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A surface area, m2  
Af cross section area of flat cable, m2 
Afu cross section area of the fuse, m2 
a,b,c,d  polynomial coefficients of polynomial function (in Eq. 1.1, 1.3) 
an,bn,cn intermediate variables in tri-diagonal matrix 
b width of flat cable, m 
d thicknes of flat cable,m 
D multi-wire bundle diameter, m 
E electric field strength, V/m 
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F filling factor of multi-wire bundle 
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G heat conductance in multi-wire bundle, W/mK 
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i spatial index in numerical calculation 
I electric current, A 
I0 nominal electric current of electric wires or cables, A  
J electric current density, A/m2 

K number of time steps in numerical calculation algorithm 
Kd1,KT1, 
KT21,KT22, 
KT31 

intermediate variable of heat convection equation (section 2) 

L characteristic length of the fuse element or cable, m 
L length of the wire, m 
N number of nodes in the numerical scheme 
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t time, s 
tg heating-up time, s 
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                    1 
         ________________ 
          

     INTRODUCTION 
 
 
 
Thermo-electrical investigations of electrical conductors (wires, cables, fuses) have 
been described in a great variety of applications and gained increasing attention by a 
number of research works [1,2,3,4]. The major part of these works was devoted to the 
analysis of heat transfer in electrical conductors for high voltage power distribution sys-
tems. However, today, power supply in mobile systems like aircrafts, ships or cars have 
to be considered due to weight restrictions. The main difference between power lines 
and wires for mobile applications is the length, which does not exceeds 8 m i.e. in the 
cars. This causes higher current density that leads higher voltage drop.  
 
Today, in the modern mobile vehicles electrical and electronic equipment is of great 
importance. Electronics is used for the applications like electromechanical drives (ser-
vomotors, pumps) as well as for air conditioners and safety equipment. In the future 
even safety – critical systems in the cars might be replaced by so-called “x-by-wire” 
technology [5,6], where steering, braking, shifting and throttle is performed by electron-
ics. The electronics replaces the mechanical systems due to the following reasons: 
 

- to increase passenger comfort,  
- to reduce the weight of a vehicle while increasing the inner space, 
- to increase safety, 
- to reduce fuel consumption and costs 

 
Since, the power consumers are distributed over the whole vehicle, the power must be 
delivered to the consumers by electrical wires. With increasing number of consumers, 
the amount of wires and the wire size rises also. Since the space in mobile systems is 
limited and weight is always being reduced, wire conductor sizes must be kept as small 
as possible. Therefore, it is necessary to investigate heat transfer in electrical conductors 
in order to be able to calculate optimal conductor cross-section for long lasting load. 
This information can be obtained from the current-temperature (= steady state) charac-
teristic of each wire.  
 
It is also important to consider current-time (= transient-state) characteristic of wires 
versus fuses. This information is important for the fuse design, whose current-time 
characteristic should match wire current-time characteristic in order to protect the wire 
reliable against overload and short-circuit currents.  
 
The main development in the field of heat transfer computation in electric power cables 
was made by the work of Neher and McGrath [6] published in 1957. Later, there were a 
number of publications published as IEEE transactions. In 1997 based on IEEE transac-
tions George J. Anders published the first book [7], which is the only devoted solely to 
the fundamental theory  and practice of computing the maximum current a power cable 
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can carry without overheating. Almost all references to scientific articles and books of 
heat transfer analysis in electric cables are summarized in this book. 
 
 However, literature [7] is only devoted to the heat transfer computations for transmis-
sion, distribution, and industrial applications. The problem dealing with mobile systems, 
is not covered by the book. The main difference between the electric cables used in in-
dustrial applications and mobile systems is that the latter have generally shorter lengths 
and much higher operating temperature ranges.  
 
The first attempt to develop a theory of heat transfer calculation in electric conductors 
for mobile applications was made by T. Schulz [8]. In his dissertation, the steady-state 
heat transfer equations of electric conductors have been solved analytically with some 
simplifications. This is sufficient to elaborate tendency. For more precise calculations, 
however, numerical methods should be applied.   
 
In addition to this, there is also a need for the mathematical relationships of thermo-
electrical characteristics for computer aided design program. The present available 
computer simulation programs for heat transfer like CableCad or Ansys [9,10] are too 
complex, use pure numerical methods requiring specific knowledge, and are not specia l-
ized for heat transfer calculation in electric cables and fuses. On the contrary, the im-
plementation of a simple mathematical model into a computer program, would allow the 
development of a very time-efficient cable design tool. 
 
All this shows, that there is a requirement to investigate the heat transfer in electrical 
conductors and to develop efficient algorithms for the calculation of the thermo-
electrical characteristics. In this study, efficient algorithms means, that all characteris-
tics of conductors should be described by simple mathematical functions. One of the 
possible ways to solve this problem is to combine analytical and numerical analysis 
methods.  

 

1.1 Objectives of current study 
 
 
The aim of the present research is to analyse heat transfer of one-dimensional electric 
conductor models and to develop a simplified calculation methodology of thermo-
electrical characteristics for computer aided electric cable design algorithms. In order to 
achieve this goal the following problems must be solved: 

• To create one-dimensional mathematical model of electric conductors for calcu-
lation of thermo-electrical characteristics of electrical cables and fuses; 

• To analyze steady-state heat transfer by solving partial differential equations 
analytically; 

• To calculate steady / transient – state characteristics using a one-dimensional 
numerical model; 

• To verify the obtained numerical model by experimental data; 
• To develop a simplified calculation methodology of electric conductor charac-

teristics by fitting earlier obtained numerical results with polynomial functions. 
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1.2 Methodology of current research 
 
 
This research work presents a one-dimensional (1-D) analytical and numerical model to 
simulate a heat transfer in flat cables, cylindrical wires and electric fuses separately.  
 
 
 
 

a) b)
Heat dissipation due to free

convection and radiation to air

Heat difusion due to heat
conduction to the wire

Heat difusion due to heat
conduction to the wire

Heat dissipation due to free
convection and radiation to air

Heat dissipation due to free
convection and radiation to air

Heat dissipation due to free
convection and radiation to air

c)

Copper wire

PVC insulation

 
Fig. 1.1 Heat dissipation by free convection in electric conductor models: 

a) - flat cable, b) - round wire, c) - fuse
 
 
In this study both approaches i.e. analytical and numerical, are used for the analysis of 
heat transfer.  
 
Analytical solutions  were used to obtain steady-state temperatures for linearised con-
ductor models. The linearisation was done although non- linear heat transfer models 
would be appreciable. The experimental data have shown that linearised model have 
quite a good agreement with experimental data.  
 
Numerical model was applied for transient-state temperature calculations considering a 
non- linear heat transfer model.  
The heat transfer in electrical systems (cables and fuses) (Figure 1.1) is obviously of 
two - or three -dimensional nature (2-D or 3-D). The heat transfer occurs due to the heat 
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diffusion from fuse to the wire or to the fuse holder; also the heat is dissipated from the 
surfaces of conductors to the ambient due to temperature differences. However, due to 
the complexity of the numerical model and large time scale of heat transfer processes in 
the cables it is not computationally efficient to use three-dimensional models to simu-
late heat transfer in electrical systems. The CPU time for simulating the same physical 
system using two- or three -dimensional models is significantly longer than required by 
a simplified 1-D model. In creating a mathematical model of flat cables (Figure 1.1a) 
we regard heat transfer only in y – direction (see three-dimensional drawing) while side 
effects are negligible. Boundary conditions are symmetrical and convective-radiative. 
Here, convection is assumed unforced and laminar. Flat cable has insula-
tion/conductor/insulation layer sequence, where the insulation is PolyVinylChloride 
(PVC) and  the conductor is copper. Insulation layer is described by heat conductivity, 
specific heat capacity and heat dissipation coefficient. Conductor layer is heated with 
uniform volumetric heat, generated by electrical current.   
 
In the case of cylindrical wires (Figure 1.1b), the 3-D problem is reduced to 1-D regard-
ing only radial heat transfer and as infinite length of the wire. The same material proper-
ties and boundary conditions apply as for flat cable.  
 
The fuse model (1.1c) can also be considered as a cylindrical conductor, only with finite 
length and without insulation. The model is also reduced to a 1-D model neglecting ra-
dial heat transfer, because the fuse element has very high heat conductivity. Since the 
fuse element has finite length, axial heat transfer is modelled with prescribed tempera-
tures on the boundaries T(0,t) and T(L,t). These temperatures are known from wire tem-
peratures determined earlier.   
 
Due to the non-linear behaviour of material properties with respect to the temperature, a 
numerical algorithm had to be applied. A finite volume (FV) method was used to ap-
proximate partial derivatives of heat transfer equation. The obtained system of non-
linear algebraic equations was solved by iterative Newton-Raphson method in order to 
find nodal unknowns of temperatures in the conductors.  
 
The final step of this work was the evaluation of numerical simulation results by the  
polynomial fitting procedure using the least square (LS) algorithm. A number of 
mathematical methods have been proposed [10,11,12,13,14] for the analysis of heat 
transfer in electrical conductors. Usually these methods are pure-analytical or numeri-
cal. Analytical methods are easy to handle, physically meaningful but of limited appli-
cation for complicated models (non- linear, non-homogenous) and boundary conditions. 
A numerical approach enables us to implement more realistic boundary conditions, 
which can be applied to complicated geometries. In order to understand physical mean-
ing of the results received from the numerical simulation, calculation results have to be 
described by simple mathematical equations with as small a number of unknown vari-
ables as possible. Therefore, thermo-electrical characteristics of electrical conductors 
are analysed by polynomial or logarithmical functions. The second reason of derivation 
of simplified equations is to implement these formulas into computer tool, where a very 
good time-efficiency can be achieved.  
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1.3 Scientific novelty 
 
The special scientific contribution of this work is the particular way to combine analyt i-
cal and numerical methods to calculate the thermal behaviour of electrical conductors. 
The proposed algorithm is based on the following steps: 
 
 1. Analytical derivation of the heat transfer equations. 
 

2. Analytical solution of the obtained differential equations with mainly tem-
perature independent or linear dependent physical constants. 
 
3. Simplification of the obtained analytical solution to reduce the number of 
variables. 
 
4. Numerical approximation of the heat transfer equations with non- linear tem-
perature dependent phys ical constants. 
 
5. Model validation of the numerical results by experimental data. 
 
6. Interpolation (fitting) of the received numerical results with the simplified 
equations derived from the analytical solution of the heat transfer equations. 
 
7. Evaluation of the results to receive a limited amount of independent constants 
(e.g. temperature) to describe the thermal-electrical characteristics with suffi-
cient accuracy. 
 

In this study, for the first time, a methodology of heat transfer analysis in electric sys-
tems for mobile applications has been formulated. It is shown that it is possible to de-
scribe main thermo-electrical characteristics by simplified quasi-analytical functions, 
which are valid for one particular conductor type. 
 
Obtained thermo-electrical characteristics of electrical conductors are: 
 

- thermo – electrical characteristic ∆T(I) : 
 

( ) 2
0 IbIaIIT +=≤∆  

(1.1) 
- heating-up time characteristic tg(I) : 

 

( )
2
0

2

2

00 ln
II

I
IIt

−
=> τ  

(1.2) 
 
 
 

- time constant  characteristic τ(I) : 
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25.0 IdIcI +−= ττ  
(1.3) 

 
Having the relationship between the conductor temperature and electrical current (Eq. 
1.1), voltage drop in the conductor can be calculated as following:  

 
- voltage drop per length characteristic E(I) : 

 

A

TTI

A
I

E
))(1( 2

0 ∆+∆+
== ρρ βαρρ

 

(1.4) 
here: 
 ∆T  conductor temperature difference against environment in K 
 I current         in A 
 I0 nominal current      in A 
 a,b,c,d constants 
 t heating up time      in s 
 τ0 nominal time constant       in s 
 τ current dependent time constant     in s 
   τI time constant at zero current      in s 
 E voltage drop per length     in V/m 
 ρ specific resistance (resistivity)     in Ωm 
 ρ0 specific resistance at reference temperature (e.g. 20°C) in Ωm 
 αρ linear temperature coefficient of the specific resistance in 1/K 

βρ square temperature coefficient of the specific resistance in 1/K2 

 A conductor cross sectional area    in m2 

 
In this work an algorithm is proposed to describe thermo-electrical characteristics with 
the simplified equations (see above 1.1-1.4), which were obtained from analytical and 
numerical models. This algorithm is suited for implementation in the computer aided 
cable design program. 
 
Based on the proposed algorithm to calculate thermo-electrical characteristics a com-
puter program to design electrical systems in cars has been written [15].  
 
 

1.4 Research approval and publications 
 
 
Created methodology and algorithms, which have been developed to calculate thermo-
electrical characteristics of electrical cables for car applications were implemented by 
cable harness manufacturer Leoni Bordnetzsysteme GmbH and DaimlerChrysler AG. 
The basic achievements of present research have been presented at the following inter-
national conferences: 
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- The 7th International Conference “Electronics’2003” in Kaunas, Lithuania, 2003; 
- The 8th International Conference “Mathematical Modelling and Analysis” in 

Trakai, Lithuania, 2003 
 
The content of the dissertation includes three scientific publications: the two papers are 
published in the journal “Mathematical Modelling and Analysis” and one publication in 
“Electronics and Electrical Engineering”. Both journals are edited in Lithuania by an 
international editorial board.  
 
   
 



 
         ________________ 
           

         CHAPTER 
                 2 
         ________________ 
          
        PHYSICAL MODELS  

       OF CONDUCTORS AND  
THEIR HEAT TRANSFER  

EQUATIONS 
 
 
 

2.1 Overview 
 
 
Before the discussion of the theoretical model, a short “guide” will be presented at first. 
This “guidance” is intended to show concisely in what steps the heat transfer equations 
are going to be developed. It will also be discussed how these equations are solved for 
cable rating problems. 
 
After a short introduction to the model geometry, heat transfer equations of different 
model geometries will be derived. These equations describe the temperature behaviour 
in electrical conductors and fuses.  
 
As a next step, the heat convection and radiation coefficients will be determined. The 
heat convective coefficient is presented for cylindrical and horizontal surfaces. Because 
of its nonlinearity, this coefficient will have to be linearized for the later analytical 
analysis of the heat equation. 
 
Following this, the main physical material parameters of the heat equation will be con-
sidered. Because of its non- linearity (e.g. heat conductivity and electrical resistance) in 
reality, certain simplifications have to be introduced. It will be shown that these simpli-
fications can be tolerated for the thermal analysis of the electrical conductor and do not 
restrict the validity of the simplified thermal conductor model in the temperature range 
of interest.   
 
Finally, required boundary conditions will be introduced. They have to be linearized in 
order to implement them into an analytical solution of the heat equation.  
 
With these preparations, it will be possible to investigate the thermo-electrical charac-
teristics of conductors and calculate their ratings.  
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2.2 Geometry of physical models  
 
 
On the basis of electrical conductors, three different models will be considered:  

flat insulated cable,  
round insulated wire, and  
electrical fuse.  

 
These three different types of conductors cover the main part of power supply system in 
many applications. In the flat cable model, the term “cable” is used because it has more 
than one wire. All models are one – dimensional systems, because the other dimensions 
in all cases vanish due to large difference between cross-sections (for a round wire or 
fuse) or thickness (for flat cable) and length of the conductors. 
 
A. The flat cable model (Fig. 2.1,a) is reduced to one-dimensional heat conduction, 
whereby spatial derivatives with respect to x and z are neglected: 

 
( 0(...)(...) ≡∂=∂ zx ). 

 
The reduction of the model is possible because of infinite length of the cable L and 
much bigger width b compared to the thickness d. Due to lateral symmetry of this 
model, it is sufficient to analyse the upper part of the flat cable only. The model consists 
of three layers and can be extended depending on the flat cable structure. From “bot-
tom” to “top” in the figure (2.1,a) we have: 
 

• Polyvinylchloride (PVC) insulation 
• Metallic conductors (pure copper) 
• Polyvinylchloride (PVC) insulation 
 

For the sake of simplicity, the conductors (the middle layer) are considered as a homo-
geneous conductor layer.  
 
B. In round wire  model (Fig. 2.1, b) all spatial derivatives of the heat equation vanish 
with respect to x and ϕ : 
 

( 0(...)(...) ≡∂=∂ ϕx ).  
 
The heat conduction in the axial direction is neglected, because normally the length of 
the wire is much larger than its area, therefore, the boundary effects can be neglected. 
The angular dimension ϕ is also neglected due to rotational symmetry of the conductor 
and insulation layer. The whole model consists of two layers and can be extended to 
more layers, depending on the wire construction.  
 
In this model, we have: 
 

• Metallic conductor (98% copper) 
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• Polyvinylchloride (PVC) insulation 
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Wire

Fuse holder
element 1 Fuse  element Wire

Fuse holder
element 2

y

x

Wire

T

Fuse holder
element 1

Fuse holder
element 2

Wire

Temperature T1

Temperature T2

Max.Temperature
Tmax

x
Fuse  element

 
 
     c) 
 
Fig. 2.1 Model geometries and heat conduction parameters: a – flat cable, b – round wire, c 

– electric fuse 
 
The metallic conductor is assumed homogeneous and a perfect cylinder. In reality, the 
core of wire is made of a number of single conductors with small air gaps in between. If 
single conductors are arranged symmetrically, then the wire has a hexagonal shape.  
 
C. The  electrical fuse model is one – dimensional (Fig. 2.1, c) with the heat conduction 
only along the x – axis. The heat conduction in y – direction is not considered because 
of very high heat conductivity of copper compared to the heat convection from the sur-
face. The shape of the fuse model in x – direction is non-homogeneous. The whole 
model consists of one layer – copper, bras or any other alloy.  

