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CHAPTER
1

INTRODUCTION

Thermo-electrical investigations of electrical conductors (wires, cables, fuses) have
been described in a great variety of applications and gained increasing attention by a
number of research works [1,2,3,4]. The mgor part of these works was devoted to the
analysis of heat transfer in electrical conductors for high voltage power distribution sys-
tems. However, today, power supply in mobile systems like aircrafts, ships or cars have
to be considered due to weight restrictions. The main difference between power lines
and wires for mobile applications is the length, which does not exceeds 8 mi.e. in the
cars. This causes higher current density that |eads higher voltage drop.

Today, in the modern mobile vehicles electrical and electronic equipment is of great
importance. Electronics is used for the applications like electromechanical drives (ser-
vomotors, pumps) as well as for air conditioners and safety equipment. In the future
even safety — critical systems in the cars might be replaced by so-caled “x-by-wire”
technology [5,6], where steering, braking, shifting and throttle is performed by electron
ics. The electronics replaces the mechanical systems due to the following reasons:

- toincrease passenger comfort,

- to reduce the weight of a vehicle while increasing the inner space,
- toincrease safety,

- toreduce fuel consumption and costs

Since, the power consumers are distributed over the whole vehicle, the power must be
delivered to the consumers by electrical wires. With increasing number of consumers,
the amount of wires and the wire size rises aso. Since the space in mobile systems is
limited and weight is aways being reduced, wire conductor sizes must be kept as small
as possible. Therefore, it is necessary to investigate heat transfer in electrical conductors
in order to be able to calculate optimal conductor cross-section for long lasting load.
This information can be obtained from the current-temperature (= steady state) charac-
teristic of each wire.

It is also important to consider current-time (= transient-state) characteristic of wires
versus fuses. This information is important for the fuse design, whose current-time
characteristic should match wire current-time characteristic in order to protect the wire
reliable against overload and short-circuit currents.

The main development in the field of heat transfer computation in electric power cables
was made by the work of Neher and McGrath [6] published in 1957. Later, there were a
number of publications published as |EEE transactions. In 1997 based on |EEE transac-
tions George J. Anders published the first book [7], which is the only devoted solely to
the fundamental theory and practice of computing the maximum current a power cable
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can carry without overheating. Almost all references to scientific articles and books of
heat transfer analysis in electric cables are summarized in this book.

However, literature [7] is only devoted to the heat transfer computations for transmis-
sion, distribution, and industrial applications. The problem dealing with mobile systems,
is not covered by the book. The main difference between the electric cables used in in
dustrial applications and nobile systems is that the latter have generaly shorter lengths
and much higher operating temperature ranges.

The first attempt to develop a theory of heat transfer calculation in electric conductors
for mobile applications was made by T. Schulz [8]. In his dissertation, the steady-state
heat transfer equations of electric conductors have been solved analytically with some
simplifications. This is sufficient to elaborate tendency. For more precise calculations,
however, numerical methods should be applied.

In addition to this, there is also a need for the mathematical relationships of thermo-
electrical characteristics for computer aided design program. The present available
computer simulation programs for heat transfer like CableCad® or Ansys® [9,10] are too
complex, use pure numerical methods requiring specific knowledge, and are not special-
ized for heat transfer calculation in eectric cables and fuses. On the contrary, the im-
plementation of a simple mathematical model into a computer program, would allow the
development of a very time-efficient cable design todl.

All this shows, that there is a requirement to investigate the heat transfer in electrical
conductors and to develop efficient algorithms for the calculation of the thermo-
electrical characteristics. In this study, efficient algorithms means, that al characteris-
tics of conductors should be described by simple mathematical functions. One of the
possible ways to solve this problem is to combine analytica and numerical analysis
methods.

1.1 Objectivesof current study

The aim of the present research is to analyse heat transfer of one-dimensional electric
conductor models and to develop a simplified calculation methodology of thermo-
electrical characteristics for computer aided electric cable design algorithms. In order to
achieve this goal the following problems must be solved:
To create one-dimensional mathematical model of electric conductors for calcu-
lation of thermo-electrical characteristics of electrical cables and fuses,
To analyze deady-state heat transfer by solving partial differential equations
anayticaly;
To calculate steady / transient — state characteristics using a one-dimensional
numerical model;
To verify the obtained numerical model by experimental data;
To develop a simplified calculation methodology of electric conductor charac-
teristics by fitting earlier obtained numerical results with polynomial functions.
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1.2 Methodology of current research

This research work presents a one-dimensional (1-D) analytical and numerical model to
simulate a heat transfer in flat cables, cylindrical wires and electric fuses separately.

Heat dissipation due to free Heat dissipation due to free
convection and radiation to air convection and radiation to air
Copper wire
_\\\ ///_’_/ PV Cinsulation
a) b)
Heat dissipation due to free
convection and radiation to air

Heat difusion due to heat Heat difusion due to heat

conduction to the wire conduction to the wire

————— —_—

b

Heat dissipation due to free
convection and radiation to air

9

Fig. 1.1 Heat dissipation by free convection in electric conductor models:
a) - flat cable, b) - round wire, c) - fuse

In this study both approaches i.e. analytical and numerical, are used for the analysis of
heat transfer.

Analytical solutions were used to obtain steady-state temperatures for linearised con
ductor models. The linearisation was done although nonlinear heat transfer models
would be appreciable. The experimental data have shown that linearised model have
quite a good agreement with experimental data.

Numerical model was applied for transient-state temperature cal culations considering a
nontlinear heat transfer model.

The heat transfer in electrical systems (cables and fuses) (Figure 1.1) is obvioudly of
two - or three -dimensional nature (2-D or 3-D). The heat transfer occurs due to the heat
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diffusion from fuse to the wire or to the fuse holder; also the heat is dissipated from the
surfaces of conductors to the ambient due to temperature differences. However, due to
the complexity of the numerical model and large time scale of heat transfer processesin
the cables it is not computationally efficient to use three-dimensional models to smu-
late heat transfer in electrical systems. The CPU time for ssimulating the same physica
system using two- or three -dimensional models is significantly longer than required by
a simplified 1-D modd. In aeating a mathemetical model of flat cables (Figure 1.19)
we regard heat transfer only iny — direction (see three-dimensional drawing) while side
effects are negligible. Boundary conditions are symmetrical and convective-radiative.
Here, convection is assumed unforced armd laminar. Fat cable has insula
tion/conductor/insulation layer sequence, where the insulation is PolyVinylChloride
(PVC) and the conductor is copper. Insulation layer is described by heat conductivity,
specific heat capacity and heat dissipation coefficient. Conductor layer is heated with
uniform volumetric heat, generated by electrical current.

In the case of cylindrical wires (Figure 1.1b), the 3-D problem is reduced to 1-D regard-
ing only radial heat transfer and as infinite length of the wire. The same material proper-
ties and boundary conditions apply as for flat cable.

The fuse moddl (1.1c) canalso be considered as a cylindrical conductor, only with finite
length and without insulation. The model is also reduced to a 1-D model neglecting ra-
did heat transfer, because the fuse element has very high heat conductivity. Since the
fuse element has finite length, axia heat transfer is modelled with prescribed tempera-
tures on the boundaries T(0,t) and T(L,t). These temperatures are known from wire tem-
peratures determined earlier.

Due to the non-linear behaviour of material properties with respect to the temperature, a
numerical algorithm had to be applied. A finite volume (FV) method was used to -
proximate partial derivatives of heat transfer equation The obtained system of non
linear algebraic equations was solved by iterative Newton-Raphson method in order to
find nodal unknowns of temperatures in the conductors.

The fina step of this work was the evaluation of numerical simulation results by the
polynomial fitting procedure using the least square (LS) algorithm. A number of
mathematical methods have been proposed [10,11,12,13,14] for the analysis of heat
transfer in electrical conductors. Usually these methods are pure-analytical or numeri-
cal. Analytica methods are easy to handle, physically meaningful but of limited appli-
cation for complicated models (non-linear, northomogenous) and boundary conditions.
A numerical approach enables us to implement more realistic boundary conditions,
which can be applied to complicated geometries. In order to understand physical mean-
ing of the results received from the numerical simulation, calculation results have to be
described by simple mathematical equations with as small a number of unknown vari-
ables as possible. Therefore, thermo-electrical characteristics of electrical conductors
are analysed by polynomia or logarithmical functions. The second reason of derivation
of simplified equations is to implement these formulas into computer tool, where avery
good time-efficiency can be achieved.
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1.3

Scientific novelty

The specia scientific contribution of this work is the particular way to combine analyti-
cal and numerical methods to calculate the thermal behaviour of electrical conductors.
The proposed algorithm is based on the following steps:

1. Analytical derivation of the heat transfer equations.

2. Anaytical solution of the obtained differential equations with mainly tem-
perature independent or linear dependent physical constants.

3. Simplification of the obtained analytical solution to reduce the number of
variables.

4. Numerical approximation of the heat transfer equations with non-linear tem-
perature dependent physical constants.

5. Model validation of the numerical results by experimental data.

6. Interpolation (fitting) of the received numerical results with the simplified
equations derived from the analytical solution of the heat transfer equations.

7. Evaluation of the results to receive alimited amount of independent constants
(e.g. temperature) to describe the thermal-electrical characteristics with suffi-
cient accuracy.

In this study, for the first time, a methodology of heat transfer analysis in electric sys-
tems for mobile applications has been formulated. It is shown that it is possible to de-
scribe main thermo-electrical characteristics by ssimplified quasi-analytical functions,
which are valid for one particular conductor type.

Obtained thermo-electrical characteristics of electrica conductors are:

thermo — electrical characteristic DT(l) :

DT(1 £1,)=al +bl?

1.1
heating-up time characteristic tg(l) :

2
t(l>|0):toln|2| ¥
0

(1.2)

time constant characteristict (1) :
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t=t, -cl®+dl?

(1.3)

Having the relationship between the conductor temperature and electrical current (Eq.
1.1), voltage drop in the conductor can be calculated as following:

- voltage drop per length characteristic E(1) :

glr _Iro@d+a DT +b, (DT*))

A A
(1.9
here:
DT  conductor temperature difference against environment inK
I current inA
lo nominal current in A
a,b,c,d constants
t heating up time ins
to nominal time constant ins
t current dependent time constant ins
t time constant at zero current ins
E voltage drop per length inV/m
r specific resistance (resistivity) inWm
ro specific resistance at reference temperature (e.g. 20°C) inWm
ar linear temperature coefficient of the specific resistance in VK
b, square temperature coefficient of the specific resistance  in /K2
A conductor cross sectional area in nf

In this work an algorithm is proposed to describe thermo-electrical characteristics with
the simplified equations (see above 1.1-1.4), which were obtained from analytical and
numerical models. This agorithm is suited for implementation in the computer aided
cable design program.

Based on the proposed agorithm to calculate thermo-electrical characteristics a com-
puter program to design electrical systemsin cars has been written [15].

1.4 Research approval and publications

Created methodology and agorithms, which have been developed to calculate thermo-
electrical characteristics of electrical cables for car applications were implemented by
cable harness manufacturer Leoni Bordnetzsysteme GmbH and DaimlerChrysler AG.
The basic achievements of present research have been presented at the following inter-
national conferences:
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- The 7" International Conference “Electronics 2003 in Kaunas, Lithuania, 2003;

- The 8™ International Conference “Mathematical Modelling and Analysis’ in
Trakai, Lithuania, 2003

The content of the dissertation includes three scientific publications. the two papers are
published in the journal “Mathematical Modelling and Analysis’ and one publication in

“Electronics and Electrical Engineering”. Both journals are edited in Lithuania by an
international editorial board.



CHAPTER
2

PHYSICAL MODELS

OF CONDUCTORSAND
THEIR HEAT TRANSFER
EQUATIONS

2.1 Overview

Before the discussion of the theoretical model, a short “guide” will be presented at first.
This “guidance’ is intended to show concisely in what steps the heat transfer equations
are going to be developed. It will also be discussed how these equations are solved for
cable rating problems.

After a short introduction to the model geometry, heat transfer equations of different
model geometries will be derived. These equations describe the temperature behaviour
in electrical conductors and fuses.

As a next step, the heat convection and radiation coefficients will be determined. The
heat convective coefficient is presented for cylindrica and horizontal surfaces. Because
of its nonlinearity, this coefficient will have to be linearized for the later anaytical
analysis of the heat equation.

Following this, the main physical material parameters of the heat equation will be con
Sidered. Because of its nonlinearity (e.g. heat conductivity and electrical resistance) in
reality, certain smplifications have to be introduced. It will be shown that these simpli-
fications can be tolerated for the thermal analysis of the electrical conductor and do not
restrict the validity of the simplified thermal conductor model in the temperature range
of interest.

Finally, required boundary conditions will be introduced. They have to be linearized in
order to implement them into an analytical solution of the heat equation.

With these preparations, it will be possible to investigate the thermo-electrical charac-
teristics of conductors and calculate thelr ratings.
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2.2 Geometry of physical models

On the basis of eectrical conductors, three different models will be considered:
flat insulated cable,
round insulated wire, and
eectrical fuse.

These three different types of conductors cover the main part of power supply system in
many applications. In the flat cable model, the term “cable’ is used because it has more
than one wire. All models are one— dimensional systems, because the other dimensions
in al cases vanish due to large difference between cross-sections (for a round wire or
fuse) or thickness (for flat cable) and length of the conductors.

A. The flat cable model (Fig. 2.1,a) is reduced to one-dimensional heat conduction,
whereby spatial derivatives with respect to x and z are neglected:

(1,¢.)=1,¢.)°0).

The reduction of the model is possible because of infinite length of the cable L and
much bigger width b compared to the thickness d. Due to lateral symmetry of this
model, it is sufficient to analyse the upper part of the flat cable only. The model consists
of three layers and can be extended depending on the flat cable structure. From “bot-
tom” to “top” in the figure (2.1,a) we have:

Polyvinylchloride (PVC) insulation
Metallic conductors (pure copper)
Polyvinylchloride (PVC) insulation

For the sake of simplicity, the conductors (the middle layer) are considered as a homo-
geneous conductor layer.

B. In round wire model (Fig. 2.1, b) all spatial derivatives of the heat equation vanish
with respect tox andj :

(1) =1 () °0).
The heat conduction in the axial direction is neglected, because normally the length of
the wire is much larger than its area, therefore, the boundary effects can be neglected.
The angular dimension j is also neglected due to rotatioral symmetry of the conductor
and insulation layer. The whole model consists of two layers and can be extended to
more layers, depending on the wire construction.

In this moddl, we have:

Metallic conductor (98% copper)
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Polyvinylchloride (PVC) insulation

TXY,z)=T(y,t)

PVCinsulation

Copper conductor
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T()
| ins Tmnd Tins |
AT N
4 l ! \ rinm
Environment’ ! =, Environment

Insulation

Conductor

Insulation

b)
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Fuse holder Fuse holder  |————
element 1 Fuse dement element 2 Wire
i T A Max.Temperature | | X
| Tmax | |
| | Temperatuke T2
| | I
| | |
| | |
Tempergure T1 | |
I | |
| | |
| | |
| I | .
Wire l Fuse holder Fuse element l Fuse holder l Wire )
element 1 element 2
C)
Fig. 2.1Mode geometriesand heat conduction parameters. a—flat cable, b —round wire, ¢
—éelectricfuse

The metallic conductor is assumed homogeneous and a perfect cylinder. In redlity, the
core of wire is made of a number of single conductors with small air gaps in between. If
single conductors are arranged symmetrically, then the wire has a hexagonal shape.

C. The electrical fuse model is one — dimensional (Fig. 2.1, ¢) with the heat conduction
only along the x — axis. The heat conduction in y — direction is not considered because
of very high heat conductivity of copper compared to the heat convection from the sur-
face. The shape of the fuse model in x — direction is non-homogeneous. The whole
model consists of one layer — copper, bras or any other alloy.

2.3 Conservativeform of the heat transfer equations

In order to calculate heat dissipation (heat conduction, convection and radiation), the
relevant heat transfer equations have to be solved. These equations define the relation
ship between the heat generated by electrical current in metallic conductor, and the tem-
perature distribution within the wire or cable (conductor and insulation) and in its sur-
roundings.
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The analysis of heat transfer is governed by the law of conservation of energy. We will
formulate this law on a energy rate basis; which means, that at any instant, there must
be a balance between all power rates, as measured in Joules (= Ws). The energy conser-
vation law can be written in following form:

W, +W,, =W, +W,

[t (2.2)
where:
Wen is the rate of energy entering the electrical conductor. This energy may be
generated by other cables or wires located in the vicinity of other cables or by
solar energy,
Wi is the rate of heat generated internally by Joule losses,
Wy isthe rate of energy stored within the cable,
Wyt is the rate of energy which is dissipated by conduction, convection, and ra-
diation.

The inflow and outflow terms Wen: and Wo,: are surface phenomena, and these rates are
proportiona to the surface area. The thermal energy generation rate Wiy, is associated
with the rate of conversion of electrical energy to thermal energy and is proportional to
the volume. The energy storage is also a volumetric phenomena, but it is simply associ-
ated with an increase (Wg > 0) or decrease (W« < 0) in the energy of cable. Under
steady-state conditions, thereis, of course, no change in energy storage (Wy = 0). A de-
tailed derivation of the heat transfer equation is given in Appendix A.

From the Equation (2.1), (see also Appendix A) general form of the heat transfer eque-
tion in conservative form in Cartesian (2.2) and cylindrical (2.2a) coordinates is -
tained as follows [11]:

ﬂ ﬂTo ﬂa?ﬂTO ﬂa?ﬂTo 1T
‘er g ﬂyg

—= — 2.2
e 2% e ¢TI g (2.2)

18]3 £9+1 ﬂa? EQ izlﬁ ﬂ—3+qv :grE (2.29)
xe fxo r‘ﬂre Trog reqf & 9f g qt
here: ? heat conductivity in W/mK

Qv volumetric heat generation in W/n?

1 The conservative form is a form of heat conduction equation where space dependant thermal conductiv-
ity or other coefficients remains conserved within different media of materials. The conservative form is
given as

1T _ i _ ﬂZT ﬂl 1

g9— 6\? — and the nonconservative form as J— =

T ‘ITXe X g fit ﬂX ‘ITX fix
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g specific heat capacity in W/kgK
r density in kg/nt

The heat equations (2.2, 2.2a) are the basis for future heat transfer analysis in electrical
conductors.

2.3.1 Flat cables

The heat transfer equation (2.2) for flat cable (Fig. 2.1, @), which is derived (in Appen
dix A.1) issmplified for one-dimension as follows:

J g?(ym“ )9 oy L fhy RLICZLSAYE & 23)

As mentioned in the Chapter 2.3, in this model it is considered middle symmetry
(Fig.2.2). This assumption is allowed because heat convection and radiation from “top”
side of the cable surface has amost the same heat dissipation rate as from the “bottom”
side of the cable. It isimportant to emphasize, that the free convection in air situation is
considered. The cable is placed horizontal in the air.

In order to simplify the model, the metallic conductor is treated as a homogeneous body
across the cable width d (see Fig. 2.1,a). Here, the heat conductivity coefficient | is
space deperdant, due to different material layers in the wire. The specific heat capacity
term g is a nontlinear function of temperature for copper and PVC insulation. The heat
generation by electrical current is expressed as g, term and is called volumetric specific
heat flux. It is a linear function of temperature in netalic conductor and vanishes in
PV C insulation.

y A
Insulation Metallic conductor
y 2
K
>
0
[~ T T T T T T T T T T T T T T T T oI i X
e o o e e Y Y |

Fig. 2.2 Flat cablemode with homogeneous metallic conductor
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Here, in the equation (2.3), volumetric heat flux is expressed as:

dQ _drRx? _r dix? A
=—= = =rJ° = 1+a.,,(T- 20 24
dav A AZ :dl A? [1+a0( ) 24

\v

here
I specific resistance of the metallic conductor given by

Mg =1 pll+a,(T- 20)] inOm,

roo  specific resistance of the conductor at 20°C temperature
azo  copper temperature coefficient at 20°C in VK

(az0=3.83 103 1K)
I length of the cable inm
J current density in A/t
I denotes current through the wire inA
A area of metallic conductor in nt.

