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Abstract 
 

Modern geoscientific monitoring and early warning applications have strong need for reliable, 
accurate, and timely live sensor data, in order to continuously keep track of the geographic-based 
events of interest currently happening in their physical world. 

Due to advancements of sensor technology resulting in the availability of low-cost and miniaturized 
sensors, it is possible for a single monitoring application to utilize large numbers of sensors in the 
order of tens, hundreds or even thousands. The major problem is how to integrate or manage 
simultaneously these various, heterogeneous sensors within that single application space. Furthermore, 
how can monitoring applications exchange any sensor systems without being worried about 
integration problems and conflicts that arise due vendor-specific solutions (i.e. usage of proprietary 
communication protocols, interfaces, measurements data types and formats). In addition, how can 
people and applications better understand the sensors they are working with, and make sense of the 
provided sensor measurements data. 

This dissertation proposes a concept for interoperable management of heterogeneous, multi-sensors 
within landslide monitoring applications. The management focuses on loose integration of sensors, 
which includes sensor connection, command and control, as well as handling of different sensor 
measurements at syntactic and semantic levels. The concept provides a new perspective for model-
based management or integration of sensors and also defines a generic minimal specification of a 
sensor access and control service (SACS). The SACS tends to complement the existing specifications 
which are either very general (i.e. global in design) or based on proprietary solutions (e.g. which is the 
current situation in landslide monitoring applications). A common SACS should enable interoperable 
integration of sensors in different applications. We also suggest that it is through generic logical sensor 
models that people and applications can easily integrate and better understand the types of sensors 
they are working with as well as the acquired measurements data.  

The definition and specification of generic and standards-based sensor models, as well as open, 
interoperable interfaces for sensor access and control services are important first steps towards 
achieving interoperable management of multi-sensors in landslide monitoring applications. 

Adopted for the proof of concept is a sophisticated, open standards-based field-based mobile data 
acquisition system we have developed for landslide monitoring. This system makes fully use of the 
possibilities of ubiquitous access – via wireless technologies – to various sources of information. The 
system’s mobile client employs different sensor systems for the capturing of new geometries of 
features as well as updating geometries of existing features. 
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1. Introduction 
Due to the increasing number of disasters or accidents as a result of the frequent occurrences of 
unavoidable natural hazards like landslides, floods, fires, tornadoes or wind storms, etc., there is a strong 
need to build or deploy effective, efficient and highly reliable monitoring and early warning systems. 
These systems can help humans to fully understand and respond timely and adequately to expected or 
abrupt events in order to mitigate their effects. The backbone of such systems is a sensor network that 
provides reliable, accurate and timely live sensor measurements data.  

There are many deployments of monitoring and early warning systems being carried out at global or 
international [EEA, 2004; EU-GMES, 1998][…], national, regional and local levels. The effective 
realisations of such systems are enabled by advances in sensor technologies (e.g., Micro-Electro-
Mechanical Systems (MEMS) and Nanotechnology [http://www.memsnet.org/], etc.), and information 
and communication technologies (ICT) like interoperability technologies (i.e., Open Geospatial 
Consortium (OGC) Sensor Web Enablement [OGC-SWE], Ork Ridge National Laboratory (ORNL) 
Sensor Net [ORNL-SN], Web Services and Service Oriented Architectures [OGC, W3C, OASIS][…], 
etc.), the Internet and the Web, and high-speed, broadband wireless communication.  

With the help of sensor networks, people and machines can monitor environments of interest or even 
continuously keep track of events happening in their physical world by accessing and/or controlling 
different types of sensors from their offices, homes or in the field. Due to the availability of low-cost and 
miniaturized sensors, it is possible for a single monitoring application to utilize large numbers of sensors 
in the order of tens, hundreds or even thousands. The major problem is how to integrate or simultaneously 
use these various, heterogeneous sensors within a single application space. Furthermore, how can 
monitoring applications exchange any sensors without being worried about integration problems due to 
differences in communication protocols and interfaces. Also, how can people and applications better 
understand the sensors, and utilise their measurements data with disregard to the differences in data 
formats. Current research works are investigating these challenges at various levels and from different 
perspectives (e.g. sensor data collection services, sensor network configuration, and management, etc.), 
and for different application domains. 

This dissertation proposes a concept for interoperable management of heterogeneous, multi-sensors 
within landslide monitoring applications. The management focuses on loose integration (see section 
2.1.1), which includes sensor access (connection) and interaction (command and control), as well as 
handling of sensor measurements. The concept provides a new methodology for model-driven 
management of sensors and also defines a generic minimal specification of a sensor access and control 
service (SACS). The SACS tends to complement the existing specifications which are either very general 
(i.e. global in design) or based on proprietary solutions (e.g. which is the current situation in landslide 
monitoring applications). It is through use of generic sensor models that people and applications can 
easily integrate and better understand the types of sensors they are working with as well as the 
measurements data. Through an open, standards-based or generic framework, it can be possible to 
connect and control various disparate in-situ and remote sensors. Also, within a sensor network, 
specialized sensors can provide information about their positions making it even possible for the users to 
geolocate (georeference) the events happening in the physical world.   
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1.1. Problem Definition 
Modern geoscientific (geodetic, geotechnical, geophysical, etc.) monitoring applications have strong need 
for reliable, accurate, and timely live sensor data, in order to be always aware or keep track of the 
geolocatable events of interest happening in the physical world. However, the challenges in deploying 
sensor networks for those applications are mainly sensor and sensor data management [Stefanidis et al., 
2005, Balanziska et al., 2007]. Dealing with various, heterogeneous sensors within a single monitoring 
application and, at the same time, providing meaningful information to the end user for analysis and 
decision making is a very challenging task. The main reason attributing to this challenge is that sensor 
manufacturers support their own proprietary solutions (i.e. non-standard, vendor-specific specifications). 
Hence, there is need for interoperable integration or management of multi-sensors. 

Definition:: Multi-Sensor Integration: Luo et al. defines it as the synergistic use of information provided 
by multiple sensory devices to assist in the accomplishment of a task by a system [Luo et al., 2002].  

Definition:: Interoperable Management of Multi-Sensors: Is defined in the dissertation as the open 
standards-based or generic access and control of multiple sensory devices as well as the synergistic use of 
data provided by them, in order to accomplish easily and efficiently a given task within a single 
application space or system. 

The dissertation classifies the problem definition into two layers: (1.) sensor systems layer and (2.) sensor 
measurements data layer. Figure 1 shows the issues of concern that a system developer or integrator faces 
when integrating multi-sensors within a single application. 

 

Figure 1:  Overview of Issues of Concern in Multi-Sensors Management. 
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The problem definition matrix shown in the Figure 2 elaborates the above figure.  

 

Figure 2: Problem Definition Matrix 

Sensor Systems Layer 

Due to the advances in sensor technology (MEMS, Nanotechnology), computing (hardware, software and 
algorithms), and wireless communication, applications can deploy a large number of sensors (ranging 
from low-cost to very expensive) of different capabilities, and sizes (e.g., smart dusts [Sailor et al., 2005; 
Warneke et al., 2001], micro-drones [http://www.microdrones.com/], etc.). Various problems can be 
encountered when communicating with those disparate sensor devices in a single application. The sensor 
systems layer deals with the problems related to the inherent differences in functional model (capability, 
behavior and characteristics) of a sensor. This specifically includes the connection and communication 
(command and control) management problems that arise due to discrepancies in the specifications of 
sensor protocols and interfaces by different manufacturers, which make it not easy for a single application 
to efficiently integrate (plug-and-play) new sensors.  

Connection protocols refer to the communication mechanism of a system at the application or web service 
layer. For example a sensor system can allow particular protocols like: 

• ASCII Remote Procedure Call (RPC) command (e.g. input syntax like: 

   $: command code, <parameter1>, <parameter2>, <parametern>) 

• DCOM (Distributed Component Object Model)[Microsoft-DCOM] 

• CORBA (Common Object Request  Broker Architecture)[OMG] 

• Etc. 
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The command and control interfaces form the syntax part of the communication contract between a 
sensor system and the target sensor application (e.g., sensor manager). Following are the specific 
problems that this dissertation tries to solve: 

• The sensor manufacturers do not exactly define or follow standard interfaces for connecting, 
commanding and controlling their sensors at the application, service, or presentation layer (e.g. 
application layer defined by the OSI/ISO model [ISO/IEC-7498-1, 1994], OGC Sensor Web 
Enablement [OGC-SWE], IEEE P1451 for Smart Transducer Interfaces [IEEE-1451]). Therefore, 
there is need for a vendor-neutral solution for integrating multi-sensors in landslide monitoring 
applications. 

• Lack of common sensor models that applications can use as single portals or query interfaces for 
accessing all the relevant information about a particular type of a sensor. 

• There is no standard definition of a sensor model available 

The current situation is that for each sensor (S), for example, total station (TPS), digital camera, laser 
scanner, and global navigation satellite system (GNSS) device, a specific software component (SC) is 
needed to properly manage that single sensor (see Figure 3).  

 

Figure 3: A Specific Sensor Component for each Sensor. 

With increase in the number of sensors, the sensor manager can be overwhelmed. The dissertation 
considers this problem. 

Lack of detailed and well-defined sensor models causes system integrators and analysts have problems in 
fully understanding the sensors and their respective measurements. This makes sensor systems to be 
treated as “black boxes”. A black box refers here to a closed (sensor) system whose descriptive 
information is not adequate. Following two are examples of black box problems: 

• The mapping between the external inputs (i.e. sensor signal input) and the internal behaviour model 
(e.g., processing model) of the component is unknown. 

• The mapping between the internal behaviours and the measurable external results is also unknown. 
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With increase in complexity of some of the black-boxed sensors, if errors occur sometimes it is difficult 
to determine the source of errors (i.e. system internal or human failure).  

Sensor Measurements Data Layer 

Balanziska et al. notes that large-scale sensor networks generate tremendous volumes of priceless data 
[Balanziska et al., 2007]. Harvesting the benefits of a sensor-rich world is not easy, due to data 
management challenges. These management problems can generally be split into two levels: sensor 
services level and the client applications level (e.g., landslide monitoring applications). The client 
applications can deal with issues regarding handling of vast amounts of data, detection of outliers using 
various algorithms, and data fusion. The sensor services can perform the initial or preparatory data 
management like handling of different proprietary data structures and types of different dimensions 
(spatial including the temporal aspect), discrepancies in data quality (determine sensor reliability, failure, 
etc.) and complexity of data content formats.  

The sensor measurements layer, which is the other focus of the dissertation, considers only the sensor 
services level issues. Tao et al states that the data layer forms the backbone of a system and it can serve as 
a gateway to integrate and fuse observations of spatially referenced sensors [Tao et al., 2003]. Since a 
single monitoring application can use different sensors (ranging from very simple ones like temperature, 
pressure, etc., to complex sensors like GNSS receivers, laser scanners, etc.), various data types, such as 
scalar data (e.g., count, range, distance), vector data (e.g. point, line, polygon), raster and complex 
matrices, with different dimensions and qualities, have to be handled by the application. Data types refer 
here to data class definitions and data structures are compositions of data types (simple, complex or 
mixed types), for example, data tables, data records, data arrays, terrain, etc. Data formats refer to the 
organization of data, for example, in ASCII-based, XML (text) or binary formats. It is important to note 
that data definitions do form both the syntax and semantics part of communication between sensor 
systems and the targeted applications. Therefore any differences in meaning of same terminology usually 
lead to data misinterpretation (i.e. ontology conflicts). The dissertation looks at the semantics and 
syntactic issues, but does not address any data fusion techniques. 

To summarise the problem definition, from research analysis and our experiences in a joint project 
“Advances of Geoservices” (http://www.geoservies.uni-osnabrueck.de/), in which a sophisticated mobile 
data acquisition client has been developed for landslide monitoring applications, we have identified the 
following: 

• Sensor measurements are archived, but the information about the sensors (i.e. sensor models) used to 
capture the data is forgotten or does not exist at all. For example, for future analysis of the 
measurements, the sensor information at the time of observation (e.g. calibration state data, 
atmospheric conditions, accuracy, position, process methods etc.) can be of vital importance.  
Roddick et al. points out that the modelling of spatial data sources is as important as the data 
themselves if such data are to be interpreted correctly [Roddick et al., 2004]. Lack of sensor models 
will, few years after the measurement campaign, result in measurements “data graveyards”. 

• Lack of a common data formats. For example, if within the landslide monitoring applications all 
measurements and observations are modelled using common schema encodings, exchange of the 
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data between applications can greatly be improved. 

• There is no overall conceptual framework for interoperable integration of various, heterogeneous 
sensors. Such a concept can enable easy plug-and-play of sensors as well as model-based exchange 
of sensors and their respective measurements among various landslide monitoring applications. This, 
however, can demand for the development of a sophisticated sensor service that realises such a 
concept. 

1.2. Research Statement and Objectives 
The main goal of the dissertation is to propose a concept for interoperable management of heterogeneous, 
multi-sensors within landslide monitoring applications. The hypothesis statement of the dissertation states 
that it is only through self-descriptive, complete, open generic or standard-based sensor models that 
people and software applications can easily integrate (plug-and-use) and better understand the sensors 
they are working with as well as the measurements data. In addition to adoption of interoperable 
standards, applications can exchange sensors (via sensor models) and integrate them with no (i.e. zero 
programming) or minimal adjustment. 

The dissertation objectives are as follows: 

• Carry out detailed analysis of the needs of landslide monitoring and early-warning applications. 

• Define and specify minimal generic logical sensor models.  

• Propose a workflow for the development and usage of the logical sensor models. 

• Research on methods and technologies for achieving interoperable management of sensors 

• Investigate the applicability of sensor standards (e.g. OGC Sensor Web Enablement) for 
interoperable integration of sensors. 

• Propose a model-driven conceptual framework for interoperable management of multi-sensors. 

• Validation of the concept in a landslide monitoring application as well as the logical sensor models 
developed for this application. 

A generic logical sensor model can be seen as a vendor-independent, minimal specification of a given 
sensor type. The model has to be defined by a specific community and it must be possible to use such 
model within that community in order to support interoperable integration of sensors. It is envisaged that 
a generic logical model can also be encoded or mapped to a standards-based model using any standard 
modeling language (e.g. OGC SensorML). The logical sensor model should define and specify the 
following: 

• Common data types (e.g. spatial and temporal) and structures 

• Common Interfaces (e.g. command and control) 
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• Input and output (I/O) parameter definition 

• Common protocol (for connection at application layer as well as physical layer) 

• Quality information about sensor (e.g. reliability, accuracy, resolution, etc.) 

• Other sensor metadata (e.g., Geoposition information of the sensor, calibration information, physical 
characteristics, measurement capabilities, etc.) 

• Sub-sensing devices 

• Sub-components (i.e. non-sensing devices like battery or formal descriptions of algorithms) 

Figure 4 provides an illustration of the general concept framework of the dissertation. 

 

Figure 4: General Concept Framework 

The definition and specification of generic or standards-based sensor models (SMs), and interoperable 
sensor access and control services play an important role towards achieving interoperable management of 
multi-sensors in landslide monitoring applications. 

1.3. Structure of the Dissertation 
Figure 5 gives an overview of the layout of the dissertation. Chapter 1 gives the introduction, defines the 
problem being addressed, the research statement and objectives. This current section explains the 
dissertation layout. 
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Figure 5: Layout of the Dissertation 

Chapter 2 looks at the research background and state-of-the-art in multi-sensors integration. The chapter 
also covers general interoperability standards as well as sensor specific standards and specifications. 
Examples of existing sensor-based frameworks are also given. Chapter 3 continues chapter 2 by looking 
at the current situation in landslide monitoring and early-warning applications, which is the application 
domain of the dissertation. Chapter 4 explains the basic concepts and definitions that form the basis for 
the dissertation. Chapter 5 covers the classification and technical specifications of sensors that have been 
selected for the dissertation. It also documents about sensor integration methods and technologies. Based 
on the information and knowledge contained in the previous chapters, chapter 6 focuses on the conceptual 
framework for interoperable management of multi-sensors. Chapter 7 shows the proof of concept within a 
landslide monitoring application. This is then followed by the final summary in chapter 8. The last 
chapter 9 contains the conclusions and future outlook.  
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2. Background and State Of The Art 
This chapter discusses the background and state of the art of the research with respect to managing or 
integrating heterogeneous systems within a single landslide monitoring application. The first sections of 
the chapter cover the introduction and issues of concern to be considered when integrating different 
systems. The last sections focus on interoperability standards and specifications. 

2.1. Integration of Disparate Systems 
In the literature, the term integration is not well defined and it very much depends on the context of 
domain application (e.g. enterprise business process integration, social integration, economic integration, 
technology integration, etc.). In this dissertation, the definition context of interest is that of the 
information and technology systems integration point of view.   

Definition1:: Integration: Integration refers to linking together different systems or system components 
and software applications physically or functionally. This might include joining system components by 
“gluing” their interfaces together.  

Definition2:: Integration: Barkmeyer et al. [Barkmeyer et al., 2003] defines integration as “the 
engineering process that creates or improves information flows between information systems designed for 
different purposes. What actually flows between systems is the data, but what is critical to the business 
process is that all of the right data flows in the right form for the receiving system, and the people who 
use it, to interpret the data correctly.”  

The first definition is adopted for managing different sensor systems in a single application. The second 
definition is adopted for the sensor data. The transmitted or exchanged data between the sensor and the 
application are expected to be in “right form”, that is the data have to be either already in a standardized 
format (derived from a common schema) or have to be transformed (data mapping) to be compatible with 
data types and structures of the receiving system. The sensor models to be defined have to describe the 
various sensor measurements data, in the “right form” so that people and machines can easily use them, as 
well as make correct interpretations. 

2.1.1. Types of Integration 

Before discussing about the problems related to integrating different systems (e.g. sensor systems) in a 
single application, this section gives an overview on the types (degrees) of integration and highlights the 
type of integration that is adopted for the dissertation. 

o Self Integration 

Is the process in which a sensor system or system component (sensor, detector, etc.) reconfigures itself 
within its operating environment (i.e. targeted application space) in order to participate in a joint action or 
cooperate with other sensor systems. This process does not involve human intervention or use of third-
party tool that builds a bridge (see section 5.3.3) or set of wrappers (see section 5.3.2) for the purpose of 
adapting the sensor system or the monitoring application to the new requirements. The prerequisite is that 
the following technical requirements are strictly adapted: 
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• Common technology (e.g. communication methods, techniques) for the transmission and reception of 
the data 

• Common protocols for the exchange of data 

• Common and exactly defined data types, structures and representations 

At the moment, sensor manufacturers do not follow these technical requirements, making self-integration 
not possible or rather very difficult. The existing interoperability standards and specifications (see section 
2.2) try to address some of these technical issues. 

o Loose Integration 

Also termed “weak” or “low” integration, refers to the interaction or communication between two 
different components via a stable interface. The communicating parties are unaware of each other’s 
internal implementation (information hiding or encapsulation). For example, in GNSS (e.g. GPS) and 
inertial navigation system (INS) research works [Gebre-Egziabher, 2007; Li and Wang, 2006; …], which 
intensively started in the early 1980s, loose integration is seen as a process where a GNSS receiver and 
INS provide their measurements to a blending software that actually fuses measurements data using 
estimators like kalman filter (KF) or extended kalman filter (EKF) [Cui and Chen, 1999;…], unscented 
kalman filter (UKF) [Julier and Uhlmann, 2004…] or neural networks and neuro-wavelet analysis method 
[Wang et al., 2006; Chiang and El-Sheimy 2004; Goodall et al., 2005, …]. The key feature of this 
approach is that both the INS and GNSS receiver remain independent navigators and their respective 
software components do not fuse the data themselves.  

This approach is adopted for the dissertation in trying to achieve interoperable management of disparate 
sensors within a landslide monitoring application. For example, in a sensor network, sensors can take up 
the roles of specific servers and the applications interacting with them the roles of clients. Software 
system integrators can employ loose integration concept to incorporate these sensors into their 
applications. The software components they develop for accessing and controlling the sensors do not 
necessarily need to blend or fuse the measurements data, but do provide the data in a common format. 
The applications receiving the data have to do the actual fusing of the relevant data themselves depending 
on their specific needs. The loose integration approach is also being followed by interoperable Web 
services or service oriented architecture (SOA) applications. 

o Tight Integration 

For a complete discussion, tight integration is also explained here. There are different degrees of tight 
integration: close, full (seamless) and deep (ultra-tight). The higher the degree of integration, the less 
independent are the individual components. If one of the integrated components fails to work then the 
joint action or functionality fails. Tight integration may include combining hardware components into a 
single unit. From INS/GNSS experiences found in the literature, tight integration can require development 
of complex architectures and this approach also makes a GNSS receiver no longer be seen as an 
independent navigator. However, some researchers [Li and Wang, 2006; Wendel and Metzeger, 2005] 
[…] argue that the next generation of INS/GNSS will be based on ultra-tight integration because of its 
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improved performance under critical conditions (high dynamics, jamming, and interferences), but this 
will make interoperability difficult. Also, in cases where hardware integration is required through 
modification or composition of physical sensor designs, this is not an option for software system 
developers or integrators, hence the reason for this dissertation not to consider tight integration approach. 

2.1.2. Issues of Concern when Integrating Multi-Sensors 

There are different issues and aspects related to integration of disparate systems (also applicable to sensor 
systems or instruments). The International Organisation for Standardization (ISO) Reference Model for 
Open Distributed Processing (RMODP) [ISO/IEC 10746-1, 1998] explains the viewpoints which can be 
used to categorize the problems. Using this reference model, integration problems can be viewed from: 
the enterprise, the information, the computational, the engineering, and the technology viewpoint.  The 
dissertation considers the last four points of view. 

Barkmeyer et al. [Barkmeyer et al., 2003] explores the integration problems in detail in its “concept for 
automating systems integration” and it concludes that “technical impediments are interoperability 
problems, in one way or another, and most of interoperability problems are technical impediments.”  

 

Figure 6: Systems Integration Technical Impediments 

Figure 6 gives an overview of the technical problems that arise due to discrepancies in: 

• Use of vendor-specific interfaces and protocols 

• Discrepancies in the communication technologies used 

• Differences in data types, structures and representational formats 

• Differences in the quality-of-service of the sensor systems 

Examples of communication technologies and mechanisms are SOA, Web services (REST-based, SOAP-
based, etc.), remote procedure calls (RPCs) or operation invocation (e.g. Java Remote Method Invocation 
…), etc. 
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Following are the discussions of specific issues that are of relevance to the dissertation. 

2.1.2.1. Connection conflicts 
For two or more systems to communicate, first a connection has to be established. There must be an 
agreement of the communication protocols and mechanism of interaction to be used. Disagreements in the 
system supported interaction mechanism lead to communication mechanism conflict. If the interaction 
mechanism is the same, but the underlying specific protocols different, this causes protocol conflict 
[Barkmeyer et al., 2003].  For example, if the client is based on Microsoft’s Distributed Component 
Object Model (DCOM) [Microsoft-DCOM] protocols but the server on Common Object Request Broker 
Architecture (CORBA) [OMG-CORBA] or other different technology. 

In the 1970s and earlier, different hardware (including sensor systems) vendors used to design their own 
custom hardware protocols for networking or communication. Interaction between the systems was only 
possible through a lot of integration efforts. In the 1977, the American National Standards Institute 
(ANSI) working group on Distributed Systems (DISY) proposed a layered model of network architecture, 
which later (in 1984) became the Open Systems Interconnection (OSI) Reference Model [Stallings, W.R., 
1998; ISO/IEC-7498-1, 1994]. The goal of OSI model (also known as the OSI/ISO seven layer model) is 
to standardise the communications protocols and functions (services) of the defined protocol layers. The 
model specifies seven layers which are Application, Presentation, Session, Transport, Network, Data 
Link, and Physical. If systems strictly adopt the OSI model, they can be interoperable at various levels of 
communication.  

 

Table 1 shows the main elements of the OSI Model (see Appendix 12.1 for detailed explanation). 
 

OSI/ISO Model 

Layer # Name Function 

7 Application Communication with application processes, 
using protocols for messaging, file transfer etc.  

6 Presentation Data representation and encryption; 
data conversion 

5 Session Interhost communication e.g. start and stop 
sessions 

4 Transport End-to-end connections and ensures reliability on  
data delivery. 

3 Network Path determination and logical addressing, i.e. 
routing of data to different destinations 

2 Data Link Physical addressing. It ensures reliable  
transmission of data packets from node to 
node based on the destination address. 

1 Physical Media, signal and binary transmission. It also 
includes also wiring/cabling of devices or systems.

 

Table 1: OSI/ISO Seven Layer Model 

However, the ISO model does not concretely provide or specify software or application programming 
interfaces (e.g. Microsoft Windows Sockets (Winsock), Unix Berkeley Sockets, or Web 
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application/services interfaces, etc.) and higher level protocols like SOAP, etc.  For the dissertation, the 
higher levels of the OSI model (e.g., application and presentation layers) and the extensions to it 
including the application programming interfaces and Web services are of importance. Web services 
do rely on the Internet communication model (which can be seen as a clearly defined subset of the ISO 
Model).  

At the moment, Web services provide a promising solution for resolving the connection conflicts and 
other software and data integration problems discussed above. Examples are the OGC Open Web 
Services (OWS), OASIS and partners’ Web Service (WS-*) protocols [http://roadmap.cbdiforum.com/]. 
WS_* is essentially a set of standards to achieve end-to-end security and reliability (quality) of interaction 
over any underlying protocol, including HTTP, TCP, In-Process communication, etc.  

2.1.2.2. Command and Control conflicts 
The prerequisite is that the connection conflicts are resolved. Command and control interoperability aims 
at resolving the problem of using proprietary interfaces when communicating with disparate (sensor) 
systems. Use of generic or standards-based interfaces (e.g. IEEE P1451 Smart Transducer Interfaces) can 
resolve these conflicts. 

2.1.2.3. Functional conflicts 
Refer to the suitability of a system for the specific role that it is assigned to. Examples are intention 
conflicts and functional scope conflicts. Intention conflicts happen when the system is used for a purpose 
or in a way that is not anticipated by the vendor. This may be due to lack of a detailed functional model of 
the system. Functional scope includes vendor-specified system capabilities and limitations as well as the 
scope of system behaviour under certain environmental conditions. These details must be provided in 
both human and machine readable format. Also, the functional specifications must be clear and accurate 
so as to avoid functional conflicts. 

2.1.2.4. Quality-of-Service (QoS) conflicts 
They arise if the expectations or requirements of an application (client) are not fulfilled in terms of 
performance, quality, reliability, timing, security, etc. QoS is a very important aspect in real-time 
systems, especially in monitoring applications. Sensor systems can provide information about their 
quality and reliability via their sensor models. People and machines can then match this information with 
the application requirements or expectations. 

2.1.2.5. Data Integration Conflicts 
Data integration can be seen as a process of combining data residing from different sources and 
providing the user with a unified view of these data [Lenzerini, 2002]. Barkmeyer et al. [Barkmeyer et al., 
2003] defines it as a problem that deals with identifying common information specifications or resolving 
differences between alternatives (i.e. by comparing other similar, relevant data sources). 
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Figure 7:  Overview of Important Aspects of Data Integration 

Figure 7 shows an overview of important aspects that have to be considered when handling data from 
heterogeneous data sources. Following is a brief explanation of these aspects: 

• Incompatibilities in data type definitions (user defined types (UDT) or primitives (double, float, 
integer, etc.)), and proprietary data structures (e.g. file structures, table or record structures, page 
structures) 

• Differences in data organisation (e.g. formats) 

• Discrepancies in data representation (i.e. at logical or physical level of a data model) 

The problem of integrating heterogeneous data sources under a single query interface is not new. In GIS, 
for example, in monitoring applications and other IT systems, there are still active research works going 
on in order to find optimal solutions. For example, the Oxford University Computing Laboratory (OUCL) 
[http://www.comlab.ox.ac.uk], in United Kingdom, is working on a project (2007-2011), funded by the 
Engineering and Physical Sciences Research Council (EPSRC), investigating “Schema Mappings and 
Automated Services for Data Integration and Exchange”. Data Exchange is defined as the problem of 
inserting data structured under one or more source schemas into a target schema of different structure 
while reflecting the source data as accurate as possible, and at the same time considering integrity 
constraints. They define data integration as a problem of answering queries formulated over a target 
schema that integrates the information provided by several data sources over one or more source schemas. 
The laboratory is researching on a new model for using Web service technology for delegating data 
exchange and integration tasks, and it aims to implement and test new algorithms and methods in that 
model. 

 A prominent example dealing with similar problems is the EU Infrastructure for Spatial Information in 
Europe (INSPRE) [http://www.inspire-europe.en; http://inspire.jrc.it]. The ‘Draft Implementing Rules for 
INSPIRE Transformation Services’ (February 2009) discusses schema transformation in data interchange 
and issues about quality of service. For more information on the development and research requirements 
of INSPIRE and its direction, refer to Bernard et al. [Bernard et al., 2005a, 2005b]. Several other related 
research works can be found on the Internet and in various literature.  

However, the idea of using a single query interface and a target schema is adopted in this dissertation. 
Precisely, a generic logical sensor model can also act as a single query interface as well as a target 
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schema for the modelled sensor type.  

The following conflicts, e.g. data consistency, semantic and syntax, contribute to the issues of concern 
discussed before. 

2.1.2.6. Data consistency conflicts 
ISO 19113 Geographic Information - Quality principles defines data consistency as a sub-element of data 
quality. A significant amount of research work on data quality has been carried out [Caspary, 1993; 
Caspary, 1992; Joos, 2000; Joos, 1994]. The sub-element logical consistency covers different aspects 
(conceptual, domain, format and topological) of spatial (geographic) data consistency. Wang [Wang, 
2008] discusses about logical data consistency in detail and proposes a new methodology for dealing with 
spatial data consistency using spatial data integrity rules defined in constraint decision tables (CDTs). 
Data consistency can also be applied to measurements data. For example, the format of different sensor 
streams can be checked for consistency with the application’s underlying sensor data storage (repository) 
format (e.g. SWE Common data specification, NMEA etc.). This can also include typical plausibility 
checks. 

2.1.2.7. Semantic conflicts 
Are the results of lack of common concepts or agreement on terms used to refer to those concepts. The 
basic requirement is that specific communities or domains create dictionaries with controlled vocabulary 
or ontologies. The conflicts can be found in the data conceptual model (conceptualisation conflict) or in 
the interpretation of references to object types and instances in the application space, etc. For example, if 
the measurement values do not specify measurement units, then assumption of different units (e.g. metres, 
feet …) can lead to misinterpretation. Barkmeyer et al. states that interpretation conflicts also exist even 
when standard interfaces are used. The reason is that standards usually permit “least common 
denominator” semantics or specifications. This dissertation considers ontologies, but uses very simple 
approaches like controlled dictionaries for defining terms/concepts used in logical sensor models. 

2.1.2.8. Syntactic conflicts 
Arise when communicating components use different data types, structures, and organisation to describe 
identical concepts. Examples of such concepts [Barkmeyer et al., 2003] are: 

• Object type 

• Action type  

• Property type 

• Relationship type 

• Any instance of the above 

The above concepts can be represented or defined differently for the same real world features, for 
example, a component might use ASCII RPC-based messages and the other SOAP messages to 
communicate its data. Some of the syntactic conflicts can be resolved through intermediates that perform 



  24

protocol transformation and syntax translation. There are tools like Microsoft Visio, XML Spy [Altova] 
that implement languages like Express-X [ISO/IS-10303-25] and XSLT [W3C], respectively, for name 
translation and data reorganisation etc. This can also involve some kind of syntactic and structural schema 
mapping. 

Summary: 

The above sections have discussed issues and aspects of concern when handling different systems (e.g. 
sensor systems) as well as managing data from disparate sources (systems). For introductory work in the 
field of multi-sensors integration, Luo and Kay [Luo and Kay, 1990] discusses about multi-sensor fusion 
and integration in a more general sense. Luo et al. [Luo et al., 2002] provides a comprehensive overview 
of multi-sensor fusion and integration related approaches, applications, and future research directions. 
Other related introductory works [Dasarathy, 1997; Vashney, 1997; Hall and Llinas, 1997] cover different 
aspects of sensory data fusion and integration techniques. However, these aforementioned research works 
do not address the use of standards, but provide an insight into the need for interoperability when dealing 
with multi-sensors within a single application space. 

2.2. Interoperability Standards and Specifications 
Since the dissertation focuses on interoperable management of multi-sensors, the following subsections 
discuss the interoperability standards and specifications that can be adopted in order to fulfil the 
research’s main goal. 

2.2.1. Definition of Interoperability 

ISO 19101 Reference model [ISO 19101] defines interoperability as “the ability of a system or system 
component to provide information sharing and inter-application co-operative process control. It provides 
a freedom to mix and match information system components without compromising overall success”. 
Therefore, interoperable management of sensors can ensure that different or same types of sensors can be 
installed, accessed, and controlled through vendor-neutral means. 

2.2.2. Aspects of Interoperability 

This subsection covers aspects of interoperability that consider the problems of integration discussed in 
chapter 2 in section 2.1, according to ISO 19101. 

1. Protocol and Interface Interoperability: Refers to communication strategy between two systems, at 
two main levels: higher and lower levels. 

The higher level addresses communication issues between sensing devices and the application consumers 
at connection, command and control layer. The lower level communication is about physical 
communication between sensing devices and the respective applications, e.g., handshaking, cabling, 
wireless, etc. Of importance to the dissertation are the higher level interfaces/protocols.  

2. File System Interoperability: Requirements for interoperability are common naming conventions 
(semantics), access control, access methods, and file management. Figure 8 shows the steps which 
need to be taken in order to support native (proprietary) formats of existing legacy systems. 
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Figure 8: File System Interoperability 
 

3. Remote Procedure Calls: Interoperability can be achieved if a specification of a common set of 
operations that execute procedures on remote systems exists. 

4. Search and Access Databases: Use of common databases (e.g. Oracle Sensor Data Repository) and 
common methods of access (e.g. SQL). 

5. Syntactic Interoperability: Is the ability of different systems to be able to interpret the syntax of the 
same data in the same way. 

6. Application Interoperability: Is the ability of applications to use and represent data in the same 
manner. This requires semantic interoperability, which aims to ensure that applications interpret data 
consistently in the same manner in order to provide the intended representation of that data. For 
example, common translators can be used to convert data from different data sources (e.g., sensors) 
into the target applications. For details refer to ISO 19101 Reference model. 

2.2.3. Elements of Interoperability 

Following are the main elements that we consider important in order to ensure interoperable systems or 
sub-systems: 

• common data formats 

• common protocols 

• common interfaces 

• controlled vocabularies, common ontologies or semantics 

• common metadata 

2.2.4. General Interoperability Standards and Specifications 

Standards enable innovation. Following are some of the standards that form the basis of or complement 
the existing sensor standards.  

2.2.4.1. World Wide Web (W3C) Consortium Standards 
W3C is a consortium that “develops interoperable technologies (specifications, guidelines, software, and 
tools) to lead the Web to its full potential” [W3C]. Following are some of the well-known standards that 
can be exploited in various applications. These standards are the base for sensor-based standards. 
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Extensible Markup Language (XML) 

Is a subset or application profile of the Standard Generalized Markup Language (SGML) [ISO-8879, 
1996]. XML specifies a way to structure, describe, and interchange data. It can be used, for example, to 
describe mathematical formulae (e.g. MathML – a W3C Recommendation, 2001), architectural 
blueprints, voice-processing in telephone systems, system modelling, etc. It is self-describing and its 
elements can be nested in a way that is useful to provide the semantics of the data contained. In other 
words, the context of an element can be sufficient to determine its meaning. 

The main advantage of XML is that it is easily readable by both machines and people. One of the major 
drawbacks is that the more elements are contained in larger documents the less comprehensive they 
become. For efficient exchange of XML data, W3C has proposed an efficient XML interchange (EXI) 
format (based on XML Binary Characterization). There are many software tools available for processing 
XML documents. For more information on XML, refer to the W3C specifications. 