 

2.3 Conservative form of the heat transfer equations 
 
 
In order to calculate heat dissipation (heat conduction, convection and radiation), the 
relevant heat transfer equations have to be solved. These equations define the relation-
ship between the heat generated by electrical current in metallic conductor, and the tem-
perature distribution within the wire or cable (conductor and insulation) and in its sur-
roundings.     
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The analysis of heat transfer is governed by the law of conservation of energy. We will 
formulate this law on a energy rate basis; which means, that at any instant, there must 
be a balance between all power rates, as measured in Joules (= Ws). The energy conser-
vation law can be written in following form: 
 

outstent WWWW +=+ int         (2.1) 
 
where: 

Went is the rate of energy entering the electrical conductor. This energy may be 
generated by other cables or wires located in the vicinity of other cables or by 
solar energy,  
Wint is the rate of heat generated internally by Joule losses,  
Wst is the rate of energy stored within the cable,  
Wout is the rate of energy which is dissipated by conduction, convection, and ra-
diation.  

 
The inflow and outflow terms Went and Wout are surface phenomena, and these rates are 
proportional to the surface area. The thermal energy generation rate Wint is associated 
with the rate of conversion of electrical energy to thermal energy and is proportional to 
the volume. The energy storage is also a volumetric phenomena, but it is simply associ-
ated with an increase (Wst > 0) or decrease (Wst < 0) in the energy of cable. Under 
steady-state conditions, there is, of course, no change in energy storage (Wst = 0). A de-
tailed derivation of the heat transfer equation is given in Appendix A.  
 
From the Equation (2.1), (see also Appendix A) general form of the heat transfer equa-
tion in conservative form 1in Cartesian (2.2) and cylindrical (2.2a) coordinates is ob-
tained as follows [11]: 
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here: ? heat conductivity     in W/mK 
 qV volumetric heat generation   in W/m3 

                                                 
1The conservative form is a form of heat conduction equation where space dependant thermal conductiv-
ity or other coefficients remains conserved within different media of materials. The conservative form is 
given as  
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 γ specific heat capacity     in W/kgK 
 ρ density      in kg/m3 

 
The heat equations (2.2, 2.2a) are the basis for future heat transfer analysis in electrical 
conductors. 

2.3.1 Flat cables 

The heat transfer equation (2.2) for flat cable (Fig. 2.1, a), which is derived (in Appen-
dix A.1) is simplified for one-dimension as follows: 
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As mentioned in the Chapter 2.3, in this model it is considered middle symmetry 
(Fig.2.2). This assumption is allowed because heat convection and radiation from “top” 
side of the cable surface has almost the same heat dissipation rate as from the “bottom” 
side of the cable. It is important to emphasize, that the free convection in air situation is 
considered. The cable is placed horizontal in the air.  
 
In order to simplify the model, the metallic conductor is treated as a homogeneous body 
across the cable width d (see Fig. 2.1,a). Here, the heat conductivity coefficient λ  is 
space dependant, due to different material layers in the wire. The specific heat capacity 
term γ is a non-linear function of temperature for copper and PVC insulation. The heat 
generation by electrical current is expressed as qv term and is called volumetric specific 
heat flux. It is a linear function of temperature in metallic conductor and vanishes in 
PVC insulation. 
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Fig. 2.2 Flat cable model with homogeneous metallic conductor 
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Here, in the equation (2.3), volumetric heat flux is expressed as:  
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here  

ρel  specific resistance of the metallic conductor given by  
 

 [ ])20(1 2020 −+= Tel αρρ       in Om,  
 

ρ20  specific resistance of the conductor at 20°C temperature  
 α20  copper temperature coefficient at 20°C    in 1/K 

(α20 = 3.83. 10-3  1/K)  
 l length of the cable       in m   
 J  current density      in A/m2  

I denotes current through the wire     in A 
 A  area of metallic conductor      in m2.  

 

2.3.2 Round wires 
  
Heat transfer in round wires is determined, in principle, by the same equation as (2.3), 
heat transfer in radial direction must also be considered. The general form of heat equa-
tion in cylindrical coordinates is: 
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Taking into account the model simplifications given earlier (see Fig. 1,b), the heat equa-
tion is reduced to the one-dimensional form (see also Appendix A.2): 
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The temperature profile in flat cables and round wires shown in Figure (2.1,a,b) under 
assumption, that the temperature gradient in a metallic conductor is very small due to its 
very high heat conductivity. In the insulation the temperature gradient is much larger. 
The main temperature drop, however, is between the wire surface and environment. 
This temperature drop is caused by convection and described by heat convection coeffi-
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cient α. Therefore, here it is very important to determine this coefficient correctly. This 
problem will be discussed in the section 2.5. 

2.3.3 Electric fuses 

The following differential equation for the heat transfer in the fuse element is given 
(Appendix, A.3):  
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here:  
 A cross section area of the fuse element    in m2 

 αc, αr  convection and radiation coefficients respectively   
u circumference       in m 

  
envTtxTT −=∆ ),(        in K 

 
According to the model (Fig. 2.1,c), the heat transfer should be analysed only in the x 
direction, because of the short lengths of the fuse melting element. The mathematical 
model of fuse element should calculate melting temperature of the fuse. Here, radial 
heat conduction can be neglected due to high heat conductivity of the fuse material.  
 
In equation (2.8) the heat flux qV is derived in the same way as in equation (2.5). In ad-
dition to this, the equation is valid also for a variable cross sectional area. 
 
 
2.4 Physical material constants 
 
 
Heat transfer equation given in section 2.3 depends on the specific resistance, heat con-
ductivity and the heat capacity of the conductor material. All three values are tempera-
ture dependent, however their values are only known for certain temperatures. In order 
to interpolate between these given values, a linear or square function has to be used to 
describe the relationship. This estimation is very important in order to model the heat 
transfer qualitative ly.  
 
Different calculation precision criteria are defined for the analytical approach and for 
the numerical approach. For the analytical approach it is necessary to have temperature 
independent or linear dependent constants. The numerical approach of the heat transfer 
model allows more precise temperature calculation in the conductors. Here, non- linear 
functions can be implemented for the description of the material constants.  
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The following diagrams show the exact graphical and numerical coefficients of the spe-
cific resistance, ρ, of copper, of the heat conductivity, ?, of pure copper and PVC, and 
of the specific heat capacity, γ, of pure copper and PVC  [16]. The temperature range in 
the diagrams is very wide, although in this work only temperature up to 200°C has been 
considered. The reason of this high temperature range in the charts is to show the over-
view how the coefficients behave within wide temperature range. Linear and non- linear 
approximation has been made using the available data.  
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c) 
 

Fig. 2.3 Values of: (a) specific resistance, (b)  thermal conductivity and (c)  specific heat 
capacity of pure copper 

 

Heat conductivity and specific heat capacity values of PVC: 

 
Temperature  in °C Name of material DIN code 

20 50 100 
  Thermal heat conductivity ? in W/Km 

Polyvinylchloride PVC 0.17 0.17 0.17 
     
  Specific heat capacity γ in J/kgK 

Polyvinylchloride PVC 960 1040 1530 
 

Tab 2.1. Values of thermal conductivity and heat capacity of PVC 
 
 
Approximation of the temperature dependent copper and PVC material coefficients: 
 
a) Specific resistance of copper ρ: 
 

( ) ( )[ ]2
000 1 TTTT −+−+= ρρ βαρρ  

 
here:  ρ0  specific resistance at 20°C,   ρ0 = 1.75.10-8   in Om  
 αρ  linear temperature coefficient,  αρ = 4.00.10-3  in 1/K 
 ßρ  square temperature coefficient.  ßρ = 6.00.10-7  in 1/K2 
 T   temperature of the conductor     in °C 
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 T0 – reference temperature. In this study reference temperature coincides with 
 environment temperature Tenv . 
 
 
b) specific heat capacity of copper γ: 
 

Tγαγγ += 0  ,  CT °≤≤ 2000  
here:  γ0 heat capacity at 20°C reference temperature, γ0 = 381  in J/kgK 
 αγ  approximated linear temperature coefficient of heat capacity in 1/K 

αγ = 0.17  1/K 
 
 
c) specific heat capacity of PVC γ: 
 

2
0 TT γγ βαγγ +−=   CT °≤≤ 1000    

 
here:  γ0  heat capacity at 20°C reference temperature, γ0 = 920  in J/kgK 
 αγ  approximated linear temperature coefficient of heat capacity in 1/K  

αγ = 1.3 1/K 
 ßγ   approximated square temperature coefficient of heat capacity in 1/K2 

 ßγ =0.074 1/K2  
 

 

2.5 Determination of heat transfer coefficients 
 
 
The heat transfer from the surface is governed by convection and radiation. This effect 
can be described by the corresponding convection and radiation heat transfer coeffi-
cients. Both depend on the surface and environment temperatures. 
 
Convection takes place between the boundary surface and a heat transport by a fluid 
(e.g. air) in motion at a different temperature. Radiation occurs by electromagnetic wave 
heat exchange between the surface and its surrounding environment separated by air.  
 
In this work the convective heat transfer coefficient of laminar flow has to be examined 
for the following two different model geometries:  

- horizontal cylinder surfaces 
- horizontal plate surfaces 

 
The result of this examination leads to two different heat transfer coefficients valid for  
round and for plate surfaces. The convection and radiation coefficient appears in the 
boundary conditions of the heat transfer equations for the electrical conductor models. 
At the lower temperatures, which are typical for electric cable applications, convection 
is the basic heat dissipation component (ca. 90%).  
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In this work, the heat transfer in electrical conductors is computed by an analytical cal-
culation (of the heat conduction equations) in the steady state regime and by a numeri-
cal algorithm in a transient state regime. Therefore, the convection and radiation coeffi-
cients for the analytical solution has to be linearized and to be presented in an approxi-
mated form in order to obtain simple but sufficiently accurate equations of the convec-
tion and radiation coefficients. For the numerical algorithm the coefficients will be de-
rived in a non- linear form since both are non- linear (temperature dependent). 
 
2.5.1 Convection coefficient for the long horizontal cylinders  
 
The mainly applied round geometry has been studied extensively. Many correlations 
exist between the different calculation methods. The literature [11] presents simple al-
gorithms for the calculation of convective coefficients of the cylinders. This work fo l-
lows the procedure proposed by [17], where many approaches of the  various procedures 
are summarised. The equations of this procedure were validated by the experimental 
data in the diploma work [18]. All notations of physical constants and material proper-
ties will be used from the works [17, 18]. 
 
In general, the heat dissipation by convection is defined as: 
 

)( ∞−= TTq scc α          (2.8) 
 
here: Ts   surface temperature of the solid   in °C,  

T∞ =Tenv + 273.15  the absolute temperature of the fluid   in K.  
 
The convection coefficient αc can be calculated as follows:  
 

Nu
dc
λ

α =           (2.9) 

 
here: λ heat conduction of air      in W/m2K,  

Nu Nusselt number   
d  diameter of cylinder       in m. 

 
The Nusselt number for a horizontal cylinder according to Wärmeatlas (Heat Transfer 
Atlas) [17] is expressed by: 
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In this equation the Rayleigh number Ra is calculated as:  
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Ra = Gr Pr          (2.11) 
 
Here:  Pr   Prandtl number (see Tab. 2.2) and  

Gr   Grashof number defined by the following equation:  
 

2

3 )(
v

TTgd
Gr ∞−

=
β

,         (2.12) 

 
here:  g  gravitational acceleration    in m/s2,  
 ß  volumetric thermal expansion coefficient  in 1/K,  
 ν  kinematic viscosity     in (m2/s). 
 
The ß coefficient for ideal gas with justifiable error can be considered as:  
 

∞

=
T
1

β           (2.13) 

 
where T∞ =Tenv + 273.15 - the absolute temperature of the fluid (in K) 
 
The material constants λ, ν and Pr of air are taken from Heat Transfer Atlas [17]. These 
constants are dependent on the average temperature Tave: 
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2
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envsave TTT +=          (2.14) 

 
here Ts is temperature of the surface of cylinder (in °C) and Tenv – environment tempera-
ture (in °C).  
 
With the equations (2.9) and (2.10), the convection coefficient αc is written as follows: 
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Replacing in the equation (2.15) the Rayleigh number Ra, the Prandl number Pr and 
heat conductivity λ  leads to the following form, which is only diameter d and tempera-
ture difference ∆T dependant: 
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where:  2
1

1 752.0 λ=dK ,        (2.17) 
 
and   
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The physical constants of air i.e. (heat conductivity λ, kinematic viscosity ν and the 
Prandtl number Pr) can be found in the literature [17]. For the volumetric thermal ex-
pansion coefficient ß, air is considered as an ideal gas. For reference, environment tem-
perature is taken. 
 
In the table 2.2  Kd1 and KT1 values for a temperature range from 20 to 140°C are given. 
 
Surface 
tempera-
ture T  in 
°C 

Temper
ature 
Tave in 
°C 

Heat conducti v-
ity λ in 10-3 
W/mK 

Kinematic viscosity 
ν  in 10-6 m2/s  

Prandtl 
number 
Pr 

Kd1 KT1 

20 20 25.67    15.35     0.7147 0.1205 1.1121 
40 30 26.41    16.29     0.7133 0.1222 1.1054 
60 40 27.14    17.25     0.7121 0.1239 1.0990 
80 50 27.87    18.23     0.7110 0.1255 1.0928 
100 60 28.58    19.24     0.7100 0.1271 1.0868 
120 70 29.29    20.26     0.7091 0.1287 1.0810 
140 80 30.00    21.31     0.7083 0.1302 1.0754 
Average: 0.1254 1.0932 
 

Tab 2.2. Physical constants of air for temperature from 20 to 140 °C 
 
 
The averaged form of the convective coefficient for temperature range from 20 to 
140°C is following: 
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2.5.2 Convection coefficient for horizontal plates 
 
For the application for flat cables the free convection of horizontal plates has been con-
sidered as well. For this geometry, we have to distinguish between the convection from 
the top side of the plate surface and the bottom side.  
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The convection coefficient αc is calculated similar to equation (2.9): 
 
 

Nu
lc
λ

α =           (2.20) 

 
here l is characteristic length, which is defined as: 
 

P
A

l ≡ , 

where A and P are the plate surface and perimeter, respectively.  
 
A. The Nusselt number for the upper side  of horizontal plate according to Wärmeatlas 
(Heat Transfer Atlas) [17] is expressed by: 
 
 
a. For laminar flow: 
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here: 4
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b. For turbulent flow: 
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B. The Nusselt number for the lower side of a horizontal plate has the following form 
(only laminar convection): 
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All the equations (2.1, 2.13) and Nusselt numbers given in (2.21, 2.22, 2.23) are in-
serted into equation (2.20). This leads to the following form of the convection coeffi-
cients:  
 
A. Upper side  
 
a. Laminar flow:  
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here:  
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b. Turbulent flow:  
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B. Lower side  (laminar flow only): 
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2.5.3 Exact mathematical expressions of the physical constants of air 
 
 
The physical constants of air depend very much on temperature. These functions are of 
higher polynomial order, which were obtained by fitting of the given results in the 
Wärmeatlas [17]. With these functions, a very high accuracy of convection coefficient 
can be achieved and the function can easily be implemented into the computer program.  
Here, the wide temperature range is used in order to expand the validity range of tem-
perature dependent constants in the computer program.  
 
A. Heat conductivity in air λ  (Tave): 
 
Temperature range for the fitting procedure:  CTC ave °≤≤°− 1000200  
 
Obtained polynomial function by fitting: 
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Fig. 2.4 Heat conductivity of air as a function of temperature at constant pressure  
P = 105 Pa 

 
 
B. Kinematic viscosity ν (Tave): 
 
Temperature range for the fitting procedure: CTC ave °≤≤°− 1000200  
 
Obtained polynomial function by fitting: 
 

41731421085 1064882.1106463.41014171.11082402.81035391.1
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T
−−−−− ⋅+⋅−⋅+⋅+⋅

=ν

           (2.31) 
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C. Prandtl number Pr(Tave) 
 
 Temperature range for the fitting procedure:  CTC ave °≤≤°− 650125  
 
Obtained polynomial function by fitting: 
 

413310274 1032316.41011289.91091108.6106855.171779.0
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T
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2.5.4 Radiation 
 
 
In order to describe heat transfer by the thermal radiation in electrical conductors, the 
exchange of radiation energy between the insulated conductor surface and the infinitely 
large environment is considered.  
 
It may occur not only from solid surfaces but also from liquids and gases [11]. The en-
ergy of the radiation is transported by electromagnetic waves (or alternatively, photons). 
While the transfer of energy by conduction or convection requires the presence of a ma-
terial medium, radiation does not. In fact, radiation transfer occurs most efficiently in a 
vacuum. The complete electromagnetic spectrum is shown in Figure 2.7. The short 
wavelength gamma rays, X rays and ultraviolet (UV) radiation are primarily of interest 
to the high energy physicist and nuclear engineer, while the long wavelength micro-
waves and radio waves are of concern to the electrical engineers. It is the intermediate 
portion of the spectrum, which extends from approximately 0.1 to 100 µm. It includes a 
part of the UV and all of the visible infrared (IR), that is called thermal radiation and 
belongs to heat transfer.  
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Fig. 2.7 Spectrum of electromagnetic radiation 

 
 
 
The maximum flux (W/m2) at which radiation may be emitted from a surface is given 
by the Stefan-Boltzmann law: 
 

4
sr Tq σ=           (2.33) 

 
where TS is the absolute temperature (K) of the surface and σ is the Stefan-Boltzmann 
constant ( 428 /1067.5 KmW−⋅=σ ). Such a surface is called an ideal radiator or black 
body. The heat flux emitted by a real surface is less than that of the ideal radiator and is 
given by 
 

4
sr Tq εσ=           (2.34) 

 
where ε is a radiative property of the surface called the emissivity. This property ind i-
cates how efficiently the surface emits compared to an ideal radiator.  
 