2.3.2 Round wires

Heat transfer in round wires is determined, in principle, by the same equation as (2.3),
heat transfer in radial directionmust also be considered. The general form of heat eque-
tion in cylindrical coordinates is:

1 mo, 1 1 £0+laf(rT)ﬂToU

= _a? o, 11
eF‘Hre (r.Tr rﬂ+ g r.T) T o ‘ﬂx X & 2.5)

T _
+g(r, T)r oo ay (r,T)

Taking into account the model simplifications given earlier (see Fig. 1,b), the heat equa-
tion is reduced to the one-dimensional form (see al'so Appendix A.2):

ﬂ(t)o

-——a‘?( FT)r o g(r, T)r ——~2

(.1
i =qu(r,T) (2.6)

The temperature profile in flat cables and round wires shown in Figure (2.1,a,b) under
assumption, that the temperature gradient in a metallic conductor is very small due to its
very high heat conductivity. In the insulation the temperature gradient s much larger.
The main temperature drop, however, is between the wire surface and environment.
This temperature drop is caused by convection and described by heat convection coeffi-
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cient a. Therefore, here it is very important to determine this coefficient correctly. This
problem will be discussed in the section 2.5.

2.3.3 Electric fuses

The following differential equation for the heat transfer in the fuse element is given
(Appendix, A.3):

“"*A( Xl “T(”)O +la.mpT+a, (T4 x - T4)u

ﬂT( ) (2.7
X,t
+g(T)r A(X) = A(X)q, (T)
here:

A cross section area of the fuse dement in nt

ac, ar convection and radiation coefficients respectively

u circumference inm

DT =T(xt)- T, inK

According to the model (Fig. 2.1,c), the heat transfer should be analysed only in the x
direction, because of the short lengths of the fuse melting element. The mathematical
model of fuse element should calculate melting temperature of the fuse. Here, radial
heat conduction can be neglected due to high heat conductivity of the fuse material.

In equation (2.8) the heat flux gy is derived in the same way as in equation (2.5). In ad-
dition to this, the equation is valid aso for a variable cross sectional area.

2.4 Physical material constants

Heat transfer equation given in section 2.3 depends on the specific resistance, heat con
ductivity and the heat capacity of the conductor material. All three values are tempera
ture dependent, however their values are only known for certain temperatures. In order
to interpolate between these given values, a linear or sguare function has to be used to
describe the relationship. This estimation is very important in order to model the heat
transfer qualitatively.

Different calculation precision criteria are defined for the analytical approach and for
the numerical approach. For the analytical approach it is necessary to have temperature
independent or linear dependent constants. The numerical approach of the heat transfer
model allows more precise temperature calculation in the conductors. Here, nontlinear
functions can be implemented for the descriptionof the material constants.



18 Chapter 2. Physical models of conductors and their heat transfer equations

The following diagrams show the exact graphical and numerical coefficients of the spe-
cific resistance, r, of copper, of the heat conductivity, ?, of pure copper and PVC, and
of the specific heat capacity, g, of pure copper and PVC [16]. The temperature range in
the diagrams is very wide, although in this work only temperature up to 200°C has been
considered. The reason of this high temperature range in the charts is to show the over-
view how the coefficients behave within wide temperature range. Linear and non linear
approximation has been made using the available data.
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415
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405
400
395
390
385
380
375

Specific heat gin JkgK

273 373 473 573 673 773 873 973 1073 1173 1273 1373

Absolute temperature T in K

c)

Fig. 2.3 Values of: (a) specific resistance, (b) thermal conductivity and (c) specific heat

capacity of pure copper

Heat conductivity and specific heat capacity values of PVC:

Name of material | DIN code Temperature in °C
20 | 50 | 100
Thermal heat conductivity ? in W/Km
Polyvinylchloride PvC 0.17 0.17 0.17
Specific heat capacity gin JkgK
Polyvinylchloride PVC 960 | 1040 | 1530

Tab 2.1. Values of thermal conductivity and heat capacity of PVC

Approximation of the temperature dependent copper and PV C material coefficients:

a) Specific resistance of copper r :

r =rofi+a, (T-T,)+b, (T- T,)]

here: ro  specific resistance at 20°C, ro=17510%
ar linear temperature coefficient, a, =4.0010°
3 square temperature coefficient. R =6.0010"
T temperature of the conductor

inOm

in /K
in UK?
in °C
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To — reference temperature. In this study reference temperature coincides with
environment temperature Teny -

b) specific heat capacity of copper g:

g=9g,+a,T , O£T £ 200°C
here o heat capacity at 20°C reference temperature, go = 381 in JkgK
ag approximated linear temperature coefficient of heat capacity in /K
ag=0.17 UK

c) specific heat capacity of PVC g:

g=g,-a,T+b,T? 0£T £100°C
here o heat capacity at 20°C reference temperature, go = 920 in JkgK
ag approximated linear temperature coefficient of heat capacity in /K
ag=131UK
3y approximated square temperature coefficient of heat capacity in 1/K 2
Ry=0.074 1/K?

2.5 Determination of heat transfer coefficients

The heat transfer from the surface is governed by convection and radiation. This effect
can be described by the corresponding convection and radiation heat transfer coeffi-
cients Both depend on the surface and environment temperatures.

Convection takes place between the boundary surface and a heat transport by a fluid
(e.g. air) in motion at a different temperature. Radiation occurs by electromagnetic wave
heat exchange between the surface and its surrounding environment separated by air.

In this work the convective heat transfer coefficient of laminar flow has to be examined
for the following two different model geometries:

- horizontal cylinder surfaces

- horizontal plate surfaces

The result of this examination leads to two different heat transfer coefficients valid for
round and for plate surfaces. The convection and radiation coefficient appears in the
boundary conditions of the heat transfer equations for the electrical conductor models.
At the lower temperatures, which are typical for electric cable applications, convection
is the basic heat dissipation component (ca. 90%).
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In this work, the heat transfer in electrical conductors is computed by an analytical cal-
culation (of the heat conduction equations) in the steady state regime and by a numeri-
cal algorithm in a transient state regime. Therefore, the convection and radiation coeffi-
cients for the analytical solution has to be linearized and to be presented in an approxi-
mated form in order to obtain simple but sufficiently accurate equations of the convec-
tion and radiation coefficients. For the numerical algorithm the coefficients will be de-
rived in a nonlinear form since both are non-linear (temperature dependent).

2.5.1 Convection coefficient for the long horizontal cylinders

The mainly applied round geometry has been studied extensively. Many correlations
exist between the different calculation methods. The literature [11] presents simple al-
gorithms for the calculation of convective coefficients of the cylinders. This work fol-
lows the procedure proposed by [17], where many approaches of the various procedures
are summarised. The equations of this procedure were validated by the experimental
data in the diploma work [18]. All notations of physical constants and material proper-
ties will be used from the works [17, 18].

In general, the heat dissipation by convection is defined as:

qc =a [ (Ts - T¥ ) (28)
here: Ts surface temperature of the solid in °C,
Ty =Tenv +273.15  the absolute temperature of the fluid inK.

The convection coefficient a . can be calculated as follows:

I
a.=—Nu 29
¢ =] (29)
here: | heat conduction of air in W/ntK,
Nu Nusselt number
d diameter of cylinder inm.

The Nussalt number for a horizontal cylinder according to Wéarmeatlas (Heat Transfer
Atlas) [17] is expressed by:

2

i (i
I I
i oo
Nu = 0752+ 2:387Ra y (2.10)
I 6 o5s0gel ]
I Q+ec—-= 0 |
{ g ePeyg |

In this equation the Rayleigh number Rais calculated as:
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Ra= Gr Pr (2.12)

Here: Pr Prandtl number (see Tab. 2.2) and
Gr Grashof number defined by the following equation:

Gr = gd’b (T - T¥)’

¥ (2.12)
here g gravitational acceleration inms?,
3 volumetric thermal expansion coefficient  in1/K,
n kinematic viscosity in (m/s).
The 3 coefficient for ideal gas with justifiable error can be considered as:
b=t (2.13)
T¥

where Ty =Teny + 273.15 - the absolute temperature of the fluid (in K)

The material constants| , n and Pr of air are taken from Hesat Transfer Atlas[17]. These
constants are dependent onthe average temperature Taye:

Tae = %(Fs +Tey) (2.14)

here Ts is temperature of the suface of cylinder (in °C) and Teny — environment tempera-
ture (in °C).

With the equations (2.9) and (2.10), the convection coefficient a ¢ is written as follows:

N

1 u

i I

i o0

a, =L lo7sp 0387RR 7 (2.15)

dy é .9 07271'
295505760 71

) g+9—+ u i

{ g e oy |

Replacing in the equation (2.15) the Rayleigh number Ra, the Prandl number Pr and
heat conductivity | leads to the following form, which is only diameter d and tempera-
ture difference DT dependant:

9% T
de i

ac = dl

@D %M'D

(2.16)
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where: K, =0.752 72, 2.17)
and
038717 aPrgb ¢f
KTl: 4 9 \8273 Vg B (18
a+a@559946
g ¢P ooy

The physical constants of air i.e. (heat conductivity |, kinematic viscosity n and the
Prandtl number Pr) can be found in the literature [17]. For the volumetric thermal ex-
pansion coefficient [3, air is considered as an ideal gas. For reference, environment tem-
perature is taken.

In the table 2.2 Kq; and K11 values for a temperature range from 20 to 140°C are given.

Surface Temper | Heat conductiv- | Kinematic viscosity Prandtl Ka1 Km1
temper a- ature ityl in107 nin 10° m?/s number

ture T in | Tae in [ W/mK Pr

°C °C

20 20 25.67 15.35 0.7147 0.1205 | 1.1121
40 30 26.41 16.29 0.7133 0.1222 | 1.1054
60 40 27.14 17.25 0.7121 0.1239 [ 1.0990
80 50 27.87 18.23 0.7110 0.1255 | 1.0928
100 60 28.58 19.24 0.7100 0.1271 | 1.0868
120 70 29.29 20.26 0.7091 0.1287 | 1.0810
140 80 30.00 21.31 0.7083 0.1302 | 1.0754
Average: 0.1254 | 1.0932

Tab 2.2. Physical constants of air for temperature from 20 to 140 °C

The averaged form of the convective coefficient for temperature range from 20 to
140°C is following:

2
u
+1.0932(DT) %0

aelo(v
Q_
ed g H

QD
@D 8>(D

(2.19)

2.5.2 Convection coefficient for horizontal plates

For the application for flat cables the free convection of horizontal plates has been con
sidered as well. For this geometry, we have to distinguish between the convection from
the top side of the plate surface and the bottom side.
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The convection coefficient a is calculated ssmilar to equation (2.9):

a,= ll— Nu (2.20)

herel is characteristic length, which is defined as:

where A and P are the plate surface and perimeter, respectively.

A. The Nussdlt number for the upper side of horizontal plate according to Warmeatlas
(Heat Trarsfer Atlas) [17] is expressed by:

a. For laminar flow:

€ @ pamghs oY
Nu =0.766% Ra‘?l+ 0 J (2.21)
s S &P g = L,‘
8 2 d
}/zou Al
here: RaéL+8@§r22° 0 £7x40%.
g € 2
b. For turbulent flow:
é 9.302¢ }/Ool}/zouﬁ/
Nu = 0.15% Ra‘h_+ Q u (2.22)
§ e rg = U
2 d

P
é }éou
here: Raél+ 8@ 32207

A

NI

3 720°.

B. The Nusselt number for the lower side of a horizontal plate has the following form
(only laminar convection):
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A%

e
16 0
Nu =0.6% Fh‘;’l+aé34920/; 3
A

Sepfﬂ;a

(2.23)

e 6U
here 10° < Rael+g£)4920/

ee”ﬂa

All the equations (2.1, 2.13) and Nusselt numbers given in (2.21, 2.22, 2.23) are i+
serted into equation (2.20). This leads to the following form of the convection coeffi-
cients:

< 1010

A. Upper side

a. Laminar flow:

A5
a. _KT21(;|; (DT)}é
(2.24)
here:
e 1}/ --'l}éol‘ﬁé
X e 20 Q .
Kz =0.7661 S b ¢y, @327 0 (2.25)
Vg ePrg U
g 2 g
b. Turbulent flow:
ac = KT22|(DT)%
(2.26)
here:
6 1y Fhold®
X 58 %00 2
Ky =051 790 &, @I22070= 0 2.27)
v g e Prg = U
g g g
B. Lower side (laminar flow only):
A
a. _KT31(}T+ (DT)%
el g
(2.28)

here:
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19/ u}/

- u
2 4

(2.29)

2.5.3 Exact mathematical expressions of the physical constants of air

The physical constants of air depend very much on temperature. These functions are of
higher polynomial order, which were obtained by fitting of the given esults in the
Warmeastlas [17]. With these functions, a very high accuracy of convection coefficient
can be achieved and the function can easily be implemented into the computer program.
Here, the wide temperature range is used in order to expand the validity range of tem-
perature dependent constants in the computer program.

A. Heat conductivity in air | (Taye):
Temperature range for the fitting procedure: - 200 °C £T,,, £1000°C

Obtained polynomial function by fitting:

| (Tave) =
0.02416 + 7.61617 X0"°T, - 4.3282X10 °T2, +4.36064X10 "' T2 - 1.99059 0 T2

ave ave ave

(2.30)
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Fig. 2.4 Heat conductivity of air asa function of temperature at constant pressure
P=10°Pa

B. Kinematic viscosity n(Tave):
Temperature range for the fitting procedure: - 200°C £T,,, £ 1000°C

Obtained polynomial function by fitting:

N (Tae) =
1.35391:40°° +8.82402X0 °T, . +1.14171X0 *°T 2, - 4.6463X10 T2 +1.64882X10 "' T

ave ave ave

(2.31)
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2000 o Data according to Heat Atlas [17]
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Fig. 2.5 Kinematic viscosity of air asafunctsion of temperature at constant pressure
P=10" Pa

C. Prandtl number Pr(Tave)
Temperature range for the fitting procedure: - 125°C £T,,, £ 650°C

Obtained polynomial function by fitting:

Pr(Tave) =
0.71779- 1.6855%0 “T, . +6.91108X10 T2, - 9.11289X0'°T2_ +4.32316 10T

ave ave ave

(2.32)
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Fig. 2.6 Prandtl-number of air asafuncti(gn of temperature at constant pressure
P=10"Pa

2.5.4 Radiation

In order to describe heat transfer by the thermal radiation in electrical conductors, the
exchange of radiation energy between the insulated conductor surface and the infinitely
large environment is considered.

It may occur not only from solid surfaces but also from liquids and gases [11]. The en
ergy of the radiation is transported by electromagnetic waves (or aterretively, photons).
While the transfer of energy by conduction or convection requires the presence of a ma-
terial medium, radiation does not. In fact, radiation transfer occurs most efficiently in a
vacuum. The complete electromagnetic spectrum is shown in Figure 2.7. The short
wavelength gamma rays, X rays and ultraviolet (UV) radiation are primarily of interest
to the high energy physicist and nuclear engineer, while the long wavelength micro-
waves and radio waves are of concern to the electrical engineers. It is the intermediate
portion of the spectrum, which extends from approximately 0.1 to 100 mm. It includes a
part of the UV and al of the visible infrared (IR), that is called thermal radiation and
belongs to heat transfer.
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Fig. 2.7 Spectrum of electromagnetic radiation

The maximum flux (W/nf) at which radiation may be emitted from a surface is given
by the Sefan-Boltzmann law:

g, =sT. (2.33)

where Ts is the absolute temperature (K) of the surface and s is the Stefan-Boltzmann
constant (s =5.670 °W/m*K*). Such a surface is called an ideal radiator or black

body. The heat flux emitted by areal surface is lessthan that of the ideal radiator and is
given by
q, =esT/ (2.34)

where e is a radiative property of the surface called the emissivity. This property indi-
cates how efficiently the surface emits compared to an ideal radiator.

The rate of heat exchange between the cable surface and its surroundings, expressed per
unit area of the surface, is:

g, =es (TS4 - Te‘n‘v) (2.35)

In order make it compatible with heat convection, it is convenient to express the radia-
tion heat exchange in the form:

q =a,(r,-T,) (2.36)
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where from Equation (2.35) the radiation heat transfer coefficient a;is:

a r © es (TS + Tenv )(TS2 + Terzw)

(2.37)

Here we have modelled the radiation in the same way as convection. In this sense we
have linearised the radiation rate equation, making the heat rate proportiona to a tem-
perature differerce rather than to the difference between two temperatures to the fourth
power. Note, however, that a, depends strongly on temperature, while the temperature
dependence of the convection heat transfer coefficient a. is generally weak.

Since the free convection and radiation transfer occurs simultaneoudy, the convection
and radiation has to be added. Then the total rate of heat transfer from the suface is as
follows:

q=0.+0, =a.(T,- T, ) +es (TS - ) (2.38)

en

The total heat transfer by convection and radiation expressed as the heat transfer coeffi-
cienta is

a :aC +ar :aC +es (TS +Tenv)(T52 +Teiv)

(2.39)

2.6 Boundary conditions

In order to have a unique solution of the PDE (partial differential equation), boundary
and initial conditions have to be specified as shown below. In case of differential equa-
tions for the electrical fuse, prescribed boundary conditions are used. PDE s of flat and
round electrical cables will have symmetry and non-linear convectiveradiative bound-
ary conditions.

1. Flat electrica cable
- initial condition

T(¥,0) =Te (¥) (2.40)
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- boundary conditions

'. (2.41)

2. Round €electrical wire
- initial condition
T(r,0)=T,,(r) (2.42)

- boundary conditions

LI

lreo 0,
[ r

(2.43)
=a(d,DT)T- T,,)+es(T*- T4)

3. Electrical fuse
- initial condition

T(x0)=T,,(X) (2.44)
- boundary conditions

}T(O,t) =T, (1) (2.45)
TT(X1) =T,(t)

The boundary and initial conditions in equations (2.40-2.45) are generally valid and im+
plemented into the numerical algorithm of heat transfer calculations.

In the analytical analysis of heat transfer (Chapter 3), some additional boundary condi-
tions will be used to solve the PDE of flat cables and round wires. Here we have to cal-
culate with the constant heat transfer coefficient and do not take into account the non
linear phenomena of radiation.

The following additional boundary conditions apply for aflat electrical cable:
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I dT _ El
| — =._ =
7 Ay - 2(d +b)l
Il Y=Y (2.46)
i dT _a (T
i =-—(T-
'|‘ dy Y=y I ins
In case of cylindrical wire:
| dT _ El
| — -- l
1 dr r=r r I ins
1 . A (2.47)
(RL [T
% dr r=r l ins




CHAPTER
3

ANALYTICAL ANALYSIS
OF HEAT TRANSFER
IN A STEADY STATE

In the preceding Chapter 2, a definition of heat transfer equations for the study of are-
Iytical and numerical heat transfer computation was given The objective of those eque-
tions is to determine the temperature field in different kinds of electrical conductors
where heat conduction, convection/radiation and energy generation takes place. Differ-
ent boundary conditions were also given for the solutions of those equations.

The aim of the present chapter is to obtain exact analytical solutions in a steady-state
regime. Because of the linearization of differential equations, some difference between
numerical and analytical results will occur, but these mismatches can be accepted in
many situations. It is aways convenient to have a simple analytical solution if a steady
state is required.

The following assumptions are made to smplify the partial differential equations:
a) steady-state conditions,
b) one-dimensional conduction,
) constant or linear material properties,
d) uniform volumetric heat generation,
€) constant heat transfer coefficient.

3.1 Calculation of thethermo-electrical characteristics of
flat cables

3.1.1 Verticd heat transfer with temperature-independent coefficients

For pure vertical heat transfer in flat cables equation (2.6, Chapter 2) will be used:

g(y)— +g(T)rﬂ— o (T.Y) (26)

Considering assumptions for the heat equation made before we get the following eque-
tion:
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2
T T(zf,t)+ﬂ_ g It _, 3.1
Ty A |t
or,
2
ﬂTQﬂ+C_Dﬂﬂ%0:0 (32)
Ty it
2
here: COE: ”2 : Dol.
A 1A |

3.1.2 Vertical heat transfer with temperature-dependent coefficients

Considering specific resistance r and electrical field strength E dependence on tempera-
ture:

r(M)=roft+a, Y - Ta)] (33
E(T) =E[t+a, (T(y,1)- T,,)] (34)
here: a linear temperature coefficient of resistance in VK

ro specific resistance at reference temperature Ty in°C

Eo field strength at reference temperature To in°C

Then, equation (3.2) obtains this form:

T°T(y.1) + IIEAO [1+a ) DT(y,t)] g T(y.) =0

ﬂyz | ﬂt
2
T8, 3 by B 0 Tt g 35)
Ty I A TA |t
or,
T (y.t) m(y.t)

+BDT(y,t)+C- D =0

Ty? qt

(3.6)
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Sincein equation (3.6) the term with B is temperature dependant, steady state can only
be reached if additional conditions are satisfied. The necessity of such a condition arises
from the fact that the specific resistance r increases with temperature.