Extensible Stylesheet Language (XSL) Family 

It defines ways of transformation and presentation of documents. It consists of XSL Transformation 
(XSLT), XML Path Language (XPath), and XSL Formatting Objects (XSL-FO). XSLT is a language for 
transforming XML into other output formats like HTML, PDF, other XML formats, etc. XPath is an 
expression language used by XSLT to access or refer to parts of the XML document. This family can be 
useful if one wants to convert, for example, proprietary XML-based sensor models into standards-based 
models (e.g. OGC SensorML). 

XML Schema 

It provides mechanisms to define and describe the structure, content, and the semantics (to some extent) 
of XML documents. It allows users or modelers to use in built primitives (simpleTypes) and/or define 
own data types (complexTypes) for the elements/components contained in the XML document. If a 
document has a schema associated with it, then its structure can be validated by a machine (e.g. PC).  

XML schema (XSD) can be extended or profiled. There are two common methods for extensibility: 
extensibility by type substitution, and extensibility by using <any> element. Type substitution can be 
realised by using substitutionGroups. Elements that belong to the same substitution group can be 
replaced by any other element in that group. In cases of using <any> element, this is just a place holder 
for any element of any type. Enumerations, patterns, and facets (e.g. constrained domain value spaces) 
can be used to limit data contents. Since this dissertation focuses on sensor modelling (mainly based on 
XML schema), it is necessary to explain some of the concepts used in schema modelling. 

Content model: Describes the object’s or component’s structure and contents. 

Global Components: These are element declarations, attribute declarations, type definitions, annotations, 
and groups (e.g. attribute groups, model groups) in a document that can be accessed or seen by other 
documents. Analogy to global variables in a class defined, for example, by an object-oriented 
programming language, like Java, C++, etc. 
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Namespace: is a collection of names (e.g., for element types, attribute names …), identified by a unique 
resource identifier (URI) reference [IETF-RFC-2396, 1998]. Namespaces avoid name collision (i.e. if 
two elements with the same name but different types occur in the same document or symbol space).  

Simple Type: is a data type without any content model. It defines all attributes and elements that contain 
only text or restricted only by primitive data type. There are several simple types already built into the 
XML schema language. 

Complex Type: has at least one or more child elements or attributes. 
 

Table 2 shows the main directives that can be used in XML schema modelling for schema declaration 
and for referencing other external schemas. 
 

Directive Description 
<schema> The root element of a schema document. It tells the parser or 

reader that this is an XML schema document. 

<include> A directive used for accessing components in other schemas 
which have the same target namespace. 

<import> A directive used for accessing components in a schema with a 
different namespace. 

<redefine> A directive used for accessing components in another schema, 
while simultaneously allowing for modifying (by extension or 
restriction) zero or more of the components. 

 

Table 2: The Main Directives for Schema Declaration and Inclusion. 

For details on XML schema, refer to the W3C specifications. 

2.2.4.2. International Organisation for Standardization (ISO) Standards 
This subsection describes some of ISO standards that can be used to support interoperable sensor-based 
applications. The International Organisation for Standardization is a non-governmental organisation 
working on developing and publishing international standards. It is a network of national standards 
institutes of 157 countries, one member per country, which aims at bridging the public and private sectors 
[http://www.iso.org/iso/about.htm]. 

ISO 19115 – Metadata 

The purpose of metadata is to describe a dataset fully so that the users can understand the limitations and 
assumptions affecting the creation of that data, and be able to evaluate the applicability of the dataset for 
their intended use. This ISO standard provides a structure for describing digital geographic data. Metadata 
is a very important part of any sensor model. Sensor metadata characterizes the ‘what’, ‘when’ and 
‘where’ of the data.  The OGC SensorML standard will fully harmonize itself with this standard in its 
next versions. 
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ISO 19757-3 – Rule-based validation – Schematron 

Schematron is a rule-based language that can be used for modelling. It can complement grammar-based 
languages like XML Schema, RelaxNG, etc. Schematron directives allow constraints to be directly 
expressed in the schema document, which is a deficit in grammar-based languages like XML Schema. 
Like any other model, sensor models can have their constraints collocated within schema documents. 

2.2.5. Sensor Specific Standards and Specifications 

Adapting the objectives of ISO 19101 for the dissertation, sensor-based standards can provide the 
following benefits: 

• Increase common understanding and exploitation of sensors and their respective data. 

• Increase the availability, access, integration, and use (plug-and-play) of sensors and their respective 
data. 

• Enhance the exploitation of sensor measurements data in an effective, efficient, and economic way. 

• Afford collaboration among different organisations and scientific disciplines through exchange of 
sensor data and also promote rapid deployment of reliable systems for monitoring natural events (e.g. 
landslides, windstorms, tsunami …) and valuable or sensitive infrastructure, as well as in other 
mission-critical applications. 

• Etc. 

2.2.5.1. OGC Sensor Web Enablement (SWE)  
The Open Geospatial Consortium, Inc (OGC) [OGC] is “an international industry consortium of 369 
companies, government agencies and universities participating in a consensus process to develop publicly 
available interface specifications. The specifications support interoperable solutions that “geo-enable” the 
Web, wireless and location-based services, and the mainstream IT. The specifications empower 
technology developers to make complex spatial information and services accessible and useful with all 
kinds of applications”. One of the major initiatives of OGC, and of relevance to this dissertation, is the 
Sensor Web Enablement (SWE) [OGC-SWE]. The following quotations in a SWE newsletter [ISO/TC 
211 Geographic Information/Geomatics, 2005] reflect the vision and the objectives of OGC: 

“SWE objectives encompass specifications for interfaces, protocols and encodings that enable discovery, 
tasking and access of sensors, acquisition of sensor data, and discovery and access sensor-processing 
services. … addresses self-describing in-situ sensors and imaging devices, remote-sensing devices, stored 
data and live sensor feeds, and simulated models that use sensor data.”  

“The ultimate goal of the SWE is to provide for the processing of raw sensor data into value-added 
information with semantic descriptions and link sensors to the network-resident processing services. This 
will make sensor measurements accessible to the spatial data infrastructures for use by professional 
decision makers …”. 
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The SWE vision recognises the discussed sensor integration challenges. Figure 9 shows an overview 
diagram of the SWE concept. 

 

Figure 9: Sensor Web Concept [OGC, 2006] 

SWE is being validated within the test-beds under OGC Web Services (OWS) interoperability activities - 
reference is given to the OGC web site [http://www.opengeospatial.org] 

A Sensor Web can be imagined or thought of as a “global sensor” that connects web-resident sensing 
devices and sensor databases, as well as people, machines and other users of these resources [Tao et al., 
2003; Kandawasvika and Reinhardt, 2005a]. It can also be seen as a universal network of homogeneous 
and heterogeneous sensors. These sensors are expected to be discovered, accessed, and tasked online 
using common interfaces. It is interesting to note that the idea of a Sensor Web can be referred back to the 
efforts of NASA Sensor Web Applied Research Planning Group. This group defined a Sensor Web as “a 
system composed of multiple science instrument/processor platforms that are interconnected by means of 
a communications fabric for the purpose of collecting measurements and processing data for Earth or 
Space Science objectives”, see Figure 10. 

 

Figure 10: NASA GSFC-ISC Sensor Web Concept [NASA-GSFC-ISC] 

NASA collaborates with other OGC members in the development of OGC Sensor Web Enablement 
standards. This dissertation considers OGC SWE as fundamental in order to achieve interoperable 
management of multi-sensors in monitoring applications like landslides. Following is a summary of the 
important issues that motivates the SWE initiative [OGC-SWE; SensorML]: 

• The state-of-the-art in sensor deployment is of heterogeneous networks of disparate sensors. These 
sensors are rarely easily available for use and, if available, the processing of observations from these 
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sensors can be difficult due to proprietary solutions of the vendors. Interoperability between such 
‘stovepipe systems’ can be achieved usually at high costs and the resulting system may be difficult to 
maintain and extend. 

• The need to preserve low-level sensor data and the sensor models required for reprocessing the data 
in the future. 

• The need to make existing or newly deployed private and public sensor systems readily available for 
use by any application. This is very important in mission-critical, monitoring and disaster prevention 
or mitigation applications that may greatly benefit from accessing the sensor systems already installed 
in the region of interest. 

• Web-resident sensor systems can enable rapid access to environmental information from the field. 
Streaming sensor information in standard formats facilitates integration, analysis, and creation of 
various data views that are more meaningful to the end user and avoids the drawbacks of locating and 
accessing incompatible archived data. “Time savings are particularly noticeable in the management of 
time critical events such as emergency response, advanced warning systems and forecasting” [OGC-
SensorML]. 

• The need to improve decision-making based on high quality, near real-time data and information. 

For examples of existing and ongoing sensor-based projects see Section 2.2.6. Following are discussions 
of the relevant SWE specifications and standards. 

Modelling languages and specifications: 

1. Sensor Model Language (SensorML) 

A language for describing processes and processing components associated with the measurement and 
post-measurement transformation of observations. It provides an information model and encodings that 
enable discovery and tasking of Web-resident sensors, and exploitation of sensor observations. SensorML 
mainly focuses on providing a means to describe the functional models of sensors, rather than the detailed 
description of hardware design. 

Conceptual models: 

In SensorML, everything is seen as a process. A process is “defined as an activity that takes in one or 
more inputs, and based on the given parameters and methodologies, generates one or more outputs”. For 
example, sensors and transducers (e.g. detectors, transmitters, actuators, filters, batteries, system clocks, 
etc.) can be modelled as processes that can be connected to form process chains. It is also envisaged that 
SensorML processes could be imported and executed by other environments like software supporting 
IBM’s Business Process Execution Language (BPEL), MATLAB Simulink, as well as other SensorML-
enabled process execution software.  

SensorML processes are categorized into two levels of granularity: atomic processes (ProcessModel and 
Component) and composite processes (ProcessChain and System) – see Figure 11. All these processes are 
derived from OGC/ ISO Standard [ISO-19136, 2007] Geography Markup Language (GML) 
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AbstractFeatureType. 

 

Figure 11: SensorML Conceptual Models [OGC-SensorML, 2007] 

The ProcessModel and ProcessChain are defined as non-physical processes, while the Component and 
System elements are regarded as physical. Physical processes (e.g. sensor system, detector, actuator …)  
are those where the physical location or physical interface is important. It is important here to briefly 
explain some of the important elements shown in the figure.  

ProcessMethod: Is a method of a process that provides the rules for validating the instances of a process, 
references or defines an algorithm used for the execution of the process model, and can also include 
references to the implementations of the software (e.g. algorithm, execution method …) for the on-
demand execution of the process. For example, a total station (TPS) can have a module called 
“CoordTransformation” which can be described as a process method for converting coordinates from one 
system to another. A process method can also specify its inputs, outputs, parameters, as well as any 
metadata relevant for that process. For defining the rules of the process method, there are existing rule-
based languages that can be used, for example, Schematron etc. 

Interface: This element is not fully or clearly defined in the SensorML. The specification only points out 
that the InterfaceDefinition object can be based on OSI Reference Model. For the dissertation, a more 
detailed interface definition at sensor layer will be given and used for the development of the generic 
logical sensor models for the selected sensors. 

MetadataGroup: It is important for the discovery of processes or sensor systems. It includes information 
about sensor system or process identification (e.g., unique IDs, URNs …), classification, constraints (e.g., 
time of use, legal or security constraints …), capabilities (e.g. measurement functions) and characteristics 
(e.g., sensor response model), contacts (e.g., manufacturer details), as well as history (e.g., deployment 
date, calibration, maintenance, algorithm corrections or updates …), etc. This element partly considers the 
ISO 19115 Metadata standard [ISO-19115]. From the dissertation’s perspective, some of the elements in 
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the ‘System’ and ‘Component’ objects, such as coordinate reference systems, interface definition, and 
localization information can better be encapsulated in the metadata group in order to maintain a clear 
structure in SensorML instances. 

The sensor measurements can be encoded using the SWE Common XML encodings or the OGC 
Observation and Measurement (O&M) specifications [OGC-O&M-Part1, 2007; OGC-O&M-Part2, 
2007]. An observation can be an event (action) or a result of a measurement. 

SWE Common Data Types Specification: 

The SWE Common specifies the following: 

• Primitive data types (complementing those specified in GML) 

• General composite data types (e.g., records, arrays, vectors, matrices …) 

• Composite types with some semantics (e.g., position, curve, time-aggregates) 

• Standard encodings to add semantics, quality information, and constraints 

This common data type specification also tries to specify some non-XML array encodings that can be 
used for the transportation of large volumes of data. From the dissertation’s perspective, this approach can 
lead to interoperability problems as well as problems regarding development of complex software parsers 
that can properly handle both XML and non-XML encodings. Standard XML parsers like Apache’s 
Xerces, MSXML, IBM’s XML Parser for Java, etc., only support ‘pure’ XML rules. In short, more work 
is needed in order to refine the common data type specification as well as harmonizing it with other 
encoding specifications like O&M. 

Limitations/Disadvantages: 

Following are some limitations or disadvantages of the current SensorML specification: 

The specification does not provide guidelines or rules for profiling it. It requires that SensorML instances 
be developed from scratch or by modifying existing documents. The results are usually SensorML 
instances that are barely interoperable. 

The SensorML concept is very generic. The specification has become complex, very flexible (e.g., almost 
all elements are optional), and verbose. Simonis et al., [Simonis  and Echterhoff, 2008] notes that it is not 
practical to create universal useable SensorML documents. Therefore, there is need for each community 
to develop specific models that are well-defined and applicable to their specific needs. This dissertation 
recommends that different communities (e.g., geodetic, geophysics, geotechnical, satellite-based remote 
sensing, etc.) develop specific logical sensor models which can be transformed into any sensor standard 
like SensorML. Community specific models can support interoperability within that community, and 
standard-based models can then allow for interoperable exchange of models across communities. 

The specification also lacks guidelines for formalizing quality information. There are current research 
efforts that are focusing on formal description of quality information, for example the INTAMAP project 
which is developing UncertML [http://www.intamap.org/uncertml]. UncertML is an XML-based 
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language for describing uncertainties. Further, the ISO is developing a “Guide to Expression of 
uncertainty in Measurement (GUM)”, which can later be exploited in modelling of sensor uncertainties 
[ISO/IEC-Guide-98-3, 2008]. 

Summary: 

Despite some of the current shortfalls, the SensorML specification provides a fundamental foundation for 
building systems that can allow for interoperable management of multi-sensors. Definition and 
development of community specific logical models is a value-added first step in achieving 
interoperability. Mapping of the community-developed specific models into standards like SensorML can 
greatly help in identifying improvement needs of the SensorML specification. 

2. Observations and Measurements (O&M) 

O&M provides a framework (conceptual) and encoding for measurements and observations. Its main goal 
is to enable interoperable access and exchange of observations and measurements using common formats. 
O&M supports both spatial and temporal data. 

An observation is an event or an act of observing some physical property or phenomenon, with the goal 
of producing an estimate of the value of the property. It can have metadata and some quality indicator. A 
measurement is defined as a specialization of an observation made using a sensor or instrument which 
results in a measured quantity or measurand. In O&M, an observation is modelled as a Feature according 
to the ISO General Feature Model (GFM) [ISO-19109]. A feature is seen as a generic carrier of 
properties, and defines the domain of an observation. The key properties of an observation are: 

• Feature of interest (FOI): is a feature of any type [ISO-19109, 2005; ISO-19101], which is a 
representation of a real world object being observed. In landslide monitoring, features of interest can 
be ditches, slope edges or escarpments, cracks, etc. 

• Observed Property: Identifies or describes the phenomenon for which an observation result provides 
an estimate of its value. Examples of properties are ditchLocation, ditchDepth, ditchPerimeter, etc. 

• Observation procedure: It is the description of a process (see SensorML definition) used to generate 
the result. In the case of observing a ditch, a procedure can be an extensometer, or a measuring tape. 
In general, an observation procedure can be a sensor or instrument, an analytical procedure, method 
or algorithm, a simulation program etc. 

• Result: It is the value generated by the procedure. For example, these can be numerical values 
assigned to the observed properties. The result of an observation or measurement can be a quantity 
(measure), category, temporal and geometric value, coverage, or a composite or array of any of these 
results. 

Summary: 

The O&M specification also uses elements from the SWE Common data types and SensorML. However, 
the current version does not implement the ISO 19115 Metadata, but will do so in the future.  
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3. Transducer Markup Language (TML) 

Argon ST IRIS Corporation [http://www.iris.org] is the initial developer of TML, which then was brought 
into OGC in 2004, at the request of the National Geospatial-Intelligence Agency (NGA), to investigate its 
applicability in supporting real-time streaming of data to and from sensor systems.  

Definition::Transducer: Is an entity that receives a signal as input and produces a modified signal as 
output. It can either be a sensor or an actuator (refer to Chapter 4.2.1 for definitions). The conversion or 
modification of an input signal into output (i.e. a measurement) can be modelled mathematically by a 
convolution. A convolution is a technique for determining the system output given an input signal and the 
system impulse response. Following is an example of a signal convolution model [ECE, 2005], see 
equation [1]: 

଴ሻݖሺ݋ ൌ න ݅ሺןሻ ݎሺݖ଴െןሻ ݀ ן                          ሾ݁1 ݍሿ௕
௔  

where: 

i(α) : is the input signal, as a function of time, space … 

r(z0 - α) : is the instrument response, inverted and shifted by z0 

o(z0) : is the output of the signal at z = z0 

[a,b] :  is the range over which the instrument response is significant 

TML defines and specifies the following: 

• A set of models that describe the (hardware) response characteristics of a transducer. 

• An efficient method for transporting sensor data and preparing it for fusion through spatial and 
temporal associations. 

Since sensor data are a result of internal processing, the effects of the processing can be modelled as 
functions. Figure 12 shows a simple signal processing model. 

 

Figure 12: Simple Signal Processing Model 

TML response models are formalized XML descriptions of the known hardware behaviours. Examples of 
these models include: 

• Transducer’s latency and integration times 
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• Noise figure or curve 

• Spatial and temporal geometries 

• Steady-state response 

• Impulse response 

Using TML, live streams of sensor data can be transported in time-tagged groupings called TML clusters. 
The time-tags can be used as a mechanism for temporal correlation to other transducer data. 

Summary: 

TML describes information needed to support a logical data structure model. This information can 
include system calibration, transducer behaviour, operation conditions, and data collection parameters. 
However, it does not specify a service or streaming platform needed to deliver the TML-encoded data. 

 

Sensor Web Services 

“Web Services provide a standard means of interoperating between different software applications 
running on a variety of platforms and/or frameworks. They can be combined in a loosely coupled way in 
order to achieve complex operations. Programs that provide simple services can interact with each other 
in order to deliver sophisticated value-added services” [W3C]. Web Services are also extensible and can 
provide machine-processable self-descriptions (e.g. Web Service Description Language (WSDL) files). 
Following are explanations of some of SWE services. 

1. Sensor Observation Service (SOS) 

“It provides an API for managing deployed sensors and retrieving sensor data -  specifically ‘observation’ 
data”. SOS is observation centric and does not provide interfaces for actually managing deployed sensors. 
It does, however, support the access and retrieval of observations from sensor repositories. SOS also 
specifies interfaces to support transactions, i.e. for inserting and updating sensor data repositories. The 
current “core” operations (mandatory) of SOS are: 

• GetObservation: For accessing and retrieving sensor observations and measurements data via a 
spatio-temporal query that can be filtered by phenomena (e.g. observation offerings). 

• GetCapabilities: Provides the SOS service metadata. 

• DescribeSensor: Provides detailed description about the sensors and processes (e.g. simulators) 
generating measurements.  

Summary: 

SOS capabilities do not directly show the relationship between the sensors (or observation procedures) 
and their offerings (observed phenomena). An SOS service can greatly benefit from services like sensor 
service registry (does not currently exist in SWE suite) and sensor management service (which is part of 
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this dissertation work). 
 
2. Sensor Planning Service (SPS) 

It provides interfaces for determining the collection feasibility for a desired set of collection (data 
acquisition) requests for specific or required sensors/platforms. SPS basically supports data acquisition 
planning, i.e. user can make collection feasibility plans based on, for example, geographic regions of 
interest, specific time frames, and possibly choose quality parameters to be delivered together with the 
collected data. 

Summary: 

SPS plays an important role in mission planning. However, the actual controlling and configuration of 
sensors can be part of a sensor management service. A sensor management service should provide SPS 
with enough information about non-restricted or configurable parameters (e.g. for testing and submitting 
feasibility requests). 

2.2.5.2. IEEE P1451 Smart Transducer Interface Standard 
It is a family of standards that define and specify industry-wide, open, common communication interfaces 
for connecting transducers (sensors and actuators) to microprocessors, instrumentation systems, and 
control/field networks (e.g. sensor network for monitoring purposes). The core feature of the standards is 
a Transducer Electronic Data Sheet (TEDS) for sensor self-description. TEDS stores transducer 
identification, calibration, correction data, and manufacturer related information. 

Using the IEEE 1451 Neutral Model, sensors can be accessible to clients (e.g. Web sites) over a Network 
Capable Application Processor (NCAP) interface. This interface can provide a point of entry to services 
(e.g. OGC SWE services). Sensors that do not adopt this neutral model can implement a 1451 Wrapper. 
For the current implementations of the standard, references are given to the Open1451 project 
[http://open1451.sourceforge.net] and the TEDS Library for Labview by National Instruments [NI-
LabVIEW]. 

2.2.5.3. National Maritime Electronics Association (NMEA) 
NMEA [http://www.nmea.org] is an association composed of manufacturers, distributors, dealers, 
educational institutions, and other parties interested in marine electronics. NMEA standard (e.g. NMEA-
0183) defines an electrical interface and data protocol for communications between instrumentation (e.g. 
GPS, gyrocompass, anemometer, sonar, etc.). NMEA 0183 is a serial interface, but not network based. 
There is also NMEA 2000 specification, which specifies a network interface and it is based on the OSI 
Reference Model. 

2.2.5.4. ISO 19130 - Sensor and data models for imagery and gridded data 
The objectives of the initial standard were to develop standard models for sensor and data for imagery and 
gridded data [Di et al., 2001]. This first standard exceeded its 5 year deadline in March 2006 and is 
deleted by the ISO. However, work on a new version of the ISO 19130 is in progress and its focus is on 
developing standard models that address the orientation and calibration data for digital cameras [Kresse, 
2006]. Standard-based geographic or spatial referencing of imagery data will be based on the developed 
sensor models. The next versions of SensorML standard will try to harmonize with this standard. 



   37

2.2.6. Examples of Sensor-based Implementation Frameworks 

There are several research efforts going-on in the field of sensor-based services and applications. The 
following are examples of such efforts. 

1. SWE-based 52° North 

52° North is a Sensor Web community that focuses on implementations of OGC SWE. Its vision is to 
enable real time integration of heterogeneous Sensor Webs into spatial information infrastructures. Its 
current software implementations include O&M encodings, SOS, SPS, Sensor Alert Service, and Web 
Notification Service [http://52north.org], at various stages of development but not yet mature. 

2. SensorNet 

Ork Ridge National Laboratory (ORNL), together with its partners: the National Oceanic and 
Atmospheric Administration (NOAA), OGC, National Institute of Standards and Technology (NIST), 
US Department of Defense, and several universities and companies, is developing a SensorNet for the 
real-time detection, identification, and assessment of chemical, biological, radiological, nuclear, and 
explosive (CBRNE) threats. The SensorNet is based on IEEE 1451, OGC SWE, and other open 
standards. 

3. EU-FP6 SANY (Sensors Anywhere) Integrated Project (IP) 

SANY [http://www.sany-ip.eu] is an ongoing project started in September 2006 with a time span of 3 
years and is being financed under the EU/FP6 IST programme. It aims to contribute to the European 
Commission (EC) and the European Space Agency (ESA) on the GMES by improving the 
interoperability of in-situ sensors and sensor networks. The project’s objectives include building a 
European environment monitoring and risk management infrastructure, syntactic and semantic 
interoperability, integration of existing sensor technologies, and use of standard interfaces like the OGC 
SWE. 

Schimak et al. [Schimak and Havlik, 2009], in an article on SANY and OGC SWE in risk management 
applications, states that “none of the currently available and emerging technologies offers rapid 
deployment, easy maintenance, quality assurance, and automated data processing along the whole 
information processing chain from smart sensors and wireless ad hoc sensor networks, over data loggers 
and value-added middleware services, to user applications capable of dynamically integrating all 
available data sources at runtime”. This reflects the notion that all the current sensor-based research 
works (including this dissertation) being carried out from different perspectives to solve similar or 
different integration problems are in fact important parts of the whole sensor research field. A lot of 
harmonization work of these various researches will the valuable in the future. On this point, the SANY 
project has based its work on existing EU projects like GMES [http://ec.europa.eu/gmes], 
ORCHESTRA [http://eu-orchestra.org], and a U.S. global initiative GEOSS 
[http://www.epa.gov/geoss]. 

Some of the current results of the SANY project demonstrate the feasibility of integration of wireless ad 
hoc sensors into its Sensor Service Architecture (SensorSA) networks. There is a deliverable document 
version 1 of the “Specification of the Sensor Service Architecture” submitted on the 6th of August 2008 
for the public. The SensorSA relies on the OGC SOS; therefore its interfaces will also be influenced by 
any changes to the SOS. Validation sub-projects for SANY include air quality management in urban 
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areas and around industrial zones; coastal water management for predicting bathing water quality and 
microbiological contamination; and geoharzard monitoring in complex urban environment in order to 
detect structural/architectural instability due to human activities like tunnel excavation. 

2.3. Summary 
The main focus of this chapter was to discuss the background and state of the art of multi-sensor 
integration. It has discussed the problems and conflicts faced when handling heterogeneous systems 
within a single application space. The chapter has given brief and concise discussions of relevant 
interoperability and sensor-based specifications and standards that serve as the foundation of the 
dissertation and these can be applied to resolve the discussed problems. Examples of the current 
implementations of sensor-based frameworks have been shown. 

The following chapter discusses the requirements for sensors and the current situation in landslide 
monitoring and early-warning applications, which are selected for the dissertation case study.  
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3. Landslide Monitoring and Early-Warning Applications 
Monitoring of geo-environmental variables and understanding their causes and possible effects at 
different scales is very important. The knowledge gained from monitoring activities enables the 
prevention of loss of human lives, avoidance of economic losses and damages to valuable infrastructures 
(e.g., roads, buildings, etc.).  Over the last decade, ground instability (including subsidence and 
landslides) has cost the UK insurance industry more than €500 million a year (ref: GMES Services 
Element under http://www.esa.int). 

An effective and efficient monitoring system is expected to warn responsible authorities (e.g., 
geoscientists, evacuators …) in ample time. This section looks at the main aspects of landslide monitoring 
system and early-warning applications, which include requirements for data, requirements for sensors, 
importance of sensor networks, and issues related to management of heterogeneous sensors together with 
their respective measurements data. The last subsection gives examples of existing landslide monitoring 
systems that have been analyzed. 

3.1. Requirements Analysis for Data 
In order to accurately know about the requirements for sensors within application, it is important first to 
analyze and understand the data requirements of that particular application.  

 
Table 3 gives an overview of the compiled possible data (i.e. based on our research analysis and 
experience) that can be required by a landslide monitoring application.
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Application DataDomain 
Category 

Data Examples Example of Usage 

Surveying 
Data 

Topographic maps 
(ATKIS-Data, ALK-Data) 

For identifying nearby infrastructure e.g., 
buildings, roads, dams, etc. 
For locating natural features like rivers. 

Digital Elevation Models 
(DEMs) 

Show change in surface topography 
Derivable products: Slope gradient, aspect, 
curvatures, active areas,… 

Remote Sensing 
Data 
(e.g. 
Photogrammetry/Satellite 
imaging) 

Aerial images, orthophotos Photos of ground deformation 
Satellite images: 

- Radarsat(C-Band) 
- JERS(L-Band) 
- Spot-V  
- IKONOS 
- Hybrid Radar 

Satellite images 

For deriving morphological maps showing 
features such as scarps, landslide crowns, 
terraces, slump blocks, concave surfaces of 
rupture, drainage lines, and the slide body 
 

Geological data cross-sections and 
 long profiles of sub-surface 
structures  

Geologic determination of areas 
susceptible to landslides 

3D geological models  

geological map Geological  development history of the 
landslide area 

Boreholes\Drillholes data, Sub-
surface blocks data 

For determining the subsurface profiles, … 

Geotechnical  
data 

Scalar data (expansion values of 
wire or rod extensometers, 
inclinometer data, etc.)  

For determination of linear expansions or 
movements of features within the landslide 
area.  

Geophysical data Electrical and seismic refraction 
profiles  

For deriving landmass movements 
 

Georadar data (see: 
http://www.georadar-gbr.com/), 
sound data 
 

Georadar: for detecting any changes in the 
properties of interest in the underground. 
 

Meteorological data Temperature and rainfall data For correcting other measurements data or 
for use in simulations in which rainfall and 
temperature can be influencing parameters 

Hydrological data Groundwater seepage ( from 
rivers  only of importance 
when rivers are suspected to 
influence the landslide),  levels 
of groundwater table in the 
boreholes/drillholes 

For locating hydrological effects of  rivers, 
watersheds, etc. on the landslide activity 

 

Table 3: Overview of Data Required by a Landslide Monitoring Application 

Landslide monitoring applications require different data from various sources, depending on the type of 
the landslide being monitored. The data can be of different formats, resolutions, dimensions (e.g., spatial, 
thematic); with different temporal characteristics, and quality. Usage of these different data in a single 
landslide monitoring can demand much work in converting it to the required target application format. 
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Also to enable reliable decision-making, accurate and up-to-date data must be readily available (i.e. in 
existing databases or from live sensors). This is a common problem faced by current monitoring 
applications. 

3.2. Observable Properties and Measurable Parameters  
In landslide monitoring, there are quite a number of parameters that have to be measured in order to 
accurately model the dynamics of earth mass movements or slope failure. The important observables 
include slope movements/displacements (based on the fixed-point observations) in the horizontal and 
vertical; velocity, rate of acceleration and directions of movements; sound measurements, changes in the 
levels of groundwater table, magnitude and variations of pore water pressure (rate of infiltration of water 
into a slope), surface elevations, depths of geological features (ditches, cracks, etc.), and area extent (e.g., 
for landslide zonation, geometry of observed features, …). 

3.3. Requirements Analysis for Sensors 
Definition:: Sensor: Is defined as any device, instrument or transducer that is capable of converting a 
measure (a quantity or parameter) into a signal (e.g. electrical, optical or mechanical) carrying 
information. At a very abstract level, a sensor system can also be seen as a complete sensor. 

For the landslide displacements, in many cases, the accuracy expected is in the centimeter range [Gili et 
al., 2000].  The degree of slope instability is usually used to judge the frequency of sensor data acquisition 
(query time-interval) and the number and types of sensors needed for complete coverage of the monitored 
area. Following is a list of some of the important sensors that can be used for landslide monitoring [Kane 
et al., 2007; Kandawasvika and Reinhardt, 2005a; Mikkelsen, 1996; Beck and Kane, 1996; Dunnicliff, 
1993]. The list is also a product of detailed analysis of the data requirements and several discussions with 
landslide monitoring experts. 

3.3.1.1. Geodetic/Surveying/Remote Sensing Systems 

Figure 13 shows a list of terrestrial-based and satellite-based sensing systems. 
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Figure 13: Important Geodetic/Surveying/Remote Sensing Systems 

Global Navigation Satellite Systems 

There are GNSS receivers available that support single or integrated navigation and positioning 
technologies like the global positioning system (GPS), Galileo, and GLONAS. Currently, GPS receivers 
are the most commonly used GNSS system in landslide monitoring applications. Figure 14 shows some 
examples of the GPS receivers. 

 

Figure 14: Examples of High Cost to Low Cost GPS receivers 

GPS receivers greatly differ in size ranging from large receivers to tiny, embeddable chips. Wired and 
wireless receivers (with or without differential corrections capabilities) are available on the market, 
ranging from high cost to low cost. Time-tagged positions of control points observed by GPS receivers 
provide information about the surface displacements/movements. For accurate or reliable positioning, the 
signals from GPS satellites to the receiver should not be blocked (e.g., by high buildings, dense trees, etc.) 
or indirect (multi-path effects). Sub-centimeter accuracies can be achieved, but that largely depends on 
the mode of operation, type of the receivers and quality of antennae. For example, in landslide areas with 
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crowded vegetation, low-cost, very simple GPS cannot be reliable and might not even work.   

Total Stations/Positioning Systems (TPS) 

 

Figure 15: Examples of Total Stations 

Surveying total (positioning) stations or electronic theodolites have greatly improved in capabilities. The 
current trend is toward wireless, reflector-less, fully automated or motorised instruments. Use of the 
automated tracking recognition (ATR) function enables the instrument to self-track measured targets. 
Some of the manufacturers like Leica Geosystems (Leica) and Trimble have developed total solution 
instruments integrating GPS.  

TPSs provide time-tagged positions and other raw measurements (e.g., vertical and horizontal angles, 
slope distances …) of remote targets/points for determining displacement vectors of surface movements. 
In the absence of faster terrain modelling instruments like laser scanners, the total stations can be used to 
acquire DEMs or slopes. The placement of TPS depends upon line-of-sight and stability of the location. 
In most cases, the total stations are stationed far away from the landslide area, thereby avoiding any 
danger to the observers and the instrument. 

Terrestrial Laser Scanning (TLS) instruments 

 

Figure 16: Examples of Laser Scanners 

The terrestrial laser scanning (also called high definition surveying) enables fast, non-contact 
measurements of objects or surfaces of interest. Different scanners with different characteristics and 
capabilities exist on the market. The 3D point-cloud data from laser scanners can be used to generate 
Digital Surface Models (DSMs) or Digital Elevation Models (DEMs) and 3D geometric models, for e.g., 
scans of interesting landslide features, such as ditches, cracks etc. Georeferencing of the point-cloud data 
can be done using geosensors like GPS positions or other geodetic instruments. For landslide monitoring, 
long-range terrestrial laser scanners (TLS), capable of measuring distances of several hundreds of meters, 
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are employed [Scaioni et al., 2004]. Long-range TLS uses the time-of-flight (TOF) method for 
measurement. 

Digital/Electronic levels 

The digital levels are used for measuring slope or surface elevations. In some cases, they are also used to 
monitor water levels in a slope. 

Electromagnetic Distance Measurements (EDMs) and Measuring tapes 

Measuring tapes and handheld EDMs are used for measuring distances on the site. The main advantage of 
handheld, reflectorless EDMs is that the observer can take measurements from safe positions without 
being in contact with the object being observed. 

3.3.1.2. Satellite imaging and scanning sensors 

Use of very high-resolution (VHR) satellite imagery, such as IKONOS, Quickbird, etc., is common in 
landslide monitoring.  Satellite data can be used to determine the distribution of slope instability factors, 
such as geomorphology, lithology, and land use [Mantovani et al. 1996]. VHR images can provide 
centimeter accuracies, e.g. in the panchromatic bands. Satellite Interferometric Synthetic Aperture Radar 
(InSAR) techniques based on point scatterers extraction can be used in ground movement detection and 
monitoring [Ferretti et al., 2001].  

Also, ground based or terrestrial InSAR techniques allow for the determination of relative displacements 
at different times with an accuracy of few millimeters [Scaioni et al., 2004]. 

3.3.1.3. Digital Cameras 
Digital images taken at specific timestamps record the changes in terrain or slope appearance (e.g., new 
cracks, ditches or gaps, etc.) due to debris flow, vegetation collapse or other landslide effects. Digital 
cameras can be integrated with other devices like TLS in order to provide color texture of the observed 
objects, GNSS receivers for geopositioning the images, etc. 

3.3.1.4. Geotechnical and geophysical sensors 
Figure 17 shows geotechnical and geophysical sensors. 
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Figure 17: Important Geotechnical and Geophysical sensors 

Extensometers (wire, tape or rod) 

 

Observe expansions or contractions of the objects (e.g., ditches, cracks, slopes, etc.). The distance 
measurements can be corrected for temperature variations. Extensometers can also use potentiometers for 
measuring the linear movements.  