The rate of heat exchange between the cable surface and its surroundings, expressed per 
unit area of the surface, is: 
 

( )44
envsr TTq −= εσ          (2.35) 

 
In order make it compatible with heat convection, it is convenient to express the radia-
tion heat exchange in the form:  
 

( )envsrr TTq −= α           (2.36) 
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where from Equation (2.35) the radiation heat transfer coefficient αr is: 
 

 
( )( )22

envsenvsr TTTT ++≡ εσα  
 (2.37) 

 
Here we have modelled the radiation in the same way as convection. In this sense we 
have linearised the radiation rate equation, making the heat rate proportional to a tem-
perature difference rather than to the difference between two temperatures to the fourth 
power. Note, however, that αr depends strongly on temperature, while the temperature 
dependence of the convection heat transfer coefficient αc is generally weak.   
 
Since the free convection and radiation transfer occurs simultaneously, the convection 
and radiation has to be added. Then the total rate of heat transfer from the surface is as 
follows: 
 

)()( 44
envsenvscrc TTTTqqq −+−=+= εσα       (2.38) 

 
 
The total heat transfer by convection and radiation expressed as the heat transfer coeffi-
cient α is: 
 
 

( )( )22
envsenvscrc TTTT +++=+= εσαααα  

(2.39) 
 

2.6 Boundary conditions 
 
 
In order to have a unique solution of the PDE (partial differential equation), boundary 
and initial conditions have to be specified as shown below. In case of differential equa-
tions for the electrical fuse, prescribed boundary conditions are used. PDE’s of flat and 
round electrical cables will have symmetry and non-linear convective-radiative bound-
ary conditions.   
 
1. Flat electrical cable 

 
- initial condition 
 

)()0,( yTyT env=         (2.40) 
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- boundary conditions   
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2. Round electrical wire 
 
- initial condition 
 

)()0,( rTrT env=         (2.42) 

 
- boundary conditions  
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3. Electrical fuse 
 
- initial condition 
 

)()0,( xTxT env=         (2.44) 

 
- boundary conditions  
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The boundary and initial conditions in equations (2.40-2.45) are generally valid and im-
plemented into the numerical algorithm of heat transfer calculations. 
 
In the analytical analysis of heat transfer (Chapter 3), some additional boundary cond i-
tions will be used to solve the PDE of flat cables and round wires. Here we have to cal-
culate with the constant heat transfer coefficient and do not take into account the non-
linear phenomena of radiation. 
 
The following additional boundary conditions apply for a flat electrical cable: 
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In case of cylindrical wire: 
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         ________________ 
           

         CHAPTER 
                 3 
         ________________ 
          

                
 ANALYTICAL ANALYSIS  

OF HEAT TRANSFER  
IN A STEADY STATE 

 
 
 
In the preceding Chapter 2, a definition of heat transfer equations for the study of ana-
lytical and numerical heat transfer computation was given. The objective of those equa-
tions is to determine the temperature field in different kinds of electrical conductors 
where heat conduction, convection/radiation and energy generation takes place. Differ-
ent boundary conditions were also given for the solutions of those equations.  
 
The aim of the present chapter is to obtain exact analytical solutions in a steady-state 
regime. Because of the linearization of differential equations, some difference between 
numerical and analytical results will occur, but these mismatches can be accepted in 
many situations. It is always convenient to have a simple analytical solution if a steady 
state is required.   
 
The following assumptions are made to simplify the partial differential equations:     
 a) steady-state conditions, 
 b) one-dimensional conduction, 
 c) constant or linear material properties, 
 d) uniform volumetric heat generation, 
 e) constant heat transfer coefficient. 
 

 

3.1 Calculation of the thermo-electrical characteristics of 
 flat cables 
 
3.1.1 Vertical heat transfer with temperature-independent coefficients 
 
For pure vertical heat transfer in flat cables equation (2.6, Chapter 2) will be used: 
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− ργλ       (2.6) 

 
Considering assumptions for the heat equation made before we get the following equa-
tion: 
 



36                                            Chapter 3. Analytical analysis of heat transfer in a steady state   
 

( ) ( )
0

,,
2

2

=
∂

∂
−+

∂
∂

t
tyT

A
EI

y
tyT

λ
γρ

λ
       (3.1) 

 
or, 
 

( ) ( )
0

,,
2

2

=
∂

∂
−+

∂
∂

t
tyT

DC
y

tyT
       (3.2) 

 

here: 
2

2

A
I

A
EI

C
λ
ρ

λ
=≡ ; 

λ
γρ

≡D . 

 
 
3.1.2 Vertical heat transfer with temperature-dependent coefficients 
 
Considering specific resistance ρ and electrical field strength E dependence on tempera-
ture: 
 

[ ])),((1)( 0 envTtyTT −+= ραρρ        (3.3) 
 

[ ])),((1)( 0 envTtyTETE −+= ρα        (3.4) 
 
here:  αρ  linear temperature coefficient of resistance   in 1/K 
 ρ0  specific resistance at reference temperature T0  in °C 
 E0  field strength at reference temperature T0   in °C 
 
Then, equation (3.2) obtains this form: 
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Since in equation (3.6) the term with B is temperature dependant, steady state can only 
be reached if additional conditions are satisfied. The necessity of such a condition arises 
from the fact that the specific resistance ρ increases with temperature.  
 
The solution of temperature change in time can be presented in the following form: 
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This result is recognised as a Fourier sine-series expansion of the arbitrary function 
Tj(y), for which the constant amplitudes gj are given by: 
 

∫
















 +
=

d

ij ydy
d

d
y

jyT
d

tg
0

2sin)(
2

)( π .       (3.6c) 

 

Only, if 
2

2

d
B

π
<   the solution of steady state temperature exist.  
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3.1.3 Stationary solution of vertical heat transfer equation 
 
 
The stationary solution will be obtained for rectangular cables, namely, flat cables, 
where the cable width b is much larger than the thickness d. This solution describes the 
temperature pattern in a metallic conductor of a flat cable and its insulation in vertical y 
direction.  
 
Three different cases of electrical conductor are considered, for which a stationary solu-
tion of the heat equation is achieved: 
 
A) Cable without insulation and temperature-dependent specific resistance ρ ( 0≠B ), 

Dirichlet boundary conditions; 
B) Cable without insulation and temperature- independent specific resistance ρ ( 0=B ), 

 symmetry and convective boundary conditions; 
C) Cable with insulation and temperature-independent specific resistance ρ ( 0=B ),  
  symmetry and convective boundary conditions. 
 
Case A. Cable without insulation and temperature-dependent specific resistance ρ  

( 0≠B ). 
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The heat equation (3.6) for steady-state simplifies to: 
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The general solution of equation (3.7) is: 
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here T1,2 – integration constants in °C and CBTC env −=' . 
 
In order to get a temperature profile, boundary conditions for the equation (3.8) have to 
be applied. The temperatures are fixed at the boundary (Dirichlet conditions) at the bot-
tom side of the flat cable (y=-d/2) and upper side - (y=d/2).  
 
For y=-d/2: 
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For y=d/2: 
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This leads to the integration constants T1,2: 
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The insertion of integration constants into the general solution (3.8) gives the following 
temperature distribution in the flat cable: 
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here: d – thickness of the cable, T01- boundary temperature at y=-d/2, T02-boundary tem-
perature at y=d/2. 
 
For T01  = T02 equation (3.11) can be simplified: 
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Case B. Cable without insulation and temperature-independent specific resistance ρ  

( 0=B ) 
 
In case the temperature dependence of the specific resistance can be neglected, the 
equation (3.2) simplifies to: 
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The general solution of this equation (3.13) is: 
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where T1 and T2 are integration constants. 
 
Symmetry and convective boundary conditions (Fig.3.1) are applied: 
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 Fig. 3.1 Boundary conditions considering temperature gradient in conductor only of flat 
cable  
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The relationship (3.16) is developed by applying a surface energy balance. Here the heat 
transfer coefficient is considered constant. 
 
Substituting the appropriate rate equations (3.13, 3.14, 3.15 and 3.16) temperature pro-
file in the conductor of flat cable is obtained: 
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here: C   
 
Case C. Cable with insulation and temperature- independent specific resistance ρ  

( 0=B ) 
 

For the calculation of the temperature distribution in an insulated flat cable (case C), the 
boundary conditions should be applied to the borders of the insulation (see Fig.3.2). 
Due to high thermal conductivity of the conductor compared to the insulation, the tem-
perature gradient in the metallic conductor can be assumed to be zero. Applying as 
overall energy balance law to the flat cable model, we obtain following boundary cond i-
tions:  
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Fig. 3.2 Boundary conditions considering temperature gradient in the insulation alone of 
flat cable  
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at y = d2:  
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The equation (3.7) can be written as follows 
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which by integration becomes:  
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where T1 is a integration constant. 
 
Taking into account the limit condition (3.18) the constant T1 is: 
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The temperature Tins of the outer surface of the insulation, according to (3.19) is given 
by:  
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The temperature profile in the insulation body can be determined by integrating the 
equation (3.21): 
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Temperature at the inner side of insulation, which also means temperature of metallic 
conductor is given with y=d1: 
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or, expressed as a function of environment temperature Tenv: 
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3.2 Calculation of thermo-electrical characteristics of round 
 wires 

3.2.1 Radial heat transfer with temperature-independent coefficients 

 
For radial heat transfer we consider infinite length cylindrical wire thus neglecting end 
effects. This assumption is reasonable if the ratio of cylinder length L and cylinder ra-
dius r is L/r ≈ 1000. The general heat equation for radial system is: 
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3.2.2 Heat transfer equations with temperature-dependent coefficients 
 
 
Here the specific resistance dependence on temperature will be considered: 
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The electrical field strength E changes with temperature as following: 
 

[ ])),((1)( 00 TtrTETE −+= ρα        (3.29) 
 
here: 
 αρ - linear temperature coefficient of resistance 
 ρ0 – specific resistance at reference temperature T0 
 E0 – field strength at reference temperature T0 

 
Then the equation (3.27) obtains the following form: 
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3.2.3 Stationary solution of radial heat transfer equation 
 
 
Before solving the equations, a short explanation of the applications shall be given 
where the solutions are applicable. Again, first the heat equation will be solved for the 
“naked” wire i.e. cylindrical wire without insulation (Fig. 3.1a). In this case, tempera-
ture distribution occurs only in the metallic conductor. Secondly, the heat equation will 
be applied to the round wire with insulation (Fig. 3.1b). Here the temperature distribu-
tion will be calculated whilst the insulation layer while temperature gradient of the me-
tallic conductor is assumed to be zero.  
 
For steady state and constant material properties, the heat transfer equation reduces to  
B = 0: 
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Fig. 3.1 Temperature distribution in a plane of cylindrical wire: a) – wire without insula-
tion; b) – electrical wire with insulation 

 
Separating variables and assuming uniform heat generation, the equation can be inte-
grated to obtain: 
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Repeating the procedure, the general solution for the temperature distribution becomes: 
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To obtain integration constants T1 and T2 we apply the following boundary conditions: 
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at r = r1 : 11)( rTrT = ; 
 
The first condition results from the symmetry of the cylinder. In the centre of the cylin-
der, the temperature gradient must be zero. Using the second boundary condition at r = 
r1 with the equation (3.34) we obtain: 
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The temperature distribution is therefore: 
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To relate the surface temperature, Tr1, to the environment temperature Tenv, an overall 
energy balance equation leads to the result: 
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here: L – length of cylindrical wire in m 
 
Then, the temperature distribution in the metallic conductor considering heat dissipation 
from the surface by convection:  
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In order to determine temperature in an insulated cylindrical wire (Fig.3.1b), we use the 
same heat equation (3.32) but different boundary conditions shall be considered:  
 
a) from the energy balance equation for r=r1 the following equation can be written: 
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b) neglecting radiation, for r=r2 the boundary condition is as following: 
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Repeating the same procedure as in the solution of Eq. (3.7) for a non- insulated wire, 
we obtain the following solution for temperature profile in the insulation of cylindrical 
wire: 
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Equation (3.39) enables us to compute the temperature profile in the insulation. In the 
metallic conductor, the temperature gradient is considered to be zero. This assumption 
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is reasonable, because the heat conductivity of a metallic conductor is very high, com-
pared with the insulation heat conductivity.  
 
Temperature of metallic conductor at r=r2 from Eq. (3.39) is therefore: 
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(3.40)

3.3 Calculation of the thermo-electrical characteristics of  

 electrical fuses 
 
3.3.1 Axial heat transfer with temperature – independent coefficients 
 
 
For the analytical analysis of axial heat transfer we will use similar equation to (Eq. 2.8, 
Chapter 2) and introduce temperature- independent coefficients. Then the equation has 
the form: 
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here: B
A
u

≡
λ
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Then equation (3.41) can be rewritten following: 
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Let us describe the coefficient phys ical meaning of equation (3.42). These coefficients 
do not depend on temperature. Coefficient B can be written in the following form: 
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here χ - is the “length constant”, e.g. the inversed square root of coefficient B : 
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χ can be considered as a length decay in a function of temperature, which increases if 
the ratio A / u increases.  
 
Coefficient C is called “Temperature field gradient” in K/m2. The coefficient means the 
ratio of the volumetric generated heat EJ in the fuse and the heat conductivity coeffi-
cient ? : 
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We introduce the “asymptotic temperature” termT̂ . Asymptotic term can be understood 
as a final temperature of infinite length wire after steady state. Temperature T̂ in the 
fuse will not be achieved if the fuse has a very short length. In any case T̂  will not be 
reached in transient state. The formula of T̂  is the following: 
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Coefficient D can be called “reciprocal temperature conductivity” or “reciprocal heat 
transport velocity” and is described as the quotient of heat capacity and heat conductiv-
ity:  
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3.3.2 Axial heat transfer with temperature-dependent coefficients 
 
 
In this section we will consider temperature dependant specific electrical resistance of 
copper or brass. Specific resistance, ρ, for temperature change from 20 to 180°C can be 
calculated as follows: 
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The field strength, E, changes with respect to temperature as: 
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here: αρ   linear temperature coefficient of resistance 
 ρ0  specific resistance at reference temperature T0 
 E0  field strength at reference temperature T0 

 

 
Considering Eq. (3.49), equation (3.41) takes the following form: 
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where the coefficients have the following meaning: 
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3.3.3 Avalanche effect in metallic conductor 
 
 
Any conductor with a positive temperature coefficient αρ  shows a so-called avalanche 
effect, where due to too larger energy generation, the equilibrium, generated between 
energy in the fuse and dissipated heat to ambient can not be achieved. This is valid for 
the length constant as well as for the final temperature of a wire with infinite length. 
Because of this effect, temperature rises continuously and the length constant χA and 
final temperature AT̂  becomes infinite if the following conditions are satisfied: 
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Then: ∞=∞= AA T̂,χ  
 
Avalanche current can be calculated in this way: 
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3.3.4 Stationary solution for axial heat transfer equation 
 
 
The solution of the equation for axial heat transfer gives the temperature distribution in 
the x – direction. For steady-state we apply boundary conditions given in equation 
(2.46, Chapter): 
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Then, the equation (3.42) of axial heat transfer simplifies to: 
 
 

0)(
)(

2

2

=+∆−
∂

∂
CxTB

x
xT

        (3.55) 

 
 
 
The general solution of Eq. (3.55) is: 
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here: B linear temperature dependent heat dissipation coefficient to ambient   
          in 1/m2 
 CBTC env −='   
  temperature dependent heat generation by electrical current  
          in 1/m2 
 T1,2   integration constants, in which the boundary conditions are set  
          in °C 
 
 
In order to find T1,2 we introduce boundary values at x = 0 and x = l. Then, the tempera-
ture distribution in the fuse is as following: 
 
 



50                                            Chapter 3. Analytical analysis of heat transfer in a steady state   
 

( ) ( )
Te

e

TeTeT
e

e

TeTeT
xT xB

lB

lB
l

lB
lxB

lB
l

lBlB
ˆ

1

1ˆ

1

1ˆ
)(

2
0)(

2
0 +

−

−+−
−

−

−+−
−= −

−

−−
−

−

−−

 (3.57) 

 
 
here: l length of fuse      in m 
 T(x) temperature distribution along the fuse    in °C 
 T0  the boundary temperature of the fuse at x = 0 in °C 
 Tl  the boundary temperature of the fuse at x = l  in °C 
 
 

Replacing B by
2
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, equation (3.17) can be written as: 
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(3.58) 
 
 
 
Equation 3.58 gives the temperature distribution in a fuse element with the finite length 
and fixed boundary temperatures. From the analytical solution the “avalanche effect” 
(Eq. 3.52) can be observed, the length constant χ is obtained (Eq.3.51), and “hypotheti-
cal temperature” T̂  can be derived (Eq. 3.52).  
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         CHAPTER 
                 4 
         ________________ 
         

NUMERICAL CALCULATION OF  
TEMPERATURE BEHAVIOUR  

IN A TRANSIENT STATE  
 

4.1 Overview of the numerical methods used in heat transfer 
 computation 

 
 
The heat transfer of an insulated electrical wire is described by a non-linear and non-
homogeneous partial differential equation. A unique analytical solution is only feasible 
for idealised and simple conditions. For practical cases, it is required to implement nu-
merical methods. Available analytical and experimental results are of considerable im-
portance in verifying the accuracy and validity of numerical results. 
 
The limitations of an analytical solution arise from the following properties of electrical 
wires: 

• electrical conductivity is second order temperature dependent 
• heat conductivity λ of insulation is at least linear temperature dependent 
• heat convection and radiation α is at least third order temperature dependant 

 
The numerical methods allow not only better representation of the mutual heating ef-
fects, but also permit more accurate modelling of the boundaries (e.g. a convection-
radiation boundary to the environment).  
 
A numerical solution is obtained from discretisation of the partial differential equation.  
 
