the next section, we show how S-DAGs can be used to store predicate
suggestions space efficiently and to describe repair actions. A major feature of
our approach is to reduce S-DAGs, in order to abandon redundant actions.

104 S-DAGs: Towards Efficient Document Repair Generation

Well typedness rules for hints

C, Γ, ∆ `S x : τg C, Γ, ∆ `S e : τg
C, Γ, ∆ `S x ; e b k c

TypHint

C, Γ, ∆ `S x : τg τg = R τg1 . . . τgn
l : τg → τgl ∈ ∆ l ∈ R̂

C, Γ, ∆ `S e : τgl
C, Γ, ∆ `S x.l ; e b k c

TypHintField

C, Γ, ∆ `S p : τ1× . . .×τn → Bool
C, Γ, ∆ `S ei : τi C, Γ, ∆ `S hi,j

C, Γ, ∆ `S p(e1, . . . , en) {{hi,j}}
TypPredApp

Type inference rules for hints

Cx, Γ, ∆ °S x : θx(ν) Ce, Γ, ∆ °S e : θe(θxν)
θeCx ∪ Ce, Γ, ∆ °S x ; e b k c, θe

ChkHint

Cx, Γ, ∆ °S x : θx(ν) θxν = R τg1 . . . τgn
l : τg → τgl ∈ ∆ l ∈ R̂
Ce, Γ, ∆ °S e : θe(θxτgl)

θeCx ∪ Ce, Γ, ∆ °S x.l ; e b k c, θe

ChkHintField

Ci, Γ, ∆ °S ei : θi(νi)
C, Γ, ∆ °S p : θ(θ1ν1× . . .×θnνn → Bool)

Ci,j , Γ, ∆ °S hi,j , θi,j
θi,jC ∪

⋃
θθi,jCi ∪ θ

⋃
Ci,j , Γ, ∆ °S

p(e1, . . . , en) {{hi,j}}, θ ◦ θi,j

ChkPredApp

Figure 8.7: Typing hints

8.3 Describing Repair Actions by S-DAGs

Describing repair actions by S-DAGs has three major advantages:

• Generating S-DAGs is faster than enumerating repair collections. S-
DAGs can be reduced during their generation, in order to abandon re-
dundant actions. Also, S-DAGs are well suited to incremental generation.

• S-DAGs visualize inconsistencies and possible repair actions in a conve-
nient way to authors. Sharing of nodes avoids redundancies and also
helps authors to anticipate the effect of an action.

• From S-DAGs, we can derive a repair collection on demand, which is done
after the actual consistency check; see Chapter 9.

First, we show how S-DAGs can be used to store predicate suggestions, thereby
describing repair actions. In Sect. 8.3.2, we describe the rationale behind S-
DAG reduction. A formal definition of S-DAGs can be found in Sect. 8.4.1.

8.3 Describing Repair Actions by S-DAGs 105

k kaA3 k kaA3k kaA2 k kaA2

t 2

False: k = key(d)

{ {{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{d key = kaA3,

kKind = technical M.
kId = man1.xml, { {d key = kaA3,

kKind = technical M.
kId = man1.xml, {{d key = kaA3,

kKind = technical M.
kId = man1.xml, { {d key = kaA3,

kKind = technical M.
kId = man1.xml, {

{ {x dId = doc1.txt,
dState = 2 { {x dId = doc1.txt,

dState = 2 { {x dId = doc1.txt,
dState = 2{ {x dId = doc2.txt,

dState = 3 { {x dId = doc2.txt,
dState = 3

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man2.xml,

{{
kind = field M.
dState = 4,

m dId = man4.xml,

{{
kind = field M.
dState = 4,

m dId = man3.xml,

{{
kind = field M.
dState = 4,

False: dId(m) = kId(d)

{{m.dId [man4.xml man1.xml.] 3}}

False: dId(m) = kId(d)

{{m.dId [man3.xml man1.xml.] 3}}

False: dId(m) = kId(d)

{{m.dId [man2.xml man1.xml.] 3}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

t 3 t 4

Figure 8.8: Complete S-DAG for rule φ1

8.3.1 What is an S-DAG?

The structure of an S-DAG resembles that of a consistency rule. Nodes repre-
sent logical connectives or atomic formulae; edges target the subformulae of a
connective. We distinguish six kinds of nodes.

Universal nodes ∀© and existential nodes ∃© represent universal and existen-
tial quantification, respectively. An outgoing edge carries a value binding to
the quantified variable and actions. A value represents a repository state, a
document, or document content. Actions are added by S-DAG augmentation;
they indicate how inconsistencies can be resolved. Conjunction nodes ∧© and
disjunction nodes ∨© stand for conjunctions and disjunctions, respectively. A
predicate node occurs as a leaf only; it contains (1) an atomic formula φ respon-
sible for an inconsistency, (2) φ’s truth value, and (3) a predicate suggestion
collection, which indicates how the truth value of φ can be inverted. A leaf
Abandoned stands for an S-DAG that has been reduced, because it contains re-

pairs that are redundant or too expensive. Notice that by reducing S-DAGs we
eliminate repairs that are not useful; S-DAGs contain a subset of the complete
set of all repairs. S-DAGs do not include implication nodes, because formulae
are miniscoped prior to S-DAG generation; negation nodes are omitted.

Fig. 8.8 shows the complete S-DAG for rule φ1 at state 4. In the leaves,
we find predicate suggestions for atomic formulae. For example, the bottom

106 S-DAGs: Towards Efficient Document Repair Generation

leaf indicates that the atomic formula kind(m) = kKind(d) is violated, if m is
bound to one of the manuals man1.xml, man2.xml, man3.xml, or man4.xml,
and d is bound to the key definition for kaA3. The predicate suggestion
m.kind [field M. Ã technical M.] 2 proposes to change the kind of the manual m
to technical M. It results from evaluating the hint m.kind ; kKind(d) False 2
under the following assignments:

{d 7→ {kKind = technical M., . . .},m 7→ {dId = man1.xml, kind = field M.}, . . .}
{d 7→ {kKind = technical M., . . .},m 7→ {dId = man2.xml, kind = field M.}, . . .}
{d 7→ {kKind = technical M., . . .},m 7→ {dId = man3.xml, kind = field M.}, . . .}
{d 7→ {kKind = technical M., . . .},m 7→ {dId = man4.xml, kind = field M.}, . . .}

At the current stage, S-DAGs lack information about concrete repair actions,
i.e., adding, changing, or deleting values. S-DAGs will be augmented with
actions after the consistency check (see Sect. 8.5.1). Separating the generation
of S-DAGs from their augmentation speeds up consistency checking. This is
vital, because the repository must be locked during consistency checks.

The S-DAG in Fig. 8.8 is considerably larger than the S-DAG in Fig. 8.3
(pg. 99). In an S-DAG, we have to store every possible binding below an
existential node, because we do not know which edge should be repaired. Con-
sequently, S-DAGs may grow really large.

8.3.2 Reducing S-DAGs

We can, however, reduce S-DAGs by removing redundant parts. Recall that our
major design decision is to generate repairs that require small changes to the
repository. Currently, this decision cannot be overridden by any annotations
of the rule designer.

In our example, one would resolve the inconsistency introduced by the wrong
kind of man1.xml rather by changing the kind of man1.xml than by changing
the name and the kind of one of the other manuals. Intuitively, the S-DAG
for man1.xml requires less changes to the repository than the S-DAGs for the
other manuals. Thus, in Fig. 8.8, we replace the target S-DAGs of the edges
for man2.xml, man3.xml, and man4.xml by Abandoned (see Fig. 8.9). In order
to save space, we replace all edges targeting Abandoned by one edge carrying a
binding to a dummy value ∗, which intuitively means “all other values in the
quantifier sphere.” Fig. 8.9 shows the benefits of this edge reduction. Finally,
we arrive at the S-DAG shown in Fig. 8.10. The S-DAG differs from the S-
DAG in Fig. 8.3, because we cannot share the S-DAGs below the edges labeled
t 7→ 3 and t 7→ 4. The (additional) dummy S-DAG Abandoned is necessary for
incremental S-DAG generation.

Formally, we have defined an ordering relation ≺ for S-DAGs. By this
partial strict order, an S-DAG d1 is smaller than an S-DAG d2 iff all leaves in
d1 are also contained by d2 and d1 represents less inconsistencies d2.4 Then, for
existential nodes and disjunction nodes we retain the smallest S-DAGs below
them and replace the other S-DAGs by Abandoned . In general, there will be

4Of course, ≺ respects the structure of S-DAGs.

8.3 Describing Repair Actions by S-DAGs 107

Abandoned

m *

Abandoned

Retain the smallest S−DAGs only

Reduce edges

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man2.xml,

{{
kind = field M.
dState = 4,

m dId = man4.xml,

{{
kind = field M.
dState = 4,

m dId = man3.xml,

{{
kind = field M.
dState = 4,

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man2.xml,

{{
kind = field M.
dState = 4,

m dId = man4.xml,

{{
kind = field M.
dState = 4,

m dId = man3.xml,

{{
kind = field M.
dState = 4,

False: dId(m) = kId(d)

{{m.dId [man4.xml man1.xml.] 3}}

False: dId(m) = kId(d)

{{m.dId [man3.xml man1.xml.] 3}}

False: dId(m) = kId(d)

{{m.dId [man2.xml man1.xml.] 3}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

Figure 8.9: Reducing the existential node for m at state 4

many smallest S-DAGs, because ≺ is partial and does not necessarily induce a
lattice [DP90] on the S-DAGs below a node. Clearly, it is sufficient to repair
one S-DAG below an existential node or a disjunction node. The smallest S-
DAGs represent repairs that require the least changes to the repository and are
thus most likely to be chosen. In contrast, for conjunction nodes, we keep the
greatest S-DAGs below them, i.e., we drop those S-DAGs that are subsumed
by other S-DAGs. Intuitively, we must repair all S-DAGs below a conjunction
node. Assume that we must repair two S-DAGs d1 and d2, where d1≺d2; then
it is sufficient to repair d2 only, because d2 already represents all inconsistencies
from d1.

Notice that by the above reduction strategy we loose expensive repairs, which
is important, because authors apply repairs manually. Next, we define two S-
DAG generation algorithms.

108 S-DAGs: Towards Efficient Document Repair Generation

k kaA3 k kaA3k kaA2 k kaA2

t 2

{ { { {d key = kaA3, d key = kaA3, d key = kaA3, d key = kaA3,

kKind = technical M. kKind = technical M. kKind = technical M. kKind = technical M.
kId = man1.xml, kId = man1.xml, kId = man1.xml, kId = man1.xml,{ { { {

t 3 t 4

Abandoned

m *

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: k = key(d)

{ {{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ {x dId = doc1.txt,
dState = 2 { {x dId = doc1.txt,

dState = 2 { {x dId = doc1.txt,
dState = 2{ {x dId = doc2.txt,

dState = 3 { {x dId = doc2.txt,
dState = 3

m dId = man1.xml,

{{
kind = field M.
dState = 2,

m dId = man1.xml, {{
kind = field M.
dState = 2,

Figure 8.10: Reduced S-DAG for rule φ1 at state 4

8.4 Generating S-DAGs

Our S-DAG generation algorithms are defined by structural induction on a
formula. They create nodes for violated subformulae (similar to the report
generation algorithms in Sect. 5.3 and 6.3.2). An S-DAG node is built in
constant time, as opposed to the computation of cartesian products and unions
of diagnoses sets. For each subformula, we reduce the resulting S-DAG, as
explained above. For atomic formulae, we evaluate hints. Our algorithms
require that negations have been pushed into the formula to process. This is
achieved by miniscoping (see Sect. 6.2.2).

Next, we introduce formal notations for S-DAGs, predicate suggestions, and
repair actions. In Sect. 8.4.2, we define a basic S-DAG generation algorithm;
Sect. 8.4.3 is devoted to incremental S-DAG generation. We illustrate both
algorithms in Sect. 8.4.4 by our running example. In Sect. 8.4.5, we define
ordering relations for S-DAGs and auxiliary functions.

8.4.1 Preliminaries:
S-DAGs, Predicate Suggestions, Repair Actions

Fig. 8.11 shows the abstract syntax of S-DAGs as already explained. We let
© denote an empty S-DAG. Below conjunction nodes and disjunction nodes,
respectively, we label edges by the number of the corresponding subformula.

A predicate suggestion indicates how the truth value of an atomic formula
can be inverted. We distinguish between changing the value v1 of a variable x
to v2, changing the value v1 of a component l of a variable’s value to v2 (if the

8.4 Generating S-DAGs 109

S-DAGs G
d ::=© empty S-DAG

| Abandoned abandoned S-DAG

| φat b
{
{psug}

}
predicate leaf, predicate suggestion psug

| ·©
{

(n, d)
} junction node; edges with child S-DAG d,

edge number n corresponds to subformula number

| Q© x
{

(v, {act}, d)
} quantifier node, variable x; edges with bound

value v, actions act, child S-DAG d
Predicate suggestions S
psug ::= x [v1 Ã v2] c change the value of x from v1 to v2, cost c

| x.f [v1 Ã v2] c change value of component f from v1 to v2, cost c
| x [b : φat] change x, such that the truth value of φat is b
| x [???] contradiction: don’t know how to change x

Repair actions C
act ::= Add v | Del v add the value v; delete the value v

| Chg v1 Ã v2 change the value v1 to v2

| KEEP do not change anything

Figure 8.11: Abstract syntax of S-DAGs G, predicate suggestions S, and repair
actions C

variable has a record type), and inverting the truth value of the atomic formula.
Whereas the first two suggestions are generated from hints, the last suggestion
is generated, if no hints are given. In addition, we provide a “fall-back” case,
which is generated, if a hint proposes to change a variable annotated by KEEP.

In an S-DAG, a quantifier edge carries a set of actions, which propose to
either add a value to (Add), or change a value within (Chg), or delete a value
from the sphere of this quantifier (Del). A KEEP action proposes to retain
the sphere. During consistency checking, we generate S-DAGs without actions;
they are added to quantifier edges by S-DAG augmentation after consistency
checking (see Sect. 8.5.1).

We denote the set of all S-DAGs by G, the set of all predicate suggestions
by S, and the set of all actions by C.

8.4.2 A Basic S-DAG Generation Algorithm

Fig. 8.12 shows the denotational semantics of our basic S-DAG gener-
ation algorithm, which corresponds to non-incremental report generation
shown in Sect. 5.3; for the definition of auxiliary functions see Sect. 8.4.5.
D(kept,neg)
A JφKη : A × (℘(X) × B) × FH × E → G generates the S-DAG for the

formula φ w.r.t. the structure A and the variable assignment η (we use the
non-incremental definition from Fig. 5.9 on pg. 61). We collect variables anno-
tated by KEEP using the additional parameter kept — for these variables we
do not generate suggestions. The parameter neg indicates whether the formula
φ appears in a negated context; then we have neg = True. We evaluate hints
only, if an atomic formula can be responsible for an inconsistency. Initially,

110 S-DAGs: Towards Efficient Document Repair Generation

D(kept,neg)
A Jp(e1, . . . , en) hssKη = ∧© undefs if any eAi is not defined

leaf else if neg = b

© otherwise
where b = True if all eAi are defined and (eA1 , . . . , e

A
n) ∈ pA

False otherwise
eAi = sAi if ei ≡ si

VAJeiKη otherwise
sugss = Skept

A J(filterHints(hss, b, η), p(e1, . . . , en), b)Kη
leaf = p(e1, . . . , en) b sugss

undefs =
{(

i, ↓(ei) False ∅
) ∣∣∣ eAi is not defined

}
∪ {(n+ 1, leaf)}

D(kept,neg)
A J¬φKη = D(kept,¬neg)

A JφKη

D(kept,neg)
A Jφ ∧ ψKη = reduce∧(dφ, dψ) if dφ 6=© and dψ 6=©

∧© {(1, dφ)} else if dφ 6=©
∧© {(2, dψ)} else if dψ 6=©
© otherwise

where dφ = D(kept,neg)
A JφKη

dψ = D(kept,neg)
A JψKη

D(kept,neg)
A Jφ ∨ ψKη = reduce∨(dφ, dψ) if dφ 6=© and dψ 6=©

© otherwise
where dφ = D(kept,neg)

A JφKη
dψ = D(kept,neg)

A JψKη

D(kept,neg)
A

q∀ xk ∈ e • φyη = ↓(e) False ∅ if VAJeKη is not defined

∀© x F else if F 6= ∅
© otherwise

where kept′ = {x} ∪ kept if k = KEEP

kept otherwise
F = {(v, ∅, d) | v ∈ VAJeKη and d 6=©}

where d = D(kept′,neg)
A JφK(η ∪ {x 7→ v})

D(kept,neg)
A

q∃ xk ∈ e • φyη = © if VAJeKη is not defined
null(e) True ∅ else if VAJeKη = []

reduce∃(x, F) else if |F | = |VAJeKη|
© otherwise

where kept′ = {x} ∪ kept if k = KEEP

kept otherwise
F = {(v, ∅, d) | v ∈ VAJeKη and d 6=©}

where d = D(kept′,neg)
A JφK(η ∪ {x 7→ v})

Figure 8.12: A basic S-DAG generation algorithm

8.4 Generating S-DAGs 111

D is applied to an empty variable set and an empty variable assignment, i.e.,
D(∅,False)
A JφK∅.

For an atomic formula, we first determine its truth value b as usual. The
formula is potentially responsible for an inconsistency only if it appears in a
positive context and b is False, or if it appears in a negated context and b is True;
i.e., neg = b. In that case, we generate a leaf carrying the atomic formula, its
truth value b, and the predicate suggestion collection resulting from evaluating
the hint collection hss. Otherwise, we return an empty S-DAG, which means
that this formula is fulfilled for the current assignment. We obtain the hints that
correspond to b via filterHints.5 They are evaluated by the auxiliary function
S, defined in Sect. 8.4.5. S is total, i.e., it drops hints that cannot be evaluated
due to undefinedness. If any argument term ei is not defined, we generate a
conjunction node. This node carries the leaf for the violated atomic formula
and leafs that indicate which terms are undefined.

For a conjunction, we first generate the S-DAGs for its subformulae. We keep
the S-DAGs of violated subformulae and assign a number to them: 1 means that
the left hand side of the conjunction is violated, 2 means that the right hand
side of the conjunction is violated.6 If both subformulae are violated, we reduce
their S-DAGs via reduce∧, which generates a conjunction node. Applied to two
S-DAGs reduce∧ keeps the greater S-DAG, if both S-DAGs are comparable.
Otherwise, reduce∧ keeps both S-DAGs. If both subformulae are fulfilled, we
return an empty S-DAG. For disjunctions, we use a similar procedure but create
a non-empty S-DAG only if both subformulae are violated. We reduce the S-
DAGs of violated subformulae by reduce∨, which keeps the smallest S-DAGs
and generates a disjunction node.

For a universally quantified formula, we first evaluate its subformula w.r.t.
possible variable assignment extensions η ∪ {x 7→ v} (where the value v is a
member of the quantifier sphere VAJeKη). We store S-DAGs of violated subfor-
mulae and their corresponding values in the set F . The values represent edge
labels in the S-DAG. If F is not empty, then the universally quantified formula
is violated; we create a universal node carrying the set F . Equal S-DAGs are
shared “automatically” due to the nature of DAGs. If the sphere term e is not
defined, we return a leaf indicating that it is undefinedness of e, which causes an
inconsistency. For existentially quantified formulae, we use a similar approach
but reduce F by reduce∃, which keeps the smallest S-DAGs and replaces edges
targeting Abandoned by a dummy. If the sphere of an existentially quantified
formula is empty, then we generate a predicate leaf indicating that emptiness of
the sphere is responsible for the violation (this is similar to consistency report
generation).

Similar to report generation, we generate a non-empty S-DAG for a formula
φ, if and only if φ is violated. The following theorem expresses this property.

5For the moment, we ignore variable kinds for hints — kinds are important for incremental
S-DAG generation only.

6We use natural numbers, because conjunctions and disjunctions can carry more than two
subformulae due to flattening. In our presentation of the algorithm, however, we consider
binary conjunctions and disjunctions only. We do so for better comprehensibility.

112 S-DAGs: Towards Efficient Document Repair Generation

Theorem 8.1 (S-DAGs indicate real inconsistencies) Let φ be a consis-
tency rule and A a first-order structure. Then we have:

not A |=∅ φ ⇐⇒ D(,False)
A JφK∅ 6=©

Proof : The proof proceeds by straightforward induction on the structure of the
consistency rule φ; see App. C, Proof C.4. 2

Notice that we cannot prove that in a leaf the predicate suggestions for a
formula φ really invert the truth value of φ, under the assignment given by the
path from the S-DAG root to this leaf. The reason is that function symbols,
used in hints, are defined in Haskell, a full programming language. Therefore,
there is no guarantee that a predicate suggestion really inverts the truth value
of an atomic formula.

Although S-DAG combination is considerably faster than combination of
consistency reports, our basic S-DAG generation algorithm shows poor perfor-
mance (comparable to non-incremental report generation). Still, every quan-
tifier sphere contributes a polynomial factor; the nesting of quantifiers results
in an even exponential computation time behavior. Evaluation of hints causes
additional computation costs. For S-DAG generation, we already use static
analysis: miniscoping and rule filtering (see Sect. 6.2). In the next section, we
adapt the incremental techniques from Sect. 6.3 to our basic S-DAG generation
algorithm. In fact, copying of old S-DAGs is cheaper than the copying of old
diagnoses, because we can now exploit the structure of S-DAGs.

8.4.3 An Incremental S-DAG Generation Algorithm

Recall our basic ideas for incremental report generation from Sect. 6.3. They
directly carry over to incremental S-DAG generation:

• We copy those parts from previous S-DAGs that have not changed.

• We partition quantifier spheres into four sets: new, chg, old, and del.
Variable assignments mark variables as new and old, respectively. Our in-
cremental algorithm deviates from brute force S-DAG generation mostly
in the treatment of quantified formulae.

• Due to miniscoping, only atomic formulae can appear in a negated con-
text. In particular, existential quantifiers cannot “disguise” as universal
quantifiers and vice versa. This already simplified our basic S-DAG gen-
eration algorithm.

Fig. 8.14 shows the denotational semantics of our incremental S-DAG gener-
ator ID, which works similar to the incremental report generator IR, defined
in Fig. 6.9 (pg. 81). The function ID(kept,neg)

A JφKη : A × (℘(X) × B) × FH ×
EincDAG → G is defined by structural induction on a formula φ (like brute
force S-DAG generation). For readability, we introduce the global variable D©,
which represents the old S-DAG. Superscripts denote the free variables of a

8.4 Generating S-DAGs 113

η ::= 〈b1 : b2 : . . . : bn〉 incr. assignment for S-DAG generation (sequence)
b ::= x 7→ (v, k) incr. variable binding (x variable, v value, k kind)

| 1 | 2 | . . . junction binding

Figure 8.13: Variable assignments EincDAG for incremental S-DAG generation

formula; φxs means that the variables from the set xs are free in φ. Notice that
xs now also contains variables used in hints. Initially, ID is applied to an empty
variable set and an empty variable assignment, i.e., D(∅,False)

A JφK〈〉. For formal
definitions of new auxiliary functions see Sect. 8.4.5.

For every formula, notEval(xs, η) determines whether (1) its free variables
in the set xs are marked as old in the current assignment η and (2) it contains
referentially transparent functions and predicates only. In this case, we copy
the relevant part from the old S-DAG D©. Copying part of the old S-DAG
requires to navigate through it. In order to identify the relevant part of the old
S-DAG efficiently, we change the structure of variable assignments, as shown
in Fig. 8.13. First, we also store junction bindings in variable assignments,
because we need to identify the sub-DAGs of conjunction and disjunction nodes,
respectively.7 The natural number of a junction binding corresponds to the
position of a subformula in a conjunction or disjunction. Second, we represent
an assignment by a sequence, instead of a set, because the order of bindings
is important for S-DAG navigation.8 We denote an assignment extension of η
by 〈η : b〉, which means that the binding b is added to the end of the sequence
η. In addition, ηE denotes the conversion of the incremental assignment η to
a non-incremental assignment as defined in Fig. 5.9 (pg. 61). We let EincDAG

denote the set of all variable assignments for incremental S-DAG generation.
Now S-DAG navigation roughly corresponds to navigation in XML documents
via XPath axes [W3C99b, W3C03]. We discuss further details about copying
in Sect. 8.4.5.

If an atomic formula or a negated formula needs to be re-evaluated, we em-
ploy the non-incremental S-DAG generatorD. Recall that only atomic formulae
can appear in a negated context; thus incremental S-DAG generation performs
exactly as non-incremental S-DAG generation for negated formulae. For con-
junctions, we extend the current variable assignment η by a junction binding.
Then we proceed as in non-incremental S-DAG generation. Notice that below
disjunctions we use non-incremental S-DAG generation, because it is unsound
to copy parts from the old S-DAG below disjunctions (see Sect. 6.3.2).

For universally quantified formulae, we proceed like in incremental report
generation. First, we compute the quantifier sphere incrementally, resulting in
the four sets new, chg, old, and del. We mark the values in new ∪ chg as new
and the values in old as old. Then the subformula φ is evaluated for possible
assignment extensions to these values (〈η : x 7→ (v, new)〉 and 〈η : x 7→ (v, old)〉,
respectively). If φ is violated for an assignment extension, we assign its S-DAG

7To simplify notation, we let notEval neglect junction bindings in η.
8Application of a variable assignment to a variable carries over from Sect. 5.5.

114 S-DAGs: Towards Efficient Document Repair Generation

ID(kept,neg)
A Jp(e1, . . . , en)xs hssKη

= copy(D©, η) if notEval(xs, η)
D(kept,neg)
A Jp(e1, . . . , en) hssKηE otherwise

ID(kept,neg)
A J¬φxsKη = copy(D©, η) if notEval(xs, η)

D(kept,neg)
A J¬φKηE otherwise

ID(kept,neg)
A Jφ ∧xs ψKη = copy(D©, η) if notEval(xs, η)

reduce∧(dφ, dψ) else if dφ 6=© and dψ 6=©
∧© {(1, dφ)} else if dφ 6=©
∧© {(2, dψ)} else if dψ 6=©
© otherwise

where dφ = ID(kept,neg)
A JφK〈η : 1〉; dψ = ID(kept,neg)

A JψK〈η : 2〉

ID(kept,neg)
A Jφ ∨xs ψKη = copy(D©, η) if notEval(xs, η)

reduce∨(dφ, dψ) else if dφ 6=© and dψ 6=©
© otherwise

where dφ = D(kept,neg)
A JφKηE; dψ = D(kept,neg)

A JψKηE
ID(kept,neg)
A

q∀xs xk ∈ e • φyη
= copy(D©, η) if notEval(xs, η)
↓(e) False ∅ else if IVAJeKη is not defined
∀© x F else if F 6= ∅
© otherwise

where kept′ = {x} ∪ kept if k = KEEP
kept otherwise

(new, chg, old, del) = IVAJeKηE
ds =

{(
v, ID(kept′,neg)

A JφK〈η : x 7→ (v, old)〉
)
| v ∈ old

}
∪{(

v, ID(kept′,neg)
A JφK〈η : x 7→ (v, new)〉

)
| v ∈ new∪chg

}

F = {(v, ∅, d) | (v, d) ∈ ds and d 6=©}

ID(kept,neg)
A

q∃xs xk ∈ e • φyη
= copy(D©, η) if notEval(xs, η)
© else if IVAJeKη is not defined
null(e) True ∅ else if new ∪ old = ∅

reduce∃(x, F) else if |F | = |new ∪ old|
© otherwise

where kept′ = {x} ∪ kept if k = KEEP
kept otherwise

(new0, chg, old0, del) = IVAJeKηE
(new, old) = (new0 ∪ old0 ∪ chg, ∅) if del ∪ chg 6= ∅;

(new0, old0) otherwise
ds =

{(
v, ID(kept′,neg)

A JφK〈η : x 7→ (v, old)〉
)
| v ∈ old

}
∪{(

v, ID(kept′,neg)
A JφK〈η : x 7→ (v, new)〉

)
| v ∈ new

}

F = {(v, ∅, d) | (v, d) ∈ ds and d 6=©}

Figure 8.14: An incremental S-DAG generation algorithm (D© denotes the old
S-DAG from the previous consistency check)

8.4 Generating S-DAGs 115

d to the current sphere value v. Finally, we create a universal node, if φ
is violated for any assignment extension. For existentially quantified formulae,
we use a similar approach. Notice, however, that we must take care for changed
or deleted values like in incremental report generation.

Next, we illustrate S-DAG generation by our running example.

8.4.4 Examples

We review incremental S-DAG generation at state 4. Fig. 8.15 shows how our
incremental S-DAG generation algorithm evaluates rule φ1. In the evaluation
tree, vertices represent conjunctions, disjunctions, or quantifier spheres. Old
values are printed in grey and new values in black. A path from the tree root to
a leaf can be seen as a variable assignment. For convenience, we also show the
result S-DAG of each copy action, where we omit the parameter D© for copy.

The sets new = {4}, chg = ∅, old = {1, 2, 3}, and del = ∅ compose the sphere
of the variable t at state 4. Since t’s subformula contains only t freely and is
referentially transparent, we can abort re-evaluation for values in old. Instead,
we copy the relevant parts from the old S-DAG D©. For 〈t 7→ (4, new)〉, we have
to re-evaluate t’s subformula.

We review evaluation of the conjunction k = key(d) ∧ ∃ m. . . for the
variable assignment
〈

t 7→ (4, new) : x 7→ ({dId = doc2.txt, dState = 3}, old) : k 7→ (kaA2, old) :
d 7→ ({key = kaA3, kId = man1.xml, kKind = technical M.}, old)

〉
.

The corresponding evaluation tree is shown in the bottom part of Fig. 8.15.
For the left hand side of the conjunction, we copy part of the old S-DAG, be-
cause all variables in the formula k = key(d) are marked as old in the current
assignment. Notice that we adapt the binding t 7→ (4, new) to the previous
repository state: t 7→ (3, new), similar to incremental report generation. In
contrast to incremental report generation, we also need the bindings of existen-
tially quantified variables, because they are stored in S-DAGs, too. The right
hand side of the conjunction must be re-evaluated, because it contains the new
variable t freely. The sphere of the existential quantifier for m is composed of
the following sets:

new0 =
{{dId = man2.xml, dState = 4}, {dId = man3.xml, dState = 4},
{dId = man4.xml, dState = 4}

}

chg = ∅
old0 = {{dId = man1.xml, dState = 1}}
del = ∅

Since no values are deleted or changed, we copy part of the old S-DAG when
m is bound to man1.xml. For the values in new0, we have to re-evaluate the
subformula. In order to generate the existential node for m, we consider the
four S-DAGs shown in Fig. 8.16. Clearly, the copied S-DAG is smaller than
the other S-DAGs. Therefore, we retain the copied S-DAG only and replace
the other S-DAGs by Abandoned . In addition, we replace the bindings of m to

116 S-DAGs: Towards Efficient Document Repair Generation

[]

[]

[]

[]

t:

k: k: [] k: [] k: [] k: [] k: []

k:

[, , , 4]1 2 3

kaA3

kaA2

copy t (1,old) copy t (2,old) copy t (3,old)

d:

d:

m:

key = kaA3, kId = man1.xml,

key = kaA3, kId = man1.xml,

kKind = technical M.

kKind = technical M.

copy

copy

copy

copy

 t (3,new): x (...,old):

t (3,new): x (...,old):

t (3,new): x (...,old):

t (3,new): x (...,old):

k (...,old): d (...,old): 1

k (...,old): d (...,old): 1

k (...,old): d (...,old):

k (...,old): d (...,old):

2: m (...,old)

2: m (...,old)

[]dId = man1.xml,
dState = 2

{

{

{

{

{ {

k kaA3

{d key = kaA3, kId = man1.xml,
kKind = technical M.

{

m dId = man1.xml, dState = 2, m dId = man1.xml, dState = 2,{ {{ {kind = field M. kind = field M.

x {dId = doc1.txt, dState = 2} x {dId = doc1.txt, dState = 2}

k kaA3 k kaA2

{d key = kaA3, kId = man1.xml,
kKind = technical M.

{ {d key = kaA3, kId = man1.xml,
kKind = technical M.

{

x {dId = doc2.txt, dState = 3}

x: []dId = doc1.txt, dId = man1.xml, dId = man2.xml,

dId = man2.xml,

dId = man3.xml,

dId = man3.xml,

dId = man4.xml,

dId = man4.xml,

dId = keys.xml,
dState = 1 dState = 2 dState = 4

dState = 4

dState = 4

dState = 4

dState = 4

dState = 4

dState = 1{ { {

{

{

{

{

{

{{ { {

{

{

{

{

{

{ {dId = doc2.txt,
dState = 3 {

re−evaluate

re−evaluate

re−evaluate

re−evaluate

re−evaluate

re−evaluate

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: k = key(d)

{ {{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

False: k = key(d)

{ {{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

m dId = man1.xml, dState = 2, {{kind = field M.

m: []dId = man1.xml,
dState = 2{ {dId = man2.xml, dId = man3.xml, dId = man4.xml,

dState = 4 dState = 4 dState = 4{ { {{ { {

Figure 8.15: Incremental S-DAG generation for rule φ1 at state 4

8.4 Generating S-DAGs 117

{ }{ }

{ }
(copied from)

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

m dId = man2.xml, dState = 4, m dId = man3.xml, dState = 4,

m dId = man1.xml, dState = 2,

m dId = man4.xml, dState = 4,{ }kind = field M. kind = field M.

kind = field M.

kind = field M.

(re−evaluated) (re−evaluated) (re−evaluated)

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: dId(m) = kId(d)

{{m.dId [man2.xml man1.xml] 3}}

False: dId(m) = kId(d)

{{m.dId [man3.xml man1.xml] 3}}

False: dId(m) = kId(d)

{{m.dId [man4.xml man1.xml] 3}}

D

Figure 8.16: Hasse diagram w.r.t. ≺c of S-DAGs generated for the subformula
dId(m) = kId(d) ∧ kind(m) = kKind(d) in rule φ1 at state 4

Abandoned

m *

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

{ }m dId = man1.xml, dState = 2,
kind = field M.

Figure 8.17: Resulting S-DAG for the existential quantifier for m in rule φ1 at
state 4

the corresponding manuals by a dummy binding m 7→ ∗. Fig. 8.17 shows the
resulting S-DAG for the existential quantifier for m.

In the next section, we define S-DAG ordering relations and auxiliary func-
tions. In particular, we discuss copying parts of the old S-DAG.

8.4.5 Auxiliary Functions

In this section, we show how hints are evaluated. Also, we introduce two S-
DAG ordering relations ≺ and ≺c. Finally, we define auxiliary functions needed
for (incremental) S-DAG generation.

Fig. 8.18 shows the denotational semantics of the function S, which evaluates
the hint collection hss for an atomic formula φ with boolean result b. Applied
to an empty hint collection, S generates a generic predicate suggestion for each
variable free in φ.9 Otherwise, we generate a suggestion for each hint in the

9We use ¬ as a meta symbol here, meaning to invert a boolean value True to False and
vice versa.

118 S-DAGs: Towards Efficient Document Repair Generation

Evaluate a hint collection
S J.K : ℘(X)× A× (℘(℘(H))×Fat × B)× E→ ℘(℘(S))
Skept
A J(∅, φ, b)Kη = { {x [¬b : φ] | x ∈ fv(φ) and x /∈ kept} }
Skept
A J(hss, ,)Kη = {{hA | h ∈ hs and hA is defined} | hs ∈ hss}

where hA = S ′kept
A JhKη

Evaluate a hint
S ′J.K : ℘(X)× A×H× E→p S
S ′kept
A Jx ; e b k cKη = x [VAJxKη Ã VAJeKη] c if x /∈ kept

x [???] otherwise
S ′kept
A Jx.l ; e b k cKη = x.l [VAJl(x)Kη Ã VAJeKη] c if x /∈ kept

x [???] otherwise

Figure 8.18: Evaluating hint collections

collection hss via S ′. If we encounter a hint for a “kept” variable, we generate
a suggestion expressing this contradiction. The function S ′ is partial, because
value calculation is partial. For evaluation of a hint, we require that the hint
term is defined. In contrast, S is total — hints that cannot be evaluated are
dropped.

Next, we define two strict ordering relations for S-DAGs. By ≺ we consider
an S-DAG d1 smaller than an S-DAG d2 iff all leaves in d1 are also contained by
d2 and d1 represents strictly less inconsistencies than d2. The relation ≺c also
respects the costs of S-DAGs (provided their costs are defined): We consider
an S-DAG d1 smaller than an S-DAG d2, if the cost of d1 is smaller than the
cost of d2. We employ ≺ for reducing conjunction nodes, whereas ≺c is used
for reducing disjunction nodes and existential nodes. Clearly, for a conjunction
node we must neglect the costs of its sub-DAGs, in order to retain necessary
repair actions. In contrast, for disjunction nodes and existential nodes it is
sufficient to repair the cheapest S-DAG only and to neglect expensive S-DAGs,
even though these S-DAGs may contain other predicate suggestions. We define
≺ and ≺c as follows:

d1≺d2 :⇔ d1¹d2 ∧ incons(d1) < incons(d2)
d1≺cd2 :⇔ d1¹cd2 ∧ incons(d1) < incons(d2)

The function incons : G → N determines the number of inconsistencies repre-
sented by an S-DAG (for brevity, we omit a formal definition). ¹ and ¹c are
S-DAG ordering relations corresponding to ≺ and ≺c, respectively. Fig. 8.19
shows their formal definitions. We abbreviate universal and conjunction nodes
by
∧© ds, and existential and disjunction nodes by

∨© ds. The sub-DAGs of a
node are called ds or ds′; for brevity, we neglect edge labels and deal with the
sub-DAGs of a node only. For example,

∧© ds ¹ ∧© ds′ abbreviates four cases:

∀© ds ¹ ∀© ds′; ∀© ds ¹ ∧© ds′; ∧© ds ¹ ∀© ds′; and ∧© ds ¹ ∧© ds′.

The definition of ¹ is straightforward. For example, a universal node u1 is
smaller than a universal node u2 iff each sub-DAG of u1 is smaller than a sub-
DAG of u2. A universal node u is smaller than an existential node e iff each

8.4 Generating S-DAGs 119

Partial order for S-DAGs that neglects costs (¹)

¹ ⊆ G×G
d ¹ Abandoned∧© ds ¹ ∧© ds′ :⇔ ∀ d ∈ ds • ∃ d′ ∈ ds′ • d ¹ d′∧© ds ¹ ∨© ds′ :⇔ ∀ d ∈ ds • ∀ d′ ∈ ds′ • d ¹ d′∧© ds ¹ p :⇔ ∀ d ∈ ds • d ¹ p
∨© ds ¹ ∧© ds′ :⇔ ∃ d ∈ ds • ∃ d′ ∈ ds′ • d ¹ d′∨© ds ¹ ∨© ds′ :⇔ ∀ d ∈ ds • ∃ d′ ∈ ds′ • d ¹ d′∨© ds ¹ p :⇔ ∃ d ∈ ds • d ¹ p

p ¹ ∧© ds :⇔ ∃ d ∈ ds • p ¹ d
p ¹ ∨© ds :⇔ ∀ d ∈ ds • p ¹ d
p b sss ¹ p′ b′ sss′ :⇔ p = p′ ∧ b = b′

Partial order for S-DAGs that respects costs (¹c)
¹c ⊆ G×G

d ¹c Abandoned∧© ds ¹c
∧© ds′ :⇔ cost (

∧© ds) @ cost
(∧© ds′

)
I

∀ d ∈ ds • ∃ d′ ∈ ds′ • d ¹c d′∧© ds ¹c
∨© ds′ :⇔ cost (

∧© ds) @ cost
(∨© ds′

)
I

∀ d ∈ ds • ∀ d′ ∈ ds′ • d ¹c d′∧© ds ¹c p :⇔ cost (
∧© ds) @ cost

(
p
)
I

∀ d ∈ ds • d ¹c p
∨© ds ¹c

∧© ds′ :⇔ cost (
∨© ds) @ cost

(∧© ds′
)

I
∃ d ∈ ds • ∃ d′ ∈ ds′ • d ¹c d′∨© ds ¹c

∨© ds′ :⇔ cost (
∨© ds) @ cost

(∨© ds′
)

I
∀ d ∈ ds • ∃ d′ ∈ ds′ • d ¹c d′∨© ds ¹c p :⇔ cost (

∨© ds) @ cost
(
p
)
I

∃ d ∈ ds • d ¹c p

p ¹c
∧© ds :⇔ cost

(
p
)
@ cost (

∧© ds) I
∃ d ∈ ds • p ¹c d

p ¹c
∨© ds :⇔ cost

(
p
)
@ cost (

∨© ds) I
∀ d ∈ ds • p ¹c d

p b sss ¹c p′ b′ sss′ :⇔ cost
(
p b sss

)
@ cost

(
p′ b′ sss′

)
I

p = p′ ∧ b = b′

Figure 8.19: Partial orders for S-DAGs: ¹, ¹c (p abbreviates a predicate leaf

p b sss)

120 S-DAGs: Towards Efficient Document Repair Generation

Costs of an S-DAG
cost : G→p N
cost (

∧© ds) =
∑
d∈ds

cost(d)

cost (
∨© ds) = min

d∈ds
cost(d)

cost
(
p b sss

)
= min

ss∈sss

(∑
s∈ss

sugcost(s)
)

Costs of a predicate suggestion
sugcost : S→p N
sugcost (x [v Ã v′] c) = c
sugcost (x.l [v Ã v′] c) = c

Figure 8.20: Calculating costs for S-DAGs

sub-DAG of u is smaller than all sub-DAGs of e. For predicate leafs, we require
that they describe the same inconsistency.

The formal definition for ¹c follows the pattern of ¹ but also takes S-DAG
costs into account, if they are defined. If the costs of two S-DAGs are equal or
one cost is undefined, we compare their sub-DAGs. Formally, the costs c1 and
c2 are in the relation @ iff both costs are defined and c1 < c2; they are not in
the relation @ iff c1 > c2; @ is undefined, if c1 = c2, or one cost is undefined.
We let e1 I e2 denote “if the expression e1 is defined then e1 else e2.”

This is necessary, because the function cost is partial. It determines the cost
of an S-DAG (see Fig. 8.20). We employ a simple minimax algorithm: To an
alternative node we assign the cost of its cheapest sub-DAG. Otherwise, we
assign the sum of the costs of all sub-DAGs. The cost of a predicate leaf is
determined by its hints. The cost function is partial, because the rule designer
may omit costs in hints. It is understood that for a node d the costs for all
sub-DAGs must be defined; otherwise, cost(d) is not defined.

Fig. 8.21 shows the definitions of auxiliary functions used for S-DAG genera-
tion. filterHints determines the hints relevant for an atomic formula φ. A hint is
relevant, if its boolean value corresponds to φ’s boolean result and the variable
kind of the hint equals the variable kind of the hint’s variable in the current
assignment η. If no variable kind is given for a hint, we consider the boolean
value only. The function reduce∧ reduces the sub-DAGs below a conjunction
node and retains the greatest S-DAGs; finally it generates a conjunction node.
The smaller S-DAG is replaced by Abandoned . In contrast, reduce∨ reduces the
sub-DAGs below a disjunction node and retains the smallest S-DAGs; finally it
generates a disjunction node. The greater S-DAG is replaced by Abandoned . We
reduce the sub-DAGs below existential nodes by reduce∃. Notice that reduce∧
neglects the costs of S-DAGs, whereas reduce∨ and reduce∃ respect the costs of
S-DAGs.

Copying parts of the old S-DAG is an integral part of incremental S-DAG
generation. The function copy(d, η) determines the relevant part of an S-DAG d
w.r.t. the current variable assignment η. During S-DAG generation, we attach
variable bindings and junctions bindings to the end of the current assignment.