Piezometers (vibrating wire or open standpipe) 

They are used for measuring the groundwater levels. Kane and Beck [Kane and Beck, 2000] indicates that 
for accurate groundwater measurements, two piezometers are required - one for recording the 
atmospheric pressure and the other down-hole pressure. The difference between the two readings gives 
the actual water level.  

Water levels are important for the determination of water pore pressure. High water pressures indicate 
that the slope is very sensitive to failure. 

In-Place Inclinometers (IPI) 

They can detect new movement, accelerations of movement, and the movement direction. These 
instruments are usually installed in drilled holes or boreholes. 

Tiltmeters 

Tiltmeters are mounted at the ground surface and are used to determine the angle of tilt of a slope. 
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Time Domain Reflectometers  

They are used for measuring the relative magnitude and rate of displacement of a slope and also for 
monitoring the water levels. However, the direction of movement and absolute movement values cannot 
be ascertained by a time domain reflectometer (TDR) [Beck and Kane, 1996]. This type of instrument can 
be used in place of inclinometers for obtaining quick measurements.  

Geophones or other vibration meters 

These instruments can detect the ground vibrations caused by the slide movements. The higher the 
vibrations the more risk of slope failure. 

3.3.1.5. Meteorological sensors 
Figure 18 gives a short list of meteorological sensors. 

 

Figure 18: Examples of some of the Meteorological Sensors 

Automatic rain gauges and rainfall pluviometers 

These instruments are used to record precipitation. 

Temperature sensors 

Temperature values are necessary for correcting the measurements of other instruments. 
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Table 4 gives a summary overview of the discussed sensor systems and their data outputs (can either be 
raw or pre-processed). 

Application 
Domain Category 

Sensor System Data Output Data 
Dimension 

Data Type 
Category 

Geodetic/ 
Surveying/ 
Remote Sensing 
System 

Global Navigation 
Satellite System (GNSS) 
receiver 

Positions, Coordinates  
Velocity 

 
Spatial 

Vector  
 

 
Data 
stream 
(ASCII/
Binary) 

Time Temporal Scalar 
Frequency Thematic 

Total Station (TPS) Raw measurements 
(distances, angles, height 
differences) 

Thematic Scalar 
 

Coordinates  Spatial Vector  

Electronic Distance 
Measurement (EDM) 

Distances Thematic Scalar  

Terrestrial Laser Scanner 
(TLS) 

Coordinates with/without 
colour/intensity information 
(i.e. point-cloud data) 

Spatial 
 

Vector (Arrays of 
vectors) 

Digital Camera, 
Satellite Imaging and 
Scanning System 

Raw data (arrays of pixels) Spatial/ 
Thematic 

Raster ( Pixel 
arrays/streams of 
digital numbers-
DNs) 

Images (single or multi-
bands; panchromatic or 
multi-spectral bands) 

Spatial/ 
Thematic 

Raster (Matrices) 

Digital/Electronic Level Height differences Thematic Scalar 

Geotechnical/ 
Geophysical 
Sensor 

Rod/Wire/Tape 
Extensometer 

Distances Thematic Scalar 

Tiltmeter, 
Inclinometer 

 

Angles Thematic Scalar 

Piezometer 
 

Pressure Thematic Scalar 

Time Domain 
Reflectometer (TDR) 

Raw (voltages; 
impedance/resistance) 

Thematic Scalar, Data stream 

Motion/movement  Thematic Scalar and/or vector 

Vibration meter Motion/movement  Thematic Scalar and/or vector 

Geophone Sound Thematic Scalar 
Meteorological 
Sensor 

Temperature Sensor Temperature Thematic Scalar 

Pressure Sensor Pressure Thematic Scalar 

Automatic Rain Gauge, 
Rainfall Pluviometer 

Rainfall/ precipitation Thematic Scalar 

 

Table 4: Overview of Sensor Systems and their Measurement Data Output 

As shown in the table, the sensor outputs are further categorized into respective data measurements 
dimension and type category like scalar, vector, data streams, etc. Vector quantities are data values that 
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have both magnitude and direction whereas scalar quantities have only magnitude and no direction 
association. A data stream can be seen as a composition of an ordered pair (s,Δ) where s is a sequence of 
tuples and Δ a sequence of time intervals [Wiki]. The tuples can be composed of only scalars, only 
vectors or both. For example, temperature, pressure or sound scalar data can be streamed by sensors at 
specific time intervals, with or without the information about the geographical position where the 
measurements are being taken. Also raw measurements and data streams can be subject to post-
processing. In short, the categorization provided in the table is valuable input for sensor classification (see 
Chapter 5.1) and for the actual modelling of the sensors (see Chapter 6.2). 

For effective use of sensors in landslide monitoring applications, sensors/sensor systems are usually 
deployed in form of sensor networks. Therefore, it is also important to discuss about sensor networks and 
their importance in landslide monitoring. A simple architecture is given which shows the main 
components we consider important for a landslide monitoring system. 

3.4. Sensor Networks 
Sensor networks form the core part of a monitoring system. A sensor network can be seen as the data 
acquisition system (DAS) of a monitoring application. The sensor network data can be transmitted 
(wirelessly or wired) to a control/base station for subsequent processing and, if necessary, for early 
warning (see Figure 19). It is important to note that advances in technology (computing, communication 
and information) and related economical factors as well as physical factors like landslide scale (size) and 
type of landslide determine the sensor requirements (selection). 

 

Figure 19: A Simple Architecture for a Sensor Network-based Monitoring System 

In the above figure, geosensor nodes can have leading nodes (i.e. group leaders) that are responsible for 
communicating with the base station. A geosensor can loosely be defined as a sensor that is capable of 
acquiring or collecting geographic (spatial) data and it’s locatable in a spatio-temporal space. 

A geosensor node has the following responsibilities: 

• Georeferencing of other sensor nodes that are not location-aware (e.g. some of the geotechnical 
sensors (e.g. extensometers …) and meteorological sensors (e.g. temperature, water gauges, etc.)). 

• Sensing the object or area of interest, and deliver the data at the times or intervals pre-configured by 
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the sensor access and control service (SACS), see Chapter 6.3.  

• Internal pre-processing of the data (i.e. measured signal) into other transmittable format (e.g. 
analogue-to-digital conversion). 

• Communicating with other sensor nodes, for e.g., when there is need to transmit data to the leading 
node via other sensor nodes or direct to the base station. 

The SACS relies on the measurements database. Both SACS and the M-DB can be running on the field 
server. It is also important that the sensor network operates in real time, especially in times of danger, 
since the acquisition of the data has to be available at the right time. The acquired data should accurately 
reflect the current events occurring in the physical world. However, the integration of sensors into the 
sensor network is usually done offline (i.e. not in real-time). 

3.5. Management of Disparate Sensors and their Measurements Data 
Applications using multiple sensors can greatly benefit from the individual contributions of each sensor, 
since different sensors are inherently designed to sense different aspects of phenomena. A single sensor is 
inadequate most of the times, but the cooperation of many sensors usually creates usable results [Bill, 
2008]. In general, the benefits of multi-sensor integration are: 

• redundancy (having more than minimum required sensors, thereby improving the accuracy and 
reliability of the collected data),  

• complementarity (if some sensors fail or cannot observe particular properties of interest, other sensors 
can complement them), 

• timeliness (real-time data acquisition), and  

• reduction in costs of data acquisition (e.g. by having more than adequate complementary sensors, if 
errors occur due to some faulty sensors there is no need to carry out the measurements campaign 
again. It can be sufficient only to exclude the faulty sensor measurements). 

Landslide monitoring applications can utilize various, different sensors (see section 3.3 ) and data (see 
section 3.1). Addressing challenges concerning management of disparate sensors and their measurements 
data caused by usage of proprietary (vendor-specific) solutions are very important research issues 
[Jellema, 2008; Walter et al., 2008; Balanziska et al., 2007; Stefanidis et al, 2005; Nittel et al., 2005; 
Dantu et al., 2004; etc.] and are the core issues of the dissertation. The early sections of this chapter have 
discussed the problems or conflicts that can lead to these challenges. Walter et al. [Walter et al., 2008] 
also notes that current early warning systems are still being treated as “black boxes” – they are not open 
or not standardized. 

The following subsections discuss monitoring systems we have analysed and also highlight their 
respective approaches to sensor and measurement data management.  
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3.5.1.1. Leica Geodetic Monitoring System (GeoMoS) 
System description: Leica’s GeoMoS system is one of the common systems used in different 
geoscientific monitoring applications [http://www.leica-geosystems.com]. It has two main components: 
the monitor and the analyzer. The monitor is responsible for controlling sensors, data acquisition, 
tolerance checking, and event management. Offline work like data analysis, post-processing, and 
visualisation is done using the analyzer. GeoMoS uses an SQL Database for the storage of measurements 
data. 

Sensors integration: With GeoMoS, it can be possible to integrate various sensors like meteorological, 
geotechnical, and geodetic sensors. As a solution to multi-sensor integration, Leica has developed a 
generic sensor manager. The manager relies on simple XML sensor description files. The description 
files for GeoMoS contain sensor information, such as protocols, commands, properties, and 
configuration. Sippel 2001 concludes that by reading these sensor descriptions, a sensor manager can 
integrate easily different types of sensors into an application.  However, the problem with this approach is 
that there are no common generic or standard-based schemas defined for each type of sensors. Therefore, 
the solution can easily work only for vendor-specific software application. 

The measurements data can be exported using formats like ASCII, DGN, WMF, and Microsoft Excel 
format. 

Software libraries and Application Programming Interfaces (APIs): Proprietary interfaces like 
GeoCOM, GeoC++ and GSI (ASCII commands). 

Communication mechanism: Various communication technologies are used for sensor control and data 
acquisition, for e.g., wireless local area network (WLAN), cable, bus system and other radio links. 

3.5.1.2. GPS-based Online Control and Alarm System (GOCA) 
System description: GOCA is a deformation analysis system which has been developed by EuroNav 
Entwicklungsgesellschaft mbH and the University of Karlsruhe (Hochschule für Technik), Germany 
[http://www.goca.info]. The system comprises of GPS receivers, communication hardware, control and 
communication software as well as software for deformation analysis and alarm activation. About 25 
installations have been deployed world wide. 

Sensors integration: Mainly supports GPS receivers. It can also integrate some of the classical local 
positioning sensors (LPS), such as total stations for real-time deformation monitoring. For integrating the 
sensor data, vendor-specific data interface “GKA” (for GNSS/GPS and LPS data), and the standard 
NMEA interface are used. For connecting the sensors, vendor-specific solution has been used. 

Software libraries and Application Programming Interfaces (APIs): Proprietary interfaces based on 
Microsoft Foundation Classes (MFC) libraries and American National Standards Institute (ANSI) C 
language. 

Communication mechanism: System internal communication is via radio (Real Time Kinematic (RTK) 
connection by means of a radio modem). 
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3.5.1.3. GeoSens Felsmonitor (FeMon) 
System description: GEOsens [http://www.geosens.de] is a debris or mass movement monitoring 
system. [http://www.leica-geosystems.com]. The system comprises of the field sensors (e.g. movement 
detection sensors), base station, communication link; signal alarm receivers (e.g. Global System for 
Mobile (GSM) communication modem plus a micro-controller, for e.g., for changing the traffic robots to 
red in times of danger), and the monitoring software (ADIOS). 

Sensors integration: Supports movement detection sensors like extensometers, which can transmit their 
data to the base station via radio link or cable. The measurements data is encoded in ASCII and the alarm 
message from the base station to the responsible authorities is normal SMS text. The sensor data are 
usually stored in Microsoft Access format. 

Software libraries and Application Programming Interfaces (APIs): Proprietary interfaces based on 
Microsoft Windows 32 API and C++ or Delphi 6 for programming. 

Communication mechanism: The system uses integrated services digital network (ISDN) for the 
transmission of measurements data and alarm message. 

3.6. Summary 
The chapter has covered the analysis needs and current situation in landslide monitoring applications. In 
addition, we have already developed own categories for different sensor systems and their measurements 
data output. This categorization is important for sensor model development. This chapter has also shown 
the proprietary approaches used by different monitoring applications in order to handle multi-sensors. 
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4. Basic Concepts and Definitions 
This chapter covers the basic concepts and definitions that are important for the dissertation.  

4.1. Modelling of Sensor Systems (Instruments) 
For better understanding and effective use of physical devices, sensors or sensor systems (or any other 
data source) in an application, there is need for creating models that fully describe those systems. In 
general, modelling can be performed at three main levels of abstraction which are: conceptual, logical, 
and physical modelling. 

4.1.1. Conceptual modelling 

Conceptual modelling can be defined as creating an abstract description of some part of the real world 
together with a set of related concepts. For example, the human brain is capable of interpreting or 
recognising objects of the physical world by using each person’s conceptual models of those objects. The 
models may already be installed in the subconscious part of the brain. Those models may be built based 
on several factors such as the level of knowledge of the person, culture, living environment, experience, 
etc. This example can be applicable to any other system. For a sensor-based application, the environment 
(e.g. phenomena to be observed), sensor network, sensors, sensor data, and other related concepts have to 
be modelled.  

ISO 19101 Geographic Information – Reference model [ISO-19101, 2002] states that a conceptual model 
is a model that defines concepts of a universe of discourse. The universe of discourse is defined as “a 
view of the real or hypothetical world that includes everything of interest”.  In the sensor world, the 
universe of discourse can be defined by a sensor network or even a single sensor together with the sensed 
environment. 

In order to formalise a conceptual model (i.e. create a conceptual schema), a conceptual schema language 
is required. A conceptual schema language provides a uniform method and format (i.e. conceptual 
formalism) for describing information, in such a way that both people and machines can read, understand 
and even process it. A conceptual formalism provides a set of modelling concepts such as rules (semantic, 
syntactic …), constraints, inheritance mechanisms, events, functions, processes, etc. [ISO-19101]. 
Examples of schema languages are the unified modelling language (UML) with or without object 
constraint language (OCL) [OMG], object definition language (ODL), EXPRESS [ISO-10303-11, 2004], 
IDEFX, and several others. 

Following are explanations of some of the conceptual modelling concepts [Barkmeyer et al., 2003]: 

1. Functional modelling 

Functional modelling identifies all the functions that a system is designed to perform, including the 
required inputs and the generated outputs. The following aspects are part of functional modelling:  

• Functions 

• Activities 
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• Information flow (I/O) 

• Events 

• Interactions 

• Time 

• Resources 

The capabilities of the system are reflected in the functional model. 

2. Activity modelling 

It is a process in which the activities or interrelated tasks of a system are defined in form of a 
partially-ordered graph (e.g. sequence diagram). The inputs and outputs of the tasks together with 
their relationships are modelled. The temporal component (time) of these tasks is important. The 
activity model shows ‘what’ a system does and ‘when’. 

3. Process modelling 

It can be defined as a specialised form of functional or activity modelling. Unlike the functional 
modelling, process modelling clearly specifies the behaviour of a system, usually at interface level. It 
describes the following: 

• How exactly does a system respond to a certain stimulus (physical input or event) 

• What specific actions the system takes in response to that stimulus 

• What are the results of the performed actions and the level of reliability associated with the 
generated outputs. 

The basic unit of modelling is a process, which can be seen as an activity that takes specific input(s), 
and depending upon the conditional parameters and implemented algorithms or methodologies, it 
then generates output(s). 

4.1.2. Logical modelling 

Logical modelling produces models with sufficient details required for implementing the models in target 
environments. For example, in conventional GIS, logical modelling of data sources outputs data models 
(include features/entities, relationships among those entities, and other associated concepts) that are 
detailed enough for physical implementation, but still not include or rather independent of the actual 
implementation environment details. This approach is adopted for the logical sensor models. However, 
when modelling a sensor system (instrument), the modelled components should not necessarily reflect 
one-to-one description of the physical device’s components as depicted by the manufacturer’s blueprint. 
The level of abstraction should only show the components deemed relevant for enabling people and 
applications to carry out their tasks using the modelled sensor. The basic idea is to reflect the logic (e.g. 
functional model - behaviour, purpose, usage, constraints, etc.) of the sensor as needed by the application 
in order to effectively and efficiently fully exploit that sensor. 
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For logical modelling, schema languages, like Schematron, XML Schema, RelaxNG, and several others, 
are usually used.  

4.1.3. Physical modelling 

Physical modelling maps the logical models to lower levels and includes the implementation details (e.g. 
specific hardware platform, storage devices or modules, operating system, specific programming 
language, etc.). In the case of databases, like Oracle’s spatial database, Microsoft’s SQL server, postgres, 
etc., physical models show how data are actually stored in physical structures like tables, clusters, etc. and 
also describe the methods for accessing and manipulating those structures. With the help of the 
manufacturers of sensors, it can be possible to develop physical models (e.g. XML based) that reflect one-
to-one mapping of that manufacturer’s blueprint. 

4.2. Sensor Model 
In the literature, there is no clear or unambiguous definition of a sensor model. Durrant-Whyte [Durrant-
Whyte, 1998] defines a sensor model as “an abstraction of the actual sensing process that describes the 
information a sensor is able to provide, how this information is limited by the environment, how it can be 
enhanced by the information obtained from other sensors, and how it may be improved by the active use 
of the physical sensing device.” Durrant-Whyte also points out that “the key to intelligent fusion of 
disparate sensory information is to provide an effective model of sensor capabilities”. However, Durrant-
Whyte does not exactly define what an `effective´ model is. 

In the OGC Sensor Model Language (SensorML) standard [OGC-SensorML, 2007], the definition is 
adopted from the remote sensing community which defines it as “a type of a location model that allows 
one to georegister observations from a sensor”. A location model is then defined as a “model that allows 
one to locate objects in one local reference frame relative to another reference frame”.  

The dissertation does not only see a sensor model as  a location model, but a more detailed logical model. 
Figure 20 graphically shows the composition of a sensor model from this dissertation’s perspective (own 
definition). We therefore define a sensor model as a logical model that comprises a set of models that 
includes information and data model (e.g. includes observation and measurements models with semantics 
…), communication model (higher and lower-level definition of protocols and interfaces), state or 
behaviour model, computational model (functional aspects), metadata model (include location model and 
other metadata information), and other dependencies (e.g. subcomponents like CPU, storage devices, 
battery …).  
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Figure 20: Definition of a Sensor Model 

Information/ data model: Describes the sensor data input and output. The output can be composed of 
sensor measurements and observations together with semantic information. The data types and structures 
supported by the sensor contain some syntactical information.  

Communication model: Describes the interfaces, protocols, and interaction mechanism for 
communicating with the sensor system. Higher levels interfaces/protocols are used, in the dissertation, to 
refer to the connection, command and control interfaces. Lower levels interfaces are defined as those 
needed for establishing the physical communication with the sensor systems (reference is given to the 
OSI/ISO model). 

o Interface 

In computer science, an interface is defined as an abstraction of a software component. In 
programming languages, like Java, C++, etc., it refers to an abstract type which specifies a kind of 
“contract” that classes implementing that abstract type should abide to. According to the dictionary of 
military and associated terms by the US Department of Defence [Dict.-US-DoD, 2005], an interface 
“is a boundary or point common to two or more similar or dissimilar command and control systems, 
sub-systems, or other entities against which or at which necessary information flow takes place”. The 
latter definition is adopted for this dissertation. 

o Protocols 

Following are some of the definitions that can be applied to protocols: 

• Defines the mapping of the interface specifications to the physical implementation of the 
communication message units and the rules for formation, transmission, receipt, 
acknowledgement and sequencing of messaging units, without regard to their content.  

• Specifies a set of rules that guarantee interoperability among implementations of various 
communication mechanisms. 

Examples of protocols that can be used to support interoperable communication are: 
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• HTTP (HyperText Transfer Protocol) [W3C-HTTP] 

• SOAP [W3C-SOAP, 2007] (originally stands for “Simple Object Access Protocol”[W3C-SOAP, 
2000]) 

• FTP (File Transfer Protocol)[IETF-RFC-959, 1985] 

• SMTP (Simple Mail Transfer Protocol)[IETF-RFC-2821, 2001] 

• Representational State Transfer (REST): originated from dissertation by Fielding [Fielding, 
2000] 

• SQL (Structured Query Language) call level interface [ISO/IEC-9075-1, 2008] 

• Etc. 

State model: Describes information about the state or condition of the sensor at the time of 
measurements. This includes information about the sensor calibration parameters and other configurable 
system parameters that change the behavior of the sensor system. 

Computation model: Describes the functional, measurement or processing capabilities of the sensor. This 
includes the set of services the sensor system provides (e.g. data conversion, various measurement 
functions, etc.). 

Dependencies model: Describes the entities or data/information that the sensor system depends upon in 
order to operate and fulfill the task at hand. This includes internal sensor components like sub-sensing 
devices, power/batteries; and non-physical components like rules and constraints model (i.e. govern the 
behavior of sensor), etc. 

Metadata model: Documents the data about the sensor system, which includes the location model and 
summaries of the details provided by all other above discussed models. This model contains information 
that is necessary for discovery and mining of sensor systems. Metadata also provide valuable information 
for evaluation and binding (i.e. integration) of a sensor into a sensor network. Sensor registry services can 
use this model as the entry point or portal for searching application relevant sensor systems. 

It is very important to note that the level of detail (abstraction) in a sensor model is usually determined by 
the application domain needs. By analysing sensor specifications (i.e., functional, hardware and software) 
from different sensor manufacturers and matching them with the application domain requirements, it is 
possible to define generic interfaces that are common for each given sensor type. The workflow for the 
realization of generic models is given in Chapter 6.1. However, the development of generic interfaces is 
an iterative process that involves several tests and modifications within a given application (e.g. landslide 
monitoring). 
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4.2.1. Sensor System 

It is a composition of physical sub-sensing devices (e.g., sensors, actuators, detectors) and non-physical, 
non-sensing sub-components (e.g., computational algorithms, filters). All parts of the sensor system that 
can be modelled are regarded as the components of that system. Figure 21 shows an example of a sensor 
system. 

 

Figure 21: Example of a Sensor System  

Note that a complete single sensor (e.g. comprising an array of detectors) can also be regarded as a sensor 
system. This definition of a sensor system is considered when modelling sensors (i.e. defining the sensor 
components, etc.) – see Chapter 6.2.3. Also the terms measuring instrument or device can be used to refer 
to a sensor system. 

o Sensor 

It’s a device that responds to a physical stimulus (e.g., thermal energy, electromagnetic energy, 
acoustic energy, pressure, magnetism, or motion) by producing a signal, usually electrical. A signal 
being any detectable transmitted energy that can be used to carry information [ATIS].  

o Actuator 

It’s a type of a transducer that can be seen as a simple element that converts a signal to some real 
world action or event. For example, if a landslide movement being measured by an extensometer 
exceeds a pre-defined threshold, a signal is send to a nearby road traffic light which has an actuator 
that causes the light to turn red, thereby stopping the traffic using that road.   

o Component 

It’s any part, entity or object of a sensor system. It applies to components that are either physical (e.g. 
a detector) or non-physical (e.g. a software module for coordinate transformation). 

4.2.2. Quality Concepts  

A sensor model has to consider or include the relevant concepts of quality. Quality is about relevance, 
timeliness, completeness, accuracy, accessibility, clarity, punctuality, consistency, cost efficiency, 
integrity, neutrality, robustness, soundness, and security [Schouppe, 2008]. A formal definition is adopted 
from the ISO 19113 Quality Principles standard [ISO-19113, 2002] that defines it as the “totality of 
characteristics of a product that bear on its ability to satisfy stated and implied needs”. Quality is a very 
important aspect of any model. For the dissertation, the following concepts of quality are of importance. 
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4.2.2.1. Accuracy 
“It is the closeness of agreement between a test result and the accepted reference value [ISO-3534-1, 
1993; ISO-19113, 2002]”. A test result can either be an observation or a measurement. In other words, 
accuracy can be defined as “the degree of closeness of an observation or a derived quantity to the ‘true’ – 
but unknown – value” [ICSM, 1996; Wolf and Ghiliani, 1997]. The true value is usually estimated 
through computations and measurements. Following are some of the expressions that are used to describe 
accuracy. 

1. Standard deviation: is a measure of spread or dispersion of a set of values (also called radial error). 
It is the square root of variance. Sigma (σ) is usually used to represent standard deviation. 

2. Root Mean Square (RMS): It is the square root of the arithmetic mean of the squares of a set of 
numbers. It is sometimes used as a synonym for standard deviation. 

3. Two Distance Root Mean Squared (2DRMS): It is twice the radial error of the standard deviation. 

4. Circular Probable Error (CEP): It is the value of the radius of a circle containing 50% of the 
position estimates and the centre of the circle being the actual position. 

5. Spherical Error Probable (SEP): It is the spherical equivalent of CEP with a radius containing 50% 
of 3D position estimates. 

4.2.2.2. Precision 
It is a measure of closeness among a series of individual measurements or values. It can also be defined as 
the degree of closeness and consistency of repeated measurements of the same quantity to each other. 
Note that a measurement can be precise but not accurate or it can be accurate but imprecise. 

4.2.2.3. Resolution 
It is the smallest count or change that a sensor can detect in the quantity that is being measured. The 
resolution is related to the precision with which the measurement can be made.  

4.2.2.4. Reliability 
It is a quality of measure. It generally determines the ‘consistency’ and ‘repeatability’ of a measurement 
about the measured property.  

For sensor networks, the quantitative theory of reliability initially developed for the geodetic networks by 
Baarda [Baarda 1967, 1968] can be considered. From the theory, an observation network should be able 
to resist systematic and gross errors in order to increase its reliability [Staudinger, 2000]. This is also 
applicable to sensor networks. 

4.3. Summary 
This chapter has covered the basic concepts and definitions that are fundamental to the dissertation. It has 
explained the modelling concepts, and defined terms and elements that are important for sensor 
modelling. It is important to note that we have also provided our own definition of a sensor model.  
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5. Sensors and Methods of Integration 
In this chapter, the first sections define a classification scheme and explain simplified component and 
functional models of sensor systems that have been selected for our landslide monitoring application 
scenario. The last sections discuss the methods and techniques that can be utilised to integrate sensors into 
existing legacy or new applications.  

5.1. Classification of Sensor Systems 
A classification scheme can serve as an important part of a sensor registry service (e.g. a portal, a 
catalogue or a Universal Discovery, Description, and Integration (UDDI) service). Users (people and 
software) can easily discover sensors of interest or relevance based on a given classification scheme 
and/or other selection variables. 

In general, it is rather difficult to have a common way of classifying sensors. There are several possible 
classification schemes for grouping sensors like by their behaviour (e.g., passive or active), by locality 
(e.g., remote or in-situ), by construction (e.g., MEMS), by measurement techniques (e.g., piezoelectric, 
capacitive, thermoelectric), by measuring principles (e.g., phase comparison, pulse), by what they 
measure/sense (e.g., optical, ultrasonic, thermal, etc.), by level of automation (none, semi, or full), and 
frequency of measurements. 

For the dissertation, the taxonomy of the sensors is according to the sensor output – measurement data 
dimension and type (refer to Table 4 for details).   

 

 
 

Figure 22: Sensors Classification Scheme 

Figure 22 shows a specific classification scheme of sensors that is defined for dissertation. The example 
measurement types can be points (2D, 3D), images (e.g. multispectral images), distances; angular and tilt 
measurements (e.g. based on motion, vibration, or leveling). 
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5.2. Simplified Functional and Component Models of Sensors 
The following subsections explain the basic component and functional models (including the input and 
output (I/O) ), as well as the working principles of the selected sensors. These models are necessary for 
the definition and specification of logical sensor models. 

5.2.1. Point Acquisition Sensors 

5.2.1.1. Total Stations/Positioning Systems (TPS) 
A TPS is a complex sensor system composed of several electrical, mechanical and optical components. 
Figure 23 shows a simplified model of a TPS sensor, which reflects the basic opto-electronic concept and 
interconnection of different sub-sensors and other dependencies [Becker et al., 2000]. 

 

Figure 23: Simplified Functional Model of a Total Station or Electronic Tacheometer. 

The in-built sensors include a distance measuring unit (EDM), angle sensors (Hz - horizontal, V - 
vertical), inclination sensor, etc. The communication I/O interface allows the sensor system to be able to 
communicate with external devices (e.g. PC or controller via wireless (e.g., Bluetooth, WLAN), cables 
(e.g., serial interface), or data cards and storage drives (e.g., PCMCIA drives, OMNI)). 

For the processing of the raw measurements data of the TPS into final measurements, calibration data 
from the manufacturer and/user are needed to provide corrective quantities. Calibration data includes, for 
example, tilting-axis, vertical-index (circle) error corrections, scale factor, zero correction, etc. 

Data output: 

TPS system output data includes:  distances, heights (elevations), angles, orientations, coordinates, 
geometries (points, lines, and areas), etc. Most manufacturers provide the output data as ASCII data 
blocks or files, e.g., Topcon’s proprietary format, Leica’s Geo Serial Interface (GSI) formats. Figure 24 
shows an example of GSI 16 character data format. Within each data sequence, as shown in the example, 
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codes are used to identify the data, e.g. point number (11), horizontal angle (21) and vertical angle (22). 
Note that different manufacturers use different definitions for the data blocks. 

 

Figure 24: Leica GSI 16 Format Example [Leica Geosystems] 

Interfaces: 

For accessing and controlling the TPS, different manufacturers provide their own software libraries 
(interfaces and protocols), e.g., Leica’s GSI protocols, GeoCOM (ASCII RPC, Visual Basic, and C++), 
and GeoC++ [Leica]; Topcon’s C++ SDK GTS-720/GPT-7000 [Topcon], etc. 

As an example, Figure 25 shows a client and server architecture used for communicating with a Leica 
TPS. 

 

Figure 25: Overview of Client/Server Architecture [Leica] 
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Table 5 provides a brief key to the above diagram. 

Component Description 

AUT Automisation. Examples of functions are Automatic Target Recognition 
(ATR), Positioning, Change Face, etc. 

BAP Basic Applications, e.g. for measuring 
BMM Basic Man Machine functions, e.g. basic I/O control, alarming, etc. 
COM Communication 
EDM Electronic Distance Meter 
CSV Central Service, which provides system get and set functions 
MOT Motorization; controls the movement of the TPS system 
TMC Theodolite Measurement and Calculation 
WIR WI (Word Index) Registration. It provides GSI recording functions 

 

Table 5: TPS Components 

The client (e.g. PC) communicates with the server (the total station –TPS) via a serial line. GeoCOM is 
based on SUN Microsystems’ Remote Procedure Call (RPC). For supporting other platforms (e.g. other 
programming languages), the ASCII RPC-based protocol can be used. Each command or RPC call has an 
identification number, which is send to the TPS together with other request parameters. Basically, the 
GeoCOM implements a request-response model, that means a request and response pair has to be 
complete before another communication is allowed (i.e. synchronous communication). 

5.2.1.2. Global Positioning Systems 
A GPS receiver is a sophisticated system that takes satellite radio signals as input and computes position, 
velocity, time, etc. For positioning (3D, time), a minimum of 4 satellite signals is required. Figure 26 
shows a simplified model of a GPS receiver. 

 

Figure 26: Simplified GPS Receiver Solution Block Diagram [Maxim, 2005] 
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Table 6 briefly explains the main components shown in the GPS receiver block diagram. 

Component Description 

Low Noise Amplifier (LNA) Analog radio amplifier. The first stage in a GPS front-end 
receiver. 

Radio Frequency (RF) Surface 
Acoustic Wave (SAW) 

It’s a filter used to select desired frequencies 

Automatic Gain Control (AGC) A closed-loop control system that is used to keep amplifier 
gain constant under varying signal strength conditions. It 
is used in the intermediate frequency (IF) portion of the 
receiver. Gain is usually defined as a ratio of signal input 
to signal output. 

Variable Gain Amplifier (VGA) Is controlled by either AGC loop or external signal. 
Mixer A device or component that accepts as input 2 different 

frequencies and outputs a mixture of signals at several 
frequencies. 

Baseband Digital Signal 
Processing (DSP) chip 

Processes the digital data streams. Baseband interface 
includes external control command (TX), GPS data out 
(RX), and a one pulse per second (PPS) signal – 
synchronized with GPS clock. 

Temperature Compensated 
Crystal Oscillator (TCXO) 

Reference clock. It supplies the baseband with time 
information. 

 

Table 6: GPS Receiver Components 

Data output: 

GPS main output streams consist of position (2D, 3D) data, velocity, time (GPS time), and information 
about the quality of the data. The quality information is given in form of geometric dilution of precision 
(GDOP). Following are the components of GDOP: 

• Position Dilution of Precision (PDOP) or spherical DOP for 3D positions. 

• Horizontal Dilution of Precision (HDOP) for 2D positions, e.g. geographical coordinates (latitude, 
longitude) 

• Vertical Dilution of Precision (VDOP) for height information 

• Time Dilution of Precision (TDOP) for time information 

GDOP elements give information about reliability (i.e. poor or good), but not accuracy. 

The GPS streams (i.e. message sentences) are usually encoded in NMEA format (e.g. NMEA 0183). Each 
NMEA sentence starts with a “$” and ends with a carriage return (CR)/line feed (LR). 

NMEA allows hardware manufacturers to define their own proprietary sentences. All the GPS standard 
sentences are identified by two letters “GP” in the message ID, and proprietary sentences with a letter 
“P”. Mixing the two outputs leads to a non-standard output. Following in Figure 27 is an example of a 
standard sentence. 
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Figure 27: NMEA 0183 Sentence Example 

Furthermore, some manufacturers provide binary proprietary interface protocols, which demand a 
developer to have thorough understanding of the bit or byte structures before communicating with the 
GPS. 

Interfaces: 

Different manufacturers as well as software vendors use their own APIs, depending on the development 
platform, to communicate with GPS devices. There are several open source and commercial libraries 
(C/C++, Java, etc.) available, e.g., JavaGPS [http://javagps.sourceforge.net], Garmin I/O SDK C/C++ 
[Garmin], etc. 

As an example, the Garmin SDK is based on proprietary Garmin Device Interface Specification [Garmin, 
2004] which specifies the serial protocols (e.g. serial data packet format, handshaking …), USB protocol 
and drivers, application protocols (e.g. device commands), and specific data types (based on C language). 
The communication protocol is based on a “stop and wait” concept, like the RPC procedure discussed for 
the TPS. The sender (e.g., GPS) has to wait for a reception acknowledgement from the receiver (e.g. PC) 
before sending new data. 

On the physical communication layer, wireless (e.g. Bluetooth), and special serial cables (e.g. electrical 
and mechanical connections, such as standard DB-9 or DB-25) can be used. 

5.2.2. Image Acquisition Sensors 

5.2.2.1. Digital Cameras 
Digital cameras are continuously advancing in their design and functionality. Most of the modern 
monitoring applications are employing digital cameras or Digicams to capture images and videos, which 
provide vital visual evidence about the observed events. Figure 28 shows a simplified functional model of 
a Charge Coupled Device (CCD) digital camera. 
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Figure 28: Simplified Functional Model of a CCD Digital Camera 

The optical block 1 consists of zoom lens, colour filter, optical lowpass filter (LPF), and a splitting block 
(e.g., prism).  Pre-amplifiers (PA) are mounted at the end, for manipulating the output signal. The CCD 
sensor pixel outputs are characterized by a pixel function model, which describes the pixel dimensions, 
integration time, pixel sensitivity (or responsivity), and the spectral distribution of light on the pixel 
surface. Krasnjuk et al. states that a camera functional model can be used to determine camera 
characteristics [Krasnjuk et al., 1994]. Based on this model, internal analysis of image sensors processes 
can be possible. 

Data output: 

Images and video data can be captured in different formats or as raw digital data output with different bit 
sizes, e.g. 8-bit, 12-bit, and 16-bit, etc. Compact digital cameras produce only jpeg images. Video data 
can be streamed at different frame rates. Existing standard compression techniques can be applied on the 
data output. 