There are four distinct streams of numerical solution techniques: 

• Finite Differences   (FD) 
• Finite Element   (FE) 
• Spectral Method  (SM)  
• Finite Volume Method  (FV)    
  

The four mentioned methods differ mainly in the approximation of the variables and in 
the discretisation processes.   
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1. Finite difference methods (FD) 
 
In this method the partial derivations of equations are approximated by a truncated Tay-
lor series. This method is particularly appropriate for an equidistant Cartesian mesh.  
 
Taylor series expansion of a function f(x) about a point x0 in the forward (i.e. positive x) 
and backward (i.e., negative x) directions are given, respectively, by: 
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These two expressions form the basis for developing difference approximations for the 
first order derivative df/dx about x0. Rearranging the expressions, the forward and 
backward finite difference approximations for the first order derivative, respectively, 
become: 
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More about FD method in heat transfer can be found in the relevant literature [19]. 
 
2. Finite element method (FE)  
 
This method originated from the structural analysis as a result of many years of re-
search, mainly between 1940 and 1960. In this method the problem domain is ideally 
subdivided into a collection of small regions  of finite dimensions, called finite elements. 
The elements in a 2-D case have either a triangular or quadrilateral form (Figure 4.1,a) 
and can be rectilinear or curved. After subdivision of the domain, the solution of the 
discrete problem is assumed to have prescribed form. This representation of the solution 
is strongly linked to the geometric division of sub domains and characterised by the pre-
scribed nodal values of the mesh.  
 
For heat transfer in the electrical wires, the discrete solution with FE can be constructed 
as follows: 
 1. A finite number of points in the solution region is identified. These points are 
 called nodal points or nodes. 
 2. The value of temperature at each node is denoted as a variable which has to be 
 determined. 



4.1 Overview of the numerical methods used in heat transfer computation                             53 
 
 3. The solution region is divided into a finite number of subregions called ele
 ments. These elements connect common nodes, and collectively approximate 
 the shape of the region. 
 4. Temperature is approximated over each element by a polynomial expression 
 that is defined using nodal values of the temperature (see Fig. 4.1, b):  
  
 mjiP CBAT ωωω ++=  
  
 where ωi, ωj, ωm are the area coordinates defined as in Fig. 4.1, b. These area 
 coordinates uniquely define the position of any point P inside the triangle ijm. 
 
 A different polynomial is defined for each element, but the element polynomials 
 are selected in such a way that continuity is maintained along the element 
 boundaries. The nodal values are computed so that they provide the “best” 
 approximation possible to the true temperature distribution. This selection is ac
 complished by minimising some quantity associated with the physical prob
 lem or by using Galerkin’s method [29], which deal with the differential equa
 tions directly. The solution vector of  the algebraic equations gives the required 
 nodal temperatures. The answer is then known throughout the solution region. 
 More about FE method can be found in literature [20]. 

 
 

 
  a)       b) 

Fig. 4.1 Triangular or quadrilateral finite elements of a two-dimensional domain (a) and 
area coordinates (b) 

 
3. Spectral method 
 
Spectral methods approximate the unknowns by means of truncated Fourier series or 
series of Chebyshev polynomials. Unlike the finite difference or finite element approach 
the approximations are not local but valid throughout the entire computational domain. 
The unknowns in the governing equation are replaced by the truncated series. The con-
strain that leads to the algebraic equations for the coefficients of the Fourier or Cheby-
shev series is provided by a weighted residuals concept similar to the finite element 
method or by making the approximate function coincide with the exact solution at a 
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number of grid points. Further information on this specialised method can be found in 
[21] 
 
4. The finite volume method  
 
The finite volume method was originally developed as a special finite difference formu-
lation [22, 23]. In FV method, the partial derivation of equations is not directly ap-
proximated like in FD approach. Instead, the equations are integrated over a control vol-
ume V, which is defined by nodes of grids on the mesh:  
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The volume integral terms will be replaced by surface integrals using the Gauss for-
mula. For a vector a this theorem states: 
 

∫∫ =
AV
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These surface integrals define the convective and diffusive fluxes through the surfaces. 
Due to the integration over the volume, the method is fully conservative. This is an im-
portant property of FV method.  
 
This clear relationship between the numerical algorithm and the underlying physical 
conservation principle forms one of the main attractions of the finite volume method 
and makes its concept much simpler to understand by engineers than finite element and 
spectral methods. In fact, 40 years ago Lax and Wendroff proved mathematically that 
conservative numerical methods, if convergent, do converge to correct solution of the 
equation.  This study shall be solely concerned with this most well – established and 
thoroughly validated general-purpose computational fluid dynamic (CFD) and heat 
transfer technique. Therefore the method is discussed in more detailed.  
 
 

4.2  Fundamentals of the finite volume method 
 
 
The basic laws of heat transfer are the conservation equations, which are statements that 
express the conservation of: 
 mass,  
 momentum, and  
 energy  
in a volume closed by its surface.  
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Figure 4.2 One-dimensional Finite Volume Mesh 
 
 

Certain requirements are necessary to convert these laws into partial differential equa-
tions. These requirements cannot always be guaranteed. In a case where a discontinuity 
occurs, an accurate representation of the conservation laws is important. In other words, 
it is of big importance that these conservation equations are accurately represented in 
their integral form. The most natural method to accomplish this is obviously to discritise 
the integral form of the equations but not the differential form. This is the basis of finite 
volume (FV) method.  
 
In two dimensional cases the field or domain is subdivided in the same way as in the 
finite element method, namely, into a set of non-overlapping cells that cover the whole 
domain on which the equations are applied. On each cell the conservation laws are ap-
plied to determine the flow variables in some discrete points of the cells, called nodes, 
which are typical locations of the cells such cell-centre (cell centered mesh) or cell-
vertices (cell vertex mesh) (Figure 4.3). 
 
Obviously, there is considerable freedom in the choice of the cell shapes. They can be 
triangular, quadrilateral etc. and generate a structured or unstructured mesh. Due to this 
unstructured form, very complex geometries can be handled with ease. This is clearly an 
important advantage of the method. Additionally the solution of the equation of the cell 
is not strongly linked to the geometric representation of the domain.  This is another 
important advantage of the finite volume method in contrast to the finite element 
method.       
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 (a)        (b) 

  
Figure 4.3 Two-dimensional structured Finite Volume Mesh system: 

(a) Cell Centred mesh   (b) Cell Vertex mesh 
 
 
 

Numerical properties of discretisation schemes.  
 
It is normally distinguished between time and spatial discretisation of continuum equa-
tion. The spatial discretisation can be applied on different forms of grids such as Carte-
sian, non-orthogonal, structured and unstructured. Time discretisation is usually done by 
FD scheme, which can be explicit or implicit. Normally, the explicit method is used for 
strong unsteady flows or when time gradient is very big.  
 
When a direct computation of the dependent variables can be made in terms of known 
quantities, the computation is said to be explicit. 
 
 In contrast, when the dependent variables are defined by coupled sets of equations, and 
either a matrix or iterative technique is needed to obtain the solution, the numerical 
method is said to be implicit.   
 
The choice of whether an implicit versus explicit method should be used depends ulti-
mately on the goal of the computation. The consequences of using both methods have to 
do with numerical stability and numerical accuracy. Using explicit methods we can 
achieve required accuracy in time with more computational effort than implicit method. 
Although, explicit methods are simpler to implement mathematically, they are almost in 
all cases only conditionally stable. Implicit formulation is said to be always uncondi-
tionally stable. A solution for the unknowns at one time level n+1 may be obtained for 
any size of time step. In computational heat transfer, the governing equations are 
nonlinear. Under these conditions implicitly formulated equations are almost always 
solved using iterative techniques. Since heat transfer in electrical conductors has no 
strong unsteady flows as well as considering efficiency and stability of implicit method, 
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whenever possible implicit methods are used in this work but explicit method can be 
applied optionally.  
 
Good understanding of the numerical solution algorithm is crucial. Three mathematical 
concepts are useful in determining the success or otherwise of such algorithms: conver-
gence, consistency and stability.  
 
Convergence is the property of a numerical method to produce a solution, which ap-
proaches the exact solution as the grid spacing, control volume size or element is re-
duced to zero ( 0)(lim

0
=−

→ nmesh
TT , T – exact solution of partial differential equation, Tn – 

solution of finite difference equation).  
 
Consistent numerical schemes produce systems of algebraic equations, which can be 
demonstrated to be equivalent to the original governing equations, as the grid spacing 
tends to zero.  
 
Stability is associated with damping of errors as the numerical method proceeds. If a 
technique is not stable even round off errors in the initial data can cause erratic oscilla-
tions and divergence.  
 
Convergence is usually very difficult to establish theoretically and in practice Lax’s 
equivalence theorem is used [4], which states that for linear problems a necessary and 
sufficient condition for convergence is that the method is both consistent and stable. In 
heat transfer calculations this theorem is of limited use since we stated that the govern-
ing equations are non- linear. In such problems consistency and stability are necessary 
conditions for convergence, but not sufficient.  
 

4.3 Non-linear heat transfer model of electrical conductors 
 
 
It has already been mentioned that using the numerical methods the differential and the 
integral equations can be transformed into discrete algebraic equations. Based on the 
mentioned reasons in the previous section (4.2), the FV method has been chosen for the 
discretisation of PDE. 
 
Equation (2.2, Chapter 2) 
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can be rewritten in the integral form. We integrate Equation (2.2) over a small fixed 
volume V: 
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The volume integral over the divergence of heat flux vector is transformed to a surface 
integral by means of the divergence theorem. Then Equation (4.2) becomes 
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where S is the surface area of the finite volume. Since, 
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then, the equation (4.2a) gives: 
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here: V  small finite volume;  
 n  outward drawn normal unit vector 

 
n∂

∂
 derivative along the outward drawn normal to the surface of the control 

  volume.   
 
Equation (4.2a) represents the principle of conservation of energy over finite volume V. 
It states that the rate of energy entering the control volume through its boundary surface 
S plus the rate of energy generated in the volume element is equal to the rate of increase 
of stored energy in the control volume. Furthermore, since fluxes are conserved in 
transport between the control volumes, the conservation principle is also satisfied for an 
assembly of finite volumes. That is, the numerical solution will satisfy both the local 
and global conservation properties, hence the formulation given by Equation (4.2) is 
fully conservative.  

 

4.3.1 Approximation of heat transfer equations by FVM 

4.3.1.1 Flat electric cable 

 
We consider the transient state diffusion with convective-radiative boundary condition 
of a flat electrical cable in a one-dimensional domain defined in Figure 4.4.  
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Figure 4.4 The physical model of flat electrical cable heated by electrical current 
 

 
It is assumed that the dimensions in the x- and z- directions are so large that temperature 
gradients are significant in the y- direction only. The used grid is shown in Figure 4.5: 
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Figure 4.5 The finite volume grid of flat cable   
 
 
 The governing equation is:  
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The Equation (4.3) models the heat conduction in an electrical wire, which has different 
materials namely a conductor (here: copper) and an insulator (here: PVC = PolyVinyl-
Chloride) with different heat conductivities λ. Moreover, there is no heat generation qv 
in wire (PVC) insulation. Therefore the equation has discontinuous coefficients λ and 
qv:   
 





<<==

<<≠=

;;0,

,0;0,

inscvins

cvc

yyyq

yyq

λλ

λλ
       (4.4) 

 
The integral form of the governing equation for interior nodes of flat cable gives: 
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Applying this integral form to the finite volume Vi= [i-0.5; i+0.5] (Figure 4.5) the Equa-
tion (4.5) can be rewritten whereby the volume element dV is replaced by the surface 
element dy (using Gauss theorem): 
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Integration of the Equation (4.6) over [i-0.5; i+0.5] leads to: 
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Replacing partial derivatives in space by central differences and derivative in time by 
backward difference, the Equation (4.7) takes the form: 
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The partial derivatives Eq. (4.8) in space are of second order accuracy and in time of 
first order (∆y2,∆t).  
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Equation (4.8) is solved implicitly in time. In this study semi- implicit scheme is used, so 
the time step can not be chosen too large. The space step ∆y and time step ∆t can be 
computed by these expressions: 
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here:  t  time needed to reach steady state in some yi node,  
 K   number of time steps needed to reach steady state regime.  

The result of this numerical solution gives temperature distribution in the metallic con-
ductor and insulation of the flat cable.  

4.3.1.2 Round electric wire 

 
Cylindrical electrical wire of infinite length is given in (Figure 4.6)  
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Figure 4.6 The model of heat conduction in round electrical wire  
rc – radius of the metallic conductor (copper), rins – radius of the insulation (PVC), rc,effect – 

effective  radius of the conductor (pure copper without air gaps between single conduc-
tors) 

 
 
In the heat transfer model of cylindrical wire we consider heat conduction in the cross 
section and neglect the conduction along the wire, assuming, that the end effects of the 
wire have no influence to the aimed calculation results. This approximation is reason-
able for L/rins>1000, where L – length of the wire.  
 
The numerical scheme is shown in Figure 4.7: 
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Figure 4.7 The finite volume grid of round wires  
 
 
 The governing equation is:  
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 Equation (4.9) has discontinuous coefficients λ and P:   
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After multiplication of the Equation (4.9) by r, the integral form of the governing equa-
tion for interior nodes of cylindrical wire becomes: 
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Applying this integral form to the finite volume Vi= [i-0.5; i+0.5] (Figure 4.7) we can 
rewrite the Equation (4.12) as following: 
 
 

∫∫∫
+

−

+

−

+

−

∆=
∂
∂

∆+







∂
∂

∂
∂

−
5.0

5.0

5.0

5.0

5.0

5.0

),(),()(
i

i
v

i

i

i

i

rdrrTrqdr
t
T

rrTrdr
r
T

rr
r

γλ    (4.12) 

 
Integrating over [i-0.5; i+0.5] we get: 
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Replacing partial derivatives in space by central differences and derivative in time by 
backward difference, the Equation (4.13) takes the form: 
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Equation (4.14) is solved semi- implicitly in time. The space step ∆r and time step ∆t 
can be computed by these expressions: 
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here: rins the radius of insulated wire,  
 N  number of nodes,  
 t  the time needed to reach steady state in some yi node,  
 K  a number of time steps needed to reach steady state regime.   

4.3.1.3 Electric fuse 

 
Here, the problem deals with the axial heat transfer calculation in a copper (or brass) 
solid or hollow cylinder (fuse melting element prototype) with finite length (Figure 4.8). 
Axial temperature distribution in the fuse melting element must be computed in order to 
obtain the maximum temperature (melting temperature) of this element. In the mathe-
matical model of heat transfer in the fuse, the non-homogenous geometry, heat convec-
tion and radiation is considered through the surface of the fuse element and prescribed 
temperature boundary conditions are applied. The temperature gradient in the radia l di-
rection is neglected, because heat conductivity coefficient of copper (or brass) is very 
large and gives a constant temperature distribution for the model geometry considered 
here. This model reduction reduces computational efforts considerably.     
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Figure 4.8 Physical model of the fuse melting element used for numerical computation  

 
 
The heat transfer equation of the energy conservation law for a 1-D problem in the axial 
direction can be expressed as:  
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here: αc   convection heat transfer coefficient    in W/m2K,  
 ∆T    temperature difference between the temperature T on the surface 
   and environment temperature Tenv    in K,    
 αr = εσ  radiation heat transfer coefficient    in W/m2K4,  
 u  circumference of the fuse element   in m,  
 A   area (depends on the geometry of the fuse element)  in m2.   
 
Following the same procedure as in previous sections (4.3.1.1-2) we integrate Eq. (4.16) 
over [i-0.5; i+0.5] (Fig. 4.9). After integration equation yields: 
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Replacing the derivatives by central differences in space and derivative in time by 
backward difference, the Equation (4.17) gives: 
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The space step ∆x and time step ∆t is computed by: 
 

1−
=∆

N
L

x  and 
K
t

t =∆         (4.19) 

 
         
here:  L length of the fuse element,  
 N number of nodes in which the temperature is calculated,  
 T time needed to reach steady state in some xi node,  
 K number of time steps needed to reach steady state regime.   
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 Figure 4.9 The finite volume grid of fuse 

4.3.2. Numerical implementation of boundary conditions 

4.3.2.1. Flat electric cable 

The mathematical model of heat transfer in the flat cable consists of PDE and two 
boundary conditions. Therefore, the heat transfer problem must be considered as an ini-
tial-boundary value problem. Here we have to deal with mixed-type boundary cond i-
tions, which consist of Neumman type boundary conditions (second kind) and convec-
tive-radiative limit conditions (third kind). Since the flat cable model is a symmetrical 
system (see Fig. 4.4), we can use symmetry boundary condition at y = 0. The cable is 
placed in air in a horizontal position and affected only by laminar free convection and 
radiation to the environment. Due negligible difference between the heat convection on 
the upper and lower sides of the cable, this symmetry assumption is correct.  
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In this section we show how to approximate this type of boundary condition in order to 
have the same order of accuracy as the governing equation. 
 
Initial and boundary condition is given as:  
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here T*

env is the absolute temperature of environment in K. 
 
The first boundary condition, which is derived from the symmetry of the physical 
model, has to be inserted into the main equation (4.5) and integrated over region [r0; 
r0.5]: 
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Following the same procedure as in the derivation of the discrete form of the governing 
equation (4.8), the following discrete form of the first boundary condition is obtained: 
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In order to describe heat conduction through the boundary of cable insulation and envi-
ronment, we have to integrate Equation (4.3) over the region [yN-0.5;yN]: 
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Integrating Equation (4.21) over [yN-0.5;yN] and considering convective – radiative phe-
nomena at the boundary of insulation layer in the nod yN we get heat conduction equa-
tion for the area [yN-0.5;yN]: 
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4.3.2.2. Round electric wire 
 
The heat conduction equation of cylindrical electric wire has the same type of boundary 
conditions as flat cable (section 4.3.2.1): symmetry and convective-radiative boundary 
condition. The wire is placed in air in a horizontal position and affected by laminar free 
convection and radiation to the environment.  
 