8.4 Generating S-DAGs 121

Filter hints
filterHints : ℘(℘(H))× B× E→ ℘(℘(H))
filterHints(hss, b, η) = {{h | relevant(h, b, η) ∧ h ∈ hs} | hs ∈ hss}

Is a hint relevant for evaluation?
relevant : H× B× E→ B
relevant(x ; e b k c, b′, η) = b = b′ ∧ x 7→ (, k) ∈ η
relevant(x.l ; e b k c, b′, η) = b = b′ ∧ x 7→ (, k) ∈ η

Reduce sub-DAGs for conjunctions
reduce∧ : G×G→ G
reduce∧(d1, d2) = ∧© {(1, Abandoned), (2, d2)} if d1≺d2

∧© {(1, d1), (2, Abandoned)} else if d2≺d1

∧© {(1, d1), (2, d2)} otherwise

Reduce sub-DAGs for disjunctions
reduce∨ : G×G→ G
reduce∨(d1, d2) = ∨© {(1, d1), (2, Abandoned)} if d1≺cd2

∨© {(1, Abandoned), (2, d2)} else if d2≺cd1

∨© {(1, d1), (2, d2)} otherwise

Reduce sub-DAGs for existentially quantified formulae
reduce∃ : X × ℘(V× ℘(C)×G)→ G
reduce∃(x, es) = ∃© x {replace(e, es \ {e}) | e ∈ es}

Replace sub-DAGs that are too expensive by Abandoned

replace : (V× ℘(C)×G)× ℘(V× ℘(C)×G)
→ ℘(V× ℘(C)×G)

replace((v, acts, d), es) =
(∗, ∅, Abandoned

)
if ∃ (, , d′) ∈ es •
d′≺cd

(v, acts, d) otherwise

Copy the relevant part of the old S-DAG
copy : G× EincDAG → G
copy(d, 〈〉) = d

copy(Abandoned ,) = Abandoned

copy(·© es, 〈n : η〉) = d′ if ds′ = {d′}
© otherwise

where ds′ = {copy(d, η) | n = n′ ∧ (n′, d) ∈ es}
copy(Q© x es, 〈x 7→ (v, k) : η〉) = d′ if ds′ = {d′}

© else if ds′ = ∅ and Q = ∀
Abandoned else if ds′ = ∅ and Q = ∃

where (v′, k′) = (previous check state, old) if v = current state

(v, k) otherwise
ds′ = {copy(d, η) | (v′ = ve ∨ k′ = new) ∧ (ve, , d) ∈ es}

Figure 8.21: Auxiliary functions for S-DAG generation

122 S-DAGs: Towards Efficient Document Repair Generation

Therefore, the order of an assignment matches the order of nodes in a path
of an S-DAG. Thus, basically, copy corresponds to recursive search within a
labeled tree or DAG. An important question to consider is whether the result
of copy is well defined. For conjunction and disjunction nodes, respectively, at
most one edge can match the junction binding of η. Consequently, the S-DAG
set ds′ contains at most one S-DAG. For quantifier nodes, all edges match, if
the variable kind k′ is new. All S-DAGs returned by copy(d, η) are, however,
equal. That is, because we copy part from the old S-DAG for a formula φ only
if all free variables in φ are old and φ contains referentially transparent symbols
only. Thus, the S-DAG set ds′ contains at most one S-DAG.

8.5 Interactive Repair

At state 4, for rule φ1, the algorithms from the previous section generate the
S-DAG shown in Fig. 8.10 (pg. 108). This S-DAG lacks, however, sufficient
information about how inconsistencies can be best repaired, e.g., by adding,
changing, or deleting content. In order to support interactive repair, we aug-
ment S-DAGs by repair actions (see Sect. 8.5.1). This can be done at any
time and is fully independent of consistency checking itself. In consequence,
the repository is not locked during S-DAG augmentation. From an augmented
S-DAG, authors can choose repair actions in a trial and error process, which
we illustrate in Sect. 8.5.2. In Sect. 8.5.3, we discuss the impact of repair ac-
tions to the document structure. Finally, we define our S-DAG augmentation
algorithm in Sect. 8.5.4.

8.5.1 Augmenting S-DAGs

Our basic idea is to annotate quantifier edges by repair actions. An action
proposes to either add a value to (Add), or change a value within (Chg), or
delete a value from the sphere of a quantifier (Del). Thus, actions propose
to add, change, or delete documents or document content. We augment the
S-DAG from Fig. 8.10 (pg. 108) as shown in Fig. 8.22; actions are marked
grey. For example, we propose to change the key kaA2 to kaA3 or to delete
the document doc1.txt. The edge below the universal node for the temporal
variable t is annotated by KEEP, which means that we must not change t.
Actions for a quantifier edge are obtained from the predicate suggestions in
its target S-DAG. Clearly, it makes sense to augment the current part of an
S-DAG only. Due to the nature of DMSs, we cannot change older document
versions. Previous inconsistencies document, however, the development of the
repository, which has proven a quite useful feature. The current part of an
S-DAG contains all paths from the S-DAG root to a leaf that contain a binding
to the current repository state or do not contain a binding to a repository state
at all.

Inconsistencies resulting from missing document content can be resolved
either by adding new content or by changing content that we regard as defective;
deleting content cannot resolve this kind of inconsistency. The challenge for an

8.5 Interactive Repair 123

Abandoned

m *

k kaA3
k kaA2

kaA3Del

x {dId = doc2.txt, dState = 3}x {dId = doc1.txt, dState = 2}

{dId = doc2.txt, dState = 3}{dId = doc1.txt, dState = 2} DelDel

t 4
KEEP

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M. { }d key = kaA3, kId = man1.xml,

kKind = technical M.

kaA3
Chg

dId=man1.xml, dState = 2,
kind = technical M.{Chg

key = kaA2, kId = man1.xml,
kKind = technical M. {{Chg

m dId = man1.xml, dState = 2,{ }kind = field M.

}

Figure 8.22: Augmented S-DAG for rule φ1 at state 4

existential node (representing missing content) is to find a practical criterion
to decide whether a value should be changed or added. Our criterion aims at
minimal change. We propose to change a value, if we find a minimal defective
value in the quantifier sphere, i.e., one of the S-DAGs below the existential
node is minimal w.r.t. the S-DAG ordering ≺c. In other words, exactly one
edge does not target Abandoned . In this case, it is most likely that missing
content is actually defective content. Otherwise, i.e., if there are some “equally
good” alternatives, we propose to insert a new value to the quantifier sphere.
Usually, this value is only partially defined by the predicate suggestions below
the existential node. We handle missing information by “value skeletons” in
which some record components can be undefined. This is similar to handling
null values in databases [GL97].

Inconsistencies resulting from dubious document content can be resolved
either by changing this content or by deleting it; adding new content cannot
resolve this kind of inconsistency. For universal nodes (representing dubious
content), it is easier to derive actions, because we know exactly which values
cause inconsistencies. We have, however, to decide whether an offending value
should be changed or deleted. Again, we employ the criterion of minimal
change. Assume that we augment a universal node for a variable x and follow
an edge binding a value v, i.e., v is considered dubious. If the edge’s target S-
DAG contains a predicate suggestion that proposes to change x, then we derive
an action to change v. Otherwise, we derive an action to delete v. Clearly, in
this case we do not know how the inconsistency can be resolved; thus, we
propose a “fall-back” solution.

124 S-DAGs: Towards Efficient Document Repair Generation

k kaA2

x {dId = doc2.txt, dState = 3}

{dId = doc2.txt, dState = 3}Del

t 4
KEEP

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M.

kaA3
Chg

key = kaA2, kId = man1.xml,
kKind = technical M. {{Chg

Figure 8.23: Augmented S-DAG resulting from changing the kind of the manual
man1.xml to technical M.

8.5.2 Choosing Repair Actions Interactively

S-DAG augmentation derives repair actions for quantifier edges. It remains,
however, unclear which actions must be applied together, in order to resolve all
inconsistencies w.r.t. the corresponding rule. In our interactive approach, the
author walks through an augmented S-DAG and chooses actions individually.
Our system can apply a chosen repair to the S-DAG and re-augment it. If this
results in an empty S-DAG, all inconsistencies are resolved. Otherwise, the
remaining inconsistencies can be resolved by choosing another action. Obvi-
ously, an action attached to a quantifier edge can resolve inconsistencies in a
leaf below this edge, which may cause the leaf to disappear. If each edge below
a universal node or a conjunction node leads to an empty S-DAG, then this
node can be deleted. An existential node or a disjunction node can be deleted,
if one of its edges targets an empty S-DAG. This procedure cascades up the
whole S-DAG.

For our example S-DAG in Fig. 8.22, it makes sense to repair the existential
node for m, because it has two incoming paths and, therefore, is responsible
for two inconsistencies. We choose to change the kind of the manual man1.xml
from field M. to technical M. This causes the right hand leaf to disappear. The
conjunction above this leaf is not inconsistent anymore; so is the existential
node for m. Both nodes are deleted. This procedure cascades up the S-DAG
structure, such that the complete S-DAG on the left hand side of the universal
node for x collapses. We arrive at the S-DAG shown in Fig. 8.23, which we can
repair, e.g., by changing the key kaA2 to kaA3 in the document doc1.txt.

Choosing actions from augmented S-DAGs is an interactive trial and er-
ror process, by which authors can determine reasonable actions that resolve
inconsistencies. An action may, however, cause new inconsistencies. We can
recognize this only after applying the action to the documents in the repository
and checking the repository for consistency again. For example, changing the
key component of the key definition for kaA3 (as proposed by the action for d

8.5 Interactive Repair 125

in Fig. 8.23) introduces new inconsistencies for the reference to the key kaA3.
We discuss this issue in detail in Chapter 9.

8.5.3 Repair Actions and Document Structure

An important question is the impact of a repair action to the document struc-
ture. Since hints are type-checked, most actions respect the document struc-
ture, provided the document type resembles this structure correctly. Static
type-checking cannot detect whether adding or deleting content could break the
document structure (this would require dynamic type-checking). Consequently,
actions are type safe by construction, if they propose to change content in a
document. For actions proposing to add content, static type-checking only can
guarantee that the content to be added is type safe, provided the document
structure permits to add content at all. Actions proposing to delete content
are not affected by type-checking, because we generate these fall-back solutions
only if an S-DAG lacks sufficient predicate suggestions.

8.5.4 An S-DAG Augmentation Algorithm

In this section, we define our S-DAG augmentation algorithm. For each quan-
tifier edge, we derive a set of alternative repair actions; the formal definition of
actions is shown in Fig. 8.11 (pg. 109).

Formally, we let the function A (d) augment the quantifier edges of an S-
DAG d (see Fig. 8.24); for auxiliary functions see Fig. 8.25. A is defined by
structural induction on the structure of S-DAGs. The only interesting cases are
for quantifier nodes; other nodes are not affected by A. For nodes annotated by
KEEP, we do not derive actions; for nodes annotated by CHG we derive actions
to change values only.

For an existential node, we first augment its sub-DAGs resulting in the
edge set es′. In this set, minDAG tries to find an edge the target S-DAG of
which requires a minimal repair, i.e., (1) it is not shared, (2) it is not equal to
Abandoned , and (3) all other edges lead to Abandoned . Such an edge is augmented

by actions that change its value. Otherwise, minDAG is not defined; then all
edges are augmented by actions proposing to add values.

Assume that minDAG has found a minimal edge (v, d), where v is the
value that caused the inconsistency and, therefore, should be changed. By
filterSug(x, d) we obtain all predicate suggestions in the sub-DAG d that pro-
pose to change the quantified variable x. The predicate suggestions sugssd form
a collection, in which each set is an alternative. We apply each suggestion set
sugs ∈ sugssd to the bound value v. The resulting values vsd are those values
the original value v can be changed to, in order to resolve an inconsistency. We
apply predicate suggestions by applySugs(v, sugs). Since predicate suggestions
can be contradictive, applySugs first determines whether the suggestions do not
conflict, i.e., there exists a most general unifier for the values proposed by the

126 S-DAGs: Towards Efficient Document Repair Generation

A : G→ G
A (Abandoned

)
= Abandoned

A
(
p
)

= p

A (∧© es) = ∧© {(n,A (d)) | (n, d) ∈ es}
A (∨© es) = ∨© {(n,A (d)) | (n, d) ∈ es}
A (∃© x es KEEP) = ∃© x {(v, {KEEP},A (d)) | (v, , d) ∈ es}
A (∃© x es annot) = ∃© x ({(v, actsd, d)} ∪ es′′) if minDAG(es′) is defined

∃© x esAdd otherwise
where es′ = {(v, ∅,A (d)) | (v, , d) ∈ es}

((v, d), es′′) = minDAG(es′)
sugssd = filterSug(x, d)
vsd = {applySugs(v, sugs) | sugs ∈ sugssd}
actsd = {Chg v Ã v′ | v′ ∈ vsd}
v0 = mkSkeleton(τx)
esAdd = {(v, acts, d) | (v, , d) ∈ es′}

where acts = ∅ if annot = CHG
{Add applySugs(v0, sugs) | sugs ∈ filterSug(x, d)}

otherwise
A (∀© x es KEEP) = ∀© x {(v, {KEEP},A (d)) | (v, , d) ∈ es}
A (∀© x es annot) = ∀© x es′′

where es′ = {(v, ∅,A (d)) | (v, , d) ∈ es}
es′′ = {(v, acts, d) | (v, , d) ∈ es′}

where sugss = filterSug(x, d)
acts = ∅ if sugss = ∅ and annot = CHG

{Del v} else if sugss = ∅
{Chg v Ã applySugs(v, sugs) | sugs ∈ sugss}

otherwise

Figure 8.24: An S-DAG augmentation algorithm (for auxiliary functions see
Fig. 8.25)

predicate suggestions. In that case, it is safe to apply the predicate suggestions.
Otherwise, applySugs is not defined.10

Assume that minDAG cannot find a minimal edge. Then, for each edge, we
determine the alternatives of values to insert. We apply the predicate sugges-
tions calculated by filterSug to an empty value skeleton v0. One of the resulting
values should be inserted, in order to resolve the inconsistency. The skeleton
v0 is built by mkSkeleton applied to the type τx of the quantifier variable x. We
denote an undefined value by ⊥; the lifted set V⊥ contains all values from V
and the undefined value ⊥. We use value skeletons, in order to handle incom-
plete information, which is similar to handling null values in databases [GL97].
For record values, it is likely that the predicate suggestions below the edge
determine the value to insert partially only.

10The result set of a set comprehension does not contain undefined values, they are removed
automatically.

8.6 Summary 127

Find the minimal edge below an existential quantifier
minDAG : ℘(V× ℘(C)×G)→p ((V×G)× ℘(V× ℘(C)×G))
minDAG({(v, , d)}] {(∗, , Abandoned)})

=
(
(v, d),

{(∗, ∅, Abandoned
)})

minDAG({(v, , d)}) = ((v, d), ∅)

Filter predicate suggestions that change a given variable
filterSug : X ×G→ ℘(℘(S))
filterSug(x,

∧© ds) = ⊗{filterSug(x, d) | d ∈ ds}
filterSug(x,

∨© ds) =
⋃
d∈ds filterSug(x, d)

filterSug
(
x, Abandoned

)
= {∅}

filterSug
(
x, p b sss

)
= {{s | s ∈ ss ∧ var(x, s)} | ss ∈ sss}

var(x, x′ []) ⇔ x = x′

var(x, x′.l []) ⇔ x = x′

var(,) ⇔ False

Apply a predicate suggestion set
applySugs : V× ℘(S)→p V
applySugs(v, sugs) = fold(applySug, v, sugs) if sugs do not conflict
applySug(v, x [v0 Ã v1]) = v1

applySug(KR {li = vi}, x.l [v Ã v′])
= KR {li = vi} \ {l = } ∪ {l = v′}

applySug(v,) = v

Create a value skeleton of a given type
mkSkeleton : T→ V⊥
mkSkeleton(Rn) = KR {li = ⊥}

where {li} = R̂
mkSkeleton(τ) = ⊥

Figure 8.25: Auxiliary functions for S-DAG augmentation (⊗ denotes the carte-
sian product plus binary union)

For a universal node, we augment its sub-DAGs. Then, for each edge, we
collect the predicate suggestions affecting the quantifier variable. If the edge’s
sub-DAG does not contain sufficient suggestions, we derive an action to delete
the affected value (provided that the universally quantified variable is not anno-
tated by CHG). Otherwise, we apply the predicate suggestions to the affected
value, similar to above.

8.6 Summary

In this chapter, we generate concrete repair actions and visualize them via
S-DAGs, which provide the key to make our approach to repair generation
feasible. In contrast to database constraint maintenance approaches, we suggest
repair actions only; we do not aim at automatic repair. This is mainly, because,
in general, we cannot anticipate where to apply a repair action. Annotations
from the rule designer (hints, repair costs, quantifier annotations), and thus

128 S-DAGs: Towards Efficient Document Repair Generation

incorporation of domain knowledge, provide the basis for generating useful
repair actions and lowering computational complexity. Hints provide a suitable
basis for flexible inconsistency handling. Our approach follows the principle of
minimal change and tries to preserve the changes made to the repository. We
divide S-DAG generation in two parts: (1) during consistency checking S-DAGs
are generated with predicate suggestions only; (2) at author request S-DAGs
are augmented by concrete repair actions.

S-DAGs generated during consistency checking contain minimal informa-
tion from which the actual repair actions can be derived. An S-DAG already
contains some more information than a consistency report, namely predicate
suggestions and explicit value bindings for existential quantifiers. By S-DAG
reduction we loose redundant actions and actions that are considered too expen-
sive by the rule designer. This is a major contribution of our S-DAG approach.
Recall that we target at interactive repair; therefore, we generate a few re-
pair actions only. S-DAGs are generated incrementally, similar to consistency
reports.

Our system augments S-DAGs on author demand. Then augmented S-DAGs
(one S-DAG for each rule) can be used for interactive repair. Authors may
choose actions from S-DAGs. The effect of an action can be seen by applying it
to the S-DAG. It is, however, still unclear what impact an action has to other
rules. An action could also resolve inconsistencies of other rules or introduce
new inconsistencies.

Our S-DAG approach goes beyond consistency reports, which just show
inconsistencies. S-DAGs visualize repair actions for a rule in a convenient way
to authors and can be generated as fast as consistency reports. In particular,
we avoid the explosion of repair alternatives. S-DAGs provide, however, no
means to explore the interaction of repair actions for different rules. In the
next chapter, we eliminate this weakness by deriving a single repair collection
for all rules from their S-DAGs.

Chapter 9

Repair Collections

Whereas S-DAGs provide a computationally tractable approach to generating
useful repair actions, they suffer from an inherent weakness: Authors choose
actions for each rule separately, independent of their effect on other rules. This
becomes tedious when many rules are violated since the interaction between
actions and potential negative impacts of an action towards overall consistency
remain unclear. In this chapter, we derive a single repair collection1 for multiple
consistency rules from their S-DAGs. The repair collection contains alternative
repair sets, each of which includes repairs that are necessary to resolve all
inconsistencies in the repository. Our approach guarantees that (1) each repair
set only contains repairs that do not contradict each other, and (2) the repair
sets provide mutually independent alternatives. The collection can be sorted
w.r.t. user-defined preference metrics, which are based on repair ratings. We
rate a repair according to its cost, the inconsistencies it resolves, and the rules
that may be violated by applying it. From the repair collection, authors can
choose a repair set of a high ranking and then manually apply its repairs to
the documents in the repository. Often, time and cost restrictions prohibit
the resolution of all inconsistencies at once. Therefore, we support partial
inconsistency resolution. Instead of applying a complete repair set, authors
can choose those repairs that resolve the most troubling inconsistencies at a
small cost. Thus, our approach facilitates flexible inconsistency management.
We proceed as shown in Fig. 9.2:

1. From each S-DAG, we derive a repair collection.

2. We merge all repair collections to an overall repair collection, which con-
tains repair sets that resolve inconsistencies for all rules.

3. We sort this repair collection w.r.t. user-defined metrics.

This chapter is organized as follows: First, we give an informal overview. In
Sect. 9.2, we show how we derive an overall repair collection from the S-DAGs

1Recall that by “repair collection” we mean a set of sets of repairs.

9.1
9.2

9.3
9.4

12

14

8

Figure 9.1: Chapter 9 in context

129

130 Repair Collections

check in

check out

documents

author

repository
(DMS)

derivemerge

S−DAGs

collection

collection

repair

repair

2.) repair set
. . .

1.) repair set

choose
& apply

collection
global repairsort by

user metric

Figure 9.2: Repairing inconsistencies (overview)

of the individual rules. In Sect. 9.3, we put repair collections to practice, i.e., we
sort them by user-defined metrics and show how a sorted repair collection can
be used to resolve inconsistencies. Sect. 9.4 summarizes this chapter. Fig. 9.1
illustrates the context of this chapter. Performance tests for deriving repair
collections for a larger example can be found in Sect. 12.5 (pg. 211) — our
running example turned out to be too simple for significant performance tests.

9.1 Informal Overview

Instead of using the trial and error process from Sect. 8.5 to determine a good
repair set, we derive a single repair collection for all rules. Fig. 9.3 shows
our example rules and their augmented S-DAGs at state 4 of our example
repository (we use the miniscoped variants of φ1 and φ2, respectively).2 We
assign a high priority to φ1 and a medium priority to φ2. Recall that augmented
S-DAGs represent inconsistencies and repair actions of the current repository
state only.

From each S-DAG, we derive a repair collection. Fig. 9.4 shows the repairs
we derive from our example S-DAGs. The first component of a repair contains
its rules and its quantified variables (repairs may apply to multiple rules); the
second component contains the sphere term of the quantified variable. The
third component determines the context of a repair. The context contains
bindings of all variables the repair depends on directly or indirectly. By these
means we identify repairs. The fourth component denotes the proposed ac-
tion. Finally, we rate repairs by (1) how many inconsistencies they resolve at
which priority, (2) which rules may be impacted by the repair, and (3) the cost
of the repair. Ratings are useful for sorting repairs by user-defined metrics.
For example, we derive the repair repChgman1 for the rule φ1 and the variable
m. The repair suggests to change the kind of the manual man1.xml towards

2We use augmented S-DAGs, because actions provide useful information to guide repair
derivation.

9.1 Informal Overview 131

φhigh
1 = ∀ tKEEP ∈ repStates • ∀ x ∈ repDs(t) • ∀ k ∈ refs(x) •

∃ d ∈ concatMap(kDefs, repResDs(t)) •
k = key(d)

{ {k ; key(d) False 1},
{d.key ; k False 5}

}
∧

∃ m ∈ repManDs(t) •
dId(m) = kId(d) {{m.dId ; kId(d) False 3}} ∧
kind(m) = kKind(d) {{m.kind ; kKind(d) False 2}}

Abandoned

m *

k kaA3
k kaA2

kaA3Del

x {dId = doc2.txt, dState = 3}x {dId = doc1.txt, dState = 2}

{dId = doc2.txt, dState = 3}{dId = doc1.txt, dState = 2} DelDel

t 4
KEEP

False: kind(m) = kKind(d)

{{m.kind [field M. technical M.] 2}}

False: k = key(d)

{ }{d.key [kaA3 kaA2] 5}
{k [kaA2 kaA3] 1},

{ }d key = kaA3, kId = man1.xml,
kKind = technical M. { }d key = kaA3, kId = man1.xml,

kKind = technical M.

kaA3
Chg

dId=man1.xml, dState = 2,
kind = technical M.{Chg

key = kaA2, kId = man1.xml,
kKind = technical M. {{Chg

m dId = man1.xml, dState = 2,{ }kind = field M.

}

φmedium
2 = ∀ tKEEP

1 ∈ repStates • ∀ tKEEP
2 ∈ repStates •

¬(t1 < t2) ∨

∀ mKEEP

1 ∈ repManDs(t1) • ∃ m2 ∈ repManDs(t2) •
dId(m1) = dId(m2) {{m2.dId ; dId(m1) False 3}} ∧
kind(m1) = kind(m2) {{m2.kind ; kind(m1) False 2}}




False: kind(m) = kind(m)

{{m .kind [field M. technical M.] 2}}

t 11

t 42

1 2

2

2

1

True: t < t1 2

dId=man1.xml, dState = 2,
kind = technical M.{Chg

m dId = man1.xml, dState = 2,

m dId = man1.xml, dState = 1,

{

{

}

}

kind = field M.

kind = technical M.

}

KEEP

KEEP

KEEP

Figure 9.3: Augmented S-DAGs for rule φ1 and φ2, respectively, at state 4

132 Repair Collections

repChgman1 = Rep {φ1(m)} repManDs(t)
{t 7→ 4}
Chg {dId = man1.xml, dState = 2, . . .}.kind Ã technical M.
Rate {2 (high)} {φ1, φ2} 2

repChgman1′ = Rep {φ2(m2)} repManDs(t)
{t 7→ 4}
Chg {dId = man1.xml, dState = 2, . . .}.kind Ã technical M.
Rate {1 (medium)} {φ1, φ2} 2

repChgdoc2 = Rep {φ1(k)} refs(x)
{t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}}
Chg kaA2 Ã kaA3
Rate {1 (high)} {φ1} 1

repChgkeys = Rep {φ1(d)} concatMap(kDefs, repResDs(t))
{t 7→ 4}
Chg {key = kaA3, . . .}.key Ã kaA2
Rate {1 (high)} {φ1} 5

repDelkaA2 = Rep {φ1(k)} refs(x)
{t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}}
Del kaA2
Rate {2 (high)} {φ1}

repDelkaA3 = Rep {φ1(k)} refs(x)
{t 7→ 4, x 7→ {dId = doc1.txt, dState = 2}}
Del kaA3
Rate {1 (high)} {φ1}

repDeldoc1 = Rep {φ1(x)} repDs(t)
{t 7→ 4}
Del {dId = doc1.txt, dState = 2}
Rate {1 (high)} {φ1}

repDeldoc2 = Rep {φ1(x)} repDs(t)
{t 7→ 4}
Del {dId = doc2.txt, dState = 3}
Rate {2 (high)} {φ1}

Figure 9.4: Repairs generated for the rules φ1 and φ2

technical M., where man1.xml resides in the sphere obtained by repManDs ap-
plied to state 4. The repair resolves two inconsistencies for high priority rules
and imposes a cost of 2; applying repChgman1 might violate rules φ1 and φ2.

From the augmented S-DAG for rule φ1, we derive the following repair col-
lection. Each of the repair sets below resolves all inconsistencies for φ1.

{ {repDeldoc1, repDeldoc2}, {repDeldoc1, repDelkaA2}, {repDeldoc2, repChgman1},
{repChgkeys, repChgman1}, {repChgdoc2, repChgman1}, {repDelkaA2, repChgman1},
{repDelkaA3, repDeldoc2}, {repDelkaA3, repDelkaA2}

}

From the augmented S-DAG for φ2, we derive the repair collection
{ {repChgman1′}

}

9.2 Deriving Repair Collections from S-DAGs 133

We combine these collections to an overall repair collection for both rules:
{
{repChgman1′′ , repDeldoc2}, {repChgman1′′ , repDelkaA2},
{repChgman1′′ , repChgdoc2}, {repChgman1′′ , repChgkeys}

}

The repair repChgman1′′ results from merging repChgman1 and repChgman1′ , which
essentially propose the same action. Of course, repChgman1′′ resolves inconsis-
tencies for both rules φ1 and φ2:

repChgman1′′ = Rep {φ1(m), φ2(m2)} repManDs(t)
{t 7→ 4}
Chg {dId = man1.xml, dState = 2, . . .}.kind Ã technical M.
Rate {2 (high), 1(medium)} {φ1, φ2} 2

In the above repair collections, each set is a real alternative, i.e., it is not
a subset of another set in the collection. Within each repair set, all repairs
are compatible, i.e., they can be applied altogether. Our approach guarantees
these properties. Repairs that change document content are compatible to the
document structure. In contrast, we cannot guarantee that repairs proposing
to insert content or to delete content are compatible to the document structure
(we have already discussed this issue in Sect. 8.5.3).

Finally, we sort the overall repair collection by a user-defined preference
metric, which results in:

1.) {repChgman1′′ , repChgdoc2},
2.) {repChgman1′′ , repChgkeys},
3.) {repChgman1′′ , repDelkaA2},
4.) {repChgman1′′ , repDeldoc2}

Thus, authors would probably choose to change the key reference kaA2 to kaA3
in the document doc1.txt and to change the kind of the manual man1.xml to
technical M. Above, we have considered changing content preferable to delet-
ing content in a document. This decision depends, however, on the actual
application.

9.2 Deriving Repair Collections from S-DAGs

In this section, we define algorithms that derive a single repair collection for a
whole rule system from the augmented S-DAGs of the individual rules. In the
repair collection, each set is an alternative; within each repair set, all repairs
must be applied simultaneously, in order to resolve all inconsistencies in the
repository. From the collection, authors may choose an arbitrary repair set.

In Sect. 9.2.1, we introduce our formal notion of “repair” and other technical
prerequisites. Deriving the repair collection for a rule system requires to derive
a repair collection for each rule individually, which we explain in Sect. 9.2.2.
Sect. 9.2.3 presents a straightforward method for deriving a repair collection
for a whole rule system. We exemplify our algorithms in Sect. 9.2.4. Sect. 9.2.5
is devoted to repair ratings. In the derivation of repair collections, hitting

134 Repair Collections

Repairs R
rep ::= Rep {i (xi)} e η act rate perform action act in the sphere e for the

variables xi in rules i under the context η
Actions (extended from Fig. 8.11 pg. 109)
act ::= Add v | Del v add value v; delete value v

| Chg v1 Ã v2 change value v1 to v2

| Chg v1.l Ã v2 change component l in value v1 to v2

| ?? [b : φ] change the free variables in the atomic
formula φ, such that its truth value is b

Ratings
rate ::= Rate {nj (prj)} {i} c resolve nj inconsistencies at priority prj ,

impacted rules i, cost c
pr ::= high | medium | low priority of a rule

Figure 9.5: Abstract syntax of repairs R

collections play a central rôle; we show our adaptations to a well-known hitting
set algorithm [GSW89] in Sect. 9.2.6.3

9.2.1 Repairs: Compatibility and Subsumption

A repair represents an action that can resolve inconsistencies and specifies
where this action takes place, i.e., the rule and the sphere. Formally, we define
repairs as shown in Fig. 9.5. A repair carries rule identifiers i and variables
xi (for which the repair resolves inconsistencies), a term e and a context η
(representing the sphere in which the repair takes place), an action act (repre-
senting the actual change to the repository), and a rating rate. The context η
contains bindings to all variables the free variables of e depend on, directly or
indirectly.4 The bindings in η are part of the augmented S-DAG already; they
do not need to be recomputed. In order to lower computational complexity and
to avoid access to the repository, we store the sphere term e only; the sphere is
not re-computed. The set of all repairs is denoted by R. We extend the formal
definition of actions from Fig. 8.11 (pg. 109). Similar to predicate suggestions,
we also support partial changes that apply to record components only. An
action ?? [b : φ] means to change the variables free in the atomic formula φ,
such that φ results in the truth value b. Actions are generated from predicate
suggestions in S-DAG leaves. A rating indicates how many inconsistencies nj
are resolved for rules with a priority prj , which rules i could potentially be
broken, and what cost c is imposed by the repair. For our purposes, a simple
priority model (using three levels only) has proved sufficient.

For example, from the S-DAG for φ1 we can derive the following repairs for
the variable k:

3Throughout, we use the term “hitting collection” to mean a special repair collection.
4A variable z depends on a variable y iff z’s quantifier sphere term contains y. Computing

the transitive closure of the depends-on relation, we find the set of all variables a term e
depends on.

9.2 Deriving Repair Collections from S-DAGs 135

repChgdoc2 = Rep {φ1(k)} refs(x)
{t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}}
Chg kaA2 Ã kaA3 Rate {1 (high)} {φ1} 1

repDelkaA2 = Rep {φ1(k)} refs(x)
{t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}}
Del kaA2 Rate {2 (high)} {φ1}

Above, repChgdoc2 suggests to change the key kaA2 to kaA3 in the document
doc2.txt at state 4. The repair resolves one inconsistency for a high priority
rule, which might cause inconsistencies for the rule φ1 and imposes a cost of 1.
In contrast, repDelkaA2 suggests to delete the key kaA2 from doc2.txt.

Clearly, the repairs above must not appear in the same repair set: We
cannot change the key kaA2 to kaA3 and at the same time delete the key
kaA2. Similarly, two repairs that change a value in different ways contradict
each other. Obviously, the repairs within a repair set must be compatible.
Two repairs are compatible iff (1) they affect different spheres, or (2) they
affect different values in the same sphere, or (3) they affect the same sphere
and the same values and their proposed actions are unifyable. Two repairs
Rep e1 η1 and Rep e2 η2 affect the same sphere, if their sphere terms
and contexts are equal, i.e., e1 = e2 and η1 = η2. For deciding whether two
actions are unifyable, we have developed a unification algorithm for actions. It
works like well known unification algorithms in type systems [HS86, Mit90] or
resolution calculi [Apt90]. For example, our unification algorithm prohibits to
unify actions that propose to delete a value v on the one hand, and propose to
change a value v1 to a value v2 on the other hand, if either v equals v1 (as in
the example above) or v equals v2. For brevity, we omit the formal definition
of our unification algorithm.

It is possible to merge compatible repairs that propose actions to the same
value within the same sphere. Unless the repairs propose the same action, we
are reluctant to merge them, because we want to derive “small” repairs, in
order to facilitate partial inconsistency resolution (see Sect. 9.3.2). Merging
repairs too early provides too coarse a picture of possible repairs. Of course,
repairs can be merged on author demand once the repair collection has been
computed.

Our unification algorithm can also be used to determine whether a repair
subsumes another repair. Formally, repair rep1 with action act1 subsumes repair
rep2 with action act2 iff the actions act1 and act2 unify to act1. Intuitively, the
changes to the repository performed by act2 are all included in act1 already. In
the below example, act1 subsumes act2:

act1 = Chg {dId = man1.xml, dState = 2, kind = field M.}
Ã {dId = man2.xml, dState = 2, kind = technical M.}

act2 = Chg {dId = man1.xml, dState = 2, kind = field M.}.kind Ã technical M.

Both compatibility and subsumption easily lift to repair sets: A repair set rs
is compatible to a repair set rs′, if all repairs in rs ∪ rs′ are compatible to
each other. A repair set rs is subsumed by a repair set rs′, if each repair in
rs is subsumed by a repair in rs′. Intuitively, rs′ requires more changes to

136 Repair Collections

the repository than rs. Then, if both repair sets can be used alternatively to
resolve inconsistencies it is sufficient to keep rs only. We need the notions of
subsumption and compatibility for repair sets in the following sections to derive
useful repairs that do not contradict each other.

9.2.2 A Repair Derivation Algorithm

We derive repairs for individual rules following our initial ideas shown in
Sect. 7.2. Instead of deriving repairs during consistency checking, we use aug-
mented S-DAGs. This has two advantages:

1. The computationally expensive derivation of repairs is separated from
consistency checking, i.e., the generation of S-DAGs. We avoid accessing
the repository and, therefore, do not need to lock it. We do not compute
any values during the derivation of repairs. Instead, we look up values in
the augmented S-DAG.

2. In augmented S-DAGs, actions provide useful information about which
kinds of repairs require minimal changes to the repository. Thus, our
algorithm to derive a repair collection becomes more efficient and results
in more compact repair collections.

Since we tolerate inconsistencies, the invalidation of repair collections by new
check-ins to the repository is not an issue.

Recall our basic strategy: From each leaf in an S-DAG, we obtain a basic
repair collection. Below disjunction and existential nodes, respectively, we
join the repair collections derived from the target S-DAGs. Below conjunction
and universal nodes, respectively, we compute (something like) the cartesian
product of the repair collections derived from the target S-DAGs.

Our derivation algorithm walks through an S-DAG from the root to the
leaves. The variable bindings from quantifier edges are collected. A quantifier
action provides information about the kind of repair to be derived from a
predicate suggestion in a leaf. For example, if a quantifier action proposes to
change a variable x then for x we derive repairs to change values. We derive
repair collections from the leaves, in order to determine repairs that must be
applied together to resolve inconsistencies. Quantifier actions are not sufficient
for this purpose.

Fig. 9.6 shows the denotational semantics of our repair derivation algorithm.
A variable mode set µ associates each variable with a mode: Add, Chg, Del, or
KEEP (meaning obvious). Variable modes are obtained from quantifier actions.
We can now define the function REP (d) [η, µ], which derives a repair collection
from the S-DAG d for the variable assignment η and the variable mode set
µ. For the variable assignment η, we use the non-incremental definition from
Fig. 5.9 (pg. 61). Initially, REP is applied to an empty variable assignment
and an empty mode set; i.e., REP (d) [∅, ∅] derives the repair collection for
the S-DAG d. Metadata, required for repairs, depend on the rule φ itself,

9.2 Deriving Repair Collections from S-DAGs 137

global constants: φ original rule
i rule identifier of φ
D S-DAG for φ

REP : G× E× ℘(X ×M)→ ℘(℘(R))
REP (Abandoned

)
[η, µ] = {∅}

REP
(
p b sss

)
[η, µ] = {{mkRep(s, φ, i, η, µ,D) | s ∈ ss} | ss ∈ sss}

REP (∧© es) [η, µ] = hittingColl(rsss)
where rsss = {REP (d) [η, µ] | (, d) ∈ es}

REP (∨© es) [η, µ] = rmSubsumes(rss)
where rss =

⋃
(,d)∈esREP (d) [η, µ]

REP (∀© x es an) [η, µ] = hittingColl(rsss′)
where rsss = {(v, η′,REP (d) [η′, µ′]) | (v, acts, d) ∈ es}

where η′ = η ∪ {x 7→ v}
µ′ = µ ∪ {(x,mode(acts))}

rsss′ = {rss ∪ del | (v, η′, rss) ∈ rsss}
where del = ∅ if an = KEEP or an = CHG

{mkDelRep(x, v, φ, i, η′, D)} otherwise

REP (∃© x es) [η, µ] = rmSubsumes(rss)
where rss =

⋃
(v,acts,d)∈esREP (d) [η′, µ′]

where η′ = η ∪ {x 7→ v}
µ′ = µ ∪ {(x,mode(acts))}

Figure 9.6: Deriving repair collections from S-DAGs (M denotes variable
modes)

its identifier i, and its whole S-DAG D; these are global constants for REP.
Auxiliary functions are defined in Fig. 9.7 (pg. 139).

For each predicate suggestion in a leaf, we derive a repair with the help of
mkRep. A suggestion for a variable x is “applied” to the value of x as given by
the current variable assignment η. The mode of x, as determined by the mode
set µ, is responsible for the kind of the repair. Assume that we want to derive
the repair collection for the right hand leaf in the S-DAG for φ1 (see Fig. 9.3)
carrying the suggestion collection {{m.kind [field M. Ã technical M.] 2}}. The
variable mode of m is Chg; therefore, we propose to change the kind of the
current value of m to technical M. The rule φ, its identifier i, and its S-DAG D
are all needed to complete the repair: e.g., its rating is determined by applying
it to the S-DAG D (see Sect. 9.2.5).

For a conjunction node and a universal node, respectively, we compute the
repair collections rsss for the S-DAGs below it and determine their hitting col-
lection. The hitting collection is the smallest repair collection in which each
repair set subsumes at least one repair set from each repair collection in rsss.
Thus, the repair sets in the hitting collection are necessary to repair the con-
junction and universal quantification, respectively. Recall that below a con-
junction node or a universal node all inconsistencies must be repaired. Our

138 Repair Collections

hitting collection algorithm takes care that the repairs within the repair sets
of the hitting collection are compatible, i.e., they can be applied altogether.
For example, if we compute the following repair collections from three S-DAGs
below a universal node

rsss =




{{rep1, rep2}, {rep2, rep3}},
{{rep4}, {rep1, rep3}},
{{rep5, rep6}, {rep2}}





then the hitting collection is (provided that repairs in each set are compatible):

hittingColl(rsss) =
{ {rep1, rep2, rep4}, {rep1, rep2, rep3}, {rep2, rep3, rep4}

}

The repairs rep5 and rep6 do not contribute to the hitting collection, because
their alternative rep2 is always needed — it is a member of both sets in the
first collection of rsss. If, however, the repairs rep1 and rep4 contradicted each
other, the first repair set above would not be part of the hitting collection.
Our hitting collection algorithm, defined in Sect. 9.2.6, is an adaptation of a
well-known hitting set algorithm [GSW89].

For disjunction nodes and existential nodes, respectively, we join the repair
collections from the S-DAGs below them. This is sufficient, because only one of
these S-DAGs must be repaired, but it is unclear which one. Finally, we remove
those repair sets that subsume other repair sets with the help of rmSubsumes.
Clearly, if a subsumed repair set is already sufficient to resolve inconsistencies,
the “larger” repair set is not required anymore.

For both kinds of quantifier nodes, we extend the variable assignment η
and the variable mode set µ. The variable assignment η is extended by the
binding x 7→ v, where the variable x is obtained from the quantifier node and
the value v is obtained from the edge processed. The variable mode set µ
is extended by the mode of the actions for v. For universal quantifiers, we
also derive repairs to delete the offending values with the help of mkDelRep.
Clearly, deleting document content or even whole documents are “fall-back”
solutions. In contrast to S-DAG augmentation, we generate these fall-back
solutions always for universal quantifiers. Dropping these repairs too early
could result in “un-repairable” S-DAGs due to incompatible repairs. Usually,
repairs proposing to delete content rank among the least positions in the sorted
repair collection, if there are better alternatives; see Sect. 9.3.

Fig. 9.7 contains the definitions of some auxiliary functions necessary for
repair derivation. The function determineRating is described in Sect. 9.2.5;
hittingColl is defined in Sect. 9.2.6.

9.2.3 Merging Repair Collections from Different Rules

We now want to derive a repair collection for both rules, φ1 and φ2. Our
approach is simple: We consider a rule system as a conjunction of the individual
rules and employ the strategy for conjunctions from the previous section. Thus,
we determine the repair collection for each rule separately and then compute
the hitting collection of all these collections. We must, however, adapt the

9.2 Deriving Repair Collections from S-DAGs 139

Derive a repair from a predicate suggestion
mkRep : S×F × I× E× ℘(X ×M)×G→ R
mkRep(x [v Ã v′] c, φ, i, η,ms, d) = Rep {i(x)} e η′ act r

where e = domVar(x, φ)
η′ = η[depVars(φ,e)]

act = Add v′ if (x,Add) ∈ ms
Chg v Ã v′ else if (x,Chg) ∈ ms

r = determineRating(x, c, d, act)
mkRep(x.l [v Ã v′] c, φ, i, η,ms, d) = Rep {i(x)} e η′ act r

where e = domVar(x, φ)
η′ = η[depVars(φ,e)]

vx = η(x)
v0 = mkSkeleton(τx)
v′′ = applySug(v0, x.l [v Ã v′])
act = Add v′′ if (x,Add) ∈ ms

Chg l.vx Ã v′ else if (x,Chg) ∈ ms
r = determineRating(x, c, d, act)

mkRep(x [b : p], φ, i, η,ms, d) = Rep {i(x)} e η′ act r
where e = domVar(x, φ)

η′ = η[depVars(φ,e)∪fv(p)]

act = ?? [b : p]
r = determineRating(x, 0, d, act)

Generate a repair to delete a value
mkDelRep : X × V×F × I× E×G→ R
mkDelRep(x, v, φ, i, η, d) = Rep {i(x)} e η′ act r

where e = domVar(x, φ)
η′ = η[depVars(φ,e)]

act = Del v

r = determineRating(x, 0, d, act)

Remove repair sets that subsume other repair sets
rmSubsumes : ℘(℘(℘(R)))→ ℘(℘(℘(R)))
rmSubsumes(∅) = ∅
rmSubsumes({rs}] rss)

= rmSubsumes(rss) if ∃ rs′ ∈ rss • rs′vrs
{rs} ∪ rmSubsumes(rss) otherwise

Figure 9.7: Auxiliary functions for deriving repair collections; for mkSkeleton
and applySug see Fig. 8.25 (pg. 127); omitted definitions: domVar(x, φ) (sphere
term of the variable x in the formula φ), depVars(φ, e) (dependent variables of
the term e in the formula φ), mode(acts) (variable mode determined by actions
acts), η[xs] (domain restriction of the variable assignment η to the variables in
the set xs), rs′vrs (the repair set rs′ is subsumed by the repair set rs)

140 Repair Collections

ratings of the repairs, because ratings are computed separately for each rule.
Our hitting collection algorithm adapts the ratings of repairs that apply to
multiple rules.

9.2.4 Examples

We demonstrate generation of the repair collection for rule φ1 from its aug-
mented S-DAG shown in Fig. 9.3 (pg. 131). Repairs can be found in Fig. 9.4
(pg. 132). Consider the right hand leaf at the following assignment and mode
set (we follow the right hand path in the S-DAG):

η =




t 7→ 4, x 7→ {dId = doc2.txt, dState = 3}, k 7→ kaA2,
d 7→ {key = kaA3, kId = man1.xml, kKind = . . .},
m 7→ {dId = man1.xml, dState = 2, kind = field M.}





m =
{

(t,KEEP), (x,Del), (k,Chg), (d,Chg), (m,Chg)
}

From the leaf’s suggestion collection {{m.kind [field M. Ã technical M.] 2}},
we derive the repair collection

{{repChgman1}
}
, which contains a repair to change

the kind of the manual man1.xml, because the mode of the variable m is Chg.
We obtain the rating for repChgman1 by applying it to φ1’s S-DAG in Fig. 9.3,
which removes two inconsistencies (the resulting S-DAG is shown in Fig. 8.23,
pg. 124). Above the leaf, the conjunction node and the existential node for m
do not change the repair collection.

For the left hand leaf, which carries the predicate suggestion collection
{{k [kaA2 Ã kaA3] 1}, {d.key [kaA3 Ã kaA2] 5}}, we derive the repair collection{{repChgdoc2}, {repChgkeys}

}
. Each of these repairs resolves one inconsistency.

We now process the conjunction node located above this leaf and the exis-
tential node for m. For the conjunction node, we compute the hitting collection
of both repair collections above, resulting in
{ {repChgman1, repChgdoc2}, {repChgman1, repChgkeys}

}
.