Interfaces: 

Different software APIs exist that implement proprietary or standard specifications. Example of the 
commonly used standard specifications are the IEEE 1394 (Firewire or i.Link) interface-based digital 
camera specification (also called IIDC or DCAM specification) [http://www.1394ta.org], and the Camera 
Link Interface standard for digital cameras and frame grabbers specification 
[http://www.machinevisiononline.org]. Examples of common open source software implementing these 
specifications are the Camwire IEEE 1394 based camera C API [http://kauri.auck.irl.cri.nz], and the 
digital camera library (libdc) [http://sourceforge.net/projects/iidcapi]. 

For physical linking, common interfaces like USB, Serial, Firewire, Ethernet, etc. are used. 

5.2.3. Distance Measurement Sensors 

5.2.3.1. Electronic Distance Meters (EDMs) 
They are usually classified according to type of carrier wave. Electro-optical instruments use light or infra 
red (IR) waves, and microwave instruments are based on radio waves. 

EDMs can also be further categorized based on the distance ranges. Short-to-medium range EDMs are 
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those that use carrier waves based on Gallium Aluminium Arsenide (GaAIAs) diodes, and long range use 
HeNe laser (‘red’ gas laser), etc. To illustrate an example of an EDM model, a simplified diagram of an 
electro-optical distance meter using analogue phase measurement is given in Figure 29 [Rüeger, 1996]. 

 

Figure 29: Simplified Electro-optical EDM using Analogue Phase Measurement 

Table 7 explains the EDM components. 

Component Description 

Modulator Varies the amplitude of the carrier wave by the intensity 
modulation. The oscillator determines the modulation 
frequency. 

Photo Detector Transforms the light beam’s intensity variations into 
current. 

Resolver Shifts the phase of the reference signal 
Phase Detector Provides phase comparison between the returning signal 

and the reference signal. The result of detection is shown 
on the null indicator. 

 

Table 7: Electro-optical EDM Components 

Data output: 

Distances (e.g. horizontal or slope distances). 

Interfaces: 

Different manufacturers provide different software interfaces. 

5.2.3.2. Time Domain Reflectometry (TDR) Instrument 
TDR can be used to locate and monitor slope failures. It was originally intended for locating breaks and 
faults in communication and power lines.  

TDR records the impedance change (or disturbance) in a coaxial cable which causes some pulse energy to 
be reflected back to the TDR instrument. It is similar to the radar measurement principle. The distance to 
the point of impedance can be calculated based on the propagation velocity of the signal and the time of 
travel. Figure 30 shows the components of a TDR. 
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Figure 30: Time Domain Reflectometry Cable Tester [Kane et al., 1996] 

On the instrument display (oscilloscope), the reflected signal is shown in waveform. A ‘spike’ in the 
cable signature (wave peak) indicates the magnitude and the rate of displacement of slope movement. 

Data output: 

Voltage output is converted into displacement data. 

Interfaces: 

Kane et al. experiences show that specialized software is required to process the raw data, and that in 
order to write code for the data loggers connected to TDRs, manufacturer specific software is necessary 
[Kane and Beck, 1999]. 

5.2.4. Angular and Tilt Measurement Sensors 

5.2.4.1. Tiltmeters 
Tiltmeters are commonly used for geotechnical measurements, such as determining the direction of slope 
movement and mechanism of movement (e.g. slumping, slope creep, settlement, etc.). They do produce 
continuous measurements of angular movement (angular position and rotational movement). 

Figure 31 shows an example of a tiltmeter which consists of excitation electrodes, pick-up electrode, and 
a gas bubble. 

 

Figure 31: Tiltmeter Sensor Diagram 

The movement of the excitation electrodes, due to tilt, causes the AC resistance between the pick-up 
electrode and each excitation electrode. This change in resistance is converted to angular movement. 
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Data output: 

Raw output: When the tiltmeter is directly connected to an output device (e.g., data indicator, logger, or 
recorder) and the signal is not conditioned (e.g. no amplification). 

Voltage output: The signal is conditioned, and the sensor produces a nominally 1 Volt (dc) full scale 
voltage output, which is proportional to the tilt. 

Interfaces: 

Usually data loggers or recorders provide interfacing between tiltmeters and other devices like PCs. 
Physical communication can be via serial interface, USB interface, wireless, Ethernet, telephone/cell 
modem, etc. Different manufacturers provide specific API for writing code. 

5.3. Integration Methods and Technologies 

5.3.1. Transformation on Connectors 

Bliudze et al., defines connectors as a basic concept for modelling coordination (interaction) between 
components [Bliudze et al., 2007]. Connectors can also be seen as mediators. Current research efforts are 
focusing on formalising connectors (i.e. common specifications and architectures, algebraic formalisation 
…); and on semi-automatic and fully automatic generation of connectors in order to resolve protocol and 
data type mismatches. With respect to architectural connections, common methods are procedure calls, 
pipes, event broadcasting, and use of shared variables (e.g., data). 

Figure 32 illustrates an example of a connector and its specification. 

 

Figure 32: TPS Connector and its specification 

The specification in the example defines a TPS connector type, which is basically a set of roles and a 
gluing interface. If, for example, an existing TPS client (e.g. plug-in or standalone application) tries to 
communicate with a new TPS whose communication protocols (e.g., physical connection, commands, 
data etc.) do not agree, the connector has to perform transformation on one or both components (e.g., the 
TPS client or TPS server and, if possible, automatically updates the respective configuration files or 
protocol registers). 

Transformations on connectors can be seen as a pattern or template class for adapting component 
interaction mechanism (i.e. pattern identification and modification). The transformations may include 
changes in the implemented technology, data structures, protocols and representations. Following are 
examples of a data transformation: 

• Data compression: Encoding and decoding data at both ends of communication. Both ends should be 
able to understand the compression method used. 
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• Swapping byte order: Changing the order of bytes depending on the execution platform or 
expectations of the data receiving component. For example, Endianness (little-endian or big-endian). 

• Etc. 

As a summary, modifying existing or developing new connectors can be complex, costly and requires 
guru level of expertise [Spitznagel et al., 2001].  

5.3.2. Wrapping on Connectors 

At the moment, the only solution to resolve the discussed proprietary problems is through implementing 
software wrappers [Rowe, 2008; Kandawasvika and Reinhardt, 2005b; Smuda, 2005; Feldman, 2003;]. 

In computer programming, software wrappers can generally be defined as adapters that allow classes or 
components that have incompatible interfaces to work together. Currently, the concept of zero 
configuration [IETF, 2001] and zero programming is still a vision with respect to deployment of sensor 
systems, but can be a reality if interoperability standards are strictly followed. As shown in Figure 33, 
sensors of the same type e.g. total stations (TPSs) from manufacturer X and Y have to be integrated 
separately and the same applies to other sensor types. 

 

 

Figure 33: Specific Sensor Component for each Sensor. 

The sensor manager component has to scale up to different complex levels as the number of sensors 
increases. If the wrapping concept is not coupled with open, standards-based (i.e. vendor-neutral) 
solutions, difficulties in sensor management arise. 

Software wrappers allow interaction between disparate components by encapsulating or suppressing the 
differences (e.g. communication protocols, data types etc.) and exposing only common interfaces and 
data. Also transformations can be performed on connectors but more advanced. The transformations 
involve, for example, mapping of data formats (e.g. from a native format to a common format, see Figure 
8), and mapping of interface signatures, specifically parameters and return types. 

Ontology (semantics) mapping can also be done, for example, using common reference ontologies. 
Simplified ontologies can be recorded in form of translation tables or XML-based dictionaries. For syntax 
transformation, the wrappers can include model-specific reasoning, auxiliary databases or mathematical 
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functions so as to produce correct translations of references. For example, data type mapping between 
different implementation languages, like Java and C/C++ components, can be realized using equivalence 
or standard translation tables. 

 

Table 8 shows an example of an equivalence table for mapping Java primitive types to their platform-
dependent native types. 
 

Java Type Native Type Type Signature Description 

boolean jboolean Z unsigned 8 bits 

byte jbyte B signed 8 bits 
char jchar C unsigned 16 bits 
short jshort S signed 16 bits 
int jint I signed 32 bits 
long jlong J signed 64 bits 
float jfloat F 32 bits 
double jdouble D 64 bits 
fully-qualified-
class 

 L fully-
qualified-class 

 

type[]  [ type  
method type  (arg-types) ret-

type 
 

 

Table 8: Java Primitive Types and Native Equivalents [JNI-Specification] 

Following are some of the commonly used methods, and technologies tools for realizing the wrapping 
concept. 

Java Native Interface (JNI): This is a very low-level interface which allows Java code that runs inside a 
Java Virtual Machine (JVM) to interoperate with applications and libraries written in other programming 
languages (e.g. C, C++, Assembly …). JNI is complex and is not easy to implement. There are, however, 
a number of open source libraries and tools that use JNI to provide semi-automatic or automatic 
generation of wrappers. Examples of open source tools are Java COM Bridge (JACOB), COM4J, jSegue, 
Simplified Wrapper and Interface Generator (SWIG), etc. These tools are at various stages of 
development and the interfaces (wrappers) generated by the tools may require moderate to heavy manual 
editing. 

Component-based Interfaces: Microsoft’s Component Object Model (COM), and .NET Assemblies; 
CORBA, Java Beans, etc. 

Web Services: Unlike time-consuming and difficult component-based technologies mentioned above, 
Web services provide interoperable means for integrating different components (e.g. in form of 
middleware). Examples are .NET based Web services, Java-based Web services, etc. For example, a 
sensor library or connector can be wrapped into a Web service so as to provide its measurements in 
standard-based formats like SWE Common, O&M etc. Besides, the Web service wrapper can implement 
standard communication interfaces which can allow applications or web service clients to interact with 
the targeted sensors in a common way. 
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5.3.3. Specification of Middleware 

Software middleware (or bridges) can be used to bridge the differences between different components by 
acting as links, adaptors, brokers, or intermediaries. Middleware can be more sophisticated than 
connectors. It can be a composition of transformed connectors or wrappers and can also perform 
advanced interface transformations based on particular conversion rules. Different technologies can be 
used to realise middleware for interoperable integration of disparate components, e.g., technologies like 
SOA, Web services, component-based architectures (COM, CORBA ...), etc. Note that current Web 
services and SOA applications can achieve interoperability by being message-oriented and/or event-
based. 

5.4. Summary 
The sensor component and functional models described in this chapter are general enough to provide the 
basic understanding of the respective sensor systems, but they can be modified (extended or further 
simplified) depending on the application domain needs, and the level of understanding (abstraction) 
required about the sensor models and their respective measurements data. 

Middleware and wrappers can be seen as intermediaries that convert different technologies, protocols, 
data structures or representations, in order to enable communication between non-interoperable resources. 
The following chapter will cover the conceptual framework of the dissertation, based upon the 
information in this chapter and the preceding ones. 
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6. Conceptual Framework for Interoperable Management of 
Multi-Sensors 

This chapter consists of the conceptual framework of the dissertation. Sensor models form the core part of 
the proposed concept. The models are divided into two types: the generic logical sensor models (GLSMs) 
and the standards-based sensor models (SBSMs). GLSMs should be developed by specific communities 
(e.g. environmental and infrastructure monitoring community comprising geodetic/surveying/remote 
sensing systems manufacturers, geotechnical sensors manufacturers, application developers, users, etc.), 
and the developed models should enable interoperable management and exchange of sensors within that 
community domain. In addition, for intercommunity or cross-domain applications, the GLSMs can be 
transformed to standards-based sensor models (SBSMs) using standard languages like OGC SensorML, 
etc.  

The first sections of this chapter discuss the proposed model-driven approach (MDA) for integrating 
multi-sensors into an application, followed by the workflow for development of generic logical sensor 
models. The last sections of this chapter cover the proposed generic sensor-based access and control 
service (SACS) that loosely integrates the developed sensor models via plug and play modules. It also 
discusses SACS components and how SACS fits into or extends the current OGC SWE framework. 

6.1. Integration of Sensor Models in an Application 
In order to achieve interoperable management of multi-sensors as well as minimum integration efforts 
and time in deploying those sensors into hosting applications, we recommend the use of sensor plug-ins 
that expose generic or standard-based interfaces for connection, command and control. All the 
information and knowledge about the sensors being handled by the sensor manager component should be 
obtained from the logical sensor models. The integration conflicts due to differences in vendor-specific 
protocols, interfaces and data formats can be wrapped by the sensor manager component (also called 
sensor wrapper in this dissertation). Following is a simplified architecture for sensor model integration. 

 

Figure 34: Sensor Model Integration Architecture. 
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As illustrated in Figure 34, a sensor manager component is responsible for handling sensor types (e.g., 
type Y can be a GNSS receiver, TPS, extensometer, etc.), thereby avoiding the need to have a specific 
sensor component for each and every single sensor. The sensor manager component is model-driven. It 
gets all the knowledge about the physical sensing device from an instance document of a logical sensor 
model of that particular sensor type. In the figure, sensor devices employ different means of 
communication mechanism (e.g. serial, USB, wireless, etc.). The sensor manager component makes use 
of the available low-level communication wrappers (e.g. USB, Serial, Wireless wrappers, etc.) to 
physically link with the respective sensors. The required linking information can also be accessed via the 
logical sensor model. 

Different data types and structures can be wrapped by the sensor plug-in, which should only output results 
that are exactly defined using the common data types (e.g., OGC SWE Common, NMEA, TEDS, TML-
based formats, GML, etc.) to the host application (e.g. a landslide monitoring application). Vendor-
specific communication interfaces can be wrapped into common interfaces (e.g., community-based 
generic interfaces, and standard-based interfaces like IEEE P1451 Smart Transducer Interface Standard). 

In order to bind with an existing physical sensing device, a sensor manager component can make use of 
any of the two paths, see Figure 35. The first path relies on generic logical sensor model (GLSM) (like the 
ones we have developed, see Section 6.2.3) and the second path uses standards-based logical model 
(SBSM). The SBSM can be derived from mapping the GLSM using standard modelling languages like 
OGC SensorML, etc. 

 

Figure 35: Sensor Manager Component Parsers for GLSM and SBSM. 

A sensor connector (or sensor component wrapper (SCW)) uses the respective XML parsers for accessing 
the sensor model information. Specific communities can employ their own developed parsers to exchange 
sensors, but in order to achieve higher degree of interoperability (i.e., easy exchange of sensor models 
across multiple application domains), it is better to use standards-based parsers. However, in cases where 
the open, international standards are still immature and the respective parsers not available or early in 
development, we recommend the first path.  

Note also that standard modelling languages can be very dynamic (i.e. change rapidly) in their 
development and those that are mature like OGC SensorML can be complemented or even replaced by 
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new ones. Therefore, the sensor manager component should be able to use community-level generic 
models (e.g., GLSMs), which can be stable for a long time and are not influenced by rapid changes in 
standard modelling language specifications. The developed generic logical models can then be mapped to 
stable versions of the standard specifications at any time. 

If the available sensor software libraries use different programming languages (e.g. C/C++) from the 
language of the target/host application (e.g. Java), then sensor component wrappers can also resolve these 
differences (e.g. syntax conflicts) using, for example, translation tables and/or existing software wrapping 
tools (see previous chapter).  Figure 36 shows an example of a sensor wrapping concept. 

 

Figure 36: Sensor Wrapping Concept 

In this case, the sensor plug-in communicates with a sensor API/library via a Java Virtual Machine, which 
facilitates the conversion between Java and non-Java (native) interfaces. For other languages, there may 
not be any need for an intermediate virtual machine. For the dissertation, the term sensor plug-in is 
loosely defined as any software add-on or component needed for accessing and controlling a sensor. It 
can be implemented in any language. 

In summary, in order to support a very flexible and interoperable framework for multi-sensors 
management, we propose that the various sensor manager components (plug-ins) be hosted in a generic 
sensor access and control service. This sensor service can be realised based on service-oriented 
architecture (SOA) and/or Web service concept (see Section 6.3).  

6.2. Proposed Workflow for Sensor Model Development and Usage 
Figure 37 shows a general overview of a sensor development cycle. Similar to any IT system 
development, the first phase involves analysing the requirements of the monitoring applications and then 
analysing the selected sensor system in order to understand and model its components, functionality, 
applicability, limitations, and behaviour, to mention a few. 
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Figure 37: Proposed Sensor Model Development Cycle 

The second phase involves sensor system functional modeling, which is then followed by logical 
modeling. The last phase addresses testing and validating the developed logical model in an application. 

6.2.1. General Analysis of Sensor Systems 

Understanding of the sensor systems (physical sensing devices or instruments) is the first step in 
conceptual modelling. Figure 38 lists some of the important items that have to be analysed.  

 

Figure 38: Phase I: Sensor System Analysis 

Figure 39 shows the level of abstraction that is derived from the analysis and used for the sensor 
conceptual models. 
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Figure 39: High-level Abstraction of Sensor 

The input resources (e.g., specifications) required for the modelling are illustrated in the diagram. 
Following are the items to consider during the sensor system analysis. 

6.2.1.1. Functional Descriptions 
The functional descriptions of a sensor system may include descriptions of algorithms, process methods 
or mathematical models, as well as information about intended uses or applications of the system. 

6.2.1.2. System Architecture 
The system architecture should enable a good overview of the system’s component model, interaction 
mechanisms between the sub-components and their dependencies, data flows (I/O), etc. 

6.2.1.3. Constraints and Limitations 
 It is also important to comprehend the system constraints and limitations, such as operational conditions 
(e.g. storage and operating temperature ranges), atmospheric conditions (e.g. weather effects), etc. 

6.2.1.4. Manufacturer Specifications 
Sensor technical specifications from different manufacturers for each sensor type/class of interest should 
be analysed in detail. The main objective is to identify common patterns and derive common denominator 
specifications that match the application domain requirements. Each derived specification can be used as 
an abstract base for a generic, common specification for each sensor type. 

6.2.1.5. Available Software APIs and Libraries 
From the software API specifications of different manufacturers, it is necessary to identify the syntactical 
information, e.g., language of implementation (e.g. C, C++, Java, VB, etc.). The language of 
implementation usually determines the data types and structures used, as well as the interface and method 
definitions. This information also plays a role in developing common sensor specifications. 
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If any information about implementation algorithms is available, this should also be captured for later use 
in the logical modelling. 

6.2.2. Sensor System Functional Modelling 

Functional and component-based modelling of a sensor system is based on the information and 
knowledge acquired from the detailed needs analysis. Figure 40 lists the activities or aspects that fall 
under functional modelling.  

 

Figure 40: Phase II: Sensor System Functional Modelling 

Formally, the function models can be expressed using modelling languages like UML. Figure 41 gives a 
simplified example of a TPS sensor conceptual model. 

Figure 41: TPS Sensor Conceptual Model 
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The data model (e.g., TPSDataModel) should provide a generic data interface that can be used for the 
sensor system input/output (I/O) definition. This model also serves as the base for defining common 
command and control software interfaces. The sensor metadata model also uses the data model definition 
to describe its offerings (i.e., measurements data and functions). Figure 42 shows a conceptual model for 
a GNSS sensor (i.e. GPS receiver). 

 The above conceptual models form the basis for defining logical sensor models. For more details about 
the model elements, see Section 6.2.3. Following is an explanation of the steps taken. 

6.2.2.1. Identification of Sensors and other Physical Components 
The first step should clearly identify the sub-sensing devices and other physical sub-components of the 
system. These entities should be abstracted in a way that reflects the functional model of the system at a 
higher level. By higher level, we mean that the components should not map one-to-one system 
components as at the hardware/physical design level. Refer to Chapter 5.2 for details about the basic 
sensor functional and component models. 

6.2.2.2. Identification of Computational and other Non- Physical Sensing Components 
From detailed analysis of the needs together with other sensor information from the manufacturers and 
users, non-physical components like computational algorithms and methods, calibration procedures, etc., 
can be identified. Connections between the individual components can be described using connectors or 
process chains. 

Figure 42:GPS Sensor Conceptual Model 
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6.2.2.3. Input and Output Data (Messages) and Parameters 
The next step is to derive a common set of data definitions from the derived specifications for each sensor 
type. Bear in mind that for the system internal communication (i.e. for access, command, and control) of 
the sensors, the derived common data types/definitions could be mapped back to their respective native 
data types/definitions. Therefore, any available complex data structures should clearly expose their nested 
primitive data types. It is only through primitive data types that syntax transformation can be effectively 
and easily performed. For example, the Java Virtual Machine (JVM) uses a standard translation table (see 
Table 8) to map data types or structures from other languages into java native types using mostly 
primitive data types. 

6.2.2.4. Communication Interfaces 
The same approach for abstracting data types and structures can be applied to command and control 
interfaces (also referred to, in this dissertation, as higher-level communication interfaces). 

6.2.2.5. Metadata 
Metadata information is very important for sensor mining and discovery. The metadata information 
includes sensor system applications or usage, sensor system offerings (e.g. measurements and operations), 
physical characteristics; associations or connections between system internal entities (e.g., sub-sensors, 
sub-components, etc.), and the respective outputs of these individual sub-entities, etc. Information about 
the manufacturer and sensor model author is also important.  

6.2.3. Definition and Specification of Generic Logical Sensor Models  

Phase III formalizes the functional modelling step by defining and specifying generic logical models and, 
at the same time, providing more details about the sensor system. In this subsection, the TPS and partly 
the GPS sensor systems are used as examples in order to clarify the sensor logical modelling concepts. 
The TPS is a complex sensor system that comprises a number of sub-sensors and sub-components, hence 
the reason to use it as an example. The GPS represents an example of data streaming sensors. The 
diagram in Figure 43 shows logical sensor modelling phase elements. 
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Figure 43: Sensor System Logical Modelling 

6.2.3.1. Model Elements 

The sensor system sub-sensing devices, sub-components, non-physical processes like mathematical 
algorithms, operation methods, etc., are modelled as schema model elements. These model elements, 
together with sensor metadata, I/O definitions and parameters, form a composite generic logical model. 
Examples of TPS and GPS logical schema models are shown in Figure 44 and Figure 46.  
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Figure 44: TPS Generic Logical Model (Schema Snapshot) 

In Figure 44, the TPS generic logical model consists of sub-sensing devices like the Electronic Distance 
Measuring unit, angle sensors, inclination or tilt sensor, meteorological sensors (e.g. temperature and 
pressure sensors), a CCD sensor, and electronic guiding light. These sub-sensors can also further define 
and specify their own metadata, I/O definitions, parameters and methods. The level of granularity 
depends on the amount of detail required by the sensor application. For the generic models of the 
dissertation, the first level of the hierarchy is considered sufficient for most of those applications that only 
want to use the sensors, but not analyzing the internal processes of the respective sensors.  

The first element of the logical model indicates the type of the sensor system (i.e. TPSSensor). The 
‘metadata’ element has a capabilities section which contains sub-elements that define the interfaces for 
accessing and controlling the sensors as well as the types of measurements data returned by the sensors. 
The ‘parameters’ element shows all the variables that can be used to configure and control the sensors. 
The ‘inputs’ and ‘outputs’ define the I/O data part, and the ‘methods’ element describes the sensor model 
dependencies like sensor algorithms, procedures, or references to other implementation details. Refer to 
Appendices 12.2.1 and 12.2.2 for details on the respective TPS and GPS schema instance files.  
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Figure 45 shows a sample of the TPS schema definition. The schema includes other schemas, like for 
generic data types (tpsDataTypes.xsd), interface (tpsInterfaceDefinition.xsd), and conditions definitions 
(tpsConditionsDefinition.xsd). These definitions are important inputs for accessing and controlling the 
sensors.  

 

Figure 45: Schema Part of TPS Generic Logical Model 

The contents of the above schema is also shown in a tabular form, see Table 9. 

Sensor System Type: TPSSensor 

Model 
Component 
Category 

Name <Abstract Type> 

Type 

Metadata TPSSensorMetadata MetadataType 

Included 
Sensor Types 

EDMSensor EDMSensorType 

AngleSensor AngleSensorType 

InclinationSensor InclinationSensorType 

TemperatureSensor TemperatureSensorType 

PressureSensor PressureSensorType 

CCDSensor CCDSensorType 

… … 

Table 9: Schema Part of TPS Generic Logical Model 
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Figure 46: GPS Generic Logical Model (Schema Snapshot) 

 Figure 46 illustrates the GPS model. In this case, it has no physical sub-sensing devices, but sub-
components that are responsible for the internal processing of the GPS signals into position, velocity, and 
time data, etc. However, if a sensor system like digital camera, TPS, etc. have an integrated GNSS 
receiver then the GNSS becomes a sub-sensing device of that sensor system. 

6.2.3.2. Data Types and Structures 
The generic sensor logical model specifies a common set of data types and structures (e.g. in a separate 
data definition XSD schema file). This common set forms the data contract part of the sensor type 
interface definition. The data contract can later be mapped into standards-based encodings like SWE 
Common Data Types, O&M, GML, etc. in order to facilitate data interoperability across communities. 
Table 10 shows an example of the TPS generic data types and structures. 
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Table 10: TPS Generic Data Types Examples. 

For any GPS receiver, the NMEA data format can be used, but it is also possible to convert it into other 
data standard formats like SWE Common Data Types. This can be recommended in cases where 
proprietary GPS sentences are also encoded in the NMEA data streams. 

We also recommend that, if possible, the generic data type and structure definitions be strictly based on 
the standard XML data types in order to facilitate easy and interoperable mapping to other XML-based 
standards. 

6.2.3.3. Interfaces 
Interfaces form the interaction or communication contract between or among different systems or 
components. In order to facilitate interoperable communication at higher-level (e.g. access, command and 
control), generic or standard-based interface definitions should be used. An interface definition can be 
provided in-line (i.e., in the same sensor XSD schema definition) or off-line (in a separate interface 
definition file (IDC)). The interface definition discussed in this subsection can be used to extend and 
complete the rudimentary interface definition provided by the OGC SensorML standard. 

Following is an example of a minimum interface definition that can be used to model a sensor systems’ 
communication interfaces. As shown in Figure 47, the InterfaceCollection element is the root and we 
have grouped the specified interfaces (groupNames) into connection, control, sensorInfo (i.e. metadata), 
and messaging (e.g. notification, failure or exception) interfaces. 
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Figure 47: Interface Collection Definition 

Following is an instance example using the above defined interface definition. 

<InterfacesCollection xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="E:\phardmasy\dvpt\case_study_poc\sensors_msmts_modeling\SensorsGeneri
cModels\tps_24.05.08\tpsInterfacesDefinition2.xsd" ID="TPS_MinInterfaceSpecification"> 
  <Interfaces id="TPS_GeoCOM_MinSpec"> 
  <description>This document section contains a minimum list of interfaces provided by GeoCOM used 
in integrating the TCA1800 total station (TPS) in geotech client. … In order to access the 
interfaces documented, please use the following syntax: for example - tps_geocom.COM_Init(...)  
  </description> 
   <implementingLibrary name="tps_geocom.dll" path="C:/kaad/geotech/Geotech_2005-11-21_dvpt"/> 
      <InterfaceList groupName="Connection"> 
 <description> The interfaces used for configuring and communicating with the TPS. 
 </description> 
  <interface name="Initialization"> 
   <return>getRC_OK</return> 
 </interface> 
 <interface name="OpenConnection"> 
   <Parameters> 
    <parameter name="com_port" role="input" type="string" default="COM1"/> 
    <parameter name="com_baud_rate" role="input" type="long" default="19200"/> 
    <parameter name="num_retries" role="input" type="integer" default="1"/> 
   </Parameters> 
   <return>getRC_OK</return> 
 </interface> 

... 
    <InterfaceList groupName="Control"> 
     <description>Interfaces for controlling the total station (TPS).</description> 
       <interface name="MeasureDistanceAngle"> 
  <Parameters> 
    <parameter name="progMode" role="input" type="MeasureProgMode"/> 
    <parameter name="Hz" role="output" unit="rad" type="double"/> 
    <parameter name="V" role="output" unit="rad" type="double"/> 
    <parameter name="slope_Dist" role="output" unit="m" type="double"/> 
  </Parameters> 
  <return>getRC_OK</return> 
       </interface> 
 ... 

Figure 48: TPS Communication Interfaces Example 

In this example, the implementingLibrary element documents the implementation software library and its 
URI or file location. For example, the ‘tps_geocom.dll’ is a Java-based software wrapper we have created 
for the GeoCOM C/C++ API. Any Java-based TPS sensor plug-in can use the linked library to access the 
interfaces defined in the interface definition file.  
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A tabular presentation of the example contents is shown below. 

Interfaces: TPS_GeoCOM_MinSpec 

Implementing Library Name Path 

tps_geocom.dll C:/kaad/geoetch/Geotech_2005-11-21_dvpt 

Interface Group: Connection 

Interface Name Description Parameters 

Name Role Type Unit Default 

Initialization Initializes GeoCOM  

environment variables 

- - - - - 

OpenConnection Opens communication channel 
between sensor system (TPS) 
and client application. 

port 

baudrate 

input 

input 

string 

long 

- 

- 

Com1 

19200 

SetTimeOut Sets time out for response. time input long sec - 

MeasureDistanceAngle Causes the TPS to measure only 
distances and angles 

progMode input Measure_ 

ProgMode 

- Track_ 

DistPlus_

Angles 

… … … … … … … 

 

Table 11: TPS Interfaces Table Example 

The hardware or physical communication interfaces can also be defined in the specification, see example 
in the Figure 49. 
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Figure 49: Hardware Interface Example 

The ‘Hardware’ interface has an interface group ‘SerialCommunicationLink’ which provides the 
necessary parameters (e.g., pin type, baudrates, databits …) for communicating with any devices capable 
of serial interfacing (e.g., using the RS-232 standard).  

Table 12 shows the hardware interface definition in tabular form. 

Interfaces: Hardware/Physical Communication 

Interface Group: SerialCommunicationLink (Connection) 

Interface Name Description Parameters 

Name Role Type Default 

RS_232 Serial communication 
link 

pinType 

baudRate 

parity 

dataBits 

stopBits 

terminator 

input 

input 

input 

input 

input 

input 

string 

long 

string 

ushort 

ushort 

string 

DB9 

19200 

None 

8 

1 

CR/LF 

 

Table 12: Hardware/Physical Communication Interface Example 

Note that all sensor systems that use serial communication can access the interface shown in the table. 
There are also other communication media groups (e.g. BluetoothSPPCommunication, WLAN, or OSI-
based data link and physical layers, etc.) that can be used by sensor systems.  

The interfaces discussed in this section should be wrapped into higher-level interfaces defined by the 
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generic sensor plug-in interfaces (see Section 6.3.2).  

6.2.3.4. I/O Definitions and Parameters 
These I/O data and parameter definitions should be based on the defined common data type schema. The 
parameters can include information on sensor calibration and other system-level configuration parameters 
(e.g. OS language, units of measurement, measurement mode configuration, etc.). For example, a TPS 
sensor system can be configured to generate point IDs automatically and the EDM to measure in 
reflectorless mode. Following is an example of TPS parameters definition. 

 

Figure 50: TPS Parameters Example of Calibration Information. 

Table 13 illustrates the contents of the calibration in a tabular form. 

TPS Calibration Information 

Time Calibration Parameter Unit Value 

2000-12-03T11:00:00Z Compensator longitudinal 
(l) axis error 

gon 0.0010 

Compensator transverse (t) 
axis error 

gon 0.0023 

Vertical index (i) error gon 0.0001 

… … … 

 
Table 13: TPS Calibration Parameters Example 

For sensor output and input definition, links to data storage, and dictionaries or taxonomies for semantics 
support can be provided. This can be seen as a first step in resolving semantic problems like 
misinterpretation of terms. Following is an example snapshot for the TPS I/O definition. 
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Figure 51: TPS I/O Definitions with Dictionary Links. 

       Following is a tabular presentation of the inputs and outputs definition (see Table 14). 

TPS I/O Definition 

Inputs: 

Name Type Definition (meaning) 

TPS_Position SimpleStationType e.g. in tpsDictionary.xml, TPS geolocation 

TPS_InitialOrientation AngleType Initial observation direction 

TargetPointID String ID of the observed point 

Outputs: 

Name Type Definition (meaning) 

MeasurementBlock MeasurementASCII-

BlockType 

See ‘Fields’ collection definition under 

‘MeasurementBlock’ element 

measurementsOut.xml XMLDocument See ‘MeasurementBlock’ element for block 
structure definition 

 

Table 14: TPS I/O Definitions Example 

In the example, the ‘tpsDictionary.xml’ provides the meaning of the defined elements. This dictionary 
approach is also proposed in the OGC SensorML as an alternative to using complex ontologies. The 
“measurementsOut1.xml” contains the actual measured TPS data, whose structure is defined in the 
‘MeasurementBlock’ element just before the ‘DataValues’ element. This information enables the 
application to know the arrangement of the data it will read from the data file or the ‘DataValues’ 



  90

element. 

6.2.3.5. Constraints and Rules Descriptions  
We propose that basic constraints and rules for the sensor model be described in conditions definition 
XML file. The basic constraints can be seen as the limitations or conditions that are imposed on or 
influence the sensor system; and these basic rules determine and guide the behaviour of that sensor 
system. Following is an example of TPS conditions descriptions. 

 

Figure 52: TPS Atmospheric Conditions Example 

The elements in the above conditions file are defined in an XSD schema. See the Appendix 12.3.2  for an 
example of the GPS condition file. In Figure 52, the conditions are classified into atmospheric and 
operational. Atmospheric conditions determine the visibility range of the TPS telescope’s line of sight. 
Taking condition with ID ‘1’, the atmospheric influence is considered ‘severe’ when the environmental 
state is ‘strong haze, strong sunlight, or severe heat shimmer’. The result of this condition is that the TPS 
sensor system can have a maximum visibility of 5 kilometers and beyond this range no measurements are 
possible or are guaranteed to be correct.  

 

Figure 53: TPS Operation Conditions Example 

The operational conditions like, for example, use of a single prism target limits the distance range 
measuring capability of the TPS to 1500 meters (see Figure 53). The operational conditions of a sensor 
system can further be constrained by other conditions (i.e. dependencies) like the atmosphere (see in the 
example, a reference to atmospheric condition with ID ‘1’). 

In addition to stated conditions, basic rules can also be specified in the sensor model using simple “if-
then-else” statements. For example, if the atmospheric conditions are ‘severe’, then the sensor should 
inform the user that no reliable measurements can be guaranteed at that moment. Also if the sensor 
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battery power is less than a certain value, e.g. 10%, then the sensor should raise an alarm/beep else it 
should inform the user that it can no longer accept any user commands or queries. The remaining energy 
will then be used only for very critical push (notification) cases where, for example, a landslide 
movement has exceeded a pre-defined threshold. 

OGC SensorML and other research works propose a more formalized way of encoding rules, e.g. using 
rule-based languages like Schematron, Rule Markup Language (RuleML), etc. However, these more 
formalized approaches will also require extending the basic XML parsers. If the rules become complex, 
then the parsing tools also tend to be complex. We recommend use of simple XML-based files for 
encoding simple basic rules. For references to this approach, see Wang’s dissertation [Wang, 2008]. 

6.2.3.6. Metadata 
Metadata is a vital part of a model that provides a one-stop location for sensor system information e.g. 
important for search and discovery. Figure 54 shows a general metadata type which can be derived and 
restricted or extended by specific sensor types.  