Initial and boundary conditions are given as following:  
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Here, the first boundary condition, which is also derived from the symmetry of the 
physical model, has to be inserted into the main equation (4.9) and integrated over re-
gion [r0; r0.5]: 
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Following the same procedure as in the derivation of the discrete form of the governing 
equation (4.12), the following discrete form of the first boundary cond ition is obtained: 
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In order to approximate the heat flux at r=rN, we have to integrate Equation (4.9) over 
region [rN-0.5;rN] and in rN insert the second boundary condition of equation system 
(4.23): 
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Integrating Equation (4.23c) over [rN-0.5;rN]  and considering convective – radiative phe-
nomena at the boundary of insulation layer in rN point, we get the heat conduction equa-
tion for [rN-0.5;rN] area: 
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4.3.2.3. Electric fuse 

 
For axial heat transfer in the fuse element we consider Dirichlet (prescribed tempera-
ture) boundary cond itions. The temperature on both fuse holders should be equal to the 
maximal permissible temperature of the electrical wire. Therefore, temperature of the 
electrical wire can be assigned to the boundaries of the fuse holders.   
 
Initial – boundary conditions:  
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4.3.3 Solution of the equation system by Newton-Raphson method 

4.3.3.1 Flat electric cable 

Sections 4.3.1 and 4.3.2 have shown how to approximate differential equations by the 
finite volume approach. Thus, the heat transport problem in electrical cable, which is 
governed by a single differential equation and boundary conditions can be approximated 
by a system of algebraic equations. It is very important to understand what methods are 
best applicable to solve these systems of algebraic equations. If the number of equations 
to be solved is large and the equations are non- linear, one needs to examine the nature 
of the resulting system of equations. From sections 4.3.1 and 4.3.2 it can be seen, that 
we have to solve non-linear system of equations because heat capacity γ of copper is 
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second order temperature dependent and the radiation boundary condition is fourth or-
der temperature dependent. Other non- linearity problems like electrical resistance non-
linear behavior and heat conductivity non- linear temperature dependence can be ne-
glected since these phenomena have a small influence on computational results if the 
temperature does not exceed about 150°C.  
 
The objective of this section is to illustrate how to solve a non- linear system of alge-
braic equations obtained from the governing single differential equation and its bound-
ary conditions in order to determine unknown temperature variables  
 
Since we have to deal with a one-dimensional heat transfer problem, the Gauss elimina-
tion method [19] can be further simplified by taking advantage of the zeros of the trid i-
agonal coefficient matrix. This modified procedure, generally referred to as Thomas Al-
gorithm, is an extremely efficient method for solving a large number of such equations 
[19]. Using this algorithm, the number of basic arithmetic operations for solving a trid i-
agonal set is of the order N, in contrast to O(N3) operations required for solving with 
Gauss Elimination. Therefore, not only are the computation times much shorter, but the 
round off errors are also significantly reduced.  
 
In the Equation system (4.25) a Newton-Raphson iteration Method used to linearise 
equations. The Newton-Raphson method is an algorithm for finding the roots of systems 
of nonlinear algebraic equations by iteration.  If a good initial guess is made, Newton-
Raphson iteration process converges extremely fast. Iterations are terminated when the 
computed changes in the values of 1−− nn PP  become less than some specified quantity 
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here: P  unknown temperature variables; 
 T  initially guessed values. 
 
Temperature variables P are found by following expressions: 
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4.3.3.2 Round electric wire 

The way of solving the system of algebraic equations is analogous to the method de-
scribed in the section (4.3.3.1): 
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Temperature variables P are found from the Eq. (4.27), where the coefficients a, b, c 
and f are calculated by: 
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4.3.3.3 Electric fuse 

In order to calculate the temperature distribution in the fuse system a non- linear system 
of equations has to be solved because of the radiation term in the equation (4.16). We 
use, as in previous cases a Newton-Raphson method to solve the problem.  
 
The system of algebraic equations is given as follows: 
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Here the coefficients a, b, c and p are calculated as follows: 
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Results of numerical simulation using the approach developed in this chapter together 
with a validation procedure are presented in Chapter 6. Flat electrical cables of different 
conductor size supplied by the company Technology & Innovation GmbH and round 
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electrical wires supplied by the company Leoni Bordnetze GmbH were used. Fuse ele-
ment samples were provided by DaimlerChrysler AG.    
 
 
 



 
         ________________ 
           

         CHAPTER 
                 5 
         ________________ 
          

     BASIC CONSIDERATIONS OF THE 
EXPERIMENT AND  

EXPERIMENTAL SETUP  
 

 
 
 
This chapter presents the theory of the experimental procedure used in this work to-
gether with the measurement setup and the data acquisition. The aim of the experiments 
was to investigate the electrical load capacities of various electrical wires and cables. 
For this, two types of measurements were required: 
 a) Current versus voltage measurement, 
 b) Resistance versus temperature measurement 
 
The investigation commenced with the measurement of power dissipation as function of 
temperature of the wire surface, called “current versus voltage measurement”,(a). The 
next step was to validate the linear temperature coefficient αT, called “resistance versus 
temperature measurement”,(b). Later the information from both experiments was used 
to correct the theoretical model, if necessary.  
 
First, some information on how properly the measurements have to be performed will 
be given. The theoretical background for the measurement specification was developed 
extensively during this research work. Then, a figure detailing the experimental set up 
for both cases will be shown. The procedure of parameter acquisition using GPIB (Gen-
eral Purpose Interface Bus) devices and the appropriate software will be also presented. 
The programme is given in the Appendix C. 

 

5.1 Basic considerations of the experiment 
 
5.1.1 Resistance versus temperature measurement 
 
The aim of this experiment is to determine the linear temperature coefficient αT of cop-
per wires and cables. Later, this temperature coefficient αT is used to calculate the wire 
and cable temperature from the current  versus voltage relationship obtained from the 
second experiment: the current versus voltage measurement.   
 
The electrical resistance Ri of the wire has to be determined for different applied tem-
perature Ti values of the wire. These temperatures are achieved by heating up the cable 
in a heat chamber. Chamber temperature Tch should be increased in equal steps from 
environment temperature Tenv up to max. cable temperature T. In order to avoid errors 
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caused by an unsteady state during the measurement, the resistance of cable should be 
also measured for decreasing temperature values down to Tenv. 
 
During the measurement process, the cable is not heated electrically. For the qualitative 
measurement, the following three conditions must be fulfilled:  
 a) For every resistance measurement step, temperature steady-state condition 
 must be obtained, 
 b) The measurement error due to material restraints must be estimated, 
 c) Thermo voltages must be avoided.  
 
 
A. Requirements for a steady-state temperature condition 
 
Here, the most important parameter is a steady-state time t, after which temperature dif-
ference between Tch and cable temperature T0 becomes zero. The time t is influenced by 
a time constant τ , which is different for every wire type. In order to calculate steady-
state time t, one should determine the factor n, i.e. the number of time constants τ 
needed to reach a steady-state:  
 
   τnt =         (5.1) 
 
To calculate factor n, we can consider the precision of the heating chamber temperature. 
We can assume that the temperature difference δTL between the cable temperature and 
chamber temperature should be equal to the temperature error of the chamber δTch: 
 
   ch

n
L TTeT δϑδ == −        (5.2) 

 
From there, the factor n is given by:  
 
 

   
chT
T

n
δ
ϑ

ln=        (5.3) 

 
where: δTL temperature difference between cable and chamber temperatures  in K 
 δTch temperature measurement error of the heating chamber   in K 

τ thermal time constant of the cable      in s 
ϑT step size of temperature interval      in K 
n time constant factor 
t steady-state time        in s 

 
 
Here we consider δTch from the technical specification of heating chamber 0.5 K. Step 
size of temperature interval for resistance measurement is ϑT = 10 K. Then, the n factor 
is calculated:  
 
   3996.25.0/10ln ≈=≥n  

(5.4) 
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this means, that only after 3τ cable resistance can be measured.  
 
B. Permissible measurement error of cable resistance. 
 
In order to estimate permissible measurement error of cable resistance, we ought to use 
the following formula:  
 

[ ] [ ]2
0

2
000 )()(1)()(1)( TTRTTTTRtR TTTT ∆+∆+=−+−+= βαβα   (5.5) 

 
After differentiation, we obtain:  
 

[ ] TdTRtdR TT ∆∆+= βα 2)( 0         (5.6) 
 
For ßT = 0, equation (5.6) simplifies to:  
 

TR
dT
dR

α0=           (5.7) 

 
If we apply a small difference to the resistance δR and temperature δT, we get a tem-
perature error based on reference resistance R0(T0) at reference temperature T0 : 
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        (5.8) 

 
 
In the case that measurement error of temperature does not exceed a value of 

5.0<Tδ K, we get maximal permissible relative resistance error δR/R0 for copper:  
 
 

%2.0%19.0
0

≈≤=≤
R
Rδ

        (5.9) 

 
 
The total measurement error consists of measured cable temperatures δTc1 (heating up), 
δTc2 (cooling down) and error of heating chamber temperature δTch: 
 
δT = δTc1+ δTc2 + δTch        (5.10) 
 
Inserted in the equation (5.8) we obtain the following maximal allowed resistance error: 
 

- linear part: TT T αβ <<∆2  
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- linear and square part: 
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here: 
0R
Rδ

 - maximal permissible resistance error. 

For the temperature interva l ∆T=0 to 120K (or considering environment temperature 
Tenv= 20°C, T=20 to 140°C) we get: 
 

( ) chT
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0

≤≤=         (5.13) 

 
Considering the temperature error of the chamber δTch ≤ 0.5K we obtain maximal 

permissible resistance error
0R
Rδ

: 
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       (5.14) 

 
 
C. Measurement error due to thermo voltages. 
 
Thermo voltages occur if two different metals at different temperatures come into con-
tact. It is critical to perform the experiment by measuring voltage drop on the cable 
rather than doing a four-pole resistance measurement. This is obvious from the follow-
ing example:  
 
Thermo voltage for Cu vs Cu-Fe contact is about 5 µV/K whereas for 100 K it makes 
0.5 mV. In case of 4-pole resistance measurement for 1 mm2 copper wire thermo volt-
age is: 
 at 1 mA current – only 17.5 µV/m, 
 for 3 m wire - ≈ 50 µV 
 
Experiment results are presented in the table 5.1. Here are evaluated linear and square 
temperature coefficients α65 and ß65 at 65°C reference temperature respectively.  
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Experiment Nr.  Cable type α65 in 1/K ß65 in 1/K2 

1. Round cable FLYR-B 2.5mm2 3.364 . 10-3 - 2.8 . 10-9 
1. Extruded PET flat cable, b=50mm 3.350 . 10-3 - 2.8 . 10-8 

2. Extruded PET flat cable, b=50mm 3.360 . 10-3 - 9.0 . 10-8 
1. PET flat cable b=20mm 3.340 . 10-3 - 7.0 . 10-8 
2. PET flat cable b=20mm 3.000 . 10-3 - 7.8 . 10-8 
1. PET flat cable b=50mm 3.360 . 10-3 - 2.0 . 10-8 

 
Tab. 5.1 Linear and square temperature coefficients of round and flat electric cables 

 
It can be seen that square temperature coefficient ß65 is negative while theoretical value 
is + 6.0.10-7 1/K2. This phenomenon is difficult to explain. Therefore, only the linear 
temperature coefficient α65 was taken into consideration for the whole model valida-
tion.. Since, temperature of the cables does not exceed 140°C, linear approximation of 
the resistance as a function of temperature is sufficient ly precise.  
 
 
5.1.2 Current versus voltage measurement 
 
The aim of the second experiment is the determination of the current-voltage character-
istic of wires and cables. From this characteristic, the relationship between wire resis-
tance and its temperature can be determined. This information is very important in order 
to validate the mathematical model of wires and cables presented in Chapters 3 and 4. 
This model validation is given in Chapter 6, where experimental curves are compared 
with those from numerical calculation. The experiment is performed by measuring the 
voltage drop Ui for different current values Ii. It is advisable to increase the current Ii 
stepwise from 0 to maximal permissible cross section current Imax in 10 equal intervals 
ϑI. The same procedure should be repeated whilst reducing the current down from Imax 
to 0.  
 
Ambient temperature of the experiment environment should be kept constant and any 
forced air movement should also be avoided.  
 
In order to perform qualitative experiment almost the same requirements as in (5.1.1) 
have to be stated:  
 a) For every voltage-current measurement step, steady-state condition must be 
 obtained. 
 b) Measurement errors due to restraint of materials must be estimated. 
 c) Thermo voltages must be avoided.  
 d) A minimum required distance between current and voltage drop on the cable 
  contacts must be kept.  
 
The first two requirements (a) and (b) have the same definition as in the resistance-
temperature experiment. The third requirement (c) should be reconsidered, since the 
thermo voltage influence is not critical in this case due to high current induced higher 
voltage drop.  
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The thermo voltage for Cu vs. Cu-Fe pair is 5 µV/K, that is for 100 K – 0.5 mV. Con-
sidering the voltage drop in 1 mm2 copper wire:  
 
 For 10 A measurement current, the voltage drop leads to 0.175 V/m. For a 10 m 
 length copper wire (which is a minimum requirement to avoid the influence of 
 the boundary temperature decay) the voltage drop results in 1.75 V. This is 
 about 300 times bigger value as the thermo voltage for 100 K.  
 
From this explanation follows that thermo voltages do not significantly influence to 
measurement error. 
 
The distance between current and voltage measurement contacts of non- insulated wire 
can be calculated according to equations (3.51, Chapter 3) is given by: 
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We can rewrite equation (5.16) in the following form:  
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For a small current density, the Eq. (5.17) can be simplified as follows: 
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=         (5.18) 

 
here:  n is the number of length constants, which may be applied ranging from 
  any given temperature to the cable temperature of an infinite length with 
  an acceptable error.  
 
For application in this study a factor n = 3, leading to an error of 5 %, is sufficiently 
precise: 
 

 
αα
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χ mmdd /897.0

2
3

3 ==         (5.19) 

 
here:  d  cable diameter    in mm. 
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If we consider a critical heat convection coefficient α = 16 and wire diameter of 1.0 mm 
we get:  
 
3χ = 224 mm ≈  22 cm 
 
Following equations are used to compute cable temperature T as a function of current I: 
 
1. Determination of cable temperature T: 
 

[ ] [ ]2
000

2
00000 )()(1)()(1)( TTRTTTTRTR ∆∆ βαβα ++=−+−+=   (5.20) 

 
here: 0α  linear temperature coefficient of copper at reference   
  temperature T0       in 1/K 
 0β  square temperature coefficient of copper at reference   
  temperature T0        in 1/K2 

 
Material constants 0α and 0β have been determined by the experiment described in 
(5.1.1), however only linear temperature coefficients will be used to calculate cable 
temperature. Cable temperature T is found from Eq. (5.15): 
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here:  i number of measurements within one experiment 
 
2. Determination of cable resistance Ri: 
 
From voltage drop measurement on the cable at current Ii according to Ohm’s law the 
resistance is:  
 

i

i
i I

U
R =  

(5.22) 
 
here: Ii current calculated by voltage drop on the shunt Usi with constant  
  resitance Rs:  
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U
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(5.23) 
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5.2 Experimental setup 
 
5.2.1 Determination of the cable conductor temperature coefficient 
 
Figure 5.1 shows experimental setup for cable resistance / temperature measurement. 
The cable is placed in a liquid silicon bath, which is situated in a heating chamber 
(Type: Nixon 815, ISOTECH). The liquid was used as a heat transferring media in or-
der to ensure very constant and homogeneous temperature in the cable. The heat cham-
ber has its own temperature control, which however is not precise enough for this kind 
of experiment. Therefore, an additional Pt10 sensor was used to measure the liquid and 
cable temperature.  
 
 

High precision digital
multimeter-miliommeter

Pt10

Liquid silicon

Heat
chamber

peristaltic pump

Liquid
silicon bath

Flat/round cable

4-pole resistance
measurement

GPIB (General Purpose Interface Bus)

GPIB

 
Fig. 5.1 Experimental setup for the cable  conductor resistance measurement at different 

temperatures for the determination of the temperature coefficient 
 
 
The voltage and the current measurement connection wires were soldered to the cable 
and sealed with temperature resistant insulating epoxy adhesive. This insulation is very 
important in order to avoid short circuits in the fluid. Resistance measurement was per-
formed by the 81/2 digits precision digital multimeter PREMA 6040S. This multimeter 
as well as the heat chamber was controlled by a GPIB (General Purpose Interface Bus) 
controller, which allows the automation of the whole experiment. The liquid  silicon is 
circulated by a pump, which allows more precise temperature control. All input data 
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(control of experiment equipment) and output data (measurement results) are handled 
by a LabView program, which was specifically developed for this purpose.  
 
 
5.2.2 Determination of the cable conductor temperature  
 
In figure 5.2, the experimental setup is given to measure cable voltage drop at different 
load currents. In this experiment, the cable is placed in free air without touching any-
thing. The laboratory room has constant ambient temperature of 24°C and no significant 
air currents. Under these laboratory conditions, a precise measurement of the cable 
power dissipation is possible.  
 
 

High precision digital
multimeter-miliommeter

GPIB

max.150A
30mV0...300A 0..18V

I

length=10m

Port extension
board

1m

Measured cableDC power supply
unit

Shunt

Thermocouple

GPIB (General Purpose Interface Bus)

 
Fig. 5.2 Experimental setup for the cable  conductor voltage measurement at different cur-

rents for the determination of the conductor temperature  
 
All experimental equipment was controlled by a computer via GPIB interface and in-
house developed LabView software (Appendix C), which enabled data acquisition. The 
whole experiment is fully automated, avoid ing any interference of an operator with the 
experiment environment.  
 