The solution of temperature change in time can be presented in the following form:

d P
¥ gy
T(t,y) =a g;()sn pJ‘?TT (3.6b)
j= =
[4]
This result is recognised as a Fourier sine-series expansion of the arbitrary function
Ti(y), for which the constant amplitudes g; are given by:

522

0,0 == &F (N pi—2ydy. (360
5

2

Only, if B< Z_Z the solution of steady state temperature exist.

here:B°arE°|'C°ﬂ'D°g' 0
A lA’ | a,

=T,; DT =T(y,t)- T,, -

3.1.3 Stationary solution of vertical heat transfer equation

The stationary solution will be obtained for rectangular cables, namely, flat cables,
where the cable width b is much larger than the thickness d. This solution describes the
temperature pattern in a metallic conductor of aflat cable and its insulation in vertical y
direction.

Three different cases of electrical conductor are considered, for whicha stationary solu-
tion of the heat equation is achieved:

A) Cable without insulation and temperature-dependent specific resistancer (B* 0),
Dirichlet boundary conditions;

B) Cable without insulation and temperature- independent specific resistancer (B =0),
symmetry and convective boundary conditions;

C) Cable with insulation and temperature-independent specific resistancer (B =0),
symmetry and convective boundary conditions.

Case A. Cable without insulation and temperature-dependent specific resistance r
(Bt 0).



38 Chapter 3. Analvytical analysis of heat transfer in a steady state

The heat equation (3.6) for steady-state ssimplifies to:

'HZT(ZV) +BDT(y)+C =0 37)
Ty

The general solution of equation (3.7) is:
T(y) =T,sn~/By +T, cosv/By- % (3.9)

here T1,2 — integration constantsin °Cand C =BT, - C.

In order to get a temperature profile, boundary conditions for the equation (3.8) have to
be applied. The temperatures are fixed at the boundary (Dirichlet conditions) at the bot-
tom side of the flat cable (y=-d/2) and upper side - (y=d/2).

For y=-d/2:
e do . d d -
T¢- —+=Ty =-Ty9n JE—+T2«/§cos—+T (3.93)
e 2¢g 2 2
For y=d/2:
" . d d -
TEEEQ:TO2 =T, snVB—=+T,JBcos—+T (3.9b)
e2g 2 2

This leads to the integration constants Ty,2:

T,-T
T, = M—J_‘ch (3.109)
29n+B—
2
] .
2cos+/B —
VB 2

The insertion of integration constarts into the general solution (3.8) gives the following
temperature distribution in the flat cable:

T(y) =2 Tu_gn /By +Ju*Te- 2T §T cos/By +T
2sn «/§E 2cos«/§E

(3.12)
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here: d — thickness of the cable, Tp1- boundary temperature at y=-d/2, Toz-boundary tem-
perature at y=d/2.

For To1 = To2 equation (3.11) can be simplified:

T(y)=T- T'—T(’ldcos«/gy
cos«/EE

(3.12)

Case B. Cable without insulation and temperature-independent specific resistancer
(B=0)

In case the temperature dependence of the specific resistance can be neglected, the
eguation (3.2) simplifiesto:

T°T(y.t)
y?

+C=0 (3.13)
The general solution of this equation (3.13) is:

__C»
T(Y)—'Ey +le+T2 (3-14)

where T1 and T, are integration constants.

Symmetry and convective boundary conditions (Fig.3.1) are applied:

") — 120, bl =a2ld, BT T,,)
y=d,
dl
d, )\ Y x
L d
——jjim T

a, ooy

Fig. 3.1 Boundary conditions considering temperature gradient in conductor only of flat
cable
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a y=0: ﬂ‘ =0;and (3.15)
W,
.- T _
ay=d;: | 2(d, +b)— =-a2(d, +b)(T-T,,),or
y=d;
E{ SN (3.16)
ﬂy y=d, I

The relationship (3.16) is developed by applying a surface energy balance. Here the heat
transfer coefficient is considered constant.

Substituting the appropriate rate equations (3.13, 3.14, 3.15 and 3.16) temperature pro-
file in the conductor of flat cable is obtained:

C ,& yzo El
T :—d — T+ d 31
(y) 2 g‘ dlZB env a2<dl+bj 1 ( n
C ,® y°0 El
T(y)=—d —+T,  + d
(y) 2 lgl 12; env a2(d1+bj 1
here; C

Case C. Cable with insulation and temperature- independent specific resistance r
(B=0)

For the calculation of the temperature distribution in an insulated flat cable (case C), the
boundary conditions should be applied to the borders of the insulation (see Fig.3.2).
Due to high thermal conductivity of the conductor compared to the insulation, the tem-
perature gradient in the netallic conductor can be assumed to be zero. Applying as
overal energy balance law to the flat cable model, we obtain following boundary condi-
tions:

y A r | |n52(d + b)z—y{ =a 2(d2 + b)(T - Tenv)
y=d;
d, I
d, A d > X
-d, T *'
_d2
‘ L - insz(d +b)dT = El
a, Wl

Fig. 3.2 Boundary conditions considering temper atur e gradient in the insulation alone of
flat cable
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ay=di:
-1 inSZ(d1+b)d—T =El,or ay . __El . (3.18)
dy y=d; dy y=d, Z(dl + b)l ins
ay=d:
2+ =add,+b)T-T,) o S =-EreT,)  (319)
dy y=d, dy y=d, l ins
The equation (3.7) can be written as follows
2
1 T(Zy) =0 (3.20)
iy
which by integration becomes:
hiLigs T, (3.21)

Ty
where T; is a integration constant.

Taking into account the limit condition (3.18) the constant T; is:
To._ B
| ..2(d, +b)

ins

The temperature Tins Of the outer surface of the insulation, according to (3.19) is given

by:

El
T =T - - 3.22
Ins env+2 (d2+b) ( )

The temperature profile in the insulation body can be determined by integrating the
equation (3.21):

T(Y) =T+ = )y (3.23)

2(d, +b

I ins
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Temperature at the inner side of insulation, which also means temperature of metallic
conductor is given with y=d;:

El
T =T +———_d 3.24
cm 2(d1+b) ! (3249

ins

or, expressed as a function of environment temperature Teny:

El El
T =T
ol A, +b)  1,.2(d, +D)

A

(3.25

3.2 Calculation of ther mo-electrical characteristics of round
Wires

3.2.1 Radia heat transfer with temperature-independent coefficients

For radial heat transfer we consider infinite length cylindrical wire thus neglecting end
effects. This assumption is reasonable if the ratio of cylinder length L and cylinder ra
diusr isL/r » 1000. The general heat equation for radial system is:

19em(rt)o, B g IT(rt)

), El 9 _ 3.26
T R N T (3.26)
or,
118? ﬂT(r,t)9+C_ DﬂT(r,t) “o
rfre TIr g i
(3.27)

2
here: co o = 1! Do
A 1A I

3.2.2 Heat transfer equations with temperature-dependent coefficients

Here the specific resistance dependence on temperature will be considered:

r(T)=rofl+a, (T(r,t)- Ty (3.28)
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The electrical field strength E changes with temperature as following:
E(T) = EJt+a, (T(r.t)- T,)] (3.29)
here:

a - linear temperature coefficient of resistance

I o — specific resistance at reference temperature To
Eop — field strength at reference temperature To

Then the equation (3.27) obtains the following form:

1ﬂaeﬂT(rt)_+|E [1+a DTrt] (rt)zo
roré Ir g It
11@ ﬂT(r,t)9+ar|E0DT(r,t)+ |E0 ) gﬂT(r,t)zo (330)
rﬂre ﬂr 7] | A AN ﬂt
or,
1= it )—+BDT(r t)+C- LI G
rfré T g fit

(3.31)

a E.l E. |
here BO =~ - co 0. po 9
I A | |

3.2.3 Stationary solution of radial heat transfer equation

Before solving the equations, a short explanation of the applications shall be given
where the solutions are applicable. Again, first the heat equation will be solved for the
“naked” wirei.e. cylindrical wire without insulation (Fig. 3.1a). In this case, tempera
ture distribution occurs only in the metallic conductor. Secondly, the heat equation will
be applied to the round wire with insulation (Fig. 3.1b). Here the temperature distribu-
tion will be calculated whilst the insulation layer while temperature gradient of the me-
tallic conductor is assumed to be zero.

For steady state and constant material properties, the heat transfer equation reduces to
B=20:

19eT(o, (3.32)
rré T o
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| Insulation
T i T |
I A | S~a
Conductor Conductor
| i
TO —————— = _/_"‘ Ig) TO ~ “ I(r)
- I ~ ,/ | ~
T, b Y AN N T, s >
! A J
T, 4 r : r, 4—:
! T !
! !
i . |
-, O r g o, T, b r ool
a) b)

Fig. 3.1 Temperaturedistribution in a plane of cylindrical wire: a)— wire without insula-
tion; b) — electrical wirewith insulation

Separating variables and assuming uniform heat generation, the eguation can be inte-
grated to obtain:

rﬂT(r):_Erz

T 3.33
" St (3.33)

Repesting the procedure, the gereral solution for the temperature distribution becomes:
C.
T(r)=-zr +T,Inr+T, (3.34)

To obtain integration constants T; and T» we apply the following boundary conditions.

Tr(r)
ﬂr r=0

ar=0: =0, and

ar=ry:T(r)=T,;

The first condition results from the symmetry of the cylinder. In the centre of the cylin-
der, the temperature gradient must be zero. Using the second boundary condition at r =
r, with the equation (3.34) we obtain:

T,=T,+ %rf (3.35)

The temperature distribution is therefore:

5 5 .
Cr,

& r°o
T(r) = gl r—zfz;Trl (3.36)
1
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To relate the surface temperature, T4, to the environment temperature Teny, an overal
energy balance equation leads to the result:

El
—pr’L= a2prL(T,-T,,)
pry
or
T,=T,, + El (3.37)
2pra

here: L — length of cylindrical wirein m

Then, the temperature distribution in the metallic conductor considering heat dissipation
from the surface by convection:

Cr’ee r?
T(r) = 41 gl _2: Tenv
ry (%]

(3.38)

In order to determine temperature in an insulated cylindrical wire (Fig.3.1b), we use the
same heat equation (3.32) but different boundary conditions shall be considered:

a) from the energy balance equation for r=r; the following equation can be written:

- 2pn) o L

ins qrv. = El ;
ir

r=n

b) neglecting radiation, for r=r, the boundary condition is as following:

ImSZprZ% =cazp(T-Ta).or T = 8 g7

ﬂr r=r, l ins

Repeating the same procedure as in the solution of Eq. (3.7) for a non-insulated wire,
we obtain the following solution for temperature profile in the insulation of cylindrical
wire:

El  a8,0. El
Ing—=++

T(r) = ol :
Plis el g 2pr2a

+T,, (3.39)

Equation (3.39) enables us to compute the temperature profile in the insulation. In the
metallic conductor, the temperature gradient is considered to be zero. This assumption
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is reasonable, because the heat conductivity of a metallic conductor is very high, com-
pared with the insulation heat conductivity.

Temperature of metallic conductor at r=r, from Eq. (3.39) is therefore:

&, 0,
C 2p||ns g ﬂ Zpra enV

(3.40)

3.3 Calculation of the thermo-€electrical characteristics of

dectrical fuses

3.3.1 Axid heat transfer with temperature — independent coefficients

For the analytical analysis of axial heat transfer we will use similar equation to (Eqg. 2.8,
Chapter 2) and introduce temperature-independent coefficients. Then the equation has
the form:

2
M - a_uT X,t) +E - QM = (341)
% I A A | 1t
here al, B;EOC 9, D
A | A I
Then equation (3.41) can be rewritten following:
2
Ty T(f’t) _BT(xt)+C- DI =g
X It

(3.42)

Let us describe the coefficient physical meaning of equation (3.42). These coefficients
do not depend on temperature. Coefficient B can be written in the following form:

Q

go 24

= iz (3.43)
I C

>
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here c - isthe “length constant”, e.g. the inversed square root of coefficient B :

X %:\/g (3.44)

¢ can be considered as a length decay in a function of temperature, which increases if
theratio A/ u increases.

Coefficient C is called “Temperature field gradient” in K/m?. The coefficient means the
ratio of the volumetric generated heat EJ in the fuse and the heat conductivity coeffi-
cient ?:

Coﬂ_r\]2
A |

(3.45)

We introduce the “asymptotic temperature” termT . Asymptotic term can be understood
as a final temperature of infinite length wire after steady state. Temperature Tinthe
fuse will not be achieved if the fuse has a very short length. In any case T will not be
reached in transient state. The formulaof T isthe following:

foCl_coc=El (3.46)
B au

Coefficient D can be called “reciprocal temperature conductivity” or “reciprocal heat
transport velocity” and is described as the quotient of heat capacity and heat conductiv-

ity:

Do lg (3.47)
3.3.2 Axid heat transfer with temperature-dependent coefficients

In this section we will consider temperature dependant specific electrical resistance of

copper or brass. Specific resistance, r, for temperature change from 20 to 180°C can be
calculated as follows:

r(T)=roJi+a, (T(x1)- T.,)] (3.48)
The field strength E, changes with respect to temperature as:

E(T) =Ey|l+a, (T(xt)- T.,)] (3.49)
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here: a linear temperature coefficient of resistance
ro specific resistance at reference temperature To
Eo field strength at reference temperature T

Considering Eqg. (3.49), equation (3.41) takes the following form:

2 -
q T(Z(’t) Al IE fi+a, Tt - T g Im(xt) “o
" 1A | A |t
PT(xt) a@u-a, lEg E, g TT(xt) _
. — %(T(X,t) Tt a7 =0 (3.50)
or,
T°T(xt) r _
2 B(T(xt)- T, )+C- D—=0
o BTeeD-To)+C- D

where the coefficients have the following meaning:

co L - | 1A (3.51)
JB \au-a,lE,

=c’C=—— 4T (3.52)

3.3.3 Avaanche effect in metallic conductor

Any conductor with a positive temperature coefficient a, shows a so-called avalanche
effect, where due to too larger energy generation, the equilibrium, generated between
energy in the fuse and dissipated heat to ambient can not be achieved. This is valid for
the length constant as well as for the final temperature of a wire with infinite length.
Because of this effect, temperature rises continuously and the length constant ca and

final temperature T, becomesinfinite if the following conditions are satisfied:

a, r,l’?

au=a,lg, = A

(353)
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Then: ¢, :¥,'fA:¥

Avalanche current can be calculated in this way:
auA
(= /
ar r 0

3.3.4 Stationary solution for axia heat transfer equation

(3.54)

The solution of the equation for axial heat transfer gives the temperature distribution in
the x — direction. For steady-state we apply boundary conditions given in eguation
(2.46, Chapter):

iTO)=T,
ITO=T, (2.46)
TT() =T,
Then, the equation (3.42) of axial heat transfer simplifies to:
1°T(¥) _
vl BDT(x)+C =0 (3.55)
The general solution of Eq. (3.55) is:
—T /BX ex_ C
T(X)=T,e""" +T,e iy (3.56)
heree B linear temperature dependent heat dissipation coefficient to ambient
in 1/n?
C =BT, -C
temperature dependent heat generation by electrical current i’
in1/
Ti2 integration constants, in which the boundary conditions are set
in°C

In order to find Ty » we introduce boundary values at x = 0 and x = |. Then, the tempera-
ture distribution in the fuse is as following:
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o - /Bl - /Bl r -/Bi - /BI
T(l- e )+T0e -T, VBl D) T(l' e )+T|e " To e +T (357

T =- 1- 208 1. 28

here: | length of fuse inm
T(x) temperature distribution aong the fuse in°C
To the boundary temperature of the fuseat x = 0 in°C
T the boundary temperature of thefuse at x = | in°C

Replacing B byiz, equation (3.17) can be written as:
c

& L0 L & 1o L
T@-e“+Te®-T | TlU-e“T+Te-T,
T(x) =- & o ec - & 5__ e 4T
1-€e°© 1-¢€

(3.58)

Equation 3.58 gives the temperature distribution in a fuse element withthe finite length
and fixed boundary temperatures. From the analytical solution the “avalanche effect”
(Eg. 3.52) can be observed, the length constant ¢ is obtained (Eq.3.51), and “hypotheti-

cal temperature’ T can be derived (Eq. 3.52).



CHAPTER
4

NUMERICAL CALCULATION OF
TEMPERATURE BEHAVIOUR
IN A TRANSIENT STATE

4.1 Overview of the numerical methods used in heat transfer
computation

The heat transfer of an insulated electrical wire is described by a non-linear and non
homogeneous partial differential equation. A unique analytical solution is only feasible
for idedlised and simple conditions. For practical cases, it is required to implement nu-
merical methods. Available analytical and experimental results are of considerable im-
portance in verifying the accuracy and validity of numerical results.

The limitations of an analytical solution arise from the following properties of electrical
wires:

electrical conductivity is second order temperature dependent
heat conductivity | of insulation is at least linear temperature dependent
heat convectionand radiation a is at least third order temperature dependant

The numerical methods allow not only better representation of the mutual heating -
fects, but aso permit more accurate modelling of the boundaries (e.g. a convection
radiation boundary to the environment).

A numerical solution is obtained from discretisation of the partial differential equation.

There are four distinct streams of numerical solution techniques:

Finite Differences (FD)
Finite Element (FE)
Spectra Method (SM)
Finite Volume Method (FV)

The four mentioned methods differ mainly in the approximation of the variablesand in
the discretisation processes.
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1. Finite difference methods (FD)

In this method the partial derivations of equations are approximated by a truncated Tay-
lor series. This method is particularly appropriate for an equidistant Cartesian mesh.

Taylor series expansion of afunction f(x) about a point Xo in the forward (i.e. positive x)
and backward (i.e., negative x) directions are given, respectively, by:

of d2f| (Dx)?  d*f| (Dx)®
f +Dx) = f +—| Dx+ + +....
(%o +D9 = 100) dx|, dx?| 2 oF| 3

0 0

df d2f| (x)? d3f| (Dx)?
(%~ D)= (%)~ o DXH g S g
. !

0 0

These two expressions form the basis for developing difference approximations for the
first order derivative df/dx about X,. Rearranging the expressions, the forward and
backward finite difference approximations for the first order derivative, respectively,
become:

df| _ fO%+Dx)- (%)

dx|, Dx

+0(Dx) (forward)

df| _ f0%)- 105~ DY

+ 0(Dx backward
o, 5 (DY ( )

More about FD method in heat transfer can be found in the relevant literature [19].

2. Finite element method (FE)

This method originated from the structural analysis as a result of many years of re-
search, mainly between 1940 and 1960. In this method the problem domain is ideally
subdivided into a collection of small regions of finite dimensions, called finite elements.
The elements in a 2-D case have either a triangular or quadrilateral form (Figure 4.1,a)
and can be rectilinear or curved. After subdivision of the domain, the solution of the
discrete problem is assumed to have prescribed form. This representation of the solution
is strongly linked to the geometric division of sub domains and characterised by the pre-
scribed nodal values of the mesh.

For heat transfer in the electrical wires, the discrete solution with FE can be constructed
as follows:
1. A finite number of points in the solution region is identified. These points are
called nodal pointsor nodes.
2. The value of temperature at each node is denoted as a variable which hasto be
determined.
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3. The solution region is divided into a finite number of subregions caled ele
ments. These elements connect common nodes, and collectively approximate
the shape of the region.

4. Temperature is approximated over each element by a polynomial expression
that is defined using nodal values of the temperature (see Fig. 4.1, b):

T, = Aw, +Bw,; +Cw,,

where w;, wj, Wy are the area coordinates defined as in Fig. 4.1, b. These area
coordinates uniquely define the position of any point P inside the triangle ijm.