 

Figure 54: General Metadata Type 

The following snapshots (Figure 55 and Figure 56) are extracted from metadata section of a TPS model 
instance. Snapshot 1 shows the TPS intended applications, its current geographical position 
“GeoPosition”, which includes information about projection, coordinate system (e.g., geographic latitude 
and longitude, ECEF_XYZ, Gauss-Krueger (GK), UTM, etc.) and geodetic datum (e.g., World Geodetic 
System (WGS) 84, European 1950, DHDN (Datum des Deutschen Hauptdreiecknetzes – German 
Reference System), or can be any of the European Petroleum Survey (EPSG) codes (e.g. EPSG:31491 for 
DHDN/Germany GK zone1 …), etc.), as well as the quality information (e.g. accuracy expressed as 
standard deviations) about the position. The geographic information can be used for georeferencing the 
measurements made by the other non-position aware sensor systems.  
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Figure 55: TPS Sensor Metadata Snapshot 1 

Table 15 gives a simplified view of the contents in TPS sensor metadata snapshot 1. 
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TPS Sensor Metadata 

Serial Number 618755-2 

ModelName TCA1800 

Sensor Type TPS/ Total Station 

Sensor Classification 1. Point Acquisition Sensor 

2. Distance Measuring Sensor 

3. Angular & Tilt Measuring Sensor 

Intended Applications • Engineering Surveying 

• Terrestrial 3D Positioning 

• Structural Monitoring 

GeoPosition Time 2006-12-31T12:12:01Z 

Location Northing 3492570.00 m 

Easting 5341580.00 m 

Height 900.00 m 

Coordinate System Gauss-Kruger (GK) 

Datum DHDN 

Quality std Deviation X 0.006 m 

std Deviation X 0.006 m 

std Deviation X 0.01 m 

 

Table 15: TPS Metadata Example 1 

Other example extracts from the metadata are shown in Figure 56 and Figure 57. The 
MeasurementDataTypes and the MeasurementFunctionTypes elements of the metadata provide 
information about the complete data types and function types of any sensor type respectively. These 
elements can be used for accessing and controlling the sensors. The sensor manager gets information 
about what data types and operations (functions) are supported by a particular sensor. 

 

Figure 56: TPS Sensor Metadata Snapshot 2 
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The tabular form of the snapshot 2 is shown below. 

Measurement Data Types 

Name Type Responsible Component 

(Reference Link) 

Angles AngleType AngleSensor 

Distances DistanceType EDMSensor 

Coordinates CoordinateType  

PointObjects PointDataType  

PositionData PositionDataType  

InclinationData InclinationDataType Inclination/Tilt Sensor 

Time 

 

DateTime (Definition: ISO 8601) System Clock 

MeasurementBlocks MeasurementASCIIBlockType  

CalibrationInfo CalibrationInfoType  

AtmosphericCorrectionData AtmosphericCorrDataType  

 

Table 16: TPS Metadata Example 2 

 

 

Figure 57: TPS Sensor Metadata Snapshot 3 

The metadata element can also include information about the history or lineage of the model, as well as 
model constraints (e.g., valid time, legal, security …) as specified in the ISO 19115 metadata standard. 
Our element definitions of the MeasurementCapabilities, Limits, and Interfaces (see Figure 54 and 
Appendix 12.2.1) can also be used to extend other specifications (e.g., SensorML MetadataGroup) by 
creating either new elements or substituting similar existing elements. OGC SensorML proposes an event 
model concept, which documents information about the history of calibration, maintenance, or changes to 
algorithms. This concept can be adopted to build part of a sensor state model (i.e., each event object 
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representing the status of the sensor at that particular event time). 

In summary, the workflow steps illustrated using the TPS in this subsection and above, can be applied to 
any other sensor system (e.g., GNSS receiver, Extensometer, etc.). The next subsection explains the 
mapping of the generic logical sensor models to standard-based models using standard encodings like 
OGC SensorML. 

6.2.4. Mapping of Generic Logical Models to Standard-Based Models 

The mapping should ensure that the entire generic logical model is correctly transformed to a particular 
standards-based format. Following are some of the techniques that can be used to map generic logical 
sensor models to standard-based models. 

• Creating semi or fully automatic mapping (e.g., using XSLT) templates based on specific conversion 
rules. 

• Manually profiling the SensorML elements to match the elements defined in the generic logical 
model 

• Adapting similar existing SensorML or other standards-based sensor XML instance examples 
developed by other people. This approach can only be applied to simple models of the same sensor 
types. 

• Etc.  

Creating automatic mapping templates can be very demanding and sophisticated; hence in the dissertation 
we adopted the last two approaches. This is sufficient for explaining the mapping concept. Following are 
examples of the mapping results. 

The root element of a SensorML document instance should reference important namespaces for standard 
encodings, like sml (sensor model language), gml (geography markup language), ism (intelligence 
community information security marking), and swe (SWE common encodings). The SensorML XSD file 
contains the necessary includes and imports of these various encodings (see Appendix 12.4.1). 

Any constraints related to the sensor model instance, like time period for which the document can be 
used, whether the document is classified (non-public) or restricted for use by certain individuals or 
authorities, etc., can also be declared in the document (see Appendices 12.4). 

The physical characteristics like device dimensions, power/battery requirements, etc., can also be 
documented. Information about the capabilities of the sensor, like supported measurement functions or 
operations and data types, are very important for sensor discovery and selection. Figure 58 illustrates 
some of the TPS capabilities described using OGC SensorML. 

<sml:capabilities name="MeasurementFunctionCapabilities"> 
 <swe:DataRecord gml:id="measurementFunctionTypes"> 
<swe:field name="AngleMeasurement" xlink:href="#AngleSensor"/> 
   <swe:field name="AngleMeasurementResolution"> 
    <swe:Quantity gml:id="displayLeastCount"> 
     <swe:uom code="sec"/> 
     <swe:quality> 
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<swe:Quantity referenceFrame="ISO17123-3"> 
       <swe:uom code="sec"/> 
       <swe:value>1.5</swe:value> 
      </swe:Quantity> 
     </swe:quality> 
     <swe:value>1</swe:value> 
    </swe:Quantity> 
   </swe:field> 
<swe:field name="DistanceMeasurementResolution" xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (Infrared-IR)" xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (PinPoint Reflectorless-RL)" 
xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (Long Range-LR)" xlink:href="#EDMSensor"/> 
<swe:field name="Automatic Target Recognition" xlink:href="#CCDSensor"/> 
<swe:field name="Electronic Guide Light" xlink:href="#EGL"/> 
  <swe:field name="Power Search" xlink:href="PS"/> 
  <swe:field name="Remote Controlled" xlink:href="urn:agis:def 
:sensors:RemoteControl"/> 
 </swe:DataRecord> 
</sml:capabilities> 

Figure 58: TPS Measurement Capabilities 

For tabular view of TPS measurement capabilities, see Table 16.  

Also of very importance is information about the limitations of a sensor due to certain physical and non-
physical conditions. 

 Figure 59 shows a sample of the model. Appendices 12.3.1 and 12.3.2 describe some of these limiting 
conditions of a TPS and GPS in detail. 

<sml:capabilities name="OperationalConditions" xlink:href="./ConditionsList.xml"> 
 <swe:DataRecord gml:id="temperatureConditions"> 
  <swe:field name="MeasuringTemperature"> 
   <swe:QuantityRange definition="urn:ogc:def:property 

:OGC:temperature"> 
    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-20 50</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="StorageTemperature"> 
   <swe:QuantityRange definition="urn:ogc:def:property 

:OGC:temperature"> 
    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-40 70</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <!-- Exposure to water, dust, etc.--> 
 </swe:DataRecord> 
</sml:capabilities> 

Figure 59: TPS Limitations 
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Table 17 shows a tabular presentation of TPS limitations. 

Sensor Operating Conditions (swe:DataRecord) 

Field Type Unit Values 

measuringTemperature QuantityRange degCel (°) -20 to 50 

storageTemperature QuantityRange degCel (°) -40 to 70 

 

Table 17: Sensor Operating Conditions 

For the purposes of georeferencing the samples or measurements made by a particular sensor into a 
specific coordinate system of the target databases or storage system, geographic information like the 
GeoPosition of the sensor and its coordinate system frame can also be modelled. Figure 60 describes the 
TPS geographic information.  

<sml:position name="TPSPosition"> 
<swe:Position localFrame="#TPS_Sensor_Frame" referenceFrame="urn:ogc:crs:EPSG:31493"> 
  <swe:time> 
   <swe:Time referenceFrame="#SystemClockTRS"> 
   <!--get current time--> 
    <swe:value>now</swe:value> 
   </swe:Time> 
  </swe:time> 
  <swe:location> 

<swe:Vector gml:id="TPSLocation" 
definition="urn:ogc:def:property:OGC:location"> 

    <swe:coordinate name="x coordinate"> 
     <swe:Quantity axisID="X"> 
      <swe:uom code="m"/> 
      <swe:quality> 

<swe:Quantity gml:id="standardDeviationX"> 
       <swe:uom code="m"/> 
       <swe:value>0.006</swe:value> 
       </swe:Quantity> 
      </swe:quality> 
      <swe:value>3492570.00</swe:value> 
     </swe:Quantity> 
    </swe:coordinate> 
    <...> 

Figure 60: TPS GeoPosition Information 
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Table 18 explains the XML instance contents. 

TPS GeoPosition Information 

Local Frame 

(local coordinate system) 

TPS_Sensor_Frame 

Spatial ReferenceFrame e.g. EPSG:31493 

Temporal ReferenceFrame System Clock 

Locations 

(vector) 

X coordinate 3492570.00 m 

Quality 

(std Deviation X) 

0.006 m 

… … 

 
Table 18: TPS GeoPosition Information Example 

 
See Appendices 12.2 and 12.4 for detailed information. Note that for non-geosensors like extensometers, 
digital cameras, time domain reflectometers (TDRs), etc., the position information can be provided by 
geosensors like the TPS, GNSS receiver, etc. See examples of the digital camera and TDR model 
instances in the aforementioned appendices. Note also that the measurable properties can be associated 
with quality information. 
Other necessary information resources for the system integrators or developers are the sensor system 
documentation. References to system manuals, technical specifications, etc., can be included in a 
SensorML document (see Figure 61). 

<sml:member name="Specification Document" 
xlink:arcrole="urn:ogc:def:property:OGC:specificationSheet"> 

   <sml:Document> 
    <gml:description>System Technical Specification 

</gml:description>   
 <sml:format>mime/pdf</sml:format> 

    <sml:onlineResource  
xlink:href="http://www.leica-geosystems.com"> 
</sml:onlineResource> 

   </sml:Document> 
  </sml:member> 

Figure 61: TPS Documentation Resources References 

Figure 62 provides information about the calibration event history of the sensor. This information is very 
important for enhancing understanding of the sensor’s state model and its respective measurements.  

<sml:member name="calibration" 
xlink:arcrole="urn:ogc:def:property:OGC:calibration"> 

   <sml:Event> 
    <sml:date>2007-03-11T08:00:00Z</sml:date> 
     <gml:description>TPS Calibration Event 

</gml:description> 
     <sml:contact xlink:arcrole="manufacturer"/> 
     <sml:documentation xlink:arcrole="calibrationReport"> 
      <sml:Document gml:id="CalibTCA1800-2007-03-11"> 

<gml:description>Calibration report and data 
about the sensor system deployment 
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</gml:description> 
<sml:onlineResource 
xlink:href="http://manufDomain.com/ 
TCACalibReport12345.pdf"/> 

      </sml:Document> 
     </sml:documentation> 
   </sml:Event> 
  </sml:member> 

Figure 62: TPS Calibration Event History 

Following is a tabular presentation of the calibration event object. 

Calibration Event  

Event Date 2007-03-11T08:00:00Z

Contact (Responsible Authority) Manufacturer 

Available Documentation 

(e.g. CalibrationReport) 

CalibTCA1800-2007-03-11

Online Resource (URI) http://manufDomain.com/ 
TCACalibReport12345.pdf 

 
Table 19: Important Calibration Event Information 

 
In addition to the calibration event object, SensorML also allows for encoding information about the 
taskable parameters (e.g., editable or configurable calibration data) within the ‘Parameters’ element. 
Finally, in addition to sensor interface definitions (see model instances in Appendix 12.4), SensorML 
provides elements that can be used to model the sensor process methods (e.g., algorithms, rules set, and 
any implementation details), see Figure 63. 

   <sml:ProcessMethod> 
    <sml:implementation 

xlink:href="http://myDomain.de/TPS_Plugin_Interfaces.xml"> 
<sml:ImplementationCode language="java" 
framework="AGISSensorPluginsFramework"> 

     <sml:sourceRef></sml:sourceRef> 
<sml:binaryRef xlink:arcrole="GeotechSoftware"> 
</sml:binaryRef> 

     </sml:ImplementationCode> 
    </sml:implementation> 
   </sml:ProcessMethod> 
    

Figure 63: TPS Process Method 

As an example of a process model, a TPS can describe how its raw measurements (e.g. distances, angles) 
, together with available input parameters (e.g. corrective quantities related to atmospheric conditions, 
calibration data, etc.), can be feed into a computational component (e.g. based on least squares method, 
etc.) and produces final measurements (e.g. coordinates). The main advantage of a process model is that 
the users can store their raw measurements and the associated SensorML document, which they can use at 
any time in the future to recalculate the coordinates. This approach avoids the current problem of 
measurements data ‘graveyards’ and allows for better integration of sensor measurements into 
applications. 
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6.2.5. Sensor System Model Tests and Validation 

The developed sensor models have to be tested within a software application, for example, a sensor plug-
in. These tests provide invaluable checks about the usefulness or applicability of the sensor model; 
adequacy and quality (e.g. model correctness) of the modelled information matched against the 
application (e.g., landslide monitoring) requirements or expectations. Also the modelled geographic 
information (e.g. sensor position) and calibration information can be tested for correct georeferencing, i.e. 
using a controlled sample of sensor measurements data. 

Error free parsing tests of the developed logical models (GLSMs and SBSMs) can be performed, as well 
as results/output consistency of the queries about sensor data (e.g. metadata, I/O definitions, etc.). The 
computational (or mathematical) models can be tested for accurate formulation or design. 

Validation of a sensor model can be proved through the aforementioned test cases. In short, the results of 
the model tests should help the users to assess the usefulness of the developed logical sensor model. Basic 
validation of the model for conformance with the XML rules can also be done using common modelling 
tools like Altova’s XMLSpy, Microsoft Visual Studio.NET, etc. 

6.3. Proposed Generic Sensor Access and Control Service (SACS) 
This subsection describes a SACS for use in interoperable management of sensors in (landslide) 
monitoring applications. 

6.3.1. General Overview of Sensor Service Framework 

Figure 64 shows a simplified sensor framework architecture that can be used in a landslide monitoring 
application. The core of this framework is the SACS which the system developer or integrator has to 
integrate or implement. Through the higher-level services, for example, based on OGC SWE framework 
and other standards, a user can be able to search and discover available sensors in the region of interest, 
query the health status, capabilities, etc. of the sensors, and even visualise the sensors in a map. 
Alarms/alerts can be received via a sensor alert service (SAS). Common DBMS like Oracle Database or 
Sensor Data Repository, PostGIS database, Microsoft SQL Server, as well as common data stream 
management system (DSMS) can be used for managing sensor measurements and observations. A DSMS 
can have complex functions designed to manage different data streams (e.g., video data) and can perform 
pre-processing (e.g., video compression, filtering, etc.) before transmitting the data to higher-level 
services. 
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Figure 64: General Overview of a Sensor Service Framework with SACS 

The communication fabric can be built so that it can alternate between synchronous mode (e.g. HTTP 
request/response model) and asynchronous mode (e.g., TCP-based, peer-to-peer, etc.). Interoperable 
communication can be supported by using any of the existing standard protocols. 
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Figure 65 shows an overview of the SACS main components. 

The following is an explanation of the components in the above diagram. 

6.3.2. Sensor Management (Plug-in) Engine 

The sensor plug-in engine controls all the sensors that are used by the SACS instance.  

Table 20 shows some of the important operations that build the engine. The basic requirement of the 
engine is that the sensor plug-in implements a generic plug-in interface (see the ExecuteSensorPlugins 
operation).  

Table 21 lists the core interfaces of a sensor plug-in. 

 

 

 

 

Figure 65: SACS Interfaces 
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Operation Description 

LoadSensorPlugin (pID) Loads a sensor plug-in with the given ID. Returns 
a Boolean, e.g. true if everything is ok. 

RemoveSensorPlugin(pID) Removes a plug-in with the given ID. Returns a 
Boolean. 

ExecuteSensorPlugins() Runs all the installed plug-ins. Each plug-in is 
assigned a separate thread or process. This 
operation invokes internally the Init, Start, and 
GetUserInterface implementations of the generic 
plug-in interface. Returns a Boolean. 

LoadLogicalSensorModel(SensorID, 
ModelType,ModelName,Path) 
 
 
ValidateSensorModel(ModelName,ModelType, 
ModelSchema) 

Loads the sensor logical model document. Its 
parameters can be the sensor ID, modelType (i.e. 
an enumeration type with GLSM, SBSM), unique 
model instance name, and path (file location or 
URI). The return type is an XML schema 
document of the models. 
The model instance can be validated against the 
model schema. This is usually done outside the 
engine for performance reasons (e.g. using 
external modelling software). 

RegisterSensorPluginsWithServiceManager(Plugin
sList) 

Registers all the available sensors with the SACS 
service manager. It needs a list of plug-ins as 
input. 

 

Table 20: Sensor Plug-in Engine Operations Sample 

Component Description 

Init(Object:Host,XMLDocument:PluginDescr) Initializes a plug-in and it takes in a host object as a 
parameter. The plug-in uses this host object to invoke 
any important functions that host makes available. The 
document object is an XML document instance of the 
sensor model (e.g. SBSM or GLSM). 

Start() Starts the plug-in. Opens the communication channel 
between the sensor system and the software 
application. 

GetUserInterface(Object:UIContainer) Retrieves the GUI, if available. 

GetPluginInterface() Returns an XML interface definition file. 

GetSensorDescription() Retrieves the sensor model information as a complete 
XML document 

Stop() Stops the plug-in. 
ShutDown() Removes the plug-in from the attached process. 
GetCurrentPosition() Returns the geographical position of the sensor 
GetPositionQuality() Returns the quality information 
GetMeasurements() Retrieves all the measurements made by the sensor 

system at the time of request. The output is an XML 
document. 

GetObservationMode() Observation mode, as an ObsModeType enumeration 
element. For example, an EDM may be in tracking, fast 
or normal measurement mode. 

SetObservationMode(ObsModeType) Sets the observation mode using any element of the 
enumeration type 

SetOutputFormat(FormatEncodingType) Sets the data output format as defined in the 
capabilities document. 

 

Table 21: Generic Sensor Plug-in Interface 
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6.3.3. Sensor Service Manager 

The service manager is responsible for the management of the SACS instances. Higher-services like SOS, 
SPS, etc. can only interact with the SACS via the sensor service manager which defines the core SACS 
interfaces. 

Component Description 

GetServiceDescription() Gets description of the SACS, e.g. as a WSDL document or 
other formalized XML format. 

GetAvailableSensors() Gets a list of all available and useable sensors. Sensor 
registries can use this interface to get sensors list. 

GetSensorDescription(SensorID) Retrieves the description of a sensor as an XML document 
(e.g. SensorML, or Generic Model Instance). SensorID is a 
unique string. 

GetSensorObservations(SensorID, 
FormatEncodingType) 

Retrieves Observations/Measurements based on the 
FormatEncodingType e.g. SWE Common, O&M, SOAP 
XML, etc. 

GetSensorCalibrationData(SensorID) Gets the Sensor Calibration Information. 

GetDeviceStatus(SensorID) Gets the Health Status of the sensor. 
GetSensorCapabilities(SensorID) Retrieves the sensor capabilities document. 
GetSensorCharacteristics(SensorID) Gets the characteristics of the sensor 
GetContactInfo(SensorID) Gets the model developer contact information 
GetSensorConfiguration(SensorID) Gets the sensor configuration information 
SetSensorConfiguration(SensorID, 
ParametersCollection) 

Sets sensor configurations based on the taskable parameters 
specified in the parameters collection. If no parameters are 
given, the system uses a configuration file. 

GetOperatingConditions(SensorID) Gets the sensor system operating and atmospheric 
conditions. 

GetMeasurementsConditions(SensorID) Gets the measurements conditions, e.g. conditions that have 
to be met in order for a sensor to provide measurements. For 
example, a sensor may be only set to make measurements 
when certain pre-defined values are exceeded, or within 
certain levels of its available battery power. 

SensorEventManager This interface can be used to support (asynchronous) 
management of sensors. The sensors can be invoked as 
events. It defines the following interfaces: Execute(), 
addEventListener(sensorID), 
removeEventListener(sensorID). 

SensorDataEventManager This interface acts as an event handler. It retrieves the data 
from the sensor event. It contains a single operation called 
SensorEvent(Object:data,Host:callingApp,Boolean:Status,
Object: source)  

 

Table 22: Core SACS Interfaces 

For interoperability purposes, all the above interfaces should return results that are conformant to the 
standard-encoding language data types or the generic logical model data types. 

6.3.4. Process Executor 

The service manager delegates the parsing and processing tasks to the process executor. The interfaces 
LoadLogicalSensorModel and the optional ValidateSensorModel are actually defined by the process 
executor. This component should enable the parsing of the logical models, e.g. GLSMs and SBSMs. The 
reading and writing of XML documents for the service manager is done by the process executor. For 
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advanced processing, it might be possible that this component extends the existing XML parsers in order 
to properly handle the defined logical models. 

6.3.5. Streams and Data Management Component 

This component assists the service manager by handling all the data and streams management tasks. For 
the dissertation, the component can be defined as a data retrieval and mapping or conversion tool. It 
receives the data from the sensor plug-ins and forwards it to the sensor service manager for transmission. 
In cases where the sensor plug-in submits raw measurements or proprietary data formats to the service 
manager, it is the responsibility of the data management component to convert the data into standard or 
common encodings like SWE Common, O&M, etc. Two interfaces can be defined respectively: 
DelegateData(Data) and EncodeData(FormatEncodingType).  Format encoding types can also include 
XML Binary format (EXI) and other binary serialization standard formats, like HDF, netCDF, GRIB, 
etc., for handling large volumes of data.  

6.4. Summary 
In this chapter, we have discussed the conceptual framework of the dissertation. A general workflow for 
defining and specifying generic logical sensor models, together with the associated results, has been 
given. The generic logical models can be used as reference models for comparing or analysing the 
applicability of different standards-based sensor modelling languages. We have discussed about the 
transformation or mapping of generic logical models to standard-based encodings (i.e. OGC SensorML). 
Examples of SensorML encodings have also been given in order to validate the applicability of 
SensorML.  

In short, SensorML is verbose as compared to the generic logical models (see also Appendices 12.2 and 
12.4). As the amount of detail about the sensor increases, the SensorML documents become less 
comprehensive or difficult to read. Some level of optimisation is required. Also the inclusion of GML and 
other standards into the SensorML is making it complex. The simplicity of our proposed generic logical 
models enhances better understanding of the sensors being modelled. Also the generic logical models are 
sensor-type based and clearly reveal associated semantics at each element level. On the other hand, 
SensorML is a language designed to model sensor instances and requires some level of expertise to use it. 
Also, the semantics is not direct but can be derived by reading the nested or child elements of a parent 
element. However, from our experiences, we can declare that the current version of SensorML standard 
can be successfully applied to model different sensors as demonstrated in this chapter.  

We have also proposed an approach for integrating multi-sensors in an application and at the same time 
paying attention to resolving some of the integration conflicts discussed before, in order to achieve some 
level of interoperability. The last sections of this chapter have discussed a generic sensor access and 
control service, within a general sensor framework. The sensor framework serves to illustrate how SACS 
can generally fit into the OGC SWE concept as well as how monitoring applications can integrate or 
manage multi-sensors using it. However, the SACS concept we have suggested can be refined in detail. 
One approach is by developing several services for different application domains and the experiences 
gained from the results can then further be used to extend or modify the concept. 

The final sensor models presented in this chapter have been adopted during usage in our landslide 
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monitoring application. We have modified (i.e., extended, specified, and refined) the sensor models 
several times during the prototype development based on the application requirements. The following 
Chapter 7 explains the usage of the sensor models and serves as a proof-of-concept of the dissertation. 
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7. Proof of Concept in a Landslide Monitoring Application 
In the previous chapter, we have provided a conceptual framework in which the generic logical and 
standards-based sensor models play an important role in supporting interoperable management of sensors. 
They do provide a common query interface about sensors (i.e. common data contracts, and 
communication interfaces). Also discussed is a SACS concept which relies on the sensor plug-in engine 
and service manager for sensor management. The whole SACS framework provides a basic foundation on 
which interoperable management of sensors can be achieved. In addition, the concept of wrapping still 
plays a major role in encapsulating the proprietary differences of different vendors, and the main goal is 
to expose only common or standards-based interfaces. 

This chapter will show the practical applicability of the discussed concepts within a landslide monitoring 
application. Adopted for the proof-of-concept is a sophisticated, open standards-based field-based mobile 
data acquisition system we have developed for landslide monitoring, under the research programme 
called “Advancements of Geosciences” [http://www.geoservices.uni-osnabrueck.de, Plan et al., 2004; 
Reinhardt et al., 2005; Beunig et al., 2006], sponsored by the German Ministry of Education and Research 
(BMBF – Bundesministerium fuer Bildung und Forschung). This system makes fully use of the 
possibilities of ubiquitous access – via wireless technologies – to various sources of information 
(including sensors). The system’s mobile client employs sensors for the capturing of new geometries of 
features or for the updating geometries of existing features. 

7.1. Mobile Geospatial Data Acquisition System 

7.1.1. Project Background 

The main motivation for the project has emanated from the need to provide a generic, standards-based 
data acquisition concept that enables field workers to access, analyze, acquire, quality check, and update 
geospatial data, whilst in the field. The system is conceptualised for use in landslide monitoring 
applications. 

The current acquisition systems usually require experienced users with knowledge about the existing data 
and the underlying data models [Pundt, 2002]. Furthermore, for data acquisition systems that utilize 
different sensor systems, the users are expected to fully understand and correctly use these sensing 
systems. Before commencing any field work, the users have to examine and synchronize all the necessary 
data. Later on, in the field, if any unexpected circumstances occur, there is no possibility for further 
download of data relevant to the situation. Also, acquisition incompleteness and incorrectness of the data 
are often recognized when the field worker is back in the office, probably during the server update. In 
case, where the newly acquired data do not meet all the conditions of the data model and corresponding 
quality constraints, the worker might even have to revisit the exploration site. The issues related to data 
quality handling have been dealt with in [Wang 2008; Mäs et al, 2005] and the sensor management part is 
the work of this dissertation. 

7.1.2. Application Scenario and Description of Test Sites 

In cooperation with the local authorities (Landesamt fuer Geologie, Rohstoffe und Bergbau, Baden-
Wuerttemberg; Bayerisches Geologies Landesamt; Wasserwirtschaftsamt Rosenheim), two test areas 
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have been selected for practical tests near Balingen and Rosenheim, Germany. These areas have very 
unstable surfaces, and it is suspected that rapid debris, rock masses, and other loose material may fall, at 
anytime, from the mountain slopes and may cause undesirable hazards to people using nearby roads, 
walking paths or to other close infrastructures. For that reason, the authorities have embarked on 
continuous monitoring of these areas using permanently on-site installed geotechnical and 
geodetic/surveying sensor systems. For example, there are a number of extensometers observing the 
inevitable seasonal expansions and contractions of the ditches (ger.: Spalten), cracks or gaps. Figure 66 
shows a ditch being monitored by an extensometer.  

 

 

 

 

 

 

 

 

 

Figure 67 illustrates the above image in a simple data model associating an extensometer to a ditch. 

 

Figure 67: Ditch-Extensometer Data Model 

The extensometer’s daily measurements are sent regularly to a geological office for storage and 
evaluation. Also, automatic total stations, installed at remote locations from the observed features, register 
any surface movements (e.g., of embankments (ger.: Boeschung) close to roads or rivers). If these 
sensors’ measurements exceed a pre-defined threshold, an alarm is generated and sent to the responsible 
authorities. 

 

Figure 66: Extensometer monitoring a Ditch. 
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In case of an alarm, a responsible person goes to the field site and verifies the alarmed events. The mobile 
client also supports the user in decision-making process. For example, the user can download the data (i.e. 
map for navigation in the field) from the office server and visually compares the features (e.g. Ditches) in 
the database with the current physical environment. This will help the user to locate new ditches (see 
Figure 68) for measuring, and any other measurement points or active zones.  

For existing features that have changed their geometry due to current landslide movements, the user can 
also download the previous measurements and information about the sensors at the time of acquisition. 
With this information, the user can also recreate the features from previous measurements. If any 
significant changes occur in the area, there may be need for updating and acquiring new features like new 
cracks, ditches, gaps, etc. 

 

Figure 68: New Ditch Example 

The geometry of the new features can be obtained by the measurements and the attribute information can 
be filled automatically or interactively. During the data acquisition process, quality checks or measures 
have to be performed before transacting the data on the geodatabase server. 

7.1.3. System Architecture Overview 

Figure 69 shows a generic architecture on which our mobile system is based on. A client can be any 
portable, rugged device like tablet PC, PDA or laptop with pivoting touch screen. The clients can 
communicate to the services via mobile communication technologies like WLAN, GPRS, UMTS and 
Bluetooth. Cabled communication means can be used to complement wireless means, especially when 
field servers are deployed. Note that the current wireless technologies like WLAN and UMTS can 
provide sufficient bandwidth for transporting larger amounts of data. 

The clients can have access to different geoservices via standardized interfaces like OGC Web Map 
Services (WMS), WFS and other open service interfaces. In order to achieve full interoperability, the 
whole system should strictly adhere to standards. 

The database layer can be built upon common databases like Oracle Spatial Database Server, OpenGIS 
Databases, etc. It is important that these database systems provide data that is encoded in standard formats 
like OGC GML, SWE Common data, etc. Existing proprietary or legacy data formats can be mapped 
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using wrappers into standard formats. 

Since the collection of new data is done using different sensors, the implementation design of the system 
architecture should adhere to the concepts presented in this dissertation, in order to support interoperable 
interfacing to these various instruments. 

 

Figure 69: Generic Architecture for Mobile Geodata Acquisition System 

The sensor management service is based on the SACS concept discussed in the previous chapter.  

Following are the specific characteristics of our prototype data acquisition system: 

Mobile Client (Geotech):  A tablet PC running a Geotech software (Java application). The Geotech 
software is mainly composed of a GeoEditor and various plug-ins. The Geoditor is a plug-ins host with 
functionality like visualisation (using scalable vector graphics (SVG) format [W3C-SVG, 2003]]), 
graphical user interface, etc. For data acquisition, sensor plug-ins like the GPS, TPS, and extensometer, 
have been used. 

Communication Layer: Physical communication includes WLAN, GSM, Bluetooth and serial cabling 
(i.e. RS-232). 

Application Layer: Includes a Web Feature Service with transaction capability (WFS-T), and Sensor 
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Management Service. The web server consists of Apache Tomcat Servlet container and the Apache Web 
Server. The communication model used is the HTTP request/response. 

Sensors Layer: Physical devices like total station, GPS receivers, and extensometers. Interaction with the 
sensors relies on the logical sensor models. 

Database Layer: PostGIS Database for the application data. Currently, the sensor models are stored 
separately in file directories. Since these models are XML-based, they can also be stored in databases like 
the Oracle which support the XML format and XSQL for querying the database. 

7.1.4. Sensor Wrappers 

Before showing some of the system demonstrations and results, this subsection explains the sensor 
wrapping techniques used for the prototype. There are currently different tools that exist to support 
automated wrapping of sensor APIs to suit the targeted system (see previous chapter). However, we 
recommend use of generic wrapping tools that support automation with very minimal or no manual post-
processing of the results. As an example, we have used an open source tool called SWIG 
[http://www.swig.org] for generating a Java TPS wrapper for the GeoCOM C/C++ library. The only 
preparatory work that the developer has to do is to create a mapping interface file, which the generator 
takes to perform the correct mapping of data types and structures as well as interface or method 
signatures. The dissertation author has extensively participated in testing the SWIG platform for correct 
wrapping of C/C++ to Java interfaces. 

SWIG is an interface compiler that connects programs written in C/C++ with scripting languages (e.g. 
Perl, PHP, Python, Ruby, etc.) and programming languages (e.g. C#, Java, Lua, Common Lisp, etc.). In 
case of C/C++, it uses the header file declarations as input for wrapper generation. This platform can also 
be used for rapid application development – testing communication between external library and target 
application. Figure 70 shows a simplified workflow for integrating C/C++ libraries with different 
language libraries. 

 

Figure 70: Simplified SWIG Workflow 

Here is an example of an interface mapping rule. 

GeoCOM C/C++ Interface: 

void BAP_MeasDistanceAngle(BAP_MEASURE_PRG &DistMode, double &dHz, double &dV, double 

&dDist);  
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This method reads the distance measuring mode (DistMode) from an enumeration data structure and 
returns references (&) to the TPS raw measurements (dHz = horizontal angle, dV=vertical angle, and 
dDist=slope distance). However, for our Java application to know that the raw measurements are output 
values, the mapping interface file has to define a mapping rule as follows: 

%exception BAP_MeasDistanceAngle(BAP_MEASURE_PRG &DistMode, double &dHz, double &dV, 
double &dDist) 

{ 

Result = (void)(BAP_MeasDistanceAngle((BAP_MEASURE_PRG&)*arg1,*arg2,*arg3,*arg4);  

}  

%apply double &OUTPUT {double &dHz, double &dV, double &dDist}; 

From the above snippet, the %exception command tells the compiler to treat this GeoCOM function as a 
special case and redefines the function as shown by result (in a syntax the JVM understands). Then use 
%apply to tell the JVM that these parameters should be treated as output.   

With respect to sensor wrapping and from our experiences, we conclude that: 

• Complex data types and structures always require that a developer or system integrator define some 
rules for correct mapping from the source system to the target system. 

• Rapid deployment of sensors is very important for mission-critical applications; therefore one should 
avoid software wrapping tools that require much post-manual editing or those that base on trial-and 
error approach in order to achieve acceptable results. 

7.1.5. Data Acquisition Workflow 

This subsection explains a simplified workflow for acquiring new features (e.g. ditches, cracks, other 
measurement points, etc.). In our application, two use cases (insert data and update data) required that 
the geologist measures the geometry of the features by using various sensor systems (e.g. GNSS, TPS, 
etc.), and then update the office geodatabases from the field. The “insert” use case is for newly acquired 
features and the “update” use case involves editing (i.e. adding, deleting or modifying) parts of the 
geometry and/or attributes of the existing features. 

Figure 71 shows the graphical user interface for the mobile client. An SVG display of landslide area (with 
features like ditches, roads …) is shown in the map control and on the right a “Feature Acquisition Plug-
in” for geodata acquisition. The feature acquisition plug-ins uses different methods for acquiring 
measurements data. 
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Figure 71: Overview Mobile Client Graphical User Interface (GUI) 

It is during system application initialisation that an instance of SACS is created. At application start-up, 
the SACS instance will use its sensor service manager instance to read the sensor registry and gets all the 
available sensors using the ‘GetAvailableSensors’ interface. Currently, the sensor registry is a simple 
XML configuration file that contains a list of the sensor systems. Table 23 shows an example of the 
contents of the file. 

Configuration File 

Sensor1  
SensorID TPS_Leica_TCA_1800 
SensorType TPS 
ModelType GLSM 
ModelLocation c:/kaad/geotech/SensorModels/glsm 
ValidateModel No 
Sensor2  
SensorID ID_1 
SensorType GNSS (GPS) 
ModelType SBSM 
ModelLocation c:/kaad/geotech/SensorModels/sbsm 
ValidateModel No 
… … 

 

Table 23: Configuration File Contents Example 

The logical sensor models (GLSMs and SBSMs) are stored in respective folders as shown in the 
configuration file. The sensor models have been defined in chapter 6. 

The Feature Acquisition plug-in gets the list of registered sensors from the sensor service manager and 
displays them in the graphical user interface (GUI) as shown in Figure 71. The combo box lists the 
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physical sensing devices (GPS, TPS) and position simulators. Note that it is at the application start-up that 
the sensor manager tells the sensor plug-in engine to load all the available sensors into the application 
space. This means that relevant software objects are reserved for storing the loaded models. The 
responsibilities of the sensor plug-in engine are as follows: 

• Loading and initializing the sensor plug-ins (e.g. TPS Plug-in, GPS Plug-in, Extensometer Plug-in) 
into the application space 

• Running the loaded sensor plug-ins 

• If the configuration file sets the ‘validateModel’ parameter to ‘Yes’, then the respective sensor 
instance is validated against the model schema. Note that validation is usually done using external 
modelling software; hence the validation is turned off. 