The voltage drop and the current of the power supply unit EA-PS 9018-300 are indi-
cated by the unit, however it was more accurate to use a high precision digital voltmeter 
and a shunt (precision class 0.2) in order to measure the voltage drop and the load cur-
rent.  
 
The cable resistance is obtained by the division of the voltage drop through the load cur-
rent. Here, it is very important to take the temperature drop at the end of the cable into 
account. Therefore, the measuring points of the voltage on the cable must have a re-
quired minimum distance (see Eq. 5.19) from the current supply connections. Finally, 
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the cable temperature is calculated from the cable resistance with the help of the con-
ductor temperature coefficient.   
 
For the sake of redundancy, a second independent method to receive cable temperature 
has been applied by using a nickel-constantan thermocouple sensor, which was attached 
to the cable surface. This sensor was also used for safety to cut off the power supply 
unit if the maximum allowed temperature of the cable is exceeded.  
 
Thermocouple sensors measure very precisely even if only very small surfaces are 
available. This is very important for small size electric cables. It would not be possible 
to measure the temperature of such cables with a Pt100 sensor. The disadvantage of 
thermocouples is however, that a very precise reference temperature of zero degrees is 
required. For this purpose, a water- ice mixture was used.  
 
 
5.3 Measuring process and parameter acquisition 
 
5.3.1 Determination of the cable conductor temperature coefficient 
 
The measuring algorithm of the resistance vs. temperature characteristic of the cable is 
given in by P. Mack [24]. During this measuring process the cable resistance was meas-
ured by 4-pole measurement and its results saved in the computer. Temperature of the 
cable was measured by Pt10 sensor, which had been placed as close as possible to the 
cable. The resistance of Pt10 was also measured by the same digital multimeter (DMM) 
and later, resistance values were converted to the temperature. This conversion is possi-
ble by the empirical equation: 
 
 









−

°







−

°







−

°°
+= 1

74.630
1

58.419
1

100100
045.0

''''
'

C
T

C
T

C
T

C
T

TT    (5.19) 

 
 
here T’ is given by the equation: 
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here: )0(/)()( CRTRTW °= ,  
 R(T) measured resistance of Pt10 sensor    in Ω,  
 R(0°C) = 10.62796       in Ωm,  
 α = 3.925870.10-3       in 1/K,  
 δ = 1.496225        in °C. 
 
 
5.3.2 Determination of the cable conductor temperature  
 
The measuring process and data acquisition of the voltage vs. current experiment had 
been implemented in Pascal language by T. Roida [25] and later improved in LabView 
by the author of this study (see also Fig. 5.3, 5.4).  
 
The idea of the measuring process is illustrated in the following table:  
 
Set the power supply unit to 15 VDC 
The user defines the step size and interval of currents from i = 1 to n + 1  

(n = number of currents) 
The user sets the number of measurements for a single current value from 
i = 1 to m (m = number of measurements of one current value)  

 

 The user sets one waiting time for all the  measurements 
in s 

Steady state = Number of measurement times (Waiting time for one measurement ) 
Reset the power supply to 0 A 
Close the files 

 
Tab 5.1 Algorithm of the measurement program 

 
The visualisation of the measurement data is given in the figures 5.5 and 5.6. The time 
scale (Fig. 5.5) illustrates the measurement procedure and gives information about the 
transient state regime. In Fig. 5.6 the temperature of an insulated copper wire is depicted 
as function of the load current.   
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Fig. 5.3 Experimental setup of flat electric cable (FFC) 
 
 

 
Fig. 5.4 Experimental setup of round electric cable  
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Fig. 5.5 Experimental transient temperature -time characteristic of electrical cable  
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 Fig. 5.6 Experimental steady-state temperature -current characteristic of electrical cable  
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MATHEMATICAL MODEL  

VALIDATION  
AND INTERPOLATION OF 

 THE NUMERICAL RESULTS 
 

 
This chapter starts with the validation of the numerical simulation by the measurement  
results. Section 6.2 presents a least-square interpolation of the validated results. The 
theoretical model is determined by the thermal conductivity of insulating materials, the 
temperature coefficient of copper resistance and the convection and radiation coeffi-
cients. The numerical results are fitted by polynomial or logarithmic functions, where 
the coefficients of those functions are obtained by applying the least-square technique.  
 

 

6.1 Mathematical model validation 
 
 
Before starting the comparison of the theoretical (numerical) results with the experi-
mental ones, the quality of the model equations and the evaluation procedure for fitting 
them to the experimental data should be checked.   
 
The quality of derived heat equations can be understood as the reduction of a 3-D model 
to a 1-D model. During experimental work, the model reduction to 1-D problem turned 
out to be sufficient with a negligible error between the theoretical and the physical 
model.  
 
In addition,  boundary conditions can be considered as the quality factor. Implemented 
limit conditions must be as close to realistic conditions as possible. In our model, the 
boundary conditions represent laminar free convection to the air while the effects 
caused by turbulent convection were neglected. In reality, the experiments were per-
formed in an environment where the forced convection was minimised. In addition, 
convection caused by turbulence was negligible.  
 
The first step was to the validate linear temperature coefficient of the conductor resis-
tance αρ, since this parameter is important for the conductor electrical resistance behav-
iour in the theoretical model. The basic material for the production of stranded conduc-
tors for automotive wires is oxygenic copper according to DIN 40500, part 4. The DIN 
designation of this conductor type is E-CU 58 F21. Since this material does not consist 
of pure copper, and the manufacturing process might have changed the properties, it 
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was necessary to measure and validate temperature coefficient of copper resistance 
again.  
 
Below the measurement results of conductor resistance as a function of temperature are 
given: 
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Fig. 6.1 Measured resistance R of round wire for temperature  range from 0 to 100 K. 

Measured temperature coefficient of copper resistance is αρ = 0.004 1/K (based on 20 °C) 
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Fig. 6.2 Measured resistance R of round wire for a temperature range from 0 to 60 K. 

Measured temperature coefficient of copper resistance is αρ = 0.0036 1/K (based on 65 °C) 
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From the measurement results (Fig.6.1) it can be seen that αρ has a value of  0.004 1/K 
instead of 0.0038 1/K as given in the literature for pure copper material.  
 
Figure 6.2 shows a temperature coefficient of 0.0036 1/K (based on 65 °C), which cor-
responds the value of 0.004 1/K (based on 20 °C).  The value of 0.0036 1/K is also use-
ful, since all our calculations are based on the environment temperature of 65°C. 
 
Below are equations for the conversion of the temperature coefficient αρ  to any refer-
ence temperature. For the derivation, the following functions of the electrical resistance 
R(T) through the points T1 and T2 are considered: 
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here: nn TTT −=∆  
 
The aim is to obtain a relationship between α2 and α1.  
 
First and second order derivatives of Eq. (6.1) are: 
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Then the result is the following:  
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Since the non- linear part of the temperature coefficient ß is very small, for temperature 
up to 140 °C ß can be assumed zero (ß = 0). In that case, the equations are simplified as 
follows: 
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The next step of the model validation is to estimate the heat conductivity coefficient ? of 
the insulation material. It should be noted that during this research work the heat con-
ductivity coefficient was not investigated experimentally. Here, in order to save investi-
gation time and costs, the coefficient ? was obtained by fitting of the temperature meas-
urement results with theoretical ones. Of course, it would have been possible to use the 
coefficient from the literature, however the  available values were only given in a very 
narrow temperature range. Therefore, the ? coefficient was varied in order to fit to the  
experimental curves of the conductor surface temperature.  
 
Below the measured conductor surface temperature of round and flat electrical cables 
are compared with the computed ones.  
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Fig. 6.3 Measured temperature of a flat cable conductor (conductor width 50 mm) as func-

tion of the electric load 
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Fig.6. 4 Measured temperature of a flat cable   conductor (conductor width 74 mm) as 

function of the electric load 
 

 
 

Fig. 6. 5 Flat cable (FFC) examples  
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Fig. 6. 6 Measured temperature of a round wire conductor (cross section 0.5mm2) as func-

tion of the electric load 
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Fig. 6. 7 Measured temperature of a round wire conductor (cross section 35mm2) as func-

tion of the electric load 
 



6.1. Mathematical model validation                                                                     95 
 

 
 

Fig. 6. 8 Round cable examples  
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Fig. 6.9 Measured temperature of a fuse element as function of the electric load 
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Fig. 6.10 Fuse element prototype with temperature sensors (thermocouples). Fuse element 
(hollow cylinder) dimensions: inner diameter – 6mm, outer diameter 8mm. Material type 

of the fuse element: Bras 58 (CuZn39Pb3). 
 
Finally, the heat convective and radiative coefficients had to be validated. During sepa-
rate experimental work [18] a number of measurements of various round wires was car-
ried out in order to validate the empirical heat convection and radiation formulas, which 
were presented in the section (2.5). The results of this experimental work have shown 
that the evaluation procedure of convection and radiation coefficients is correct. 
 
Since, it has already been described how the model was validated, now the obtained re-
sults can be studied. The following three models, which differ by the geometry and type 
of materials are presented: 
 
1. Figures 6.3 and 6.4 show the flat cable conductor temperature as function of the elec-
trical current. These results are obtained for a cable, which is placed free in air, in a 
horizontal position. The temperature is taken after the steady state has been reached. 
Both, numerical simulation and measurement data, gives a very good agreement.  
 
2. Figures 6.6 and 6.7 show the round wire  conductor temperature as function of the 
electrical current. By altering of the conductivity coefficient λ of PE (Polyethylene) in 
figure 6.6, a better agreement of both curves can be achieved. 
 
3. Figure 6.9 shows the temperature distribution along the fuse element. The length of 
the whole system was about 1 meter, since the influence of the fuse holders and contacts 
must be considered. Also electrical wire, which is protected by this fuse  had to be taken 
into consideration too. The temperature distribution is presented for different electrical 
current values. The calculated curves in all figures match with the measured data ac
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ceptably well. At the boundaries of the fuse holders and contacts, a larger error is pre-
sent. This can be explained by the limited performance of the experiment setup. Tem-
perature of the fuse system was measured only by three thermocouple sensors.
Later, three measurement points were interpolated. However, high accuracy of tempera-
ture gradient on the boundaries is not of primary importance. Only the fuse element 
maximal temperature is of interest, because this temperature causes the required inter-
ruption of the fuse-melting element. 
 
Discussed results show the fact that the approximation made for the derivatives of the 
equations (Chapter 2: 2.4, 2.6, 2.8) as well as the validation of the physical model con-
stants are applicable under the experimental conditions, which are interested in this con-
text.  
 

6.2 Interpolation of the numerical results to reduce heat 
transfer equations 

 
Throughout the entire study, the  heat transfer analysis algorithm was derived using ana-
lytical / numerical methods. This algorithm allows the determination of the thermo-
electrical characteristic of electrical conductors in both a steady- and transient-state re-
gimes. The proposed approach provides very good accuracy between theory and ex-
perimental results, is applicable for different conductor geometries, and can be extended 
from a 1-D to a 2-D problem. However, very often, numerical simulation of heat trans-
fer requires a lot of computation time that is not acceptable if the numerical simulation 
routine has to be integrated into another complex simulation system. This leads finally 
to a situation, where the whole performance of a complex simulation system becomes 
very poor. Another disadvantage of pure numerical simulation of heat transfer problem 
is that very often in a real life, the calculations have to be done very quickly and in a 
simple manner 
 
Therefore, our intension in this study is not only to present fully-developed numerical 
models  but also to develop simple, with the minimum number of physical constants, 
analytical equations, which describe best the steady-state and transient-state heat trans-
fer regimes in any type of conductors. These equations should have the advantage of 
producing a manageable relationship having only two or three constants, which can be 
obtained easily by the least-square (LS) algorithm. Finally, having those simple equa-
tions, an operator can perform the calculations in an easy way. 
 
In this section we will present polynomial and logarithmical equations of thermo-
electrical characteristics and show how to apply the LS algorithm [8,9] for the calcula-
tion of the “simplified-equation” coefficients. It is very important to predict correctly 
the correct equations with a minimum number of unknown constants. Basically, two 
type of functions are of interest: polynomial regression and logarithmical functions. 
With these two functions, all important thermo-electrical characteristics can be de-
scribed.  
 
The following functions are considered, whose physical meaning will be given later: 

- thermo-electrical characteristic  ∆T(I) (Fig.6.11) 
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- heating-up time characteristic  tg(I)  (Fig.6.12) 
- time constant  characteristic   τ(I)  (Fig.6.13) 
- electric- field strength characteristic  E(I)  (Fig.6.14) 

   
It is worth to emphasise that these four functions are valid for any kind of conductor 
(flat cables, fuses or cable bundles), where heat generation by electrical current takes 
place. For the illustration of the LS algorithm, a round insulated wire of FLRY-B - 
2.5mm2 type is used. Here the maximal final temperature of the wire is 105 °C and en-
vironment temperature 65 °C. 
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Fig. 6.11. Thermo-electrical characteristic ∆T(I) of round insulated wire (FLRY-B, 

2.5mm2) obtained from numerical calculation and approximated by polynomial function 
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Fig. 6.12. Heating-up time tg(I) characteristic of round insulated wire (FLRY-B, 2.5mm2) 

obtained from numerical calculation and approximated by logarithmical function 
 

0 10 20 30 40 50 60 70 80

75

80

85

90

95

100

105

110

tau
0
 = 106.2978

c = 7.124
d = 0.00935 

tau = tau
0
 - c* I0.5+ d*I2

Ti
m

e 
co

ns
ta

nt
 ta

u 
in

 s
ec

Current I in A

 Numerical computation
 Polynomial fit

 
Fig. 6.13. Time constant τ(I) characteristic of round insulated wire (FLRY-B, 2.5mm2) ob-

tained from numerical calculation and approximated by polynomial function 
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Fig. 6.14 Electric field strength E(I) characteristic of round insulated wire (FLRY-B, 

2.5mm2) obtained from Eq. (6.10) 
 
 

The curves presented in figures 6.11, 6.12, 6.13 and 6.14 can be described by the fo l-
lowing equations: 
  
 
 
- thermo-electrical characteristic (here 0≥I ): 
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- heating-up time characteristic: 
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- time constant characteristic:      
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- electrical field strength characteristic:  
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In equation (6.10) temperature difference ∆T is calculated by Eq. (6.7) 
 
The coefficients of the equations (6.7, 6.8, 6.9) a, b, I0, τg, τ0, c, d, are valid only for one 
specific type of wire. If another wire type has to be investigated, the coefficients have to 
be re-computed. The Least-Square Method (LS) can be used to obtain these coefficients.  
 
Applying LS method and solving the linear system of the equations leads to the follow-
ing required coefficients:  
 
- final temperature per current coefficient a: 
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- final temperature per current square coefficient b: 
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 - heating-up time constant  τg 
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- time constant per square root current coefficient c  
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- time constant per square current coefficient d  
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(6.15) 
here: n,1=∀ ; where n is the number of calculating points in the wire characteristics;  
  In – the electrical current values, which are used in the characteristics of  
        Fig. 6.11-6.14 
 ∆T – temperature values, which are used in the characteristic of Fig. 6.11 
 tn – heating up time values, which are used in the characteristic of Fig. 6.12 
 τn – time constant values, which are used in the characteristic of Fig. 6.13 
 
The relationship presented in Fig. 6.11 is a steady-state load characteristic of electric 
cables. Here the temperature represents the steady-state for a particular load current 
value. Normally, this characteristic ends with the maximum allowed temperature of the 
wire or cable after infinite time. 
 
In Fig. 6.12 heating up time is given as a function of the load current. This relationship 
is well known from the fuse time-current characteristic and it makes sense to apply the 
same characteristic to any electric wire or cable.  
 
The heating up time is the time to reach maximal permissible temperature with a current  
greater than the nominal load. For example, in Fig. 6.12 105 °C degrees are given as 
maximal permissible temperature. Having available the time-current characteristics for 
both: wires and fuses, it is possible to model the geometry of the fuse to match the heat-
ing-up time function of the wire. Finally, having a fuse with such a characteristic, it is 
possible to protect the wire with good accuracy.  
 
Fig. 6.13 gives the time constant as a function of load current. This curve gives the pos-
sibility to obtain any τ constant as a function of only one variable; the current. It is also 
straightforward to compute the transient state analytically, having τ  as the known pa-
rameter.  
 
Fig. 6.14 represents the electric field strength dependence on load current. Here, the 
non- linear curve behaviour is due to non-linear electric resistance dependence on tem-
perature.   



 
         ________________ 
           

CHAPTER 
                 7 
         ________________ 
          

CALCULATION OF THE HEAT  
TRANSFER IN A  

MULTI-WIRE BUNDLE 
 
 
 
 
Contrary to previous chapters, where the heat transfer was modelled for a single electric 
cable, in this chapter possible methods to calculate the heat conduction in a multi-cable 
bundle will be shown. The main effort to solve this problem is devoted to the linear co-
ordinate transformation in order to simplify the model geometry and to the determina-
tion of an averaged heat conductivity coefficient of the multi-cable  material media. This 
chapter deals with a one-dimensional radial steady state heat conduction problem, 
where the heat transfer equation is solved analytically. In analogy to a single insulated 
conductor (see Fig. 7.1a), the multi- insulated cable conductor (see Fig. 7.1b) is consid-
ered as an insulated “mixed” conductor.  
 