The existential node for d does not change this collection. The universal node
for k adds a repair set proposing to delete the key kaA2 from the document
doc2.txt, thus:
{ {repDelkaA2}, {repChgman1, repChgdoc2}, {repChgman1, repChgkeys}

}

Proceeding to the universal node for x we have to consider two edges. For the
right hand edge, we derive the above repair collection. For the left hand edge,
we derive the collection

{{repDelkaA3}, {repChgman1}
}
. To the collection for the left

hand edge, a repair set is added proposing to delete the document doc1.txt; to
the collection for the right hand edge, a repair set is added proposing to delete
the document doc2.txt. Then we compute the hitting collection of:

{{repDeldoc1}, {repDelkaA3}, {repChgman1}
} left hand edge

x 7→ {dId = doc1.txt, . . .}
{{repDeldoc2}, {repDelkaA2},
{repChgman1, repChgdoc2}, {repChgman1, repChgkeys}

}
right hand edge
x 7→ {dId = doc2.txt, . . .}

9.2 Deriving Repair Collections from S-DAGs 141

This results in the final repair collection for φ1 (the universal node for t does
not change the below collection, because t is annotated by KEEP):

rssφ1 =





{repDeldoc1, repDeldoc2}, {repDeldoc1, repDelkaA2},
{repDelkaA3, repDeldoc2}, {repDelkaA3, repDelkaA2},
{repChgman1, repDeldoc2}, {repChgman1, repDelkaA2},
{repChgman1, repChgdoc2}, {repChgman1, repChgkeys}





The repair set {repDeldoc1, repChgman1, repChgdoc2} is not a member of the hitting
collection, because it subsumes the repair set {repChgman1, repChgdoc2}. For similar
reasons, the hitting collection is lacking the sets {repDeldoc1, repChgman1, repChgkeys},
{repDelkaA3, repChgman1, repChgdoc2}, and {repDelkaA3, repChgman1, repChgkeys}.

For rule φ2, we compute the following repair collection from the augmented
S-DAG shown in Fig. 9.3 (pg. 131).

rssφ2 =
{ {repChgman1′}

}

In order to obtain a repair collection for both rules φ1 and φ2, we compute the
hitting collection of their final repair collections, thus:

rssφ1∧φ2 =
{ {repChgman1′′ , repDeldoc2}, {repChgman1′′ , repDelkaA2},
{repChgman1′′ , repChgdoc2}, {repChgman1′′ , repChgkeys}

}

The repair repChgman1′′ results from merging repChgman1 and repChgman1′ , which
propose the same change to the repository:

repChgman1′′ = Rep {φ1(m), φ2(m2)} repManDs(t)
{t 7→ 4}
Chg {dId = man1.xml, . . .}.kind Ã technical M.
Rate {2 (high), 1(medium)} {φ1, φ2} 2

Next, we discuss how the rating of a repair is determined and how hitting sets
are computed. In Sect. 9.3, we show how derived repairs can be employed to
manage consistency in heterogeneous repositories.

9.2.5 Determining Repair Ratings

In this section, we assign ratings to repairs; i.e., we describe the auxiliary
function determineRating used in Sect. 9.2.2. The rating of a repair rep considers
(1) how many inconsistencies rep resolves at which priority, (2) which rules
might be impacted by applying rep, and (3) the cost of the hint from which rep
originates.

Recall a basic property of S-DAGs: A predicate leaf represents as many in-
consistencies as there are paths from the S-DAG root to this leaf. In the S-DAG
for φ1 (see Fig. 9.3 pg. 131), the right hand leaf labeled kind(m) = kKind(d)
represents two inconsistencies; the left hand leaf labeled k = key(d) repre-
sents one inconsistency. In order to rate repairs, we apply each repair to its
augmented S-DAG and count the number of inconsistencies that have disap-
peared. Application of repairs to augmented S-DAGs reduces to application of
actions, described in Sect. 8.5. For example, changing the kind of the manual

142 Repair Collections

man1.xml to technical M. removes the leaf labeled kind(m) = kKind(d) from
the S-DAG. This causes the left hand side of the S-DAG in Fig. 9.3 to collapse.
Thus, the repair resolves two inconsistencies.

Obviously, repairs can cause new inconsistencies. For example, changing the
key definition for the key kaA3 to a key definition for a key kaA2 (as proposed
by repChgkeys) incurs new inconsistencies for the key reference kaA3. Prior to
applying a repair to the documents in the repository we cannot anticipate such
negative impacts. Therefore, we approximate the document changed by a re-
pair. Then we match this document against the documents affected by a rule.
Recall that we have assigned each rule with its relevant documents, in order to
support rule filtering (see Sect. 6.2.1). In our example, φ1 depends on all plain
text documents and on all XML documents (symbolized by the regular expres-
sions {*.txt,*.xml}), whereas φ2 depends on manuals only ({man*.xml}).

We approximate the document changed by a repair as follows:

1. We inspect the repair action, which might directly apply to a value that
has a document type, i.e., a subtype of Doc.

2. We inspect the repair context, which might contain variable bindings to
documents.

3. We inspect metadata of function symbols used to calculate the sphere of
the repair variable.

Consider, e.g., the repair repChgkeys. In rule φ1, the variable d depends on t only,
which is not bound to a document. However, d is calculated with help of the
function symbols concatMap, kDefs, repResDs, and repStates. The function
symbol repResDs depends on the key resolvers in the repository {keys*.xml}.5
Thus, repChgkeys potentially violates rule φ1 only.

9.2.6 Computing Hitting Collections

Hitting collections play an essential rôle in our algorithm for deriving repair
collections from S-DAGs. In Sect. 9.2.2, we referred to the algorithm defined
in this section by the auxiliary function hittingColl. Recall the basic properties
of a hitting collection for a number of repair collections rsss:

• Each repair set in the hitting collection subsumes at least one repair set
from each repair collection in rsss. This means that the hitting collection
contains all repair sets necessary to remove all inconsistencies.

• No proper subcollection of the hitting collection satisfies the above prop-
erty, i.e., there is no smaller collection containing repair sets that remove
all inconsistencies.

5In Sect. 6.2.1, this information is added by the language designer with the help of static
analysis.

9.2 Deriving Repair Collections from S-DAGs 143

The calculation of hitting collections6 has received much attention in the field of
diagnosis generation and constraint maintenance in databases [GL97]. For our
purposes, we adapt the algorithm in [GSW89], which generates a hitting set for
a set of sets of atomic items. For example, for the set {{a, b}, {b, c}, {a, c}, {d}}
the hitting set {{a, c, d}, {a, b, d}, {b, c, d}} is computed. The algorithm relies
on an equality relation between the atomic items. In our setting, however, we
deal with repair sets, instead of atomic items. Contradicting and subsuming
repairs, respectively, require modifications to the algorithm in [GSW89].

Assume we have already computed the repair collections below a conjunction
node, or below a universal node, or for each rule in a rule system. This results
in a set rsss of repair collections. We compute the hitting collection as follows.

1. Generate a hitting collection DAG (HC-DAG). In the HC-DAG, each
node is labeled by either a repair collection from rsss, or

√
(we have found

a member of the hitting collection), or × (we have aborted generation,
i.e., the node has been closed). Each edge is labeled by a repair set,
chosen from the repair collection of its parent node.

2. From the HC-DAG, we derive the hitting collection by following each
path from the root to a node labeled by

√
and joining all repair sets in

this path.

We generate the HC-DAG as follows. Differences to [GSW89] result from deal-
ing with repair sets (instead of atomic items) and taking care of repair com-
patibility and repair subsumption.

1. Let D represent the growing HC-DAG. Generate the HC-DAG root, la-
beled by the first repair collection in rsss. We assume that rsss is ordered,
e.g., by the corresponding S-DAGs. The root will be processed in Step 2
below.

2. Process the nodes in D in a breath first-order: We first process all nodes
at one level before processing the node children. To process a node n do:

(a) Compute repairs(n), defined as the union of all repair sets labeling
edges on the path from the root to node n.

(b) If in every repair collection rss ∈ rsss there exists a repair set rs that
is subsumed by repairs(n), then label n with

√
. Clearly, in this case

each repair collection rss contains a repair set already represented
by n. Otherwise, label n by the first repair collection rss′ in rsss in
which no repair set is subsumed by repairs(n).

(c) If the node n is labeled by a repair collection rss, then for each repair
set rs ∈ rss, generate a new downward edge labeled rs, if the repairs
in rs are compatible to the repairs in repairs(n), collected before.
This edge leads to a new node m with repairs(m) = repairs(n) ∪ rs.

6In the literature, hitting collections are often called hitting sets. We use the term “hitting
collection,” in order to emphasize that a hitting collection is a special repair collection.

144 Repair Collections

The new node m will be processed (labeled and expanded) after all
nodes in the same generation as n have been processed. If each repair
set rs ∈ rss contradicts the repair set repairs(n), we immediately
close the node n by re-labeling it with ×.

(d) When processing a node n, a repair rep can be subsumed by a repair
rep′ ∈ repairs(n). If rep and rep′ apply to different rules, then we
annotate the node n by explicit information about how the rating of
rep′ has to be adapted. Clearly, the inconsistencies resolved by rep
contribute to the inconsistencies resolved by rep′. Consequently, the
rating of rep′ increases by the rating of rep.

In order to reduce the size of the HC-DAG, we employ the following pruning
enhancements of [GSW89].

1. Sharing Nodes: The algorithm above refuses to create a new node m as
descendant of a node n (Step 2c), if there exists a node n′ in the HC-DAG
D, such that repairs(n′) = repairs(n)∪ rs. In that case, we let the rs-edge
under n point to n′. This corresponds to the usual sharing in DAGs.
Otherwise, a new node m is generated.

2. Closing : If there exists a node n′, labeled by
√

and repairs(n′) is sub-
sumed by repairs(n), then close the node n, i.e., label it by ×. We do not
compute a label for the node n nor do we generate any successor nodes.
Clearly, n does not contribute to the hitting collection, because the repairs
represented by n′ are already sufficient for resolving all inconsistencies.

3. Pruning : If the repair collection rss is to label a node and it has not been
used previously, then attempt to prune the HC-DAG D as generated so
far:

(a) If there exists a node n′, labeled by the repair collection rss′ ∈ rsss,
where rss ⊂ rss′, then re-label n′ with rss. For each repair set
rs ∈ rss′ \ rss, the rs-edge emanating from n′ is removed along with
its target node and all of its descendants (except for those nodes
that have another ancestor).

(b) Delete the repair collection rss′ from rsss.

The above algorithm can be used to calculate a hitting collection when we want
to resolve all inconsistencies. For partial inconsistency resolution, however, we
have to adapt the algorithm, in order not to loose repairs by subsumption:

• During HC-DAG generation:

– In step 2b, we label the node n by
√

only if in every repair collection
rss ∈ rsss there exists a repair set rs that is a subset of repairs(n).

– In step 2d, we use equality, instead of repair subsumption.

• During HC-DAG pruning:

9.3 Repairing Repositories 145

1211109

21

nnnn

nn

2 2
(m)rep :+ { }

+ {1 (medium)}

φ
Chgman1

{rep ,rep }
Deldoc2 Chgman1

{rep ,rep }
Deldoc1 DelkaA2

{rep ,rep }
Deldoc1 Deldoc2

{rep ,rep }
DelkaA2 Chgman1

{rep ,rep }
Chgdoc2 Chgman1

{rep ,rep }
Chgkeys Chgman1

{rep ,rep }
DelkaA3 DelkaA2

{rep ,rep }
DelkaA3 Deldoc2

{{rep }}
Chgman1’

{{rep }}
Chgman1’

{rep }
Chgman1’

{rep }
Chgman1’

{rep }
Chgman1’

{rep }
Chgman1’

6n5n4n3n 7n {{rep }}
Chgman1’ 8n {{rep }}

Chgman1’

{ }
{rep ,rep }, {rep ,rep }, {rep ,rep },

{rep ,rep }, {rep ,rep }, {rep ,rep },

{rep ,rep }, {rep ,rep }

Deldoc1

Chgkeys

DelkaA3

Deldoc1

Chgdoc2

DelkaA3

Deldoc2

Chgman1

Deldoc2

Deldoc2

DelkaA2

Chgman1

Chgman1

DelkaA2

Chgman1

DelkaA2

0n

{{ },{ }}
{rep ,rep }, {rep ,rep }, {rep ,rep },

rsss = {rep }{rep ,rep }, {rep ,rep }, {rep ,rep },

{rep ,rep }, {rep ,rep }

Deldoc1

Chgkeys

DelkaA3

Deldoc1

Chgdoc2

DelkaA3

Deldoc2

Chgman1

Deldoc2

Deldoc2

DelkaA2

Chgman1

Chgman1’Chgman1

DelkaA2

Chgman1

DelkaA2

Figure 9.8: HC-DAG for our example rules φ1 and φ2

– In step 2, we close a node n only if there exists a node n′, which is
labeled by

√
and repairs(n′) is a subset of repairs(n).

In order to derive the overall repair collection for both rules φ1 and φ2, we
generate the HC-DAG shown in Fig. 9.8. We have numbered the nodes from
n0 to n12, where node numbers correspond to the order of node generation. The
nodes n3, n4, n5, and n6 have no children nodes, because the repair repChgman1′

is essentially equal to the repair repChgman1. We have annotated the nodes n3

through n6, in order to increase the ranking of the repair repChgman1, which in
turn results in the repair repChgman1′′ . The node n9 has been closed, because
the repair set repairs(n3) is subsumed by repairs(n9). For similar reasons, the
nodes n10 through n12 have been closed. From the HC-DAG in Fig. 9.8, we
derive the final hitting collection rssφ1∧φ2 by following each path from the root
to a leaf labeled by

√
and by adjusting the ranking of the repairs appropriately.

9.3 Repairing Repositories

Clearly, from a repair collection derived for a repository authors can choose an
arbitrary repair set. Collections can, however, become huge for larger repos-
itories, particularly for rule systems containing many rules. For example, in
our case study we have derived a repair collection consisting of 430 sets each
containing between 13 and 16 repairs. In this situation, one cannot reasonably
expect authors to make a good choice. Therefore, we exploit repair ratings to
reduce the number of reasonable choices from a repair collection. This allevi-
ates the task of resolving inconsistencies and also supports partial inconsistency
resolution, which is of vital importance when numerous inconsistencies occur
while there is pressure of time and cost.

9.3.1 Using Repair Ratings

Our approach to reducing the number of repair choices is to sort the repair
collection w.r.t. user-defined metrics that reflect user preferences. Formally,

146 Repair Collections

Repair ratingΣ ratingmax
repChgman1 −2− 2 = −4 2 · 5− 2− 2 = 6
repChgman1′ −2− 2 = −4 1 · 3− 2− 2 = −1
repChgman1′′ −2− 2 = −4 2 · 5 + 1 · 3− 2− 2 = 9
repChgdoc2 −1− 1 = −2 1 · 5− 1− 1 = 3
repChgkeys −1− 5 = −6 1 · 5− 1− 5 = −1
repDelkaA2 −1− 10 = −11 2 · 5− 1− 10 = −1
repDelkaA3 −1− 10 = −11 1 · 5− 1− 10 = −6
repDeldoc1 −1− 15 = −16 1 · 5− 1− 15 = −11
repDeldoc2 −1− 15 = −16 2 · 5− 1− 15 = −6

Table 9.1: Example ratings calculated by ratingΣ and ratingmax, respectively,
for repairs shown in Fig. 9.4 (pg. 132)

a preference metric is defined by a total pre-order between repair sets, i.e., a
transitive and reflexive relation.7 A user-defined metric could, e.g., regard a
repair set rs preferable to a repair set rs′, if the repairs in rs have a higher
rating than those in rs′, thus:

rs ≥Σ rs′ ⇔ ∑
rep∈rs

ratingΣ(rep) ≥ ∑
rep′∈rs′

ratingΣ(rep′)

The ratingΣ function assigns to each repair a number depending on its rating.
For a repair, ratingΣ counts potentially violated rules (negatively) and subtracts
the repair cost. In addition, we punish repairs proposing to delete document
content by subtracting 10 and repairs proposing to delete whole documents by
subtracting 15. These constants were determined experimentally and will have
to be refined as we gain more experience in the future. Usually, the punishment
of deletion should be greater than each hint cost. Based on our experiments
with software specifications, we consider changing a value preferable to adding a
value, which in turn is preferable to deleting a value. In fact, deleting document
content or deleting a document itself is a “fall-back” solution that should be
considered only if no other repair is possible. For our example repairs from
Fig. 9.4 (pg. 132), we calculate the ratings shown in Tab. 9.1. Sorting the
overall repair collection w.r.t. the metric ≥Σ results in:

1.) {repChgman1′′ , repChgdoc2},
2.) {repChgman1′′ , repChgkeys},
3.) {repChgman1′′ , repDelkaA2},
4.) {repChgman1′′ , repDeldoc2}

Thus, authors would probably choose to change the key reference kaA2 to kaA3
in the document doc1.txt and to change the kind of the manual man1.xml to
technical M.

Even this simple metric results in noticeable improvements. Other more
sophisticated metrics will certainly produce better results for large repair col-
lections (see Sect. 12.4).

7A metric does not need to be antisymmetric. Consequently, some repair sets may achieve
the same rank in the sorted repair collection.

9.4 Summary 147

9.3.2 Partial Inconsistency Resolution

In many situations, we cannot achieve full consistency in a repository. Instead,
we only want to resolve the most troubling inconsistencies whose resolutions
impose low costs; i.e., we live with less important inconsistencies. For this
purpose, we may employ a metric that considers a repair set rs preferable to a
repair set rs′, if rs contains a repair whose rating is bigger than the ratings of
all repairs in rs′, thus:

rs ≥max rs′ ⇔ ∃ rep ∈ rs • ratingmax(rep) ≥ max
rep′∈rs′

ratingmax(rep′)

Now we use a new rating function ratingmax, which also considers the incon-
sistencies resolved by the individual repairs. We calculate inconsistency rank-
ings by (1) mapping priorities to numbers (high → 5,medium → 3, low → 1),
(2) multiplying each priority with its associated count of inconsistencies, and
(3) finally adding up the results.8 For example, adding up the inconsistencies
for {2(high), 1(medium)} results in 2 · 5 + 1 · 3 = 13. For our example repairs,
we calculate ratings also shown in Tab. 9.1. Using the ≥max metric we obtain
the ranking

1.) {repChgman1′′ , repChgdoc2},
1.) {repChgman1′′ , repChgkeys},
1.) {repChgman1′′ , repDelkaA2},
1.) {repChgman1′′ , repDeldoc2}

which basically indicates that changing the kind of the manual man1.xml re-
solves most of the inconsistencies at a relatively small cost.

9.4 Summary

In this chapter, we present an approach to derive repairs for inconsistent repos-
itories. Our primary goal is to propose to authors the most useful repairs. The
novel idea is to derive repairs from augmented S-DAGs and not directly from
the documents in the repository. The advantage of separating repair derivation
from S-DAG generation is that the repository needs to be locked during the
computationally cheap S-DAG generation only. By exploiting meta information
in augmented S-DAGs about suggested repair actions, we eliminate most re-
pairs that are probably not useful. Our repair derivation algorithm guarantees
that (1) each repair set in the repair collection contains compatible repairs only
and (2) the repair sets provide mutually independent alternatives. Repairs may
introduce new inconsistencies. Therefore, we determine the rules that could be
broken by a repair. Finally, we employ ratings and costs of repairs to rank the
repair collection by means of user-defined preference metrics. These preference
metrics also provide a practical means for partial inconsistency resolution.

8Clearly, this only makes sense for partial inconsistency resolution, because a repair set
contains repairs that will resolve all inconsistencies.

148 Repair Collections

We consider the generation of prioritized repairs a useful basis for managing
consistency in repositories and an essential step towards consistency maintain-
ing DMSs.

In the next part of this thesis, we illustrate by a case study the application
of our consistency maintenance approach.

Part III

Case Study:
Maintaining Consistency in

Industrial Software
Specifications

149

150

In this part, we apply our consistency maintenance approach to the devel-
opment of software specifications. Typically, industrial software specifications
contain many documents of heterogeneous type and content. The development
process of a specification induces temporal consistency requirements. Thus,
from our point of view, software specifications provide a useful test bed to
validate our consistency maintenance approach.

From the software engineering point of view, developing consistent specifi-
cations is one of the most challenging tasks in software development. Often,
inconsistencies cause severe costs and delays — they are major reasons for the
failure of so many software projects. In particular, informal approaches to
specifying software suffer from semantic inconsistencies. Up to now achieving
a reasonable level of consistency has required huge manual effort. On the other
hand, formal software specifications have as yet not been included into the
every-day work of software engineers. Usually, formal approaches require too
many changes in the development process and suffer from unjustified complex-
ity. Thus, up to now they do not scale to an industrial setting. Our consistency
maintenance approach does not require any adaptations to software engineering
processes — it can be set on top of informal software development.

In our case study, we apply consistency maintenance to a software specifi-
cation method developed by sd&m,9 a well-established German software com-
pany. In Chapter 10, we describe analysis modules as a method for developing
industrial software specifications and list some consistency requirements. In
Chapter 11, we formalize 15 of these requirements. In Chapter 12, we present
an example software specification and show how our approach achieves a use-
ful degree of consistency. We present lessons learnt from our case study in
Chapter 13.

9sd&m: software design & management AG (a company of Capgemini), see www.sdm.de
and www.capgemini.com

Chapter 10

Analysis Modules

In this chapter, we describe analysis modules developed by sd&m. In addition,
we give an overview of consistency requirements between these modules. We
shall see that software specification is a quite complex scenario, which benefits
from consistency management. In the following, we consider analysis modules
and consistency requirements “as is,” i.e., we do not discuss them in detail. For
a detailed discussion see [SSKK02, SK02].

In this chapter, we proceed as follows: First, we review software specifi-
cations from the “document perspective.” In Sect. 10.2, we describe analysis
modules and list consistency requirements, some of which are formalized in
Chapter 11. Finally in Sect. 10.3, we classify consistency requirements techni-
cally. Fig. 10.1 illustrates the context of this chapter.

10.1 Industrial Software Specifications are
Heterogeneous Document Sets

A well-structured and semantically consistent requirements specification is the
base for the success of a software project. Usually, practitioners concentrate
on completely and correctly capturing all requirements for the specified sys-
tem. At sd&m, over 22 years experience in software development confirm
that industrial specifications (1) contain heterogeneous results (distributed over
many documents in multiple formats), (2) are to large part informal, (3) are
guided by a process model, e.g., [JCJO92, BRJ99, JBR99, Bec00, Coc01], and
(4) are developed by a team (often using a DMS). Usually, consistency be-
tween specification results is achieved by time-consuming manual effort. On
the other hand, many theoretical approaches aim at consistent specifications
[Wir90, Rat94, RS01, ABK+02]. In practice, however, these approaches are not
integrated into the every-day work of software engineers, because they require
numerous adaptations to the software development process. Thus, entirely
formal approaches currently do not scale to most industrial specifications.

For specifying software, we use analysis modules developed at sd&m
[SSKK02, SK02], a document based approach to software specifications [Den93].
A specification consists of many documents that may be written in natural
language or may contain (semi-)formal content. Temporal aspects like the

10.1
10.2

10.3
11

1

Figure 10.1: Chapter 10 in context

151

152 Analysis Modules

Template:
Specification

Document:
SpecificationInstance of

Instance of

Instance of

Links

Analysis
modules Result type:

Use case

Template:
Use case

Document:
Use cases

Usecase
Result:
Usecase
Result:
Use case
Result:

Specification
of a software
project

derived
from

derived
from

derived
from

Figure 10.2: Relationships between analysis modules, document templates, re-
sult types, specifications, documents, and results

transition from a coarse specification to its fine specification cause additional
complexity.

Analysis modules cover a range of properties that can be found in software
specifications for large systems:

• A specification contains multiple result types that deal with different
aspects of the specified system.

• Usually, for each result type, a specific document type is employed, e.g.,
UML models, informal graphics, structured or plain text.

• Often, specific tools are used to edit these documents.

Above properties are independent of the specification method itself, like object
oriented analysis [Boo94], UML modelling [BRJ99], agile processes [Coc01], or
even extreme programming [Bec00]. The number and heterogeneity of the spec-
ification results may, however, cause redundancies and inconsistencies. Since
inconsistencies severely impact the further development process, huge manual
effort is spent on achieving consistency. Our approach to tolerant consistency
maintenance automatically pinpoints inconsistencies and proposes to software
engineers repairs that resolve inconsistencies. Our idea is simple: We formalize
consistency rules for sd&m’s analysis modules and check concrete specifications
for consistency w.r.t. these rules. We integrate consistency maintenance into
the every-day work of software engineers without requiring any adaptations
to their software engineering practices. This is a major difference to formal
software engineering approaches. Therefore, we expect good user acceptance
— a key feature entirely formal approaches have not achieved yet. Through
applying our consistency management approach, software engineers can con-
centrate on their actual work: the technical correctness and completeness of a
specification.

10.2 Analysis Modules and
Consistency Requirements

Fig. 10.2 illustrates the relationships between analysis modules, specifications,
and result types. Each analysis module describes a result type of a specifica-
tion. In the specification of a software project, result types are instantiated to

10.2 Analysis Modules and Consistency Requirements 153

Essentials

Overview of the technical architecture

Goals, scope, constraints

Functional requirements

Analysis functions

Use cases

Business processes

Data

Data types

Data model

User interface

Printed output

Batch

Dialog

Cut over

Data migration

Interfaces to up/downstream systemsEnvironment

Miscellaneous

Glossary

Reading instructions

N
on

−
fu

nc
tio

na
l r

eq
ui

re
m

en
ts

C
ro

ss
−

cu
tti

ng
 c

on
ce

rn
s

N
on

−
fu

nc
tio

na
l

pr
op

er
tie

s

Figure 10.3: Overview of analysis modules by sd&m

results. By the term result we mean the outcome of a requirements analysis
activity; by result types we categorize results. For some result types, there may
exist multiple results. For example, from the analysis module for use cases we
derive the result type “use case;” a software project includes multiple instances
(results), i.e., the actual use cases. Usually, specifications for large systems are
partitioned into multiple documents, each of which contains results of one result
type. The structure of a document follows a template that is derived from the
corresponding analysis module. A template contains a header for document
metadata (e.g., author and status) and a body that corresponds to a result
type. A software specification consists of (1) documents containing the results
of the specification and (2) a specification document, which references these
documents. We shall see that a specification can contain multiple specification
documents, in order to distinguish different reader species. All documents are
stored in a repository managed by a DMS, in order to coordinate collaborative
work of multiple software engineers.

An analysis module acts as a guideline for describing a result, e.g., a use
case or a business process. At sd&m, 17 analysis modules have been identified,
shown in Fig. 10.3. In the following, we describe the analysis modules and list
consistency requirements between them. We have collected the requirements in
tight cooperation with sd&m; for later reference, we assign consecutive num-
bers. Most requirements represent wishes to an “ideal” specification. Clearly,
they will be broken during the development process. For each requirement, we
list a description in natural language, its strength (weak or strong), its impor-
tance (high, medium, or low), its class (see below), whether it affects multiple
files, whether it affects multiple versions, and a rough estimate about the com-
plexity of predicates and functions needed for formalization (simple, complex,
or very complex). Recall that for the application of our approach it is negligible

154 Analysis Modules

whether a requirement affects multiple documents or one document only. The
document format is of minor importance, too.

We classify consistency requirements as follows:

• Referential : The requirement is essentially a referential integrity con-
straint: Some document (content) should exist. Referential requirements
employ simple functions and predicates only, e.g., equality.

• Unique: We require that the name of some content is unique. Usually,
these requirements use simple functions and predicates. It can, however,
be complicated to collect all content of the same kind, in order to check
uniqueness.

• Linguistic: The requirement is concerned with linguistic issues, such as
readability or semantic similarity of natural-language texts. For formal-
izing these requirements, the language designer must define complex text
analysis functions. Haskell’s Foreign Function Interface [C+03] provides
access to libraries useful for this purpose.

• Logic: We require logical derivation, e.g., that some facts are implied by
other facts, which uses a predicate implies. Of course, this predicate is
limited to a decidable subset of logic.

• Naming : The name of some content should comply with its naming con-
vention. We formalize naming conventions by regular expressions, such
that compliance to a naming convention reduces to the matching of text
against a regular expression. The language designer can use Haskell’s
regular expression library for regular expression matching.

• Calculation: We require that an equation holds for some content, e.g.,
that an entity type carries less than seven attributes.

We shall see that most of the requirements below appear quite vague and
unclear in natural language. By formalizing requirements as consistency rules
we get a much better idea about what consistency really means. In Chapter 11,
we formalize 15 requirements, which are written in bold face. We have chosen
to formalize at least one requirement from each class above. The formalized
consistency rules show interesting properties from the formalization point of
view. Also, the rules are useful to examine how specific inconsistencies are
shown by S-DAGs. Therefore, the rules provide a good means to evaluate
the usefulness of our approach, but also to determine interesting directions for
future research.

In the following subsections, we concentrate on the analysis modules needed
for our example specification in Chapter 12. For brevity, we omit a descrip-
tion of the modules batch, printed output, overview of the technical archi-
tecture, interfaces to up/downstream systems, data migration, cut over, and
non-functional requirements.

10.2 Analysis Modules and Consistency Requirements 155

10.2.1 Essentials

The analysis module ‘goals, scope, constraints’ includes major goals and the
purpose of the specified system. In addition, some global constraints and the
most important requirements are identified. In particular, the goals, scope,
constraints document defines actors. Once determined, the global conditions
of a software project should be invariant over time.
Rule 1 The goals, scope, constraints document, included in the study, should
not change significantly afterwards.

strength importance class files versions complexity
weak high linguistic 1 multiple very complex 2

Rule 2 There exists at most one valid goals, scope, constraints doc-
ument.

strength importance class files versions complexity
strong medium referential multiple 1 simple 2

Rule 3 The name of an actor is unique and should comply with its
naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

10.2.2 Non-Functional Properties

Non-functional properties, such as performance aspects, naming conventions,
or style guides, apply to all result types of a specification. Non-functional
requirements list simple properties. For more complex global requirements,
cross-cutting concerns are used. For example, cross-cutting concerns include a
naming convention for each result type of the specification and a style guide
containing layout descriptions for the user interface. For large specifications,
with many similar dialogs, the style guide contains dialog types.
Rule 4 The cross-cutting concerns of the fine specification should
contain a style guide.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 5 The cross-cutting concerns should contain a naming convention for
each result of a specification.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 6 The style guide should not change significantly over time.
strength importance class files versions complexity
weak high linguistic 1 multiple very complex 2

Rule 7 There exists at most one cross-cutting concerns document per topic.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 8 The name of a dialog type is unique and should comply with its naming
convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming, unique multiple 1 complex 2

156 Analysis Modules

10.2.3 Functional Requirements

Often, functional requirements are considered the heart of a specification. The
analysis modules include business processes, use cases, and analysis functions.

A business process describes central activities in the customer business.
Therefore, business processes are necessary for a basic understanding of the
new system and the communication between software engineers and customers.
The specified system supports some activities of a business process. At sd&m,
business processes are categorized by organizational units. In addition, all
business processes are listed in a business process overview. Each activity of a
business process is associated with an actor and may reference in- and output
data, respectively. Activities supported by the system are described by use
cases in detail.
Rule 9 The name of a business process is unique and should comply with its
naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming, unique multiple 1 complex 2

Rule 10 The name of an organizational unit is unique and should comply with
its naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming, unique multiple 1 complex 2

Rule 11 Each business process listed in the business process overview should
be defined.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 12 Each business process should exist in the overview.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 13 An activity within a business process is unique and should comply
with its naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming, unique multiple 1 complex 2

Rule 14 Each activity is associated with an actor.
strength importance class files versions complexity
weak medium referential 1 1 simple 2

Rule 15 It should be clear which activities are supported by which computer
systems (new / adjacent / none).

strength importance class files versions complexity
weak medium referential 1 1 simple 2

Rule 16 Data and documents needed for or produced by an activity should
be marked.

strength importance class files versions complexity
weak medium referential 1 1 simple 2

Rule 17 A business process should contain a few branches only.
strength importance class files versions complexity
weak low calculation 1 1 simple 2

10.2 Analysis Modules and Consistency Requirements 157

A use case describes the functional requirements of the specified system from
the user perspective. From a business process, a use case can be found as part
of an activity, one activity as a whole, or several activities together. For a use
case, software engineers may state pre- and postconditions; the preconditions
of a use case should be implied by the postconditions of all other use cases
(these use cases should be performed before). For our purposes, we formalize
pre- and postconditions by boolean logic formulae.

Rule 18 For each activity supported by the system, there should exist (one or
more) use cases.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 19 The name of a use case is unique and should comply with
its naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming, unique multiple 1 complex 2

Rule 20 A use case should be associated with an activity in a business process.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 21 The preconditions of a use case should be satisfiable from
the postconditions of all other use cases.

strength importance class files versions complexity
weak medium logic multiple 1 complex 2

Rule 22 Use cases referenced by another use case should exist.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 23 A use case should not both use and extend another use case.
strength importance class files versions complexity
weak medium referential 1 1 simple 2

Rule 24 There should be no cycles in the uses-relations between use cases.1
strength importance class files versions complexity
weak medium calculation multiple 1 complex 2

Rule 25 Extends-relations between use cases should be used rarely.
strength importance class files versions complexity
weak medium calculation 1 1 simple 2

Rule 26 Entity types needed by a use case should be defined in the data
model.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

1Rule 24 requires to compute the transitive closure of the uses-relation.

158 Analysis Modules

Complex processes and computations without user interaction may be de-
scribed by analysis functions, which are referred to by use cases. For example,
analysis functions are used to describe checking procedures for the credit as-
sessment of a customer. By describing such details through analysis functions,
use cases remain small and comprehensible. The description of an analysis
function contains pre- and postconditions, effects, and messages. The pre- and
postconditions of an analysis function should comply with the pre- and post-
conditions of its using use cases. In the fine specification, analysis functions
may reference entity types in the data model or data types in the data types
document.

Rule 27 The name of an analysis function is unique and should comply with
its naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 28 An analysis function used by a use case should exist.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 29 The preconditions of an analysis function should be implied by the
preconditions of each referencing use case.

strength importance class files versions complexity
weak medium logic multiple 1 complex 2

Rule 30 The conjunction of the postconditions of all analysis func-
tions referenced by a use case u should imply the postconditions of
u.

strength importance class files versions complexity
weak medium logic multiple 1 complex 2

Rule 31 Analysis functions used by another analysis function should exist.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 32 The preconditions of an analysis function should be implied by the
preconditions of each using analysis function.

strength importance class files versions complexity
weak medium logic multiple 1 complex 2

Rule 33 The conjunction of the postconditions of all analysis functions used
by an analysis function f should imply the postconditions of f .

strength importance class files versions complexity
weak medium logic multiple 1 complex 2

Rule 34 Entity types (data types) used by analysis functions should be defined
in the data model (data types document).

strength importance class files versions complexity
weak high referential multiple 1 simple 2

10.2 Analysis Modules and Consistency Requirements 159

10.2.4 Data

The data model defines business data; i.e., it provides a technical view on the
static persistent data of the system. Usually, entity relationship diagrams (in
UML notation) are used for this purpose. Attributes of entity types reference
data types from the data types document. Depending on the type system used
(e.g., if polymorphic data types are supported), these data types may not be
found directly; they can be derived only. Entity types within the data model
may be referenced by use cases, analysis functions, or dialogs. The consistency
requirements below also cover demands to a “useful” data model.

Rule 35 The name of an entity type is unique and should comply with its
naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 36 The name of an attribute should comply with its naming convention
in the cross-cutting concerns.

strength importance class files versions complexity
weak high naming multiple 1 complex 2

Rule 37 Within an entity type, the names of its attributes should be unique.
strength importance class files versions complexity
weak high unique multiple 1 simple 2

Rule 38 The name of an attribute is not the name of an entity type.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 39 An attribute has an associated type, which should be derivable from
the data types.

strength importance class files versions complexity
weak high logic multiple 1 complex 2

Rule 40 Entity types referenced by a relation should be defined in the data
model.

strength importance class files versions complexity
weak high referential 1 1 simple 2

Rule 41 In the finished fine specification, each relation should have
cardinalities associated with its entity types.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 42 The UML notation must use entity types, attributes, and associations
only (no methods).

strength importance class files versions complexity
strong medium referential 1 1 simple 2

Rule 43 Each entity type in the data model should be used by a use case, an
analysis function, or a dialog.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

160 Analysis Modules

Rule 44 A key attribute for an entity type should be visible, i.e., there exists
a dialog showing this attribute.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 45 There exists at most one valid data model.
strength importance class files versions complexity
strong high referential 1 1 simple 2

Rule 46 An entity type should have less than seven attributes.
strength importance class files versions complexity
weak low calculation 1 1 simple 2

The data types document defines technical data types. These types may be
used for attribute types. We distinguish between elementary types, structure
types (records), enumeration types (variants), and range types.

Rule 47 The name of a data type is unique and should comply with its naming
convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 48 The lower bound of a range data type should be smaller
than its upper bound.

strength importance class files versions complexity
weak medium calculation 1 1 simple 2

Rule 49 Field names of a structure type are unique and should comply with
their naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak medium unique, naming multiple 1 complex 2

Rule 50 Field types of a structure type should be derivable from the data
types.

strength importance class files versions complexity
weak high logic 1 1 complex 2

Rule 51 The types of enumeration values should be derivable from the data
types.

strength importance class files versions complexity
weak high logic 1 1 complex 2

Rule 52 There exists at most one data types document.
strength importance class files versions complexity
strong high referential 1 1 simple 2

Rule 53 Values and fields referenced by a data type format should exist in
the same data type definition.

strength importance class files versions complexity
weak high referential 1 1 simple 2

Rule 54 The type of a range should be either elementary or enumerable.
strength importance class files versions complexity
weak high referential 1 1 simple 2

10.2 Analysis Modules and Consistency Requirements 161

10.2.5 User Interface

Users can interact with the specified system in different ways. The analysis
module ‘dialog’ specifies the look and feel of dialogs (by dialog screens) as
well as their functionality (by interactivity diagrams [Den91]). For a dialog,
software engineers define data (entity types in the data model) presented to or
modified by the user. For large systems, containing many similar dialogs, the
style guide in the cross-cutting concerns should define dialog types. Dialogs
are associated to use cases. For complex computations, dialogs may reference
analysis functions.
Rule 55 The name of a dialog is unique and should comply with its naming
convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 56 The name of a screen is unique within its dialog and should comply
with its naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 57 A dialog type referenced by a dialog should exist in the style guide
of the cross-cutting concerns.

strength importance class files versions complexity
weak high referential multiple 1 very complex 2

Rule 58 A persistent input/output field in a dialog screen should be associated
with a valid attribute from the data model.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 59 The data type of an attribute shown by a persistent input/output
field should be associated with a format in the data types.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 60 A dialog screen referenced by a state in an interactivity diagram
(IAD) should be defined in the same dialog.

strength importance class files versions complexity
weak high referential 1 1 simple 2

Rule 61 Each dialog screen should occur in the dialog’s IAD.
strength importance class files versions complexity
weak high referential 1 1 simple 2

Rule 62 Dialogs referenced by a dialog should be defined.
strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 63 Analysis functions used by a dialog should be defined in an analysis
functions document.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

Rule 64 Each analysis function used by a dialog should also be used
by each use case associated with this dialog.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

162 Analysis Modules

10.2.6 Miscellaneous

Besides the modules above, a specification should contain reading instructions
and a glossary. Reading instructions describe the structure of the specification
and the specification method, e.g., object oriented analysis. For each analysis
module, used in the specification, the reading instructions determine which
reader species should read instances of this module. We distinguish between
users, software designers, the test team, and the project management. For
example, analysis functions should be read by the test team; they do not need
to be read by the user.

Rule 65 The name of a reader species is unique and should comply with its
naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 66 The reading instructions should address the following reader species:
user, software designer, test team, and project management.

strength importance class files versions complexity
weak medium referential 1 1 simple 2

Rule 67 Each analysis module described by the reading instructions should
be part of the specification.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 68 There must exist at most one valid reading instructions document.
strength importance class files versions complexity
strong medium referential 1 1 simple 2

The glossary explains domain-specific vocabulary and technical terms. Once
agreed on, the definition of a term should be invariant over time.

Rule 69 There must exist at most one valid glossary.
strength importance class files versions complexity
strong medium referential 1 1 simple 2

Rule 70 The definition of a term in the glossary does not change
significantly over time.

strength importance class files versions complexity
weak high linguistic 1 multiple very complex 2

Rule 71 The glossary should define a term only once.
strength importance class files versions complexity
weak high unique 1 1 simple 2

10.2 Analysis Modules and Consistency Requirements 163

10.2.7 Components

Large software systems are partitioned into technical components, which pro-
vide a view orthogonal to the analysis modules. At sd&m, components are
applied to the analysis modules use cases, analysis functions, data model, di-
alogs, batch processes, and printed outputs. Components appear as sections in
documents. Useful components fulfill the following requirements.
Rule 72 The name of a component is unique and should comply with its
naming convention in the cross-cutting concerns.

strength importance class files versions complexity
weak high unique, naming multiple 1 complex 2

Rule 73 A use case should use analysis functions from its own com-
ponent only.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 74 In the data model, an entity type has more relations to
entity types within the same component than to entity types within
a different component.

strength importance class files versions complexity
weak medium calculation multiple 1 simple 2

10.2.8 Specification Documents

A specification document references documents containing the results of a spec-
ification. Every reader species from the reading instructions needs a specific
specification document. For a specification, we distinguish between study,
coarse specification, and fine specification. Transitions between these phases
call for temporal consistency requirements. For example, business processes
agreed on in the coarse specification should be refined in the fine specification.
Thus, we require that activities from the coarse specification are part of the fine
specification. On the other hand, all business processes in the fine specification
should be known in the coarse specification already.
Rule 75 The study should contain goals, scope, constraints and a glossary.

strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 76 Each document referenced by a specification document exists.
strength importance class files versions complexity
strong high referential multiple 1 simple 2

Rule 77 Each document referenced by a specification document should pass
linguistic analysis, e.g., the check for whole sentences, passive constructions,
and the avoidance of ‘unwanted’ words.

strength importance class files versions complexity
weak medium linguistic multiple 1 very complex 2

Rule 78 In a specification, each document delivered to the customer should
be easy to read.

strength importance class files versions complexity
weak high linguistic multiple 1 very complex 2

164 Analysis Modules

Rule 79 Business processes of the coarse specification should not change sig-
nificantly in the fine specification.

strength importance class files versions complexity
weak medium linguistic multiple multiple very complex 2

Rule 80 A system-supported activity in a business process of the
coarse specification is also included in the fine specification and is
also supported by the system.

strength importance class files versions complexity
weak high referential multiple multiple simple 2

Rule 81 The fine specification should not introduce new business processes.
strength importance class files versions complexity
weak high referential multiple multiple simple 2

Rule 82 A specification intended for a species of readers only con-
tains documents intended for this reader species.

strength importance class files versions complexity
weak high referential multiple 1 simple 2

10.2.9 Document Life Cycle

Each document follows a simple life cycle, which distinguishes the status values
‘in progress,’ ‘quality assurance,’ and ‘finished.’ When the work on a document
in status ‘in progress’ has ended it gets the status ‘quality assurance,’ which in
turn becomes ‘finished’ after the document has passed quality control success-
fully. We model restrictions of the sd&m document life cycle by the following
consistency requirements.

Rule 83 If a document in finished status is modified, it must get the status
‘in progress.’

strength importance class files versions complexity
strong medium referential 1 2 simple 2

Rule 84 A document in status ‘in progress’ should change its status
to ‘quality assurance’ only.

strength importance class files versions complexity
weak medium referential 1 2 simple 2

Rule 85 The coarse specification includes documents in status ‘finished’ only.
strength importance class files versions complexity
weak medium referential multiple 1 simple 2

Rule 86 The fine specification contains all analysis modules of the finished
coarse specification; the modules are in finished status.

strength importance class files versions complexity
weak high referential multiple multiple simple 2

10.3 Summary 165

10.2.10 Requirements not Formalizable by Our Approach

In this section, we list some requirements that are, as yet, not formalizable
by our approach. Mostly, this is because these requirements call for precise
semantic analysis of natural language or pictures. If, however, such means
were provided, e.g., by sophisticated metadata extraction approaches [WS99,
MPG01, FGLM02], the below requirements become formalizable.

• Business processes should not describe technical requirements.

• An activity that is already completely modelled by a use case or a set of
use cases should not be modelled by another use case.

• Graphical and textual descriptions of business processes, use cases, and
the data model, respectively, should be consistent.

• The graphical layout of a dialog conforms to the layout specified in the
dialog type.

• A use case should not describe the graphical user interface.

• A specification should be neither too detailed nor too coarse.

• The style of a specification should not be too schematic.