A different polynomial is defined for each element, but the element polynomials
are selected in such a way that continuity is maintained along the element
boundaries. The nodal values are computed so that they provide the “best”
approximation possible to the true temperature distribution. This selection is ac
complished by minimising some quantity associated with the physical prob
lemor by using Gaerkin's method [29], which deal with the differentia equa
tions directly. The solution vector of the algebraic equations gives the required
nodal temperatures. The answer is then known throughout the solution region.
More about FE method can be found in literature [20].

a) b)
Fig. 4.1 Triangular or quadrilateral finite elements of a two-dimensional domain (a) and
area coor dinates (b)

3. Spectral method

Spectral methods approximate the unknowns by means of truncated Fourier series or
series of Chebyshev polynomials. Unlike the finite difference or finite element approach
the approximations are not local but valid throughout the entire computational domain.
The unknowns in the governing equation are replaced by the truncated series. The corn-
strain that leads to the algebraic equations for the coefficients of the Fourier or Cheby-
shev series is provided by a weighted residuals concept similar to the finite element
method or by making the approximate function coincide with the exact solution at a
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number of grid points. Further information on this specialised method can be found in
[21]

4. The finite volume method

The finite volume method was originally developed as a special finite difference formu-
lation [22, 23]. In FV method, the partial derivation of equations is not directly g-
proximated like in FD approach. Instead, the equations are integrated over a control vol-
ume V, which is defined by nodes of grids on the mesh:

&liv(l grad )V +&,dv = g Dav
\% \Vj \Vi ﬂt

The volume integral terms will be replaced by surface integrals using the Gauss for-
mula. For avector a this theorem states:

gdivadv =gn.adA
\ A

These surface integrals define the convective and diffusive fluxes through the surfaces.
Due to the integration over the volume, the method is fully conservative. This is an im-
portant property of FV method.

This clear relationship between the numerical algorithm and the underlying physical
conservation principle forms one of the main attractions of the finite volume method
and makes its corcept much simpler to understand by engineers than finite element and
spectral methods. In fact, 40 years ago Lax and Wendroff proved mathematically that
conservative numerica methods, if convergent, do converge to correct solution of the
equation. This gudy shall be solely concerned with this most well — established and
thoroughly validated general-purpose computational fluid d/namic (CFD) and heat
transfer technique. Therefore the method is discussed in more detailed.

4.2 Fundamentalsof thefinite volume method

The basic laws of heat transfer are the conservation equations, which are statements that
express the conservation of:

mass,

momentum, and

energy
in avolume closed by itssurface.



4.2 Fundamentals of the finite volume method 55

T(x) A

Figure 4.2 One-dimensional Finite VolumeMesh

Certain requirements are necessary to convert these laws into partial differential eque-
tions. These requirements cannot always be guaranteed. In a case where a discontinuity
occurs, an accurate representation of the conservation laws is important. In other words,
it is of big importance that these conservation equations are accurately represented in
their integral form. The most natural method to accomplish this is obvioudly to discritise
the integral form of the equations but not the differential form. Thisis the basis of finite
volume (FV) method.

In two dimensional cases the field or domain is subdivided in the same way as in the
finite element method, namely, into a set of non-overlapping cells that cover the whole
domain on which the equations are applied. On each cell the conservation laws are go-
plied to determine the flow variables in some discrete points of the cells, called nodes,
which are typical bcations of the cells such cell-centre (cell centered mesh) or cell-
vertices (cell vertex mesh) (Figure 4.3).

Obvioudly, there is considerable freedom in the choice of the cell shapes. They can be
triangular, quadrilateral etc. and generate a structured or unstructured mesh. Due to this
unstructured form, very complex geometries can be handled with ease. Thisis clearly an
important advantage of the method. Additionally the solution of the equation of the cell
is not strongly linked to the geometric representation of the domain. This is another
important advantage of the finite volume method in contrast to the finite element
method.
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i-—1,j¢1/ i j+! 1+1,)+
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Figure 4.3 Two-dimensional structured Finite Volume Mesh system:
(a) Cell Centred mesh (b) Cell Vertex mesh

Numerical properties of discretisation schemes.

It is normally distinguished between time and spatial discretisation of continuum equa-
tion. The spatial discretisation can be applied on different forms of grids such as Carte-
sian, non-orthogonal, structured and unstructured. Time discretisation is usually done by
FD scheme, which can be explicit or implicit. Normally, the explicit method is used for
strong unsteady flows or when time gradient is very big.

When a direct computation of the dependent variables can be made in terms of known
guantities, the computation is said to be explicit.

In contrast, when the dependent variables are defined by coupled sets of equations, and
either a matrix or iterative technique is needed to obtain the solution, the numerical
method is said to be implicit.

The choice of whether an implicit versus explicit method should be used depends ulti-
mately onthe goal of the computation. The consequences of using both methods have to
do with numerical stability and numerical accuracy. Using explicit methods we can
achieve required accuracy in time with more computational effort than implicit method.
Although, explicit methods are simpler to implement mathematically, they are almost in
all cases only conditionally stable. Implicit formulation is said to be aways uncondi-
tionally stable. A solution for the unknowns at one time level n+1 may be obtained for
any size of time step. In computational heat transfer, the governing equations are
nonlinear. Under these conditions implicitly formulated equations are aimost aways
solved using iterative techniques. Since heat transfer in eectrical conductors has no
strong unsteady flows as well as considering efficiency and stability of implicit method,



4.3 Non-linear heat transfer model of electrical conductors 57

whenever possible implicit methods are used in this work but explicit method can be
applied optionally.

Good understanding of the numerical solution algorithm is crucia. Three mathematical
concepts are useful in determining the success or otherwise of such agorithms: conver-
gence, consistency and stability.

Convergence is the property of a numerica method to produce a solution, which g-
proaches the exact solution as the grid spacing, control volume size or element is re-

duced to zero ( Iir% 0(I' - T,) =0, T—exact solution of partial differential equation, T, —

solution of finite difference equation).

Consistent numerical schemes produce systems of algebraic equations, which can be
demonstrated to be equivalent to the origina governing equations, as the grid spacing
tends to zero.

Sability is associated with damping of errors as the numerical method proceeds. If a
technique is not stable even round off errors in the initial data can cause erratic oscilla-
tions and divergence.

Convergence is usualy very difficult to establish theoretically and in practice Lax’s
equivalence theorem is used [4], which states that for linear problems a necessary and
sufficient condition for convergence is that the method is both consistent and stable. In
heat transfer calculations this theorem is of limited use since we stated that the govern-
ing equations are nortlinear. In such problems consistency and stability are necessary
conditions for convergence, but not sufficient.

4.3 Non-linear heat transfer model of electrical conductors

It has aready been mentioned that using the numerical methods the differential and the
integral equations can be transformed into discrete algebraic equations. Based on the
mentioned reasons in the previous section (4.2), the FV method has been chosen for the
discretisation of PDE.

Equation (2.2, Chapter 2)

Fl9 g =gt 4.1
ﬂxe ﬂxg Ty g, =9 (4.1)

‘ITTo ﬂafﬂoJrl mo 1T
g W o ‘HZe zo qt

can be rewritten in the integral form. We integrate Equation (2.2) over a small fixed
volume V:

Sriv( grad T)aV + g, aV = @p%dv 4.2)
\% \ \%



58 Chapter 4 Numerical calculation of temperature behaviour in a transient state regime

The volume integral over the divergence of heat flux vector is transformed to a surface
integral by means of the divergence theorem. Then Equation (4.2) becomes

T
(};ﬁ dv (4.29)

\Y

g! gradT)xndS+ ¢y, dV =
S \%

where S is the surface area of the finite volume. Since,

grad T xn = i (4.2b)
Tin

then, the equation (4.2a) gives:

i T

A —dS+ cp.dV = cyg—dV 4.2c
0 gn BV =0y 2
here: V small finite volume;

n outward drawn norma unit vector

T derivative along the outward drawn normal to the surface of the control
n

volume.

Equation (4.2a) represerts the principle of conservation of energy over finite volume V.
It states that the rate of energy entering the control volume through its boundary surface
Splus the rate of energy generated in the volume element is equal to the rate of increase
of stored energy in the control volume. Furthermore, since fluxes are conserved in

transport between the control volumes, the conservation principle is also satisfied for an
assembly of finite volumes. That is, the numerical solution will satisfy both the local

and global conservation properties, hence the formulation given by Equation (4.2) is
fully conservative.

4.3.1 Approximation of heat transfer equations by FVM

4.3.1.1 Flat electric cable

We consider the transient state diffusion with convective-radiative boundary condition
of aflat electrical cable in a one-dimensional domain defined in Figure 4.4.
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Figure 4.4 The physical model of flat electrical cable heated by electrical current

It is assumed that the dimensionsin the x- and z directions are so large that temperature
gradients are significant in the y- direction only. The used grid is shown in Figure 4.5:

Dy/2 Dy Dy
4—7 N T
C T 1. T, .
T | : i-1 i ° i ]. : N y
0 12 1 i-1 [ i+1 YN
< Yo >l Ying >

Figure4.5 Thefinitevolumegrid of flat cable

The governing equation is:

g ,Iro LI 43
ﬂyg (y)ﬂy5+g(r,y) T q,(T,y) (4.3)
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The Equation (4.3) models the heat conduction in an electrical wire, which has different
materials namely a conductor (here: copper) and an insulator (here: PVC = PolyVinyl-
Chloride) with different heat conductivities | . Moreover, there is no heat generation qy
in wire (PVC) insulation. Therefore the equation has discontinuous coefficients | and
Qv-

c? qvlo; O<y<yc’

il =1
[ _ _ o : (4.4)
Tl _lins’qv_01 yc<y<yins’
The integral form of the governing equation for interior nodes of flat cable gives:
Nl & To \ Tt \
- V)=V + (T, y)—dvV = cpadv (4.5

Applying this integral form to the finite volume V;=[i-0.5; i+0.5] (Figure 4.5) the Equa-
tion (4.5) can be rewritten whereby the volume element dV is replaced by the surface
element dy (using Gauss theorem):

ﬂyg R z&y og(r y)—Dydy cﬂv(r y)Dydy (4.6)

Integration of the Equation (4.6) over [i-0.5; i+0.5] leads to:

1 (L

i+05

y (y)%

+g(T, y)Dy, % = q,(T.y)Dy, @.7)

i-05

Replacing partial derivatives in space by central differences and derivative in time by
backward difference, the Equation (4.7) takes the form:

| (T A
T (- T+ SO T = Dy s

The partia derivatives Eq. (4.8) in space are of second order accuracy and in time of
first order (Dy?,Dt).



4.3 Non-linear heat transfer model of electrical conductors 61

Equation (4.8) is solved implicitly in time. In this study semi-implicit scheme is used, so
the time step can not be chosen too large. The space step Dy and time step Dt can be
computed by these expressions:

d,+d. t
=—¢ " gnd Dt =— 4.83
oy N-05 K (4.89)
here: t time needed to reach steady state in some y; node,

K number of time steps needed to reach steady state regime.

The result of this numerical solution gives temperature distribution in the metallic con
ductor and insulation of the flat cable.

4.3.1.2 Round electric wire

Cylindrical electrical wire of infinite length is given in (Figure 4.6)
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Air
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Figure 4.6 The modd of heat conduction in round electrical wire
r. —radius of the metallic conductor (copper), rins — radius of the insulation (PVC), r¢effect —
effective radius of the conductor (pure copper without air gaps between single conduc-
tors)

In the heat transfer model of cylindrical wire we consider heat conductionin the cross
section and neglect the conduction along the wire, assuming, that the end effects of the
wire have no influence to the aimed calculation results. This approximation is reason
able for L/rins>1000, where L — length of the wire.

The numerical scheme is shown in Figure 4.7:
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Figure4.7 Thefinitevolumegrid of round wires

The governing equation is:
-——a? (r)r—-+g(T r) —=a,(T.1) (49)
Equation (4.9) has discontinuous coefficients| and P:

ins 0y =0; 1, <r<r, (4.10)

|ns’

After multiplication of the Equation (4.9) by r, the integral form of the governing equa-
tion for interior nodes of cylindrical wire becomes:

@%%(r)r—-deu a(T, r)—dV da, (T,nav (4.11)

v Dv

Applying this integral form to the finite volume Vi= [i-0.5; i+0.5] (Figure 4.7) we can
rewrite the Equation (4.12) as following:

|+05 1-[ . i+0.5 1-|-|- i+0.5
- o=—=n (r)——dr + Ora(, F)Pr g = &yq, (T, r)Drdr (4.12)

i- OSﬂr Q i-05 i-05

Integrating over [i-0.5; i+0.5] we get:

Mo (N +g(T.1D, ’}TT = q,(T.1)Dr, (4.13)

+rosl (1 )ﬂE

i+0.5 i-05



64 Chapter 4 Numerical calculation of temperature behaviour in a transient state regime

Replacing partial derivatives in space by central differences and derivative in time by
backward difference, the Equation (4.13) takes the form:

Mool rool r.g"Dr.
_ _iHl/2" i+12 (Tirl' Tin)+ i-1/2"i-1/2 (Tin _ Ti-nl)+ |gl|Dt i (T|n _ Tin_l)zriqiDri (414)

Dri +1/2 ri- 1/2

Equation (4.14) is solved semi-implicitly in time. The space step Dr and time step Dt
can be computed by these expressions:

r.
" _ and Dt =

Dr = —
N- 05 K

(4.15)

here: rins  theradius of insulated wire,

number of nodes,

the time needed to reach steady state in some y; node,
anumber of time steps needed to reach steady state regime.

A2

4.3.1.3 Electric fuse

Here, the problem deals with the axial heat transfer calculation in a copper (or brass)
solid or hollow cylinder (fuse melting element prototype) with finite length (Figure 4.8).
Axial temperature distribution in the fuse melting element must be computed in order to
obtain the maximum temperature (melting temperature) of this element. In the mathe-
matical model of heat transfer in the fuse, the non-homogenous geometry, heat convec-
tion and radiation is considered through the surface of the fuse element and prescribed
temperature boundary conditions are applied. The temperature gradient in the radial di-
rection is neglected, because heat conductivity coefficient of copper (or brass) is very
large and gives a constant temperature distribution for the model geometry considered
here. This model reduction reduces computational efforts considerably.
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Figure 4.8 Physical model of the fuse melting element used for numerical computation

The heat transfer equation of the energy conservation law for a 1-D problem in the axial
direction can be expressed as:

Al hlLK 4_ T4
o P00 £ Eefa (TT +a, (- T )] -
+g(T, r)A(x)“ﬂ—I = A(X)q, (T)

here: ac convection heat transfer coefficient inW/nfK,
DT temperature difference between the temperature T on the surface
and environment temperature Teny inK,
ar=es radiation heat transfer coefficient in W/nmfK 4,
u circumference of the fuse element inm,
A area (depends on the geometry of the fuse element) in n¥.

Following the same procedure as in previous sections (4.3.1.1-2) we integrate Eq. (4.16)
over [i-0.5; i+0.5] (Fig. 4.9). After integrationequation yields:

y A(x)%{_ +| A(x)%{_ +f.moT +a, (1 - T4k

i (4.17)
+ g(T,r)A(X)DXE = A(X)q, (T)Dx

Replacing the derivatives by central differences in space and derivative in time by
backward difference, the Equation (4.17) gives:



66 Chapter 4 Numerical calculation of temperature behaviour in a transient state regime

mA( n-T) +—' 05805 (0 _ 0
da.mar- Ty +a, (@) - Ty (4.18)
gIADXI n n-1 —_

o (T"-T"") =AqgDx

The space step Dx and time step Dt is computed by:

L t

Dx=—— and Dt =— (4.19)
N-1 K
here: L length of the fuse dement,
N number of nodes in which the temperature is calculated,
T time needed to reach steady state in some Xx; hode,
K number of time steps needed to reach steady state regime.

Dx/2 Dx
[P
L Ti+:l. ! Ty
¢ ; o X

[ i+1 X
Figure4.9 Thefinitevolumegrid of fuse

4.3.2. Numerical implementation of boundary conditions

4.3.2.1. Flat electric cable

The mathematical model of heat transfer in the flat cable consists of PDE and two
boundary conditions. Therefore, the heat transfer problem must be considered as an ini-
tial-boundary value problem. Here we have to deal with mixed-type boundary condi-
tions, which consist of Neumman type boundary conditiors (second kind) and convec-
tive-radiative limit conditiors (third kind). Since the flat cable model is asymmetrical
system (see Fig. 4.4), we can use symmetry boundary condition at y = 0. The cable is
placed in air in a horizontal position and affected only by laminar free convection and
radiation to the environment. Due negligible difference between the heat convection on
the upper and lower sidesof the cable, this symmetry assumption is correct.
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In this section we show how to approximate this type of boundary condition in order to
have the same order of accuracy as the governing equation.

Initial and boundary conditionis given as:

N

j:jT(y,O) =T, (¥), y1 [0y,]

1

bim 1 )Y g 130 (4.20)
e

:::- | N%;/’t) :ac(d,T)(T(y,t)- Tenv)+ es ((T*(y,t))“ ] (TenV)4) 30

T Y=Yn

here T eny is the absol ute temperature of environment in K.

The first boundary condition, which is derived from the symmetry of the physical
model, has to be inserted into the main equation (4.5) and integrated over region [ro;

ro.s):

T Yos Yo

1}1 a*f‘(y)—fiwg(T y)— oY= T 9 (4.209)

Following the same procedure as in the derivation of the discrete form of the governing
equation (4.8), the following discrete form of the first boundary conditionis obtained:

__los -T" DYoos TN -T™) = 4.20b
Dyos( i+1 =~ )+ [1 ( i i ) Q/Oqo ( )

In order to describe heat conduction through the boundary of cable insulation and envi-
ronment, we have to integrate Equation (4.3) over the region[yn-o0.5,Yn]:

YN YN
: c‘>ﬂ gr‘(y)—jﬂw ogDyﬂ—dy— vy (4.21)

YN-05 YN-05 YN-05

Integrating Equation (4.21) over [yn-o0.5;yn] and considering convective — radiative phe-
nomena at the boundary of insulation layer in the nod yy we get heat conduction eque-
tion for the area [yn-o0.5;yN] :
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* 4 * 4 I N-0.5 n n
@y - To)+b({m) - (o) n+ =0 - 7o)
DYy-os (4.22)

gin DyN n _ n-1 _1 n -
+ oDt (TN TN )_2qi[)yN’|_N

4.3.2.2. Round electric wire

The heat conduction equationof cylindrical electric wire hasthe same type of boundary
conditions as flat cable (section 4.3.2.1): symmetry and convective-radiative boundary
condition. The wire is placed in air in a horizontal position and affected by laminar free
convection and radiation to the environment.

Initial and boundary conditions are given as following:
!
.:.T(r,O) =T, (r), r ] [0.5,I’N]

v
iimi (=0 120 (4.23)

—a (@ T, - T, )ves(T) - (o)) 12 0

r=ry

L
P

Here, the first boundary condition, which is also derived from the symmetry of the
physical model, has to be inserted into the main equation (4.9) and integrated over re-
gion [ro; ros]:

& grl (r)><——dr + dDrg(T r)—dr = ¢yDrq(T,r)dr (4.233)

fo fo

Following the same procedure as in the derivation of the discrete form of the governing
equation (4.12), the following discrete form of the first boundary conditionis obtained:

_Tosl as Tn-T" +M(‘|‘i” - T™Y) =Dr, 1,50, (4.23b)
Drys Dt '

In order to approximate the heat flux a r=ry, we have to integrate Equation (4.9) over
region [rn-os;fn] and in g insert the second boundary condition of equation system
(4.23):

- Oﬂl I(r)x_-dr +g(T)ﬂ— K 09(, r)—Drrdr = d)rrq(T r)dr (4.23c)

'N-05 'N-05



4.3 Non-linear heat transfer model of electrical conductors 69

Integrating Equation (4.23c) over [rn-0.5,fn] and considering convective — radiative phe-
nomena at the boundary of insulation layer in ry point, we get the heat conduction eque-
tion for [rn-o.5;rN] area:

N - . ro .. W r, Dr N o
@ -T,)+es (1) - (12, )) + Dncosl neos (i TN_1)+92N—DtN(DTN - DT

Dry.os (4.23d)

1 .
==r,Drygn,i =N
2N NqN

4.3.2.3. Electric fuse

For axial heat transfer in the fuse element we consider Dirichlet (prescribed tempera-
ture) boundary conditions. The temperature on both fuse holders should be equal to the
maximal permissible temperature of the electrical wire. Therefore, temperature of the
electrical wire can be assigned to the boundaries of the fuse holders.

Initial — boundary conditiors:

iT(X1O) :Tenv (X)’ XT [07 XN]
iTOD) =T, t2 0, (4.24)
AT(% 1) =T (t), 12 0,

4.3.3 Solution of the equation system by Newton-Raphson method

4.3.3.1 Flat electric cable

Sections 4.3.1 and 4.3.2 have shown how to approximate differential equations by the
finite volume approach. Thus, the heat transport problem in electrical cable, which is
governed by asingle differential equation and boundary conditions can be approximated
by a system of agebraic equations. It is very important to understand what methods are
best applicable to solve these systems of algebraic equations. If the number of equations
to be solved is large and the equations are non-linear, one needs to examine the nature
of the resulting system of equations. From sections 4.3.1 and 4.3.2 it can be seen, that
we have to solve non-linear system of equations because heat capacity g of copper is
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second order temperature dependent and the radiation boundary condition is fourth or-
der temperature dependent. Other nonlinearity problems like electrical resistance non
linear behavior and heat conductivity non-linear temperature dependence can be ne-
glected since these phenomena have a small influence on computationa results if the
temperature does not exceed about 150°C.