• Creates the plug-ins using the defined sensor models (see chapter 6) 

• Registers the available sensors with the service manager instance 

See chapter 6 in section 6.3.2 for the sensor plug-in engine interfaces and also for information on how the 
engine interacts with individual sensor plug-ins  

Following is an explanation of the workflow for geodata acquisition by measurements. 

1. Access Sensor Model Information 

Based on the logical sensor models, the user can now access and control the sensor system 
information via defined SACS interfaces (see chapter 6, section 6.3). Figure 72 shows a simplified 
interface for getting sensor information about the measurement capabilities, physical characteristics, 
operating conditions, and model contact information. 

 

Figure 72: Sensor Model Query Interface 

Depending on the selected sensor and type of the model being used (e.g. generic or standards-based), 
the response to the queries are in form of XML. For example, by clicking the 
‘GetMeasurementCapabilities’ button, the Feature Acquisition plug-in sends a request to SACS 
instance which then retrieves an XML document using the ‘GetSensorCapabilities’ interface of the 
sensor service manager. For an example of the results, see XML instances in chapter 6, Figure 56 



   115

and Figure 58. 

By clicking the ‘GetOperatingConditions’, the results can be as shown in Figure 53 and Figure 59. 
The information that the user gets through these queries can help him to better understand the sensor 
system and the measurements data being delivered. On the other hand, the software application is 
also able to know how to connect and change parameters of any specific sensor by reading the 
models. It can also know the data format in which the measurements are being encoded. Other 
information about the sensor geolocation and power levels can be obtained from the models. 

Note also that the user interface for querying the models can be adjusted to have more buttons, e.g., 
for setting different sensor system parameters like operation mode or the data types in which the 
measurements should be encoded (e.g. own defined generic types, GML or SWE common data 
types). Equipped with the knowledge about the installed sensors and their respective data output, the 
user can go ahead and carry the following steps. 

2. Select Measuring Method  

In the Feature Acquisition plug-in (see Figure 73) the user can select a method for using during data 
acquisition (e.g., GPS, TPS) or any of the displayed simulators. 

 

Figure 73: Select Method for Measuring (i.e. Physical Sensor System or Simulation) 

If the device communication settings (read from the sensor model instance) are not correct, a 
message box can be displayed (see Figure 74 for the TPS). 
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Figure 74: GeoCOM Communication Settings 

If the communication settings are correct but the sensor system is not connected, the user is notified 
(Figure 75). 

 

Figure 75: TPS Response message on opening port failure. 

The error codes can also be documented in a separate XML file. 

3. Select Feature Class 

If the selected measuring method is properly configured and working, the user can get the list of all 
feature classes specified in the geoservice data model (e.g. from the WFS capabilities document). 
Figure 76 shows a combo box dynamically filled with the classes Ditch, Way and ObservedPoint.  

 

Figure 76: Get Feature Classes 

 The next step is to measure the feature’s geometry. 
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4. Measure Feature Geometry 

The selected feature geometry (e.g. point, line, and polygon) determines the measuring process. For 
example, a ditch is defined as a polygon so a series of measurements is expected and the first 
observed point will be identical to the last point in order to close the polygon. A line has to have at 
least two points, and the first and last point should not be the same. 

5. Record Feature Attributes 

If the geometry is completed, a form is displayed for entering the attribute information. 

6. Create New Feature 

The last step is to attach the attributes to the respective geometry and create a new feature. For 
interoperability purposes, all the features are encoded in GML and send to the map control which 
then renders the features into SVG format. Figure 77 shows a new ditch highlighted in the map 
control. The GPS can be used to acquire different observed points. Also on the right side, a GPS 
receiver position and quality information (HDOP and error in position) are shown. This information 
can also be encoded in a GPS model instance. 

 

 

Figure 77: GPS Position and Quality Information 

Finally, if quality checks are performed and the newly acquired features are topologically and 
geometrically consistent with the geodatabase model, then the user can insert the features into the 
office database. 

Note that raw measurements data from the sensor systems can also be encoded in common formats (e.g. 
SWE Common, NMEA, O&M, etc.) and can be stored on the geoserver together with the respective 
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sensor model instances. 

Following is a brief discussion about the field tests and the results. 

7.1.6. Field Tests and Results 

Figure 78 gives an overview of the field test configuration. The whole test area covered an area of 
approximately 150 by 250 m2. The terrain varied ranging from very steep, undulated to relatively flat 
areas. The terrain appearance determined the number of WLAN access points to be installed. Also, in 
areas where access to the office geodatabases (via GSM/GPRS) has not been possible, a field server has 
been used. 

 

Figure 78: Balingen System Tests Configuration 

The results of the tests can be summarised as follows: 

• The proposed system has successfully proved that it can greatly support the user workflows by 
allowing him to make decision in the field about any changes in the landslide area, visualize all the 
data already acquired as well as previous measurements. The system can be connected to different 
sensors using different sensor models that are encoded in generic or standard-based formats. The 
pluggable sensor plug-ins made the system quickly sensor-aware. The newly acquired features have 
been encoded using standard-formats like GML. In short, the system provides a simplified framework 
for interoperable management of sensors and their respective data. 

• GPS availability: With low-cost GPS receivers that are aimed for mass marketing, it has not been 
possible to receive signals in most parts of the wooded areas. First tests have shown that this is much 
better to use professional receivers. However, sensor systems like total stations (TPSs) can greatly 
complement GNSS devices in cases of no signal availability. 

• Extensometers are very sensitive to disturbances, e.g. animals or tree falls. In order to avoid 
unnecessary costs of field visits in cases of false alarms, visual sensors like digital cameras can be 
used. 
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• WLAN accessibility: The WLAN connections have been very stable and reliable in the whole test 
area. Figure 79 shows the field geoserver connected to the WLAN router. 

 

Figure 79: Field Geoserver and WLAN Router 

• Use of sensor networks with mobile GIS applications combined with in-field quality checks can 
provide powerful solutions for data acquisition systems. 

7.2. Results of Sensor Models Validation 
The generic and standards-based models have been tested and proved adequate for the described landslide 
monitoring application. The models have continually been improved during the usage in the application. 
Appendices 12.2, 12.3, and 12.4 contain examples of the model instances for total station (TPS), GPS 
receiver, extensometer, digital camera and time domain reflectometer (TDR). 

The information contained in the models could satisfy the case study landslide monitoring application, 
but these models may not be adequate for other applications. However, it is possible to extend the models 
since they are based on XML schema language. The rules for modification of XSD schemas also do apply 
to the defined models. For example, the data types like enumerations, patterns and facets can be used to 
define specific or limit data content and the ‘any’ element reserves room for adding later any data type or 
element. Abstract data types like MetadataType, PositionType, etc. can be modified by using extension or 
restriction operations of schema modelling software like Altova’s XMLSpy. Refer to chapter 2.2.4.1 for 
more information about XML schema extensibility. Also see chapter 6, section 6.2.5 for issues to 
consider during sensor system model tests and validation. 

However, following are some missing points and improvements to the developed sensor models.  

• The generic logical models (GLSMs) could support the XML schema concept of SubstitutionGroups 
and this could facilitate better extensibility of model elements or types by substitution. This means 
that entities belonging to the same group or that have an “is-a” relationship can be substituted for 
each other without breaking the code for parsing the models. 
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• The SensorML-based models (SBSMs) are very verbose and there is sometimes unavoidable usage of 
deep nesting the elements in order to fully model a particular element (e.g. sensor model component) 
or data type (e.g. measurements output), see sample instances in Appendix 12.4. This can eventually 
lead to degradation of performance of the software parsing the model instances. 

• The developed models could benefit from using standard interfaces like IEEE P1451 Smart 
Transducer Interfaces for defining the sensor model communication interfaces. 

• Etc. 

7.3. Summary 
This chapter has shown an example of the practical application of the dissertation concept in the field of 
mobile data acquisition in landslide monitoring applications. The data acquisition workflow of the system 
has been explained and the results of field tests and sensor model validation tests have also been 
discussed. The developed system prototype has been successfully tested in the landslide monitoring 
applications, but the concept can also be applied to other fields of applications. 

Following are the main advantages of the suggested concept for management of multi-sensors compared 
with the current industrial practices. 

• Support of non-proprietary (generic and standards-based) solutions enable interoperable usage of 
different sensor systems in a single application space as well as allow for easy exchange of 
measurements data encoded in common formats, thereby eliminating the overburdening data 
conversion problems. 

• It greatly reduces the time efforts required to integrate disparate sensor systems in new or existing 
legacy applications (i.e. via plug-and-play) as well as reduces application maintenance efforts. 

• Usage of sensor models affords us to preserve low-level sensor measurements data and the ability to 
reprocess that data sometime in the future. Lack of such models usually leads to ‘data graveyards’ 
long time after the measurements campaign. 

• Etc. 

Refer to chapter 4, section 2.2.4 for more information about the importance of sensor standards and 
specifications, and also see section 2.2.5.1 on the advantages of interoperable management of sensors in 
monitoring applications. 
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8. Final Summary 
This chapter provides an overall summary of the dissertation work. Following are the contributions 
matched against the objectives in chapter 1.2. 

• Propose a conceptual framework for interoperable model-based integration of multi-sensors: The 
dissertation has provided a concept for interoperable management of heterogeneous, multi-sensors 
within landslide monitoring applications. It has shown that interoperability can be achieved at 
different levels (e.g., community level and cross-community level). At community level, it can be 
sufficient to define and specify common, generic specifications of different sensor types that can 
enable easy exchange of sensor systems within that community. If there is need to ensure 
interoperability for broader, diverse communities at all scales (local, regional, national and 
international), international sensor standards and specifications should be used. Furthermore, the 
community defined sensor models play an important role in improving the current international 
standards and specifications that may be undergoing development, reengineering or refinement 
process. 

We have proposed a simplified architectural framework for managing different sensor systems. The 
core of the framework is the SACS which aims at extending the OGC SWE framework by providing 
a service that is only dedicated to handling sensor systems. 

• Define and specify minimal generic logical sensor models and perform detailed analysis of needs 
of landslide monitoring applications: We have analysed the detailed needs for data and sensors in 
landslide monitoring and early-warning applications, and we have also looked at the current situation 
with respect to sensor management in existing landslide monitoring applications. We have also 
defined and specified the logical sensor models and these can be extended in other applications, if 
necessary. The logical sensor models play a central role in our proposed conceptual framework. Our 
perspective is that these models provide a single portal or query interface for the respective sensor 
types. For users, it is through such models that they can gain knowledge about the sensors they are 
using as well as the provided measurements data. Equipped with detailed information about the 
sensors, both people and machines can make meaningful deductions about the provided 
measurements data. Especially for system integrators and developers, the logical models put the 
sensors out-of-the-box and enable them to access and use common interfaces with semantics attached 
(thereby avoiding misinterpretation), hence reducing the sensor system integration times. This is 
important for time-critical applications. 

• Propose a workflow for the development of logical sensor models: We have proposed a workflow 
for defining and specifying logical sensor models and have shown how these models can be mapped 
into standard models (e.g. using OGC SensorML, and SWE Common data types).  

• Research on methods and technologies for achieving interoperable integration of sensors: We have 
looked at the methods and techniques that can be employed in order to integrate multi-sensors in 
applications. We have also identified and discussed about the different types of integration conflicts 
that arise due to use of vendor-specific solutions (e.g. proprietary interfaces, protocols, and data 
formats), and have shown how some of these conflicts can be resolved at different levels of 
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granularity or complexity. The use of sensor wrapping concept, which at the moment is the only 
solution, has enabled us to resolve differences in connection, command and control of different sensor 
systems by exposing only common, generic interfaces. The measurements data have been encoded 
into generic and standard-based formats. The plug-in concept ensures the plug-and-play of different 
sensor systems into applications. The usage of SOA and Web Services approach is recommended and 
has been adopted for this dissertation. 

• Investigate the applicability of sensor standards for interoperable integration of sensors: The OGC 
SensorML and SWE Common data types have been used successfully to encode the already defined 
generic logical sensor models. However, there is need to practically test how the SACS concept fits 
into the OGC SWE framework of services. 

• Validation of the concept and developed sensor models in a landslide monitoring application: A 
proof of concept in form of a mobile field-based geodata acquisition system has been given. The 
system application has demonstrated how model-driven approach for sensor management can be 
realised, thereby validating the proposed concept of the dissertation. 
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9. Conclusions and Future Outlook 
The dissertation has provided a basic conceptual framework that can be adopted and extended for 
interoperable management of multi-sensors in landslide monitoring applications and other application 
domains. The feasibility of the concept has been demonstrated in a specific landslide application. 
However, interoperability can be achieved at varying degrees (i.e. zero interoperability to full 
interoperability). Full interoperability can only be obtained if standards are 100% adopted, which may in 
turn enable complete self-integration of sensors into various applications.  

We can conclude that through model-driven approaches (i.e. self-descriptive, complete, open generic or 
standard-based sensor models) both people and software applications can easily integrate (plug-and-use) 
and better understand the sensors they are working with as well as the measurements data. In addition, 
applications can also be able to exchange sensors (via sensor models) and integrate them with zero or 
minimal adjustment. In a nutshell, in order to avoid “data graveyards”, applications using sensor services 
should store both raw sensor measurements data and the respective sensor model instances of the sensor 
systems used at the time of data acquisition. With respect to sensor services, SOA and Web Services (e.g., 
SOAP based, RESTful, etc.) play an important role is supporting loose integration of sensor systems into 
various applications.  
 
Following are some research issues that can be considered for future work: 

• Modelling of Sensor Systems (Physical Devices) and Sensor Networks 

There is need for defining and specifying other generic conceptual and logical models for other 
sensor types (like it has been done for the landslide monitoring applications), and also for sensor 
networks as a whole in other application domains. These models should be richer in semantics. For 
the dissertation, we have used simple XML-based dictionaries for defining sensor model terms (e.g., 
EDMSensor, TPS vertical index error, position, resolution, etc.) and procedures (e.g., TPS polar 
computation, GNNS real-time kinematic surveying, etc.), but more formalized ontology based on 
existing standards and specifications like Web Ontology Language (OWL) and projects like SWEET 
ontologies [http://sweet.jpl.nasa.gov/ontology] can enable higher levels of interoperability. Also the 
metadata we have defined as well as those defined by existing sensor modelling standards like OGC 
SensorML need to be completely harmonized with established metadata standards like ISO 19115. 
In addition, it is important to analyse the inherent metadata delivered by different sensor systems and 
how they can easily be described using the elements defined by the current metadata standards. With 
respect to sensor networks, the model abstractions should be generic and clearly define the various 
components, sensing device types, and their interfacing with the real world for various, different 
application scenarios. Relationships of each and every entity that builds up the network should 
exactly be defined, as well as any aspects related to the quality of network.  

• Fusion of Heterogeneous Sensor Measurements Data in a Single Application Space: Methods and 
Algorithms 

There is need to investigate on methods and algorithms like extended kalman filtering (EKF), neural 
networks and neuro-wavelet analysis for (semi) automated fusion of various measurements data or 
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data streams. The data streams can be fused based on certain criteria, rules and parameters like 
fusion of measurements within a particular spatial extent (region of interest) that were obtained on a 
specific time interval or instance (temporal aspect). As sensor networks grow in the number of 
sensing devices, there will be a plethora of data to manage. Therefore, it is also necessary to 
investigate data management systems that can handle huge streams of data, perform efficient data 
insertion and retrieval. The data management systems can be validated in application domains that 
require handling of complex numerical simulations or real-time data streams like monitoring of 
large-scale landslides, weather, climate, and other oceanic critical events. 

• Applicability of the Sensor Access and Control Service Interfaces in Supporting Multi-Sensors 

The SACS concept we have suggested can further be refined in detail by developing several sensor 
services in different application domains. However, to address a broader scope (beyond community 
level as currently supported by SACS in landslide monitoring applications), there is need to 
investigate the applicability of emerging standards like IEEE P1451 Smart Transducer Interface 
which define and specify vendor-neutral models and interfaces for integrating disparate sensors. 
Furthermore, harmonizing SACS with other ongoing research works like EU SANY Integrated 
Project and 52 North SWE Framework is very important. For example, part of the SANY UWEDAT 
(Umweltdatenerfassungssystem) SWE based architecture can be integrated with our SACS and the 
IEEE P1451 interfaces. 

 

 

 

Figure 80: UWEDAT SWE Architecture [Havlik et al., 2008] 
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The SensorSA Data Acquisition System (DAS) sensor driver interface part (see Figure 80 above) can 
be included in the SACS sensor plug-in engine. The various sensor plug-ins can then wrap the 
respective sensor drivers. The results of the integration should enable the SACS to communicate 
with different sensors via open, standards-based communication interfaces.  
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12. Appendices 

12.1. Open Systems Interconnection (OSI) Reference Model  
The model specifies seven layers, from higher-level to lower-level, which are Application, Presentation, 
Session, Transport, Network, Data Link, and Physical. If systems adopt the OSI model, they become 
interoperable at the following layers.  

Layer 7: Application: Provides services to user-defined application processes, but not to the end user. 
Examples are file transfer applications using File Transfer Protocol (FTP) or web services or applications 
using Hypertext Transfer Protocol (HTTP) of W3C. The HTTP protocol relies on the Transmission 
Control Protocol/Internet Protocol (TCP/IP) maintained by the Internet Engineering Task Force (IETF) [ 
http://www.ietf.org/].  

Layer 6: Presentation: Establishes a context (based on syntax and semantics, etc.) between application 
layer entities and also performs mapping between data units. The original presentation layer used the 
Basic Encoding Rules of Abstract Syntax Notation One (ANS.1) [ISO/IEC and ITU-T, 1984] for e.g. data 
encryption or serialization of objects and other data structures into and out of eXtensible Markup 
Language (XML) [W3C] format using the defined XML encoding rules. 

Layer 5: Session: Controls the dialogues, connections or sessions between computers. It is commonly 
used in application environments that use remote procedure calls (RPCs).  

Layer 4: Transport: Used for the transmission of data between end users. Examples are the TCP and the 
User Datagram Protocol (UDP). 

Layer 3: Network: Provides services for transferring variable length data sequences from one node 
(source) to another (destination). A logical address scheme is used to identify the network nodes uniquely. 
Example is the common Internet Protocol (IP). 

Layer 2: Data Link: Provides the functional and procedural means to transfer data between network 
entities. It is checks the service quality (i.e. presents of errors) of the physical layer. Examples of Data 
Links are IEEE 802.3 for the wired Local Area Network (LAN) protocol and the IEEE 802.11 for the 
wireless LAN.  

Layer 1: Physical: Defines the electrical and physical specifications for the devices, and also specifies the 
relationship between a device and a physical medium (e.g. network interface card, cables, radio link, etc.) 
as well as the network functions. The specifications include information about: layout of pins, voltages, 
cable specifications (e.g. copper, fiber,…), network adapters, etc. This information should enable the 
devices to connect with the medium. Examples are the serial protocols (e.g. RS-232, RS-422, RS-485,…), 
Ethernet 100 Base TX, WLAN 802.11x, Digital Line Subscriber (DSL), etc. It is through the physical 
layer that the data is moved in and out of the network interface. 
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12.2. Examples: Generic Logical Sensor Model Instances 

12.2.1. TPS Sensor Instance 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- Mit XMLSpy v2007 sp1 --> 
<!--TPS Instance document. Developed by Admire Kandawasvika--> 
<!--Date of completion: 31.12.2006--> 
<!--Last revision: 24.04.2008--> 
<TPSSensor ID="TPS_Leica_TCA1800" xsi:noNamespaceSchemaLocation="tpsGenericModel.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xlink="http://www.w3.org/1999/xlink"> 

<!--TPS Metadata --> 
 <TPSSensorMetadata> 
  <General> 
   <SerialNumber>618755-2</SerialNumber> 
   <ModelName>TCA1800</ModelName> 
   <SensorType>Terrestrial Positioning System (TPS) or Total Station 

</SensorType> 
   <IntendedApplications> 
    <Application>Engineering Surveying</Application> 

<Application>Construction projects like tunnels, highways, 
buildings, waterways, dams, roads etc. 

         </Application> 
    <Application>Terrestrial Positioning</Application> 
    <Application>Structural Monitoring</Application> 
    <Application>Three-Dimensional (3D) Positioning 

</Application> 
   </IntendedApplications> 
   <GeoPosition> 
    <Location> 
     <samplingTime>2006-12-31T12:12:01Z 

</samplingTime> 
     <Cartesian> 
      <northing_or_X>3492570.00</northing_or_X> 
      <easting_or_Y>5341580.00</easting_or_Y> 
      <height_or_Z>900.00</height_or_Z> 
     </Cartesian> 
     <CoordinateSystem>GK</CoordinateSystem> 
     <Datum>DHDN</Datum> 
     <Ellipsoid/> 
    </Location> 
    <Quality> 
     <stdDevX unit="m">0.006</stdDevX> 
     <stdDevY unit="m">0.006</stdDevY> 
     <stdDevZ unit="m">0.01</stdDevZ> 
    </Quality> 
   </GeoPosition> 
  </General> 
  <Capabilities> 
   <CapsGroup> 
    <MeasurementCapabilities> 
     <MeasurementDataTypes> 

<Item name="Angles" type="AngleType" 
xlink:href="#AngleSensor"/> 
<Item name="Distances" type="DistanceType" 
xlink:href="#EDMSensor"/> 
<Item name="Coordinates" type="CoordinateType"/> 
<Item name="PointObjects" type="PointDataType"/> 

      <Item name="PositionData" type="PositionType"/> 
<Item name="InclinationData" 
type="InclinationDataType" 

     xlink:href="#InclinationSensor"/> 
<Item name="Time" type="DateTime" xlink:href="ISO 
8601"/> 
<Item name="MeasurementBlocks" 
type="MeasurementASCIIBlockType"/> 
<Item name="CalibrationInfo" 
type="CalibrationInfoType"/> 
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<Item name="AtmosphericCorrectionData" 
type="AtmosphericCorrDataType"/> 

     </MeasurementDataTypes> 
     <MeasurementFunctionTypes> 

<Item name="AngleMeasurement" 
xlink:href="#AngleSensor"> 

<Resolution name="DisplayLeastCount" 
unit="sec"> 

        <Value>1</Value> 
       </Resolution> 

<Accuracy standardUsed="ISO 17123-3" 
unit="sec"> 

        <Value>1.5</Value> 
       </Accuracy> 
      </Item> 

<Item name="DistanceMeasurement (Infared-IR)" 
xlink:href="#EDMSensor"/> 
<Item name="DistanceMeasurement (PinPoint 
Reflectorless-RL)" xlink:href="#EDMSensor"/> 
<Item name="DistanceMeasurement (Long Range-LR)" 
xlink:href="#EDMSensor"/> 
<Item name="Automatic Target Recognition (ATR)" 
xlink:href="#CCDSensor"/> 

      <Item name="Power Search (PS)"/> 
      <Item name="Electronic Guide Light (EGL)"/> 
      <Item name="Remote Control"/> 
     </MeasurementFunctionTypes> 
    </MeasurementCapabilities> 
    <Interfaces definition="#TPS_Plugin_Interfaces.xml"/> 

<!--TPS Limitations based on different conditions. --> 
    <Limits definition="#ConditionsList.xml"> 
     <Item name="Durability"> 
      <Condition name="MeasuringTemperature"> 
       <Range unit="°C"> 
        <Values>-20 +50</Values> 
       </Range> 
      </Condition> 
      <Condition name="StorageTemperature"> 
       <Range unit="°C"> 
        <Values>-40 +70</Values> 
       </Range> 
      </Condition> 

<!-- Exposure to water or dust etc.--> 
     </Item> 
    </Limits> 
   </CapsGroup> 
  </Capabilities> 
  <Characteristics> 
   <CharGroup> 
    <PhysicalProperties> 
     <Property name="width" unit="mm"> 
      <Value>245</Value> 
     </Property> 
     <Property name="length" unit="mm"> 
      <Value>219</Value> 
     </Property> 
     <Property name="height" unit="mm"> 
      <Value>343</Value> 
     </Property> 
     <Property name="weight" unit="kg"> 
      <Value>6.6</Value> 
     </Property> 
    </PhysicalProperties> 
   </CharGroup> 
  </Characteristics> 
  <Contacts> 
   <Organisation> 
    <Name>AGIS, UniBW</Name> 
    <Address> 
     <Street>Werner-Heisenberg-Weg 37</Street> 
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     <ZipCode>87755</ZipCode> 
     <City>Munich</City> 
     <State>Bavaria</State> 
     <Country>Germany</Country> 
    </Address> 
    <Person> 
     <FirstName>Admire</FirstName> 
     <LastName>Kandawasvika</LastName> 
     <Position>Research Associate</Position> 
     <Telephone>+49-6004-3873</Telephone> 
     <Email>admire.kandawasvika@unibw.de</Email> 
    </Person> 
    <Homepage>http://www.agis.unibw.de</Homepage> 
   </Organisation> 
  </Contacts> 
 </TPSSensorMetadata> 

<!--TPS sensors composition --> 
 <Sensors> 
  <EDMSensor ID="EDM_001"> 
   <EDMMetadata> 
    <General> 
     <SerialNumber>12345-678</SerialNumber> 
     <ModelName>EDM</ModelName> 

<SensorType>Electronic Distance Measurement</SensorType> 
     <IntendedApplications> 

<Application>Distance measurements</Application> 
     </IntendedApplications> 
    </General> 
    <Capabilities> 
     <CapsGroup> 
      <MeasurementCapabilities> 
       <MeasurementDataTypes> 

<Item name="Distances" 
type="DistanceType"/> 

       </MeasurementDataTypes> 
       <MeasurementFunctionTypes> 
        <Item name="DistanceMeasurement"> 
         <Resolution 
name="DisplayLeastCount" measuringMode="EDM_MODE.EDM_SINGLE_STANDARD" unit="mm"> 
          <Value>1</Value> 
         </Resolution> 
         <Accuracy 
measuringMode="EDM_MODE.EDM_SINGLE_STANDARD" unit="mm"> 
          <Value>2</Value> 
         </Accuracy> 
        </Item> 
       </MeasurementFunctionTypes> 
      </MeasurementCapabilities> 
     </CapsGroup> 
    </Capabilities> 
   </EDMMetadata> 
   <Parameters> 
    <MeasurementConfig> 
     <Mode> 
      <MeasureMode type="EDM_SINGLE_STANDARD"> 
       <Frequency unit="Hz"> 
        <Value>100</Value> 
       </Frequency> 
      </MeasureMode> 
     </Mode> 
    </MeasurementConfig> 
   </Parameters> 
   <Inputs> 
    <Input name="EM_Signal" type="EDMSignalType"/> 
   </Inputs> 
   <Outputs> 
    <Distances> 
     <SlopeDistance xlink:href="#output_SD.xml"/> 
     <HzDistance xlink:href="#output_HzD.xml"/> 
    </Distances> 
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   </Outputs> 
  </EDMSensor> 
  <AngleSensor> 

<!--Omitted--> 
  </AngleSensor> 
 </Sensors> 

<!--TPS components --> 
 <Components> 
  <Telescope> 
   <ShortestDistance unit="m"> 
    <Value>1.7</Value> 
   </ShortestDistance> 
   <Magnification>30x</Magnification> 
   <ImageSetup>upright</ImageSetup> 
   <ObjectiveDiameter unit="mm"> 
    <Value>40</Value> 
   </ObjectiveDiameter> 
   <FOV unit="deg"> 
    <Value>1.5</Value> 
   </FOV> 
   <Transit>Full</Transit> 
   <Focusing>coarse</Focusing> 
  </Telescope> 
  <Compensator ID="Model_1101"> 
   <Type>Liquid</Type> 
   <NumOfAxes>Dual</NumOfAxes> 
   <Range unit="gon"> 
    <Value>0.07</Value> 
   </Range> 
   <Accuracy unit="mgon"> 
    <Value>0.2</Value> 
   </Accuracy> 
  </Compensator> 
  <Plummet> 
   <Magnification/> 
   <Position> 
    <Location> 
     <samplingTime>2006-12-31T12:12:02Z</samplingTime> 
     <Cartesian> 
      <northing_or_X>3492570.00</northing_or_X> 
      <easting_or_Y>5341580.00</easting_or_Y> 
      <height_or_Z>901.00</height_or_Z> 
     </Cartesian> 
    </Location> 
   </Position> 
   <Accuracy unit="mm" type="2sigma"> 
    <Value>1.5</Value> 
   </Accuracy> 
  </Plummet> 
  <Battery> 
   <Type>Nickel Metal Hydride (NiMH)</Type> 
   <Voltage unit="V"> 
    <Value>6</Value> 
   </Voltage> 
   <Capacitance type="GEB121" unit="Ah"> 
    <Value>3.6</Value> 
   </Capacitance> 
   <MountLocation>Internal</MountLocation> 
   <PowerSupply unit="V"> 
    <Value>12</Value> 
   </PowerSupply> 
   <EnergyLevel unit="%"> 
    <Value>99</Value> 
   </EnergyLevel> 
  </Battery> 
  <ATR/> 
  <PowerSearch/> 
  <Clock/> 
 </Components> 
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<!--TPS Parameters e.g. general, measurement specific and calibration information. 
--> 

 <Parameters> 
  <GeneralConfig> 
   <Date>2006-12-31</Date> 
   <SysTime>12:12:02Z</SysTime> 
   <Beep>HIGH</Beep> 
   <Languages> 
    <Lang>German</Lang> 
    <Lang>English</Lang> 
    <Lang>French</Lang> 
   </Languages> 
   <Units> 
    <DistanceUnit>m</DistanceUnit> 
    <AngleUnit>gon</AngleUnit> 
   </Units> 
   <CoordinateSequence Value="East_North_Height"/> 
  </GeneralConfig> 

<!--TPS Measurement configuration --> 
  <MeasurementConfig> 
   <Mode> 
    <PointIDMode value="Auto"/> 
    <OffsetsMode value="permanent"/> 
    <MeasureMode type="EDM_CONT_REFLESS"> 
    </MeasureMode> 
   </Mode> 
  </MeasurementConfig> 

<!--TPS Calibration Information --> 
  <CalibrationInfo> 
   <Time>2000-12-03T11:00:00Z</Time> 
   <CompensatorIndexError mode="l" unit="gon"> 
    <Value>0.0010</Value> 
   </CompensatorIndexError> 
   <CompensatorIndexError mode="t" unit="gon"> 
    <Value>0.0023</Value> 
   </CompensatorIndexError> 
   <VerticalIndexError unit="gon"> 
    <Value>0.0001</Value> 
   </VerticalIndexError> 
  </CalibrationInfo> 
 </Parameters> 

<!--TPS inputs definition--> 
 <Inputs> 
  <Input name="TPS_Position" type="SimpleStationType" 
definition="#tpsDictionary.xml"/> 
  <Input name="TPS_InitialOrientation" type="AngleType" 
definition="#tpsDictionary.xml"/> 
  <Input name="TargetPointID" type="string" definition="#tpsDictionary.xml"/> 
 </Inputs> 

<!--TPS outputs definition--> 
 <Outputs> 
  <Measurements> 
   <MeasurementBlock> 
    <Fields> 
     <Field name="PointNumber" type="word" index="1"/> 
     <Field name="HzCircle" type="word" index="17"/> 
     <Field name="VCircle" type="word" index="33"/> 
     <Field name="SlopeDistance" type="word" index="49"/> 
    </Fields> 
    <DataValues dataFile="#measurementsOut1.xml"/> 
   </MeasurementBlock> 
  </Measurements> 
 </Outputs> 

<!--TPS methods definition--> 
 <Methods xlink:href="#TPS_OperationMethods.xml"/> 
</TPSSensor> 
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12.2.2. GPS Sensor Instance 
<?xml version="1.0" encoding="UTF-8"?> 
<!--GPS Example Instance. --> 
<!--Developed by Admire Kandawasvika. --> 
<!--Date:23.02.2007 --> 
<!--Last Revision:30.08.2008 --> 
<GPSReceiver ID="ID_1" xsi:noNamespaceSchemaLocation="gpsGenericModel.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xlink="http://www.w3.org/1999/xlink"> 

<!--GPS Metadata section --> 
 <gpsSensorMetadata> 
  <Contacts> 
   <Organisation> 
    <Name>AGIS, UniBW</Name> 
    <Address> 
     <Street>Werner-Heisenberg-Weg 37</Street> 
     <ZipCode>87755</ZipCode> 
     <City>Munich</City> 
     <State>Bavaria</State> 
     <Country>Germany</Country> 
    </Address> 
    <Person> 
     <FirstName>Admire</FirstName> 
     <LastName>Kandawasvika</LastName> 
     <Position>Research Associate</Position> 
     <Telephone>+49-6004-3873</Telephone> 
     <Email>admire.kandawasvika@unibw.de</Email> 
    </Person> 
    <Homepage>http://www.agis.unibw.de</Homepage> 
   </Organisation> 
  </Contacts> 
  <General> 
   <SerialNumber>CS123-4563</SerialNumber> 
   <Chipset>SiRF Star IIe/LP</Chipset> 
   <Channels>12</Channels> 
   <ModelName>GP600</ModelName> 
   <SensorType>Global Positioning System (GPS) Receiver</SensorType> 
   <IntendedApplications> 
    <Application>Navigation and positioning</Application> 
    <Application>Time and Frequency dissemination</Application> 
    <Application>Leisure activities</Application> 
    <Application>Road and route determination</Application> 
    <Application>journey-route planning</Application> 
    <Application>Safety applications</Application> 
    <Application>Fleet management</Application> 
    <Application>Logistics applications</Application> 
   </IntendedApplications> 

<!-- Last recorded GPS Position. --> 
   <GeoPosition> 
    <Location> 
     <samplingTime>2005-12-17T09:30:47.0Z</samplingTime> 
     <Cartesian> 
      <northing_or_X>3492570.00</northing_or_X> 
      <easting_or_Y>5341580.00</easting_or_Y> 
      <height_or_Z>900.00</height_or_Z> 
     </Cartesian> 
     <CoordinateSystem>GK</CoordinateSystem> 
     <Datum>WGS84</Datum> 
     <Ellipsoid>WGS84</Ellipsoid> 
    </Location> 
    <Quality> 
     <EPE unit="m"> 
      <Value>1</Value> 
     </EPE> 
     <PDOP>6.2</PDOP> 
     <TDOP>2.0</TDOP> 
    </Quality> 
   </GeoPosition> 
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  </General> 
  <Characteristics> 
   <CharGroup> 
    <PhysicalProperties> 
     <Property name="width" unit="mm"> 
      <Value>54.5</Value> 
     </Property> 
     <Property name="length" unit="mm"> 
      <Value>92.0</Value> 
     </Property> 
     <Property name="height" unit="mm"> 
      <Value>22.2</Value> 
     </Property> 
     <Property name="weight" unit="g"> 
      <Value>180</Value> 
     </Property> 
    </PhysicalProperties> 
   </CharGroup> 
  </Characteristics> 

<!-- GPS Capabilities section. --> 
 <Capabilities> 
   <CapsGroup> 
    <MeasurementCapabilities> 
     <MeasurementDataTypes> 
      <Item name="Coordinates" type="CoordinateType"/> 

<Item name="PointObjects" 
type="WayPointDataType"/> 
<Item name="ReceiverPositionData" 
type="PositionType"/> 
<Item name="SVPositionData" type="PositionType"/> 

      <Item name="Time" type="GPSTime"/> 
<Item name="MeasurementBlocks" 
type="MeasurementASCIIBlockType"/> 
<Item name="CalibrationInfo" 
type="CalibrationInfoType"/> 
<Item name="OutputMessages" type="NMEA0183Type"/> 

     </MeasurementDataTypes> 
    </MeasurementCapabilities> 
    <Interfaces definition="./GPS_Plugin_Interfaces.xml"/> 

<!--GPS Limitations based on different conditions like 
environmental or operational {e.g. frequency}--> 