10.3 Summary

Tab. 10.1 summarizes consistency requirements from the previous section. Most
requirements are referential. Some of these referential requirements can be
expressed by the document model (e.g., by XML Schema constraints) or checked
by a link checker. Most referential requirements rely, however, on additional
information that link checkers are not aware of. Notice that link checkers and
restrictions by the document model implement a strict view of consistency,
which would severely hinder the development of a specification. Another large
group of requirements is formed by naming and uniqueness requirements. Most
uniqueness requirements are also naming requirements. The large number of
requirements in these categories is justified by sd&m’s naming policy: Naming
conventions are considered useful for industrial software specifications.

Only a few requirements are strong. At sd&m, software engineers expect
most requirements to be violated by a specification. This supports our the-
sis that full consistency w.r.t. user-defined consistency requirements cannot be
achieved in a real life environment. Instead, it is necessary to tolerate incon-
sistencies.

166 Analysis Modules

Strength Impor- Referential Lin- Logic Naming Unique Calc-
tance guistic ulation

weak high 5 7 11
12 18 20
22 26 28
31 34 38
40 53 54
57 59 60
61 62 63
64 80 81

82 86

1 6
70 78

39 50
51

3 8
9 10

13 19
27 35
36 47
49 55
56 65

72

3 8
9 10

13 19
27 35
37 47
49 55
56 65
71 72

medium 4 14 15
16 23

41 43 44
58 66 67
73 75 84

85

77 79 21 29
30 32

33

24 25
48 74

low 17 46
strong high 45 52 69

76
medium 2 42 68

69 83
low

Table 10.1: Summary of consistency requirements for analysis modules (require-
ments in italic face include complex or very complex predicates; requirements
in bold face are formalized in the next chapter)

Chapter 11

Formalizing Consistency Rules

In this chapter, we formalize 15 of the consistency requirements found in Chap-
ter 10. We will see that the most laborious work lies in the definition of doc-
ument types. We need to define only a few additional function symbols and
predicate symbols, because the basic language Prelude already contains many
useful symbols. Since we use XML as document format, the implementations
of parser functions can be derived by the Haskell XML parser HaXml [WR99].
In Sect. 11.1, we define the domain-specific language SDM. In Sect. 11.2, we
formalize consistency requirements. Fig. 11.1 illustrates the context of this
chapter.

11.1 The Language Designer’s Work:
Developing the Language SDM

In this section, we define the domain-specific language SDM. For brevity, we
only present those parts of SDM that are necessary to formalize our example
rules. The following sections contain definitions of types, predicate symbols,
and function symbols. Many type definitions are given partially; we mark
omissions by three dots (. . .). Most of the types and function symbols are
needed to process sd&m specific documents. Sect. 11.1.4 contains an excerpt
from the basic language Prelude. For a full documentation of types, predicate
symbols, and function symbols see the project WWW site

www2-data.informatik.unibw-muenchen.de/cde.html

11.1.1 Type Definitions

An sd&m specific document carries a validity attribute and a status. The
type DocSDM is supertype of all sd&m specific documents. Recall that record
subtypes inherit all labels from their supertypes; thus DocSDM also includes the
labels dId and dState.1 A specification document contains its kind and the

1For brevity, we omit record constructors — they are considered equal to their correspond-
ing record type constructors. E.g., the definition of DocSDM is actually:
DocSDM < {Doc} = DocSDM {valid : Bool, status : Status, . . .}.

11.1

4.1 8.1

11.2
12

10

Figure 11.1: Chapter 11 in context

167

168 Formalizing Consistency Rules

reader species expected to read this specification. In addition, the type DocSpec
includes labels for references to documents that are part of a specification. We
define the type Result as a common supertype of all specification results; it
carries a name and a plain text description.

sd&m documents
DocSDM < {Doc} = {valid : Bool, status : Status, . . .}
Document status values
Status = InProgress | QualAssurance | Finished
Specification documents

DocSpec < {DocSDM} =

8
<
:
specKind : SpecKind, readers : String,
doc crosscut : [String], doc reading : String,
doc busproc : [String], doc datamod : Maybe String, . . .

9
=
;

Specification kinds
SpecKind = Study | Coarse | Fine
Supertype of all result types
Result = {name : String, desc : String}

A goals, scope, constraints document contains names and descriptions for
actors.

Goals, scope, constraints documents
DocGoalsScope < {DocSDM} =

ľ
existingactors : [Result], . . .

ł

A cross-cutting concerns document contains naming conventions and a style
guide. The type NamingConv carries an extra label for the naming convention
of each specification result. A naming convention is expressed by a String
denoting a regular expression. The style guide contains types for screens (in a
dialog) and buttons (in a screen).

Cross-cutting concerns documents
DocCrossCut < {DocSDM} =

ľ
conventions : NamingConv, styleguide : Styleguide, . . .

ł
Naming conventions
NamingConv =

ľ
nc actor : Maybe String, nc uc : Maybe String, . . .

ł
Style guides
Styleguide =

ľ
screenTs : [SGType], buttonTs : [SGType], . . .

ł
Style guide types
SGType < {Result} = {ref layout : String}

A business process document contains a list of business processes. For a
business process, we restrict ourselves to labels needed to model activities. For
an activity, we model its input and output data only. A reference to an ingre-
dient of a business process (e.g., an activity) carries the business process name
and the name of the ingredient. In order to define a process, an ingredient car-
ries pointers to next and previous ingredients, respectively. These pointers may
consist of boolean logic expressions. The parametric type Logic α is also used
for pre- and postconditions of analysis functions and use cases, respectively.

Business process documents
DocBusProc < {DocSDM} = {processes : [BusProc]}
Supertypes of results having an actor
Actor = {actors : [String]}
Business processes
BusProc < {Result, Actor} =

ľ
activities : [Activity], usesBP : [RefBP], . . .

ł

11.1 Developing the Language SDM 169

References to business processes
RefBP = {bpName : String, bpInt : RefBPInt}
References to business process ingredients
RefBPInt = RefActivity String | RefProc RefBP | . . .
Ingredients of business processes

BPInt < {Result} =

¡
prevI : Maybe (Logic RefBPInt),
nextI : Maybe (Logic RefBPInt)

¿

Boolean logic expressions
Logic α = LTrue | Con α | Not (Logic α) |

And [Logic α] | Or [Logic α]
Activities
Activity < {BPInt, Actor} =

ľ
input : [Data], output : [Data], . . .

ł
Data references
Data = Document String | Data String | . . .
A use case document is subdivided by components, which contain use cases

or other subcomponents. Since a component is a recursive data structure, we
need to flatten it, in order to iterate over all elements. For this purpose, we de-
fine the function flattenComp, see Sect. 11.1.3. A use case contains references
to analysis functions and to its associated activities in business processes. The
pre- and postconditions of a use case are boolean logic expressions over atomic
conditions, denoted by Strings.

Use case documents
DocUsecase < {DocSDM} = {ucComp : [Comp Usecase]}
Components
Comp α < {Result} = {subcomps : [Comp α], elements : [α]}
Use cases
Usecase < {Result, Prepost, Actor}

=
ľ
for activity : [RefBP], ref fun : [String], . . .

ł
Pre- and postconditions
PrePost =

ľ
precons : Logic String, postcons : Logic String

ł

Documents for analysis functions follow the shape of use case documents.
An analysis function carries pre- and postconditions, its parameters, and its
result. Parameters may be given by plain text descriptions or by references to
entity types.

Analysis function documents
DocAnaFun < {DocSDM} = {afComp : [Comp AnaFun]}
Analysis functions
AnaFun < {Result, PrePost} =

ľ
params : [Param], result : Param, . . .

ł
Parameters of analysis functions
Param = ParamDesc String | ParamRef RefET | . . .
References to entity types
RefET = {etName : String, etAttrs : [String]}
Components of a data model contain entity type definitions. An entity type

may have relations with other entity types (for brevity, we omit a record label
for attributes).

Data model documents
DocDataMod < {DocSDM} = {compsDM : [Comp ET]}
Entity types
ET < {Result} =

ľ
relatesWith : [RelatesWith], . . .

ł
Relations with other entity types
RelatesWith < {Result} =

ľ
targetcard : String, ref entitytype : RefET, . . .

ł

170 Formalizing Consistency Rules

A technical data type may be a basic type, a range type, or a structure type.
Range types also carry explicit information about the type of the range.

Data types documents
DocDataTs < {DocSDM} = {dataTs : [DataType]}
Technical data types
DataType < {Result} = {kind : DTKind, . . .}
Kinds of technical data types
DTKind = Basic | Range Range | Struct [Field] | . . .
Range data types

Range =

¡
rangeType : String, rangeFrom : String,
rangeTo : String

¿

Fields of structure data types
Field < {Result} = {fieldType : String, . . .}

Dialog documents are subdivided by components, too. A dialog consists of
screens, actions, and an interactivity diagram. For brevity, we only concentrate
on actions, which carry references to analysis functions.

Dialog documents
DocDialog < {DocSDM} = {diaComp : [Comp Dialog]}
Dialogs
Dialog < {Result} =

ľ
usecases : [String], actions : [Action], . . .

ł
Actions
Action < {Result} = {actFun : [String], . . .}

A reading instructions document contains definitions of existing reader
species and for each analysis module a reading instruction (for brevity, we
concentrate on reading instructions for analysis functions and cross-cutting
concerns only). A reading instruction specifies which reader species should
read which part of an analysis module.

Reading instructions documents
DocReading < {DocSDM}

=
ľ
existingreaders : [Result], ri anafun : Maybe [RI], ri crosscut : Maybe [RI], . . .

ł
Reading instructions
RI = {shouldRead : [String], whichPart : String}

A glossary contains term definitions, which may reference other terms.

Glossary documents
DocGlossary < {DocSDM} = {terms : [Term]}
Glossary terms
Term < {Result} = {alternatives : [String], seealso : [String]}

11.1.2 Predicate Symbol Definitions

We need to define new predicate symbols that are not already included in the
language Prelude. ≡ determines whether two Strings are similar; we regard
two Strings as similar, if the first String is a substring of the second String,
where case is neglected. We match a String against a regular expression by
match, which uses Haskell’s regular expression library. The symbol |⇒ is used
to determine logical implication between boolean logic expressions.

11.1 Developing the Language SDM 171

≡ : String×String→ Bool Similarity between Strings
match : String×String→ Bool Regular expression matching,

third argument is a regular expression
|⇒ : Logic α×Logic α→ Bool Logical implication,

first formula implies second formula

11.1.3 Function Symbol Definitions

First, we define some auxiliary functions for convenience. The constant todo
returns the String “TODO” and serves as a marker. We flatten recursive com-
ponents by flattenComp; each returned component does not contain any sub-
components. The total functions rngFrom and rngTo return the lower bound
and upper bound of a data type, respectively. Applied to a non-range data type,
rngFrom returns 0 and rngTo returns 1. The function symbol addRI adds a
reading instruction for a specific reader species to a list of reading instructions.

todo : String String constant “TODO”
flattenComp : Comp α→ [Comp α] Flatten component
rngFrom : DTKind→ Float Lower bound of a range data type
rngTo : DTKind→ Float Upper bound of a range data type
addRI : Maybe [RI]×String Add a reading instruction for reader

→ Maybe [RI] species given as third argument

We also need functions that access documents in the repository and parse their
content to a data structure from the language SDM. The implementations of
the repository access functions below are derived from the DTDs of the analysis
modules. The final column below denotes the documents accessed.

repDocSDM : State→ [DocSDM] sd&m documents {*.xml}
repSP : State→ [DocSpec] Specifications {Spec*.xml}
repGoalsScope : State→ [DocGoalsScope] Goals, scope, constraints {Goals*.xml}
repCrosscut : State→ [DocCrosscut] Cross-cutting concerns {Cross*.xml}
repBusProc : State→ [DocBusProc] Business processes {BP*.xml}
repUsecase : State→ [DocUsecase] Use cases {UC*.xml}
repAnaFun : State→ [DocAnaFun] Analysis functions {AnaFun*.xml}
repDataMod : State→ [DocDataMod] Data models {DataM*.xml}
repDataTs : State→ [DocDataTs] Data types {DataT*.xml}
repDialog : State→ [DocDialog] Dialogs {Dialog*.xml}
repReadingInst : State→ [DocReading] Reading instructions {Reading*.xml}
repGlossary : State→ [DocGlossary] Glossaries {Gloss*.xml}

11.1.4 Relevant Excerpt from the Language Prelude

For brevity, we omit a detailed description of the basic language Prelude. Be-
low, we only define types and symbols needed for our case study. Their meaning
should be known already from the preceding chapters. Most implementations
carry over from the Haskell Prelude [PJ03]. Noticeable exceptions are the func-
tions filter∈ and filter/∈ : filter∈ (xs, f, ys) returns all elements y from
the list ys for which f(y) ∈ xs holds; filter/∈ (xs, f, ys) returns those y ∈ ys for
which f(y) ∈ xs fails. Prelude includes these functions for convenience, because
we prohibit partial application. The predicate symbols =, 6=, <, ≤, and ∈ are
fully polymorphic, which is safe since in our syntax we permit first-order type

172 Formalizing Consistency Rules

variables only. Recall that first-order type variables α do not match function
types (we use canonical equality and ordering relations, which are derived au-
tomatically for all types). In contrast to prev, the function symbol prevState
is total, i.e., prevState(t) = t if t = repInit.

Doc =
ľ
dId : String, dState : State

ł
Documents

Bool = True | False Booleans
[α] = [] | (:) α×[α] Haskell like lists
Maybe α = Nothing | Just α Haskell like Maybe

Int Integer numbers
Float Floating point numbers
String Strings

= : α×α→ Bool Equality
6= : α×α→ Bool In-equality
< : α×α→ Bool Less than
≤ : α×α→ Bool Less than or equal
∈ : α×[α]→ Bool Element of relation
null : [α]→ Bool Is a list empty?

1, 2, . . . : Int Integer constants
: String Empty string

/Int : Int×Int→ Int Integer division
++ : String×String→ String String concatenation
id : α→ α Identity function
length : [α]→ Int Length of a list
\ : [α]×[α]→ [α] Set like difference for lists
catMaybes : [Maybe α]→ [α] Haskell like catMaybes

map : (α→ β)×[α]→ [β] Haskell like map

concatMap : (α→ [β])×[α]→ [β] Haskell like concatMap

filter : (α→ Bool)×[α]→ [α] Haskell like filter

filter∈ : [β]×(α→ β)×[α]→ [α] Advanced filter

filter/∈ : [β]×(α→ β)×[α]→ [α] Advanced negative filter

repStates : [State] All repository states
repInit : State Initial repository state
next : State→ State Next repository state
prev : State→ State Previous repository state
prevState : State→ State Previous repository state (total)

11.2 The Rule Designer’s Work:
Formalizing Consistency Rules

In this section, we formalize 15 consistency requirements from Sect. 10.2. Ex-
cept for Rule 84 each of the following rules is applicable to rule filtering (as
described in Sect. 6.2.1).
Rule 2: There exists at most one valid goals, scope, constraints doc-
ument. We first quantify over all repository states t. For all valid goals, scope,
constraints documents gs and gs1, we require that they have the same name. If
there exist two or more valid goals, scope, constraints documents, we propose
to invalidate the document gs1. The hint collection {∅} avoids generation of
any repairs for the atomic formula dId(gs) = dId(gs1). Our system associates
the documents {Goals*.xml}.

11.2 Formalizing Consistency Rules 173

∀ tKEEP ∈ repStates • ∀ gs ∈ repGoalsscope(t) •

valid(gs) = True ⇒
0
@
∀ gs1 ∈ repGoalsscope(t) •
valid(gs1) = True {{gs1.valid ; False True new 5}} ⇒
dId(gs) = dId(gs1) {∅}

1
A

Rule 3: The name of an actor is unique and should comply with
its naming convention in the cross-cutting concerns. At all repository
states, we require that all actors a1 and a2 with the same name also have the
same description. In addition, the name of an actor should match the naming
convention nc for actors. We employ a case statement here, because in the
record type NamingConv the label nc actor has type Maybe String. If two
actors have the same name but a different description, we propose to change
the name of the actor that has been changed. If the name of an author does not
match its naming convention, we propose to change the name to the naming
convention. Our system associates the documents {Goals*.xml,Cross*.xml}.
∀ tKEEP ∈ repStates • ∀ a1 ∈ concatMap(existingactors, repGoalsScope(t)) •
∀ a2 ∈ concatMap(existingactors, repGoalsScope(t)) •0
@name(a1) = name(a2)

¡{a1.name ; name(a1)++todo True new 10},
{a2.name ; name(a2)++todo True new 10}

¿
⇒

desc(a1) = desc(a2) {∅}

1
A∧

0
@
∃ nc ∈ map(nc actor, map(conventions, repCrosscut(t))) •
match (name(a1), case(nc, {Just→ id, Nothing→ }))

{{a1.name ; case(nc, {Just→ id, Nothing→ }) False 10 }}

1
A

Rule 4: The cross-cutting concerns of the fine specification should
contain a style guide. For all fine specifications spec, we require that there
exists a cross-cutting concerns document cc that, if part of spec, has a non-
empty style guide stG. A non-empty style guide contains button types or screen
types. Notice that we access the cross-cutting concerns documents at the last
modification state of the specification spec. Inconsistencies can be repaired
by “downgrading” the specification to a coarse specification, or removing the
document cc from the specification spec, or adding part of a style guide (we
propose to add a dummy button type or screen type). Our system associates
the documents {Spec*.xml,Cross*.xml}.
∀ tKEEP ∈ repStates • ∀ specCHG ∈ repSp(t) •
specKind(spec) = Fine {{spec.specKind ; Coarse True new 50}} ⇒
∃ cc ∈ repCrosscut(dState(spec)) •ţ
dId(cc) ∈ doc crosscut(spec)

{{spec.doc crosscut ; doc crosscut(spec) \ [dId(cc)] True 15}}
ű
⇒

∀ stGCHG ∈ [styleguide(cc)] •0
@
buttonTs(stG) 6= []¡¡

stG.buttonTs ;

ů
SGType

¡
name = todo, desc = todo,
ref layout = todo

¿ÿ
False 1

¿¿
1
A∨

0
@
screenTs(stG) 6= []¡¡

stG.screenTs ;

ů
SGType

¡
name = todo, desc = todo,
ref layout = todo

¿ÿ
False 1

¿¿
1
A

Rule 19: The name of a use case is unique and should comply with
its naming convention in the cross-cutting concerns. Essentially, this
rule follows the shape of Rule 3. It is, however, more complicated to collect

174 Formalizing Consistency Rules

all use cases, because they are spread over multiple components. We explic-
itly quantify over components, in order to better identify use cases. Without
explicit quantification, repairs would contain use cases only but not their com-
ponents. We use the function symbol flattenComp to flatten components; that
way we can deal with recursive components as if they were first-order types (i.e.,
non-recursive). Our system associates the documents {UC*.xml,Cross*.xml}.

∀ tKEEP ∈ repStates •
∀ cKEEP

1 ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •
∀ cKEEP

2 ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •
∀ u1 ∈ elements(c1) • ∀ u2 ∈ elements(c2) •0
@name(u1) = name(u2)

¡{u1.name ; name(u1)++todo True new 10},
{u2.name ; name(u2)++todo True new 10}

¿
⇒

u1 = u2 {∅}

1
A∧

0
@
∃ nc ∈ map(nc uc, map(conventions, repCrosscut(t))) •
match (name(u1), case(nc, {Just→ id, Nothing→ }))

{{u1.name ; case(nc, {Just→ id, Nothing→ }) False 10 }}

1
A

Rule 21: The preconditions of a use case should be satisfiable from
the postconditions of all other use cases. We require that, if a use case
u has preconditions, these preconditions are implied by the conjunction of the
postconditions of all other use cases. The problem is to collect the postcondi-
tions from all other use cases in a list, to which we can apply the variant con-
structor And. We collect all use cases by concatMap(elements, concatMap(. . .)).
This list is filtered, such that only those use cases remain that have a name
different from u’s name. From these use cases, we take the postconditions. We
must not employ a quantifier here, because all other postconditions together
should imply the preconditions of u. Clearly, our system cannot resolve incon-
sistencies for this rule; repairs will propose to change the use case u, such that
its preconditions are implied by the postconditions of all other use cases. Our
system associates the documents {UC*.xml}.

∀ tKEEP ∈ repStates •
∀ cKEEP ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •
∀ u ∈ elements(c) •

And

0
BB@

catMaybes(map(postcons,
filter/∈ ([name(u)], name,

concatMap(elements, concatMap(flattenComp,
concatMap(ucComp, repUsecase(t)))))))

1
CCA |⇒

case(precons(u), {Just→ id, Nothing→ LTrue})

Rule 30: The conjunction of the postconditions of all analysis func-
tions used by a use case u should imply the postconditions of u.
Essentially, the rule follows the shape of Rule 21. Use cases that do not
use analysis functions are neglected. Our system associates the documents
{UC*.xml,AnaFun*.xml}.

11.2 Formalizing Consistency Rules 175

∀ tKEEP ∈ repStates •
∀ uCHG ∈ concatMap(elements, concatMap(flattenComp,

concatMap(ucComp, repUsecase(t))))
•

null(ref fun(u)) {∅} ∨

And

0
BB@

catMaybes(map(postcons,
filter∈ (ref fun(u), name,

concatMap(elements, concatMap(flattenComp,
concatMap(afComp, repAnaFun(t)))))))

1
CCA |⇒

case(precons(u), {Just→ id, Nothing→ LTrue})

Rule 41: In the finished fine specification, each relation should have
cardinalities associated with its entity types. For each finished fine spec-
ification spec, we require for all data models dm part of spec the following: All
relations rel of each entity type et must have a non-empty target cardinality.
We propose to resolve inconsistencies by either “downgrading” the specification
or adding a todo marker to the target cardinality. Our system associates the
documents {Spec*.xml,DataM*.xml}.
∀ tKEEP ∈ repStates • ∀ specCHG ∈ repSp(t) •ţ
specKind(spec) = Fine {{spec.specKind ; Coarse True 50}} ∧
status(spec) = Finished {{spec.status ; InProgress True 40}}

ű
⇒

∀ dmKEEP ∈ repDataMod(dState(spec)) •ą
dId(dm) = case(doc datamod(spec), {Just→ id, Nothing→ }) {∅}ć ⇒
∀ etKEEP ∈ concatMap(elements, concatMap(flattenComp, compsDM(dm))) •
∀ relCHG ∈ relatesWith(et) •
targetcard(rel) 6= {{rel.targetcard ; todo False 1}}

Rule 48: The lower bound of a range data type should be smaller
than its upper bound. We require that for each data type dt its lower bound
is strictly smaller than its upper bound. Recall that rngFrom and rngTo are
total functions. Our system associates the documents {DataT*.xml}.
∀ tKEEP ∈ repStates • ∀ dt ∈ concatMap(dataTs, repDataTs(t)) •
rngFrom(kind(dt)) < rngTo(kind(dt))

Rule 64: Each analysis function used by a dialog should also be used
by each use case associated with this dialog. For each analysis function
fun, referenced by a dialog dlg, we require that fun is also referenced by all use
cases u called by dlg. We can resolve inconsistencies by either removing from the
dialog dlg the use case reference to u or by adding to u a reference to the analysis
function fun. Our system associates the documents {Dialog*.xml,UC*.xml}.
∀ tKEEP ∈ repStates •
∀ dlgCHG ∈ concatMap(elements, concatMap(flattenComp,

concatMap(diaComp, repDialog(t))))
•

∀ fun ∈ concatMap(actFun, actions(dlg)) •
∀ uCHG ∈ concatMap(elements, concatMap(flattenComp,

concatMap(ucComp, repUsecase(t))))
•

name(u) ∈ usecases(dlg) {{dlg.usecases ; usecases(dlg) \ [name(u)] True 3 }} ⇒
fun ∈ ref fun(u) {{u.ref fun ; fun : (ref fun(u)) False 1 }}

Rule 70: The definition of a term in the glossary does not change
significantly over time. We require that for all defined terms termo in an

176 Formalizing Consistency Rules

old glossary there exists in a newer glossary a term termn that has the same
name as termo and the description of which is similar to that of termo. If this
rule is violated, we propose to change the name and the description of termn

as given by termo. Our system associates the documents {Gloss*.xml}.
∀ tKEEP

o ∈ repStates • ∀ tKEEP
n ∈ repStates •

to < tn ⇒

0
BB@

∀ gKEEP
o ∈ repGlossary(to) • ∀ termKEEP

o ∈ terms(go) •
∃ gn ∈ repGlossary(tn) • ∃ termn ∈ terms(gn) •
name(termo) = name(termn) {{termn.name ; name(termo) False 5 }} ∧
desc(termo) ≡ desc(termn) {{termn.desc ; desc(termo) False 2 }}

1
CCA

Rule 73: A use case should use analysis functions from its own com-
ponent only. For all use case components c, and for all analysis functions
fref, referenced by a use case, we require the following: There should exist an
analysis function component cfun with the same name as c, which includes an
analysis function with the same name as fref. Inconsistencies can be resolved by
either changing the name of the analysis function’s component cfun or by chang-
ing the analysis function reference fref. Our system associates the documents
{UC*.xml,AnaFun*.xml}.
∀ tKEEP ∈ repStates • ∀ uDCHG ∈ repUsecase(t) •
∀ cCHG ∈ concatMap(flattenComp, ucComp(uD)) • ∀ uCHG ∈ elements(c) •
∀ fref ∈ ref fun(u) •
∃ cfun ∈ concatMap(flattenComp, concatMap(afComp, repAnaFun(t))) •
name(c) = name(cfun) {{cfun.name ; name(c) False 10 }} ∧
∃ f ∈ elements(cfun) •
fref = name(f) {{fref ; name(f) False 1 }}

Rule 74: In the data model, an entity type has more relations to
entity types within the same component than to entity types within
a different component. For all data model components c and for all their
entity types et, we require the following. The number of all relations from et to
entity types within the component c is greater than or equal to the half of the
number of all relations from et. This is equivalent to the original requirement.
Our system associates the documents {DataM*.xml}.
∀ tKEEP ∈ repStates • ∀ dmKEEP ∈ repDataMod(t) •
∀ cCHG ∈ concatMap(flattenComp, compsDM(dm)) • ∀ etCHG ∈ elements(c) •
length(relatedWith(et)) /Int 2 ≤
length(filter∈ (map(etName, map(ref entitytype, relatesWith(et))),

name, elements(c)))

Rule 80: A system-supported activity in a business process of the
coarse specification is also included in the fine specification and is
also supported by the system. For every finished fine specification sf , we
require for all finished coarse specifications sc that existed before the following.
For all business processes bpc that are part of the coarse specification, there
exists a corresponding business process bpf in the fine specification, such that
the following holds. For each activity actc in the business process bpc, there
exists a corresponding activity in the business process bpf that is supported
by the system in the same way as actc is. For resolving inconsistencies, we

11.2 Formalizing Consistency Rules 177

consider to “downgrade” the fine specification, or to adapt business processes
or activities of the fine specification. Our system associates the documents
{Spec*.xml,BP*.xml}.
∀ tKEEP
f ∈ repStates • ∀ tKEEP

c ∈ repStates • ∀ sCHG
f ∈ repSp(tf) •0

@
tc < tf ∧
specKind(sf) = Fine {{sf .specKind ; Coarse True 50}} ∧
status(sf) = Finished {{sf .status ; InProgress True 40}}

1
A ⇒

∀ sKEEP
c ∈ filter∈ ([dId(sf)], dId, repSp(tc)) •

(specKind(sc) = Coarse ∧ status(sc) = Finished) ⇒
∀ bpDKEEP

c ∈ filter∈ (doc busproc(sc), dId, repBusProc(dState(sc))) •
∀ bpKEEP

c ∈ processes(bpDc) •
∃ bpDf ∈ filter∈ (doc busproc(sf), dId, repBusProc(dState(sf))) •
∃ bpf ∈ processes(bpDf) •
name(bpf) = name(bpc) {{bpf .name ; name(bpc) False 4 }} ∧
∀ actKEEP

c ∈ activities(bpc) • ∃ actf ∈ activities(bpf) •
name(actf) = name(actc) {{actf .name ; name(actc) False 2 }} ∧
systems(actf) = systems(actc) {{actf .systems ; systems(actc) False 1 }}

Formalizing the above requirement as a consistency rule results in much more
precision by making implicit assumptions explicit:

• Coarse specification and fine specification are the same document at dif-
ferent repository states.

• A fine specification may be developed without coarse specification. Notice
that this holds w.r.t. Rule 80 only. Fine specification including business
processes should not be developed without coarse specification, in order
to fulfill Rule 81.

• Business processes of the coarse specification should be part of the fine
specification, but they may be included in another document.

• Activities within a business process of the coarse specification should exist
in the same business process of the fine specification.

• Activities unsupported in the coarse specification are also unsupported
in the fine specification.

In the above rule, we do not require that referenced documents really exist.
This should be formalized by another rule, in order to keep diagnoses and S-
DAGs comprehensible. In fact, in an earlier version of Rule 80 we also required
the validity of the document references. This resulted, however, in incompre-
hensible S-DAGs.
Rule 82: A specification intended for a species of readers only con-
tains documents intended for this reader species. We require that for
each specification document sp its referenced reading instruction document ex-
ists. If there exists no matching reading instructions document, we propose
either to adapt the reference in the specification or to change the name of the
reading instructions document. For a matching reading instructions document
ri, we require the following. If the specification sp contains business processes,

178 Formalizing Consistency Rules

then the readers of sp should be included in the reading instructions for business
processes. For resolving inconsistencies, we propose to either drop the business
processes from sp or to add the readers of sp to the reading instructions for
business processes. Other parts of the specification (analysis functions, cross-
cutting concerns, data models, data types, use cases) are processed similarly.
Since the data type DocReading carries an extra label for each reading instruc-
tion, the below rule is actually larger; for brevity, we show the formalization
for business processes and cross-cutting concerns only. Our system associates
the documents {Spec*.xml,Reading*.xml}.
∀ tKEEP ∈ repStates • ∀ spCHG ∈ repSp(t) •
∃ ri ∈ repReadingInst(dState(sp)) •
doc reading(sp) = dId(ri)

¡{sp.doc reading ; dId(ri) False new 5} ,ľ
ri.dId ; doc reading(sp) False new 10,

ł
¿

∧
0
BB@

¬ (null(doc busproc(sp)) {{sp.doc busproc ; [] False 5}}) ⇒
readers(sp) ∈ concatMap

ţ
shouldRead, case

ţ
ri busproc(ri),

¡
Just→ id,
Nothing→ []

¿űű

{{ri.ri busproc ; addRI(ri busproc(ri), readers(sp)) False 2}}

1
CCA∧

0
BB@

¬ (null(doc crosscut(sp)) {{sp.doc crosscut ; [] False 5}}) ⇒
readers(sp) ∈ concatMap

ţ
shouldRead, case

ţ
ri crosscut(ri),

¡
Just→ id,
Nothing→ []

¿űű

{{ri.ri crosscut ; addRI(ri crosscut(ri), readers(sp)) False 2}}

1
CCA

Rule 84: A document in status ‘in progress’ should change its status
to ‘quality assurance’ only. At all repository states, we require for all
documents d the following. If d already existed in the previous state, then its
status should not have changed from ‘in progress’ to ‘finished’. Our system
associates the documents {*.xml}. The rule is not filtered due to the use of
prevState.

∀ tKEEP ∈ repStates • ∀ dCHG ∈ repDocSDM(t) •
dState(d) = t {∅} ⇒
∀ dKEEP

prev ∈ repDocSDM(prevState(t)) •
(dId(d) = dId(dprev) {∅} ∧ status(dprev) = InProgress) ⇒
¬ (status(d) = Finished {{d.status ; InProgress True 40}})

Chapter 12

The Ski School

In this chapter, we apply our consistency rules to a concrete software specifica-
tion. We shall see that consistency maintenance is necessary and our approach
is useful in practice. First, we introduce an example specification. In Sect. 12.2,
we show how this specification might be developed with the help of a revision
control system. The careful reader will notice that the specification includes
some inconsistencies w.r.t. the rules from Chapter 11. Sect. 12.3 contains aug-
mented S-DAGs showing these inconsistencies and possible repair actions for
individual rules. In Sect. 12.4, we present repair collections derived by our
system. A performance summary is given in Sect. 12.5. In Chapter 13, we
discuss lessons learnt from our case study. Fig. 12.1 illustrates the context of
this chapter.

12.1 The Ski School Specification

The ski school is a sample sd&m software specification used in-house for teach-
ing the application of analysis modules. With kind permission from sd&m,
we use part of this specification to illustrate the application of our consistency
maintenance approach. In the following subsections, we give an overview of the
finished fine specification. For brevity, we only describe parts relevant for our
consistency rules. The specification consists of 18 documents: four specification
documents (we have four reader species), one goals, scope, constraints docu-
ment, one glossary, one reading instruction, one cross-cutting concerns docu-
ment, three business processes (in three business process documents), ten use
cases (in three use case documents), twelve analysis functions (in one analysis
functions document), two dialogs (in one dialogs document), one data model,
and one data types document. The specified system is subdivided into three
components. We assume that the specification is developed by four software
engineers, who perform 24 check-ins to the repository.

12.1

8.1
9.1

12.2
12.3

12.4
12.5

12.6
13

11

Figure 12.1: Chapter 12 in context

179

180 The Ski School

Reader Business Use Analysis Data Data Dialogs
Species Processes Cases Functions Model Types
user × × ×
designer × × × × × ×
test team × × × ×
management

Table 12.1: Contents of the ski school specification for different reader species

Reader Species Description
user Our customer, the staff of the ski school.
designer The software designers who develop the system.
test team Those people test our software.
management The project management. They coordinate the whole work.

Table 12.2: Reader species listed in the reading instructions

12.1.1 Specification Documents

We distinguish four reader species: users, software designers, test team, and
management. Consequently, we develop four different specifications. Tab. 12.1
lists the contents of each specification. Besides these modules, each specification
contains goals, scope, constraints, cross-cutting concerns, the glossary, and
reading instructions.

12.1.2 Goals, Scope, Constraints

We define two actors: ‘Planning staff ski school’ and ‘Office staff ski school.’

12.1.3 Glossary

The glossary defines the following terms:
Course: A course in the ski school consists of some classes. Usually, it is held
by one teacher who should not change during the course. We have different
courses for beginners, children, seniors, and advanced skiers. A course follows
a fixed schedule. (see also Teacher, Class)
Class: A class is part of a course. In a class, a teacher gives a closed part of a
course. There should be less than eleven students in a class. (see also Course,
Student)
Teacher: He is the one who should transfer the knowledge about skiing to the
students. (see also Course, Class)
Student: The participants of a course — they should learn skiing. We call
them “students,” as students at school.

12.1.4 Reading Instructions

The reading instructions include reader species for our specification (Tab. 12.2)
and determine the parts of a specification a reader species should read
(Tab. 12.3).

12.1 The Ski School Specification 181

Module User Management Designer Test Team
business processes × ×
use cases × × ×
analysis functions × ×
data model × ×
data types ×
dialogs × × ×
cross-cutting concerns × × × ×
glossary × × × ×
goals, scope, constraints × × × ×
reading instructions × × × ×

Table 12.3: Who should read which part of a specification?

Result Type Naming Convention
actor *
business process BP [*]
activity in a business process Act [*]
component Com [*]
use case UC [*]
analysis function AF [*]
entity type ET [*]
attribute for an entity type Att [*]
technical data type DT [*]
dialog Dia [*]
screen of a dialog Scr [*]
action of a dialog A [*]
reader species *

Table 12.4: Naming conventions in the cross-cutting concerns

12.1.5 Cross-Cutting Concerns

For each result type, we define a naming convention, given by a regular expres-
sion (see Tab. 12.4).

12.1.6 Business Processes

For the ski school, we define three business processes, shown in Fig. 12.2, 12.3,
and 12.4. According to the naming conventions, the name of each business
process begins with the upper case letters “BP.”

Every week the business process BP [Plan classes] is used to plan the classes
for a course. It requires that the courses are planned for the season and that the
availabilities of the teachers are clear. First, we determine the class utilization.
If we have too many requests for a course, we try to either create a new course
and classes (when there are many similar requests) or to move some students
to other classes. Creating a new course requires to assign a teacher to that
course using the business process BP [Assign teacher to classes]. If there are
too few requests for a class, we check whether some classes can be merged, in
order to achieve a good class utilization. If no classes can be merged, we delete
the class with too few requests.

182 The Ski School

Figure 12.2: Business process BP [Plan classes]

The business process BP [Assign teacher to classes] requires that all classes
of a course are planned. Then our system suggests a teacher for this course. If a
teacher is available for all classes in the course or if he can be disengaged from
another course, we assign this teacher. Otherwise, we try to split the given
course and to assign the teacher at least to some classes of the given course.

The business process BP [Register students] registers a student and assigns
him to a course. In order to perform this business process, the classes for a
course must be planned and the student’s request must arrive before 0900 a.
m. First, our system creates a course summary from which we get courses
that match the criteria given by the student. If a matching course is found,
we register the student and assign him to the course. Otherwise, we try to
find a course for the student at another date, assign the student to part of a
course only, split the registration, or (in the end) find another course type. If
all that fails, we set the student to a wish list. During the development of the
specification, we will drop support for wish lists.

12.1.7 Use Cases

In this section, we summarize the use cases defined for activities in the business
processes above. For each use case, we give a short description and determine
pre- and postconditions. We also list inputs and references to analysis functions.

12.1 The Ski School Specification 183

Figure 12.3: Business process BP [Assign teacher to classes]

Fig. 12.5 gives an overview of all use cases and their actors. According to
the naming conventions, the name of each use case begins with the upper
case letters “UC.” We subdivide the specified system by three components:
Com [Course planning], Com [Internal data], and Com [Course attendees].

Use Cases for the Business Process BP [Plan classes]

All use cases below belong to the component Com [Course planning].
Name: UC [Create new course and classes]
Activities: Act [Create new course and classes] (BP [Plan classes])
Procedure: The user enters the course’s type, start date, end date, and cadence
(daily, weekly). If weekly is selected, then the day of week is needed, too. The
system creates the course and sets its status to “planned.” In addition, the
system creates all classes for this course.
Preconditions: course type exists
Postconditions: course created, classes created, no assignment of teachers to
course, no assignment of students to course
Inputs: course type, start date, end date, cadence
Analysis functions: AF [Create course], AF [Create classes for a course]

Name: UC [Delete course]
Activities: Act [Delete class], Act [Delete associated teacher for a class] (BP
[Plan classes])

Procedure: The user enters the course he wants to delete. For each class, the
system checks that there is no student assigned to this class. Then the system
removes any assignments of teachers to the classes and makes the teachers
available for the class dates. The system deletes all classes for the course. If
the course is not part of the wish list, the system deletes the course.
Preconditions: course created
Postconditions: course removed

184 The Ski School

Figure 12.4: Business process BP [Register students] (gray area removed in fine
specification)

Inputs: course
Analysis functions: AF [Remove assignment of teacher to class], AF [Remove
class], AF [Remove course]

Name: UC [Change assignments of students to classes]
Activities: Act [Move student to other class], Act [Merge classes] (BP [Plan
classes])
Procedure: The user selects some students attending a class c1. Then he
chooses the target class c2 to which the students should be moved. The sys-
tem assigns the selected students to c2 (via the use case UC [Assign student to
class]) and removes their assignment to c1.
Preconditions: classes created
Postconditions:
Inputs: class, student
Analysis functions:
Uses: UC [Assign student to class]

12.1 The Ski School Specification 185

Figure 12.5: Overview of use cases

Name: UC [Determine additional requests and abundances]
Activities: Act [Determine class utilization] (BP [Plan classes])
Procedure: The user enters begin date and end date of the time period to
plan. The system shows planned courses and classes, their proposed number of
students, the number of actually assigned students, and the number of requests
in the wish list for that class. In addition, the system shows courses that are
not planned but requested by the wish list.
Preconditions: classes created
Postconditions: planning requests known
Inputs: begin date, end date
Analysis functions:

Use Cases for the Business Process BP [Assign teacher to classes]

All use cases below belong to the component Com [Internal data].
Name: UC [Suggest teacher for course]
Activities: Act [Suggest teacher for course] (BP [Assign teacher to classes])
Procedure: The user enters the course and criteria to search for a teacher. The
system presents a list of all teachers that match the search criteria and that
are available at the course dates.
Preconditions: course created
Postconditions: teacher suggestions for a course
Inputs: course, search criteria
Analysis functions: AF [Filter teachers], AF [Check availability]

Name: UC [Assign teacher to classes]
Activities: Act [Assign teacher to all classes of the course], Act [Select the
teacher in question and assign him to the new course], Act [Assign teacher to
some classes] (BP [Assign teacher to classes])
Procedure: The user chooses some classes and the teacher to assign. The system
checks availability of the teacher for the class dates and ensures that every

186 The Ski School

class has enough teachers assigned (for children classes we need two teachers).
Finally, the system assigns the teacher to the classes and updates the teacher’s
schedule.
Preconditions: classes created
Postconditions: teacher assigned to class
Inputs: class, teacher
Analysis functions: AF [Check availability], AF [Assign teacher to class]

Use Cases for the Business Process BP [Register students]

All use cases below belong to the component Com [Course attendees].
Name: UC [Assign students to course]
Activities: Act [Assign student to all classes of the course], Act [Assign student
to some classes of the course], Act [Assign student to some classes of either
course] (BP [Register students]),
Act [Assign students to class] (BP [Plan classes])
Procedure: The user enters the student name and selects the requested course
and classes. For each class, the system checks whether the maximum number
of students is still respected. Also, the system determines conflicting classes to
which the student is already assigned.
Preconditions: course created, classes created, customer registered
Postconditions: student assigned to class, no conflicting assignments to other
classes
Inputs: student, course, class
Analysis functions: AF [Check maximum students for class], AF [Find classes
for student by date]

Name: UC [Create course summary]
Activities: Act [Create course summary] (BP [Register students])
Procedure: The user enters course type and begin date. The system creates a
summary about the courses planned.
Preconditions: course created
Postconditions:
Inputs: course type, begin date
Analysis functions: AF [Filter courses]

Name: UC [Register customer]
Activities: Act [Register customer], Act [Register customer (2)], Act [Register
customer (3)], Act [Register customer (4)] (BP [Register students])
Procedure: The user enters customer data: name, age, gender, language, and
address. The system adds the customer to the internal database.
Preconditions:
Postconditions: customer registered
Inputs: name, age, gender, language, address
Analysis functions: AF [Add customer]

The following use case will be removed in the fine specification (at state 21).
It is, however, part of the coarse specification.

12.1 The Ski School Specification 187

Name: UC [Set student to wish list]
Activities: Act [Set customer to wish list] (BP [Register students])
Procedure: The user enters the requested course type, begin date, end date,
and schedule. The system checks whether there exists a course matching the
given criteria. We distinguish between: (1) the course is planned but there are
no places available (then we set the customer to the wish list), or (2) the course
is not planned, or (3) there does not exist a matching course.
Preconditions: customer registered
Postconditions: request in wish list
Inputs: course type, begin date, end date, schedule
Analysis functions: AF [Filter courses]

12.1.8 Analysis Functions

Analysis functions below describe specific functionality without user interac-
tion. For each analysis function, we list its name, a short description, its
parameters, its result, and pre- and postconditions. According to the naming
conventions, the name of each analysis function begins with the upper case
letters “AF.”

Analysis Functions in the Component Com [Course planning]

Name: AF [Create course]
Description: Creates a new course and adds it to the database with status
“planned.”
Parameters: course type, start date, end date, cadence
Result: course
Preconditions: course type exists
Postconditions: course created, no assignment of teachers to course, no assign-
ment of students to course

Name: AF [Create classes for a course]
Description: Creates new classes for a course with status “planned.”
Parameters: course, cadence
Result: set of classes
Preconditions: course created
Postconditions: classes created

Name: AF [Remove assignment of teacher to class]
Description: Remove the assignment of a teacher to a class.
Parameters: teacher, class
Result: teacher
Preconditions: classes created
Postconditions: assignment of teacher to class removed

Name: AF [Remove class]
Description: Remove a class of a course.
Parameters: course, class
Result: course

188 The Ski School

Preconditions: course created, assignment of teacher to class removed
Postconditions: class removed

Name: AF [Remove course]
Description: Remove a course from the database.
Parameters: course
Result: -
Preconditions: class removed, course created
Postconditions: course removed

Analysis Functions in the Component Com [Course attendees]

Name: AF [Check maximum students for class]
Description: Checks whether the number of students assigned to a class is
below the maximum.
Parameters: class
Result: Bool
Preconditions: classes created
Postconditions:

Name: AF [Find classes for student by date]
Description: For a specific date, find classes that a student is assigned to.
Parameters: student, date
Result: set of classes
Preconditions: customer registered
Postconditions:

Name: AF [Filter courses]
Description: Filter courses that match some criteria.
Parameters: course type, begin date, end date, schedule
Result: set of courses
Preconditions:
Postconditions:

Name: AF [Add customer]
Description: Adds a customer to the database.
Parameters: name, age, gender, language, address
Result: student
Preconditions:
Postconditions: customer registered

Analysis Functions in the Component Com [Internal data]

Name: AF [Filter teachers]
Description: Determine teachers that match some criteria.
Parameters: search criteria
Result: set of teachers
Preconditions:
Postconditions:

12.1 The Ski School Specification 189

Figure 12.6: Interactivity diagram for dialog Dia [New course and classes]

Name: AF [Check availability]
Description: Check whether a teacher is available at a given period of time.
Parameters: begin date, end date, teacher
Result: Bool
Preconditions:
Postconditions:

Name: AF [Assign teacher to class]
Description: Assign a teacher to a class.
Parameters: teacher, class
Result: teacher
Preconditions: classes created
Postconditions: teacher assigned to class

12.1.9 Dialogs

For our ski school, we define two dialogs, in order to input data necessary
for the use cases UC [Assign students to course] and UC [Create new course
and classes], respectively. Each dialog specification includes a description, an
interactivity diagram (IAD), and definitions of screens and actions used in the
IAD. Screens carry in- and output fields, which reference entity types defined
in the data model (see Fig. 12.8)

Dialogs in the Component Com [Course planning]

Name: Dia [New course and classes]
Description: The dialog is used to enter data needed for a new course and its
classes. Finally, the new course is stored in the database.
Use case: UC [Create new course and classes]
Screens:

190 The Ski School

Figure 12.7: Interactivity diagram for dialog Dia [Assign student to course]

Screen Description Fields
Scr [Enter course] enter a new input: name (ET [Course], Att [Name]),

course and its begin (ET [Course], Att [Begin]),
characteristics end (ET [Course], Att [End]),

cadence (ET [Course], Att [Cadence]),
dow (ET [Course], Att [DayOfWeek])

Scr [Enter classes] enter new classes input: date (ET [Class], Att [Date])
for a course input: begin (ET [Class], Att [Begin])

input: end (ET [Class], Att [End])
Scr [Error course] show error message output: error
Scr [Error class] show error message output: error

Actions:
Action Description Analysis Functions
A [Check course] check whether course already in database -
A [Check classes] check whether each class date is in range -
A [Save] save new course -

IAD: see Fig. 12.6.