The objective of this section is to illustrate how to solve a non-linear system of age-
braic equations obtained from the governing single differential equation and its bound-
ary conditions in order to determine unknown temperature variables

Since we have to deal witha one-dimensional heat transfer problem, the Gauss elimina-
tion method [19] can be further simplified by taking advantage of the zeros of the tridi-
agonal coefficient matrix. This modified procedure, generally referred to as Thomas Al-
gorithm, is an extremely efficient method for solving a large number of such equations
[19]. Using this algorithm, the number of basic arithmetic operations for solving a tridi-
agonal set is of the order N, in contrast to O(N®) operations required for solving with
Gauss Elimination. Therefore, not only are the computation times much shorter, but the
round off errors are also significantly reduced.

In the Equation system (4.25) a Newton-Raphson iteration Method used to linearise
equations. The NewtorRaphson method is an algorithm for finding the roots of systems
of nonlinear algebraic equations by iteration. If a good initial guess is made, Newton
Raphson iteration process converges extremely fast. Iterations are terminated when the

computed changes in the values of |P” - P™*| become less than some specified quantity

e.

: CoPy - boP" =13 =qg - ¢ Ty +bT,"
:I:' alpn +01P1n - blpzn = fln = QT +alT0" - ClTln +b1T2n;

0
|

I n n n n n n n n (4'25)
i-a PJ_1 +chJ - b; P”1 =f =q; +a;T; ;- chj +b T,

Li=1.N- L

I ayP" +(c, +a +es ATOHPY =0 =ay +a, Ty,

|
I
|
.|i+ (_ Cy - ac)TNn - €8 (Tl\rl])4 +acTenv +es (T):nv

here: P unknown temperature variables;
T initially guessed values.

Temperature variables P are found by following expressions:
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i b f

+ alpha :_O;betao =_0

: 0 C0 CO

.

i al pha - J

i ' ¢, - ajapha;

{ f, +a,beta,

[ beta, = (4.26)

_ fN +a, beta ,

P - a,alpha,, ,
s —alphal T +beta, i=1.N-1
f
I I Dr,g Tt
ha.e: b - 0.5 © C, = 05 + 0 0.5; - EJ+ i 1 |:0;
0 [)yos 0 [)yO-s Dt qO I:)yO gO.SI:)yO Dt
I i- I i+ g| Tin-lDyi
aj:—Dj"f’ ;bj:—DyO'5 ; C; = Dy E,qj:EJ+gi 5 :
i- 0.5 i+0.5
1<i<N;
I\ I\ On.05DYn. 1 Tt
aN - N-0.5 ,CN - N-0.5 + NO.;UN 0.5; qN :_EJDyN +g N N 1
I:)yN- 0.5 |:)yN -05 2 2Dt
i=N.

4.3.3.2 Round electric wire

The way of solving the system of algebraic equations is analogous to the method de-
scribed in the section (4.3.3.1):

: CoPy - P =17 =qg - ¢, Ty +b,T,";

i- a'lPon +C1P1n - blPZ” = f1n = CIT +alT0n - C1T1n +b1T2n;

(4.27)

Temperature variables P are found from the Eq. (4.27), where the coefficients a, b, ¢
and f are calculated by:
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.l .l Dr.r,.g T .
b - 05" 05 , C. = 05" 05 + 0'05 0.5; =r DI’ EJ + Dr i , |:0,
0 DI,O.5 0 DI,O.5 Dt qO 05 0 gO.5 0 Dt
a = sl i-05 b, = Fis05! i+ ¢, = 2ril L Digy ’

Dri— 05 IJﬂi +0.5 Dri Dt
T-n_l

q, =r,DrEJ +gDr, lljt , 1<i<N;

rl rl  Drgr 1 LN .
a,=—;c, =—+—; =—rDrEJ + , 1I=N.

NI T T T In Tt

4.3.3.3 Electric fuse

In order to calculate the temperature distribution in the fuse system a nortlinear system
of equations has to be solved because of the radiation term in the equation (4.16). We
use, asin previous cases a Newton Raphson method to solve the problem.

The system of algebraic equations is given as follows:

}. CoTo - BTy =Tops

i- aR +(c +au+es 4T))°u)P - b P =q"+a T - (c, +au)T"

:

- €s (Tln)4u +aUTenv +eSTe‘r11vu +b.LT2n;

IR (4.28)
i- a R, +(c; +au+es 4T W)P" - b BT, =q +&T], - (c; +au)T’
i- & (T]) u+auT,, +es (T)au+b,T/;

I:Z j=1.N-1

f-ayTo +ey Ty =Ty

Here the coefficients a, b, ¢ and p are calculated as follows:

c =1, b=1,T,=105; i=0;
a = A.od ios : bj — Aosl is0s ;c = 2Al + Dx9; 1
DX_ o5 DX 105 Dx Dt
_ T 'Dx - .
g =ARJ+g———, i=12,...,N-1;
a, =1;c, =1; T, =105, i=N.

Results of numerical simulation using the approach developed in this chapter together
with avalidation procedure are presented in Chapter 6. Flat electrical cables of different
conductor size supplied by the company Technology & Innovation GmbH and round
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electrical wires supplied by the company Leoni Bordnetze GmbH were used. Fuse ele-
ment samples were provided by DaimlerChryder AG.



CHAPTER
5

BASIC CONSIDERATIONS OF THE
EXPERIMENT AND
EXPERIMENTAL SETUP

This chapter presents the theory of the experimental procedure used in this work -
gether with the measurement setup and the data acquisition The aim of the experiments
was to investigate the electrical load capacities of various electrical wires and cables.
For this, two types of measurements were required:

a) Current versus voltage measurement,

b) Resistance versus temperature measurement

The investigation commenced with the measurement of power dissipation as function of
temperature of the wire surface, called “current versus voltage measurement”,(a@). The
next step wasto validate the linear temperature coefficient ar, called “resistance versus
temperature measurement”,(b). Later the information from both experiments was used
to correct the theoretical model, if necessary.

First, some information on how properly the measurements have to be performed will
be given The theoretical background for the measurement specification was devel oped
extensively during this research work. Then, a figure detailing the experimental set up
for both cases will be shown. The procedure of parameter acquisition using GPIB (Gen+
era Purpose | nterface Bus) devices and the appropriate software will be also presented.
The programme is givenin the Appendix C.

5.1 Basic considerations of the experiment

5.1.1 Resistance versus temperature measurement

The aim of this experiment is to determine the linear temperature coefficient a+ of cop-
per wires and cables. Later, this temperature coefficient at is used to calculate the wire
and cable temperature from the current versus voltage relationship obtained from the
second experiment: the current versus voltage measurement.

The electrical resistance R of the wire has to be determined for different applied tem-
perature T; values of the wire. These temperatures are achieved by heating up the cable
in a heat chamber. Chamber temperature T¢, should be increased in equal steps from
environment temperature Teny UP to max. cable temperature T. In order to avoid errors
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caused by an unsteady state during the measurement, the resistance of cable should be
aso measured for decreasing temperature values down to Teny.

During the measurement process, the cable is not heated eectrically. For the qualitative
measurement, the following three conditions must be fulfilled:
a) For every resistance measurement step, temperature steady-state condition
must be obtained,
b) The measurement error due to material restraints must be estimated,
¢) Thermo voltages must be avoided.

A. Requirements for a steady-state temperature condition

Here, the most important parameter is a steady-state time t, after whichtemperature dif-
ference between T, and cable temperature To becomes zero. The timet isinfluenced by
atime constant t , which is different for every wire type. In order to calculate steady-
state time t, one should determine the factor n, i.e. the number of time constants t
needed to reach a steady-state:

t=nt (5.2
To calculate factor n, we can consider the precision of the heating chamber temperature.

We can assume that the temperature difference dT, between the cable temperature and
chamber temperature should be equal to the temperature error of the chamber dTgp:

dT, =JTe™" =dT,, (5.2)

From there, the factor n is given by:

JT
n=In

(5.3)

ch

where: dT.  temperature difference between cable and chamber temperatures  inK

dTs  temperature measurement error of the heating chamber inK
t thermal time constant of the cable ins
JT  step size of temperature interval inK
n time constant factor

t steady-state time ins

Here we consider dT¢, from the technical specification of heating chamber 0.5 K. Step
Size of temperature interval for resistance measurement isJ T = 10 K. Then, then factor
iscalculated:

In3 In10/05 = 2.996 » 3|

(5.4)
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this means, that only after 3t cable resistance can be measured.

B. Permissible measurement error of cable resistance.

In order to estimate permissible measurement error of cable resistance, we ought to use
the following formula:

R(t) = Ry[1+a (T - T,)+b, (T - T,)?|= R [t+a, (DT) +b, (OT)?] (5.5)
After differentiation, we obtain:

dR(t) = R [a, +2b,DT]dDT (5.6)
For 3r= 0, equation (5.6) simplifiesto:

drR
d_T :ROaT (57)

If we apply a small difference to the resistance dR and temperature dT, we get a tem-
perature error based on reference resistance Ry(To) at reference temperature To:

dR

:M :aTdT
Ro

5.8
R (5.8)

In the case that measurement error of temperature does not exceed a value of
|dT | < 0.5K, we get maximal permissible relative resistance error dR/R, for copper:

drR

=£ 0.19% »£ 0.2% (5.9)

The total measurement error consists of measured cable temperatures dTy (heating up),
dTe (cooling down) and error of heating chamber temperature dTeh:

dT = chl+ dTCz + chh (510)
Inserted in the equation (5.8) we obtain the following maximal allowed resistance error:

- linear part: 2b,DT <<a,
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drR

=3a,dT,, (5.11)

- linear and square part:

‘% =3(a, +2b,DT)dT,, (5.12)

here:

drR _ . .
—1 - maximal permissible resistance error.

For the temperature interval DT=0 to 120K (or considering environment temperature
Tenv= 20°C, T=20to 140°C) we get:

drR

=(£1.14... £1.19%)T,, (5.13)

Considering the temperature error of the chamber dTq, £ 0.5K we obtain maximal

. . drR
permissible resistance error —‘ :
Ro
drR
Rl (£ 0.57... £ 0.60%) » 0.6% (5.14)

C. Measurement error due to thermo voltages.

Thermo voltages occur if two different metals at different temperatures come into con-
tact. It is critical to perform the experiment by measuring voltage drop on the cable
rather than doing a four-pole resistance measurement. This is obvious from the follow-
ing example:

Thermo voltage for Cu vs Cu-Fe contact is about 5 mV/K whereas for 100 K it makes
0.5 mV. In case of 4-pole resistance measurement for 1 mn? copper wire thermo volt-
ageis.

at 1 mA current —only 17.5 nmV/m,

for 3 mwire - » 50 nV

Experiment results are presented in the table 5.1. Here are evaluated linear and square
temperature coefficients a g5 and (35 at 65°C reference temperature respectively.
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Experiment Nr. | Cable type aes in UK Res in /K
1. Round cable FLYR-B 2.5mm? 3.364 107 -2810"
1. Extruded PET flat cable, b=50mm | 3.350 107 -2.8-10°
2. Extruded PET flat cable, b=50mm | 3.360  10™ -9.0 10°
1. PET flat cable b=20mm 3.340 103 -7.0°10°
2. PET flat cable b=20mm 3.000 107 -7.8-10°
1. PET flat cable b=50mm 3.360 107 -2.0°10°

Tab. 5.1 Linear and squar e temper ature coefficients of round and flat electric cables

It can be seen that square temperature coefficient 35 is negative while theoretical value
is + 6,010 1/K2. This phenomenon is difficult to explain. Therefore, only the linear
temperature coefficient ags was taken into consideration for the whole mode valida
tion.. Since, temperature of the cables does not exceed 140°C, linear approximation of
the resistance as a function of temperature is sufficiently precise.

5.1.2 Current versus voltage measurement

The aim of the second experiment is the determination of the current-voltage character-
istic of wires and cables. From this characteristic, the relationship between wire resis-
tance and its temperature can be determined. This information is very important in order
to validate the mathematical model of wires and cables presented in Chapters 3 and 4.
This model validation is given in Chapter 6, where experimental curves are compared
with those from numerical calculation The experiment is performed by measuring the
voltage drop U; for different current values I;. It is advisable to increase the current I;
stepwise from 0 to maximal permissible cross section current Inmax in 10 equa intervals
J1. The same procedure should be repeated whilst reducing the current down from | nax
to 0.

Ambient temperature of the experiment environment should be kept constant and any
forced air movement should also be avoided.

In order to perform qualitative experiment almost the same requirements as in (5.1.1)
have to be stated:
a) For every voltage-current measurement step, steady-state condition must be
obtained.
b) Measurement errors due to restraint of materials must be estimated.
¢) Thermo voltages must be avoided.
d) A minimum required distance between current and voltage drop on the cable
contacts must be kept.

The first two requirements (a) and (b) have the same definition as in the resistance-
temperature experiment. The third requirement (c) should be reconsidered, since the
thermo voltage influence is not critical in this case due to high current induced higher
voltage drop.
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The thermo voltage for Cu vs. CuFe pair is 5 nV/K, that is for 100 K — 0.5 mV. Con+
sidering the voltage drop in 1 mn? copper wire:

For 10 A measurement current, the voltage drop leadsto 0.175V/m. Fora10 m
length copper wire (which isa minimum requirement to avoid the influence of
the boundary temperature decay) the voltage drop results in 1.75 V. This is
about 300 times bigger value as the thermo voltage for 100 K.

From this explanation follows that thermo voltages do not significantly influence to
measurement error.

The distance between current and voltage measurement contacts of non-insulated wire
can be calculated according to equations (3.51, Chapter 3) is given by:

o= \/ | A® (5.15)

2
auA-a l°r,

2

Denoting A=

2
c =M | = 1d (5.16)
2 \ap®d®-4a, l’r, \4a-a,d?r,

We can rewrite equation (5.16) in the following form:

p(: and u=pd we obtain:

o ST . (517)
2| & a/lry,o0
agts 23 -
apd” 4

For asmall current density, the Eq. (5.17) can be simplified as follows:

n (ld
Y P 59

here: n is the number of length constants, which may be applied ranging from
any given temperature to the cable temperature of an infinite length with
an acceptable error.

For application in this study a factor n = 3, leading to an error of 5%, is sufficiently
precise:

= —\/7 0. 8971/ {mm (5.19)

here: cable diameter in mm.
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If we consider a critical heat convection coefficient a = 16 and wire diameter of 1.0 mm
we get:

3c=224mm » 22¢cm
Following equations are used to compute cable temperature T as a function of current I:

1. Determination of cable temperature T:

R(T) = Ry1+a,(T - T,) +by(T - T,)?| = R [L+a,(DT) + b, (DT)? (520)
here: a, linear temperature coefficient of copper at reference
temperature Ty in VK
b, sgquare temperature coefficient of copper at reference
temperature Ty in VK2

Material constants a,and b,have been determined by the experiment described in

(5.1.1), however only linear temperature coefficients will be used to calculate cable
temperature. Cable temperature T is found from Eg. (5.15):

1ar 0
T =23 2

ikt

(5.22)
here: i number of measurements within one experiment
2. Determination of cable resistance R:

From voltage drop measurement on the cable at current I; according to Ohm’s law the
resistanceis:

U i
R = T
(5.22)
here: |; current calculated by voltage drop on the shunt Ug with constant
resitance Rs:
I —_ U si
- R

(5.23)
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5.2 Experimental setup
5.2.1 Determination of the cable conductor temperature coefficient

Figure 5.1 shows experimental setup for cable resistance / temperature measurement.
The cable is placed in a liquid silicon bath, which is situated in a heating chamber
(Type: Nixon 815, ISOTECH). The liquid was used as a heat transferring media in or-
der to ensure very constant and homogeneous temperature in the cable. The heat cham-
ber has its own temperature control, which however is not precise enough for this kind
of experiment. Therefore, an additional Pt10 sensor was used to measure the liquid and
cable temperature.

GPIB (Genera Purpose Interface Bus)

Liquid

Heat silicon bath
GPB chamber /
11
[\ Pt10 peristaltic pump
High precision digital
multimeter-miliommeter | |

i l ~ Liguidsilicon

Flat/round cable

4-pole resistance
measurement

Fig. 5.1 Experimental setup for the cable conductor resistance measurement at different
temperatures for the determination of the temper atur e coefficient

The voltage and the current measurement connectionwires were soldered to the cable
and sealed with temperature resistant insulating epoxy adhesive. This insulation is very
important in order to avoid short circuits in the fluid. Resistance measurement was per-
formed by the 8Y2 digits precision digital multimeter PREMA 6040S. This multimeter
as well as the heat chamber was controlled by a GPIB (Genera Purpose Interface Bus)
controller, which allows the automation of the whole experiment. The liquid silicon is
circulated by a pump, which alows more precise temperature control. All input data
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(control of experiment equipment) and output data (measurement results) are handled
by a LabView program, which was specifically developed for this purpose.

5.2.2 Determination of the cable conductor temperature

In figure 5.2, the experimental setup is givento measure cable voltage drop at different
load currents. In this experiment, the cable is placed in free air without touching any-
thing. The laboratory room has constant ambient temperature of 24°C and no significant
ar currents. Under these laboratory conditions, a precise measurement of the cable
power dissipation is possible.

im

= —=a] [«
GPIB (General Purpose Interface Bus)
GPIB
-
High precision digital
multimeter-miliommeter
Thermocouple
[ max.150A | length=10m
Portextension 0...300A 0..18V L_somv_ | — 1
board Shunt

| DC power supply Measured cable
unit

Fig. 5.2 Experimental setup for thecable conductor voltage measurement at different cur-
rentsfor the determination of the conductor temperature

All experimental equipment was controlled by a computer via GPIB interface and in
house developed LabView software (Appendix C), which enabled data acquisition. The
whole experiment is fully automated, avoiding any interference of an operator with the
experiment environment.

The \oltage drop and the current of the power supply unit EA-PS 9018-300 are indi-
cated by the unit, however it was more accurate to usea high precisiondigital voltmeter
and ashunt (precision class 0.2) in order to measure the voltage drop and the load cur-
rent.

The cable resistance is obtained by the division of the voltage drop through the load cu-
rent. Here, it is very important to take the temperature drop at the end of the cable into
account. Therefore, the measuring points of the voltage on the cable must have are-
quired minimum distance (see Eq. 5.19) from the current supply connections. Finally,
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the cable temperature is calculated from the cable resistance with the help of the con-
ductor temperature coefficient.

For the sake of redundancy, a second independent method to receive cable temperature
has been applied by using a nickel-constantan thermocoupl e sensor, which was attached
to the cable surface. This sensor was also used for safety to cut off the power supply
unit if the maximum allowed temperature of the cable is exceeded.

Thermocouple sensors measure very precisely even if only very small surfaces are
available. This is very important for small size electric cables. It would not be possible
to measure the temperature of such cables with a Pt100 sensor. The disadvantage of
thermocouples is however, that a very precise reference temperature of zero degrees is
required. For this purpose, awater- ice mixture was used.

5.3 Measuring process and parameter acquisition

5.3.1 Determination of the cable conductor temperature coefficient

The measuring algorithm of the resistance vs. temperature characteristic of the cable is
given in by P. Mack [24]. During this measuring process the cable resistance was meas-
ured by 4-pole measurement and its results saved in the computer. Temperature of the
cable was measured by Pt10 sensor, which had been placed as close as possible to the
cable. The resistance of Pt10 was also measured by the same digital multimeter (DMM)
and later, resistance values were converted to the temperature. This conversion is possi-
ble by the empirical equation:

eT e T T 0
- 15 (5.19)

T=T +0.045
100°C §100°C £419 568°C £eso 74°C

here T is given by the equation:

T ——[W(T) ed— % 12 (5.20)
a

100°C g100°C
or,
5+——-Jae d o_ 4d W(T)-1
T = e 100g \e 100 10000 a (5.21)

2d

10000
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heree W(T) = R(T)/R(0°C),

R(T) measured resistance of Pt10 sensor inW,
R(0°C) = 10.62796 in Wm,
a =3.925870'10° in1/K,
d = 1.496225 in °C.