    <Limits definition="./GPS_ConditionsList.xml"> 
     <Item name="Durability"> 
      <Condition name="MeasuringTemperature"> 
       <Range unit="°C"> 
        <Values>-10 +50</Values> 
       </Range> 
      </Condition> 
      <Condition name="Humidity"> 
       <Range unit="%"> 
        <Values>0 95</Values> 
       </Range> 
      </Condition> 

<!-- Maximum altitude, maximum platform speed, etc.--> 
     </Item> 
    </Limits> 
   </CapsGroup> 
  </Capabilities> 
 </gpsSensorMetadata> 

<!-- GPS internal components. NB. Not all definitions are included here !!. --> 
 <Components> 
  <Antenna/> 
  <LNA/> 
  <Mixer/> 
  <SAW/> 
  <AGC/> 
  <DSP/> 
  <Clock/> 
  <Battery> 
   <Type>Rechargeable Li-polymer</Type> 
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   <Voltage unit="V"> 
    <Value>3.3</Value> 
   </Voltage> 
   <Capacitance unit="mA"> 
    <Value>110</Value> 
   </Capacitance> 
   <MountLocation>Internal</MountLocation> 
   <PowerSupply unit="V"> 
    <Value>220</Value> 
   </PowerSupply> 
  </Battery> 
 </Components> 
 <!-- GPS Parameters. --> 
 <Parameters> 
  <GeneralConfig> 
   <SysTime>14:20:00.0Z</SysTime> 
   <Languages> 
    <Lang>English</Lang> 
    <Lang>German</Lang> 
    <Lang>Chinese</Lang> 
   </Languages> 
   <AntennaHeight unit="m"> 
    <Value>3.14</Value> 
   </AntennaHeight> 
  </GeneralConfig> 
  <!-- Current GPS measurement operating mode. --> 
  <MeasurementConfig> 
   <Mode> 
    <Surveying> 
     <PostProcessedStatic definition="./gpsDictionary.xml"/> 
    </Surveying> 
   </Mode> 
   <MessageTypes> 
    <nmeaMessage>GPBOD</nmeaMessage> 
    <nmeaMessage>GPGGA</nmeaMessage> 
    <nmeaMessage>GPGLL</nmeaMessage> 
    <nmeaMessage>GPGSV</nmeaMessage> 
   </MessageTypes> 
  </MeasurementConfig> 
  <CalibrationInfo> 
   <Time>2007-12-15T15:11:00Z</Time> 
   <ClockData dataFile="{url_location}.clockData.xml"/> 
   <SV_Ephemeris dataFile="{url_location}.ephmerisData.xml"/> 
   <Ionospheric dataFile="{url_location}.ionosphericData.xml"/> 
  </CalibrationInfo> 
 </Parameters> 
 <!-- GPS output definition. --> 
 <Outputs> 
  <Measurements> 

<MeasurementBlock blockSeparator="$" fieldSeparator="," 
decimalPoint="."> 

    <DataValues dataFile="./gpsOut.xml"/> 
   </MeasurementBlock> 
  </Measurements> 
 </Outputs> 
 <!--GPS methods definition--> 
 <Methods xlink:href="./GPS_OperationMethods.xml"/> 
</GPSReceiver> 
 

12.3. Other Sensor XML Documents 

12.3.1. TPS Conditions XML document 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Instance document describing the conditions that influences the use or operation of 
the total station e.g. TPS TCA 1800. The information provided is only for explanatory 
purposes.--> 
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<!--- developed by Admire Kandawasvika --> 
<!-- last revision: 08.05.2008 --> 
<Conditions sensorID="TPS_Leica_TCA1800" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xsi:noNamespaceSchemaLocation="E:\phardmasy\dvpt\case_study_poc\sensors_msmts_modeling\Se
nsorsGenericModels\tps_24.05.08\tpsConditionsDefinition.xsd"> 
 <ConditionList classification="Atmospheric"> 
  <Condition ID="1" name="severe"> 
   <state>Strong haze, strong sunlight, or severe heat shimmer</state> 
   <visibility unit="km" mathOperation="max">5</visibility> 
  </Condition> 
  <Condition ID="2" name="moderate"> 
   <state>Light haze, moderate sunlight, or slight heat shimmer</state> 
   <visibility unit="km" mathOperation="max">20</visibility> 
  </Condition> 
  <Condition ID="3" name="normal"> 
   <state>Overcast, no haze, or no heat shimmer</state> 
   <visibility unit="km" mathOperation="max">40</visibility> 
  </Condition> 
  <Condition ID="4"> 
   <state>Objects in strong sunlight, severe heat shimmer</state> 
  </Condition> 
  <Condition ID="5"> 
   <state>Object in shade, or sky overcast</state> 
  </Condition> 
  <Condition ID="6"> 
   <state>Underground, night and twilight</state> 
  </Condition> 
 </ConditionList> 
 <ConditionList classification="Operation"> 
  <Condition ID="7" name="EDM_SinglePrismObservation"> 
   <state>EDM observing a single prism under atmospheric influence 

</state> 
   <Dependencies> 
    <Dependency ref="Atmospheric" ID="1"> 
     <visibility unit="m" mathOperation="max">1500 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="2"> 
     <visibility unit="m" mathOperation="max">5000 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="3"> 
     <visibility unit="m" mathOperation="greaterThan">5000 

</visibility> 
    </Dependency> 
   </Dependencies> 
  </Condition> 
  <Condition ID="8" name="EDM_ThreePrismsObservation"> 
   <state>EDM observing three prisms under atmospheric influence 

</state> 
   <Dependencies> 
    <Dependency ref="Atmospheric" ID="1"> 
     <visibility unit="m" mathOperation="max">2000 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="2"> 
     <visibility unit="m" mathOperation="max">7000 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="3"> 
     <visibility unit="m" mathOperation="greaterThan">9000 

</visibility> 
    </Dependency> 
   </Dependencies> 
  </Condition> 
  <Condition ID="9" name="EDM_ReflectorlessWhiteTargetObservation"> 

<state>EDM observing no reflector {white target} under atmospheric 
influence  
</state> 
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   <Dependencies> 
    <Dependency ref="Atmospheric" ID="4"> 
     <visibility unit="m" mathOperation="max">140 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="5"> 
     <visibility unit="m" mathOperation="max">170 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="6"> 
     <visibility unit="m" mathOperation="greaterThan">170 

</visibility> 
    </Dependency> 
   </Dependencies> 
  </Condition> 
  <Condition ID="9" name="EDM_ReflectorlessGreyAlbedoObservation"> 

<state>EDM observing no reflector {grey albedo 0.25} under 
atmospheric influence 

   </state> 
   <Dependencies> 
    <Dependency ref="Atmospheric" ID="4"> 
     <visibility unit="m" mathOperation="max">70 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="5"> 
     <visibility unit="m" mathOperation="max">100 

</visibility> 
    </Dependency> 
    <Dependency ref="Atmospheric" ID="6"> 
     <visibility unit="m" mathOperation="greaterThan">100 

</visibility> 
    </Dependency> 
   </Dependencies> 
  </Condition> 
 </ConditionList> 
</Conditions> 

 

12.3.2. GPS Conditions XML document 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Instance document describing the conditions that influences the use or operation of 
the GPS receiver. The information provided is only for explanatory purposes.--> 
<!--- developed by Admire Kandawasvika --> 
<!-- last revision: 08.05.2008 --> 
<Conditions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="E:\phardmasy\dvpt\case_study_poc\sensors_msmts_modeling\Se
nsorsGenericModels\gps_29.05.08\gpsConditionsDefinition.xsd" sensorID="ID_1"> 
 <ConditionList classification="Environment"> 
  <Condition ID="1" name="severe"> 

<state>Very dense tall buildings and trees, within very high 
mountains, intensive multipath 
</state> 

  </Condition> 
  <Condition ID="2" name="moderate"> 

<state>Widely spaced buildings and trees, within very low mountains 
or minimal multipath 
</state> 

  </Condition> 
  <Condition ID="3" name="normal"> 

<state>Open or clear surroundings, no signal obstraction, or no or 
negligible multipath 

   </state> 
  </Condition> 
 </ConditionList> 
</Conditions> 
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12.4. Examples: OGC SensorML Based Sensor Instances 

12.4.1. TPS Sensor Instance 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Developed By Admire Kandawasvika--> 
<!--Creation Date: 23.08.2007. Based on SensorML Spec. OGC 07-000 released on 17.07.2007. 
--> 
<!--Last Update: 02.10.2008--> 
<sml:SensorML version="1.0.1" xmlns:sml="http://www.opengis.net/sensorML/1.0.1" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:swe="http://www.opengis.net/swe/1.0.1" xmlns:gml="http://www.opengis.net/gml" 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ism="urn:us:gov:ic:ism:v2" 
xsi:schemaLocation="http://www.opengis.net/sensorML/1.0.1 
E:\kaad_dvpt\ogc_schemas\sensorML\1.0.1\sensorML.xsd"> 
<sml:member> 
<!-- ******************TPS Sensor System**************************************** --> 
<sml:System gml:id="LeicaTCA1800"> 
<gml:description>TCA1800 Total Positioning Station of Leica Geosystems 
</gml:description> 
<gml:name>Leica TCA1800</gml:name> 
<!--**************************Keywords********************************************--> 
<sml:keywords> 

<sml:KeywordList codeSpace="urn:agis:def:keyword:AGIS:keywords"> 
  <sml:keyword>Total Station</sml:keyword> 
  <sml:keyword>Terrestrial Surveying Instrument</sml:keyword> 
  <sml:keyword>TPS</sml:keyword> 
 </sml:KeywordList> 
</sml:keywords> 
<!-- ***********System Identification Information********************************** --> 
<sml:identification> 
 <sml:IdentifierList> 
  <sml:identifier name="ShortName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:shortName"> 
    <sml:value>Leica TCA1800</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="ModelName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:modelName"> 
    <sml:value>TCA1800</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="ManufacturerName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:manufacturerName"> 
    <sml:value>Leica Geosystems</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="SerialNumber"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:serialNumber"> 
    <sml:value>618755-2</sml:value> 
   </sml:Term> 
  </sml:identifier> 
 </sml:IdentifierList> 
</sml:identification> 
<!--*****************System Classification and Applications*************************--> 
<sml:classification> 
 <sml:ClassifierList> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 
    <sml:codeSpace xlink:href="urn:agis:classifier: 

AGIS:sensorTypes"/> 
<sml:value>Total Station or Terrestrial Positioning System 
(TPS) 
</sml:value> 

   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 
    <sml:codeSpace xlink:href="urn:agis:classifier: 
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AGIS:sensorTypes"/> 
    <sml:value>Point Acquisition Sensor</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Engineering Surveying</sml:value> 
   </sml:Term> 
  </sml:classifier> 
   <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Three-Dimensional (3D) Positioning</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Structural Monitoring</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 

<sml:value>Construction projects like tunnels, highways, 
buildings, waterways,dams, roads etc. 
</sml:value> 

   </sml:Term> 
  </sml:classifier> 
 </sml:ClassifierList> 
</sml:classification> 
<!--********************Document Constraints(operational, security,rights)**********--> 
<sml:validTime> 
 <gml:TimePeriod gml:id="ValidTime"> 
  <gml:beginPosition>2006-12-15T10:00:00Z</gml:beginPosition> 
  <gml:endPosition indeterminatePosition="after"/> 
 </gml:TimePeriod> 
</sml:validTime> 
<sml:securityConstraint> 
 <sml:Security ism:classification="NU"/> 
</sml:securityConstraint> 
<sml:legalConstraint> 
 <sml:Rights> 
  <sml:documentation xlink:arcrole="urn:ogc:def:role:OGC:liabilities"> 
   <sml:Document> 

<gml:description>The author of this document is not liable for 
any accuracy of the information contained herein. 

    </gml:description> 
   </sml:Document> 
  </sml:documentation> 
 </sml:Rights> 
</sml:legalConstraint> 
<!--****************** System Physical Characteristics******************************--> 
<sml:characteristics name="Physical Properties"> 

<swe:DataRecord definition="urn:ogc:def:property:OGC:physicalProperties"> 
  <swe:field name="physicalProperties"> 
   <swe:DataRecord> 
    <swe:field name="width"> 
     <swe:Quantity definition="urn:agis:def:property 
     :Manuf:width"> 
      <swe:uom code="mm"/> 
      <swe:value>245</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="length"> 
     <swe:Quantity definition="urn:agis:def:property: 

Manuf:length"> 
      <swe:uom code="mm"/> 
      <swe:value>219</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="height"> 
     <swe:Quantity definition="urn:manuf:def:property: 
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Manuf:height"> 
      <swe:uom code="mm"/> 
      <swe:value>343</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="weight"> 
     <swe:Quantity definition="urn:ogc:def:property 

:OGC:weight"> 
      <swe:uom code="kg"/> 
      <swe:value>6.6</swe:value> 
     </swe:Quantity> 
    </swe:field> 
   </swe:DataRecord> 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<sml:characteristics name="Electrical Requirements"> 
 <swe:DataRecord gml:id="electricalPower" definition="urn:ogc:def:property 

:OGC:powerRequirement"> 
  <swe:field name="Voltage"> 
   <swe:QuantityRange definition="urn:ogc:def:property:OGC:voltage"> 
    <swe:uom code="V"/> 
    <swe:value>6 12</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="CurrentType"> 
   <swe:Category definition="urn:ogc:def:property 

:OGC:electricalCurrentType"> 
    <swe:value>DC</swe:value> 
   </swe:Category> 
  </swe:field> 
  <swe:field name="Amp"> 
   <swe:QuantityRange definition="urn:ogc:def:property 

:OGC:electricalCurrent"> 
    <swe:uom code="mA"></swe:uom> 
    <swe:value>20 40</swe:value> 
   </swe:QuantityRange > 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<!--*******************System Capabilities****************************************--> 
<sml:capabilities name="MeasurementDataCapabilities"> 
 <swe:DataRecord gml:id="measurementDataTypes"> 
  <swe:field name="Angle"> 
   <swe:Quantity/> 
  </swe:field> 
  <swe:field name="Distance"> 
   <swe:Quantity/> 
  </swe:field> 
  <swe:field name="Coordinates"> 
   <swe:Vector definition="urn:agis:def:dataTypes:CoordinateType1"> 
    <swe:coordinate name="time"> 
     <swe:Time/> 
    </swe:coordinate> 
    <swe:coordinate name="X"> 
     <swe:Quantity/> 
    </swe:coordinate> 
    <swe:coordinate name="Y"> 
     <swe:Quantity/> 
    </swe:coordinate> 
 
 
 
 
 
 
    <swe:coordinate name="Z"> 
     <swe:Quantity/> 
    </swe:coordinate> 
   </swe:Vector> 
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  </swe:field> 
  <swe:field name="PointObject" xlink:href="urn:agis:def:dataTypes 

:PointObject"/> 
  <swe:field name="PositionData"> 
   <swe:Position/> 
  </swe:field> 
  <swe:field name="InclinationData" xlink:href="urn:agis:def:dataTypes 

:InclinationDataType"/> 
  <swe:field name="Time"> 
   <swe:Time/> 
  </swe:field> 
  <swe:field name="MeasurementsData" xlink:href="urn:agis:def:dataTypes 

:MeasurementsData"/> 
  <swe:field name="CalibrationInfo" xlink:href="urn:agis:def:dataTypes 

:CalibrationInfoType"/> 
<swe:field name="AtmosphericCorrectionData" 
xlink:href="urn:agis:def:dataTypes:AGIS:AtmosphericCorrDataType"/> 

 </swe:DataRecord> 
</sml:capabilities> 
<sml:capabilities name="MeasurementFunctionCapabilities"> 
 <swe:DataRecord gml:id="measurementFunctionTypes"> 

<swe:field name="AngleMeasurement" xlink:href="#AngleSensor"/> 
   <swe:field name="AngleMeasurementResolution"> 
    <swe:Quantity gml:id="displayLeastCount"> 
     <swe:uom code="sec"/> 
     <swe:quality> 

<swe:Quantity referenceFrame="ISO17123-3"> 
       <swe:uom code="sec"/> 
       <swe:value>1.5</swe:value> 
      </swe:Quantity> 
     </swe:quality> 
     <swe:value>1</swe:value> 
    </swe:Quantity> 
   </swe:field> 

<swe:field name="DistanceMeasurementResolution" xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (Infrared-IR)" 
xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (PinPoint Reflectorless-RL)" 
xlink:href="#EDMSensor"/> 
<swe:field name="DistanceMeasurement (Long Range-LR)" 
xlink:href="#EDMSensor"/> 
<swe:field name="Automatic Target Recognition" xlink:href="#CCDSensor"/> 
<swe:field name="Electronic Guide Light" xlink:href="#EGL"/> 

  <swe:field name="Power Search" xlink:href="PS"/> 
  <swe:field name="Remote Controlled" xlink:href="urn:agis:def 

:sensors:RemoteControl"/> 
 </swe:DataRecord> 
</sml:capabilities> 
<sml:capabilities name="OperationalConditions" xlink:href="./ConditionsList.xml"> 
 <swe:DataRecord gml:id="temperatureConditions"> 
  <swe:field name="MeasuringTemperature"> 
   <swe:QuantityRange definition="urn:ogc:def:property 

:OGC:temperature"> 
    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-20 50</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="StorageTemperature"> 
   <swe:QuantityRange definition="urn:ogc:def:property 

:OGC:temperature"> 
    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-40 70</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <!-- Exposure to water, dust, etc.--> 
 </swe:DataRecord> 
</sml:capabilities> 
<!--*******Contact Information plus ***************************************--> 
<sml:contact> 
<sml:ContactList gml:id="TCA1800ModelContacts"> 
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<gml:description>Contacts information about the TPS Instrument resources 
</gml:description> 

 <sml:member xlink:arcrole="urn:ogc:def:property:OGC:author"> 
  <sml:ResponsibleParty> 
   <sml:individualName>Admire Kandawasvika</sml:individualName> 
   <sml:contactInfo> 
    <sml:phone> 
     <sml:voice>+49 89 6004 3873</sml:voice> 
     <sml:facsimile>+49 89 6004 3906</sml:facsimile> 
    </sml:phone> 
    <sml:address> 
     <sml:deliveryPoint>Werner Heisenberg Weg 39 

</sml:deliveryPoint> 
     <sml:city>Munich</sml:city> 
     <sml:postalCode>87755</sml:postalCode> 
     <sml:country>Germany</sml:country> 

<sml:electronicMailAddress>admire.kandawasvika@unibw.de 
</sml:electronicMailAddress> 

    </sml:address> 
   </sml:contactInfo> 
  </sml:ResponsibleParty> 
 </sml:member> 
</sml:ContactList> 
</sml:contact> 
<!--**************Other System Resources*********** *******************************--> 
<sml:documentation> 

<sml:DocumentList> 
  <sml:member name="User Manual"  

xlink:arcrole="urn:ogc:def:property:OGC:userManual"> 
   <sml:Document> 
    <gml:description>System User Manual</gml:description> 
     <sml:format>mime/pdf</sml:format> 

     <sml:onlineResource xlink:href="http:// 
www.leica-geosystems.com"> 

</sml:onlineResource> 
   </sml:Document> 
  </sml:member> 

<sml:member name="Specification Document" 
xlink:arcrole="urn:ogc:def:property:OGC:specificationSheet"> 

   <sml:Document> 
    <gml:description>System Technical Specification 

</gml:description>   
 <sml:format>mime/pdf</sml:format> 

    <sml:onlineResource  
xlink:href="http://www.leica-geosystems.com"> 
</sml:onlineResource> 

   </sml:Document> 
  </sml:member> 

<sml:member name="Product Image" 
xlink:arcrole="urn:ogc:def:property:OGC:objectImage"> 

   sml:Document> 
    <gml:description>System Product Image</gml:description> 
     <sml:format>mime/image/jpeg</sml:format> 
     <sml:onlineResource 

 xlink:href="http://www.leica-geosystems.com"> 
</sml:onlineResource> 

   </sml:Document> 
  </sml:member> 
 </sml:DocumentList> 
</sml:documentation> 
<sml:history> 
 <sml:EventList> 

<sml:member name="deployment" 
xlink:arcrole="urn:ogc:def:property:OGC:deployment"> 

   <sml:Event> 
    <sml:date>2007-05-23T09:00:00Z</sml:date> 
    <gml:description>TPS Deployment Event</gml:description> 

<sml:contact xlink:arcrole="installer" 
xlink:href="http://myDomain.de/installer.xml"> 

</sml:contact> 
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    <sml:documentation xlink:arcrole="deploymentReport"> 
     <sml:Document> 

<gml:description>A report about the sensor system 
deployment 
</gml:description> 
<sml:onlineResource 
xlink:href="http://myDomain.de/ 
tpsTCADeployReport.pdf"> 
</sml:onlineResource> 

     </sml:Document> 
    </sml:documentation> 
   </sml:Event> 
  </sml:member> 

<sml:member name="calibration" 
xlink:arcrole="urn:ogc:def:property:OGC:calibration"> 

   <sml:Event> 
    <sml:date>2007-03-11T08:00:00Z</sml:date> 
     <gml:description>TPS Calibration Event 

</gml:description> 
     <sml:contact xlink:arcrole="manufacturer"/> 
     <sml:documentation xlink:arcrole="calibrationReport"> 
      <sml:Document gml:id="CalibTCA1800-2007-03-11"> 

<gml:description>Calibration report and data 
about the sensor system deployment 
</gml:description> 
<sml:onlineResource 
xlink:href="http://manufDomain.com/ 
TCACalibReport12345.pdf"/> 

      </sml:Document> 
     </sml:documentation> 
   </sml:Event> 
  </sml:member> 
 </sml:EventList> 
</sml:history> 
<!--******************Geospatial Information***************************************--> 
<!--*****************1. Spatial Reference Frame************************************--> 
<sml:spatialReferenceFrame> 

<gml:EngineeringCRS gml:id="TPS_Sensor_Frame"> 
  <gml:srsName>TPS Coordinate System Frame</gml:srsName> 
  <gml:usesCS> 
   <gml:CartesianCS gml:id="TPS_CS"> 
    <gml:csName>TPS Cartesian System</gml:csName> 
    <gml:usesAxis> 

<gml:CoordinateSystemAxis gml:id="X" gml:uom="m"> 
     <!--<gml:csName>x coordinate</gml:csName>--> 
      <gml:datumName>DHDN</gml:datumName> 
      <gml:axisID> 
       <gml:csName>X coordinate</gml:csName> 
      </gml:axisID> 
      <gml:axisID> 
       <gml:csName>Northing</gml:csName> 
      </gml:axisID> 
      <gml:axisAbbrev>X</gml:axisAbbrev> 
      <gml:axisDirection>North</gml:axisDirection> 
     </gml:CoordinateSystemAxis> 
    </gml:usesAxis> 
    <gml:usesAxis> 
     <gml:CoordinateSystemAxis gml:id="Y" gml:uom="m"> 
     <!--<gml:csName>y coordinate</gml:csName>--> 
      <gml:datumName>DHDN</gml:datumName> 
      <gml:axisID> 
       <gml:csName>Y coordinate</gml:csName> 
      </gml:axisID> 
      <gml:axisID> 
       <gml:csName>Easting</gml:csName> 
      </gml:axisID> 
      <gml:axisAbbrev>Y</gml:axisAbbrev> 
      <gml:axisDirection>East</gml:axisDirection> 
     </gml:CoordinateSystemAxis> 
    </gml:usesAxis> 
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    <gml:usesAxis> 
     <gml:CoordinateSystemAxis gml:id="Z" gml:uom="m"> 
     <!--<gml:csName>z coordinate</gml:csName>--> 
      <gml:datumName>DHDN</gml:datumName> 
      <gml:axisID> 
       <gml:csName>Z coordinate</gml:csName> 
      </gml:axisID> 
      <gml:axisID> 
       <gml:csName>Height</gml:csName> 
      </gml:axisID> 
      <gml:axisAbbrev>Z</gml:axisAbbrev> 
      <gml:axisDirection>Up</gml:axisDirection> 
     </gml:CoordinateSystemAxis> 
    </gml:usesAxis> 
   </gml:CartesianCS> 
  </gml:usesCS> 
  <gml:usesEngineeringDatum/> 

</gml:EngineeringCRS> 
</sml:spatialReferenceFrame> 
<!--*****************2. Current GeoPosition*************************************--> 
<sml:position name="TPSPosition"> 

<swe:Position localFrame="#TPS_Sensor_Frame" 
referenceFrame="urn:ogc:crs:EPSG:31493"> 

  <swe:time> 
   <swe:Time referenceFrame="#SystemClockTRS"> 
   <!--get current time--> 
    <swe:value>now</swe:value> 
   </swe:Time> 
  </swe:time> 
  <swe:location> 

<swe:Vector gml:id="TPSLocation" 
definition="urn:ogc:def:property:OGC:location"> 

    <swe:coordinate name="x coordinate"> 
     <swe:Quantity axisID="X"> 
      <swe:uom code="m"/> 
      <swe:quality> 

<swe:Quantity gml:id="standardDeviationX"> 
        <swe:uom code="m"/> 
        <swe:value>0.006</swe:value> 
       </swe:Quantity> 
      </swe:quality> 
      <swe:value>3492570.00</swe:value> 
     </swe:Quantity> 
    </swe:coordinate> 
    <swe:coordinate name="y coordinate"> 
     <swe:Quantity axisID="Y"> 
      <swe:uom code="m"/> 
      <swe:quality> 

<swe:Quantity gml:id="standardDeviationY"> 
        <swe:uom code="m"/> 
        <swe:value>0.006</swe:value> 
       </swe:Quantity> 
      </swe:quality> 
      <swe:value>5341580.00</swe:value> 
     </swe:Quantity> 
    </swe:coordinate> 
    <swe:coordinate name="z coordinate"> 
     <swe:Quantity axisID="Z"> 
      <swe:uom code="m"/> 
      <swe:quality> 

<swe:Quantity gml:id="standardDeviationZ"> 
       <swe:uom code="m"/> 
       <swe:value>0.001</swe:value> 
       </swe:Quantity> 
      </swe:quality> 
      <swe:value>900.00</swe:value> 
     </swe:Quantity> 
    </swe:coordinate> 
   </swe:Vector> 
  </swe:location> 
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 </swe:Position> 
</sml:position> 
<!--*********************System Interface Definition*******************************--> 
<sml:interfaces> 
 <sml:InterfaceList> 

<sml:interface name="TPS_PlugIn_Interfaces" 
xlink:href="http://myDomain.de/TPS_Plugin_Interfaces.xml"> 
</sml:interface> 

  <sml:interface name="RS-232"> 
   <sml:InterfaceDefinition> 
   <!-- OSI based Interface Definition--> 
    <sml:physicalLayer> 
     <swe:DataRecord definition="urn:ogc:def:property 

:OGC:RS232"> 
      <swe:field name="dataBits"> 

<swe:Count 
definition="urn:ogc:def:property:OGC 
:numberOfDataBits"> 

        <swe:value>8</swe:value> 
       </swe:Count> 
      </swe:field> 
      <swe:field name="stopBits"> 

<swe:Count 
definition="urn:ogc:def:property:OGC 
:numberOfStopBits"> 

        <swe:value>1</swe:value> 
       </swe:Count> 
      </swe:field> 
      <swe:field name="parity"> 

<swe:Boolean 
definition="urn:ogc:def:property:OGC 
:parity"> 

        <swe:value>false</swe:value> 
       </swe:Boolean> 
      </swe:field> 
     </swe:DataRecord> 
    </sml:physicalLayer> 
    <sml:mechanicalLayer> 
     <swe:DataRecord definition="urn:ogc:def:property:OGC 

:DB9"> 
      <swe:field name="pin Layout"> 

<swe:Category definition="urn:ogc:def: 
property:OGC:pinout"> 

        <swe:value>EIA574</swe:value> 
       </swe:Category> 
      </swe:field> 
      <swe:field name="signalPaths"> 
       <swe:Text> 
        <swe:value>RxD TxD GND</swe:value> 
       </swe:Text> 
      </swe:field> 
     </swe:DataRecord> 
    </sml:mechanicalLayer> 
   </sml:InterfaceDefinition> 
  </sml:interface> 
 </sml:InterfaceList> 
</sml:interfaces> 
<!--*********************System Inputs*******************************************--> 
<sml:inputs> 
 <!--Can define data types or observable properties here.--> 
</sml:inputs> 
<!--**********************System Outputs*****************************************--> 
<sml:outputs> 
 <sml:OutputList> 
  <sml:output name="MeasurementsData" xlink:href="./measurementsOut01.xml"> 
   <swe:DataArray> 
    <swe:elementCount> 
     <swe:Count gml:id="numOfDataRecords" fixed="false"> 
      <swe:value>10000</swe:value> 
     </swe:Count> 
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    </swe:elementCount> 
    <swe:elementType name="dataBlock"> 
     <swe:DataRecord> 

<gml:description>Following is the data definition 
of the block content. 
</gml:description> 

      <swe:field name="Time"> 
       <swe:Time/> 
      </swe:field> 
      <swe:field name="PointNumber"> 
       <swe:Count/> 
      </swe:field> 
      <swe:field name="Hz"> 

<swe:Quantity gml:id="horizontalAngle"> 
       <swe:uom code="deg"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="V"> 

<swe:Quantity gml:id="verticalAngle"> 
       <swe:uom code="deg"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="Dist"> 

<swe:Quantity gml:id="slopeDistance"> 
       <swe:uom code="m"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="X"> 
       <swe:Quantity gml:id="x"> 
       <swe:uom code="m"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="Y"> 
       <swe:Quantity gml:id="y"> 
       <swe:uom code="m"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="Z"> 
       <swe:Quantity gml:id="z"> 
       <swe:uom code="m"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
     </swe:DataRecord> 
    </swe:elementType> 
   <swe:encoding> 

<swe:TextBlock decimalSeparator="." blockSeparator="$" 
tokenSeparator=","></swe:TextBlock> 

   </swe:encoding> 
   </swe:DataArray> 
  </sml:output> 
 </sml:OutputList> 
</sml:outputs> 
<!--**************TPS Parameters (Taskable)**********************************--> 
<sml:parameters> 
 <sml:ParameterList> 
 <!--sets system communication language--> 
  <sml:parameter name="SystemLanguage"> 
   <swe:SimpleDataRecord> 
    <swe:field name="defaultLanguage"> 
     <swe:Text><swe:value>English</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_2"> 
     <swe:Text><swe:value>German</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_3"> 
     <swe:Text><swe:value>French</swe:value></swe:Text> 
    </swe:field> 
   </swe:SimpleDataRecord> 
  </sml:parameter> 
<!--Configures units of measure--> 
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  <sml:parameter name="UnitsOfMeasure"> 
   <swe:SimpleDataRecord> 
    <swe:field name="DistanceUnit"> 
     <swe:Text/> 
    </swe:field> 
    <swe:field name="AngleUnit"> 
     <swe:Text/> 
    </swe:field> 
   </swe:SimpleDataRecord> 
  </sml:parameter> 
<!--Sets system time based on user's local time--> 
  <sml:parameter name="sysTime"> 
   <swe:Time/> 
  </sml:parameter> 
<!--Sets TPS Point Coding Mode--> 
  <sml:parameter name="pointIDLogModeAuto"> 
   <swe:Boolean> 
    <gml:description>PointID logging mode. Automatic or Manual. 

</gml:description> 
    <swe:value>true</swe:value> 
   </swe:Boolean> 
  </sml:parameter> 
<!--Configures EDM distance measuring mode--> 
  <sml:parameter name="EDM_Measure_Mode"> 
   <swe:Category> 
    <swe:constraint> 
     <swe:AllowedTokens> 
       <swe:valueList>EDM_SINGLE_STANDARD 
EDM_SINGLE_FAST EDM_CONT_STANDARD EDM_CONT_TRACKING EDM_CONT_REFLESS EDM_AVERAGE_IR 
EDM_AVERAGE_SR EDM_AVERAGE_LR 
       </swe:valueList> 
     </swe:AllowedTokens> 
    </swe:constraint> 
   </swe:Category> 
  </sml:parameter> 
<!--Sets the inclination sensor running mode--> 
  <sml:parameter name="InclinationProgram"> 
   <swe:Category> 
    <swe:constraint> 
     <swe:AllowedTokens> 

<swe:valueList>MeasureInclination 
ComputeInclination Auto 
</swe:valueList> 

     </swe:AllowedTokens> 
    </swe:constraint> 
   </swe:Category> 
  </sml:parameter> 
<!--Configures system's measure program mode--> 
  <sml:parameter name="MeasureProgMode"> 
   <swe:Category> 
    <swe:constraint> 
     <swe:AllowedTokens> 
      <swe:valueList>NoMeasurements AnglesOnly 
DefaultDistMeasurement TrackDistPlusAngles ClearDistances StopTracking 
TrackDistWithRedLaserOn 

</swe:valueList> 
     </swe:AllowedTokens> 
    </swe:constraint> 
   </swe:Category> 
  </sml:parameter> 
<!--Sets system's calibration data (user or manufacturer)--> 
  <sml:parameter name="CalibrationData"> 
   <swe:SimpleDataRecord> 
    <swe:field name="CompensatorIndexError_L"> 

<swe:Quantity 
definition="urn:manuf:def:calibration:IndexError"> 
<gml:description>longitudinal axis error. Important for 
tilt determination. 
</gml:description> 

      <swe:uom code="gon"></swe:uom> 
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      <swe:value>0.0010</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="CompensatorIndexError_T"> 

<swe:Quantity 
definition="urn:manuf:def:calibration:IndexError"> 
<gml:description>Transverse axis error. Important for 
tilt determination. 
</gml:description> 

      <swe:uom code="gon"></swe:uom> 
      <swe:value>0.0023</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="VerticalIndexError_T"> 

<swe:Quantity 
definition="urn:manuf:def:calibration:IndexError"> 
<gml:description>Index error of the vertical circle. 
Vertical angles should be corrected for this. 

     </gml:description> 
      <swe:uom code="gon"></swe:uom> 
      <swe:value>0.0001</swe:value> 
     </swe:Quantity> 
    </swe:field> 
<!--Horizontal Collimation Error--> 
<!--Tilting-axis error--> 
   </swe:SimpleDataRecord> 
  </sml:parameter> 
 </sml:ParameterList> 
</sml:parameters> 
<!--*********************TPS Internal Components**********************************--> 
<sml:components> 
 <sml:ComponentList> 

<sml:component name="EDMSensor" 
xlink:arcrole="urn:ogc:def:process:OGC:sensor" 
xlink:href="urn:agis:def:sensors:AGIS:EDMSensor"> 

  </sml:component> 
<sml:component name="AngleSensor" 
xlink:arcrole="urn:ogc:def:process:OGC:sensor" 
xlink:href="urn:agis:def:sensors:AGIS:AngleSensor"> 

  </sml:component> 
<sml:component name="Telescope" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:Telescope"> 

  </sml:component> 
<sml:component name="LiquidCompensator" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:LiquidCompensator"> 

  </sml:component> 
<sml:component name="OpticalPlummet" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:OpticalPlummet"> 

  </sml:component> 
<sml:component name="CCDChip" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:CCDCamera"> 

  </sml:component> 
<sml:component name="Clock" xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:TPSClock"> 

  </sml:component> 
<sml:component name="PowerSearch" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:TPSPowerSearch"> 

  </sml:component> 
<sml:component name="Battery" 
xlink:arcrole="urn:agis:def:process:AGIS:component" 
xlink:href="urn:agis:def:sensors:AGIS:TPSBattery"> 

  </sml:component> 
 </sml:ComponentList> 
</sml:components> 
</sml:System> 
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</sml:member> 
<!--**********************System Process Model*************************************--> 
<sml:member> 
 <sml:ProcessModel> 
  <gml:description>Example Process Model of TPS.</gml:description> 
   <sml:method> 
    <sml:ProcessMethod> 
     <!--Rules Set--> 
     <sml:rules> 
      <sml:RulesDefinition></sml:RulesDefinition> 
     </sml:rules> 
     <!--Implementations--> 

<sml:implementation 
xlink:href="http://myDomain.de/TPS_Plugin_Interfaces.xml"> 

<sml:ImplementationCode language="java" 
framework="AGISSensorPluginsFramework"> 

       <sml:sourceRef></sml:sourceRef> 
<sml:binaryRef 

xlink:arcrole="GeotechSoftware"> 
</sml:binaryRef> 

      </sml:ImplementationCode> 
     </sml:implementation> 
    </sml:ProcessMethod> 
   </sml:method> 
  </sml:ProcessModel> 
 </sml:member> 
</sml:SensorML> 
<!--*******************************END*********************************************--> 

 

12.4.2. TDR Sensor Instance 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Developed By Admire Kandawasvika--> 
<!--Creation Date: 18.08.2008. Based on SensorML Spec. OGC 07-000 released on 17.07.2007. 
--> 
<!--Last Update: 03.10.2008--> 
<sml:SensorML version="1.0.1" xmlns:sml="http://www.opengis.net/sensorML/1.0.1" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:swe="http://www.opengis.net/swe/1.0.1" xmlns:gml="http://www.opengis.net/gml" 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ism="urn:us:gov:ic:ism:v2" 
xsi:schemaLocation="http://www.opengis.net/sensorML/1.0.1 
E:\kaad_dvpt\ogc_schemas\sensorML\1.0.1\sensorML.xsd"> 
<sml:member> 
<!-- *******************Time Domain Interferometer******************************** --> 
<sml:System gml:id="WavetelTDR-44"> 

<gml:description>Handheld Time Domain Reflectometer (TDR) 44. The device can be 
used to locate faults and other cable impedances. 