 
7.1 Coordinate transformation of the multi-wire bundle  
 geometry  
 
 
The calculation of heat transfer in a multi-cable bundle belongs to the heat conduction 
problems for anisotropic multi- layered media [28]. The heat conductivity coefficient has 
been determined using conservative averaging method for layered media [78], where 
heat conductivity of single cables are transformed to a common mixed property or 
mixed heat conductivity coefficient. The algorithm of temperature determination using a 
conservative averaging method can be found in Chapter 8, (3)  
 
The calculation method considers an anisotropic material that is homogeneous and has 
constant thermo-physical properties. It also considers radial symmetry, i.e. no angular 
temperature gradient φ∂∂ /T  = 0. Then, the governing partial differential equation for 
the heat conduction problem in a cylindrical coordinate system becomes: 
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here: ?  thermal conductivity coefficient,  
 T   temperature field,  
 qv  volumetric heat generation.  
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This leads to a temperature drop in the cable bundle, which is obtained in a similar way 
as in Chapter 3 (analytical analysis of heat transfer in cylindrical wires): 
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here: ?I, ?L heat conductivity of insulation and of mixed conductor in W/mK, 
  D  diameter of the cable without insulation   in m,  
 I  the current        in A,  

 ∑=
n

npp
1

   

  describes the electrical power per length EI, i.e. a sum of all  
  single wires        in W/m,  
 S  thickness of insulation      in m.  
 
In a mathematical sense, Eq. (7.1) is transformed by the linear coordinate transforma-
tion as shown in figure 7.1. In a physical sense, the governing equation (7.1) of an ani-
sotropic heat conduction problem is converted into an equivalent isotropic problem by 
replacing different material coefficients by mixed material properties.  
 
This transformation has the following characteristics: 
 a) it is linear and continuous,  
 b) an anisotropic problem is converted to an isotropic problem after  
     transformation,  
 c) there is no stretch and the rotation in radial direction,  
 d) no gaps or overlaps are generated along the interface,  
 e) no sliding and mismatches occur along the interface.  
 
These features offer advantages in dealing with straight boundaries and interfaces in the 
multi- layered system.  
 
In this study the conversion of round insulated wires into a square ones with the same 
conductor, insulation and air cross section is proposed (see Fig. 7.2). 
 

 
   a)    b) 

Fig. 7.1 Insulated single (a) and insulated multi-wire conductor (b) 
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  a)        b) 

 
Fig. 7.2 Transformation of insulated round conductors (a) into squares of same area (b) 

 
The square structure can be now calculated easily as a thermal serial-parallel switched 
model of similarly covered areas. In order to simplify the calculation, the complete solid 
material was separated from the air and combined in three layers. The influence of the 
lower heat conductivity of air will be considered later with a so-called “filling factor”.  
 
 

 
  a)        b) 
 

Fig. 7.3 Determination of the mixed area conductivity: (a) assembly, (b) circuitry 
 

 
For long (compared to their thickness) wires, the whole material can be treated two-
dimensionally with a so-called “area conductivity” ?l and which is proportional to the 
known heat conductivity ?. The heat conductance G is given by  
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and for each layer given in Fig.3 one obtains: 
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Finally, a “Mixed Material Equation” of the following form is obtained: 
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where the heat conductance are replaced by their heat conductivities.  
 
here:  ?  radial mixed heat conductivity,  
 ?1  heat conductivity of the conductor,  
 ?2  heat conductivity of the wire insulation (see Fig.7.1),  
 a  edge of heat conduc tor material 1  (?1),    in mm,  
 b edge of mixed heat conductor material 1 and 2 (?)   in mm. 
 
The next step is to determine the relationship of b/a which is calculated from the area a2 
of the materials 1 and 2 (which is the cross section of the conductor and the isolator).  
 
Since the conductor consists of single wire veins with air gaps in between, the real con-
duction cross section a2 has still to be multiplied with the so-called filling factor f , 
which is the relationship of the real conducting cross section to the cross section to be 
determined by its measured diameter: A1= a2 f. The cross section of the conductor and 
the isolator together results in:  
 

2
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1 bA
f

A
=+           (7.4) 

 
from which finally b/a can be calculated, whereby the areas A2 and A1 may be replaced 
by the sums of the diameter squares of the conductor d and of the wire veins δ: 
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The model described by the equation 7.3 is only valid for materials with similar heat 
conductivity. If one part diverts as far as air compared to copper, the model is no longer 
applicable. In this case, the assumption is made, that the conductor consists of two dif-
ferent conducting materials, which are switched in parallel as follows:  
 
G = Ga + Gb. 
 

 
 

Fig. 7.4 Volume change due to empty spaces, in accordance with the filling factor f or F 
 
In accordance with Fig. 7.4 the heat conductivities can be calculated as follows:  
 
 

λ=G , 
b
c

G aa λ= ,
b

cb
G ab

−
= λ        (7.6) 

 
here:  ? mixed heat conductivity,  
 ?a, ?b heat conductivity of area a2 and b2, respectively,  
 a, b virtual length of all conductors and of mixed conductor,  
 c  virtual length c/b of b2.  
 
Replacing a square element by two rectangular elements with different heat conductiv-
ity, (see Fig. 7.4) leads to the mixed heat conductivity:  
 

b
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Using the filling factor: 
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for the air between veins in a wire and  
 

b
cb

F
−

=    

 
for the air between wires in a cable gives the thinning equations:  
 

FFFfff abaaba λλλλλλλλ ≈−+=≈−+= )1(,)1(  
(7.7) 

 
Assuming the application of the first model  (Eq. 7.3) is more suited for insulated con-
ductors and the second model (Eq. 7.7) is more suited for non- insulated conductors with 
gaps in between, the two equations can be combined as follows. In this case, the heat 
conductivity ? of the mixed material without air can be replaced by the heat conductiv-
ity ?F of the mixed material with air, whereby F is the insulated wire filling factor.  
 
Assuming, that the conductor material has much higher heat conductivity than the air in 
between, the equation may be simplified even further, e.g. for ?1f>> ?2F one obtains: 
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7.2 Calculation of temperature distribution in the real 
 multi-wire bundle 
 
Considering the following cable bundle structure, (see picture 7.6): 
 
Wire type 

 
Cross sec-

tion 
Number of 
single wi-
res (veins) 

Diameter of 
the single 
wire (vein) 

Wire (vein) 
diameter  

Number of 
wires in the 

bundle 

  ni δ i ∂i  mi 

 mm2  mm mm  
FLRY-A 0,35 7 0,26 0,80 10 
FLRY-A 0,5 19 0,19 1,0 10 
FLRY-A 0,75 19 0,23 1,20 10 
FLRY-A 1,5 19 0,32 1,70 5 
FLRY-B 2,5 50 0,26 2,20 5 
FLRY-B 4 56 0,31 2,75 2 

 
Tab 7.1. Physical data of the cable bundle  
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First, calculating the fill factor f of the wire:  
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(7.9) 
here: ?  wire diameter      in mm  
 
From the conductor and wire vein squared sum data, a cross section quotient Σ of cable 
bundle is calculated:  
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Since, experiment data are available of the cable bundle presented in the 7.1 table, the 
bundle fill factor of cable bundle F empirically can be calculated:  
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Finally, having all required information to calculate radial averaged heat conduction co-
efficient ?, Eq. (7.8) can be used to obtain this coefficient:  
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Fig. 7.5 Experimental versus theoretical results of the cable bundle. Environment tem-
perature 23°C 

 
In Fig. (7.5) the temperature dependence on load current of the presented cable bundle  
(see Tab. 7.1) is given. Here the experimental results are compared with the results ob-
tained using the new derived averaged heat conductivity coefficient ?.  
 
There is some error between two curves, which can not be fully explained yet. It seems 
that the applied model for the bundle does not completely describe the reality in every 
case. The reason for this observation might be geometrical differences between the real-
ity and the model. Another reason could come through a difference between the real and 
the calculated heat radiation from the bundle surface. The relevant emissive coefficient  
is not known precise enough for this application.  
All these observations are an area of further consideration if necessary.  
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Fig. 7.6 Experimental setup of multi-wire bundle  
 
 
Despite of all these small errors, the results of the calculations are more than sufficient 
for practical applications. 
 



         ________________ 
           

CHAPTER 
                 8 
         ________________ 
          
                 
                SUMMARY AND  

CONCLUSIONS 
 
 
8.1 Summary 
 
 
Heat transfer and temperature distribution in electrical cables and fuses have been stud-
ied analytically and numerically in the present research work. Obtained results from 
numerical simulation are interpolated by the Least-Square method that led to simple 
polynomial and logarithmical functions of the main thermo-electrical characteristics.  
 
The geometries of physical models and appropriate heat trans fer equations are presented 
in Chapter 2. Analytical solutions of the heat equations for different conductor types 
have been obtained in Chapter 3. A numerical approach based on a finite volume 
method has been studied in Chapter 4. A new computational algorithm to compute tran-
sient state thermo-electrical characteristics of electrical cables was also described in 
Chapter 4. The experimental setup and the execution procedure of the experiments is 
explained in Chapter 5. The achieved computational results of the developed mathe-
matical model were verified by laboratory experiments. Interpolation using Least-
squares technique of numerical results in order to reduce the amount of numerical data 
is given in Chapter 6. Finally, a new approach to calculate heat conduction coefficient 
of multilayer cable bundles is presented in Chapter 7.  
 
The ultimate goal of this work is to develop a methodology of the analysis of heat trans-
fer in electrical cables and fuses. The main result of this analysis is: temperature distri-
bution in the conductors and transient state thermo-electrical characteristics. To obtain 
these steady- / transient-state characteristics a numerical algorithm had to be employed, 
since most materials are temperature dependant. Another reason for a use of numerical 
algorithm is that the heat transfer calculation is much easier to perform by a numerical 
approach instead of applying analytical Fourier series solutions.  
 
A one-dimensional model for different kinds of electric conductors is presented in sec-
tion 2.2. The physical models of three different types of conductors: flat cable, round 
wire and fuse melting element are taken as physical examples for mathematical model-
ling, simulation and analysis of heat transfer. When creating the mathematical models 
(section 2.3) the heat transfer equations were reduced to one-dimensional problems (Eq. 
2.3, 2.6, 2.7). In order to have a clear understanding about the modelling of the heat 
transfer in electric conductors the entire second chapter is devoted to the derivation of a 
mathematical model. Therefore, sections 2.4, 2.5 describe the analysis of heat conduc-
tion and thermal convection respectively. Since, one has to deal with an initial-boundary 
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value problem, boundary conditions are described in section 2.6. Here are the first kind 
(Dirichlet) and mixed type (symmetry and convective-radiative) limit conditions are 
presented. Additionally, numerical implementation of the same kind of boundary cond i-
tions is given in section 4.3.2. 
 
After creation and preparation of the mathematical model of electric conductors the fo l-
lowing Chapters 3 and 4 give detailed analysis of analytical and numerical calculation 
procedures of temperature distribution in the conductors.  
 
In the analytical analysis (Chapter 3), exact solutions of steady state heat transfer equa-
tions were obtained. These solutions are given for temperature independent material co-
efficients as well as for temperature dependent coefficients. Different boundary cond i-
tions (symmetry or derived from energy balance equation) were implemented for ana-
lytical expressions. A very important property was obtained from the heat equation with 
temperature dependant coefficients. This property is called “avalanche effect” and can 
be described by the following equation: 
 
if, 

A

I
IEu

2
0

0

ρα
αα ρ

ρ ==         (3.53) 

 
then,  
 

∞=∞= AA T̂,χ . 
 
The next step of heat transfer analysis in the electric conductors was to develop a nu-
merical model to compute steady- and transient-state temperature behaviour in the con-
ductors. The numerical model was created using a finite volume method. The integral 
form of the heat equation was discretised using central differences in space and a back-
ward difference scheme in time. Thus, second order accuracy scheme in space and first 
order accuracy in time was achieved. Discretisation of the equations in time were made 
implicitly in order to achieve unconditional stability and increase computational effi-
ciency. All finite volume schemes were developed on structured grids, however this 
method is straightforward applicable on unstructured grids too. Systems of algebraic 
equations were solved by the iterative Newton-Raphson method, which has fast conver-
gence if a suitable initial guess is made.  
 
As computational results, fo llowing characteristics were obtained (Fig. 6.10, 6.11-6.14, 
Chapter 6): 
 a)  conductor surface temperature as a function of load current, 
 b)  heating up time as a function of load current, 
 c)  time constant as a function of load current, 
 d) electric field strength as a function of load current (considering non- linear 
      electric resistance dependence on temperature) 
 e)  temperature distribution in the fuse element. 
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Chapter 5 details how the theoretical model of electric cables and fuses has been tested. 
For this purpose, two different experiments (section 5.1.1 and 5.1.2) were made.  
 
The first experiment deals with the determination of the temperature coefficient of cop-
per resistance. This coefficient is an important parameter for the determination of the 
cable resistance dependence on temperature. Three different cables were placed in a 
heated liquid silicon bath. The cable conductor resistance change due to temperature 
was measured. Necessary theory was developed and described in the section 5.1.1. The 
experimental set up is described in section 5.2.  
 
The second experiment was designed to measure the cable power dissipation. Here, all 
available wires and cables as well as fuses and cable bundles were connected to the di-
rect current power supply source and loaded with the power from 0 to the maximal al-
lowed value. The whole experiment was controlled by the software developed for this 
purpose. The necessary theory of this experiment and experimental setup are given in 
the sections 5.1.2 and 5.2 respectively. The measuring process and  the parameter acqui-
sition procedure was described in the section 5.3.  
 
Chapter 6 describes the validation of the mathematical model of electric conductors and  
the interpolation procedure of the numerical results by simple polynomial functions.  
The validation of the model was based on estimating the parameters, which most influ-
ence the heat transfer in electric cables. Therefore, considerable attention was paid to 
the validation of the heat convection coefficient, α, and the temperature coefficient of 
copper resistance, αρ.  
 
From section 6.1 one could see that the mathematical model was properly derived and 
approximated, since characteristics presented in figures 6.3, 6.4, 6.6, 6.7, 6.9 have good 
agreement with experimental data.  
 
In section 6.2 an algorithm was developed to interpolate numerical results. All thermo-
electrical characteristics were interpolated by simple polynomial functions using the 
Least-Square method. These functions are very useful for practical calculation problems 
of electric cables. Also, if such equations are implemented in the computer programme 
to calculate thermal performance of electric cables, the programme gives very good 
computational efficiency in time. The polynomial functions are given in Eq. (6.7-6.9).  
 
The final chapter concludes this study with a newly developed approach of heat transfer 
calculation in the multi-wire cable bundle. This chapter applies the principles, which 
have been derived for single conductors to multi-wires. Only after detailed research of 
heat transfer models for single wires and cables was it possible to derive the methodol-
ogy for the cable bundle. The key of this methodology is to calculate averaged heat 
conductivity coefficient of multi-wire layers. Therefore, it was proposed to use the lin-
ear coordinate transformation in order to simplify cable bundle geometry. An averaging 
method for layered media was then used to determine a mixed or averaged heat conduc-
tivity coefficient. The cable bundle model is given in Fig. 7.1 and its transformation to 
square frames of the same area in Fig. 7.2. Developed “mixed material equations” for 
thermal conductivity coefficient is given by the Eq. 7.3. In the following section 7.2 the 
comparison of the results was given. They were obtained with the calculated mixed heat 
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conductivity coefficient and compared with measurements from the cable bundle. From 
the figure 7.5, one could see that the developed method to calculate the averaged heat 
conductivity coefficient gives sufficient accuracy for practical applications.  
 
8.2 Conclusions 
 
 
Four different one-dimensional analytical and numerical models were successfully de-
veloped in this research work, which are able to simulate heat transfer in any kind of 
electric conductors such as flat cables, round electric wires, electric fuses or multi-wire 
cable bundles. The new analytical-numerical approach, which has been proposed in this 
work, allows analysis of the thermo-electrical characteristics of electric conductors.  
 
From this study, several other conclusions are as follows:  
 

Ø Analytical solutions for steady-state temperature distribution in a single con-
ductor were obtained. These solutions are valid for temperature independent 
material constants as well as temperature dependant material constants. An 
“avalanche effect” has been obtained from these analytical solutions (section 
3.3.3). It was also observed that transient heat transfer equations require very 
complicated techniques which are time and space dependent in order to obtain 
exact solutions. Therefore it is not worth making too much effort to solve tran-
sient heat transfer equations. Instead, a numerical approach should be used.  

 
Ø A numerical model as developed to simulate heat transfer in the conduc tors, 

which is based on the finite volume method. This simulates heat transfer very 
precisely due to the scheme of second order in space. Also implicit schemes in 
time proved to have better computational performance than explicit ones if 
time accuracy is not of primary importance.  

 
Ø Experiments delivered qualitative data and enabling an estimate of the qua lity 

of the mathematical model.   
 

Ø A new method to calculate heat transfer in the multi-wire cable bundle was 
created. Original equations of heat conductivity coefficient  were used by trans-
forming the complicated wire bundle geometry to more simple squares. Equa-
tions of “mixed material properties” produce averaged heat conductivity coef-
ficients for a cable bundle, which consist of materials as copper, PVC and air. 

 
Ø An analytical-numerical approach was developed to simulate heat transfer in 

electric conductors. This was implemented into a computer aided design pro-
gram to optimise thermal performance of the cables.  

 
Ø The developed software allows analysis of thermo-electric properties of both 

wires and fuses. This analysis is very important for fuse manufacturing proc-
esses in order to obtain better time-current characteristics for wire and cable 
protection against overload and short-circuit currents. In the future, companies 
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could design fuse materials, using the developed software. The result would be 
very narrow time-current characteristic of a fuse (close to wire time-current 
characteristic). Finally, wires and cables can be loaded with 100% load while 
being protected by the fuses in a reliable way. 

 
Ø The main results of this study were presented in three international conferences 

(Lithuania, 2003) and published in three international journals. 
 