5.3.2 Determination of the cable conductor temperature

The measuring process and data acquisition of the voltage vs. current experiment had
been implemented in Pascal language by T. Roida [25] and later improved in LabView
by the author of this study (see also Fig. 5.3, 5.4).

The idea of the measuring process is illustrated in the following table:

Set the power supply unit to 15 VDC

The user defines the step size and interval of currentsfromi=1ton+1
(n = number of currents)

The user sets the number of measurements for a single current value from
I =1 to m(m = number of measurements of one current value)

The user sets one waiting time for al the measurements

ins
Steady state = Number of measurement times (Waiting time for one measurement)
Reset the power supply to 0 A
Close the files

Tab 5.1 Algorithm of the measurement program

The visualisation of the measurement data is given in the figures 5.5 and 5.6. The time
scade (Fig. 5.5) illustrates the measurement procedure and gives information about the
transient state regime. InFig. 5.6 the temperature of an insulated copper wire is depicted
as functionof the load current.
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Fig. 5.3 Experimental setup of flat electric cable (FFC)

i e o b s Y Tt 13,
Fig. 54 Experim setup of round electric cable



5.3 Measuring process and parameter acquisition

120

110 L Transient state of cable surface temperature

100 |
90 |
80

Reached steady state
70
60

50

Transent state cable temperature T in °C

40

30

20 . ! . ! . ! . ! . ! . ! . !
750 2750 4750 6750 8750 10750 12750 14750

Measurement timetins

Fig. 5.5 Experimental transent temperature-time characteristic of electrical cable
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Fig. 5.6 Experimental steady-state temperature-current characteristic of electrical cable



CHAPTER
6

MATHEMATICAL MODEL
VALIDATION

AND INTERPOLATION OF
THE NUMERICAL RESULTS

This chapter starts with the validation of the numerical simulation by the measurement
results. Section 6.2 presents a least-square interpolation of the validated results. The
theoretical mode is determined by the thermal conductivity of insulating materials, the
temperature coefficient of copper resistance and the convection and radiation coeffi-
cients. The numerical esults are fitted by polynomia or logarithmic functions, where
the coefficients of those functions are obtained by applying the |east- square technique.

6.1 Mathematical model validation

Before starting the comparison of the theoretical (numerical) results with the experi-
mental ones, the quality of the model equations and the evaluation procedure for fitting
them to the experimental data should be checked.

The quality of derived heat equations can be understood as the reduction of a 3-D model
to a1-D model. During experimental work, the model reduction to 1-D problem turned
out to be sufficient with a negligible error between the theoretica and the physical
model.

In addition, boundary conditions can be considered as the quality factor. Implemented
limit conditions must be as close to readlistic conditions as possible. In our model, the
boundary conditions represent laminar free convection to the air while the effects
caused by turbulent convection were neglected. In reality, the experiments were per-
formed in an environment where the forced convection was minimised. In addition
convection caused by turbulence was negligible.

The first step was to the validate linear temperature coefficient of the conductor resis-
tance a,, since this parameter is important for the conductor electrical resistance behav-
iour in the theoretical model. The basic material for the production of stranded conduc-
tors for automotive wires is oxygenic copper according to DIN 40500, part 4. The DIN
designation of this conductor type is ECU 58 F21. Since this material does not consist
of pure copper, and the manufacturing process might have changed the properties, it
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was necessary to measure and validate temperature coefficient of copper resistance
again.

Below the measurement results of conductor resistance as a function of temperature are
given:
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Fig. 6.1 Measuredresistance R of round wire for temperature range from 0 to 100 K.
M easur ed temper atur e coefficient of copper resistance isa, = 0.004 1/K (based on 20 °C)
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Fig. 6.2 Measuredresistance R of round wire for atemperaturerangefrom 0 to60 K.
M easured temper atur e coefficient of copper resistance isa, =0.0036 K (based on 65 °C)
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From the measurement results (Fig.6.1) it can be seenthat a, has avalue of 0.004 /K
instead of 0.0038 /K as given in the literature for pure copper material.

Figure 6.2 shows a temperature coefficient of 0.0036 /K (based on 65 °C), which cor-
responds the value of 0.004 1/K (based on 20 °C). The value of 0.0036 1/K is aso use-
ful, since all our calculations are based onthe environment temperature of 65°C.

Below are equations for the conversion of the temperature coefficient a, to any refer-
ence temperature. For the derivation, the following functiors of the electrical resistance
R(T) through the points T; and T, are considered:

} R(T) = R (1+a,DT, + b,0T?)

fR(T) = R,{L+a,DT, + b,DT2) 6
here: DT, =T-T,

The aim is to obtain arelationship betweena, and a;.

First and second order derivatives of Eq. (6.1) are:

R(T)=R(a, +2b,DT,) (6.18)
R(T)=R,(a, +2b,DT,) (6.1b)
R'(T) =20,R (6.1¢)
R(T)=2b,R, (6.1d)
b,R, =b,R (6.1¢)
a,R, =a,R+2b,R(T,-T,)) (6.11)
R, =R +a,R(T,-T,))+b,R(T,- T1)2 (6.19)
Then the result isthe following:

R, =R|i+a,(T,- T,)+b,(T, - .} 6.2)
a, = a, +2b,(T,- T,) 63

) 1+a1(T2 - Tl) + bl(TZ - T1)2
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b
b, = L 6.4
i 1+a1(T2 - T1)+ bl(TZ - T1)2 ( )
Since the non-linear part of the temperature coefficient 3 is very small, for temperature

up to 140 °C 3 can be assumed zero (R = 0). In that case, the equations are simplified as
follows:

R, = Rl[l+al (Tz - Tl)] (6.5)

— a,
) 1+ al(TZ B Tl)

a,

(6.6)

The rext step of the model validation is to estimate the heat conductivity coefficient ? of
the insulation materia. It should be noted that during this research work the heat con-
ductivity coefficient was not investigated experimentally. Here, in order to save investi-
gationtime and costs, the coefficient ? was obtained by fitting of the temperature meas-
urement results with theoretical ones. Of course, it would have been possible to use the
coefficient from the literature, however the available values were only given in avery
narrow temperature range. Therefore, the ? coefficient was varied in order to fit to the
experimental curves of the conductor surface temperature.

Below the measured conductor surface temperature of round and flat electrical cables
are compared with the computed ones.

100
[ /
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0 L Conductor width: 50 mm £
[ Layer sequence: (PET): 100 nm y;
: Copper: 147 mm L
80 |- (PET): 100 nm s
o p
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5 sof 2
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Current | inA

Fig. 6.3 Measured temper ature of a flat cable conductor (conductor width 50 mm) as func-
tion of the electric load
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Fig.6. 4 Measured temperatureof aflat cable conductor (conductor width 74 mm) as
function of the electric load

Fig. 6. 5Flat cable (FFC) examples
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Fig. 6. 6 Measured temperature of around wire conductor (cross section 0.5mm?) as func-
tion of the electric load
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Fig. 6. 7Measured temperature of a round wire conductor (cross section 35mm?) as func-
tion of the electric load



6.1. Mathematical model validation

95

Fig. 6. 8 Round cable examples
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Fig. 6.10 Fuse element prototype with temper atur e sensor s (ther mocouples). Fuse element
(hollow cylinder) dimensions: inner diameter — 6mm, outer diameter 8mm. Material type
of the fuse element: Bras 58 (CuzZn39Ph3).

Finally, the heat convective and radiative coefficients had to be validated. During sepa-
rate experimental work [18] a number of measurements of various round wires was car-
ried out in order to validate the empirical heat convection and radiation formulas, which
were presented in the section (2.5). The results of this experimental work have shown
that the evaluation procedure of convection and radiation coefficients is correct.

Since, it has already been described how the model was validated, now the obtained re-
sults can be studied. The following three models, which differ by the geometry and type
of materials are presented:

1. Figures 6.3 and 6.4 show theflat cable conductor temperature as function of the elec-
trical currert. These results are obtained for a cable, which is placed free in air, in a
horizontal position. The temperature is taken after the steady state has been reached.
Both, numerical simulation and measurement data, gives a very good agreement.

2. Figures 6.6 and 6.7 show the round wire conductor temperature as function of the

electrical current. By altering of the conductivity coefficient | of PE (Polyethylene) in
figure 6.6, a better agreement of both curves can be achieved.

3. Figure 6.9 shows the temperature distribution along the fuse element. The length of
the whole system was about 1 meter, since the influence of the fuse holders and contacts
must be considered. Also electrical wire, which is protected by this fuse had to be taken
into consideration too. The temperature distribution is presented for different electrical
current values. The calculated curves in al figures match with the measured data a
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ceptably well. At the boundaries of the fuse holders and contacts, a larger error is pre-
sent. This can be explained by the limited performance of the experiment setup. Tem-
perature of the fuse system was measured only by three thermocouple sensors.
Later, three measurement points were interpolated. However, high accuracy of tempera-
ture gradient on the boundaries is not of primary importance. Only the fuse element
maximal temperature is of interest, because this temperature causes the required inter-
ruptionof the fuse-melting element.

Discussed results show the fact that the approximation made for the derivatives of the
eguations (Chapter 2: 2.4, 2.6, 2.8) as well as the validation of the physical model con
stants are applicable under the experimental conditions, whichare interested in this con-
text.

6.2 Interpolation of the numerical resultsto reduce heat
transfer equations

Throughout the entire study, the heat transfer analysis algorithm was derived using ana-
lytical / numerical methods. This algorithm allows the determination of the thermo-
electrical characteristic of electrical conductors in both a steady- and transient-state re-
gimes. The proposed approach provides very good accuracy between theory and ex-
perimental results, is applicable for different conductor geometries, and can be extended
froma 1-D to a 2-D problem. However, very often, numerical smulation of heat trans-
fer requires a lot of computation time that is not acceptable if the numerical simulation
routine has to be integrated into another complex simulation system. This leads finaly
to a situation, where the whole performance of a complex simulation system becomes
very poor. Another disadvantage of pure numerical simulation of heat transfer problem
is that very often in ared life, the calculations have to be done very quickly andin a
simple manner

Therefore, our intension in this study is not only to present fully-developed numerical
models but also to develop simple, with the minimum number of physical constants,
analytical equations, which describe best the steady-state and transient-state heat trans-
fer regimes in any type of conductors. These equations should have the advantage of
producing a manageable relationship having only two or three constants, which can be
obtained easily by the least-square (LS) algorithm. Finally, having those ssimple equa-
tions, an operator can perform the calculations in an easy way.

In this section we will present polynomial and logarithmical equations of thermo-
electrical characteristics and show how to apply the LS agorithm [8,9] for the calcula
tion of the “simplified-equation” coefficients. It is very important to predict correctly
the correct equations with a minimum number of unknown constants. Basically, two
type of functions are of interest: polynomia regression and logarithmical functiors.
With these two functions, al important thermo-electrical characteristics can be de-
scribed.

The following functions are considered, whose physical meaning will be given later:
- thermo-€lectrical characteristic DT(I) (Fig.6.11)
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- heating-up time characteristic tg(l) (Fig.6.12)
- time constant characteristic t() (Fig.6.13)
- €eectric-field strength characteristic E(I) (Fig.6.14)

It is worth to emphasise that these four functions are valid for any kind of conductor
(flat cables, fuses or cable bundles), where heat generation by electrical current takes
place. For the illustration of the LS algorithm, a round insulated wire of FLRY-B -
2.5mn? type is used. Here the maximal fina temperature of the wire is 105 °C and en
vironment temperature 65 °C.
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Fig. 6.11. Thermo-electrical characteristicDT(l) of round insulated wire (FLRY-B,
2.5mm?) obtained from numerical calculation and approximated by polynomial function
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tained from numerical calculation and approximated by polynomial function
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Fig. 6.14 Electric field strength E(l) characteristic of round insulated wire (FLRY-B,
2.5mm?) obtained from Eq. (6.10)

The curves presented in figures 6.11, 6.12, 6.13 and 6.14 can be described by the fol-
lowing equations:

- thermo-€electrical characteristic (here 13 0):

DT(1 £1,)=al +b1?

(6.7)
- heating- up time characteristic:
I 2
tg(l > |0):t glnﬁ
1212
(6.8)
- time constant characteristic:
t=t,-cl®+dl?
(6.9)

- electrical field strength characteristic:

elr o Iry(1+a,DT +b, (DT?))

A A

(6.10)
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In equation (6.10) temperature difference DT is calculated by Eq. (6.7)

The coefficients of the equations (6.7, 6.8, 6.9) a, b, lo, tg, to, C, d, are valid only for one
specific type of wire. If another wire type has to be investigated, the coefficients have to
be re-computed. The Least-Square Method (L S) can be used to obtain these coefficients.

Applying LS method and solving the linear system of the equations leads to the follow-
ing required coefficients:

- final temperature per current coefficient a:

al,al, o -alal;or,
a= 1 1 1 1
R R
alal-gan:
1 1 1 4]
(6.11)
- final temperature per current square coefficient b:
alialor,-al-al, o,
b: 1 1 1 1
R SR
alal-galns
1 1 1 (4]
(6.12)
- heating-up time constant tg
3 |2
atnlnlznI2
t - 1 n~'o
9 n% |2 ('jz
o n -
a §&n <
e
(6.13)

- time constant per square root current coefficient c
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n n n
o 2.2 ,05 .
a I xa It +a

n n n n n

2 05_8 2 2 2.2 25 25 L& 2
toa l, xal, toa_lnxaln - I, xa lt,
1 1 1 1 1

c=

n 2
al, xal“ ga|25:
1 a

(6.14)
- time constant per square current coefficient d
La A 1 ted 1178 17 - a hod it +a 17 1)t
d - 1 1 1 1 1
aed 250 J g
ga In + a. In xa In
1 1

(6.15)

here: " =1,n; where n isthe number of calculating points in the wire characteristics,
I, — the electrical current values, whichare used in the characteristics of
Fig. 6.11-6.14
DT — temperature values, which are used in the characteristic of Fig. 6.11
— heating up time values, which are used in the characteristic of Fig. 6.12

tn — time constant values, which are used in the characteristic of Fig. 6.13

The relationship presented in Fig. 6.11 is a steady-state load characteristic of electric
cables. Here the temperature represents the steady-state for a particular load current
value. Normally, this characteristic ends with the maximum allowed temperature of the
wire or cable after infinite time.

In Fig. 6.12 heating up time is given as a function of the load current. This relationship
is well known from the fuse time-current characteristic and it makes sense to goply the
same characteristic to any electric wire or cable.

The heating up time is the time to reach maximal permissible temperature with a current
greater than the nomina load. For example, in Fig. 6.12 105 °C degrees are given as
maximal permissible temperature. Having available the time-current characteristics for
both: wires and fuses, it is possible to model the geometry of the fuse to match the heat-
ing-up time function of the wire. Finaly, having a fuse with such a characterigtic, it is
possible to protect the wire with good accuracy.

Fig. 6.13 gives the time constant as a function of load current. This curve gives the pos-
sibility to obtainany t constant as a function of only one variable; the current. It is also
straightforward to compute the transient state analyticaly, having t as the known pa-
rameter.

Fig. 6.14 represents the electric field strength dependence on load current. Here, the
non-linear curve behaviour is due to nontlinear electric resistance dependence on tem-
perature.



CHAPTER
7

CALCULATION OF THE HEAT
TRANSFER IN A
MULTI-WIRE BUNDLE

Contrary to previous chapters, where the heat transfer was modelled for a single electric
cable, in this chapter possible methods to calculate the heat conduction in a multi-cable
bundle will be shown. The main effort to solve this problem is devoted to the linear co-
ordinate transformation in order to ssimplify the model geometry and to the determina-
tion of an averaged heat conductivity coefficient of the multi-cable material media. This
chapter deals with a one-dimensional radial steady state heat conduction problem,
where the heat transfer equation is solved analytically. In analogy to a single insulated
conductor (see Fig. 7.1a), the multi-insulated cable conductor (see Fig. 7.1b) is consid-
ered as an insulated “mixed” conductor.

7.1 Coordinatetransformation of the multi-wire bundle
geometry

The calculation of heat transfer in a multi-cable bundle belongs to the heat conduction
problems for anisotropic multi-layered media [28]. The heat conductivity coefficient has
been determined using conservative averaging method for layered media [78], where
heat conductivity of single cables are transformed to a common mixed property or
mixed heat conductivity coefficient. The algorithm of temperature determination using a
conservative averaging method can be found in Chapter 8, (3)

The calculation method considers an anisotropic material that is homogeneous and has
constant thermo-physical properties. It aso considers radial symmetry, i.e. no angular
temperature gradient T/qf = 0. Then, the governing partial differentia equetion for

the heat conduction problem in acylindrical coordinate system becomes:

1%e TT()o_

L 7.1
i A0 (7.1)
here: ? thermal conductivity coefficient,
T temperature field,

Qv volumetric heat generation.
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This leads to a temperature drop in the cable bundle, whichis obtained in a similar way
as in Chapter 3 (anaytical analysis of heat transfer in cylindrical wires):

e 1 1 2S5 1 u
pT =22 s @+ 20 = (7.13)
pea(D+2S) 21, & Dg 4.
here: 7,7 heat conductivity of insulation and of mixed conductor in W/mK,
D diameter of the cable without insulation inm,
I the current inA,
p=an
1
describes the electrical power per length El, i.e. asum of all
single wires in W/m,
S thickness of insulation inm.

In amathematical sense, Eq. (7.1) istransformed by the linear coordinate transforma-
tion as shown in figure 7.1. In a physical sense, the governing equation (7.1) of an ani-
sotropic heat conduction problem is converted into an equivalent isotropic problem by
replacing different material coefficients by mixed materia properties.

This transformation has the following characteristics:
a) it islinear and continuous,
b) an anisotropic problem is converted to an isotropic problem after
transformation,
c) there is no stretch and the rotation in radial direction,
d) no gaps or overlaps are generated along the interface,
€) no diding and mismatches occur along the interface.

These features offer advantages in dealing with straight boundaries and interfaces in the
multi- layered system.

In this study the conversion of round insulated wires into a square ones with the same
conductor, insulation and air cross sectionis proposed (see Fig. 7.2).

Wire

Binding Iape

Single Conductor

a)
Fig. 7.1 Insulated single (a) and insulated multi-wire conductor (b)
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a) b)
Fig. 7.2 Transformation of insulated round conductors (a) into squar es of same area (b)

The square structure can be now calculated easily as a thermal serial-parallel switched
model of similarly covered areas. In order to simplify the calculation, the complete solid
material was separated from the air and combined in three layers. The influence of the
lower heat conductivity of air will be considered later witha so-called “filling factor”.

.

b)
Fig. 7.3 Determination of the mixed ar ea conductivity: (a) assembly, (b) circuitry
For long (compared to their thickness) wires, the whole material can be treated two-

dimensionally with a so-called “area conductivity” ?l and which is proportional to the
known heat conductivity ?. The heat conductance G is given by
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G=11,G =14, G, =1l ==, G =l == (7.2)

(7.3)

=

where the heat conductance are replaced by their heat conductivities.

here. ? radial mixed heat conductivity,

7 heat conductivity of the conductor,

% heat conductivity of the wire insulation (see Fig.7.1),

a edge of heat conductor material 1 (?1), in mm,
b edge of mixed heat conductor material 1 and 2 (?) in mm.

The next step is to determine the relationship of b/a which is calculated from the area a®
of the materials 1 and 2 (which isthe cross section of the conductor and the isolator).

Since the conductor consists of single wire veins with air gaps in between, the real con-
duction cross section a’ has still to be multiplied with the so-called filling factor f ,
which is the relationship of the real conducting cross section to the cross section to be
determined by its measured diameter: A;= a® f. The cross section of the conductor and
the isolator together resultsin:

% +A, =b° (7.4)

from which finally b/a can be calculated, whereby the areas A, and A; may be replaced
by the sums of the diameter squares of the conductor d and of the wire veinsd:

(7.5)
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The model described by the equation 7.3 is only valid for materials with similar heat
conductivity. If one part diverts as far as air compared to copper, the model is no longer
applicable. In this case, the assumption is made, that the conductor consists of two dif-
ferent conducting materials, which are switched in paralel asfollows:

G=Gat Gp.