Dialogs in the Component Com [Course attendees]

Name: Dia [Assign student to course]
Description: The dialog is used to assign a student to a course.
Use case: UC [Assign students to course]
Screens:

Screen Description Fields
Scr [Empty] enter search criteria input: name (ET [Student], Att [Name])

for students
Scr [Select student] select a student combo box: students

from a list (ET [Student], Att [Name], Att [Age],
Att [Address])

Scr [Enter criteria] enter search criteria input: begin (ET [Course], Att [Begin]),
for course end (ET [Course], Att [End])

Scr [Select course] select a course combo box: courses
for the student (ET [Course])

Actions:

12.2 Developing the Specification 191

Figure 12.8: Data model

Action Description Analysis Functions
A [Search] search students -
A [Read] read student record -
A [Search course] search course -
A [Save] save course assignment -
A [Check courses] check whether assignment ok AF [Check maximum

students for class]
IAD: see Fig. 12.7.

12.1.10 Data Model

The data model shown in Fig. 12.8 is in a preliminary state; it only models the
ski school, its teachers, and the assignments of students to classes and courses.

12.1.11 Data Types

The data types document defines technical data types used in the data model
(see Tab. 12.5). Basic types require no further definition — we assume they are
already available in the programming language used in the construction. For
a variant (or enumeration) data type, we list all alternatives, separated by the
symbol |. For a record (or structure) data type, we list labels and their types.
For a range data type, we list the lower bound and the upper bound, separated
by two dots.

12.2 Developing the Specification

For experimenting with the ski school specification, we assume a team of four
developers: the project manager Maggie and three software engineers Bob, Elli,

192 The Ski School

Data Type Definition Description
DT [String] basic sequence of characters
DT [Integer] basic integer numbers
DT [Bool] True | False booleans
DT [Bank] account : DT [Integer]; bank account: account number,

bank : DT [Integer]; bank code,
name : DT [String] bank name

DT [Date] day : DT [Day] date: 1 ≤ day ≤ 31,
month : DT [Month] 1 ≤ month ≤ 12,
year : DT [Year] 1900 ≤ year ≤ 3000

DT [Time] hour : DT [Hour] time: 0 ≤ hour ≤ 23
minute : DT [Minute] 0 ≤ minute ≤ 59

DT [Day] 1 .. 31 day of month
DT [Month] 1 .. 12 month of year
DT [Year] 1900 .. 3000 year
DT [Hour] 0 .. 23 hour of day
DT [Minute] 0 .. 59 minute of hour
DT [Preference] Children | Adults preferences of a teacher
DT [Education] Graduated | None education of a teacher
DT [Cadence] Daily | Weekly cadence of a course
DT [WeekDay] Mo | Tu | We | Th | Fr | Sa | Su day of week
DT [Gender] Male | Female gender

Table 12.5: Data types

and Peter. We use the revision control system DARCS [Rou04], where each
developer is responsible for some part of the specification (see Tab. 12.6). Notice
that Bob, Elli, and Peter share the documents AnaFun.xml and Dialogs.xml.
DARCS takes care that changes to these documents are mergeable. Below, we
summarize the change log of the DARCS repository. In Sect. 12.3 and 12.4, we
discuss some of the inconsistencies occurred during the development.

1. Check-in by Maggie:
new files: ReadingInst.xml, GoalsScope.xml
comments: ReadingInst.xml: added reader species user, designer, test
team, and management
GoalsScope.xml: added actors ‘Planning staff ski school’ and ‘Office staff
ski school’

2. Check-in by Maggie:
new files: Glossary.xml, CrossCutting.xml
changed files: ReadingInst.xml
comments: Glossary.xml: added definitions for course, class, teacher, and
student
CrossCutting.xml: added naming conventions for actors, business pro-
cesses, activities, components, use cases, and analysis functions
ReadingInst.xml: added reading instructions for business processes, use
cases, and the glossary

3. Check-in by Bob:
new files: BP Plan Classes.xml, UC Plan Classes.xml

12.2 Developing the Specification 193

Person Responsibilities Owned Documents
Maggie specification documents SpecUser.xml, SpecDesigner.xml,

SpecManagement.xml, SpecTest.xml
goals, scope, constraints GoalsScope.xml
glossary Glossary.xml
reading instructions ReadingInst.xml
cross-cutting Concerns CrossCutting.xml
data model DataModel.xml
data types DataTypes.xml

Bob business process BP [Plan classes] BP Plan Classes.xml
associated use cases UC Plan Classes.xml
associated analysis functions AnaFun.xml
associated dialogs Dialogs.xml

Elli business process BP Assign Teacher.xml
BP [Assign teacher to class]
associated use cases UC Assign Teacher.xml
associated analysis functions AnaFun.xml

Peter business process BP Register Students.xml
BP [Register students]
associated use cases UC Register Students.xml
associated analysis functions AnaFun.xml
associated dialogs Dialogs.xml

Table 12.6: Responsibilities of the developers

comments: BP Plan Classes.xml: added business process BP [Plan
classes] including activities Act [Determine class utilization] and
Act [Create new course and classes]
UC Plan Classes.xml: added use cases ‘Create new course and classes’
and ‘Determine additional requests and abundances’ (without compo-
nent)

4. Check-in by Elli:
new files: BP Assign Teacher.xml, UC Assign Teacher.xml
comments: BP Assign Teacher.xml: added business process BP [Assign
teacher to classes] including activities Act [Suggest teacher for course],
Act [Assign teacher to all classes of the course], and Act [Select the
teacher in question and assign him to the new course]
UC Assign Teacher.xml: added use cases UC [Suggest teacher for course]
and UC [Assign teacher to classes] (without component)

5. Check-in by Peter:
new files: BP Register Students.xml, UC Register Students.xml
comments: BP Register Students.xml: added business process BP
[Register students] including activities Act [Create course summary],

Act [Assign student to all classes of the course], Act [Assign student to
some classes of the course], and Act [Assign student to some classes of
either course]

194 The Ski School

UC Register Students.xml: added use cases UC [Assign students to
course], UC [Create course summary], UC [Register customer] (without
component)

6. Check-in by Maggie:
new files: SpecUser.xml, SpecDesigner.xml, SpecManagement.xml,
SpecTest.xml
changed files: Glossary.xml, ReadingInst.xml
comments: initial coarse specification documents (in progress)
Glossary.xml: give more precise descriptions for course, class, and teacher;
set status to ‘finished’
ReadingInst.xml: added reading instructions for analysis functions, data
model, data types, dialogs, and cross-cutting concerns; set status to ‘fin-
ished’

7. Check-in by Bob:
changed files: BP Plan Classes.xml, UC Plan Classes.xml
comments: BP Plan Classes.xml: added activities Act [Assign students
to class] and Act [Move students to other class]
UC Plan Classes.xml: changed name of use case ‘Create new course and
classes’ to UC [Create new course and classes], changed name of use case
‘Determine additional requests and abundances’ to UC [Determine ad-
ditional requests and abundances], added use cases UC [Change assign-
ments of students to classes] and UC [Assign students to course]

8. Check-in by Peter:
changed files: BP Register Students.xml, UC Register Students.xml
comments: BP Register Students.xml: added activities Act [Register
customer (4)] and Act [Set customer to wish list]
UC Register Students.xml: added use case UC [Set student to wish list]

9. Check-in by Maggie:
changed files: SpecUser.xml, SpecDesigner.xml, SpecManagement.xml,
SpecTest.xml, ReadingInst.xml
comments: set status of specification documents to ‘quality assurance,’
reference documents for business processes and use cases
ReadingInst.xml: added reader species ‘management’ to the cross-cutting
concerns

10. Check-in by Bob:
changed files: BP Plan Classes.xml, UC Plan Classes.xml
comments: BP Plan Classes.xml: added input/output to all activities,
added activities Act [Merge classes], Act [Delete associated teacher for a
class], and Act [Delete class]
UC Plan Classes.xml: added use case UC [Delete course], deleted use
case UC [Assign students to course] (use case was duplicated)
@Peter: add a reference to Act [Assign students to class] (BP [Plan
classes]) to your UC [Assign students to course]

12.2 Developing the Specification 195

11. Check-in by Peter:
changed files: BP Register Students.xml, UC Register Students.xml
comments: BP Register Students.xml: added input/output to all activi-
ties
UC Register Students.xml: added reference to Act [Assign students to
class] (BP [Plan classes]) to use case UC [Assign students to course]

12. Check-in by Elli:
changed files: BP Assign Teacher.xml
comments: added input/output to all activities

13. Check-in by Maggie:
changed files: SpecUser.xml, SpecDesigner.xml, SpecManagement.xml,
SpecTest.xml
comments: all specification documents in status ‘finished;’ coarse speci-
fication finished (milestone 1)

14. Check-in by Maggie:
new files: DataModel.xml, DataTypes.xml
changed files: CrossCutting.xml
comments: CrossCutting.xml: added naming conventions for entity
types, attributes, relations, data types, fields in types, dialogs, and screens
in dialogs
DataModel.xml: added component Com [Internal data] containing entity
types ET [Skischool], ET [Teacher], and ET [Availability]; added com-
ponent Com [Course planning] containing entity types ET [Class] and
ET [Course]; added component Com [Course attendees] containing en-
tity type ET [Student]
DataTypes.xml: added data types DT [String], DT [Integer], DT [Bool],
and DT [Year]
@all: please use my components

15. Check-in by Bob:
new files: AnaFun.xml, Dialogs.xml
changed files: UC Plan Classes.xml
comments: AnaFun.xml: added component Com [Course planning] in-
cluding analysis functions AF [Create course], AF [Create classes for a
course], AF [Remove assignment of teacher to class], AF [Remove class],
and AF [Remove course]
Dialogs.xml: added component Com [Course planning] containing the di-
alog Dia [New course and classes]
UC Plan Classes.xml: moved use cases to component Com [Course plan-
ning], added pre- and postconditions to each use case, reference analysis
functions

16. Check-in by Elli:
changed files: AnaFun.xml, UC Assign Teacher.xml

196 The Ski School

comments: AnaFun.xml: added component Com [Internal data] includ-
ing analysis functions AF [Filter teachers], AF [Check availability], and
AF [Assign teacher to class]
UC Assign Teacher.xml: moved use cases to component Com [Internal
data], added pre- and postconditions to each use case, reference analysis
functions

17. Check-in by Peter:
changed files: AnaFun.xml, Dialogs.xml, UC Register Students.xml
comments: AnaFun.xml: added component Com [Course attendees] in-
cluding analysis functions AF [Check maximum students for class], AF
[Find classes for student by date], AF [Filter courses], and AF [Add cus-

tomer]
Dialogs.xml: added component Com [Course attendees] including the di-
alog Dia [Assign student to course]
UC Register Students.xml: moved use case UC [Create course summary]
to component Com [Internal data], moved other use cases to component
Com [Course attendees], added pre- and postconditions to each use case,
reference analysis functions

18. Check-in by Maggie:
changed files: DataModel.xml, DataTypes.xml, SpecUser.xml, SpecDe-
signer.xml, SpecManagement.xml, SpecTest.xml
comments: DataModel.xml: added some attributes to entity types
DataTypes.xml: corrected upper bound in data type DT [Year],
added data types DT [Bank], DT [Date], DT [Time], DT [Day],
DT [Month], DT [Hour], DT [Minute], DT [Preference], DT [Education],
DT [Cadence], DT [Gender], and DT [Weekday]
specification documents: changed kind to ‘fine,’ set status to ‘in progress,’
reference new documents

19. Check-in by Bob:
changed files: BP Plan Classes.xml, UC Plan Classes.xml, AnaFun.xml,
Dialogs.xml
comments: BP Plan Classes.xml: reference entity types (instead of using
natural language), set status to ‘quality assurance’
UC Plan Classes.xml: reference entity types for inputs and outputs, set
status to ‘quality assurance’
AnaFun.xml: in component Com [Course planning] make references to
entity types in parameters
Dialogs.xml: in dialog Dia [New course and classes]: make references to
attributes not only to entities, add actions, add IAD

20. Check-in by Elli:
changed files: UC Assign Teacher.xml, BP Assign Teacher.xml, Ana-
Fun.xml
comments: AnaFun.xml: in component Com [Internal data] make refer-
ences to entity types in parameters

12.3 Sample S-DAGs 197

UC Assign Teacher.xml: reference entity types for inputs and outputs,
set status to ‘quality assurance’
BP Assign Teacher.xml: reference entity types (instead of using natural
language), set status to ‘quality assurance’

21. Check-in by Peter:
changed files: BP Register Students.xml, UC Register Students.xml,
AnaFun.xml, Dialogs.xml
comments: BP Register Students.xml: reference entity types (instead of
using natural language), remove activities Act [Set customer to wish list]
and Act [Register customer (4)] (wish list support dropped because too
expensive), set status to ‘quality assurance’
UC Register Students.xml: reference entity types for inputs and outputs,
in use case UC [Assign students to course] reference analysis function AF
[Check maximum students for class] (because the dialog Dia [Assign

students to course] does), remove use case UC [Set student to wish list],
move use case UC [Create course summary] to component Com [Course
attendees], set status to ‘quality assurance’
AnaFun.xml: in component Com [Course attendees] make references to
entity types in parameters, set status to ‘quality assurance’
Dialogs.xml: in dialog Dia [Assign students to course]: make references
to attributes not only to entity types, add actions, add IAD, set status
to ‘quality assurance’

22. Check-in by Maggie:
changed files: DataModel.xml, SpecUser.xml, SpecDesigner.xml, Spec-
Management.xml, SpecTest.xml
comments: DataModel.xml: add cardinalities to relations
specification documents: set status to ‘quality assurance’

23. Check-in by Maggie:
changed files: SpecUser.xml, SpecDesigner.xml, SpecManagement.xml,
SpecTest.xml
comments: set status to ‘finished’; fine specification finished (milestone
2)

24. Check-in by Maggie:
changed files: DataModel.xml
comments: Added target cardinality for relation ‘Is available at’ (which
I forgot earlier), set status to ‘finished’.

12.3 Sample S-DAGs

The careful reader may have noticed that our example specification is inherently
inconsistent. Our system reports an overall number of 493 inconsistencies.
Tab. 12.7 summarizes inconsistencies for the individual rules. Rule 2 cannot
be violated, because it is strong; all other rules are weak. Next, we present

198 The Ski School

Rule Violated at States Number of Inconsistencies
Rule 2 - 0
Rule 3 1 2
Rule 4 18 . . . 24 140
Rule 19 3 . . . 9 14
Rule 21 15 . . . 24 10
Rule 30 16 . . . 24 42
Rule 41 23 6
Rule 48 14 . . . 17 4
Rule 64 17 . . . 20 8
Rule 70 6 . . . 24 152
Rule 73 17 . . . 20 4
Rule 74 14 . . . 24 22
Rule 80 23, 24 80
Rule 82 6 . . . 8 6
Rule 84 6, 14 3

Table 12.7: Inconsistency summary

∀ tKEEP ∈ repStates • ∀ a1 ∈ concatMap(existingactors, repGoalsScope(t)) •0
BB@

∀ a2 ∈ concatMap(existingactors, repGoalsScope(t)) •
¬
ţ
name(a1) = name(a2)

¡{a1.name ; name(a1)++todo True new 10},
{a2.name ; name(a2)++todo True new 10}

¿ű
∨

desc(a1) = desc(a2) {∅}

1
CCA∧

0
@
∃ nc ∈ map(nc actor, map(conventions, repCrosscut(t))) •
match (name(a1), case(nc, {Just→ id, Nothing→ }))

{{a1.name ; case(nc, {Just→ id, Nothing→ }) False 10 }}

1
A

t 1

a Office staff skischoola Planning staff skischool

nc

11

True: null (map(nc_actor,map(conventions,repCrosscut(t))))
{ }

KEEP

Del

Add

Del Office staff skischoolPlanning staff skischool

Figure 12.9: Augmented S-DAG for Rule 3 at state 1

some augmented S-DAGs. For convenience, we also show the corresponding
consistency rules in their miniscoped form — they resemble the structure of
S-DAGs. Recall that miniscoping replaces implications by disjunctions and
pushes negations and quantifiers into formulae.

At state 1, we generate the S-DAG shown in Fig. 12.9 for Rule 3. The
S-DAG shows that there does not yet exist a naming convention for authors
in the cross-cutting concerns. We can resolve inconsistencies by either deleting
the actors or adding a naming convention for actors. It is, however, unknown
how this naming convention should look like, denoted by ⊥. Maggie adds a
naming convention at state 2. The predicate leaf is generated, because the
sphere of the existential quantifier for the variable nc is empty.

At state 23, we generate the S-DAG shown in Fig. 12.10 for Rule 4. The
S-DAG indicates that each fine specification is lacking a style guide. We can

12.3 Sample S-DAGs 199

∀ tKEEP ∈ repStates • ∀ specCHG ∈ repSp(t) •
¬ (specKind(spec) = Fine {{spec.specKind ; Coarse True new 50}}) ∨
∃ cc ∈ repCrosscut(dState(spec)) •
¬
ţ
dId(cc) ∈ doc crosscut(spec)

{{spec.doc crosscut ; doc crosscut(spec) \ [dId(cc)] True 15}}
ű

∨
∀ stGCHG ∈ [styleguide(cc)] •0
@
buttonTs(stG) 6= []¡¡

stG.buttonTs ;

ů
SGType

¡
name = todo, desc = todo,
ref layout = todo

¿ÿ
False 1

¿¿
1
A∨

0
@
screenTs(stG) 6= []¡¡

stG.screenTs ;

ů
SGType

¡
name = todo, desc = todo,
ref layout = todo

¿ÿ
False 1

¿¿
1
A

spec

cc

stG

specspec

spec dId = SpecTest.xml,

dId = CrossCut.xml,

buttonTs = [],

dId = SpecDesigner.xml,dId = SpecManagement.xml,

dId = SpecUser.xml, {

{

{

{{

{ {

{

{

{{

{ dState = 23, ...

dState = 14, ...

screenTs = []

dState = 23, ...dState = 23, ...

dState = 23, ...

{{spec.specKind [Coarse] 50}}

{{spec.doc_crosscut [[]] 15}}

stG.screenTs 1 stG.buttonTs 1

True: specKind (spec) = Fine

True: dId(cc) doc_crosscut(spec)

False: screenTs (stG) = [] False: buttonTs (stG) = []

KEEP

Chg

Chg

Chg

Chg

Chg

Chg

Chg

dId = SpecTest.xml,

dId = SpecTest.xml,

dId = SpecDesigner.xml,

dId = SpecManagement.xml,

dId = SpecUser.xml,

dId = SpecUser.xml,

dId = SpecManagement.xml,

{

{

{

{

{

{

{

{

{

{

{

{

{

{

dState = 23, doc_crosscut = []

dState = 23, specKind = Coarse

dState = 23, specKind = Coarse

dState = 23, doc_crosscut = []

dState = 23, doc_crosscut = []

dState = 23, specKind = Coarse

dState = 23, specKind = Coarse

Chg dId = SpecDesigner.xml, {{dState = 23, doc_crosscut = []

{ {{ {{ {{ {

t 23

Chg

screenTs = []
{ }buttonTs = name = TODO,[{ }]desc = TODO, ,

ref_layout = TODO
Chg

screenTs ={ }buttonTs = [],
name = TODO,[{ }]desc = TODO,
ref_layout = TODO

name = TODO, name = TODO,[{ [{[[]]}] }]desc = TODO, desc = TODO,
ref_layout = TODO ref_layout = TODO

Figure 12.10: Augmented S-DAG for Rule 4 at state 23

resolve these inconsistencies by either adding a style guide, or “downgrading”
the specifications, or removing the cross-cutting concerns. Adding the style
guide is considered the cheapest solution. Below disjunction and existential
nodes, respectively, we mark edges bold that lead to cheap repair actions.

At state 6, we generate the S-DAG shown in Fig. 12.11 for Rule 19. From the
S-DAG, we see that the names of the use cases ‘Create new course and classes’
and ‘Determine additional requests and abundances’ do not match their naming
convention, determined by the regular expression UC [*]. Our system proposes
to change the names to the naming convention. At state 7, Bob corrects the
use case names.

At state 17, we generate the S-DAG shown in Fig. 12.12 for Rule 21. The
S-DAG indicates that the preconditions of the use case UC [Create new course
and classes] in the component Com [Course planning] cannot be fulfilled. In

200 The Ski School

∀ tKEEP ∈ repStates •
∀ cKEEP

1 ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •
∀ u1 ∈ elements(c1) •0
BBBB@

∀ cKEEP
2 ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •

∀ u2 ∈ elements(c2) •
¬
ţ
name(u1) = name(u2)

¡{u1.name ; name(u1)++todo True new 10},
{u2.name ; name(u2)++todo True new 10}

¿ű
∨

u1 = u2 {∅}

1
CCCCA
∧

0
@
∃ nc ∈ map(nc uc, map(conventions, repCrosscut(t))) •
match (name(u1), case(nc, {Just→ id, Nothing→ }))

{{u1.name ; case(nc, {Just→ id, Nothing→ }) False 10 }}

1
A

t 6

1

1

11

c

nc

uu

{name = TODO, ...}

UC_[*]

{name = Create new course and classes, ...}{name = Create new course and classes, ...}

{{u .name [UC_[*]] 10}}

False: match (name (u), case (nc, ...))

KEEP

KEEP

ChgChg
{name = UC_[*], ...}{name = UC_[*], ...}

1

Figure 12.11: Augmented S-DAG for Rule 19 at state 6

∀ tKEEP ∈ repStates •
∀ cKEEP ∈ concatMap(flattenComp, concatMap(ucComp, repUsecase(t))) •
∀ u ∈ elements(c) •

And

0
BB@

catMaybes(map(postcons,
filter/∈ ([name(u)], name,

concatMap(elements, concatMap(flattenComp,
concatMap(ucComp, repUsecase(t)))))))

1
CCA |⇒

case(precons(u), {Just→ id, Nothing→ LTrue})
t 17

c

And [student assigned to class, no conflicting assignments to other classes],
customer registered, teacher suggestions for a course,
teacher assigned to class, course removed, planning requests known

course type exists

And{{ [[}}]]

u

u True :

{name = Com_[Course planning], ...}

{name = UC_[Create new course and classes], ...}

False: And (catMaybes (map (postcons, ...))) case (precons (u), ...)

KEEP

KEEP

Figure 12.12: Augmented S-DAG for Rule 21 at state 17

the predicate leaf, we find the postconditions of all other use cases as first
argument of the predicate symbol |⇒.

At state 17, we generate the S-DAG shown in Fig. 12.13 for Rule 30. From
the S-DAG, we see that Rule 30 is violated for the use cases UC [Set student to
wish list], UC [Suggest teacher for course], and UC [Assign students to course].
The reasons for these inconsistencies are that the above use cases are annotated

12.3 Sample S-DAGs 201

∀ tKEEP ∈ repStates •
∀ uCHG ∈ concatMap(elements, concatMap(flattenComp,

concatMap(ucComp, repUsecase(t))))
•

null(ref fun(u)) {∅} ∨

And

0
BB@

catMaybes(map(postcons,
filter∈ (ref fun(u), name,

concatMap(elements, concatMap(flattenComp,
concatMap(afComp, repAnaFun(t)))))))

1
CCA |⇒

case(precons(u), {Just→ id, Nothing→ LTrue})

t 17

And [] And [student assigned to class, no conflicting assignments to other classes]{{u [True : }}

False: And (catMaybes (map (postcons, ...))) case (precons (u), ...)

KEEP
u {name = UC_[Set student to wish list], ...}

u {name = UC_[Suggest teacher for course], ...}

u {name = UC_[Assign students to course], ...}

{{u [True : And [] teacher suggestions for a course]}}

False: And (catMaybes (map (postcons, ...))) case (precons (u), ...)

{{u [True : And [] request in wish list]}}

False: And (catMaybes (map (postcons, ...))) case (precons (u), ...)

False: null (ref_fun (u))
{ }

Figure 12.13: Augmented S-DAG for Rule 30 at state 17

by postconditions but they only use analysis functions lacking postconditions.
Obviously, it remains unclear how we can repair these inconsistencies.

At state 23, we generate the S-DAG shown in Fig. 12.14 for Rule 41. Ba-
sically, the S-DAG indicates that the association ‘is available at’ of the entity
type ET [Availability] lacks a target cardinality. The entity type is defined
in the document DataModel.xml. The cheapest way to resolve this inconsis-
tency is to add a target cardinality to this association. Alternatively, one could
“downgrade” the specification to status ‘in progress’ or to a coarse specification.
Notice that Rule 41 applies to finished fine specifications only.

At state 17, we generate the S-DAG shown in Fig. 12.15 for Rule 48. The
S-DAG indicates that the lower bound of the range data type DT [Year] is not
smaller than its upper bound. Maggie corrects this typo at state 18.

At state 17, we generate the S-DAG shown in Fig. 12.16 for Rule 64. From
the S-DAG, we see that the use case UC [Assign students to course] and the
dialog Dia [Assign student to course] violate the rule, because the analysis
function AF [Check maximum students for class] is used by the dialog but
not by its associated use case. We can repair this inconsistency by deleting
the analysis function from the dialog, cutting the association between dialog
and use case, or adding the analysis function AF [Check maximum students
for class] to the use case UC [Assign students to course]. At state 21, Peter
chooses the last alternative. Notice that Rule 64 is changed by miniscoping
to great extent. First, the implication is replaced by a disjunction. Then the

202 The Ski School

∀ tKEEP ∈ repStates • ∀ specCHG ∈ repSp(t) •
¬ (specKind(spec) = Fine {{spec.specKind ; Coarse True 50}}) ∨
¬ (status(spec) = Finished {{spec.status ; InProgress True 40}}) ∨
∀ dmKEEP ∈ repDataMod(dState(spec)) •
¬ ądId(dm) = case(doc datamod(spec), {Just→ id, Nothing→ }) {∅}ć ∨
∀ etKEEP ∈ concatMap(elements, concatMap(flattenComp, compsDM(dm))) •
∀ relCHG ∈ relatesWith(et) •
targetcard(rel) 6= {{rel.targetcard ; todo False 1}}

t 23

spec

dm

et {name = ET_[Availability], ...}

rel {name = is available at, ...}

spec dId = SpecTest.xml,

dId = DataModel.xml,

dId = SpecDesigner.xml, {

{

{ {

{

{ dState = 23, ...

dState = 22, ...

dState = 23, ...

{{spec.specKind [Coarse] 50}}

{{spec.status [InProgress] 40}}

{{rel.targetcard [TODO] 1}}

True: specKind (spec) = Fine

True: status (spec) = Finished

False: targetcard (rel) = _

KEEP

KEEP

KEEP

ChgChg

Chg

Chg

Chg

dId = SpecTest.xml,dId = SpecDesigner.xml,

dId = SpecTest.xml,

name = is available at,

dId = SpecDesigner.xml,

{{

{

{

{

{{

{

{

{
dState = 23, status = InProgressdState = 23, status = InProgress

dState = 23, specKind = Coarse

targetcard = TODO, ...

dState = 23, specKind = Coarse

Abandoned

Figure 12.14: Augmented S-DAG for Rule 41 at state 23

∀ tKEEP ∈ repStates • ∀ dt ∈ concatMap(dataTs, repDataTs(t)) •
rngFrom(kind(dt)) < rngTo(kind(dt))

t 17

dt {name = DT_[Year], ...}

{{dt [True : 1900 < 300]}}
False: rngFrom (kind (dt)) < rngTo (kind (dt))

KEEP

Figure 12.15: Augmented S-DAG for Rule 48 at state 17

universal quantifier for the variable fun is pushed into the second subformula
of this disjunction. This requires to exchange the universal quantifiers for fun
and u. Our miniscoping algorithm also has exchanged the universal quantifiers
for the variables dlg and u in the “hope” to push the quantifier for dlg deeper
into the formula.

At state 6, our system generates the S-DAG shown in Fig. 12.17 for Rule 70.
The glossary terms Teacher and Class have been re-defined. These definitions
are not similar to the previous definitions present at the states 2 through 5.
Our system proposes to roll-back these changes.

12.3 Sample S-DAGs 203

∀ tKEEP ∈ repStates •
∀ uCHG ∈ concatMap(elements, concatMap(flattenComp,

concatMap(ucComp, repUsecase(t))))
•

∀ dlgCHG ∈ concatMap(elements, concatMap(flattenComp,
concatMap(diaComp, repDialog(t))))

•

¬ ąname(u) ∈ usecases(dlg) {{dlg.usecases ; usecases(dlg) \ [name(u)] True 3 }}ć ∨
∀ fun ∈ concatMap(actFun, actions(dlg)) •
fun ∈ ref fun(u) {{u.ref fun ; fun : (ref fun(u)) False 1 }}

t 17

KEEP
u

dlg

fun

{name = UC_[Assign students to course], ...}

{name = Dia_[Assign student to course], ...}

{name = AF_[Check maximum students for class], ...}

Chg

Chg

Del

name = UC_[Assign students to course],

name = Dia_[Assign students to course],

{name = AF_[Check maximum students for class], ...}

{

{

}

}

ref_fun =

usecases = [], ...

[]AF_[Check maximum students for class],
AF_[Find classes for student by date]

[[{{]] }}AF_[Check maximum students for class],
AF_[Find classes for student by date]

1

{{dlg.usecases [[]] 3}}
True: name (uc) usecases (dlg)

uc.ref_fun

False: fun ref_fun (uc)

Figure 12.16: Augmented S-DAG for Rule 64 at state 17

∀ tKEEP
n ∈ repStates • ∀ tKEEP

o ∈ repStates •

¬(to < tn) ∨

0
BB@

∀ gKEEP
o ∈ repGlossary(to) • ∀ termKEEP

o ∈ terms(go) •
∃ gn ∈ repGlossary(tn) • ∃ termn ∈ terms(gn) •
name(termo) = name(termn) {{termn.name ; name(termo) False 5 }} ∧
desc(termo) ≡ desc(termn) {{termn.desc ; desc(termo) False 2 }}

1
CCA

g

gg

term

termterm

term

2 2

o

nn

o

nn

nn

oo

o

KEEP

KEEP

KEEPKEEP

{name = Class, ...}

{name = Class, ...}{name = Teacher, ...}

{name = Teacher, ...}

ChgChg name = Class,name = Teacher,

dId = Glossary.xml,

dId = Glossary.xml,dId = Glossary.xml,

{{

{

{{

}}

}

}}

desc = A class is part of a course ...desc = He is the one who ...

A class is part of a course.He is the one who
The class teaches a
closed part of a course.

should transfer the
knowledge about skiing

dState = 2, ...

dState = 6, ...dState = 6, ...

[[{{{{]] }}}}

Abandoned

term .descterm .desc

False: desc (term) desc (term)False: desc (term) desc (term)

Abandoned

term *
n

term *
n

t 2 t 4t 3 t 5o oo o

KEEP KEEPKEEP KEEP

t 6n

nn

Figure 12.17: Augmented S-DAG for Rule 70 at state 6

204 The Ski School

∀ tKEEP ∈ repStates • ∀ uDCHG ∈ repUsecase(t) •
∀ cCHG ∈ concatMap(flattenComp, ucComp(uD)) • ∀ uCHG ∈ elements(c) •
∀ fref ∈ ref fun(u) •
∃ cfun ∈ concatMap(flattenComp, concatMap(afComp, repAnaFun(t))) •
name(c) = name(cfun) {{cfun.name ; name(c) False 10 }} ∧
∃ f ∈ elements(cfun) •
fref = name(f) {{fref ; name(f) False 1 }}

t 17

KEEP
uD

c

fref

u

{name = Com_[Internal data], ...}

{name = UC_[Create course summary], ...}

{name = AF_[Filter courses], ...}

Chg
Chg

Chg
{name = AF_[Assign teacher to class], ...}

{name = AF_[Check availability], ...}

{name = AF_[Filter teachers], ...}

{dId = UC_Register_Students.xml, dState = 17, ...}

Abandoned

f {name = AF_[Filter teachers], ...}f {name = AF_[Check availability], ...}f {name = AF_[Assign teacher to class], ...}

Add {name = Com_[Internal data], ...}

c
fun

{name = Com_[Course attendees], ...} c

c *

fun

fun

{name = Com_[Internal data], ...}

fun

fun{{c .name [Com_[Internal data]] 10}}
False: name (c) = name (c)

ref

ref{{f [AF_[Filter teachers]] 1}}
False: f = name (f)ref

ref{{f [AF_[Check availability]] 1}}
False: f = name (f)ref

ref{{f [AF_[Assign teacher to class]] 1}}
False: f = name (f)

Figure 12.18: Augmented S-DAG for Rule 73 at state 17

∀ tKEEP ∈ repStates • ∀ dmKEEP ∈ repDataMod(t) •
∀ cCHG ∈ concatMap(flattenComp, compsDM(dm)) • ∀ etCHG ∈ elements(c) •
length(relatedWith(et)) /Int 2 ≤
length(filter∈ (map(etName, map(ref entitytype, relatesWith(et))),

name, elements(c)))

KEEP

KEEP

dm

Int Int

dId = DataModel.xml,{ }dState = 14, ...

{{et [True : 2 < 1], c [True : 2 < 1]}} {{et [True : 1 < 0], c [True : 1 < 0]}}

False: length (relatedWith (et)) / 2 < length (filter (...)) False: length (relatedWith (et)) / 2 < length (filter (...))

c {name = Com_[Course planning], ...}c {name = Com_[Course attendees], ...}

et {name = ET_[Class], ...}et {name = ET_[Student], ...}

t 17

Figure 12.19: Augmented S-DAG for Rule 74 at state 17

At state 17, our system generates the S-DAG shown in Fig. 12.18 for Rule 73.
The S-DAG shows that the use case UC [Create course summary] violates
Rule 73, because the used analysis function AF [Filter courses] is not a mem-
ber of the use case’s component Com [Internal data]. The S-DAG also in-
dicates that the analysis function AF [Filter courses] is defined in the com-
ponent Com [Course attendees]. Our system proposes to add a component
Com [Internal data] or to change the analysis function reference to one of the

12.3 Sample S-DAGs 205

analysis functions in the component Com [Internal data]. Any of these sugges-
tions would resolve the inconsistency. At state 21, Peter moves the use case
UC [Create course summary] to the component Com [Course attendees]. The
actions in the S-DAG do not include this possibility, because the rule designer
did not propose to change the use case component.

At state 17, our system generates the S-DAG shown in Fig. 12.19 for Rule 74.
From the S-DAG, we see that the entity types ET [Student] and ET [Class] have
more relations to entity types included in a different component than to entity
types within their own component. Of course, these inconsistencies cannot be
resolved automatically. In order to fulfill Rule 74, a complete re-design of the
components seems appropriate. But since this rule only reflects a property of
a good data model, these minor inconsistencies are tolerated throughout.

At state 23, our system generates the S-DAG shown in Fig. 12.20 for Rule 80.
The S-DAG shows that the finished fine specifications for the user and the
designer, respectively, violate the rule. For both fine specifications, we have a
matching coarse specification in states between 13 and 17. The rule is violated,
because wish list support has been dropped in the fine specification: At state
23, the business process BP [Register students] lacks the activities Act [Set
customer to wish list] and Act [Register customer (4)]. Our system proposes to
add the missing activities, or downgrade the specifications to status ‘in progress’
or to coarse specifications. Clearly, dropping wish list support is an intentional
design decision that shows up as an inconsistency. By the S-DAG in Fig. 12.20
our approach documents this design decision.

At state 6, our system generates the S-DAG shown in Fig. 12.21 for Rule 82.
The S-DAG indicates that the specification for the management contains cross-
cutting concerns; the reading instructions, however, fail to indicate that the
management should read cross-cutting concerns. Our system proposes either to
add an appropriate reading instruction or to remove the cross-cutting concerns
from the specification. At state 9, Maggie adds a reading instruction for the
management.

At state 6, our system generates the S-DAG shown in Fig. 12.22 for Rule 84.
The rule is violated by the documents ReadingInst.xml and Glossary.xml, each
of which changed its status from ‘in progress’ to ‘finished.’ Our system proposes
to roll back their status values to ‘in progress.’

206 The Ski School

∀ tKEEP
c ∈ repStates • ∀ tKEEP

f ∈ repStates • ¬(tc < tf) ∨
∀ sCHG

f ∈ repSp(tf) •
¬ (specKind(sf) = Fine {{sf .specKind ; Coarse True 50}}) ∨
¬ (status(sf) = Finished {{sf .status ; InProgress True 40}}) ∨
∀ sKEEP

c ∈ filter∈ ([dId(sf)], dId, repSp(tc)) •
¬(specKind(sc) = Coarse) ∨ ¬(status(sc) = Finished) ∨
∀ bpDKEEP

c ∈ filter∈ (doc busproc(sc), dId, repBusProc(dState(sc))) •
∀ bpKEEP

c ∈ processes(bpDc) •
∃ bpDf ∈ filter∈ (doc busproc(sf), dId, repBusProc(dState(sf))) •
∃ bpf ∈ processes(bpDf) •
name(bpf) = name(bpc) {{bpf .name ; name(bpc) False 4 }} ∧
∀ actKEEP

c ∈ activities(bpc) • ∃ actf ∈ activities(bpf) •
name(actf) = name(actc) {{actf .name ; name(actc) False 2 }} ∧
systems(actf) = systems(actc) {{actf .systems ; systems(actc) False 1 }}

bpD

bpD

bp

act

actact

actact

actact

actact
actact

actact

act

bp

s

s

c

c

f

c

c

ff

ff

ff

ff

ff

ff

c

f

f

f f
f

f

{dId = BP_Register_Students.xml, dState = 11, ...}

{dId = BP_Register_Students.xml, dState = 21, ...}

{name = BP_[Register students], ...}

{name = Act_[Register customer (4)], ...}

{name = Act_[Register customer (4)], ...}{name = Act_[Set customer to wish list], ...}

{name = Act_[Assign student to all classes ...], ...}{name = Act_[Assign student to all classes ...], ...}

{name = Act_[Assign student to some classes ...], ...}{name = Act_[Assign student to some classes ...], ...}

{name = Act_[Create course summary], ...}{name = Act_[Create course summary], ...}

{name = Act_[Register customer], ...}{name = Act_[Register customer], ...}
{name = Act_[Register customer (2)], ...}{name = Act_[Register customer (2)], ...}

{name = Act_[Register customer (3)], ...}{name = Act_[Register customer (3)], ...}

{name = Act_[Set customer to wish list], ...}

{name = BP_[Register students], ...}

{dId = SpecUser.xml, dState = 23, ...}

{{act .name [Act_[Register customer (4)] 2}}{{act .name [Act_[Set customer to wish list] 2}}

False: name (act) = name (act)False: name (act) = name (act)

KEEP

Chg

Chg

dId = SpecUser.xml,

dId = SpecUser.xml,

{

{

{

{
dState = 23, status = InProgress

dState = 23, specKind = Coarse

dId = SpecDesigner.xml, {{dState = 13, ...

t 23

AddAdd

c KEEPt 17
c KEEPt 15
c KEEPt 13 c KEEPt 14

KEEP

KEEP

KEEP

KEEPKEEP

Abandoned

Abandoned

c KEEPt 16

bpD *
f

f

f

f

f

cc

{{s .status [InProgress] 40}}
True: status (s) = Finished

{{s .specKind [Coarse] 50}}
True: specKind (s) = Fine

sc dId = SpecUser.xml, {{dState = 13, ...
KEEP

sf {dId = SpecDesigner.xml, dState = 23, ...}

Chg dId = SpecDesigner.xml, {{dState = 23, specKind = Coarse

Chg dId = SpecDesigner.xml, {{dState = 23, status = InProgress

f

Figure 12.20: Augmented S-DAG for Rule 80 at state 23

12.3 Sample S-DAGs 207

∀ tKEEP ∈ repStates • ∀ spCHG ∈ repSp(t) •
∃ ri ∈ repReadingInst(dState(sp)) •
doc reading(sp) = dId(ri)

¡{sp.doc reading ; dId(ri) False new 5} ,ľ
ri.dId ; doc reading(sp) False new 10,

ł
¿

∧
0
BB@

null(doc busproc(sp)) {{sp.doc busproc ; [] False 5}} ∨
readers(sp) ∈ concatMap

ţ
shouldRead, case

ţ
ri busproc(ri),

¡
Just→ id,
Nothing→ []

¿űű

{{ri.ri busproc ; addRI(ri busproc(ri), readers(sp)) False 2}}

1
CCA∧

0
BB@

null(doc crosscut(sp)) {{sp.doc crosscut ; [] False 5}} ∨
readers(sp) ∈ concatMap

ţ
shouldRead, case

ţ
ri crosscut(ri),

¡
Just→ id,
Nothing→ []

¿űű

{{ri.ri crosscut ; addRI(ri crosscut(ri), readers(sp)) False 2}}

1
CCA

t 6

KEEP
sp

ri

Chg

Chg

{dId = SpecManagement.xml, dState = 6, ...}

{dId = ReadingInst.xml, dState = 6, ...}

dId = SpecManagement.xml,

dId = ReadingInst.xml,

{

{

}

}

dState = 6,

dState = 6,

doc_crosscut = []

ri_crosscut =

{{sp.doc_crosscut [[]] 5}}

ri.ri_crosscut 2

False: null (doc_crosscut (sp)) False: specReaders (sp) concatMap (shouldRead, ...)

[]{shouldRead = [Management], whichPart = Complete},
{shouldRead = [User, Designer, Test Team], whichPart = Complete}

{[[{{]] }}}
{shouldRead = [Management], whichPart = Complete},
shouldRead = [User, Designer, Test Team],
whichPart = Complete

Figure 12.21: Augmented S-DAG for Rule 82 at state 6

∀ tKEEP ∈ repStates • ∀ dCHG ∈ repDocSDM(t) •
¬ (dState(d) = t {∅}) ∨
¬ (status(d) = Finished {{d.status ; InProgress True 40}}) ∨
∀ dKEEP

prev ∈ repDocSDM(prevState(t)) •
¬ (dId(d) = dId(dprev) {∅}) ∨ ¬(status(dprev) = InProgress)

t 6
KEEP

dd {dId = Glossary.xml, dState = 6, ...}{dId = ReadingInst.xml, dState = 6, ...}

{{d.status [InProgress] 40}}

Abandoned True: status (d) = Finished

Chg dId = ReadingInst.xml, dState = 6,{ }status = InProgress
Chg dId = Glossary.xml, dState = 6,{ }status = InProgress

Figure 12.22: Augmented S-DAG for Rule 84 at state 6

208 The Ski School

Rep {19(u1)} elements(c1) {t 7→ 6, c1 7→ {name = TODO, . . .}}
Chg {name = Create new course and classes, . . .}.name Ã UC [∗]
Rate {1 (high)} {19, 21, 30, 64, 73, 84} 10

Rep {19(u1)} elements(c1) {t 7→ 6, c1 7→ {name = TODO, . . .}}
Chg {name = Determine additional requests and abundances, . . .}.name Ã UC [∗]
Rate {1 (high)} {19, 21, 30, 64, 73, 84} 10

Rep {70(termn)} terms(gn) {t 7→ 6, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Class, . . .}.desc Ã A class is part of a course. The class teaches . . .
Rate {8 (high)} {70, 84} 2

Rep {70(termn)} terms(gn) {t 7→ 6, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Teacher, . . .}.desc Ã He is the one who should transfer the . . .
Rate {8 (high)} {70, 84} 2

Rep {82(ri)} repReadingInst(dState(sp))
{t 7→ 6, sp 7→ {dId = SpecManagement.xml, dState = 6, . . .}}
Chg {dId = ReadingInst.xml, dState = 6, . . .}.ri crosscutÃů{shouldRead = [Management], whichPart = Complete},

{shouldRead = [User,Designer,Test Team], whichPart = Complete}
ÿ

Rate {2 (high)} {82, 84} 2

Rep {84(doc)} repDocSDM(t) {t 7→ 6}
Chg {dId = Glossary.xml, dState = 6, . . .}.status Ã InProgress
Rate {1 (medium)} {70, 84} 40

Rep {84(doc)} repDocSDM(t) {t 7→ 6}
Chg {dId = ReadingInst.xml, dState = 6, . . .}.status Ã InProgress
Rate {1 (medium)} {82, 84} 40

Figure 12.23: Top-ranked repair set at state 6 (violated rules: 19, 70, 82, 84)

12.4 Sample Repair Collections

In this section, we present the repair collections for the repository states 6, 17,
and 23, respectively. All collections are sorted by the following metric:

rs ≥SDM rs′ ⇐⇒ c > c′ ∨ (c = c′ ∧ |rs| ≤ |rs′|)
where c =

∑
rep∈rs

ratingSDM(rep)

c′ =
∑

rep′∈rs′
ratingSDM(rep′)

ratingSDM(Rep act (Rate violated cost))
= −|violated| − cost− 60 if act deletes a document
−|violated| − cost− 50 if act deletes content
−|violated| − cost otherwise

We punish deletion by at least 50, because the maximum cost of a hint is 50
in our example rules. For brevity, we only show the top-ranked repair set for
each state.