 
List of publications: 
 
1. A. Ilgevicius, H.D. Liess. Thermal Analysis of Electrical Wires by Finite Volume 
Method. Electronics and Electrical Engineering. Nr. 4 (46), Kaunas, 2003. 
2. A. Ilgevicius, H.D. Liess. Calculation of the Heat Transfer in Cylindrical Wires and 
Fuses by Implicit Finite Volume Method. Mathematical Modelling and Analysis, 8(3), 
217-227, 2003.  
3. H.D.Liess, A. Ilgevicius. Analytical versus Numerical Solutions of Physical Prob-
lems. The Benefits of its Combination. Mathematical Modelling and Analysis, 8(4), 
291-302, 2003.  
 
 
8.3 Suggestions for future research 
 
 
In the present research a one-dimensional model for different geometries of physical 
models have been developed. However a two-dimensional model would be appreciable 
for heat transfer simulation in complicated fuse element geometries and multi-wire bun-
dles. Also, a mesh generation tool for Cartesian and radial coordinates is desirable.  
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Fig. 8.1. Multi-wire tree of on-board electrical system 
 

 
More research work should be undertaken developing mathematical models of cable 
bundles or even cable trees (see Fig. 8.1). Heat conductivity inside the bundle has to be 
estimated by further experimental works in order to validate the numerical model. Stud-
ies should also be made to ascertain which numerical method is more appropriate for 
the model for cables bundle and cable trees: finite volume or finite element method.    
 



 
APPENDIX A 
 
HEAT TRANSFER EQUATIONS FOR ELECTRIC CONDUCTORS 
 
A.1 Heat transfer equations for flat electric cable  
 
The aim of this appendix is to give the derivation of heat transfer equations from the physical 
point of view. It will be shown how to obtain one-dimensional transient state heat equations 
for different heat transfer directions in electrical conductors. 
  
In order to derive the heat equation for vertical heat transfer applicable for heat transfer in a 
flat cable, two assumptions have to be formulated:  
 
1. The heat flux q is a vector. This vector is normal to the cross section area. More generally, 
the heat flows in an isotropic media with some heat conductivity ? against the vector of tem-
perature gradient: 
 

gradTq λ−=
r

           (A.1) 
 
2. The change of heat flux div q is a vector. This vector describes the heat flux change in 
space per volume and time and is proportional to the heat capacity γ and to the rate of tem-
perature change : 
 

t
T

qdiv
∂
∂

−= γ
r

           (A.2) 

 
or, 
 

( )
t
T

gradTdiv
∂
∂

= γλ           (A.3) 

 
For ? = const. and since div grad U=∆U, 
 
differential equation for any media is of the following form:  
 

t
T

T
∂
∂

=⋅∆
λ
γ

           (A.4) 

 
here:    

? Heat capacity    in  Ws/m3K 
? Heat conductivity   in  W/mK 
?  Operator    in  1/m2 
q Heat flux    in  W/m2 
T Temperature    in  K oder °C 

 
The operator ?  is given by: 
 
for Cartesian coordinates:  
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Fig. A.1 Vertical heat transfer in the flat cable  
 

 
 
According to the picture in A1, electric power Pe is given by: 
 
dPe = O E J dy          (A.5) 
 
 
In z- direction the heat power Pz can be neglected:  
 
Pz = 0            (A.6) 
 
In y- direction the heat power through the cable surface is as follows: 
 

dy
tydT

OPy
),(

λ−=           (A.7) 

 
In the cable accumulated heat energy Q: 
 

( )dytyTOdQ ,∆= γ           (A.8) 
 
here: O = a l is the surface area in m2 
 
 
From the energy balance equation, Pe is given by: 
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dt
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By inserting the equations A.5, A.7 and A.8 to the equation A.9, we obtain a differential 
equation for transient temperature distribution in the flat cable: 
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dividing by  O⋅ dy: 
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A.2 Heat transfer equations for round electric wire 
 
For radial heat transfer, differential equations with cylindrical coordinates have  to be used. In 
figure A.2 heat conduction is given.  
 
 
 

 
 
 

Fig. A.2 Radial heat transfer in the round wire 
 
 

 
Electric power Pe is given by: 
 
 
dPe = O E J dr         (A.13) 
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where: O = l u = 2 p l r - the surface      
 
dPe =  2 p l r E J dr         (A.13a) 
 
Radial heat power of the wire Pr is given by: 
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In the wire accumulated heat energy Q: 
 
 

( ) ( )drtrdTrldrtrdTulQd ,2,2 γπγ ==       (A.15) 
 
 
From the energy balance equation, for radial heat conduction, the power Pr is given by:  
 

dt
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After insertion of the equations A.13a, A.14 and A.15 into the equation A.16, the differential 
equation for transient temperature distribution in the cylindrical wire follows: 
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divided by 2π  l r dr we have, 
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A.3 Heat transfer equations for an electric fuse element 
 
 
Here we consider axial heat transfer in a cylindrical or flat body electric fuse with constant 
cross section. The axial heat conduction in a cylindrical fuse element is given in picture A.3. 
 

 
 

Fig. A.3 Axial heat transfer in the fuse 
 
 

According to Fig. A3, electric power Pe is given by: 
 
dPe = A E J dx         (A.19) 
 
 
Radial heat conduction Pr through the surface is:  
 
dPr = a u T(x,t) dx 
           (A.20) 
 
Axial heat conduction Px along the fuse is:: 
 

dx
txdT

APx
),(

λ−=          (A.21) 

 
In the wire accumulated heat energy Q is: 
 

( )dxtxTAdQ ,γ=          (A.22) 
 
 
From the energy balance equation, Pr is given by: 
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Repeating the same procedure for the fuse element as was applied for flat and cylindrical 
cables. Equations A.19, A.20, A.21 and A.22 are inserted into the equation A.23. Finally the 
differential equation for transient temperature distribution in the fuse element leads to: 
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divided by A ⋅ dx, 
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APPENDIX B 
 
NUMERICAL ALGORITHM APPLICATION FOR HEAT TRANSFER 
SIMULATION  
 
B.1 Numerical heat transfer simulation and interpolation of the 
 results  
 
The aim of this appendix is to illustrate the practical implementation of a numerical algorithm 
(Chapter 4) in order to simulate the heat transfer in electric conductors and the implementa-
tion of the interpolation algorithm (Chapter 6). In the figure B.1 the graphical interface to 
input pre-processing data for the numerical simulation of heat transfer in cylindrical wires is 
given. Here the user has the possibility to choose any geometry of the wire in cylindrical co-
ordinates, environment temperature and to apply different types of materials. The boundary 
conditions are, however, fixed, and expose free convection and radiation to the air. As post-
processing information, numerical representation in an ASCII file (see Fig. B.2). Interpola-
tion results are saved in the binary file (see Fig. B.3) 
 

 
 

Fig. B.1 Window of pre -processing information for the heat transfer simulation program in 
cylindrical wires 
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Fig. B.2 Simulation data of a cylindrical wire with 10mm2 cross section. Here: I1 – load current 
in amps, T1 – conductor surface temperature in °C, E1 – electrical field strength in V/m, tau – 

time constant after n=5 in sec, tg – heating up time to reach 90°C in sec.  
 
 
B.2 Calculation of thermo-electric characteristics by the 
  polynomial functions 
 
 
In order to be able to work with an interpolated mathematical model or with simplified poly-
nomial functions, another programme was created (see Fig. B4). Here, using equations (6.7-
6.10) given in section 6.2, thermo-electrical characteristics can be calculated.  
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Fig. B.3 Binary file, where all interpolation coefficients are saved (A, B, C, D, Tau). 
 
 



128                                   Appendix B. Numerical algorithm application for heat transfer simulation 
 

 
 

Fig. B.4 Programme, which calculates thermo-electrical characteristics of cylindrical wire by 
simplified polynomial functions. 

 
 
 



APPENDIX C 
 
SOFTWARE FOR MEASUREMENT DATA ACQUISITION 
 
C.1 Algorithm description and measurement program 
 
In the section 5.3 two different measurement procedures of electric cables to validate the 
mathematical model were explained. In this appendix, a closer look at the measurement soft-
ware will be given. Both experiments were run by the same type of software, implemented in 
the LabView 6.1 environment. For the explanation in this chapter, only the second experiment 
software will be presented. This program controls the power supply of direct current and digi-
tal multimeter, to which the measurement sensors were attached.  The control of measurement 
equipment is implemented by a GPIB controller.  
 
The program has the following structure: 

 
- set the voltage to 15V; 
- open the files needed to save the results and the computations; 
- reset the multimeter; 
- write into the files the date and the time; 
- compute R65 – in order to do this: apply a 1 amp current for 60 seconds, read the voltage 

drops on the cable and on the shunt, read the environment temperature and finally com-
pute it; 

- for all current values (for i = 0 to number of currents do): 
o compute the present current and apply it to the cable; 
o for j = ’number of measurements’ – 4 to ‘number of measurements’ do: 

§ set the multimeter scale to DC voltage range; 
§ read the voltage drop on the shunt and wait for 4 seconds – also save the 

value in a variable; 
§ read the voltage drop on the cable and wait for 4 seconds – also save the 

value in a variable; 
§ read the sensor temperature - read actually a voltage drop and then com-

pute the temperature with the following formula:  
Ts = 2.83668 + 15.5669 * VoltageDrop * 1000. 

Remark: this thermocouple sensor is a safety sensor, which cuts off the 
power supply if the conductor temperature exceeds maximal allowed 
value.   

§ read the environment temperature and save the value in a variable for later 
use. 

§ based on the saved values compute the cable resistance, the cable tem-
perature, the cable power. 

§ write the results in the file dedicated to computed values. 
 
- write into both files the date and the time (the measurement has finished at this point); 
- reset both power supply and multimeter; 
- close both files; 

 
The program interface is shown in the picture C.1.  
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Fig. C.1 Measurement programme to measure cable voltage drop, resistance, electric power and 

temperature  
 

The measurement of cable resistance, voltage drop, electric power and temperature can be 
started if all measurement equipment defined in the programme is switched on. The program 
should initialise the available GPIB controller, power supply source, temperature sensors and 
the digital multimeter, which serves as a data acquisition device. Whenever the hardware is 
correctly initialised, the user should give initial data into the program. First, “Strom für R0” 
box has to be filled in, where some current value required in order to measure cold resistance 
R0 of the cable. Next, in the box “Shuntwiderstand” shunt resistance should be defined in 
order to compute exact load current produced by the power supply. “Alpha20” box defines 
the temperature coefficient of copper resistance. This value is required for the temperature 
computation of the cable. “Temperatur Limit” required for the safety reasons, if the cable 
temperature exceeds this value, the power supply source is cut off. “Min. Strom” and “Max. 
Strom” are required to specify the starting current load value and the end current value re-
spectively. Next, the step size of measurement interval should be given. For this, the box 
“Strom-Intervall” should be used. The measurement time, after which the steady state should 
be reached is given in the box “Messzeit pro Strom”. The box “Anzahl Messungen” means, 
how many intermediate values for every measurement interval should be measured and saved 
in the file. This information is important in order to record the transient state of cable tem-
perature.  
 
The measurement procedure then begins, and the whole experiment runs automatically. In 
order to observe the measurement data online, the computer with measurement software 
should be connected to the Ethernet network, and using “Remote Desktop Connection” appli
cation, the measurement computer can be controlled via the Ethernet network. On the right 
hand side of the program, online measurement information is presented: actual load current, 
actual cable temperature obtained by measuring cable voltage drop, cable surface temperature 
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obtained by thermocouple sensor, environment temperature obtained by Pt100 sensor and the 
cold cable resistance R0.  
 
C.2 Measurement results 
 
The measurement programme produced numerical results, saved in the ASCII type file (see 
Fig. C.2) 
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48 16:11 - Extra file initiated as: C:\CPOW\testfin.log
48 16:11 - Environment temperature:   20.00000 deg C
0 16:11 - User Tom Roida startet a new Measurement! Date: 2001-4-2

16 16:11 - Setting new current to   0.00 A
515 33,76 0 0,36 0,12250 0,00039 2,45000E-05 3,19790E-03
616 33,61 0 0,36 0,12150 0,00039 2,43000E-05 3,19450E-03
716 33,47 0 0,29 0,12300 0,00039 2,46000E-05 3,19430E-03
816 33,29 0 0,29 0,12050 0,00038 2,41000E-05 3,19080E-03
876 16:26 - Setting new current to  10.00 A

1416 33,17 10 9,87 9,68050 1,89056 1,93610E-03 1,95296E-01 2,01741E-02
1516 33,17 10 9,87 9,67950 1,89034 1,93590E-03 1,95293E-01 2,01760E-02
1616 33,17 10 9,94 9,67950 1,89036 1,93590E-03 1,95295E-01 2,01762E-02
1716 33,13 10 9,94 9,67950 1,89017 1,93590E-03 1,95276E-01 2,01741E-02
1736 16:40 - Setting new current to  20.00 A
2316 33,98 20 19,96 19,72500 7,85852 3,94500E-03 3,98404E-01 2,01979E-02
2416 34,15 20 19,96 19,72500 7,86177 3,94500E-03 3,98569E-01 2,02063E-02
2516 34,31 20 19,96 19,72400 7,86573 3,94480E-03 3,98790E-01 2,02185E-02
2615 34,46 20 19,96 19,72300 7,86993 3,94460E-03 3,99023E-01 2,02314E-02
2649 16:55 - Setting new current to  30.00 A
3216 36,24 30 29,91 29,69550 17,95414 5,93910E-03 6,04608E-01 2,03603E-02
3315 36,33 30 29,98 29,69650 17,95839 5,93930E-03 6,04731E-01 2,03637E-02
3416 36,38 30 29,98 29,69550 17,96082 5,93910E-03 6,04833E-01 2,03678E-02
3516 36,46 30 29,98 29,69500 17,96533 5,93900E-03 6,04995E-01 2,03736E-02
3616 36,50 30 29,91 29,69300 17,96810 5,93860E-03 6,05129E-01 2,03795E-02
3616 17:11 - Setting new current to  40.00 A
4316 37,73 40 40 39,74350 32,25896 7,94870E-03 8,11679E-01 2,04229E-02
4416 37,47 40 40 39,74350 32,23397 7,94870E-03 8,11050E-01 2,04071E-02
4516 37,27 40 40 39,74500 32,22366 7,94900E-03 8,10760E-01 2,03990E-02
4615 37,18 40 40 39,74700 32,21542 7,94940E-03 8,10512E-01 2,03918E-02
4636 17:28 - Setting new current to  50.00 A
5315 38,61 50 49,94 49,72800 50,73365 9,94560E-03 1,02022E+00 2,05161E-02
5416 38,48 50 49,94 49,72700 50,72164 9,94540E-03 1,02000E+00 2,05120E-02
5516 38,62 50 50,02 49,72800 50,75503 9,94560E-03 1,02065E+00 2,05247E-02
5616 38,73 50 49,94 49,72750 50,78436 9,94550E-03 1,02125E+00 2,05370E-02
5716 38,83 50 49,94 49,72650 50,83431 9,94530E-03 1,02228E+00 2,05580E-02
5716 17:46 - Setting new current to  60.00 A
6516 42,00 60 60,04 59,78150 74,50084 1,19563E-02 1,24622E+00 2,08462E-02
6616 42,07 60 60,04 59,78200 74,51892 1,19564E-02 1,24651E+00 2,08509E-02
6715 42,08 60 59,96 59,78100 74,53166 1,19562E-02 1,24675E+00 2,08552E-02
6816 42,17 60 60,04 59,78150 74,54066 1,19563E-02 1,24689E+00 2,08574E-02
6843 18:05 - Setting new current to  70.00 A
7716 44,92 70 69,98 69,76700 102,64526 1,39534E-02 1,47126E+00 2,10882E-02
7816 44,94 70 69,98 69,76750 102,66071 1,39535E-02 1,47147E+00 2,10910E-02
8015 45,01 70 69,98 69,76800 102,67282 1,39536E-02 1,47163E+00 2,10932E-02
8023 18:25 - Setting new current to  80.00 A
8916 48,16 80 80 79,81350 136,04219 1,59627E-02 1,70450E+00 2,13560E-02
9016 48,07 80 80 79,81350 136,03437 1,59627E-02 1,70440E+00 2,13548E-02
9116 48,31 80 80 79,81250 136,07361 1,59625E-02 1,70492E+00 2,13615E-02
9216 48,17 80 80,08 79,81300 136,06273 1,59626E-02 1,70477E+00 2,13595E-02
9256 18:45 - Setting new current to  90.00 A

10216 51,48 90 89,95 89,74750 174,35920 1,79495E-02 1,94278E+00 2,16471E-02
10316 51,50 90 89,95 89,74750 174,40156 1,79495E-02 1,94325E+00 2,16524E-02
10416 51,45 90 89,95 89,74900 174,38087 1,79498E-02 1,94298E+00 2,16491E-02
10516 51,48 90 89,95 89,74800 174,38144 1,79496E-02 1,94301E+00 2,16496E-02
10543 19:07 - Setting new current to 100.00 A
11516 54,99 100 99,97 99,86350 219,14446 1,99727E-02 2,19444E+00 2,19744E-02
11616 55,12 100 100,04 99,86500 219,07785 1,99730E-02 2,19374E+00 2,19671E-02
11716 55,14 100 100,04 99,86400 219,10461 1,99728E-02 2,19403E+00 2,19702E-02
11816 55,10 100 100,04 99,86600 219,06106 1,99732E-02 2,19355E+00 2,19649E-02
11883 19:29 - Setting new current to 110.00 A
12922 58,88 110 109,84300 269,33833 2,19686E-02 2,45203E+00 2,23230E-02
13016 58,81 110 109,99 109,84450 269,30137 2,19689E-02 2,45166E+00 2,23194E-02
13116 58,81 110 110,06 109,84200 269,27327 2,19684E-02 2,45146E+00 2,23181E-02  

 
 Fig. C.2 Saved experimental data in ASCII type file  
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Fig. C.3 Measured cable power and resistance after steady state regime  
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 Fig. C.4 Measured cable surface temperature in transient state regime at the current I = 170 A  
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