C

N

\ 4

\ 4

b b

Fig. 7.4 Volume change due to empty spaces, in accordance with thefilling factor f or F

In accordance with Fig. 7.4 the heat conductivities can be calculated as follows:

G, =|

b-c
i 7.6
- (7.6)
here: ? mixed heat conductivity,
2, % heat conductivity of areaa’ and b?, respectively,
a,b virtua length of al conductors and of mixed conductor,
c virtual length c/b of b2,

Replacing a square element by two rectangular elements with different heat conductiv-
ity, (see Fig. 7.4) leads to the mixed heat conductivity:

C
=l

b-c
5

Using the filling factor:
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for the air between veinsin awire and

I::b-c
b

for the air between wires in a cable gives the thinning equations:

I =1, f+1,@- f)»I_f,I =1 ,F+1, (1- F)»I_F

(7.7)

Assuming the application of the first model (Eq. 7.3) is more suited for insulated con
ductors and the second model (Eq. 7.7) is more suited for noninsulated conductors with
gaps in between the two equations can be combined as follows. In this case, the heat
conductivity ? of the mixed material without air can be replaced by the heat conductiv-
ity ?F of the mixed material with air, whereby F is the insulated wire filling factor.

Assuming, that the conductor material has much higher heat conductivity than the air in
between the equation may be simplified even further, e.g. for ?,f>> 2F one obtains:

%® 0 ® o)
v 1 N C L =
| =| 2|281+ - —— > | Far——7
o, f - ¢ f [
— +_2 _ —" Q — - |—
g S |I,f p e S So
(7.8)
7.2 Calculation of temperature distribution in the real
multi-wire bundle
Considering the following cable bundle structure, (see picture 7.6):
Wiretype | Crosssec- | Number of | Diameter of | Wire(vein) Number of
tion single wi- thesingle diameter wiresin the
res(veins) | wire (vein) bundle
n; di i m
mnt mm mm
FLRY-A 0,35 7 0,26 0,80 10
FLRY-A 0,5 19 0,19 1,0 10
FLRY-A 0,75 19 0,23 1,20 10
FLRY-A 15 19 0,32 1,70 5
FLRY-B 25 50 0,26 2,20 5
FLRY-B 4 56 0,31 2,75 2

Tab 7.1. Physical data of the cable bundle
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First, calculating the fill factor f of the wire:

_nd?
2

(7.9
here: ? wire diameter in mm

From the conductor and wire vein squared sum data, a cross section quotient S of cable
bundle is calcul ated:

énidiz émi nd?
S==1 "7
a d? a md?

1 1

(7.10)

Since, experiment data are available of the cable bundle presented in the 7.1 table, the
bundle fill factor of cable bundle F empirically can be calcul ated:

: 4pr Il
SWU(Ug- 2p9)?

(7.12)

Finally, having all required information to calculate radial averaged heat conduction co-
efficient ?, Eq. (7.8) can be used to obtain this coefficient:

1O:

1 1

Fl i
S S

(7.9
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90
/
— O - Measured temperature y,
80 I |—— calculated temperature
70 ~

60 ~

50

TemperatureDT in K
i
o
I

20 -

10

-
0_{\/|—| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

25 55 85 115 145 175 205 235 265 295

Currentin A

Fig. 7.5 Experimental versustheoretical results of the cable bundle. Environment tem-
perature 23°C

In Fig. (7.5) the temperature dependence onload current of the presented cable bundle
(see Tab. 7.1) is given. Here the experimental results are compared with the results ob-
tained using the new derived averaged heat conductivity coefficient 2.

There is some error between two curves, which can not be fully explained yet. It seems
that the applied model for the bundle does not completely describe the redlity in every
case. The reason for this observation might be geometrical differences between the real-
ity and the model. Another reason could come through a difference between the real and
the calculated heat radiation from the bundle surface. The relevant emissive coefficient
is not known precise enough for this application.

All these observations are an area of further considerationif necessary.
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Fig. 7.6 Experimental setup of multi-wire bundle

Despite of all these small errors, the results of the calculations are more than sufficient
for practical applications.



CHAPTER
8

SUMMARY AND
CONCLUSIONS

8.1 Summary

Heat transfer and temperature distribution in electrical cables and fuses have been stud-
ied analytically and numericaly in the present research work. Obtained results from
numerical simulation are interpolated by the Least-Square method that led to simple
polynomial and logarithmical functions of the main thermo-€lectrical characteristics.

The geometries of physical models and appropriate heat transfer equations are presented
in Chapter 2. Analytical solutions of the heat equations for different conductor types
have been obtained in Chapter 3. A numerical approach based on a finite volume
method has been studied in Chapter 4. A new computational algorithm to compute tran-
sient state thermo-electrical characteristics of electrical cables was also described in
Chapter 4. The experimental setup and the execution procedure of the experiments is
explained in Chapter 5. The achieved computational results of the developed mathe-
maticall model were verified by laboratory experiments. Interpolation using Least-
sguares technique of numerical results in order to reduce the amount of numerical data
is given in Chapter 6. Finally, a new approach to calculate heat conduction coefficient
of multilayer cable bundles is presented in Chapter 7.

The ultimate goal of thiswork is to develop a methodology of the analysis of heat trans-
fer in electrical cables and fuses. The main result of this analysis is: temperature distri-
bution in the conductors and transient state thermo-electrical characteristics. To obtain
these steady- / transient-state characteristics a numerical algorithm had to be employed,
since nost materials are temperature dependant. Another reason for ause of numerical
algorithm is that the heat transfer calculation is much easier to perform by a numerical
approach instead of applying analytical Fourier series solutions.

A one-dimensional model for different kinds of electric conductors is presented in sec-
tion 2.2. The physica models of three different types of conductors: flat cable, round
wire and fuse melting element are taken as physical examples for mathematical model-
ling, smulation and analysis of heat transfer. When creating the mathematical models
(section 2.3) the heat transfer equations were reduced to one-dimensional problems (Eq.
2.3, 2.6, 2.7). In order to have a clear understanding about the modelling of the heat
transfer in electric conductors the entire second chapter is devoted to the derivation of a
mathematical model. Therefore, sections 2.4, 2.5 describe the analysis of heat conduc-
tion and thermal convection respectively. Since, one has to deal withan initial-boundary
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value problem, boundary conditions are described in section 2.6. Here are the first kind
(Dirichlet) and mixed type (symmetry and convective-radiative) limit conditions are
presented. Additionally, numerical implementation of the same kind of boundary condi-
tionsis given in section 4.3.2.

After creation and preparation of the mathematical model of electric conductors the fol-
lowing Chapters 3 and 4 give detailed analysis of analytical and numerical calculation
procedures of temperature distribution in the conductors.

In the analytical analysis (Chapter 3), exact solutions of steady state heat transfer equa-
tions were obtained. These solutions are given for temperature independent material co-
efficients as well as for temperature dependent coefficients. Different boundary condi-
tions (symmetry or derived from energy balance equation) were implemented for are-
Iytical expressions. A very important property was obtained from the heat equation with
temperature dependant coefficients. This property is called “avalanche effect” and can
be described by the following equation:

if,

a, r,l’?
au=a,lEg, = (3.53)
then,
C,=¥ T, =¥,

The next step of heat transfer analysis in the electric conductors was to develop a nu-
merical model to compute steady- and transient-state temperature behaviour in the con
ductors. The numerical model was created using a finite volume method. The integra
form of the heat equation was discretised using central differences in space and a back-
ward difference scheme in time. Thus, second order accuracy scheme in space and first
order accuracy in time was achieved. Discretisation of the equations in time were made
implicitly in order to achieve unconditional stability and increase computational effi-
ciency. All finite volume schemes were developed on structured grids, however this
method is straightforward applicable on unstructured grids too. Systems of algebraic
equations were solved by the iterative NewtonRaphson method, which has fast conver-
genceif a suitable initial guess is mede.

As computational results, following characteristics were obtained (Fig. 6.10, 6.11-6.14,
Chapter 6):

a) conductor surface temperature as a function of load current,

b) heating up time as a function of load current,

c) time constant as a function of load current,

d) electric field strength as a function of load current (considering nonlinear

el ectric resistance dependence on temperature)
€) temperature distribution in the fuse element.
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Chapter 5 details how the theoretical model of electric cables and fuses has been tested.
For this purpose, two different experiments (section 5.1.1 and 5.1.2) were made.

The first experiment deals with the determination of the temperature coefficient of cop-
per resistance. This coefficient is an important parameter for the determination of the
cable resistance dependence on temperature. Three different cables were placed in a
heated liquid silicon bath The cable conductor resistance change due to temperature
was measured. Necessary theory was developed and described in the section 5.1.1. The
experimental set up is described in section 5.2.

The second experiment was designed to measure the cable power dissipation. Here, all
available wires and cables as well as fuses and cable bundles were connected to the di-
rect current power supply source and loaded with the power from 0 to the maximal al-
lowed vdue. The whole experiment was controlled by the software developed for this
purpose. The recessary theory of this experiment and experimental setup are given in
the sections 5.1.2 and 5.2 respectively. The measuring process and the parameter acqui-
sition procedure was described in the section 5.3.

Chapter 6 describes the validation of the mathematical model of electric conductors and
the interpolation procedure of the numerical results by ssimple polynomial functions.
The validation of the model was based on estimating the parameters, which most influ-
ence the heat transfer in electric cables. Therefore, considerable attention was paid to
the validation of the heat convection coefficient, a, and the temperature coefficient of
copper resistance, a; .

From section 6.1 one could see that the mathematical model was properly derived and
approximated, since characteristics presented in figures 6.3, 6.4, 6.6, 6.7, 6.9 have good
agreement with experimental data.

In section 6.2 an algorithm was developed to interpolate numerical results. All thermo-
electrical characteristics were interpolated by ssimple polynomia functions using the
L east-Square method. These functions are very useful for practical calculation problems
of electric cables. Also, if such equations are implemented in the computer programme
to calculate thermal performance of electric cables, the programme gives very good
computational efficiency in time. The polynomial functions are given in Eq. (6.7-6.9).

The final chapter concludes this study with a newly developed approach of heat transfer
calculation in the multi-wire cable bundle. This chapter applies the principles, which
have been derived for single conductors to multi-wires. Only after detailed research of
heat transfer models for single wires and cables was it possible to derive the methodol-
ogy for the cable bundle. The key of this methodology is to calculate averaged heat
conductivity coefficient of multi-wire layers. Therefore, it was proposed to use the lin-
ear coordinate transformation in order to simplify cable bundle geometry. An averaging
method for layered media was then used to determine a mixed or averaged heat conduc-
tivity coefficient. The cable bundle modédl is given in Fig. 7.1 and its transformation to
sguare frames of the same area in Fig. 7.2. Developed “mixed material equations’ for
thermal conductivity coefficient is given by the Eq. 7.3. In the following section 7.2 the
comparisonof the results was given. They were obtained with the calculated mixed heat
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conductivity coefficient and compared with measurements from the cable bundle. From
the figure 7.5, one could see that the developed method to calculate the averaged heat
conductivity coefficient gives sufficient accuracy for practical applications.

8.2 Conclusions

Four different one-dimensional analytical and numerical models were successfully de-
veloped in this research work, which are able to smulate heat transfer in any kind of
electric conductors such as flat cables, round electric wires, electric fuses or multi-wire
cable bundles. The new analytical-numerical approach, which has been proposed in this
work, allows analysis of the thermo-electrical characteristics of electric conductors.

From this study, several other conclusions are as follows:

>

Analytical solutions for steady-state temperature distribution in a single con
ductor were obtained. These solutions are valid for temperature independent
material constants as well as temperature dependant material constants. An
“avalanche dfect” has been obtained from these analytical solutions (section
3.3.3). It was also doserved that transient heat transfer equations require very
complicated techniques which are time and space dependent in order to obtain
exact solutions. Therefore it is not worth making too much effort to solve tran-
sient heat transfer equations. Instead, a numerical approach should be used.

A numerical model as developed to simulate heat transfer in the conductors,
which is based on the finite volume method. This simulates heat transfer very
precisely due to the scheme of second order in space. Also implicit schemesin
time proved to have better computational performance than explicit ones if
time accuracy is ot of primary importance.

Experiments delivered qualitative data and erabling an estimate of the quality
of the mathematical model.

A new method to calculate heat transfer in the multi-wire cable bundle was
created. Original equations of heat conductivity coefficient were used by trans-
forming the complicated wire bundle geometry to more simple squares. Equa-
tions of “mixed material properties’ produce averaged heat conductivity coef-
ficients for a cable bundle, which consist of materials as copper, PVC and air.

An analytical-numerical approach was developed to ssimulate heat transfer in
electric conductors. This was implemented into a computer aided design pro-
gram to optimise thermal performance of the cables.

The developed software alows analysis of thermo-electric properties of both
wires and fuses. This analysis is very important for fuse manufacturing proc-
esses in order to obtain better time-current characteristics for wire and cable
protection against overload and short-circuit currents. In the future, companies
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could design fuse materias, using the developed software. The result would be
very narrow time-current characteristic of a fuse (close to wire time-current
characteristic). Finally, wires and cables can be loaded with 100% load while
being protected by the fusesina reliable way.

» The main results of this study were presented in three international conferences
(Lithuania, 2003) and published in three international journals.

List of publications:

1. A. llgevicius, H.D. Liess. Therma Analysis of Electrical Wires by Finite Volume
Method. Electronics and Electrical Engineering. Nr. 4 (46), Kaunas, 2003.

2. A. llgevicius, H.D. Liess. Calculation of the Heat Transfer in Cylindrical Wires and
Fuses by Implicit Finite Volume Method. Mathematical Modelling and Analysis, 8(3),
217-227, 2003.

3. H.D.Liess, A. llgevicius. Analytical versus Numerical Solutions of Physical Prob-
lems. The Benefits of its Combination. Mathematical Modelling and Analysis, 8(4),
291-302, 2003.

8.3 Suggestionsfor future research

In the present research a one-dimensional model for different geometries of physical
models have been developed. However a two-dimensional model would be appreciable
for heat transfer simulation in complicated fuse element geometries and multi-wire bur+
dles. Also, a mesh generation tool for Cartesian and radial coordinates is desirable.
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Fig. 8.1. Multi-wiretree of on-board electrical system

More research work should be undertaken developing mathematical models of cable
bundles or even cable trees (see Fig. 8.1). Heat conductivity inside the bundle has to be
estimated by further experimental works in order to validate the numerical model. Stud-
ies should also be made to ascertain which numerical method is more appropriate for
the model for cables bundle and cable trees: finite volume or finite element method.



APPENDIX A

HEAT TRANSFER EQUATIONSFOR ELECTRIC CONDUCTORS

A.1 Heat transfer equationsfor flat electric cable

Theaim of this appendix is to give the derivation of heat transfer equations from the physical
point of view. It will be shown how to obtain one-dimensional transient state heat equations
for different heat transfer directionsin electrical conductors.

In order to derive the heat equation for vertical heat transfer applicable for heat transfer in a
flat cable, two assumptions have to be formulated:

1. The heat flux q is a vector. This vector is normal to the cross section area. More generaly,
the heat flows in an isotropic media with some heat conductivity ? against the vector of tem-
perature gradient:

g=-1 gradT (A2)

2. The change of heat flux div q is a vector. This vector describes the heat flux change in
space per volume and time and is proportional to the heat capacity g and to the rate of tem
perature change:

o q

d =-0— A.2
ivg=-g ﬂt (A2

or,

div(l gradT) =g % (A.3)

For ?= congt. and since div grad U=DU,

differential equation for any mediais of the following form:

pxr =37 (A.4)
[ 9t
here:
? Heat capacity in Ws/ntK
? Heat conductivity in W/mK
? Operator in Unt
q Heat flux in W/nf
T Temperature in K oder °C

The operator ? is given by:

for Cartesian coordinates:
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”, 9,

D=
ﬂXZ ﬂyZ ﬂZZ

for cylindrical coordinates:

™ r? rqr r29q°2

Fig. A.1 Vertical heat transfer in theflat cable

According to the picture in A1, electric power Pe is given by:

dP.= OE Jdy (A.5)

In z direction the heat power P, can be neglected:
P,=0 (A.6)

In y direction the heat power through the cable surface is as follows:

P, =-10 dT(y,t) (A.7)
dy

In the cable accumulated heat energy Q:

dQ =gODT(y,t)dy (A.8)

here O = al isthe surface areain nt

From the energy balance equation, Pe is given by:
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P=P,+—= dQ o dP, =dP, +dae£9 (A.9)
Lot o

By inserting the equations A5, A.7 and A.8 to the equation A.9, we obtain a differential
equation for transient temperature distribution in the flat cable:

2
OEde:-IOdT(y )+gOdaeT(yt)oy (A.10)
dy ot
dividing by Oxdy:
2
Rl Tz(y’t) +EJ- gl W g (A.11)
17y it
or,

TT(yt), EJ_ g IT(vb) _ (A12)

Ty | Mt

A.2 Heat transfer equationsfor round electric wire

For radial heat transfer, differential equations with cylindrical coordinates have to be used. In
figure A.2 heat conduction is given.

Fig. A.2 Radial hea transfer in the round wire

Electric power Pe is given by:

dPe= OE Jdr (A.13)
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where: O=lu=2plr - the surface
dPe= 2plrEJdr (A.139)

Radial heat power of the wire P; is given by:

p=-1 09T _ 55y, dTLY (A.14)
dr dr
2
dPr :-2p| |Mdr- 2p| |rm
dr dr
In the wire accumulated heat energy Q:
d2Q=gludT(r,t)dr =2p gl rdT(r,t)dr (A.15)

From the energy balance equation, for radial heat conduction, the power P; is given by:

P=P LI dP, =dP. +dg§j—QQ (A.16)
dt edt g

After insertion of the equations A.13a, A.14 and A.15 into the equation A.16, the differential
equation for transient temperature distribution in the cylindrical wire follows:

2
2pIrEJdr=-2pl IdT(r,t)-2pIrIde—(r’t)+2plrg¥dr (A.17)
r

divided by 2p | r dr we have,

1Ty, aT(t)

T (r,t) _
EJ-gx——== A.17
12 rqr *EJ-g qt 0 ( 9

or,

T1(rt), 17(rt), ElJ 9,y g

qr 2 rqr I qt (A.18)
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A.3 Heat transfer equationsfor an electric fuse element

Here we consider axia heat transfer in a cylindrical or flat body electric fuse with constant
cross section. The axia heat conduction in a cylindrical fuse element is given in picture A.3.