At state 6, the following rules are violated: 19, 70, 82, and 84. Our sys-
tem derives 48 alternative repair sets, each of which includes seven repairs.
Fig. 12.23 shows the repairs of the top-ranked repair set, where we use the rule
numbers as references. Our system proposes the following repairs:

12.4 Sample Repair Collections 209

• Change the names of the use cases ‘Create new course and classes’ and
‘Determine additional requests and abundances,’ in order to resolve in-
consistencies for Rule 19.

• In the glossary, roll back the descriptions of the terms Class and Teacher,
in order to resolve inconsistencies for Rule 70.

• In the reading instructions, add the reader species management to the
readers of the cross-cutting concerns, in order to resolve inconsistencies
for Rule 82.

• Roll back the status of the glossary and the reading instructions to ‘in
progress,’ in order to resolve inconsistencies for Rule 84.

At state 17, the following rules are violated: 21, 30, 48, 64, 70, 73, and 74.
Our system derives 60 alternative repair sets, each of which includes 13 repairs.
Fig. 12.24 shows the repairs of the top-ranked repair set including the following
repairs:

• Change the use case UC [Create new course and classes], such that the
precondition ‘course type exists’ is implied by the postconditions of all
other use cases.

• Change the use cases UC [Assign students to course], UC [set student to
wish list], and UC [Suggest teacher for course], such that their postcon-
ditions are implied by the postconditions of their used analysis functions.

• Change the data type DT [Year], such that its lower bound 1900 is smaller
than its upper bound 300.

• From the dialog Dia [Assign student to course], remove the called use
case. One might wonder that our system does not propose to add the
analysis function AF [Check maximum students for class] to the use
case UC [Assign students to course], which costs 1 only (see Fig. 12.16,
pg. 203). This repair might, however, violate the rules 19, 21, 30, 64, 73,
and 84. Consequently, it gets a lower rating. A repair set containing this
repair is at best ranked fourth place.

• Change the glossary terms Class and Teacher as in state 6.

• In the use case UC [Create course summary], change the used analysis
function AF [Filter courses] to AF [Assign teacher to class].

• In the data model, change the entity type ET [Class] and the compo-
nent Com [Course planning], such that ET [Class] has less relations to
entity types outside Com [Course planning] than to entity types within
Com [Course planning]. Each of these repairs does not resolve any incon-
sistency — they must be applied together.

210 The Ski School

Rep {21(u)} elements(c)¡
t 7→ 17, c 7→ {name = Com [Course planning], . . .},
u 7→ {name = UC [Create new course and classes], . . .}

¿

?? [True : And [And [student assigned to class, . . .], . . .] |⇒ course type exists]
Rate {1 (medium)} {19, 21, 30, 64, 73, 84}

Rep {30(u)}
concatMap(elements, concatMap(flattenComp, concatMap(ucComp, . . .)))
{t 7→ 17, u 7→ {name = UC [Assign students to course], . . .}}
?? [True : And [] |⇒ And [student assigned to class, no conflicting assignments to . . .]]
Rate {2 (medium)} {19, 21, 30, 64, 73, 84}

Rep {30(u)}
concatMap(elements, concatMap(flattenComp, concatMap(ucComp, . . .)))
{t 7→ 17, u 7→ {name = UC [Set student to wish list], . . .}}
?? [True : And [] |⇒ request in wish list] Rate {2 (medium)} {19, 21, 30, 64, 73, 84}

Rep {30(u)}
concatMap(elements, concatMap(flattenComp, concatMap(ucComp, . . .)))
{t 7→ 17, u 7→ {name = UC [Suggest teacher for course], . . .}}
?? [True : And [] |⇒ teacher suggestions for a course]
Rate {2 (medium)} {19, 21, 30, 64, 73, 84}

Rep {48(dt)} concatMap(datatypes, repDataTypes(t))
{t 7→ 17, dt 7→ {name = DT [Year], . . .}}
?? [True : 1900 < 300] Rate {1 (medium)} {48, 84}

Rep {64(dlg)}
concatMap(elements, concatMap(flattenComp, concatMap(diaComp, . . .)))
{t 7→ 17}
Chg {name = Dia [Assign student to course], . . .}.usecases Ã []
Rate {2 (medium)} {64, 84} 3

Rep {70(termn)} terms(gn) {tn 7→ 17, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Class, . . .}.desc Ã A class is part of a course. The class teaches . . .
Rate {8 (high)} {70, 84} 2

Rep {70(termn)} terms(gn) {tn 7→ 17, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Teacher, . . .}.desc Ã He is the one who should transfer the . . .
Rate {8 (high)} {70, 84} 2

Rep {73(fref)} ref fun(u)¡
t 7→ 17, ucD 7→ {dId = UC Register Students.xml, dState = 17, . . .},
c 7→ {name = Com [Internal data], . . .},u 7→ {name = UC [Create course summary], . . .}

¿

Chg AF [Filter courses] Ã AF [Assign teacher to class]
Rate {1 (medium)} {19, 21, 30, 64, 73, 84} 1

Rep {74(et)} elements(c)¡
t 7→ 17, dm 7→ {dId = DataModel.xml, dState = 14, . . .},
c 7→ {name = Com [Course planning], . . .}, et 7→ {name = ET [Class], . . .}

¿

?? [True : 2 ≤ 1] Rate {0 (medium)} {41, 74, 84}
Rep {74(c)} concatMap(flattenComp, compsDM(dm))¡

t 7→ 17, dm 7→ {dId = DataModel.xml, dState = 14, . . .},
c 7→ {name = Com [Course planning], . . .}

¿

?? [True : 2 ≤ 1] Rate {0 (medium)} {41, 74, 84}
Rep {74(et)} elements(c)¡

t 7→ 17, dm 7→ {dId = DataModel.xml, dState = 14, . . .},
c 7→ {name = Com [Course attendees], . . .}, et 7→ {name = ET [Student], . . .}

¿

?? [True : 1 ≤ 0] Rate {0 (medium)} {41, 74, 84}
Rep {74(c)} concatMap(flattenComp, compsDM(dm))¡

t 7→ 17, dm 7→ {dId = DataModel.xml, dState = 14, . . .},
c 7→ {name = Com [Course attendees], . . .}

¿

?? [True : 1 ≤ 0] Rate {0 (medium)} {41, 74, 84}

Figure 12.24: Top-ranked repair set at state 17 (violated rules: 21, 30, 48, 64,
70, 73, 74)

12.5 Performance Summary 211

• In the data model, change the entity type ET [Student] and the compo-
nent Com [Course attendees], such that ET [Student] has less relations to
entity types outside Com [Course attendees] than to entity types within
Com [Course attendees].

At state 23, the following rules are violated: 4, 21, 30, 41, 70, 74, and 80.
Our system derives 430 alternative repair sets, which contain between 13 and
16 repairs. Fig. 12.25 shows the repairs of the top-ranked repair set, which
includes 13 repairs. Our system proposes the following repairs:

• Add a screen type to the style guide. We do not know, however, how the
screen type should look like.

• Change the use case UC [Create new course and classes], such that the
precondition ‘course type exists’ is implied by the postconditions of the
other use cases.

• Change the use cases UC [Assign students to course] and UC [Suggest
teacher for course], such that their postconditions are implied by the
postconditions of their used analysis functions.

• In the data model, add a target cardinality to the relation ‘is available
at’ emanating from the entity type ET [Availability].

• Change the glossary terms Class and Teacher as in state 6.

• In the data model, change the entity type ET [Class] and the compo-
nent Com [Course planning], such that ET [Class] has less relations to
entity types outside Com [Course planning] than to entity types within
Com [Course planning]. Also, change the entity type ET [Student] and
the component Com [Course attendees], such that ET [Student] has less
relations to entity types outside Com [Course attendees] than to entity
types within Com [Course attendees].

• In the business process BP [Register students], add the activi-
ties Act [Register Customer (4)] and Act [Set customer to wish
list], where BP [Register students] is defined in the document BP
Register Students.xml.

12.5 Performance Summary

Tab. 12.8 summarizes the performance of our consistency checker. Column 1
shows the repository state; column 2 denotes the repository size in kilo bytes;
column 3 shows the CPU time needed for generating S-DAGs using our basic
S-DAG generation algorithm defined in Sect. 8.4.2; column 4 summarizes the
rules evaluated during incremental S-DAG generation; and column 5 shows the
CPU time needed using our incremental S-DAG generation algorithm defined
in Sect. 8.4.3. All tests were performed against a DARCS [Rou04] repository

212 The Ski School

Rep {4(stG)} [styleguide(cc)]
{t 7→ 23, cc 7→ {dId = CrossCutting.xml, dState = 14, . . .}}
Chg {buttonTs = [], screenTs = []}.screenTs Ã [{name = TODO, . . .}]
Rate {20 (medium)} {3, 4, 19, 84} 1

Rep {21(u)} elements(c)¡
t 7→ 23, c 7→ {name = Com [Course planning], . . .},
u 7→ {name = UC [Create new course and classes], . . .}

¿

?? [True : And [course removed, planning request known, . . .] |⇒ course type exists]
Rate {1 (medium)} {19, 21, 30, 64, 73, 84}

Rep {30(u)}
concatMap(elements, concatMap(flattenComp, concatMap(ucComp, . . .)))
{t 7→ 23, u 7→ {name = UC [Assign students to course], . . .}}
?? [True : And [] |⇒ And [student assigned to class, no conflicting assignments to . . .]]
Rate {2 (medium)} {19, 21, 30, 64, 73, 84}

Rep {30(u)}
concatMap(elements, concatMap(flattenComp, concatMap(ucComp, . . .)))
{t 7→ 23, u 7→ {name = UC [Suggest teacher for course], . . .}}
?? [True : And [] |⇒ teacher suggestions for a course]
Rate {2 (medium)} {19, 21, 30, 64, 73, 84}

Rep {41(rel)} relatesWith(et)¡
t 7→ 23, dm 7→ {dId = DataModel.xml, dState = 22, . . .},
et 7→ {name = ET [Availability], . . .}

¿

Chg {name = is available at, . . .}.targetcard Ã TODO
Rate {6 (medium)} {41, 74, 84} 1

Rep {70(termn)} terms(gn) {tn 7→ 23, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Class, . . .}.desc Ã A class is part of a course. The class teaches . . .
Rate {8 (high)} {70, 84} 2

Rep {70(termn)} terms(gn) {tn 7→ 23, gn 7→ {dId = Glossary.xml, dState = 6, . . .}}
Chg {name = Teacher, . . .}.desc Ã He is the one who should transfer the . . .
Rate {8 (high)} {70, 84} 2

Rep {74(et)} elements(c)¡
t 7→ 23, dm 7→ {dId = DataModel.xml, dState = 22, . . .},
c 7→ {name = Com [Course planning], . . .}, et 7→ {name = ET [Class], . . .}

¿

?? [True : 2 ≤ 1] Rate {0 (medium)} {41, 74, 84}
Rep {74(c)} concatMap(flattenComp, compsDM(dm))¡

t 7→ 23, dm 7→ {dId = DataModel.xml, dState = 22, . . .},
c 7→ {name = Com [Course planning], . . .}

¿

?? [True : 2 ≤ 1] Rate {0 (medium)} {41, 74, 84}
Rep {74(et)} elements(c)¡

t 7→ 23, dm 7→ {dId = DataModel.xml, dState = 22, . . .},
c 7→ {name = Com [Course attendees], . . .}, et 7→ {name = ET [Student], . . .}

¿

?? [True : 1 ≤ 0] Rate {0 (medium)} {41, 74, 84}
Rep {74(c)} concatMap(flattenComp, compsDM(dm))¡

t 7→ 23, dm 7→ {dId = DataModel.xml, dState = 22, . . .},
c 7→ {name = Com [Course attendees], . . .}

¿

?? [True : 1 ≤ 0] Rate {0 (medium)} {41, 74, 84}
Rep {80(actf)} activities(bpf)¡

tf 7→ 23, bpDf 7→ {dId = BP Register Students.xml, dState = 21, . . .},
bpf 7→ {name = BP [Register students], . . .}

¿

Add {name = Act [Register customer (4)], . . .} Rate {10 (high)} {80, 84} 2
Rep {80(actf)} activities(bpf)¡

tf 7→ 23, bpDf 7→ {dId = BP Register Students.xml, dState = 21, . . .},
bpf 7→ {name = BP [Register students], . . .}

¿

Add {name = Act [Set customer to wish list], . . .} Rate {10 (high)} {80, 84} 2

Figure 12.25: Top-ranked repair set at state 23 (violated rules: 4, 21, 30, 41,
70, 74, 80)

12.5 Performance Summary 213

State Repository Basic S-DAG Generation Incremental S-DAG Generation
Size (KB) Time (Sec.) evaluated Rules Time (Sec.)

1 10 2.26 2 3 82 84 2.33
2 28 2.33 3 4 19 70 82 84 2.39
3 36 2.76 19 21 30 64 73 80 84 2.51
4 44 3.37 19 21 30 64 73 80 84 2.72
5 56 4.20 19 21 30 64 73 80 84 2.92
6 73 5.39 4 41 70 80 82 84 3.26
7 77 6.64 19 21 30 64 73 80 84 3.31
8 81 8.56 19 21 30 64 73 80 84 3.64
9 81 10.60 4 41 80 82 84 3.54

10 85 13.09 19 21 30 64 73 80 84 3.97
11 85 15.51 19 21 30 64 73 80 84 4.18
12 89 17.98 80 84 3.82
13 88 20.70 4 41 80 82 84 3.87
14 100 23.99 3 4 19 41 48 74 84 4.64
15 108 28.16 19 21 30 64 73 84 4.55
16 112 32.30 19 21 30 64 73 84 4.79
17 116 36.56 19 21 30 64 73 84 5.03
18 116 44.03 4 41 48 74 80 82 84 5.76
19 116 50.49 19 21 30 64 73 80 84 5.99
20 117 59.88 19 21 30 64 73 80 84 6.14
21 125 67.58 19 21 30 64 73 80 84 6.45
22 125 79.09 4 41 74 80 82 84 6.86
23 125 89.81 4 41 80 82 84 13.45
24 125 99.08 41 74 84 5.58

Table 12.8: Performance summary

(version 0.9.20) on a Debian Linux operating system using a Dell X200 laptop
with 384 mega bytes RAM and an Intel PIII CPU running at 800 mega Hertz.
We compiled our prototype system using the Glasgow Haskell Compiler version
6.2.1 [GHC04] with all compiler optimizations turned on. For both performance
tests, we used the miniscoped rules, such that incremental S-DAG generation
could benefit from rule filtering and incremental evaluation only. Incremental
S-DAG generation shows satisfactory performance for our example. We see,
however, that the time needed for incremental S-DAG generation grows to
great extent at state 23. Clearly, this is due to Rule 80, which we cannot
check efficiently, if the repository contains a finished fine specification: Below
the topmost disjunction of Rule 80 we have to use our non-incremental S-
DAG generation algorithm. Recall that disjunctions are evaluated lazily. Thus,
non-incremental S-DAG generation is fast at repository states between 1 and
22, because the repository does not contain a finished fine specification at
these states. Consequently, the universal quantifier for the variable sc is never
evaluated. In contrast, at state 23 the universal quantifier for sc has to be
evaluated (non-incrementally). Since the quantifier iterates over specifications
in previous repository states (which must be rebuilt by DARCS), its evaluation
is expensive. At state 24, we do not need to re-evaluate Rule 80, because it
is not affected by modifications to the data model. This significantly reduces

214 The Ski School

the time needed for S-DAG generation. If, however, at a later state, a software
engineer checks in a specification document or a business process document,
then Rule 80 must be re-evaluated, which again will be expensive.

For analyzing the overhead introduced by incrementalization, we add up
the last column, which results in an overall time of 111.71 seconds. This is
equivalent to an overhead of about 13%, compared to classic S-DAG generation.
Most of this overhead results from reading S-DAGs, which is more expensive
than reading consistency reports.1 Compare the results in Tab. 12.8 to the
performance results of our running example, shown in Tab. 6.4 (pg. 84). There,
the benefits of our incremental approach compensate the overhead introduced
by reading consistency reports.

Tab. 12.8 lists the times needed for S-DAG generation only, i.e., the dura-
tion at which the repository is locked. But how is the performance of S-DAG
augmentation and repair derivation? In our experiments, it turned out that
S-DAG augmentation is quite cheap. Our system needed at most 6 seconds
(at state 23). In contrast, repair derivation is expensive, if many rules are
violated and there are many alternative repairs possible: at state 6 our sys-
tem needed 0.18 seconds; at state 17 our system needed 5.23 seconds; and
finally at state 23 our system needed 128.52 seconds. Recall that repairs are
derived from the (reduced) current S-DAGs, i.e., documents in the repository
are not accessed. Times needed for deriving repairs directly from the reposi-
tory are significantly longer; also, the repair collections are significantly larger.
These results give strong evidence that separating incremental S-DAG gener-
ation from repair derivation is a key to making our consistency maintenance
approach viable.

1Clearly, this is mostly due to our prototype Haskell implementation, which uses derived
instances of the type classes Show and Read. These instances tend to be slow for complex data
structures like S-DAGs.

Chapter 13

Lessons Learnt:
Costs and Benefits of Consistency
Management

In this chapter, we summarize the most important lessons we have learnt from
our case study. We have successfully applied our consistency maintenance
approach to a complex application domain. The results of our case study prove
our introductory claims:

• Tolerating inconsistencies rather than preventing them is a feasible way
to manage semantic consistency requirements in document engineering.
Inconsistencies are natural when multiple authors edit interrelated docu-
ments. The vast majority of rules is weak; only a few rules are strong. As
a by-product, our approach also documents intentional design decisions,
which show up as inconsistencies.

• By tolerating inconsistencies and automating consistency checks we have
been able to smoothly integrate consistency maintenance into the every-
day work of authors. Our approach does not require any adaptations to
document engineering processes themselves.

• Our consistency maintenance approach scales to a practically relevant
scenario. We can formalize many important consistency requirements.
Temporal consistency rules support to restrict the development of doc-
uments and to implement document life cycle restrictions. Incremental
consistency checking shows passable performance.

• Augmented S-DAGs provide a good means to show inconsistencies and
possible repairs. Repair collections combine the repairs for the individual
rules, which is important when many rules are violated. Due to the
combinatorial explosion of the number of possible repairs, user-defined
preference metrics are necessary, even though repairs are derived from
reduced S-DAGs.

• Separating S-DAG generation from repair derivation is a key to making
our consistency maintenance approach viable. Deriving repairs directly
from the documents in the repository does not scale in practice.

• The quality of the generated repairs depends on the quality of hints and
the document structure. The more detailed the document structure is,
the better are the repairs.

215

216 Costs and Benefits of Consistency Management

Task Time (Days)
Extract consistency requirements (140) from analysis modules 14
Define DTDs for analysis modules 4
Define document types for analysis modules 2
Generate parsers (automatically from DTDs) 0.2
Adjust HaXml generated parser output types to document types 2.5
Define additional functions and predicates 0.5
Formalize consistency rules (15) 4
Sum 27.2

Table 13.1: Cost of formalization

• Subtypes play an important rôle for defining the language SDM. The def-
inition of document types is a laborious task. We expect, however, that
languages can be re-used for other rules. Since the basic language Pre-
lude includes large part of the functional programming language Haskell,
language designers have to define a few new symbols only.

Clearly, we share a serious drawback with other formal consistency manage-
ment approaches: the cost of formalization. Tab. 13.1 summarizes the time
we spent for separate tasks, in order to run our full case study. We extracted
140 consistency requirements from sd&m’s analysis modules. We defined doc-
ument types for specification documents and the analysis modules goals scope
constraints, overview of the technical architecture, cross-cutting concerns, busi-
ness processes, use cases, analysis functions, data model, data types, dialogs,
reading instructions, and glossary. We have formalized the 15 consistency rules
shown in Chapter 11.

Most of the time we spent for determining useful consistency requirements.
Surely, this task is of major importance and will be time consuming for other
application areas as well. Formalizing consistency rules gives precious insights
to the consistency requirements actually needed, which is of vital importance
for any collaborative work. To our experience, prior to formalization, unclear
consistency requirements lead to serious misunderstandings. Developing useful
document structures was a laborious task, too. Defining document types and
adjusting the HaXml parsers could be reduced to zero time, if HaXml supported
XML Schema (see App. B.4). Then our document types could be derived
directly from the XML Schemas.

Besides proving our claims, this case study also reveals some limitations of
our approach, which opens interesting directions for future research. As yet,
we cannot formalize natural-language constraints. We are, however, confident
that our approach benefits from the ongoing development of natural-language
tools. Recently, the knowledge management community has developed parsers
[BQBW03, BHQW02] that extract knowledge from natural-language texts and
present it by semantic nets (e.g., RDF graphs [W3C99a, Pow03] or Topic Maps
[ISO03, WM02]). Annotating rules by hints and costs as well as defining pref-
erence metrics is done in a rather ad-hoc manner, which tends to be complex
and time consuming. We plan to use data mining approaches [AIS93, Chi03]
that employ historical information about the rules violated and the usefulness

217

of the repairs derived. This will help to define better metrics for repair ranking
and to provide support for hint formalization.

At sd&m, our consistency requirements have been integrated into the anal-
ysis modules as a “requirements catalog,” which gives an overview of all re-
quirements. In the future, we will introduce consistency maintenance into the
development process of real software specifications, where we shall concentrate
on the following aspects.

• Industrial specifications for large systems, which are subdivided into sub-
systems and components, suffer from complex interrelations between anal-
ysis modules for functional requirements. Therefore, we shall first intro-
duce formal consistency rules examining relationships between business
processes, use cases, analysis functions, and dialogs in conjunction with
the data model and data type definitions. We are confident that in this
field our consistency maintenance approach already achieves major ben-
efits by imposing relatively low formalization costs.

• Usually, new systems are integrated in a complex environment consisting
of many neighborhood systems. Also, the migration from an old system
to a new system is not trivial. Therefore, we shall find a formal structure
for describing neighborhood interfaces, in order to apply our consistency
maintenance approach.

In summary, we are convinced that the benefits of consistency management
outweigh its costs. Once formalized, we can re-use consistency rules for a
number of document engineering projects.

Part IV

Conclusions

218

Chapter 14

Comparison with Related Work

In this chapter, we compare our consistency management approach with related
work in the literature. The major differences to these approaches are:

• We apply consistency management to documents and integrate our ap-
proach into the work with an arbitrary DMS.

• Instead of enforcing consistency, we tolerate inconsistencies.

• Our approach is independent from a particular document model and a
particular document format.

• We support user-defined functions and predicates. Hints guide repair
generation by providing domain-specific knowledge.

By the above design decisions we gain flexibility. We accept that incremental
consistency checking is more coarse grained than in other approaches and that
repairs have to be applied manually. Mainly, our work has been influenced
by consistency management approaches in databases and recent research in
the XML community. In particular, we share some similarities with the con-
sistency checking tool xlinkit [NEF01, NCEF02, DENT02, NEF03, PNEF03].
In the following sections, we discuss related work in detail. In Sect. 14.1, we
compare our approach to other consistency checking approaches. In Sect. 14.2,
we put particular attention to efficient incremental evaluation of consistency
rules. We compare our approach to other consistency maintenance approaches
in Sect. 14.3. Finally, we review software engineering tools w.r.t. their consis-
tency management facilities.

14.1 Consistency Checking

In consistency checking, we distinguish between consistency enforcement and
inconsistency tolerance. In particular, database consistency checking approaches
enforce consistency [Pac97].

Despite of its limited constraint language, the database programming lan-
guage Thémis [BD95] shares some ideas with our approach. Higher-order com-
plexity lays in methods, implemented in an imperative programming language.
A Cardelli-style type system supports implicit subtyping but lacks variant
types. Universal first-order formulae express integrity constraints; the pred-
icate set is fixed. Recent works on semistructured databases [BFW00] and
integrity constraints for WWW sites [FFLS99] use decidable subsets of first-
order logic. We need more expressive power as our examples have shown.

At first sight, we might use the DMS metadata database and permit vio-
lations of database integrity constraints. The database “corset” is, however,

219

220 Comparison with Related Work

too strict and limited to document metadata only. Complex semantic rules,
e.g., “referenced sections should keep similar over time,” require to inspect
document content via information retrieval techniques [WS99]. Our approach
benefits from the semantics of underlying document models, expressed by our
type system. Metadata impinging consistency may change, which would require
to adapt the database schema. In addition, for smaller projects the database
approach appears too heavy weight. Of course, our database-independent ap-
proach can still use databases for fast metadata access.

Recent approaches in the XML community [AFL02, AL03b] aim to guaran-
tee consistency by construction. In contrast, we apply consistency checks at
concrete document instances to determine inconsistencies. In spite of the draw-
back that we cannot guarantee consistency by construction, we argue that our
approach is better suited for handling semantic (i.e., content-dependent) in-
consistencies. Also, document models cannot handle consistency requirements
that vary over time. We integrate incremental consistency checks into a DMS,
in order to relieve the obstacle of recurring consistency checks.

In software engineering [Fin00, NER00], tolerating inconsistencies is con-
sidered preferable to enforcing consistency. Many-valued logics help to model
inconsistencies and their consequences [EC01]. We argue, however, that classic
logic is easier to understand for users and that our approach is powerful enough
to manage consistency. Priority levels for consistency rules can be considered
a coarse grained approach to many-valued logic.

The idea to compute inconsistency diagnoses rather than just detecting that
an inconsistency has occurred is not new. It has been explored in the context
of knowledge bases [VC99], in software engineering [Bal91, NG92, EFKN94,
GHM93, GP97, GHM98, Fin00, NER00], and for analyzing consistency be-
tween documents [NCEF02]. Whereas for knowledge bases, decidability of
the implication problem is crucial, we find close relationships in the context
of distributed documents. The toolkit xlinkit [NCEF02] statically checks dis-
tributed documents against user-defined consistency rules and implements a
tolerant consistency model. Rules are formalized in an untyped non-temporal
first-order logic employing user-defined predicates, the semantics of which is
implemented in Java-script [ECM99]. This “black box” hinders the re-use of
already available algorithms. We share many ideas with xlinkit but use a DMS,
which has a lot of advantages: (1) DMSs are widely used and provide useful
management mechanisms, e.g., document locking; (2) Internet access to DMSs
already supports distribution and collaboration; and (3) history information
(already stored by DMSs) is necessary for temporal consistency rules and effi-
cient consistency checking. In addition, we employ a sophisticated type system
that helps to define meaningful consistency rules. We argue that DMS-managed
repositories support collaborative distributed work and should be extended, in
order to provide consistency management.

Henrich et al. [Hen95, HD96, HR01] also use a repository for consistency
checking but employ a query language. By this approach query results corre-
spond to our consistency reports. Using a query language is, however, limited

14.2 Incremental Evaluation 221

to consistency checking. In addition, Henrich et al. support a fixed set of pred-
icates only.

For defining document types, we might also have used finite tree automata
[Toz01]. We decided not to do so, because our type system is closer to the type
system of Haskell — the programming language used by language designers.

14.2 Incremental Evaluation

The idea of incremental evaluation is old; we can trace it back to the Ana-
lytical Engine of Charles Babbage in the early 19th century [Bab84]. In this
section, we discuss closely related work in the area of incremental evaluation
and efficient consistency checking. In contrast to our approach, most of the
other incremental approaches enforce consistency and thus benefit from total
satisfaction of consistency rules prior to consistency checking.

Incremental programming languages [YS88, YS91, Liu99, Liu00, ABH03]
provide a uniform approach to incremental computation. They attempt to min-
imize redundant computation provided that a program is executed repeatedly
on slightly different inputs. In order to produce the current results of a pro-
gram run, incremental computation uses previous results, differences between
previous inputs and current inputs, and auxiliary information. The primary
goal is to reduce the asymptotic running time of incremental programs by re-
ducing inputs. Our treatment of quantifier spheres follows this approach. We
can regard quantified formulae Q x ∈ e • φ as incrementally computable “func-
tions” having as input the value of the sphere term e. These functions have
a complexity linear in the input size (the cardinality of the sphere). During
consistency checking, we try to reduce the sphere. Subtypes aid our algorithm
in reducing the amount of intermediately stored data.

From its origin, the database community has been striving for efficient al-
gorithms that check static integrity constraints [WDSY91, GSUW94, SdS99,
ABC99], check temporal integrity constraints [Ple93, GL95, Ple95, Ple96, MS96,
BS98, BCP99], maintain views [GMS93, MS01], and optimize queries [DST94,
DS95, BM95, Nak01]. Pacheco e Silva [Pac97] classifies recent constraint check-
ing approaches in databases. Usually, database approaches distinguish between
compile-time analysis and run-time techniques.

Compile-time analysis simplifies integrity constraints and identifies update
types that might violate constraints. Usually, rewriting approaches (like mini-
scoping [dC86, MH89]) and quantifier elimination strategies are used [Bas99].
We also employ miniscoping but do not eliminate quantifiers, because quantified
variables provide a precise characterization of inconsistencies. Also, database
approaches limit their constraint language, in order to make constraint sub-
sumption decidable. We cannot benefit from constraint subsumption, because
this is undecidable in our rule language; miniscoping performs basic subsump-
tion analyses only. In order to achieve the high expressivity needed by our
applications, we sacrifice decidability.

222 Comparison with Related Work

Run-time approaches use previous results to avoid re-computation. In the
context of first-order logic, they reduce quantifier spheres. Within constraints
most database approaches use a fixed set of predicates, partly based on the
formal database model. Then knowledge about predicate properties — such as
transitivity or symmetry — supports incremental algorithms. In addition, some
database approaches limit updates to insertion only [DST94, DS95, SdS99],
in order to achieve high performance. In general, we follow the approach of
the database community but do not have a formal database schema, formal-
ized updates, and consistency prior to updates. This makes our approach
more complicated. Another obstacle is that even recent revision control sys-
tems [C+02, Rou04, CSFP04] formalize state transitions by line based diffs or
patches, which ignore the document model. In order to achieve the fine gran-
ularity needed for database approaches, we have to parse documents. Since
we make no assumptions to the document model of the underlying DMS, our
approach cannot show the high performance found in databases. In document
management, however, our coarse grained approach towards incremental con-
sistency checking suffices, because typically DMSs do not have to carry the
high load of databases. We are confident that revision control approaches in
the XML community [CRGW96, MACM01, CAM02, WL02, WDC03] lead to
a formal document update language that respects the document model. In
temporal databases, the problem of efficiently storing and managing historical
database states arises. In our setting, historical repository states are managed
by the DMS already.

Recently, incremental evaluation techniques have been used by the XML
community to maintain consistency w.r.t. user-defined rules. In [BBG+02],
Benedikt et al. extend XML Schema constraints by value based constraints.
There, simplified first-order logic and formalized update operations are the
basis for incrementally checking constraints. In [KSR02], Kane et al. pro-
pose to translate XML Schema constraints to XQuery; thus gaining declarative
integrity constraints. The approach closely follows the database constraint
checking procedure: First determine which rules might be affected by an up-
date, second check these rules at updated elements. In [KG02], Kwong and
Gertz develop a new language XSC for structural integrity constraints in XML
documents. The authors propose XSC as an alternative way to DTDs or XML
Schema for expressing document structure. Implication and satisfiability are
both decidable for constraints in XSC. Xlinkit [PNEF03] uses static analysis to
filter consistency rules relevant to document changes and a tree-diff algorithm
that determines document parts that have to be re-checked. Its tolerant view
of consistency distinguishes xlinkit from other approaches and makes it closer
to our approach. By supporting distribution and avoiding a history-aware re-
pository, xlinkit cannot implement temporal consistency rules and lacks some
of the incremental techniques we benefit from.

Incremental evaluation approaches in the literature show that incrementality
comes with a cost, which is, in general, hard to analyze, e.g., storage for previous
results and history information, lookup costs, and computation of differences
between inputs. The notion that incremental evaluation is “often” cheaper than

14.3 Consistency Maintenance 223

computation from scratch can, therefore, only be regarded as a heuristic leaving
open the question when to use or when to avoid incremental computation.
This highly depends on the actual application. Therefore, we have proved
our claims by a case study. In general, database performance analyses show
that the smaller the changes through updates are and the less expressive the
constraint language is, the better performs incremental computation. This is
also confirmed by our prototype, which performs better for small documents
than for large documents.

14.3 Consistency Maintenance

Like detecting inconsistencies, the issue of repairing inconsistencies has received
much attention in the literature, particularly in the field of active databases.
In an active database, so called ECA rules [ISO99a, ISO99b, Pat02] support
to fire a repair Action provided that a specified Event has taken place and a
C ondition holds. Current research in the field of active constraint maintenance
concentrates on the derivation of such active rules.

[MT99] provides a general framework that characterizes recent research in
the area of active constraint maintenance. With the help of this framework, we
categorize our approach to repairing inconsistencies as follows:

• Problem addressed : In contrast to many database constraint maintenance
approaches, we are concerned with consistency maintenance only; we do
not consider view updating. Our approach supports to check, maintain,
and restore consistency. Usually, databases neglect restoring consistency
by requiring overall consistency prior to database updates. A notable
exception is [Maa98], which we discuss below. We apply our techniques
at compile time and run-time.

• Database schema: Similar to most database constraint maintenance ap-
proaches, we employ logic as rule language. We use, however, full first-
order predicate logic. Functions correspond to database views, i.e., de-
rived data not stored in the database. Our approach also facilitates non-
flat consistency rules (which can contain database views) through the use
of (possibly recursive) functions. We support both static and temporal
consistency rules.

• Update requests: We can handle multiple update requests including in-
sertion, change, and deletion.

• Mechanism: We employ active rules whose repairs are derived from S-
DAGs, which in turn are generated from the documents in the repository
(document contents correspond to base facts in a database). Instead of
active rules, other constraint maintenance approaches use SLDNF res-
olution [TO95, Dec97]. Resolution approaches are, however, limited to
decidable subsets of (predicate) logic. In contrast to databases, we rely

224 Comparison with Related Work

on user participation for resolving inconsistencies. We cannot apply re-
pairs to documents automatically, because the semantics of documents is
much more complex than that of databases.

• Solutions: In contrast to many database constraint maintenance ap-
proaches, we do not strive for complete repairs. Our repairs are correct
w.r.t. the individual rules, provided that hints from the rule designer
actually invert truth values of atomic formulae. We cannot guarantee
correctness of repairs w.r.t. all rules in the rule system, even though we
eliminate contradicting repairs.

When classified according to the above framework, our approach falls in the
same category as [GL97] and [Maa98]. One advantage of our approach is flex-
ibility, for we do not rely on a specific document model. On the other hand,
less formal update descriptions and less formal document semantics prohibit
automatic application of computer-generated repairs.

Our strategy for deriving repairs corresponds to the strategy of minimal
change and preserving the update, as proposed by Gertz and Lipeck [GL97].
There, automatic execution of repairs is interleaved with further consistency
checks, in order to arrive at a consistent database. We guide our strategy by re-
pair hints and execute repairs manually. In contrast to many other approaches,
[GL97] supports incomplete information by null values. We handle lack of in-
formation by value skeletons, which correspond to database tuples with null
values. In contrast to our approach, the consistency rule language in [GL97]
is limited to a fixed set of predicates and integrity constraints in implicative
normal form, which restricts the interaction between universal and existential
quantifiers. In addition, Gertz and Lipeck neglect database views.

Maabout [Maa98] proposes to generate update rule programs from consis-
tency rules. In contrast to many other database constraint maintenance ap-
proaches, [Maa98] does not require full consistency prior to database updates;
it can be used to restore consistency. The derivation of update programs is,
however, mostly done on the syntax level, i.e., update programs are derived
directly from the consistency rules.

In [BP00], Bertossi and Pinto extend the specifications of the dynamics
of databases by an approach that handles active rules. Derived repairs are
integrated into the logical specification of a database’s behavior. In contrast to
our approach, Bertossi and Pinto formalize the dynamic database behavior in
a situation calculus. Clearly, this is beyond our intentions: We are interested
only in suggesting repairs that resolve inconsistencies in a repository. Also,
it is still unclear whether a fully formal approach is applicable to document
engineering, because a formal model is lacking here.

Xlinkit also derives repairs, in order to resolve inconsistencies [NEF03]. Re-
pairs are derived from a set of sets of actions and a link base, which is quite
similar to a consistency report. The approach guarantees completeness and
correctness of repairs. In contrast to xlinkit, we reduce repairs through the use
of S-DAGs. We consider this a major contribution. For example, xlinkit does

14.4 Software Engineering Tools 225

not attempt to select a specific element from the sphere of an existential quan-
tifier, in order to derive good repairs. We support high-level repairs generated
from domain-specific hints; in contrast, xlinkit supports filtering repairs only.
Since xlinkit does not pre-process the consistency rules (e.g., to miniscope)
its semantics appears quite complex. Also, interaction of repairs for different
rules and compatibility of repairs w.r.t. the document structure are neglected.
We partially solve the former problem by computing the hitting collection for
all repair collections and ensuring compatibility within repair sets. Similar to
xlinkit, we cannot guarantee compatibility of derived repairs w.r.t. document
structures. We consider, however, static type checking of hints an important
step towards such a property.

14.4 Software Engineering Tools

In software engineering, special tools are used, in order to achieve consistency.
These tools are, however, limited to a specific document format and to a specific
application domain, e.g., the development of software specifications or specific
programming languages.

Programming language environments [Rep84] evaluate semantic rules of the
underlying programming language on abstract syntax trees of source code doc-
uments. Later work on software engineering environments [GOO94, EJS95]
supports consistency checks across multiple documents. Rules are, however,
limited to a subset of a (non-temporal) first-order logic. In addition, all rules
are equally important.

CASE tools [Bal98] may be used to aid software development. Usually, these
tools check a fixed set of consistency rules, e.g., referential integrity constraints
or naming conventions, see e.g., [Ber04]. Even state of the art CASE tools
are limited to the documents they maintain, e.g., UML models (see [ZK03]
for a recent consistency maintenance approach). It is hardly imaginable that
all results of a specification can be maintained by a single CASE tool. Also,
CASE tools implement a strict view of consistency. In contrast, we have devel-
oped a tolerant consistency management approach that supports documents of
heterogeneous content and structure.

Naturally, formal software specification approaches [Wir90, Rat94, ABK+02]
provide powerful means for consistency management [RS01]. As yet, these ap-
proaches require enormous effort for formalization, which often means to imple-
ment a new software development process. In practice, such effort is infeasible
for large parts of a specification. Even recent advances towards executable spec-
ifications [HD04] cannot eliminate these efforts. Therefore, formal approaches
are limited to critical parts of software systems. In contrast, our consistency
management approach can be integrated into arbitrary development processes
without major efforts. It can also be used to combine the advantages of formal
and informal software specification approaches, e.g., by consistency rules that
capture requirements between Z specifications and business processes.

226 Comparison with Related Work

In UML [HK99, OMG03], constraints can be defined using the Object Con-
straint Language (OCL) [WK98]. Our syntax of consistency rules shares some
similarities with OCL invariants. Thus, although large part of a specification
cannot be described in UML [SSKK02], we could use OCL syntax to formalize
consistency rules. Then we would employ a UML class model to define docu-
ment types. Temporal OCL extensions [FM02a, FM02b, ZG02] could be used to
formalize temporal rules. OCL supports user-defined referentially transparent
methods, called {queries}. But, since object oriented programming languages
cause side-effects, one would need to employ a functional programming lan-
guage, in order to define these methods. Recall that referential transparency
is a fundamental prerequisite to efficient consistency checking. Therefore, our
syntax follows the syntax of functional programming languages. We regard,
however, syntax issues a matter of personal preference. If needed, OCL invari-
ants can be translated to our consistency rules. The main contributions of this
thesis are precise inconsistency pointers, efficient consistency checking, efficient
generation of useful repairs, and integration of consistency management into
DMSs. These contributions had to be developed for OCL as well.

Chapter 15

Conclusions and Outlook

We are confident that this thesis is a significant step towards consistent docu-
ment engineering by using consistency maintaining DMSs. With kind permis-
sion of Universität der Bundeswehr München, preliminary results of this thesis
have been published as [SBRS03a, SBRS03b, SBRS04c, SSBS04, SBRS04b,
SBRS04a].

15.1 Summary

In a multi-author environment, DMSs provide fundamental management facil-
ities, e.g., version control, access management, or deployment management.
DMSs neglect, however, semantic domain-specific consistency requirements.
On the one hand, inconsistencies are major obstacles causing time-consuming
manual effort, which results in either schedule delays or budget holes or both.
On the other hand, inconsistencies are natural. Therefore, in this thesis, we
complement traditional DMSs by consistency management. We employ a tol-
erant consistency model; i.e., we accept inconsistencies but precisely identify
them for manual resolution. We smoothly integrate consistency management
into arbitrary DMSs without requiring adaptations to document engineering
processes. Thus, our formal consistency management approach is a useful aid
to informal document engineering.

Semantic consistency requirements are formalized by consistency rules in a
full first-order predicate logic with explicit linear time. This expressive rule
language supports formalization of a wide range of useful semantic consistency
requirements. As yet, we have not found a practically relevant example that
requires higher-order logic. Consistency rules can express intra- and inter-
document requirements regardless of the document model and the document
format used. Function symbols and predicate symbols used in rules are defined
in domain-specific languages. The basic language Prelude includes large part
of Haskell, such that only a few new symbols have to be defined for a concrete
project. Our Cardelli-style type system facilitates definition of complex doc-
ument types and aids formalization of syntactically correct consistency rules.
Parametric polymorphism, higher-order symbols, and subtyping have proven
useful features. The separation of rule formalization (document model indepen-
dent) from language definition (document model dependent) supports re-use of
rules and languages.

Our new tolerant semantics points out inconsistent document parts. We
precisely indicate when, where, and why inconsistencies occur. In order to
achieve scalability to a practically relevant problem size, we employ several
techniques to speed up consistency checking. At the time of rule definition,
we associate a set of affected documents to a rule. Thus, at a check-in only

227

228 Conclusions and Outlook

affected rules have to be re-evaluated. In addition, we rewrite rules, in order
to lower their static evaluation time complexity. During consistency checking,
we evaluate consistency rules only on modified documents if possible. Our
performance measurements give strong evidence that by the above methods we
achieve satisfactory performance.

Besides pinpointing inconsistencies, this thesis introduces new techniques
for generating document repairs that can resolve inconsistencies. In contrast
to many other approaches, we concentrate on generating a few useful repairs
from which authors can choose. Exponential computational complexity of re-
pair enumeration motivates our new two-step approach: During consistency
checking, our system generates for each rule an S-DAG; on author demand
our system derives a single repair collection from all S-DAGs. Annotations
from the rule designer make domain knowledge available — a fundamental
requirement for flexible inconsistency handling and useful domain-specific re-
pairs. S-DAGs are optimized for efficient generation. Quantifier edges carry
concrete repair actions. A major contribution of our S-DAG approach is an
effective reduction strategy that eliminates expensive actions and actions that
are probably not useful. From S-DAGs, authors can choose actions for individ-
ual rules interactively. The impact of an action towards consistency of other
rules remains, however, unclear. Therefore, we derive a single repair collection
from all S-DAGs. The collection contains alternative repair sets; within each
set, all repairs are necessary to resolve all inconsistencies for all rules. By con-
struction, each repair set contains compatible repairs only; the repair sets are
mutually independent alternatives. The repair collection can be sorted w.r.t.
user-defined preference metrics; only the best repair sets are presented to au-
thors. Preference metrics also provide a good means for partial inconsistency
resolution, which resolves the most troubling inconsistencies only and leaves
other inconsistencies for later resolution.