 </gml:description> 
 <gml:name>Wavetel TDR 44</gml:name> 
<!--******************************Keywords*****************************************--> 
<sml:keywords> 
 <sml:KeywordList codeSpace="urn:agis:def:keyword:AGIS:keywords"> 
  <sml:keyword>Extensometer</sml:keyword> 
  <sml:keyword>Movement Detector</sml:keyword> 
  <sml:keyword>Time Domain Reflectometer</sml:keyword> 
 </sml:KeywordList> 
</sml:keywords> 
<!-- *****************System Identification Information*************************** --> 
<sml:identification> 
 <sml:IdentifierList> 
  <sml:identifier name="ShortName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:shortName"> 
    <sml:value>Wavetel TDR-44</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="ModelName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:modelName"> 
    <sml:value>44</sml:value> 



   157

   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="ManufacturerName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:manufacturerName"> 
    <sml:value>Wavetel</sml:value> 
   </sml:Term> 
  </sml:identifier> 
 </sml:IdentifierList> 
</sml:identification> 
<!--*******************System Classification**************************************--> 
<sml:classification> 
 <sml:ClassifierList> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 

<sml:codeSpace 
xlink:href="urn:agis:classifier:AGIS:sensorTypes"/> 

    <sml:value>Extensometer</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 

<sml:codeSpace 
xlink:href="urn:agis:classifier:AGIS:sensorTypes"/> 

    <sml:value>Distance Measurement Sensor</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Impedence or Resistance Measurements</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Cable fault, breaks detections</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Monitoring of Boreholes</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Displacements Detection</sml:value> 
   </sml:Term> 
  </sml:classifier> 
 </sml:ClassifierList> 
</sml:classification> 
<!--****************Document Constraints(operational, security,rights)*************--> 
<sml:validTime> 
 <gml:TimePeriod gml:id="ValidTime"> 
  <gml:beginPosition>2008-18-17T10:00:00Z</gml:beginPosition> 
  <gml:endPosition indeterminatePosition="after"/> 
 </gml:TimePeriod> 
</sml:validTime> 
<sml:securityConstraint> 
 <...> 
</sml:securityConstraint> 
<!--***********System Physical Characteristics************************************--> 
<sml:characteristics name="Physical Properties"> 
 <swe:DataRecord definition="urn:ogc:def:property:OGC:physicalProperties"> 
  <swe:field name="physicalProperties"> 
   <swe:DataRecord> 
    <swe:field name="caseWidth"> 

<swe:Quantity 
definition="urn:agis:def:property:Manuf:width"> 

      <swe:uom code="mm"/> 
      <swe:value>50</swe:value> 
     </swe:Quantity> 
    </swe:field> 
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    <swe:field name="caseLength"> 
<swe:Quantity 
definition="urn:agis:def:property:Manuf:length"> 

      <swe:uom code="mm"/> 
      <swe:value>100</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="caseHeight"> 

<swe:Quantity 
definition="urn:manuf:def:property:Manuf:height"> 

      <swe:uom code="mm"/> 
      <swe:value>210</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="weight"> 

<swe:Quantity 
definition="urn:ogc:def:property:OGC:weight"> 

      <swe:uom code="g"/> 
      <swe:value>550</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="caseMaterial"> 

<swe:Text 
definition="urn:ogc:def:property:OGC:material"> 

      <swe:value>Fiber Glass</swe:value> 
     </swe:Text> 
    </swe:field> 
    <swe:field name="Leads"> 

<swe:Text 
definition="urn:manuf:def:property:Manuf:leads"> 

      <swe:value>2m safety plug-clip</swe:value> 
     </swe:Text> 
    </swe:field> 
   </swe:DataRecord> 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<sml:characteristics name="Electrical Requirements"> 

<swe:DataRecord gml:id="electricalPower" 
definition="urn:ogc:def:property:OGC:powerRequirement"> 

  <swe:field name="Voltage"> 
   <swe:Quantity definition="urn:ogc:def:property:OGC:voltage"> 
    <swe:uom code="V"/> 
    <swe:value>6.5</swe:value> 
   </swe:Quantity> 
  </swe:field> 
  <swe:field name="CurrentType"> 

<swe:Category 
definition="urn:ogc:def:property:OGC:electricalCurrentType"> 

    <swe:value>DC</swe:value> 
   </swe:Category> 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<!--********************System Capabilities*****************************************--> 
<sml:capabilities name="MeasurementCapabilities"> 
 <swe:DataRecord gml:id="measurementCapabilities"> 
  <swe:field name="PVF"> 
   <swe:QuantityRange> 
    <gml:description>Variable Propagation Velocity Factor (PVF). 

</gml:description> 
    <swe:value>0.01 0.99</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="MeasureRange"> 
   <swe:QuantityRange> 
    <gml:description>Distance measurement range. 

</gml:description> 
    <swe:value>0 3000</swe:value> 
   </swe:QuantityRange> 
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  </swe:field> 
  <swe:field name="DistanceAccuracy"> 
   <swe:ConditionalValue> 
    <swe:condition name="MeasureRange"> 
     <swe:QuantityRange> 
      <swe:uom code="m"></swe:uom> 
      <swe:value>0 3000</swe:value> 
     </swe:QuantityRange> 
    </swe:condition> 
    <swe:data> 
     <swe:Quantity> 

<gml:description>Distance accuracy is 0.9 % of 
the measured range. 
</gml:description> 

      <swe:uom code="%"></swe:uom> 
      <swe:value>0.9</swe:value> 
     </swe:Quantity> 
    </swe:data> 
   </swe:ConditionalValue> 
  </swe:field> 
  <swe:field name="MeasureResolution"> 
   <swe:ConditionalValue> 
    <swe:condition name="MeasureRange"> 
     <swe:QuantityRange> 
      <swe:uom code="m"></swe:uom> 
      <swe:value>0 3000</swe:value> 
     </swe:QuantityRange> 
    </swe:condition> 
    <swe:data> 
     <swe:Quantity> 

<gml:description>Measure resolution is 1 % of the 
measured range. 
</gml:description> 

      <swe:uom code="%"></swe:uom> 
      <swe:value>1</swe:value> 
     </swe:Quantity> 
    </swe:data> 
   </swe:ConditionalValue> 
  </swe:field> 
  <swe:field name="Gain"> 
   <swe:Category> 
    <swe:value>AutoSet</swe:value> 
   </swe:Category> 
  </swe:field> 
  <swe:field name="OutputImpedance"> 
   <swe:Quantity> 
   <gml:description>maximum output resistence or impendance 

</gml:description> 
    <swe:uom code="ohm"></swe:uom> 
    <swe:value>120</swe:value> 
   </swe:Quantity> 
  </swe:field> 
  <swe:field name="OutputUpdateRate"> 
   <swe:Quantity> 
    <swe:uom code="{measure}/s"></swe:uom> 
    <swe:value>1</swe:value> 
   </swe:Quantity> 
  </swe:field> 
 </swe:DataRecord> 
</sml:capabilities> 
<sml:capabilities name="OperationalConditions" xlink:href="./ConditionsList.xml"> 
 <swe:DataRecord gml:id="Environmental"> 
  <swe:field name="MeasuringTemperature"> 

<swe:QuantityRange definition="urn:ogc:def:property:OGC:temperature"> 
    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-20 60</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="StorageTemperature"> 

<swe:QuantityRange definition="urn:ogc:def:property:OGC:temperature"> 
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    <swe:uom code="degCel"></swe:uom> 
    <swe:value>-30 70</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="Humidity"> 
   <swe:Quantity definition="urn:ogc:def:property:OGC:temperature"> 
    <swe:uom code="%"></swe:uom> 
    <swe:value>93</swe:value> 
   </swe:Quantity> 
  </swe:field> 
 </swe:DataRecord> 
</sml:capabilities> 
<!--***********************Contact Information***********************************--> 
<sml:contact> 
 <sml:ContactList gml:id="TDR-44Vendor"> 
  <gml:description>Contacts information about the Instrument resources 

</gml:description> 
  <sml:member xlink:arcrole="urn:ogc:def:property:OGC:vendor"> 
   <sml:ResponsibleParty> 
    <sml:organizationName>Wavetel</sml:organizationName> 
    <sml:contactInfo> 
     <sml:phone> 
     <sml:voice>+33 297 35 36 12</sml:voice> 
     <sml:facsimile>+33 297 35 36 13</sml:facsimile> 
     </sml:phone> 
     <sml:address> 

<sml:deliveryPoint>Espace du Ter - 13 Boulevard 
Jean MONNET 
</sml:deliveryPoint> 

      <sml:city>LARMOR PLAGE</sml:city> 
      <sml:postalCode>56260</sml:postalCode> 
      <sml:country>France</sml:country> 
      <sml:electronicMailAddress>info@wavetel.fr 

</sml:electronicMailAddress> 
     </sml:address> 
    </sml:contactInfo> 
   </sml:ResponsibleParty> 
  </sml:member> 
 </sml:ContactList> 
</sml:contact> 
<!--******************Other System Resources**************************************--> 
<sml:documentation> 
 <sml:DocumentList> 

<sml:member name="User Manual" 
xlink:arcrole="urn:ogc:def:property:OGC:userManual"> 

   <sml:Document> 
    <gml:description>System User Manual</gml:description> 
    <sml:format>mime/pdf</sml:format> 
   </sml:Document> 
  </sml:member> 

<sml:member name="Specification Document" 
xlink:arcrole="urn:ogc:def:property:OGC:specificationSheet"> 

   <sml:Document> 
   <gml:description>System Technical Specification</gml:description> 
    <sml:format>mime/pdf</sml:format> 
   </sml:Document> 
  </sml:member> 
 </sml:DocumentList> 
</sml:documentation> 
<sml:history> 
 <sml:EventList> 

<sml:member name="deployment" 
xlink:arcrole="urn:ogc:def:property:OGC:deployment"> 

   <sml:Event> 
    <sml:date>unknown</sml:date> 
     <gml:description>TDR Deployment Event</gml:description> 

<sml:contact xlink:arcrole="installer" 
xlink:href="http://myDomain.de/installer.xml"> 
</sml:contact> 
<sml:documentation xlink:arcrole="deploymentReport"> 
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      <sml:Document> 
<gml:description>A report about the sensor system 
deployment 
</gml:description> 
<sml:onlineResource 

xlink:href="http://myDomain.de/TDR44DeployReport.pdf"> 
</sml:onlineResource> 

      </sml:Document> 
     </sml:documentation> 
   </sml:Event> 
  </sml:member> 

<sml:member name="calibration" 
xlink:arcrole="urn:ogc:def:property:OGC:calibration"> 

   <sml:Event> 
    <sml:date>unknown</sml:date> 
    <gml:description>TPS Calibration Event</gml:description> 
     <sml:contact xlink:arcrole="manufacturer"/> 

<sml:documentation 
xlink:arcrole="calibrationReport"> 

       <sml:Document gml:id="CalibTDR_unkown"> 
<gml:description>Calibration report and 
data about the sensor system deployment 
</gml:description> 
<sml:onlineResource 

xlink:href="http://manufDomain.com/TDRCalibReport12345.pdf"/> 
       </sml:Document> 
      </sml:documentation> 
   </sml:Event> 
  </sml:member> 
 </sml:EventList> 
</sml:history> 
<!--******************Geospatial Information**************************************--> 
<!--*************************1. Spatial Reference Frame***************************--> 
<sml:spatialReferenceFrame> 
 <...> 
</sml:spatialReferenceFrame> 
<!--********************************2. Current GeoPosition*************************--> 
<sml:position name="TDRPosition"> 
 <swe:Position localFrame="#TDR_Sensor_Frame" referenceFrame="TPS_Sensor_Frame"> 
  <swe:time> 
   <swe:Time referenceFrame="#DataLoggerClockTRS"> 
    <!--get current time--> 
    <swe:value>now</swe:value> 
   </swe:Time> 
  </swe:time> 
  <swe:location> 

<swe:Vector gml:id="TDRLocation" 
definition="urn:ogc:def:property:OGC:location"> 

    <...> 
   </swe:Vector> 
  </swe:location> 
 </swe:Position> 
</sml:position> 
<!--*******************System Interface Definition******************************--> 
<sml:interfaces> 
 <sml:InterfaceList> 

<sml:interface name="TDR_PlugIn_Interfaces" 
xlink:href="http://myDomain.de/TDR_Plugin_Interfaces.xml"> 
</sml:interface> 

  <sml:interface name="RS-232"> 
   <sml:InterfaceDefinition> 
   <!-- OSI based Interface Definition--> 
    <...> 
   </sml:InterfaceDefinition> 
  </sml:interface> 
 </sml:InterfaceList> 
</sml:interfaces> 
<!--**************************System Inputs****************************************--> 
<sml:inputs> 
 <sml:InputList> 
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  <sml:input name="signalPulse"></sml:input> 
 </sml:InputList> 
</sml:inputs> 
<!--******************System Outputs***********************************************--> 
<sml:outputs> 

<sml:OutputList> 
 <!--waveform is form of a data curve--> 
  <sml:output name="waveForm"> 
   <swe:Curve> 
    <swe:elementCount> 
     <swe:Count/> 
    </swe:elementCount> 
    <swe:elementType> 
     <swe:SimpleDataRecord> 
      <swe:field name="Distance"> 
       <swe:Quantity> 
        <swe:uom code="m"></swe:uom> 
       </swe:Quantity> 
      </swe:field> 
      <swe:field name="reflectionCoefficient"> 
       <swe:Quantity/> 
      </swe:field> 
     </swe:SimpleDataRecord> 
    </swe:elementType> 
    <swe:encoding> 

<swe:TextBlock decimalSeparator="." blockSeparator="$" 
tokenSeparator=";"> 
</swe:TextBlock> 

    </swe:encoding> 
    <swe:values xlink:href="./tdrOutput01.xml"/> 
   </swe:Curve> 
  </sml:output> 
<!--single values--> 
  <sml:output name="outputImpedance"> 
   <swe:Quantity/> 
  </sml:output> 
 </sml:OutputList>      
</sml:outputs> 
<!--********************************Parameters (Taskable)**************************--> 
<sml:parameters> 
 <sml:ParameterList> 
 <!--sets system communication language--> 
  <sml:parameter name="SystemLanguage"> 
   <swe:SimpleDataRecord> 
    <swe:field name="defaultLanguage"> 
     <swe:Text><swe:value>English</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_2"> 
     <swe:Text><swe:value>German</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_3"> 
     <swe:Text><swe:value>French</swe:value></swe:Text> 
    </swe:field> 
   </swe:SimpleDataRecord> 
  </sml:parameter> 
  <!--Sets update rate--> 
  <sml:parameter name="measureUpdateRate" xlink:href="#OutputUpdateRate"/> 
  <!--Sets TDR velocity factor--> 
  <sml:parameter name="velocityFactor" xlink:href="#PVF"/> 
  <!--calibration etc., if available--> 

</sml:ParameterList> 
</sml:parameters> 
    
<!--****************Internal Components********************************************--> 
<sml:components> 
 <sml:ComponentList> 

<sml:component name="Pulser" 
xlink:arcrole="urn:ogc:def:process:OGC:transducer" 
xlink:href="urn:agis:def:sensors:AGIS:TDRPulser"> 

  </sml:component> 
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<sml:component name="Sampler" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:TDRSampler"> 

  </sml:component> 
<sml:component name="CoaxialCable" 
xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:TDRCoaxialCable"> 

  </sml:component> 
<sml:component name="Battery" 
xlink:arcrole="urn:agis:def:process:AGIS:component" 
xlink:href="urn:agis:def:sensors:AGIS:TDRBattery"> 

  </sml:component> 
 </sml:ComponentList> 
</sml:components> 
</sml:System> 
</sml:member> 
<!--*****************System Process Model******************************************--> 
<sml:member> 

<sml:ProcessModel> 
  <gml:description>process model</gml:description> 
   <sml:method> 
    <sml:ProcessMethod> 
     <!--Rules Set--> 
     <sml:rules> 
      <sml:RulesDefinition></sml:RulesDefinition> 
     </sml:rules> 
     <!--Implementations--> 

 <sml:implementation 
xlink:href="http://myDomain.de/TDR_Plugin_Interfaces.xml"> 

<sml:ImplementationCode language="java" 
framework="AGISSensorPluginsFramework"> 

       <sml:sourceRef></sml:sourceRef> 
<sml:binaryRef 

xlink:arcrole="GeotechSoftware"></sml:binaryRef> 
      </sml:ImplementationCode> 
     </sml:implementation> 
    </sml:ProcessMethod> 
   </sml:method> 
  </sml:ProcessModel> 
 </sml:member> 
</sml:SensorML> 
<!--***************************END*************************************************--> 
 

12.4.3. DigiCam Sensor Instance 
<?xml version="1.0" encoding="UTF-8"?> 
<!--Developed By Admire Kandawasvika--> 
<!--Creation Date: 21.09.2007. Based on SensorML Spec. OGC 07-000 released on 17.07.2007. 
--> 
<!--Last Update: 03.10.2008--> 
<sml:SensorML version="1.0.1" xmlns:sml="http://www.opengis.net/sensorML/1.0.1" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:swe="http://www.opengis.net/swe/1.0.1" xmlns:gml="http://www.opengis.net/gml" 
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ism="urn:us:gov:ic:ism:v2" 
xsi:schemaLocation="http://www.opengis.net/sensorML/1.0.1 
E:\kaad_dvpt\ogc_schemas\sensorML\1.0.1\sensorML.xsd"> 
<sml:member> 
<!-- ********************Sensor System******************************* --> 
<sml:System gml:id="TravellerDCXZ6Camera"> 
 <gml:description>Traveller DCXZ6 Digital Camera with video capabilities. 

</gml:description> 
 <gml:name>Traveller DCXZ6 DigiCam</gml:name> 
<!--
***************************************Keywords******************************************
******************************--> 
<sml:keywords> 
 <sml:KeywordList codeSpace="urn:agis:def:keyword:AGIS:keywords"> 
  <sml:keyword>Digital Camera</sml:keyword> 
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  <sml:keyword>DigiCam</sml:keyword> 
 </sml:KeywordList> 
</sml:keywords> 
<!-- *********************System Identification Information************************ --> 
<sml:identification> 
 <sml:IdentifierList> 
  <sml:identifier name="ShortName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:shortName"> 
    <sml:value>TravDCXZ6DigiCam</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="ModelName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:modelName"> 
    <sml:value>23179004</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="VendorName"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:vendorName"> 
    <sml:value>SUPRA Foto-Elektronik-Vertreibs GmbH</sml:value> 
   </sml:Term> 
  </sml:identifier> 
  <sml:identifier name="SerialNumber"> 
   <sml:Term definition="urn:ogc:def:identifier:OGC:serialNumber"> 
    <sml:value>9katrad9da003ql</sml:value> 
   </sml:Term> 
  </sml:identifier> 
 </sml:IdentifierList> 
</sml:identification> 
<!--**********************System Classification*************************************--> 
<sml:classification> 
 <sml:ClassifierList> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 
   <sml:codeSpace xlink:href="urn:agis:classifier:AGIS:sensorTypes"/> 
    <sml:value>Digital Camera</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="SensorType"> 
   <sml:Term definition="urn:agis:def:identifier:AGIS:sensorType"> 
   <sml:codeSpace xlink:href="urn:agis:classifier:AGIS:sensorTypes"/> 
    <sml:value>Image Acquisition Sensor</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Digital Imaging</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Photos and Videos Capture</sml:value> 
   </sml:Term> 
  </sml:classifier> 
  <sml:classifier name="Application"> 
   <sml:Term definition="urn:ogc:classifier:OGC:application"> 
    <sml:value>Surveillance</sml:value> 
   </sml:Term> 
  </sml:classifier> 
 </sml:ClassifierList> 
</sml:classification> 
<!--************Document Constraints(operational, security,rights)******************--> 
<sml:validTime> 
 <gml:TimePeriod gml:id="ValidTime"> 
  <gml:beginPosition>2007-09-21T09:00:00Z</gml:beginPosition> 
  <gml:endPosition indeterminatePosition="now"/> 
 </gml:TimePeriod> 
</sml:validTime> 
<!--**********System Physical Characteristics***************************************--> 
<sml:characteristics name="Physical Properties"> 
 <swe:DataRecord definition="urn:ogc:def:property:OGC:physicalProperties"> 
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  <swe:field name="physicalProperties"> 
   <swe:DataRecord> 
    <swe:field name="width"> 

<swe:Quantity 
definition="urn:agis:def:property:Manuf:width"> 

      <swe:uom code="mm"/> 
      <swe:value>25.5</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="length"> 

<swe:Quantity 
definition="urn:agis:def:property:Manuf:length"> 

      <swe:uom code="mm"/> 
      <swe:value>93</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="height"> 

<swe:Quantity 
definition="urn:manuf:def:property:Manuf:height"> 

      <swe:uom code="mm"/> 
      <swe:value>57</swe:value> 
     </swe:Quantity> 
    </swe:field> 
    <swe:field name="weight"> 

<swe:Quantity 
definition="urn:ogc:def:property:OGC:weight"> 

      <swe:uom code="g"/> 
      <swe:value>164</swe:value> 
     </swe:Quantity> 
    </swe:field> 
   </swe:DataRecord> 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<sml:characteristics name="Electrical Requirements"> 

<swe:DataRecord gml:id="electricalPower" 
definition="urn:ogc:def:property:OGC:powerRequirement"> 

  <swe:field name="Voltage"> 
   <swe:Quantity definition="urn:ogc:def:property:OGC:voltage"> 
    <swe:uom code="V"/> 
    <swe:value>5</swe:value> 
   </swe:Quantity> 
  </swe:field> 
  <swe:field name="CurrentType"> 

<swe:Category 
definition="urn:ogc:def:property:OGC:electricalCurrentType"> 

    <swe:value>DC</swe:value> 
   </swe:Category> 
  </swe:field> 
  <swe:field name="Amp"> 

<swe:Quantity 
definition="urn:ogc:def:property:OGC:electricalCurrent"> 

    <swe:uom code="A"></swe:uom> 
    <swe:value>2</swe:value> 
   </swe:Quantity> 
  </swe:field> 
 </swe:DataRecord> 
</sml:characteristics> 
<!--******************System Capabilities****************************************--> 
<sml:capabilities name="Optical Capabilities" 
xlink:href="./TravDCXZ6DigiCam.xml#OpticalCapabilities"> 
 <swe:DataRecord gml:id="opticalCapabilities"> 
  <swe:field name="FocalLength"> 

<swe:QuantityRange 
definition="urn:ogc:def:property:OGC:1.0:FocalLength" > 

    <swe:uom code="mm"></swe:uom> 
    <swe:value>7.8 46.8</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
  <swe:field name="OpticalZoom"> 
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   <swe:Quantity> 
    <gml:description>optical zoom max value</gml:description> 
    <swe:uom code="1x"></swe:uom> 
    <swe:value>6</swe:value> 
   </swe:Quantity> 
  </swe:field> 
  <swe:field name="DigitalZoom"> 
   <swe:QuantityRange> 
    <gml:description>digital zoom range value</gml:description> 
    <swe:uom code="1x"></swe:uom> 
    <swe:value>2 10</swe:value> 
   </swe:QuantityRange> 
  </swe:field> 
 </swe:DataRecord> 
</sml:capabilities> 
<sml:capabilities name="Imaging Capabilities" 
xlink:href="./TravDCXZ6DigiCam.xml#VideoCapabilities"> 
 <swe:DataRecord gml:id="imagingCapabilities"> 
  <!--Image Resolution--> 
  <swe:field name="ImageResolution"> 
   <swe:DataRecord> 
    <swe:field name="LowResolution"> 
     <swe:SimpleDataRecord > 
      <swe:field name="x"> 
       <swe:Count> 
        <swe:value>2048</swe:value> 
       </swe:Count> 
      </swe:field> 
      <swe:field name="y"> 
       <swe:Count> 
        <swe:value>1536</swe:value> 
       </swe:Count> 
      </swe:field> 
     </swe:SimpleDataRecord > 
    </swe:field>  
    <swe:field name="MediumResolution"> 
     <swe:SimpleDataRecord > 
      <swe:field name="x"> 
       <swe:Count> 
        <swe:value>2816</swe:value> 
       </swe:Count> 
      </swe:field> 
      <swe:field name="y"> 
       <swe:Count> 
        <swe:value>2112</swe:value> 
       </swe:Count> 
      </swe:field> 
     </swe:SimpleDataRecord> 
    </swe:field> 
    <swe:field name="HighResolution"> 
     <swe:SimpleDataRecord > 
      <swe:field name="x"> 
       <swe:Count> 
        <swe:value>3648</swe:value> 
       </swe:Count> 
      </swe:field> 
      <swe:field name="y"> 
       <swe:Count> 
        <swe:value>2736</swe:value> 
       </swe:Count> 
      </swe:field> 
     </swe:SimpleDataRecord> 
    </swe:field> 
   </swe:DataRecord> 
  </swe:field> 
  <!--Video Resolution--> 
  <swe:field name="VideoFrameResolution"> 
   <swe:SimpleDataRecord > 
    <swe:field name="x"> 
     <swe:Count> 



   167

      <swe:value>640</swe:value> 
     </swe:Count> 
    </swe:field> 
    <swe:field name="y"> 
     <swe:Count> 
      <swe:value>480</swe:value> 
     </swe:Count> 
    </swe:field> 
   </swe:SimpleDataRecord> 
  </swe:field> 
  <!--Image Formats--> 
  <swe:field name="ImageFormats"> 
   <swe:Text><swe:value>jpeg</swe:value></swe:Text> 
  </swe:field> 
  <!--Video Formats--> 
  <swe:field name="VideoFormats"> 
   <swe:Category><swe:value>avi mpge4</swe:value></swe:Category> 
  </swe:field> 
  <!--other--> 
  <swe:field name="AutoFocus"> 
   <swe:Boolean definition="urn:ogc:def:property:OGC:1.0:autoFocus"> 
    <swe:value>true</swe:value> 
   </swe:Boolean> 
  </swe:field> 
 </swe:DataRecord> 
</sml:capabilities> 
<!--***************Contact Information*********************************************--> 
<sml:contact> 
 <sml:ContactList gml:id="Vendor"> 
 <gml:description>Contacts information about the  camera.</gml:description> 
  <sml:member xlink:arcrole="urn:ogc:def:property:OGC:author"> 
   <sml:ResponsibleParty> 
    <sml:organizationName>SUPRA Foto-Elektronik-Vertreibs GmbH 

</sml:organizationName> 
    <sml:contactInfo> 
     <sml:phone> 
      <sml:voice>+49 180 500 5723</sml:voice> 
      <sml:facsimile>+49 631 351 9949</sml:facsimile> 
     </sml:phone> 
     <sml:address> 
      <sml:deliveryPoint>Denisstraße 28A 

</sml:deliveryPoint> 
      <sml:city>Kaiserslautern</sml:city> 
      <sml:postalCode>67663</sml:postalCode> 
      <sml:country>Germany</sml:country> 
     </sml:address> 
    </sml:contactInfo> 
   </sml:ResponsibleParty> 
  </sml:member> 
 </sml:ContactList> 
</sml:contact> 
<!--************Other System Resources********************************************--> 
<sml:documentation> 
 <sml:DocumentList> 
  <... > 
 </sml:DocumentList> 
</sml:documentation> 
<sml:history> 
 <sml:EventList> 

<sml:member name="deployment" 
xlink:arcrole="urn:ogc:def:property:OGC:deployment"> 

    <sml:Event> 
     <sml:date>2007-09-21T09:00:00Z</sml:date> 
     <gml:description>DigiCam Deployment Event 

</gml:description> 
<sml:contact xlink:arcrole="installer" 
xlink:href="http://myDomain.de/installer.xml"> 
</sml:contact> 

     <sml:documentation xlink:arcrole="deploymentReport"> 
      <sml:Document> 
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<gml:description>A report about the sensor system 
deployment 
</gml:description> 

      <sml:onlineResource 
xlink:href="http://myDomain.de/TravellerDCXZ6CameraDeployReport.pdf"> 

</sml:onlineResource> 
      </sml:Document> 
     </sml:documentation> 
    </sml:Event> 
  </sml:member> 
 </sml:EventList> 
</sml:history> 
<!--*********Geospatial Information***********************************************--> 
<!--*********1. Spatial Reference Frame*******************************************--> 
<sml:spatialReferenceFrame> 
 <gml:EngineeringCRS gml:id="TPS_Sensor_Frame"> 
  <...> 
 </gml:EngineeringCRS> 
</sml:spatialReferenceFrame> 
<!--*****************2. Current GeoPosition****************************************--> 
<sml:position name="CamPosition"> 

<swe:Position localFrame="#Cam_Sensor_Frame" referenceFrame="TPS_Sensor_Frame"> 
  <...> 
 </swe:Position> 
</sml:position> 
<!--****************System Interface Definition************************************--> 
<sml:interfaces> 
 <sml:InterfaceList> 

<sml:interface name="Cam_PlugIn_Interfaces" 
xlink:href="http://myDomain.de/Cam_Plugin_Interfaces.xml"> 
</sml:interface> 

  <sml:interface name="USB 2.0 High Speed"> 
   <sml:InterfaceDefinition> 
   <!-- OSI based Interface Definition--> 
   <sml:physicalLayer xlink:href="urn:ogc:def:property:OGC:USB"/> 

<sml:mechanicalLayer xlink:href="urn:ogc:def:property:OGC:USBCabel"/>  
   </sml:InterfaceDefinition> 
  </sml:interface> 
 </sml:InterfaceList> 
</sml:interfaces> 
<!--*******************System Inputs**********************************************--> 
<sml:inputs> 
 <sml:InputList> 
  <sml:input name="Radiance"> 

<swe:ObservableProperty 
definition="urn:ogc:def:property:OGC:radiance"/> 

  </sml:input> 
  <sml:input name="SceneCoverage"> 
   <swe:GeoLocationArea> 
    <swe:member> 
     <swe:Envelope> 
      <swe:lowerCorner/> 
      <swe:upperCorner/> 
     </swe:Envelope> 
    </swe:member> 
   </swe:GeoLocationArea> 
  </sml:input> 
 </sml:InputList> 
</sml:inputs> 
<!--***************System Outputs*************************************************--> 
<sml:outputs> 
 <sml:OutputList> 
  <sml:output name="Image"> 
   <swe:DataRecord> 
    <swe:field name="timeOfCapture"></swe:field> 
    <swe:field name="format"></swe:field> 
    <swe:field name="resolution"></swe:field> 
   </swe:DataRecord> 
  </sml:output> 
  <sml:output name="Video"> 
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   <swe:DataRecord> 
    <swe:field name="timeOfCapture"></swe:field> 
    <swe:field name="format"></swe:field> 
    <swe:field name="resolution"></swe:field> 
   </swe:DataRecord> 
  </sml:output> 
 </sml:OutputList> 
</sml:outputs> 
<!--**************Parameters (Taskable)*********************************************--> 
<sml:parameters> 
 <sml:ParameterList> 
  <!--sets system communication language--> 
  <sml:parameter name="SystemLanguage"> 
   <swe:SimpleDataRecord> 
    <swe:field name="defaultLanguage"> 
     <swe:Text><swe:value>English</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_2"> 
     <swe:Text><swe:value>German</swe:value></swe:Text> 
    </swe:field> 
    <swe:field name="Language_3"> 
     <swe:Text><swe:value>French</swe:value></swe:Text> 
    </swe:field> 
   </swe:SimpleDataRecord> 
  </sml:parameter> 
  <!--Sets system time based on user's local time--> 
  <sml:parameter name="sysTime"> 
   <swe:Time/> 
  </sml:parameter> 
  <!--Sets Point Coding Mode--> 
  <sml:parameter name="pointIDLogModeAuto"> 
   <swe:Boolean> 
   <gml:description>PointID logging mode. Automatic or Manual. 

</gml:description> 
    <swe:value>true</swe:value> 
   </swe:Boolean> 
  </sml:parameter> 
  <!—Other parameters--> 
  <sml:parameter name="ZoomDigital" xlink:href="#DigitalZoom"/> 
  <sml:parameter name="ZoomOptical" xlink:href="#OpticalZoom"/>  
  <sml:parameter name="ImageResolution" xlink:href="#ImageFormats"/> 
  <sml:parameter name="VideoFormat" xlink:href="#VideoFormats"/> 
  <sml:parameter name="AutoFocus" xlink:href="#AutoFocus"/> 
 </sml:ParameterList> 
</sml:parameters> 
    
<!--******************Internal Components*****************************************--> 
<sml:components> 
 <sml:ComponentList> 

<sml:component name="ImageSensor" 
xlink:arcrole="urn:ogc:def:process:OGC:sensor" 
xlink:href="urn:agis:def:sensors:AGIS:CCDSensor"> 

  </sml:component> 
<sml:component name="OpticalBlock1" 
xlink:arcrole="urn:ogc:def:process:OGC:process" 
xlink:href="urn:agis:def:process:AGIS:OpticalBlock1"> 

  </sml:component> 
<sml:component name="LPF" xlink:arcrole="urn:ogc:def:process:OGC:process" 
xlink:href="urn:agis:def:process:AGIS:OpticalLPF"> 

  </sml:component> 
<sml:component name="Clock" xlink:arcrole="urn:ogc:def:process:OGC:detector" 
xlink:href="urn:agis:def:sensors:AGIS:CamClock"> 

  </sml:component> 
<sml:component name="Battery" 
xlink:arcrole="urn:agis:def:process:AGIS:component" 
xlink:href="urn:agis:def:sensors:AGIS:CamBattery"> 

  </sml:component> 
  <!--etc. other components--> 
 </sml:ComponentList> 
</sml:components> 
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</sml:System> 
</sml:member> 
<!--*******************System Process Model****************************************--> 
<sml:member> 
 <sml:ProcessModel> 
  <sml:method> 
   <sml:ProcessMethod> 
    <!--Rules Set--> 
    <sml:rules> 
     <sml:RulesDefinition></sml:RulesDefinition> 
    </sml:rules> 
    <!--Implementations--> 

<sml:implementation 
xlink:href="http://myDomain.de/CAM_Plugin_Interfaces.xml"> 
<sml:ImplementationCode language="java" 
framework="AGISSensorPluginsFramework"> 

     <sml:sourceRef></sml:sourceRef> 
     <sml:binaryRef xlink:arcrole="GeotechSoftware"> 

</sml:binaryRef> 
    </sml:ImplementationCode> 
    /sml:implementation> 
   </sml:ProcessMethod> 
  </sml:method> 

</sml:ProcessModel> 
</sml:member> 
</sml:SensorML> 
<!--***********************END*****************************************************--> 
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