Fig. A.3 Axial heat transfer in the fuse

According to Fig. A3, electric power P is given by:

dP. = AE Jdx (A.19)

Radial heat conductionP; through the surface is:

dP, = auT(xt) dx

(A.20)
Axia heat conduction P along the fuse is::
p =1 AdT(XY (A.21)
dx
In the wire accumulated heat energy Q is:
dQ =g AT(x,t)dx (A.22)

From the energy balance equation, P; is given by:
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P=P+P, +OIQ o dP,=dP +dP, +d&‘§9 (A.23)

@
Repeating the same procedure for the fuse element as was applied for flat and cylindrical
cables. Equations A.19, A.20, A21 and A.22 are inserted into the equation A.23. Finaly the
differential equation for transient temperature distribution in the fuse el ement leadsto:

2 L.
AEJdx=auT(xt)dx- | AdT—(X’t)+g Adwgdx (A.24)
dx e d g
divided by Axdx,
d’T(xt) au (%10
| — >/ 2 -7(xt)+EJ=gd A2
s A Tt)rEI=gde= o (A.249
or,
2
‘|1T2(x,t) au)DT(X’t)+EJ g JT(xt) _ (A.25)
Px 1A 1Tt




APPENDIX B

NUMERICAL ALGORITHM APPLICATION FOR HEAT TRANSFER
SIMULATION

B.1 Numerical heat transfer ssmulation and inter polation of the
results

The aim of this appendix is to illustrate the practical implementation of a numerical algorithm
(Chapter 4) in order to simulate the heat transfer in electric conductors and the implementa-
tion of the interpolation algorithm (Chapter 6). In the figure B.1 the graphical interface to
input pre-processing data for the numerical simulation of heat transfer in cylindrical wiresis
given Here the user has the possibility to choose any geometry of the wire in cylindrical co-
ordinates, environment temperature and to apply different types of materials. The boundary
conditions are, however, fixed, and expose free convection and radiation to the air. As post-
processing information, numerical representation in an ASCII file (see Fig. B.2). Interpola
tion results are saved in the binary file (see Fig. B.3)

x
K.ennzeichnung der Leitung tl aterialparameter der Leitung
Mame des Herstellers: Leoni Leitermaterial IKupfer ﬂ
Typenbezeichnung: IFLF}Y.A j
Hennquerschritt: ||:|_22 Ll [miE] |zolationzmnaterial IF‘\-"E Ll
Emnzatzbedingungen der Letung———————————  — ASCI| Auzgabedatei der Einzelleitung
Marninale Endiemperaturdifferenz der Leitung: |—4|:| K Dateiname: I':""”:"'Jt":lE|t
Umgebungstemperatur: |_55 oo Ll I
Mominale Endtemperatur; W (B
Airzahl der Einzeldrahte: I_?' - |
Durchmesser der Einzeldrahte: I_E|21- i
AuBendurchmeszser der Leitung mit |zolation: |_12 mm
Iml Abbrechen | Beenden

Fig. B.1 Window of pre-processing information for the heat transier smulation program in
cylindrical wires
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_lix
Datei EBearbeiten Format  Ansicht 7
I1 T1 E1 Tau T ]
1. 00000000e+001 6, 58239805e4+0001 1.917597132-002 2.3370001382+002 0. 00000000e+000
1.47308421e+001 0.6072128158e4+000 2.83443241e2-002 2.23401790e+002 0. 00000000e+000
1.94736842e+001 0. 79162383e4+000 3. 700402070-002 2.158039352+002 0, 00000000e+000
2.421058263e+001 6.93977038e4+000 4.69824275e-002 2.09743387e+002 0. 00000000e+000
2.80475084e+001 7.11584333e4+000 5.65020567e-002 2. 04792883e+002 0. 00000000e+000
3.36842105e+001 7.3193440le4+000 6. 61899651 e-002 2.00075631e+002 0, 00000000e+000
3.842105200+0010 7.550002044+000 7.6009005342-002 1.97215757e+002 0, 00000000e+000
4.31578947e+001 7.80770148e4+4000 B.61l0d459522-002 1.942950452+002 0. 00000000e+000
4. 789473082+000 8.0924054%924+0001 9,.650195422-002 1.91827001e+002 0. 00000000e+000
5.26031578%e+000 8.4044394 2040001 1.07106837e-001 1.89750843e+002 0, 00000000e+000
5.73084211e+001 8. 74387198e+001 1.18005677e-001 1.880384382+002 0. 00000000e+000
0. 210520532e+0010 9.11110432e4000 1.292257112-001 1. 806034300e+002 0.111724972+002
0.68421053e+001 9, 506504 584+001 1.407951160-001 1.855184%902+002 3.59250351e+002
F.15789474e+0010 9,9307044 204000 1. 52743153%92-001 1. 84676593e+002 2.0443530le+002
F.03157895e+001 1.03842724e4002 1.6510011%2-001 1. 840820482+002 2.09250355e+002
B.10526310e+001 1.086773794+002 1.778977152-001 1.837308%a+002 1.72172028e+002
B.O7804757e+0010 1.1381802084+002 1.9%116885982-001 1.830057982+002 1.45285916e+002
O.05263158e+001 1.1927393084+002 2.0409480142-001 1.837049452+002 1. 2482594 00e+002
O, 5203157%9e+001 1.2505014a3e4002 2.192710220-001 1.84016333e+002 1.08755403e+002
1. 00000000e+002 1.3115%9051e4+002 2.341753792-001 1.84535315e+002 9, 57808721e+001
1.04736842e+002 1.37007287e4+002 2.497001422-001 1.852532392+002 8, 51129245e+001

o
1] | y

Fig. B.2 Simulation data of a cylindrical wire with 10mm? cross section. Here: 11— load current
in amps, T1 —conductor surfacetemperaturein °C, E1 —electrical field strength in V/m, tau —
time constant after n=5in sec, tg — heating up timeto reach 90°C in sec.

B.2 Calculation of thermo-€electric characteristics by the
polynomial functions

In order to be able to work with an interpolated mathematical model or with simplified poly-
nomial functions, another programme was created (see Fig. B4). Here, using equations (6.7-
6.10) given in section 6.2, thermo-electrical characteristics can be calculated.
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x
eiter | lsolation | A K48 | Bl | cpemel | D | Tau [5] | Maminale Stom [&] |
Her PVC 2042970s 002 8162783003 2510974s003  6.358716s006  1.3590162+002 64,23
per PVC 20637046002 8201333003 22760039003  S169504e006  1.559596e+002 80,60
pfer PVC 2437769001 8565411e001  BEGEIMSe002  1E22123:003  1.814212=+001 453
per PVC 2760047001 8444035001 7.004804e002 2245671003 1.168235e+001 6.72
per PVC 2015999001 5195995001  5E50254e002  8373193s004  2.3282028+001 6.02
per PVC 273152972001 5099196001 51308862002  1.165773:003  2.2415042+001 853
pfer PVC 1519477001 32277750001 3892436e002  4E7A002:004  3.217740=+001 7.63
per PVC 1859436001 3179560e001  3545176e002  GI7ETI0e004  2E677618e+001 10,92
per PVC 1274493001 1999737001  2E581972002  2431191s004  4.0331842+001 953
per PVC 1469585001 1.970873e001 24048552002  3536895e-004  4.0154842+001 13,83
pfer PVC 1095530001 1470255001  2080994e002  1ESI795e004  4.651271e+001 11.30
per PVC 1205279001 1448011001 1883305002  2361506e004  4.662709e+001 16,17
per PV 89728952:-002 87444626002  1.370753=002  GB7E3S70s005 6.0251342+001 14,63
per PV 1057959001  8E23240e002 12489112002 1.167976e004  5.3546662+001 20,93
pfer PV 7EFI0S4e002  G0GG400s002  1.025632e002 5449654005  6.901242=+001 17.51
per PVC 92022516002 60015426002 9268345003  7.727703s005  6.745925e+001 25,06
per PV £331930s002  4644036e002  B365336e003  37E7ES7s005  5.001240s+001 20,09
per PV 77082742002 4577005002  7579177e003 53212472005 7.9503662+001 287 L |
pfer PV 1806211001 4.483670=001  S048062e002  7.049039:004 263205424001 6.458
per PVC 2145323001 44146476001  4580376e002  9827635s004  2540753e+001 9.28
per PV 1583151e 001 31270746001 37871272002  4.407057s004  3.185353s+001 7.75
per PV 1876680s001  3079412e001  3432904e002 6194171004  2.1084622+001 11.10
pfer PV 1229060000 1865520001 2528301002 2224105004  2.885707=+001 9.99
per PVC 1.468500s001  1.8952905e001  2292637e002  3162457s004  3.9342742+001 14.29
per PV 1065539001 1.315742e001 1893259002  1.435693:004  4.339912e+001 11.94
Rfer PVC 1260002001 1295718001 1.713392:002 2041655004 4.771460=+001 17.03
per PVC 85047472002 8336152e002 1316879002  GO20058e005  5.990330=+001 14,95
per PVC 1040337001 82105026002 1791195002  1.740365s004  5.8951512+001 21.44
per PV 7484335002 5375117e002 9248275003 4E70E32e005  7.065835e+001 18,61
Rfer PVC 9119310002 5290516002  B429766e003  GIGES7Fe005  6.187641=+001 25,65
per PVC 6203525002 4323356002 7EO577e003  3583920e005  B.398326e+001 20,79
per PVC 7EATRIe002 4272944002 7126306e003 50443925005  B.174407e+001 29.73
per PV 5549793002 3166792002  G163560=003  2400326e005  9.372188e+001 24,26
Rfer PVC 6883723002 31236Me002  5EG4T75e003 313625005 9.130763e+001 .69
per PVC 4MEERGe002 2376614002 4.951229e003  1E70789e005  1.119159e+002 281
per PV 52617626002 2350441002  4489253s003  2293163s005  1.039504e+002 4013
per PV 21728432002 1.385108e002  3297253=003  BE32269:006 1.329243=+002 .83
Rfer PVC 3000040002 13711472002 2999620e003 1146231005 1.233720e+002 52,59 |L|
] [»

Lischen |

Fig. B.3Binary file, whereall inter polation coefficientsare saved (A, B, C, D, Tau).
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Berechnung einer Einzelleitung o ] [

Hersteller |Leon| jv Mominale Endtemperaturdifferenz der Leitung: |4EI.UEI "i [K]
Typenbezeichnung: |F|_HY-A "I

Mennguerschnitt: | 022 = | [ron# ] Umgebungstemperatur:

Leitungzart Betiebstemperatur

['C]

—fingabe der zugehirigen charakleristizchen Foeffizienten

a= I 0.2760046951  Endtemperaturdifferenz / Strom - Fosffizient [k.dA] |0= B.7175 Mennstomn  [A]

b= I 08444034598  Endtemperaturdifferenz / Stromguadrat - Koeffizient [ K222 ] tau= 11,6824 Zeitkonstante  [5]
o= I 0.0788480407 Feldstarke / Strom - Koeffizient [¥Ama]
d= I 00022456715  Feldstarke ¢ Stromguadrat - Koeffizient [ ]

o I— Berechnen der
Stmm:l 0 [a] Feldstarke E=| 0 [%m] Von 1 bis: 0 (Al [ Endtemperaturdifferenz/

Berechnung der Leitungscharaktenstk ———————  —Mumenzche Ausgabe der Leitungscharakteristik

Endremperaturdifferez deltaT= I 0 [K] Betrisbstram

Enwarmungszeit und speichern

Ausgabedatei I m Berechnen der Feldstarke und
Erwarmungszeit = | 0 [s] r zpeichern

Rechnen I Abbrechen |

Fig. B.4 Programme, which calculates thermo-electrical characteristics of cylindrical wire by

simplified polynomial functions.




APPENDIX C
SOFTWARE FOR MEASUREMENT DATA ACQUISITION

C.1 Algorithm description and measurement program

In the section 5.3 two different measurement procedures of electric cables to validate the
mathematical model were explained. In this appendix, a closer look at the measurement soft-
ware will be given. Both experiments were run by the same type of software, implemented in
the LabView 6.1 environment. For the explanation in this chapter, only the second experiment
software will be presented. This program controls the power supply of direct current and digi-
tal multimeter, to which the measurement sensors were attached. The control of measurement
equipment is implemented by a GPIB controller.

The program has the following structure:

- et the voltage to 15V

- open the files needed to save the results and the computations,

- reset the multimeter;

- writeinto the files the date and the time;

- compute Rss — in order to do this: apply a 1 amp current for 60 seconds, read the voltage
drops on the cable and on the shunt, read the environment temperature and finaly com-
pute it;

- for al current values (for i = 0 to number of currents do):

0 compute the present current and apply it to the cable;
o for j ="number of measurements —4 to ‘number of measurements do:
» set the multimeter scale to DC voltage range;
» read the voltage drop on the shunt and wait for 4 seconds — also save the
valuein avariable;
» read the voltage drop on the cable and wait for 4 seconds — also save the
value in a variable;
» read the sensor temperature - read actually a voltage drop and then com-
pute the temperature with the following formula:
Ts=2.83668 + 15.5669 * VoltageDrop* 1000.
Remark: this thermocouple sensor is a safety sensor, which cuts off the
power supply if the conductor temperature exceeds maximal allowed
value.
» read the environment temperature and save the value in a variable for later
use.
» based on the saved values compute the cable resistance, the cable tem-
perature, the cable power.
= write the resultsin the file dedicated to computed values.

- write into both files the date and the time (the measurement has finished at this point);
- reset both power supply and multimeter;
- close both files;

The program interface is shown in the picture C.1.
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R
File Edit Operate Tools Browss Window Help @'
(&[] @[] 13 Aplication Fort__ |~ | [2~1[Fa <[5+ ] s
2
Adresse Stromquelle Min-Skr o
| I —
B o A
Adresse Mulkimeter Max-Stram Stram (Shunt
|7 o A I A
Skramm Ffur RO Strarm-Inkerseall Anzahl Strdme Kabelkemper atur (LI,
_iij1,un A :;'Jin | 0 og
hrE e e tMesszeit pro Strom Sollstrom Temperstur{Sensor)|
24l 2,00000E-4 ohms Eﬁﬁ sec 0 A [ aC
9 .
Alphaz0 Anzahl Messungen Wartezet | Raumtemperatur
— P———— P = l_“—” 5
|3,83000E-3 1°c o n sec C
Termperatur Limnik RO |
[ py—— logfile: computed T ————
/105,00 o {0, 000000E+0 ohms
e g
4] | oy

Fig. C.1 Measurement programme to measure cable voltage drop, resistance, electric power and
temperature

The measurement of cable resistance, voltage drop, electric power and temperature can be
started if al measurement equipment defined in the programme is switched on. The program
should initialise the available GPIB controller, power supply source, temperature sensors and
the digital multimeter, which serves as a data acquisition device. Whenever the hardware is
correctly initialised, the user should give initial data into the program. First, “ Strom fir RO”
box has to be filled in, where some current value required in order to measure cold resistance
RO of the cable. Next, in the box “ Shuntwiderstand” shunt resistance should be defined in
order to compute exact load current produced by the power supply. “ Alpha20” box defines
the temperature coefficient of copper resistance. This value is required for the temperature
computation of the cable. “ Temperatur Limit” required for the safety reasons, if the cable
temperature exceeds this value, the power supply source is cut off. “ Min. Srom” and “ Max.
Srom” are required to specify the starting current load value and the end current value re-
spectively. Next, the step size of measurement interval should be given. For this, the box
“ Srom-Intervall” should be used. The measurement time, after which the steady state should
be reached is given in the box “Messzeit pro Strom”. The box “ Anzahl Messungen” means,
how many intermediate values for every measurement interval should be measured and saved
in the file. This information is important in order to record the transient state of cable tem
perature.

The measurement procedure then begins, and the whole experiment runs automatically. In
order to observe the measurement data online, the computer with measurement software
should be connected to the Ethernet network, and using “Remote Desktop Connection” appli
cation, the measurement computer can be controlled via the Ethernet network. On the right
hand side of the program, online measurement information is presented: actual load current,
actual cable temperature obtained by measuring cable voltage drop, cable surface temperature
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obtained by thermocouple sensor, environment temperature obtained by Pt100 sensor and the
cold cable resistance RO.

C.2 Measurement results

The measurement programme produced numerical results, saved in the ASCII type file (see
Fig. C.2)
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48|16:11 - Extra file initiated as: C:\CPOW\testfin.log
48(16:11 - Environment temperature: 20.00000 deg C
0[16:11 - User Tom Roida startet a new Measurement! Date: 2001-4-2
16|16:11 - Setting new current to  0.00 A
515 33,76 0 0,36 0,12250 0,00039 2,45000E-05 3,19790E-03
616 33,61 0 0,36 0,12150 0,00039 2,43000E-05 3,19450E-03
716 33,47 0 0,29 0,12300 0,00039 2,46000E-05 3,19430E-03
816 33,29 0 0,29 0,12050 0,00038 2,41000E-05 3,19080E-03
876(16:26 - Setting new current to 10.00 A
1416 33,17 10 9,87 9,68050 1,89056 1,93610E-03 1,95296E-01 2,01741E-02
1516 33,17 10 9,87 9,67950 1,89034 1,93590E-03 1,95293E-01 2,01760E-02
1616 33,17 10 9,94 9,67950 1,89036 1,93590E-03 1,95295E-01 2,01762E-02
1716 33,13 10 9,94 9,67950 1,89017 1,93590E-03 1,95276E-01 2,01741E-02
1736|16:40 - Setting new current to 20.00 A
2316 33,98 20 19,96 19,72500 7,85852 3,94500E-03 3,98404E-01 2,01979E-02
2416 34,15 20 19,96 19,72500 7,86177 3,94500E-03 3,98569E-01 2,02063E-02
2516 34,31 20 19,96 19,72400 7,86573 3,94480E-03 3,98790E-01 2,02185E-02
2615 34,46 20 19,96 19,72300 7,86993 3,94460E-03 3,99023E-01 2,02314E-02
2649(16:55 - Setting new currentto 30.00 A
3216 36,24 30 29,91 29,69550 17,95414 5,93910E-03 6,04608E-01 2,03603E-02
3315 36,33 30 29,98 29,69650 17,95839 5,93930E-03 6,04731E-01 2,03637E-02
3416 36,38 30 29,98 29,69550 17,96082 5,93910E-03 6,04833E-01 2,03678E-02
3516 36,46 30 29,98 29,69500 17,96533 5,93900E-03 6,04995E-01 2,03736E-02
3616 36,50 30 29,91 29,69300 17,96810 5,93860E-03 6,05129E-01 2,03795E-02
3616|17:11 - Setting new current to 40.00 A
4316 37,73 40 40 39,74350 32,25896 7,94870E-03 8,11679E-01 2,04229E-02
4416 37,47 40 40 39,74350 32,23397 7,94870E-03 8,11050E-01 2,04071E-02
4516 37,27 40 40 39,74500 32,22366 7,94900E-03 8,10760E-01 2,03990E-02
4615 37,18 40 40 39,74700 32,21542 7,94940E-03 8,10512E-01 2,03918E-02
4636|17:28 - Setting new current to 50.00 A
5315 38,61 50 49,94 49,72800 50,73365 9,94560E-03 1,02022E+00 2,05161E-02
5416 38,48 50 49,94 49,72700 50,72164 9,94540E-03 1,02000E+00 2,05120E-02
5516 38,62 50 50,02 49,72800 50,75503 9,94560E-03 1,02065E+00 2,05247E-02
5616 38,73 50 49,94 49,72750 50,78436 9,94550E-03 1,02125E+00 2,05370E-02
5716 38,83 50 49,94 49,72650 50,83431 9,94530E-03 1,02228E+00 2,05580E-02
5716(17:46 - Setting new currentto 60.00 A
6516 42,00 60 60,04 59,78150 74,50084 1,19563E-02 1,24622E+00 2,08462E-02
6616 42,07 60 60,04 59,78200 74,51892 1,19564E-02 1,24651E+00 2,08509E-02
6715 42,08 60 59,96 59,78100 74,53166 1,19562E-02 1,24675E+00 2,08552E-02
6816 42,17 60 60,04 59,78150 74,54066 1,19563E-02 1,24689E+00 2,08574E-02
6843|18:05 - Setting new currentto 70.00 A
7716 44,92 70 69,98 69,76700] 102,64526 1,39534E-02 1,47126E+00 2,10882E-02
7816 44,94 70 69,98 69,76750] 102,66071 1,39535E-02 1,47147E+00 2,10910E-02
8015 45,01 70 69,98 69,76800] 102,67282 1,39536E-02 1,47163E+00 2,10932E-02
8023|18:25 - Setting new current to 80.00 A
8916 48,16 80 80 79,81350] 136,04219 1,59627E-02 1,70450E+00 2,13560E-02
9016 48,07 80 80 79,81350] 136,03437 1,59627E-02 1,70440E+00 2,13548E-02
9116 48,31 80 80 79,81250] 136,07361 1,59625E-02 1,70492E+00 2,13615E-02
9216 48,17 80 80,08 79,81300] 136,06273 1,59626E-02 1,70477E+00 2,13595E-02
9256(18:45 - Setting new currentto 90.00 A
10216 51,48 90 89,95 89,74750| 174,35920 1,79495E-02 1,94278E+00 2,16471E-02
10316 51,50 90 89,95 89,74750] 174,40156 1,79495E-02 1,94325E+00 2,16524E-02
10416 51,45 90 89,95 89,74900| 174,38087 1,79498E-02 1,94298E+00 2,16491E-02
10516 51,48 90 89,95 89,74800| 174,38144 1,79496E-02 1,94301E+00 2,16496E-02
10543|19:07 - Setting new current to 100.00 A
11516 54,99 100 99,97 99,86350| 219,14446 1,99727E-02 2,19444E+00 2,19744E-02
11616 55,12 100 100,04 99,86500] 219,07785 1,99730E-02 2,19374E+00 2,19671E-02
11716 55,14 100 100,04 99,86400] 219,10461 1,99728E-02 2,19403E+00 2,19702E-02
11816 55,10 100 100,04 99,86600| 219,06106 1,99732E-02 2,19355E+00 2,19649E-02
11883|19:29 - Setting new current to 110.00 A
12922 58,88 110 109,84300] 269,33833 2,19686E-02 2,45203E+00 2,23230E-02
13016 58,81 110 109,99| 109,84450| 269,30137 2,19689E-02 2,45166E+00 2,23194E-02
13116 58,81 110 110,06/ 109,84200] 269,27327 2,19684E-02 2,45146E+00 2,23181E-02

Fig. C.2 Saved experimental datain ASCI| typefile
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Cable Power & Resistance

1200 0,027000
1100

# 0,026000
1000 & Cable power L]

200 Cable Resistance )

/ 0,025000
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600 P 0,023000

/ T 0,022000
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7 + 0,020000
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Fig. C.3 Measuredcable power and resistance after steady stateregime
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