In a case study, we apply our consistency maintenance techniques to a chal-
lenging research topic in software engineering. Inconsistencies are major ob-
stacles in software specifications for large systems. The case study proves that
our tolerant approach to consistency management is a pragmatic way to handle
inconsistencies in industrial software specifications. Our case study also shows
that our techniques provide a useful aid and scale to a complex scenario. Since
the effort for formalization is tunable to the specific application and our pro-
totype shows satisfactory performance, we are confident that our contributions
scale to an industrial setting.

Although our prototype works well in practice, it is fairly complex to use.
The main reason is lack of graphical tools, which would provide comfort for
rule designers, language designers, and authors. Currently, rules and languages
are formalized in an XML syntax. S-DAGs and repairs are generated as XML
structures, too. We plan to develop an integrated consistency maintenance
tool, which supports (1) to define languages and rules, and (2) to interactively
choose repairs from S-DAGs and repair collections, respectively. This might be
no research issue. End user comfort is, however, crucial for a wide application
of formal consistency management. Also, our prototype implementation lacks

15.2 Future Research 229

XML Schema support. Currently, due to limitations of HaXml, we can support
document type generation from DTDs only. This causes some programming
effort to convert the Haskell types generated by HaXml to Haskell types gener-
ated by our prototype system. Therefore, we plan to extend HaXml by support
for an XML Schema subset.

15.2 Future Research

It might appear that this thesis opens more questions than it answers. In fact,
we see our work as a good starting point for future research.

As already pointed out, formalization of consistency rules is not trivial.
Although we use full first-order predicate logic, we could employ approaches
from Bry and Torge [Tor98, BT99], in order to investigate whether the rules
are satisfiable. Also, some limitations in our type system could be relieved:
For example, we could support partial application of function symbols unless
quantifiers iterate over functions. In particular, this would support a function
composition operator, which proves its usefulness in functional programming.
Though efficiency of repair derivation is not of vital importance, we could
incorporate other (more efficient) hitting set algorithms for repair derivation.
For example, efficient genetic algorithms [LY02] do not find all minimal hitting
sets. It would be interesting to see how this property impacts the usefulness of
the generated repairs.

Our used logic supports linear time only. We plan to extend our approach to
branching repositories, which means to quantify over individual branches, e.g.,
by a branching time logic like CTL(*) [Eme90]. This appears a straightforward
extension from the theoretical point of view. It is, however, still unclear which
applications require branching support. Another interesting research direction
is support for distributed repositories in conjunction with partial consistency
checking. Consider a distributed repository: How does a check-in to one re-
pository part impact consistency in other repository parts? Which parts of the
distributed repository have to be re-checked? How do network delays influence
consistency checking time?

So far, we have not made any assumptions about the document format.
Clearly, a restriction to XML would improve our incremental consistency check-
ing techniques, due to formal update descriptions that are related to the actual
document format. Currently, incremental consistency checking is quite coarse
grained, because DMS indicate only that a document has been changed; they
are not aware of the document structure. Therefore, we evaluate XML revision
control approaches [CRGW96, MACM01, CAM02, WL02, WDC03] and try to
implement a suitable approach into a revision control system [Rön04]. Also,
restricting documents to XML would facilitate generation of document patches
from repairs. Our system could apply such patches to documents automati-
cally and send these suggestions to authors. Moreover, the system could check
whether a repair (patch) is compatible to the document structure.

230 Conclusions and Outlook

Sometimes, repairs appear “long-winded” to authors, which is due to com-
plex consistency rules. We are confident that extending our rule definition
language by non-standard logical connectives can improve the quality of re-
pairs. We consider connectives like “there exists exactly one . . . ” or “. . . is
unique.” Also, a let construct might be useful for “re-using” terms and defin-
ing local functions within rules. So far, our approach only uses S-DAGs for
deriving repairs. Annotating rules by hints and costs as well as defining pref-
erence metrics is done in a rather ad-hoc manner, which tends to be complex
and time consuming. In the future, we plan to use data mining approaches
[AIS93, Chi03] that employ historical information about violated rules and the
usefulness of derived repairs. This will help to define better metrics for repair
ranking, to provide support for hint formalization, and to adapt our strate-
gies for S-DAG reduction and repair derivation. In addition, we want to point
out to rule designers those rules that have been violated frequently and might
require adaptations.

Natural-language constraints are hard to formalize, due to lack of a for-
mal semantics of natural language. By using information retrieval techniques
[WS99, MPG01, FGLM02, BHQW02, BQBW03], we could extract from natural-
language texts relevant metadata and model them by semantic nets. This would
support formalization of constraints like: “The summary of a chapter should
cover the chapter’s main content,” or “The entity relationship model is con-
sistent with its description.” The open architecture of our system supports
integration of such approaches.

15.3 Applications

Applications of this thesis are manifold: Currently, we evaluate our consistency
management approach at personell reviews in the Federal Armed Forces. At
sd&m, the analysis module approach is extended towards construction mod-
ules. We are about to apply consistency maintenance to construction modules,
which also calls for consistency requirements between analysis modules and
their corresponding construction modules. Currently, the model driven ar-
chitecture (MDA), a standard by the OMG, receives much attention in the
software engineering community [KWB03]. Although OCL is proposed to for-
malize constraints for MDA [WK03], we are confident that our approach can
help to manage consistency between the various models of MDA and other parts
of a software specification. Component-based approaches to software engineer-
ing [HC01, GTW03] as well as bottom-up chip design techniques [BL00] could
benefit from our tolerant consistency model as well. We also consider applica-
tions in the documentation of simulation experiments and hardware/software
codesign [Buc01]. In addition, we plan to integrate consistency management
as a means of quality control into long-term preservation approaches of digital
artifacts [BRSS03].

In order to apply formal consistency management, we propose the following
steps:

15.3 Applications 231

1. Identify the document kinds that are part of the development process.
What are their goals and scopes? Who should edit which kind of docu-
ment? In order to ease version management, some document kinds might
require splitting. Notice that in the first step we neglect document struc-
tures.

2. Explore informal consistency requirements within and between docu-
ments. Also, investigate the document structures.

3. Define document structures and documents types. Develop languages
and formalize consistency rules.

4. Localize consistency rules and optimize document structures.

We expect that steps (1) and (2) take long time; they give, however, precious
insights to the consistency requirements actually needed. Steps (3) and (4)
cover technical details and are, therefore, subject to experts.

In this thesis, we have developed a flexible formal consistency management
approach for informal applications. We are confident that our work is a sig-
nificant step towards consistency management in document engineering and
provides a good basis for interesting, challenging, and useful future research.
The ideas presented in this thesis are the basis for CDET (Consistent Document
Engineering Toolkit). For up-to-date information, please consult the project
WWW site

www2-data.informatik.unibw-muenchen.de/cde.html

Appendix A

Notation

Symbol Description Definition (page)
℘(s) Power set of the set s
B Boolean values {True,False}
N Natural numbers
X Variables 28
S Symbols 28
T Terms 28
F Formulae 28
Fat Atomic formulae 28
FH Formulae annotated by hints 102
H Hints 102
M Variable modes {Add,Chg,Del,KEEP} 137
Σ Signatures 31
V Values 60
X × V Bindings of variables to values 61
E Variable assignments 61
Einc Incremental variable assignments 80
EincDAG Incremental variable assignments 113

for S-DAG generation
A Σ-algebras 56
D Diagnoses 61
B× ℘(D) Consistency reports 61
K Variable kinds {new, old} 80
S Predicate suggestions 109
G S-DAGs 109
C Actions 109
R Repairs 134

Table A.1: Notation: syntax and semantics

232

233

Name Type and Description Definition (page)
. |=. . : A× E×F → B 49

Classic truth value semantics
R. J.K. : A×F × E→ B× ℘(D) 51

Basic report generation
δA(.) : A→ A 60

Algebra transition
V. J.K. : A× T × E→ V 64

Term evaluation
IR. J.K. : A×F × Einc → B× ℘(D) 81

Incremental report generation
IV. J.K. : A× T × Einc → ℘(V)× ℘(V)× ℘(V)× ℘(V) 86

Incremental sphere evaluation
D.. J.K. : A× (℘(X)× B)×FH × E→ G 110

Basic S-DAG generation
ID.. J.K. : A× (℘(X)× B)×FH × EincDAG → G 114

Incremental S-DAG generation
S .. J.K. : A× ℘(X)× (℘(℘(H))×Fat × B)× E→ ℘(℘(S)) 118

Hint evaluation
A (.) : G→ G 126

S-DAG augmentation
REP (.) [., .] : G× E× ℘(M)→ ℘(℘(R)) 137

Repair derivation

Table A.2: Notation: central algorithms

Appendix B

Implementation

In this chapter, we describe the implementation of our prototype consistency
maintenance tool. For implementation, we use the purely functional program-
ming language Haskell (see, e.g., [Dav92, Tho96, Bir98]). The full language re-
port is published as [PJ03]. Functional programming languages are well suited
for prototyping, because their programming style is close to denotational se-
mantics. Therefore, our algorithms are easy to implement. We have chosen
Haskell for the following reasons:

• By default, Haskell evaluates expressions lazily. Strictness annotations
provide fair control about the strictness of functions and data types, which
severely influences efficiency of our prototype.

• Language designers use Haskell for the definition of symbol semantics, in
order to guarantee referential transparency. Thus, we have no program-
ming language gap when executing user-defined functions and predicates.

• Recently, the Glasgow Haskell Compiler [GHC04] has been complemented
by support for dynamic loading [Sjö02, Ste04]. Thus, we can compile
symbol semantics on the fly and load the resulting object code while the
consistency checker is running.

• Haskell’s Foreign Function Interface [C+03] facilitates the use of other
pre-compiled libraries, e.g., natural-language parsers.

At first sight, Haskell’s lack of subtyping support appears a major drawback.
Recent approaches to add subtyping have shown that it is still unclear how
subtyping can be combined with other language extensions present in GHC
[Nor99, SPJ01, Maz03]. An implementation in the GHC appears too laborious
a task. In our setting, however, subtyping can be simulated, because our type
system is simpler than that of GHC.

Our prototype implementation differs from our theoretical framework in the
handling of partial functions. First, Haskell evaluates expressions lazily (our
value evaluation function V is strict); e.g., a function application f(e) is not
necessarily undefined if e is undefined. Second, in Haskell, we cannot “catch”
undefinedness; our prototype fails if an expression is not defined.

In the following sections, we describe key parts of our current prototype
implementation. In Sect. B.1, we show how a consistency check is performed
after a check-in to a DMS. In Sect. B.2, we describe a generic repository inter-
face to arbitrary DMSs. Sect. B.3 is dedicated to the simulation of subtyping.
In Sect. B.4, we outline how the semantics of function and predicate symbols
is defined in Haskell. Notice that details are subject to rapid change. For
up-to-date information, consult the project WWW site

www2-data.informatik.unibw-muenchen.de/cde.html.

234

B.1 Consistency Checking in Practice 235

check indocuments

project description

rule definitions

import

import

language definitions

Haskell modules:

Haskell module:

Haskell module:

language

subtype simulation

symbol calls

implementations

call

lock
author

Consistency Checker

dynamic load

consistency check

strict rules strict rule
violatedfulfilled

terminate
with error

terminate
successfully

read

type check

re−generate & compile
if necessary

repository

(managed by a DMS)

language
designer

rule
designer

project
manager

Figure B.1: Performing a consistency check in practice

B.1 Consistency Checking in Practice

Fig. B.1 shows how a consistency check is performed at a check-in to a consisten-
cy-aware DMS. First, the DMS completes some tests to ensure that the changes
submitted may be applied to the repository. If these tests succeed, the DMS
calls our consistency checker.1 During consistency checking, the repository
is locked, i.e., any check-ins are prohibited. If all strict rules are satisfied,
our consistency checker terminates successfully and the DMS acknowledges the
check-in. Otherwise, the check-in is rejected.

Our consistency checker reads the rules to check from the project description
supplied by the project manager. Rule definitions from the rule designer im-
port languages. The next step is to type-check the rules against the functions
and predicates they use. Typically, rules and languages used do not change be-
tween consistency checks; then we dynamically link auxiliary Haskell modules
to the running consistency checker (these modules have been compiled during
a previous consistency check). Now, we can use the functions and predicates
defined by the language designer, in order to check the repository for con-
sistency. If, however, a language has changed since the previous consistency
check, we re-compile this language with the help of GHC, which also type-
checks the implementations of functions and predicates. All this is performed
in the background.

1A simple system call is sufficient here. Recent revision control system support pre-commit
hook scripts, which are executed automatically prior to storing a check-in [CSFP04, Rou04].

236 Implementation

Dynamically loaded modules contain (1) implementations of functions, pred-
icates, and types defined by the language designer, (2) auxiliary Haskell func-
tions for simulating subtyping, and (3) two auxiliary Haskell functions actually
used by our consistency checker. The latter Haskell functions are necessary,
because a-priori our consistency checker cannot “know” the symbols defined in
languages. Therefore, it uses two Haskell functions, in order to calculate the
result value of a term or an atomic formula:
functions :: Repository -> SymbolName -> [Value] -> Value
predicates :: Repository -> SymbolName -> [Value] -> Bool

Each Haskell function above maps the name of a symbol to its actual imple-
mentation and applies it to the argument values given as third argument. The
first argument carries auxiliary information about the repository used. If a rule
has changed since the previous consistency check, we have to re-generate this
module.

B.2 Accessing Repositories

In this section, we describe a generic interface to the repository of an arbitrary
DMS. As already mentioned, we make only few assumptions about the under-
lying DMS or revision control system. We have developed a simple repository
interface, which must be instantiated for a specific DMS. The interface con-
sists of six Haskell functions (the Haskell data type Repository represents the
repository itself):

• repStates :: Repository -> [State] returns all states of a given re-
pository.

• repHead :: Repository -> State returns the current repository state.

• repDocs :: Repository -> State -> String -> [Doc] returns the
documents in the repository that are current at a given state and match
a regular expression. For example, repDocs repo 2 "*.xml" returns all
XML documents current at state 2 in the repository repo. Notice that
the returned documents only include the name and the last modification
state (up to the given state). The content of the document has to be
parsed by the function parseDoc described below.

• repDirs :: Repository -> State -> String -> [Dir] behaves like
repDocs, but returns directories instead. Similar to documents, direc-
tories include the name and the last modification state only.

• parseDoc :: Repository -> Doc -> (String -> a) -> Maybe a
accesses a given document in the repository. The third parameter is
a function that parses the document content and converts it to an appro-
priate Haskell data structure. For XML documents, such parser functions
can be generated [WR99]. If the given document does not exist in the
repository, parseDoc returns Nothing.

B.3 Haskell Meets Subtypes 237

• repChangesSince :: ClockTime -> Repository -> [String]
returns a list of document names and directory names that have been
modified since the previous evaluation, determined by the first parame-
ter.

Except for repChangesSince all interface functions above can be used by the
language designer. The interface function repChangesSince is needed for fil-
tering consistency rules.

For each supported DMS, the Haskell data type Repository includes an
extra alternative, which stores auxiliary information. Currently, we support
a simple directory structure, where each state is stored in an extra directory
(as done in some open source DMS [Rön03]) and the revision control system
DARCS [Rou04]:2
data Repository = DIR DirDMS -- simple directory structure

| DARCS DarcsDMS -- DARCS repository
Accessing a directory structure is simple; we only need the base directory:
newtype DirDMS = DirDMS {baseDir :: String}
For accessing a DARCS repository, we define a more complex Haskell data type
containing extra labels necessary for speeding up repository access.
data DarcsDMS = DarcsDMS {base :: String,

states :: FiniteMap State PatchInfo,
times :: FiniteMap PatchInfo State,
testDir :: String,
headState :: State,
final :: Maybe Patch}

Above, base denotes the repository base directory, states maps a repository
state to its associated patch, times is the reverse mapping of states, testDir
denotes the directory in which the consistency check takes place (for consis-
tency checking DARCS copies the current repository to a special directory),
headState carries the current repository state, and final denotes changes
made by the current check-in (which will be recorded, if our consistency checker
terminates successfully). In DARCS, a Patch formally describes a check-in
to the repository (where a document is modelled by a sequence of lines). A
PatchInfo provides auxiliary information about a Patch, e.g., its file name
stored on disk.

B.3 Haskell Meets Subtypes

Haskell lacks subtyping. Since functions and predicates are implemented in
Haskell, we have to simulate subtyping. We resolve subtype relationships by
the following measures:

• From each type declaration from the language designer, we generate a
Haskell data type declaration.

• We coerce Haskell types to their supertypes. For Haskell record types,
this means to drop fields.

2We are about to implement an interface to subversion [CSFP04].

238 Implementation

• We marshal values needed by our prototype to Haskell values to which
function and predicate implementations are applied. The resulting Haskell
values are marshalled back to values needed by our prototype.

For each type, declared in a language, our prototype generates a Haskell data
type declaration. For a record type, the generated Haskell data type contains
all record labels including those of all supertypes. For a variant type, the gener-
ated Haskell data type contains all alternatives including those of all subtypes.
In order to avoid name conflicts, Haskell named fields and Haskell data con-
structors are annotated by their type. For example, for the type declarations

Doc = {dId : String, dState : State}
DocSDM < {Doc} = {valid : Bool, status : Status, . . .}
Status = InProgress | QualAssurance | Finished

our system generates the following Haskell data type declarations:

data Doc = Doc {doc_dId :: String,
doc_dState :: State}

deriving (Eq, Ord)

data DocSDM = DocSDM {docSDM_dId :: String, -- inherited from Doc
docSDM_dState :: State, -- inherited from Doc
docSDM_valid :: Bool,
docSDM_status :: Status,
...}

deriving (Eq, Ord)

data Status = Status_InProgress | Status_QualAssurance
| Status_Finished

deriving (Eq, Ord)

Instances for the type classes Eq and Ord are necessary, because equality and
ordering are fully polymorphic relations in our setting.

We implement subtype coercion by a two parameter type class. The class
member coerce converts a type sub to its supertype super.

class Coerce sub super where
coerce :: sub -> super

Our system generates instances for the type class Coerce. The instances below
are generated for the type declaration of DocSDM. All labels except dId and
dState are dropped when coercing a Haskell value of type DocSDM to a Haskell
value of type Doc. Since the subtyping relation is reflexive, we also generate a
reflexive instance for the type DocSDM.

instance Coerce DocSDM Doc where
coerce rec = Doc {doc_dId = coerce (docSDM_dId rec),

doc_dState = coerce (docSDM_dState rec)}

instance Coerce DocSDM DocSDM where
coerce = id

B.3 Haskell Meets Subtypes 239

Instance definitions for parameterized data types are straightforward. We need
an extra instance for function types, because we support higher-order symbols.
The below instance definition may be read: If aSub is a subtype of a and
bSub is a subtype of b, then a -> bSub is a subtype of aSub -> b. Notice the
covariance of the function result type and the contravariance of the function
argument type. Since in Haskell the arrow type -> associates to the right we
need one instance for function types only.
instance (Coerce aSub a, Coerce bSub b) =>

Coerce (a -> bSub) (aSub -> b) where
coerce f x = coerce (f (coerce x))

Finally, we marshal values needed by our prototype to Haskell values and
vice versa. Our prototype generates instances for the following type class. The
class member toVal converts a Haskell value to a value needed by our proto-
type; fromVal performs the reverse conversion, i.e., toVal . fromVal == id.
class HasValue a where
toVal :: a -> Value -- convert Haskell value to internal value
fromVal :: Value -> a -- convert internal value to Haskell value

Our internal Value type includes atomic values, record values, variant values,
and function values:
data Value = VAt String -- atomic value (generic)

| VRec (FiniteMap String Value) -- record value mapping
-- labels to values

| VVar String [Value]
-- variant value (constructor name, argument values)

| VFun String -- function value (name)

For the type declaration of DocSDM, our system generates the following mar-
shalling instance:
instance HasValue DocSDM where

toVal c = VRec fm
where fm = listToFM (zip ["dId","dState","status","valid",...]

[toVal (docSDM_dId c),
toVal (docSDM_dState c),
toVal (docSDM_status c),
toVal (docSDM_valid c),
...])

fromVal (VRec fm) = DocSDM {docSDM_valid = conv "valid",
docSDM_status = conv "status",
docSDM_dId = conv "dId",
docSDM_dState = conv "dState",
...}

where conv = fromVal . fromJust . lookupFM fm

Our system uses the above coercion and marshalling instances when generat-
ing the Haskell module for symbol calls, which maps symbol names to their
implementation.

One might wonder that we have developed an own approach to subtyping,
instead of using approaches already present. Shields and Peyton-Jones propose
an alternative approach towards subtyping in Haskell [SPJ01], which lacks,
however, support for parameterized data types. Extensible records [JPJ99], as
implemented in the Haskell interpreter Hugs [Jon04], lack support for subtyp-
ing variant types. Also, extensible records did as yet not find their way into

240 Implementation

the GHC. Implementing Nordlander style subtyping in GHC appeared a com-
plex task because of non-trivial interaction of subtyping with other language
extensions present in GHC [Maz03].

B.4 Defining Symbol Semantics

In this section, we exemplify how the language designer defines symbol se-
mantics in Haskell. In our current implementation, this is a rather com-
plex matter, because it requires deep knowledge about the programming lan-
guage Haskell, the XML parser HaXml, and the way our prototype resolves
subtype relationships. Consider the implementation of the function symbol
repDocSDM : State→ DocSDM, which returns all sd&m documents in the repos-
itory. For the implementation, we need the following:

• Access to the repository, in order to get the names of all sd&m documents.
This is achieved by the repository access function repDocs.

• A parser function of type String -> DocSDM, which converts the docu-
ment content to a Haskell data structure of type DocSDM. This parser func-
tion serves as a parameter for the repository access function parseDoc.

For XML documents, HaXml can derive from a DTD corresponding Haskell
data type declarations and appropriate parser functions. HaXml lacks, how-
ever, subtyping support. Since DocSDM is no real document type (it has no
corresponding DTD) but only a supertype of all sd&m document types, HaXml
is not applicable in first place. In contrast, for concrete sd&m document types
(which have a corresponding DTD) we can derive appropriate Haskell types
and parser functions.

Assume we have already defined the other document access functions. Then
we can define repDocSDM by using subtype coercion as follows (the first argu-
ment repo stands for the repository):

repDocSDM repo t = specs ++ anafuns ++ busprocs ++ crosscuts ++
datamodels ++ datatypes ++ dialogs ++ glossaries ++
goalsscopes ++ readinginstrs ++ usecases

where specs = map coerce (repSp repo t)
anafuns = map coerce (repAnaFun repo t)
busprocs = map coerce (repBusProc repo t)
crosscuts = map coerce (repCrosscut repo t)
datamodels = map coerce (repDataMod repo t)
datatypes = map coerce (repDataTs repo t)
dialogs = map coerce (repDialog repo t)
glossaries = map coerce (repGlossary repo t)
goalsscopes = map coerce (repGoalsscope repo t)
readinginstrs = map coerce (repReadingInst repo t)
usecases = map coerce (repUsecase repo t)

B.4 Defining Symbol Semantics 241

Next, we discuss implementation of the function repSp : State → DocSpec,
which returns all specification documents in the repository. Implementations of
other repository access functions are similar. For the document type DocSpec,
HaXml generates (among others) the following Haskell data type declarations:3

data DocSpec = DocSpec Head Readers Kind Modules

data Head = Head Status ...

data Status = Status Status_Attrs String

data Status_Attrs = Status_Attrs {statusValid :: (Maybe Status_valid)}

data Status_valid = Status_valid_yes | Status_valid_no

newtype Readers = Readers String

data Kind = Kind { kindPhase :: Kind_phase }

data Kind_phase = Kind_phase_study | Kind_phase_coarse |
Kind_phase_fine

data Modules = Modules Essentials Misc Functional Data ...

data Essentials = Essentials [Doc_crosscut] ...

data Misc = Misc Doc_reading ...

data Functional = Functional [Doc_busproc] ...

data Data = Data (Maybe Doc_datamod) ...
...
newtype Doc_crosscut = Doc_crosscut String
newtype Doc_reading = Doc_reading String
newtype Doc_busproc = Doc_busproc String
newtype Doc_datamod = Doc_datamod String
...

In addition, for the data type DocSpec, HaXml derives an instance of the type
class XmlContent:
class XmlContent a where
readXml :: String -> Maybe a -- convert XML String to Haskell value
showXml :: a -> String -- convert Haskell value to XML String

We can use the class member readXml as a parser argument for the repository
access function parseDoc. The above Haskell data type is, however, different
from the Haskell data type generated from the declaration of DocSDM in the
language SDM:
data DocSpec = DocSpec {docSpec_dId :: String,

docSpec_dState :: State,
docSpec_doc_crosscut :: [String],
docSpec_doc_busproc :: [String],
docSpec_doc_datamod :: Maybe String,

3For brevity, data types are simplified; declarations for derived instances are omitted.

242 Implementation

docSpec_doc_reading :: String,
docSpec_specKind :: SpecKind,
docSpec_specReaders :: String,
docSpec_status :: Status,
docSpec_valid :: Bool, ...}

Therefore, the language designer must convert the type HaXml.DocSpec (gener-
ated by HaXml) to DocSpec (generated by our prototype). Thus, the function
repSp can be implemented as follows:

repSp repo t = map (\ d -> mkSpec d $ fromJust $ fromJust $
parseDoc d repo readXml) ds

where ds = repDocs "Spec*.xml" t repo
mkSpec :: Doc -> HaXml.DocSpec -> DocSpec
mkSpec d (HaXml.DocSpec spHead (Readers readers) spKind

(Modules (Essentials crosscuts ...)
(Misc (Doc_reading reading) ...)
(Functional busprocs ...)
(Data datamod ...)
...))

= DocSpec
{docSpec_dId = doc_dId d,
docSpec_dState = doc_dState d,
docSpec_valid = val,
docSpec_status = st,
docSpec_specReaders = readers,
docSpec_specKind = kind,
docSpec_doc_crosscut = map (\ (Doc_crosscut s) -> s)

crosscuts,
docSpec_doc_busproc = map (\ (Doc_busproc s) -> s)

busprocs,
docSpec_doc_datamod = fmap (\ (Doc_datamod s) -> s)

datamod,
docSpec_doc_reading = reading, ...}

where (val,st) = mkHead spHead
kind = case kindPhase spKind of

Kind_phase_study -> SpecKind_Study
Kind_phase_coarse -> SpecKind_Coarse
Kind_phase_fine -> SpecKind_Fine

mkHead :: Head -> (Bool,Status)
mkHead (Head (Status stAttrs st) ...)
= (val,st’)

where val = case statusValid stAttrs of
Just Status_valid_yes -> True
_ -> False

st’ = case st of
"QualAssurance" -> Status_QualAssurance
"Finished" -> Status_Finished
_ -> Status_InProgress

We see that defining document parsers is significantly alleviated through sub-
typing and the use of HaXml. Our current implementation suffers, however,

B.4 Defining Symbol Semantics 243

from lack of subtyping support in Haskell and HaXml. But, since language de-
signers define languages rarely and re-use them in multiple projects, we regard
this drawback a minor issue only.

Appendix C

Proofs

In this chapter, we prove the theorems 5.1, 5.2, 5.3, and 8.1. The definition of
the validity relation can be found in Fig. 5.3 (pg. 49). The definition of report
generation is given in Fig. 5.4 (pg. 51); for auxiliary functions see Fig. 5.10
(pg. 63). The definition of S-DAG generation is given in Fig. 8.12 (pg. 110);
for auxiliary functions see Fig. 8.21 (pg. 121).

Proof C.1 (Generated consistency reports are sound) Let φ be a for-
mula, A a first-order structure, η a variable assignment, and ds a set of diag-
noses. Then we have:

(RAJφKη = (False, ds)⇒ ds 6= ∅ ∧ d = (IC, , ,) for every d ∈ ds) ∧
(RAJφKη = (True, ds) ⇒ ds 6= ∅ ∧ d = (C, , ,) for every d ∈ ds)

Proof : The proof proceeds by induction on the structure of the formula φ as
follows (for simplicity, we neglect undefined values):

• Let φ ≡ p(e1, . . . , en):

RAJp(e1, . . . , en)Kη = (True, {(C, ∅, {p(e1, . . . , en)}, ∅)})
if (eA1 , . . . , e

A
n) ∈ pA

(False, {(IC, ∅, ∅, {p(e1, . . . , en)})})
otherwise

Thus, the theorem follows directly from R’s definition.
• Let φ ≡ ¬ψ:

RAJ¬ψKη = flip(RAJψKη)

The induction hypothesis implies the theorem for ψ. By applying lift to
the report for ψ we do not loose any diagnoses, because lift applies the
function flip to every diagnosis; in addition, the truth value of the report
is inverted. flip inverts a diagnosis. Thus, the theorem holds for φ.
• Let φ ≡ ψ1 ∧ ψ2:

RAJψ1 ∧ ψ2Kη = rψ1 ⊗ rψ2 if fst(rψ1) = fst(rψ2)
rψ1 else if fst(rψ1) = False
rψ2 else if fst(rψ2) = False

where rψ1 = RAJψ1Kη
rψ2 = RAJψ2Kη

If the reports rψ1 and rψ2 have different truth values, the theorem holds by
the induction hypothesis. If both reports are True, then their diagnoses
contain consistent diagnoses only. Applying ⊗ to the reports results in
a True report, only carrying consistent diagnoses, because ⊗ applies the
function join to every possible pair of diagnoses. join retains the consis-
tency flag. If both reports are False, proceed similarly. Thus, the theorem
holds for φ.

244

245

• Let φ ≡ ψ1 ∨ ψ2:

RAJψ1 ∨ ψ2Kη = rψ1 ⊕ rψ2 if fst(rψ1) = fst(rψ2)
rψ1 else if fst(rψ1) = True
rψ2 else if fst(rψ2) = True

where rψ1 = RAJψ1Kη
rψ2 = RAJψ2Kη

If the reports rψ1 and rψ2 have different truth values, the theorem holds
by the induction hypothesis. If both reports are True, then their diag-
noses contain consistent diagnoses only. Applying ⊕ to the reports results
in a True report, only carrying consistent diagnoses, because ⊕ applies
the function condense to the union of the diagnoses from both reports.
condense combines diagnoses that contain the same variable assignment
by join. If both reports are False, proceed similarly. Thus, the theorem
holds for φ.

• Let φ ≡ ψ1⇒ψ2:

RAJψ1⇒ψ2Kη = RAJ¬ψ1 ∨ ψ2Kη

The theorem holds by the induction hypothesis.

• Let φ ≡ ∀ x ∈ e • ψ:

RAJ∀ x ∈ e • ψKη = ⊕(F) if F 6= ∅
min(T) else if T 6= ∅
(True, {(C, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,RAJψK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
F = {push(x 7→ v, r) | (v, r) ∈ rs and fst(r) = False}
T = {r | (, r) ∈ rs and fst(r) = True}

By definition, all reports in F are False. Due to the induction hypothesis,
they contain non-empty sets of inconsistent diagnoses. If F is not empty,
then ⊕(F) results in a False report containing inconsistent diagnoses only.
⊕ folds ⊕ over a set. If F is empty but T is not, then min(T) results in a
True report carrying a non-empty set of consistent diagnoses. By defini-
tion, all reports in T are True. min(T) applies min to the conjunction of
all reports in T . min returns the greatest lower bounds w.r.t. the diagnosis
ordering v. The set returned by min is not empty, the consistency flags
are not modified. If both F and T are empty, then the theorem holds by
definition of R. Thus, the theorem holds for φ.

• Let φ ≡ ∃ x ∈ e • ψ:

RAJ∃ x ∈ e • ψKη = ⊕(T) if T 6= ∅
min(F) else if F 6= ∅
(False, {(IC, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,RAJψK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
T = {push(x 7→ v, r) | (v, r) ∈ rs and fst(r) = True}
F = {r | (, r) ∈ rs and fst(r) = False}

Proceed as above but with F and T reversed.

246 Proofs

Due to the above induction, the theorem holds for all formulae φ. 2

Proof C.2 (Reasons for inconsistencies are sound) Let φ be a formula,
A a first-order structure, η a variable assignment, ds a diagnoses set, and pst
and psf sets of atomic formulae. Then we have:

R′AJφKη = (, ds) ∧
(, η, pst, psf) ∈ ds

⇒ A |=η φ
′ for every φ′ in pst ∧

A |=η ¬φ′ for every φ′ in psf

The report generation function R′ deviates from R as follows: For an atomic
formula, we push the complete variable assignment into the resulting diagnosis.
For quantified formulae, we do not push bindings into the diagnoses. This is
necessary in order to ensure that η contains all free variables of the predicate
sets pst and psf .
Proof : The proof proceeds by induction on the structure of the formula φ as
follows (for simplicity, we neglect undefined values):

• Let φ ≡ p(e1, . . . , en):

R′AJp(e1, . . . , en)Kη = (True, {(C, η, {p(e1, . . . , en)}, ∅)})
if (eA1 , . . . , e

A
n) ∈ pA

(False, {(IC, η, ∅, {p(e1, . . . , en)})})
otherwise

If (eA1 , . . . , e
A
n) ∈ pA, then we have A |=η p(e1, . . . , en) due to the defi-

nition of |=. Otherwise, the definition of |= immediately implies A |=η

¬ p(e1, . . . , en). Thus, the theorem holds for atomic formulae.
• Let φ ≡ ¬ψ:

R′AJ¬ψKη = flip(R′AJψKη)

The induction hypothesis implies the theorem for ψ. Application of lift
to the report does not modify the predicate sets. Only the report’s truth
value and consistency flags are inverted. Thus, the theorem holds for φ.
• Let φ ≡ ψ1 ∧ ψ2:

R′AJψ1 ∧ ψ2Kη = rψ1 ⊗ rψ2 if fst(rψ1) = fst(rψ2)
rψ1 else if fst(rψ1) = False
rψ2 else if fst(rψ2) = False

where rψ1 = R′AJψ1Kη
rψ2 = R′AJψ2Kη

If the reports rψ1 and rψ2 have different truth values, the theorem holds
by the induction hypothesis. Consider the case where both reports have
the same truth value. The operator ⊗ applies the function join to every
possible pair of diagnoses. join computes the union of the corresponding
sets of atomic formulae, i.e., fulfilled (violated) atomic formulae of the
first diagnoses are joined with fulfilled (violated) atomic formulae of the
second diagnosis. condense does not modify the sets of atomic formulae.
Thus, the theorem holds for φ.

247

• Let φ ≡ ψ1 ∨ ψ2:

R′AJψ1 ∨ ψ2Kη = rψ1 ⊕ rψ2 if fst(rψ1) = fst(rψ2)
rψ1 else if fst(rψ1) = True
rψ2 else if fst(rψ2) = True

where rψ1 = R′AJψ1Kη
rψ2 = R′AJψ2Kη

If the reports rψ1 and rψ2 have different truth values, the theorem holds
by the induction hypothesis. Consider the case where both reports have
the same truth value. The operator ⊕ applies the function condense to
the union of the diagnoses of both reports, which does not modify the sets
of atomic formulae. Thus, the theorem holds for φ.

• Let φ ≡ ψ1⇒ψ2:

R′AJψ1⇒ψ2Kη = R′AJ¬ψ1 ∨ ψ2Kη

The theorem holds by the induction hypothesis.

• Let φ ≡ ∀ x ∈ e • ψ:

R′AJ∀ x ∈ e • ψKη = ⊕(F) if F 6= ∅
min(T) else if T 6= ∅
(True, {(C, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,R′AJψK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
F = {r | (, r) ∈ rs and fst(r) = False}
T = {r | (, r) ∈ rs and fst(r) = True}

For the reports in T and F , respectively, the theorem holds by the in-
duction hypothesis. Applying ⊕ to F does not change the sets of atomic
formulae in F ’s diagnoses, because ⊕ folds ⊕ over F . Applying min to
T employs the function min, which retains the sets of atomic formulae.
If both F and T are empty, then we have VAJeKη = []. Due to the in-
terpretation of the predicate symbol null (see Fig. 5.7, pg. 60), we have
[] ∈ nullA and, hence, A |=η null(e) (due to the definition of |=). Thus,
the theorem holds for φ.

• Let φ ≡ ∃ x ∈ e • ψ:

R′AJ∃ x ∈ e • ψKη = ⊕(T) if T 6= ∅
min(F) else if F 6= ∅
(False, {(IC, ∅, {null(e)}, ∅)}) otherwise

where rs = {(v,R′AJψK(η ∪ {x 7→ v})) | v ∈ VAJeKη}
T = {r | (, r) ∈ rs and fst(r) = True}
F = {r | (, r) ∈ rs and fst(r) = False}

Proceed as above but with F and T reversed.

Due to the above induction, the theorem holds for all formulae φ. 2

248 Proofs

Proof C.3 (Consistency reports indicate real inconsistencies) Let φ
be a formula, A a first-order structure, and η a variable assignment. Then we
have:

not A |=η φ ⇐⇒ ∃ ds ∈ ℘(D) • RAJφKη = (False, ds) ∧

Proof : We prove the following equivalence:

A |=η φ ⇐⇒ RAJφKη = (True,)

This implies Theorem 5.3. Again, the proof proceeds by straightforward in-
duction on the structure of the formula φ. For the above equivalence, we prove
two directions (for simplicity, we neglect undefined values):

(=⇒) A |=η φ =⇒ RAJφKη = (True,)
(⇐=) RAJφKη = (True,) =⇒ A |=η φ

• Let φ ≡ p(e1, . . . , en):

(=⇒)
A |=η p(e1, . . . , en)

⇒ (eA1 , . . . , e
A
n) ∈ pA Def. |=

⇒ RAJp(e1, . . . , en)Kη = (True,) Def. R

(⇐=)
RAJp(e1, . . . , en)Kη = (True,)

⇒ (eA1 , . . . , e
A
n) ∈ pA Def. R

⇒ A |=η p(e1, . . . , en) Def. |=

• Let φ ≡ ¬ψ:

(=⇒)
A |=η ¬ψ

⇒ not A |=η ψ Def. |=
⇒ RAJψKη = (False,) induction hypothesis
⇒ flip(RAJψKη) = (True,) Def. flip
⇒ RAJ¬ψKη = (True,) Def. R

(⇐=)
RAJ¬ψKη = (True,)

⇒ flip(RAJψKη) = (True,) Def. R
⇒ RAJψKη = (False,) Def. flip
⇒ not A |=η ψ induction hypothesis
⇒ A |=η ¬ψ Def. |=

249

• Let φ ≡ ψ1 ∧ ψ2:

(=⇒)
A |=η ψ1 ∧ ψ2

⇒ A |=η ψ1 and A |=η ψ2 Def. |=
⇒ RAJψ1Kη = (True,) and RAJψ2Kη = (True,) induction hypothesis
⇒ RAJψ1Kη ⊗RAJψ2Kη = (True,) Def. ⊗
⇒ RAJψ1 ∧ ψ2Kη = (True,) Def. R

(⇐=)
RAJψ1 ∧ ψ2Kη = (True,)

⇒ RAJψ1Kη ⊗RAJψ2Kη = (True,) Def. R
⇒ RAJψ1Kη = (True,) and RAJψ2Kη = (True,) Def. ⊗
⇒ A |=η ψ1 and A |=η ψ2 induction hypothesis
⇒ A |=η ψ1 ∧ ψ2 Def. |=

• Let φ ≡ ψ1 ∨ ψ2:

(=⇒)
A |=η ψ1 ∨ ψ2

⇒ A |=η ψ1 or A |=η ψ2 Def. |=
⇒ RAJψ1Kη = (True,) or RAJψ2Kη = (True,) induction hypothesis
case 1: both reports are True
⇒ RAJψ1Kη ⊕RAJψ2Kη = (True,) Def. ⊕
⇒ RAJψ1 ∨ ψ2Kη = (True,) Def. R
case 2: only one report is True
⇒ RAJψ1 ∨ ψ2Kη = (True,) Def. R

(⇐=)
RAJψ1 ∨ ψ2Kη = (True,)

case 1: both reports are True
⇒ A |=η ψ1 and A |=η ψ2 induction hypothesis
⇒ A |=η ψ1 ∨ ψ2 Def. |=
case 2: only one report is True
⇒ A |=η ψ1 or A |=η ψ2 induction hypothesis
⇒ A |=η ψ1 ∨ ψ2 Def. |=

The case that both reports are False cannot occur, due to the definition
of ⊕.

• Let φ ≡ ψ1⇒ψ2: holds trivially by the induction hypothesis.

250 Proofs

• Let φ ≡ ∀ x ∈ e • ψ:

(=⇒)
A |=η ∀ x ∈ e • ψ

⇒ A |=η∪{x 7→ v} ψ for all v ∈ VAJeKη Def. |=
⇒ RAJψK(η∪{x 7→ v}) = (True,) for all v ∈ VAJeKη induction hypothesis
case 1: VAJeKη 6= []

⇒ F = ∅ and T 6= ∅ and
r = (True,) for all r ∈ T Def. F, T in Def. R

⇒ min(T) = (True,) Def. min
⇒ RAJ∀ x ∈ e • ψKη = (True,) Def. R
case 2: VAJeKη = []
⇒ F = ∅ and T = ∅ Def. F, T in Def. R
⇒ RAJ∀ x ∈ e • ψKη = (True,) Def. R

(⇐=)
RAJ∀ x ∈ e • ψKη = (True,)

case 1: VAJeKη 6= []

⇒
F = ∅ and T 6= ∅ and
r = (True,) for all r ∈ T and
|T | = |VAJeKη|

Def. F, T,R

⇒ RAJψK(η∪{x 7→ v}) = (True,) for all v ∈ VAJeKη Def. T
⇒ A |=η∪{x 7→ v} ψ for all v ∈ VAJeKη induction hypothesis
⇒ A |=η ∀ x ∈ e • ψ Def. |=
case 2: VAJeKη = []
⇒ RAJψK(η∪{x 7→ v}) = (True,) for all v ∈ VAJeKη VAJeKη = []
⇒ A |=η∪{x 7→ v} ψ for all v ∈ VAJeKη induction hypothesis
⇒ A |=η ∀ x ∈ e • ψ Def. |=

• Let φ ≡ ∃ x ∈ e • ψ:

(=⇒)
A |=η ∃ x ∈ e • ψ

⇒ A |=η∪{x 7→ v} ψ for any v ∈ VAJeKη Def. |=
⇒ RAJψK(η∪{x 7→ v}) = (True,) for any v ∈ VAJeKη induction hypothesis
⇒ T 6= ∅ and r = (True,) for all r ∈ T Def. T in Def. R
⇒ ⊕(T) = (True,) Def. ⊕
⇒ RAJ∃ x ∈ e • ψKη = (True,) Def. R

(⇐=)
RAJ∃ x ∈ e • ψKη = (True,)

⇒ T 6= ∅ and r = (True,) for all r ∈ T Def. T in Def. R
⇒ RAJψK(η∪{x 7→ v}) = (True,) for any v ∈ VAJeKη Def. T in Def. R
⇒ A |=η∪{x 7→ v} ψ for any v ∈ VAJeKη induction hypothesis
⇒ A |=η ∃ x ∈ e • ψ Def. |=

Due to the above induction, the theorem holds for all formulae. 2

Proof C.4 (S-DAGs indicate real inconsistencies) Let φ be a consistency
rule and A a first-order structure. Then we have:

not A |=∅ φ ⇐⇒ D(,False)
A JφK∅ 6=©

251

Proof : We prove the following for variable assignments η and formulae φ that do
not appear in a negated context. Due to miniscoping, we can handle negation
as a special case. Then, the following equivalence implies the above theorem:

A |=η φ ⇐⇒ D(,False)
A JφKη =©

Due to miniscoping, only atomic formulae may appear in a negated context
and implications are removed. Thus, the following induction on the structure
of φ suffices.

• Let φ ≡ p(e1, . . . , en), where φ does not appear in a negated context:

(=⇒)
A |=η p(e1, . . . , en)

⇒ (eA1 , . . . , e
A
n) ∈ pA Def. |=

⇒ D(,False)
A Jp(e1, . . . , en)Kη =© Def. D, b = True 6= False = neg

(⇐=)
D(,False)
A Jp(e1, . . . , en)Kη =©

⇒ (eA1 , . . . , e
A
n) ∈ pA Def. D, b = True 6= False = neg

⇒ A |=η p(e1, . . . , en) Def. |=

• Let φ ≡ ¬ p(e1, . . . , en), where φ does not appear in a negated context:

(=⇒)
A |=η ¬ p(e1, . . . , en)

⇒ not A |=η p(e1, . . . , en) Def. |=
⇒ (eA1 , . . . , e

A
n) /∈ pA Def. |=

⇒ D(,True)
A Jp(e1, . . . , en)Kη =© Def. D, b = False 6= True = neg

⇒ D(,False)
A J¬ p(e1, . . . , en)Kη =© Def. D

(⇐=)
D(,False)
A J¬ p(e1, . . . , en)Kη =©

⇒ D(,True)
A Jp(e1, . . . , en)Kη =© Def. D

⇒ (eA1 , . . . , e
A
n) /∈ pA Def. D, b = False 6= True = neg

⇒ not A |=η p(e1, . . . , en) Def. |=
⇒ A |=η ¬ p(e1, . . . , en) Def. |=

• Let φ ≡ ψ1 ∧ ψ2:

(=⇒)
A |=η ψ1 ∧ ψ2

⇒ A |=η ψ1 and A |=η ψ2 Def. |=
⇒ D(,False)

A Jψ1Kη =© and D(,False)
A Jψ2Kη =© induction hypothesis

⇒ D(,False)
A Jψ1 ∧ ψ2Kη =© Def. R

(⇐=)
D(,False)
A Jψ1 ∧ ψ2Kη =©

⇒ D(,False)
A Jψ1Kη =© and D(,False)

A Jψ2Kη =© Def. D, reduce∧
⇒ A |=η ψ1 and A |=η ψ2 induction hypothesis
⇒ A |=η ψ1 ∧ ψ2 Def. |=

252 Proofs

• Let φ ≡ ψ1 ∨ ψ2:

(=⇒)
A |=η ψ1 ∨ ψ2

⇒ A |=η ψ1 or A |=η ψ2 Def. |=
⇒ D(,False)

A Jψ1Kη =© or D(,False)
A Jψ2Kη =© induction hypothesis

⇒ D(,False)
A Jψ1 ∨ ψ2Kη =© Def. D

(⇐=)
D(,False)
A Jψ1 ∨ ψ2Kη =©

⇒ D(,False)
A Jψ1Kη =© or D(,False)

A Jψ2Kη =© Def. D, reduce∨
⇒ A |=η ψ1 or A |=η ψ2 induction hypothesis
⇒ A |=η ψ1 ∨ ψ2 Def. |=

• Let φ ≡ ∀ x ∈ e • ψ:

(=⇒)
A |=η ∀ x ∈ e • ψ

⇒ A |=η∪{x 7→ v} ψ for all v ∈ VAJeKη Def. |=
⇒ D(,False)

A JψK(η∪{x 7→ v}) =© for all v ∈ VAJeKη induction hypothesis
⇒ D(,False)

A J∀ x ∈ e • ψKη =© Def. D, F = ∅

(⇐=)
D(,False)
A J∀ x ∈ e • ψKη =©

⇒ D(,False)
A JψK(η∪{x 7→ v}) =© for all v ∈ VAJeKη Def. D, F = ∅

⇒ A |=η∪{x 7→ v} ψ for all v ∈ VAJeKη induction hypothesis
⇒ A |=η ∀ x ∈ e • ψ Def. |=

• Let φ ≡ ∃ x ∈ e • ψ:

(=⇒)
A |=η ∃ x ∈ e • ψ

⇒ A |=η∪{x 7→ v} ψ for any v ∈ VAJeKη Def. |=
⇒ D(,False)

A JψK(η∪{x 7→ v}) =© for any v ∈ VAJeKη induction hypothesis
⇒ D(,False)

A J∃ x ∈ e • ψKη =© Def. D, VAJeKη 6= [],
|F | 6= |VAJeKη|

(⇐=)
D(,False)
A J∃ x ∈ e • ψKη =©

⇒ D(,False)
A JψK(η∪{x 7→ v}) =© for any v ∈ VAJeKη Def. D, VAJeKη 6= [],

|F | 6= |VAJeKη|
⇒ A |=η∪{x 7→ v} ψ for any v ∈ VAJeKη induction hypothesis
⇒ A |=η ∃ x ∈ e • ψ Def. |=

Due to the above induction, the theorem holds for all consistency rules.
2

List of Figures

1.1 Relationships between chapters 7

2.1 Chapter 2 in context . 9
2.2 Example repository for this thesis 10
2.3 Formal example rules . 11
2.4 Example consistency reports at state 2 12
2.5 Example consistency reports at state 3 13
2.6 Example consistency reports at state 4 13
2.7 Example consistency reports at state 5 14
2.8 S-DAG for rule φ1 at state 4 15
2.9 S-DAG for rule φ2 at state 4 15
2.10 Repairs generated for rules φ1 and φ2 at state 4 16
2.11 Formal example rules with hints 17

3.1 Chapter 3 in context . 21
3.2 Overview of a consistency-aware DMS 22

4.1 Chapter 4 in context . 24
4.2 Formal example rules . 25
4.3 Example types and symbols . 27
4.4 Abstract syntax of formulae F and terms T 28
4.5 Base signature . 31
4.6 Abstract syntax of types . 32
4.7 Well-typedness rules for terms and formulae 36
4.8 Subtype relation . 38
4.9 Combined type inference and type checking algorithm 40
4.10 Solving subtype constraints . 41

5.1 Chapter 5 in context . 45
5.2 Example consistency report for rule φ1 at state 4 47
5.3 Classic truth value semantics 49
5.4 A basic report generation algorithm 51
5.5 Example quantifier spheres . 54
5.6 Temporally evolving algebra . 58
5.7 Algebra transition δA . 60
5.8 Repository invariants . 61
5.9 Variable assignment E . 61
5.10 Auxiliary functions for report generation 63
5.11 Evaluating terms . 64

6.1 Chapter 6 in context . 66
6.2 Formal example rules . 67
6.3 Example consistency reports at state 2 68

253

254 LIST OF FIGURES

6.4 Example consistency reports at state 3 68
6.5 Pushing quantifiers into formulae 74
6.6 Incremental evaluation of rule φ′1 at state 2 and state 3 77
6.7 Incremental evaluation of rule φ′2 at state 2. 79
6.8 Incremental variable assignment Einc 80
6.9 An incremental report generation algorithm 81
6.10 Auxiliary functions for incremental rule evaluation 83
6.11 Incremental quantifier sphere evaluation 86

7.1 Chapter 7 in context . 90
7.2 Overview of a consistency maintaining DMS 95

8.1 Chapter 8 in context . 97
8.2 Example rule φ1 (miniscoped) with hints 98
8.3 S-DAG for rule φ1 at state 4 99
8.4 Augmented S-DAG for rule φ1 at state 4 100
8.5 Augmented S-DAG resulting from changing the kind for the

manual man1.xml towards technical M. 100
8.6 Abstract syntax of annotated formulae FH and hints H 102
8.7 Typing hints . 104
8.8 Complete S-DAG for rule φ1 . 105
8.9 Reducing the existential node for m at state 4 107
8.10 Reduced S-DAG for rule φ1 at state 4 108
8.11 Abstract syntax of S-DAGs G, predicate suggestions S, and re-

pair actions C . 109
8.12 A basic S-DAG generation algorithm 110
8.13 Variable assignments EincDAG for incremental S-DAG generation 113
8.14 An incremental S-DAG generation algorithm 114
8.15 Incremental S-DAG generation for rule φ1 at state 4 116
8.16 Example Hasse diagram . 117
8.17 Resulting S-DAG for the existential quantifier for m in rule φ1

at state 4 . 117
8.18 Evaluating hint collections . 118
8.19 Partial orders for S-DAGs: ¹, ¹c 119
8.20 Calculating costs for S-DAGs 120
8.21 Auxiliary functions for S-DAG generation 121
8.22 Augmented S-DAG for rule φ1 at state 4 123
8.23 Augmented S-DAG resulting from changing the kind of the man-

ual man1.xml to technical M. 124
8.24 An S-DAG augmentation algorithm 126
8.25 Auxiliary functions for S-DAG augmentation 127

9.1 Chapter 9 in context . 129
9.2 Repairing inconsistencies (overview) 130
9.3 Augmented S-DAGs for rule φ1 and φ2, respectively, at state 4 131
9.4 Repairs generated for the rules φ1 and φ2 132

LIST OF FIGURES 255

9.5 Abstract syntax of repairs R . 134
9.6 Deriving repair collections from S-DAGs 137
9.7 Auxiliary functions for deriving repair collections 139
9.8 HC-DAG for our example rules φ1 and φ2 145

10.1 Chapter 10 in context . 151
10.2 Relationships between analysis modules, document templates,

result types, specifications, documents, and results 152
10.3 Overview of analysis modules by sd&m 153

11.1 Chapter 11 in context . 167

12.1 Chapter 12 in context . 179
12.2 Business process BP [Plan classes] 182
12.3 Business process BP [Assign teacher to classes] 183
12.4 Business process BP [Register students] 184
12.5 Overview of use cases . 185
12.6 Interactivity diagram for dialog Dia [New course and classes] . 189
12.7 Interactivity diagram for dialog Dia [Assign student to course] 190
12.8 Data model . 191
12.9 Augmented S-DAG for Rule 3 at state 1 198
12.10Augmented S-DAG for Rule 4 at state 23 199
12.11Augmented S-DAG for Rule 19 at state 6 200
12.12Augmented S-DAG for Rule 21 at state 17 200
12.13Augmented S-DAG for Rule 30 at state 17 201
12.14Augmented S-DAG for Rule 41 at state 23 202
12.15Augmented S-DAG for Rule 48 at state 17 202
12.16Augmented S-DAG for Rule 64 at state 17 203
12.17Augmented S-DAG for Rule 70 at state 6 203
12.18Augmented S-DAG for Rule 73 at state 17 204
12.19Augmented S-DAG for Rule 74 at state 17 204
12.20Augmented S-DAG for Rule 80 at state 23 206
12.21Augmented S-DAG for Rule 82 at state 6 207
12.22Augmented S-DAG for Rule 84 at state 6 207
12.23Top-ranked repair set at state 6 208
12.24Top-ranked repair set at state 17 210
12.25Top-ranked repair set at state 23 212

B.1 Performing a consistency check in practice 235

List of Tables

5.1 Example repository up to state 4 46
5.2 Brute force consistency checking performance 65

6.1 Example repository up to state 3 67
6.2 Example symbol metadata . 69
6.3 Performance improvements by static analysis 75
6.4 Performance improvements of incremental evaluation over static

analysis . 84

8.1 Example repository up to state 4 99

9.1 Example ratings calculated by ratingΣ and ratingmax 146

10.1 Summary of consistency requirements for analysis modules . . 166

12.1 Contents of the ski school specification for different reader species180
12.2 Reader species listed in the reading instructions 180
12.3 Who should read which part of a specification? 181
12.4 Naming conventions in the cross-cutting concerns 181
12.5 Data types . 192
12.6 Responsibilities of the developers 193
12.7 Inconsistency summary . 198
12.8 Performance summary . 213

13.1 Cost of formalization . 216

A.1 Notation: syntax and semantics 232
A.2 Notation: central algorithms . 233

256

List of Definitions and Theorems

4.1 Signature . 31
5.1 Generated consistency reports are sound 52
5.2 Reasons for inconsistencies are sound 52
5.3 Consistency reports indicate real inconsistencies 53
5.4 Σ-algebra . 56
5.5 Value . 60
5.6 Consistency Report . 61
6.1 Weak compressed miniscope formula 72
8.1 S-DAGs indicate real inconsistencies 111

257

Bibliography

[ABC99] Y. André, F. Bossut, and A. Caron. On first-order constraint check-
ing in object-oriented databases. Technical Report 1999-03, Labora-
toire d’Informatique Fondamentale de Lille, 1999.

[ABH03] U. A. A. Acar, G. E. Blelloch, and R. Harper. Selective memoization.
In Proc. of the 30th ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages, pages 14–25, New Orleans, LA, 2003.
ACM Press.

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses,
D. Sannella, and A. Tarlecki. Casl: The common algebraic specifica-
tion language. Theoretical Computer Science, 286(2):153–196, 2002.

[AFL02] M. Arenas, W. Fan, and L. Libkin. On verifying consistency of XML
specifications. In Proc. of the 21st ACM Symp. on Principles of
Database Systems, pages 259–270, Madison, WI, 2002. ACM Press.

[AHV95] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal connectives
versus explicit timestamps in temporal query languages. In Proc.
of the VLDB Int. Workshop on Temporal Databases, pages 43–57,
Zurich, Switzerland, 1995. Springer-Verlag.

[AHV96] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal versus first-
order logic to query temporal databases. In ACM Symp. on Prin-
ciples of Database Systems, pages 49–57, Montreal, Canada, 1996.
ACM Press.

[AIS93] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association
rules between sets of items in large databases. In Proc. of the 1993
ACM SIGMOD Int. Conf. on Management of Data, pages 207–216,
Washington, D.C., 1993. ACM Press.

[AL03a] T. E. Ahlswede and R. Y. Lee. Cognitive issues in software require-
ments analysis. In Proc. of the 4th Int. Conf. on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, pages 113–119, Lübeck, Germany, 2003. ACIS.

[AL03b] M. Arenas and L. Libkin. An information-theoretic approach to nor-
mal forms for relational and XML data. In Proc. of the 22nd ACM
Symp. on Principles of Database Systems, pages 15–26, San Diego,
CA, 2003. ACM Press.

[Apt90] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 10, pages 493–
574. Elsevier Science Publishers, 1990.

258

BIBLIOGRAPHY 259

[Bab84] H. Babbage. Babbage’s Calculating Machines. Charles Babbage In-
stitute Reprint Series. MIT Press, 1984.

[Bal91] R. Balzer. Tolerating inconsistency. In Proc. of the 13th Int. Conf.
on Software Engineering, pages 158–165, Austin, TX, 1991. IEEE
Computer Society Press.

[Bal98] H. Balzert. Lehrbuch der Software-Technik: Software-Management,
Software-Qualitätssicherung, Unternehmensmodellierung, volume 2.
Spektrum Akademischer Verlag, Heidelberg, Berlin, 1998.

[Bas99] S. Basu. New results on quantifier elimination over real closed fields
and applications to constraint databases. J. ACM, 46(4):537–555,
1999.

[BBG+02] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated
update management for XML integrity constraints. In Proc. Work-
shop on Programming Languages for XML, Pittsburgh, PA, 2002.

[BCP99] V. Benzaken, S. Cerrito, and S. Praud. Static verification of dynam-
ical integrity constraints: a semantics based approach. Networking
and Information System Journal, 2(5/6):549–569, 1999.

[BD95] V. Benzaken and A. Doucet. Thémis: A database programming
language handling integrity constraints. VLDB Journal, 4(3):493–
518, 1995.

[Bec00] K. Beck. Extreme Programming Explained: Embrace Change. Addi-
son Wesley, Reading, MA, 2000.

[Ber04] B. Berenbach. The evaluation of large, complex UML analysis and
design models. In Proc. of the 26th Int. Conf. on Software Engi-
neering, pages 232–241, Edinburgh, Scotland, 2004. IEEE Computer
Society Press.

[BFW00] P. Buneman, W. Fan, and S. Weinstein. Path consistency rules in
semistructured databases. Journal of Computer and System Sciences,
61(2):146–193, 2000.

[BHQW02] K. Böhm, G. Heyer, U. Quasthoff, and C. Wolff. Topic Map gen-
eration using text mining. J. UCS, 8(6):623–633, 2002.

[Bir98] R. Bird. Introduction to Functional Programming using Haskell. Se-
ries in Computer Science. Prentice Hall, 2nd edition, 1998.

[BK00] F. Bacchus and F. Kabanza. Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116(1-2):123–
191, 2000.

260 BIBLIOGRAPHY

[BL00] R. A. Bergamaschi and W. R. Lee. Designing systems-on-chip using
cores. In Proc. of the 37th Conf. on Design automation, pages 420–
425. ACM Press, 2000.

[BM95] L. Baekgaard and L. Mark. Incremental computation of nested
relational query expressions. ACM Trans. on Database Systems,
20(2):111–148, 1995.

[Boo94] G. Booch. Objektorientierte Analyse und Design. Addison Wesley,
Reading, MA, 1994.

[BP00] L. Bertossi and J. Pinto. Specifying active rules for database main-
tenance. In Trans. and Database Dynamics, 8th Int. Workshop on
Foundations of Models and Languages for Data and Objects, volume
1773 of Lecture Notes in Computer Science, pages 112–129, Schloß
Dagstuhl, Germany, 2000. Springer-Verlag.

[BQBW03] C. Biemann, U. Quasthoff, K. Böhm, and C. Wolff. Automatic dis-
covery and aggregation of compound names for the use in knowledge
representations. J. UCS, 9(6):530–541, 2003.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA, 1999.

[BRSS03] U. Borghoff, P. Rödig, J. Scheffczyk, and L. Schmitz.
Langzeitarchivierung: Methoden zur Erhaltung digitaler Dokumente.
dpunkt.Verlag, Heidelberg, Germany, 2003.

[BS98] V. Benzaken and X. Schaefer. Static management of integrity in
object-oriented databases: Design and implementation. In Advances
in Database Technology - EDBT’98, 6th Int. Conf. on Extending
Database Technology, volume 1377 of Lecture Notes in Computer Sci-
ence, pages 311–325, Valencia, Spain, 1998. Springer-Verlag.

[BT99] F. Bry and S. Torge. Solving database satisfiability problems. In 11.
Workshop Grundlagen von Datenbanken, pages 122–126, Luisenthal,
Germany, 1999. Friedrich-Schiller-Universität Jena.

[Buc01] K. Buchenrieder, editor. Hardware / Software Codesign. ITpress,
2001.

[C+02] P. Cederqvist et al. Version Management with CVS, 2002. see
www.cvshome.org/docs/manual/.

[C+03] M. Chakravarty et al. The Haskell Foreign Function Interface 1.0
(Addendum to the Haskell 98 Report), 2003.
see www.cse.unsw.edu.au/̃ chak/haskell/ffi/.

[CAM02] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML
documents. In Proc. of the 18th Int. Conf. on Data Engineering,
pages 41–52, San Jose, CA, 2002. IEEE Computer Society Press.

BIBLIOGRAPHY 261

[Chi03] Boris Chidlovskii. A structural adviser for the XML document au-
thoring. In Proc. of the 2003 ACM Symp. on Document Engineering,
pages 203–211, Grenoble, France, 2003. ACM Press.

[CK91] J. M. Crawford and B. Kuipers. ALL: Formalizing access-limited rea-
soning. In J. F. Sowa, editor, Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge, pages 299–330. Mor-
gan Kaufmann Publishers Inc., San Mateo, CA, 1991.

[Coc01] A. Cockburn. Agile Software Development. Addison Wesley, Reading,
MA, 2001.

[CRGW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom.
Change detection in hierarchically structured information. In Proc. of
the 1996 ACM SIGMOD Int. Conf. on Management of Data, pages
493–504, Montreal, Canada, 1996. ACM Press.

[CSFP04] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version
Control with Subversion. O’Reilly and Associates, 2004.

[Dav92] A. J. T. Davie. An Introduction to Functional Programming Systems
using Haskell. Cambridge University Press, 1992.

[dC86] D. de Champeaux. Subproblem finder and instance checker, two
cooperating modules for theorem provers. J. ACM, 33(4):633–657,
1986.

[Dec97] H. Decker. One abductive logic programming procedure for two kinds
of updates. In Proc. of Workshop “DYNAMICS’97” at Int. Logic
Programming Symposium, Long Island, NY, 1997. Springer-Verlag.

[Den91] E. Denert. Software-Engineering. Springer-Verlag, Berlin, Germany,
1991.

[Den93] E. Denert. Dokumentenorientierte Software-Entwicklung. Informatik
Spektrum, 16(3):159–164, 1993.

[DENT02] D. Dui, W. Emmerich, C. Nentwich, and B. Thal. Consistency
checking of financial derivatives transactions. In Proc. of NetObject-
Days 2002, pages 172–189, Erfurt, Germany, 2002. Transit GmbH.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[DS95] G. Dong and J. Su. Space-bounded FOIES (extended abstract). In
Proc. of the 14th ACM SIGACT-SIGMOD-SIGART Symp. on Prin-
ciples of database systems, pages 139–150. ACM Press, 1995.

[DST94] G. Dong, J. Su, and R. Topor. First-order incremental evaluation of
Datalog queries. In Proc. of the 4th Int. Workshop on Database Pro-
gramming Languages — Object Models and Languages, pages 295–
308, New York, NY, 1994. Springer-Verlag.

262 BIBLIOGRAPHY

[EC01] S. Easterbrook and M. Chechik. A framework for multi-valued rea-
soning over inconsistent viewpoints. In 23rd Int. Conf. on Software
Engineering, pages 411–420, Toronto, Canada, 2001. IEEE Computer
Society Press.

[ECM99] ECMA Standardizing Information and Communication Systems. EC-
MAScript language specification. Standard ECMA-262, 1999. see
www.ecma.ch.

[EFKN94] S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nuseibeh. Co-
ordinating distributed ViewPoints: the anatomy of a consistency
check. Technical Report 333, School of Cognitive and Computing
Sciences, University of Sussex, UK, 1994.

[EJS95] W. Emmerich, J.-H. Jahnke, and W. Schäfer. Object oriented
specification and incremental evaluation of static semantic con-
straints. Technical Report 24, Universität Dortmund, Germany,
1995. ESPRIT-III Project GOODSTEP.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16,
pages 995–1072. Elsevier Science Publishers, 1990.

[Far01] W. M. Farmer. STMM: A set theory for mechanized mathematics.
Journal of Automated Reasoning, 26:269–289, 2001.

[FFLS99] M. F. Fernández, D. Florescu, A. Y. Levy, and D. Suciu. Verifying
integrity constraints on web sites. In Proc. of the 16th Int. Joint
Conf. on Artificial Intelligence, pages 614–619, Stockholm, Sweden,
1999. Morgan Kaufmann Publishers Inc.

[FGLM02] A. Fentechi, S. Gnesi, G. Lami, and A. Maccari. Application of
linguistic techniques for use case analysis. In 10th Anniversary IEEE
Joint Int. Conf. on Requirements Engineering, pages 157–164, Essen,
Germany, 2002. IEEE Computer Society Press.

[Fin00] Anthony Finkelstein. A foolish consistency: Technical challenges in
consistency management. In Proc. of 11th Int. Conf. on Database
and Expert Systems Applications, volume 1873 of Lecture Notes in
Computer Science, pages 1–5, London, UK, 2000. Springer-Verlag.

[FM02a] S. Flake and W. Müller. An OCL extension for real-time constraints.
In Object Modeling with the OCL, The Rationale behind the Object
Constraint Language, volume 2263 of Lecture Notes in Computer Sci-
ence, pages 150–171. Springer-Verlag, 2002.

[FM02b] S. Flake and W. Müller. Specification of real-time properties for UML
models. In Proc. 35th Annual Hawaii Int. Conf. on System Sciences,
volume 9, pages 277–287, Big Island, HI, 2002. IEEE Computer So-
ciety Press.

BIBLIOGRAPHY 263

[GHC04] GHC — The Glasgow Haskell Compiler, 2004. see
www.haskell.org/ghc.

[GHM93] J. C. Grundy, J. G. Hosking, and W. B. Mugridge. Inconsistency
management for multiple-view software development environments.
IEEE Trans. Software Engineering, 24(11):960–981, 1993.

[GHM98] J. C. Grundy, J. G. Hosking, and W. B. Mugridge. Coordinating
distributed software development projects with integrated process
modelling and enactment environments. In Proc. of 7th IEEE Work-
shops on Enabling Technologies: Infrastructure for Collaborative En-
terprises, pages 39–44, Stanford, CA, 1998. IEEE Computer Society
Press.

[GL95] M. Gertz and U. W. Lipeck. Temporal integrity constraints in tem-
poral databases. In Proc. of the VLDB Int. Workshop on Temporal
Databases, pages 77–92, Zurich, Switzerland, 1995. Springer-Verlag.

[GL97] M. Gertz and U. W. Lipeck. An extensible framework for repairing
constraint violations. In In Proc. 1st Working Conf. on Integrity and
Internal Control in Information Systems, pages 89–111. Chapman &
Hall Ltd., 1997.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views
incrementally. In Proc. of the 1993 ACM SIGMOD Int. Conf. on
Management of data, pages 157–166, Washington, D.C., 1993. ACM
Press.

[GOO94] The GOODSTEP Team. The GOODSTEP project: General object-
oriented database for software engineering processes. In Proc. of the
1st Asian Pacific Software Engineering Conf., pages 410–419, Tokio,
Japan, 1994. IEEE Computer Society Press.

[GP97] M. Goedicke and C. Piwetz. On modelling inconsistencies in soft-
ware development processes with graph based notations. In Proc. of
the ICSE’97 Workshop on Living with Inconsistencies, Boston, MA,
1997. ACM Press.

[GSUW94] A. Gupta, Y. Sagiv, J. Ullman, and J. Widom. Constraint check-
ing with partial information. In Proc. of the 13th ACM SIGACT-
SIGMOD-SIGART Symp. on Principles of Database Systems, pages
45–55, Minneapolis, MS, 1994. ACM Press.

[GSW89] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to
the algorithm in Reiter’s theory of diagnosis. Artificial Intelligence,
41(1):79–88, 1989.

[GTW03] J. Z. Gao, H.-S. J. Tsao, and Y. Wu. Testing and Quality Assurance
for Component-Based Software. Artech House Publishers, 2003.

264 BIBLIOGRAPHY

[Gur00] Y. Gurevich. Sequential abstract state machines capture sequential
algorithms. ACM Trans. on Computational Logic, 1(1):77–111, 2000.

[HC01] G. T. Heineman and W. T. Councill. Component Based Software En-
gineering: Putting the Pieces Together. Addison Wesley Professional,
2001.

[HD96] A. Henrich and D. Däberitz. Using a query language to state consis-
tency constraints for repositories. In Proc. of the 7th Int. Conf. on
Database and Expert Systems Applications, volume 1134 of Lecture
Notes in Computer Science, pages 59–68, Zurich, Switzerland, 1996.
Springer-Verlag.

[HD04] J. Henkel and A. Diwan. A tool for writing and debugging algebraic
specifications. In Proc. of the 26th Int. Conf. on Software Engi-
neering, pages 449–458, Edinburgh, Scotland, 2004. IEEE Computer
Society Press.

[Hen95] A. Henrich. P-OQL: an OQL-oriented query language for PCTE. In
Proc. of the 7th Conf. on Software Engineering Environments, pages
48–60, Noordwijkerhout, Netherlands, 1995. IEEE Computer Society
Press.

[Hen96] F. Henglein. Syntactic properties of polymorphic subtyping. Techni-
cal Report D-293, University of Copenhagen, 1996.

[HK99] M. Hitz and G. Kappel. UML@Work: Von der Analyse zur Real-
isierung. dpunkt.Verlag, Heidelberg, Germany, 1999.

[HPT98] H. Hosoya, B. C. Pierce, and D. N. Turner. Datatypes and subtyping.
manuscript, 1998. see www.cis.upenn.edu/̃ bcpierce/papers/.

[HR01] A. Henrich and G. Robbert. POQLMM: A query language for struc-
tured multimedia documents. In Proc. 1st Int. Workshop on Multi-
media Data and Document Engineering, pages 17–26, Lyon, France,
2001. Sun SITE Central Europe (CEUR).

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-
calculus, volume 1 of London Mathematical Society — Student Texts.
Cambridge University Press, 1986.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments
of first-order temporal logics. Annals of Pure and Applied Logic,
106(1-3):85–134, 2000.

[ISO99a] International Organization for Standardization ISO. ISO/IEC 9075-
1:1999: Information technology — Database languages — SQL —
Part 1: Framework (SQL/Framework). International Organization
for Standardization, Geneva, Switzerland, 1999.

BIBLIOGRAPHY 265

[ISO99b] International Organization for Standardization ISO. ISO/IEC 9075-
2:1999: Information technology — Database languages — SQL —
Part 2: Foundation (SQL/Foundation). International Organization
for Standardization, Geneva, Switzerland, 1999.

[ISO03] International Organization for Standardization ISO. ISO/IEC
13250:2003: Information technology — SGML applications — Topic
maps. International Organization for Standardization, Geneva,
Switzerland, 2003.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

[JCJO92] I. Jacobson, M. Christerson, P. Johnson, and G. Övergaard. Object-
Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

[Jon04] M. P. Jones. The Hugs 98 User’s Guide, 2004. see
www.haskell.org/hugs/.

[JPJ99] M. P. Jones and S. Peyton-Jones. Lightweight extensible records for
Haskell. In Proc. of the 1999 Haskell Workshop, pages 55–66, Paris,
France, 1999. Universiteit Utrecht.

[KG02] A. Kwong and M. Gertz. Structural constraints for XML. Technical
Report CSE-2002-24, University of California at Davis, 2002.

[KSR02] B. Kane, H. Su, and E. A. Rundensteiner. Consistently updating
XML documents using incremental constraint check queries. In Proc.
of the 4th Int. Workshop on Web information and data management,
pages 1–8, McLean, VA, 2002. ACM Press.

[KWB03] A. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture — Practice and Promis. Addison Wesley Pub
Co, 1st edition, 2003.

[Liu99] Y. A. Liu. Efficient computation via incremental computation. In
Pacific-Asia Conf. on Knowledge Discovery and Data Mining, vol-
ume 1574 of Lecture Notes in Computer Science, pages 194–203, Bei-
jing, China, 1999. Springer-Verlag.

[Liu00] Y. A. Liu. Efficiency by incrementalization: An introduction. Higher
Order Symbol. Comput., 13(4):289–313, 2000.

[LM92] P. Lincoln and J. C. Mitchell. Algorithmic aspects of type inference
with subtypes. In Conf. Record of the 19th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languages, pages
293–304, Albuquerque, NM, 1992. ACM Press.

[LY02] L. Li and J. Yunfei. Computing minimal hitting sets with genetic
algorithm. Algorithmica, 32(1):95–106, 2002.

266 BIBLIOGRAPHY

[Maa98] S. Maabout. Maintaining and restoring database consistency with
update rules. In Proc. of DYNAMICS: Transactions and change in
logic databases (Post-Conf. Workshop of JICSLP’98), pages 59–74,
Manchester, UK, 1998. University of Passau, Germany.

[MACM01] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-
centric management of versions in an XML warehouse. In Proc. of
the 27th Int. Conf. on Very Large Data Bases, pages 581–590, Roma,
Italy, 2001. Morgan Kaufmann Publishers Inc.

[Maz03] S. Mazanek. Higher-kinded types in the context of subtyp-
ing. Diploma thesis, Universität der Bundeswehr München, 2003.
UniBwM-ID 29/2003.

[Men87] E. Mendelson. Introduction to Mathematical Logic. Wadsworth &
Brooks /Cole Advanced Books & Software, 3rd edition, 1987.

[MH89] W. W. McCune and L. J. Henschen. Maintaining state constraints in
relational databases: a proof theoretic basis. J. ACM, 36(1):46–68,
1989.

[Min83] Minister of Defence. ZDv 90/1 — Dienstvorschriften der Bun-
deswehr. Department of Defence of the Federal Republic of Germany,
1983. English: Service Manual Rules for the Federal Armed Forces
Germany.

[Mit90] J. C. Mitchell. Type systems for programming languages. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B, chapter 8, pages 365–458. Elsevier Science Publishers, 1990.

[MPG01] A. Macedo, M. Pimentel, and J. Guerrero. Latent semantic linking
over homogeneous repositories. In Proc. of the 2001 ACM Symp.
on Document engineering, pages 144–151, Atlanta, GA, 2001. ACM
Press.

[MS96] C. Mart́ın and J. Sistac. An integrity constraint checking method
for temporal deductive databases. In 3rd Workshop on Temporal
Representation and Reasoning, pages 136–144, Key west, FL, 1996.
IEEE Computer Society Press.

[MS01] G. Moro and C. Sartori. Incremental maintenance of multi-source
views. In Proc. of the 12th Australasian conference on Database tech-
nologies, pages 13–20, Queensland, Australia, 2001. IEEE Computer
Society Press.

[MT99] E. Mayol and E. Teniente. A survey of current methods for integrity
constraint maintenance and view updating. In Proc. of Advances in
Conceptual Modeling: ER ’99 Workshops on Evolution and Change
in Data Management, Reverse Engineering in Information Systems,

BIBLIOGRAPHY 267

and the World Wide Web and Conceptual Modeling, volume 1727
of Lecture Notes in Computer Science, pages 62–73, Paris, France,
1999. Springer-Verlag.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[MW97] S. Marlow and P. Wadler. A practical subtyping system for Er-
lang. In Proc. of the 2nd ACM SIGPLAN Int. Conf. on Functional
Programming, pages 136–149, Amsterdam, Netherlands, 1997. ACM
Press.

[Nak01] H. Nakamura. Incremental computation of complex object queries.
In Proc. of the OOPSLA ’01 Conf. on Object Oriented Programming
Systems Languages and Applications, pages 156–165, Tampa Bay,
FL, 2001. ACM Press.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a
consistency checking and smart link generation service. ACM Trans.
Inter. Tech., 2(2):151–185, 2002.

[NEF01] C. Nentwich, W. Emmerich, and A. Finkelstein. Static consistency
checking for distributed specifications. In Proc. of the 16th Int. Conf.
on Automated Software Engineering, San Diego, CA, 2001. IEEE
Computer Society Press.

[NEF03] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency manage-
ment with repair actions. In Proc. of the 25th Int. Conf. on Software
Engineering, pages 455–464, Portland, OR, 2003. IEEE Computer
Society Press.

[NER00] B. Nuseibeh, S. Easterbrook, and A. Russo. Leveraging inconsistency
in software development. Computer, 33(4):24–29, 2000.

[NG92] K. Narayanaswamy and N. M. Goldman. “Lazy” consistency: A
basis for cooperative software development. In Proc. of the Conf.
on Computer Supported Cooperative Work, pages 257–264, Toronto,
Canada, 1992. ACM Press.

[Nor98] J. Nordlander. Pragmatic subtyping in polymorphic languages. In
Proc. of the 3rd ACM SIGPLAN Int. Conf. on Functional Program-
ming, pages 216–227, Baltimore, MD, 1998. ACM Press.

[Nor99] J. Nordlander. Reactive Objects and Functional Programming. PhD
thesis, Chalmers Tekniska, Högskola, 1999.

[Nor02] J. Nordlander. Polymorphic subtyping in O’Haskell. Science of Com-
puter Programming, 43(2-3):93–127, 2002.

268 BIBLIOGRAPHY

[OMG03] Object Management Group OMG. OMG Unified Modelling Lan-
guage specification, version 1.5. OMG document formal/03-03-01,
2003.

[Pac97] M. A. Pacheco e Silva. Dynamic integrity constraints definition and
enforcement in databases: a classification framework. In Proc. of
the IFIP TC-11 Working Group 11.5 1st Working Conf. on Integrity
and Internal Control in Information Systems, pages 65–87, Zurich,
Switzerland, 1997. Chapman Hall.

[Pat02] J. Patrick. SQL fundamentals. Prentice Hall PTR, 2nd edition, 2002.

[PJ03] S. L. Peyton-Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[Ple93] D. Plexousakis. Integrity constraint and rule maintenance in tempo-
ral deductive knowledge bases. In Proc. of the 19th Conf. on Very
Large Databases, pages 146–157, Dublin, Ireland, 1993. Morgan Kauf-
mann Publishers Inc.

[Ple95] D. Plexousakis. Compilation and simplification of temporal integrity
constraints. In Proc. of the 2nd Int. Workshop on Rules in Database
Systems, volume 985 of Lecture Notes in Computer Science, pages
260–276, Athens, Greece, 1995. Springer-Verlag.

[Ple96] D. Plexousakis. On the Efficient Maintenance of Temporal Integrity
in Knowledge Bases. PhD thesis, University of Toronto, 1996.

[PNEF03] C. Pérez Arroyo, C. Nentwich, W. Emmerich, and
A. Finkelstein. Scaling consistency checking, 2003. see
www.cs.ucl.ac.uk/staff/nentwich/publications/scalingchecking.html.

[Pot98] François Pottier. Type inference in the presence of subtyping: from
theory to practice. PhD thesis, Inria, France, 1998.

[Pot01] François Pottier. Simplifying subtyping constraints: A theory. In-
formation and Computation, 170(2):153–183, 2001.

[Pow03] S. Powers. Practical RDF. O’Reilly & Associates, 2003.

[Rat94] B. Ratcliff. Introducing Specification Using Z: A Practical Case Study
Approach. McGraw Hill Book Co Ltd, 1994.

[Rep84] T. W. Reps. Generating language-based environments. PhD thesis,
Massachusetts Institute of Technology, 1984.

[Rön03] S. Rönnau. Open-source Dokumentenmanagementsysteme. Studi-
enarbeit, Universität der Bundeswehr München, 2003. UniBwM-IS
31/2003.

BIBLIOGRAPHY 269

[Rön04] S. Rönnau. Versionsverwaltung von XML-Dokumenten am Beispiel
von OpenOffice.org. Diploma thesis, Universität der Bundeswehr
München, Munich, Germany, forthcoming 2004. English: Revision
Control of XML Documents.

[Rou04] D. Roundy. DARCS: David’s advanced revision control system, 2004.
see www.abridgegame.org/darcs/.

[RS01] M. Roggenbach and L. Schröder. Towards trustworthy specifications
I: consistency checks. In Recent Trends in Algebraic Development
Techniques, 15th Int. Workshop, volume 2267 of Lecture Notes in
Computer Science, pages 305–327, Genova, Italy, 2001. Springer-
Verlag.

[Sal88] G. Salton. Automatic indexing and abstracting. In Document re-
trieval systems, pages 42–80. Taylor Graham Publishing, 1988.

[SBRS03a] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. Con-
sistent document engineering. In Proc. of the 2003 ACM Symp. on
Document Engineering, pages 140–149, Grenoble, France, 2003. ACM
Press.

[SBRS03b] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. Effi-
cient (in-) consistency management for heterogeneous repositories.
In Proc. of the 4th Int. Conf. on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, pages
370–377, Lübeck, Germany, 2003. ACIS.

[SBRS04a] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. Manag-
ing inconsistent repositories via prioritized repair actions. In Proc.
of the 2004 ACM Symp. on Document Engineering, pages 137–146,
Milwaukee, WI, 2004. ACM Press.

[SBRS04b] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. S-DAGs:
Towards efficient document repair generation. In Proc. of the 2nd
Int. Conf. on Computing, Communications and Control Technolo-
gies, volume 2, pages 308–313, Austin, TX, 2004.

[SBRS04c] J. Scheffczyk, U. M. Borghoff, P. Rödig, and L. Schmitz. Towards
efficient consistency management for informal applications. Int. Jour-
nal of Computer & Information Science, 5(2):109–121, 2004.

[SdS99] R. R. Seljée and H. C. M. de Swart. Three types of redundancy in
integrity checking; an optimal solution. Data & Knowledge Engineer-
ing, 30(2):135–151, 1999.

[Sjö02] M. Sjögren. Dynamic loading and web servers in Haskell. see
www.mdstud.chalmers.se/̃ md9ms/hws-wp/, 2002.

270 BIBLIOGRAPHY

[SK02] J. Siedersleben and W. Krug. Bausteine der Spezifikation. In
J. Siedersleben, editor, Softwaretechnik. Hanser, 2nd edition, 2002.

[Smi91] G. S. Smith. Polymorphic Type Inference for Languages with Over-
loading and Subtyping. PhD thesis, Cornell University, 1991.

[Smi94] G. S. Smith. Principal type schemes for functional programs with
overloading and subtyping. Science of Computer Programming, 23(2-
3):197–226, 1994.

[Spi89] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall,
1989. see spivey.oriel.ox.ac.uk/̃ mike/zrm/.

[SPJ01] M. Shields and S. L. Peyton-Jones. Object-oriented style overloading
for Haskell. Electronic Notes in Theoretical Computer Science, 59(1),
2001.

[SSBS04] J. Scheffczyk, C. Stutz, U. M. Borghoff, and J. Siedersleben. Formale
Konsistenzsicherung in informellen Software-Spezifikationen. Infor-
matik Forschung und Entwicklung, 19(1):17–29, 2004.

[SSKK02] C. Stutz, J. Siedersleben, D. Kretschmer, and W. Krug. Analysis
beyond UML. In 10th Anniversary IEEE Joint Int. Conf. on Re-
quirements Engineering, pages 215–218, Essen, Germany, 2002. IEEE
Computer Society Press.

[Ste04] D. B. Stewart. Dynamically loaded Haskell plugins. see
www.cse.unsw.edu.au/̃ dons/hs-plugins/, 2004.

[SWJF96] K. Shafer, S. Weibel, E. Jul, and J. Fausey. Introduc-
tion to Persistent Uniform Resource Locators, 1996. see
purl.oclc.org/OCLC/PURL/INET96.

[SZ01] G. Spanoudakis and A. Zisman. Inconsistency management in soft-
ware engineering: Survey and open research issues. In S.K. Chang,
editor, Handbook of Software Engineering and Knowledge Engineer-
ing, volume I. World Scientific Publishing Co., 2001.

[Tho96] S. Thompson. Haskell: The Craft of Functional Programming. Ad-
dison Wesley, 1996.

[TO95] E. Teniente and A. Olivé. Updating knowledge bases while maintain-
ing their consistency. VLDB Journal, 4(2):193–241, 1995.

[Tor98] S. Torge. Überprüfung der Erfüllbarkeit im Endlichen: Ein Verfahren
und seine Anwendung. PhD thesis, Ludwig-Maximilians-Universität
München, 1998.

[Toz01] A. Tozawa. Towards static type checking for XSLT. In Proc. of the
2001 ACM Symp. on Document Engineering, pages 18–27, Atlanta,
GA, 2001. ACM Press.

BIBLIOGRAPHY 271

[VC99] A. I. Vermesan and F. Coenen, editors. Validation and Verification of
Knowledge Based Systems - Theory, Tools and Practice, Papers from
EUROVAV ’99, 5th European Symp. on Validation and Verification
of Knowledge Based Systems, Oslo, Norway, 1999. Kluwer Academic
Publishers.

[W3C99a] World Wide Web Consortium W3C. RDF primer. W3C Recom-
mendation, 1999. see www.w3.org/TR/REC-rdf-syntax/.

[W3C99b] World Wide Web Consortium W3C. XML path language (XPath)
version 1.0. W3C Recommendation, 1999. see www.w3.org/TR/xpath.

[W3C01] World Wide Web Consortium W3C. XML Schema part 0: Primer.
W3C Recommendation, 2001. see www.w3.org/TR/xmlschema-0/.

[W3C03] World Wide Web Consortium W3C. XML path language (XPath)
2.0. W3C Working Draft, 2003. see www.w3.org/TR/xpath20/.

[W3C04] World Wide Web Consortium W3C. Extensible Markup
Language (XML) 1.1. W3C Recommendation, 2004. see
www.w3.org/TR/xml11.

[Wan60] Hao Wang. Toward mechanical mathematics. IBM Journal of Re-
search and Development, 4(1):2–22, 1960.

[WDC03] Y. Wang, D. J. DeWitt, and J. Cai. X-Diff: An effective change
detection algorithm for XML-documents. In 19th Int. Conf. on Data
Engineering, pages 519–530, Bangalore, India, 2003. IEEE Computer
Society Press.

[WDSY91] O. Wolfson, H. M. Dewan, S. J. Stolfo, and Y. Yemini. Incremental
evaluation of rules and its relationship to parallelism. In Proc. of
the 1991 ACM SIGMOD Int. Conf. on Management of Data, pages
78–87, Denver, CO, 1991. ACM Press.

[Wir90] M. Wirsing. Algebraic specifications. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 13,
pages 675–788. Elsevier Science Publishers, 1990.

[WK98] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison Wesley Pub Co, 1998.

[WK03] J. Warmer and A. Kleppe. The Object Constraint Language: Getting
Your Models Ready for MDA. Addison Wesley Pub Co, 2nd edition,
2003.

[WL02] R. K. Wong and N. Lam. Managing and querying multi-version
XML data with update logging. In Proc. of the 2002 ACM Symp. on
Document Engineering, pages 74–81. ACM Press, 2002.

272 BIBLIOGRAPHY

[WM02] R. Widhalm and T. Mück. Topic Maps: Semantische Suche im In-
ternet. Springer-Verlag, Berlin, Germany, 2002.

[WR99] M. Wallace and C. Runciman. Haskell and XML: Generic combina-
tors or type-based translation? In Proc. of the 4th ACM SIGPLAN
Int. Conf. on Functional Programming, pages 148–159, Paris, France,
1999. ACM Press.

[WS99] R. Wilkinson and A. F. Smeaton. Automatic link generation. ACM
Comput. Surv., 31(4es):27, 1999.

[YS88] D. M. Yellin and R. E. Strom. INC: a language for incremental
computations. In Proc. of the SIGPLAN’88 Conf. on Programming
Language Design and Implementation, pages 115–124, Atlanta, GA,
1988. ACM Press.

[YS91] D. M. Yellin and R. E. Strom. INC: a language for incremental com-
putations. ACM Trans. on Programming Languages and Systems,
13(2):211–236, 1991.

[ZG02] P. Ziemann and M. Gogolla. An extension of OCL with temporal
logic. In Critical Systems Development with UML — Proc. of the
UML’02 Workshop, pages 53–62, Dresden, Germany, 2002. Technis-
che Universität München.

[ZK03] A. Zisman and A. Kozlenkov. Managing inconsistencies in UML
specifications. In Proc. of the 4th Int. Conf. on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Comput-
ing, pages 128–138, Lübeck, Germany, 2003. ACIS.

