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Abstract

This thesis presents a generative statistical approach for the fully automatic three-
dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-
baseline image sequences. Tree models improve the realism of 3D Geoinformation systems
(GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from
images due to partially weak contrast, background clutter, occlusions, and particularly the
possibly varying order of branches in images from different viewpoints. The proposed ap-
proach combines generative modeling by L-systems and statistical maximum a posteriori
(MAP) estimation for the extraction of the 3D branching structure of trees. Background
estimation is conducted by means of mathematical (gray scale) morphology as basis for gen-
erative modeling. A Gaussian likelihood function based on intensity differences is employed
to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence
of multiple parameters in the Markov Chain considering their characteristics and the perfor-
mance in the previous step. A tree is classified into three typical branching types after the
extraction of the first level of branches and more specific Production Rules of L-systems are
used accordingly. Generic prior distributions for parameters are refined based on already ex-
tracted branches in a Bayesian framework and integrated into the MAP estimation. By these
means most of the branching structure besides tiny twigs can be reconstructed. Results are
presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating
the potential of the approach as well as its current shortcomings.



Zusammenfassung

Diese Dissertationsschrift stellt einen generativen statistischen Ansatz für die vollautoma-
tische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter Laubbäume aus
Bildsequenzen mit großer Basis vor. Modelle für Bäume verbessern den Realismus von
3D Geoinformationssystemen (GIS), indem sie Letzteren eine natürliche Note geben. We-
gen z.T. schwachem Kontrast, Störobjekten im Hintergrund, Verdeckungen und insbeson-
dere der möglicherweise unterschiedlichen Ordnung der Äste in Bildern von verschiedenen
Blickpunkten sind unbelaubte Bäume aber schwierig zu rekonstruieren. Der vorliegende
Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum
A Posteriori (MAP) Schätzung für die Extraktion der 3D Verzweigungsstruktur von Bäumen.
Hintergrund-Schätzung wird auf Grundlage von mathematischer (Grauwert) Morphologie
als Basis für die generative Modellierung durchgeführt. Für die Bewertung der Hypothesen
wird eine Gaußsche Likelihood-Funktion basierend auf Intensitätsunterschieden benutzt. Es
wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Param-
eter für die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten
Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ästen in drei
typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von
spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ästen werden gener-
ische Prior-Verteilungen für die Parameter in einem Bayes’schen Rahmen verfeinert und in
die MAP Schätzung integriert. Damit kann ein großer Teil der Verzweigungsstruktur außer
kleinen Ästen extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Model-
ing Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen
Defizite des Ansatzes.
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Chapter 1

Introduction

The basic motivation of the work described in this thesis is to add a natural touch to three-
dimensional (3D) city models by the extraction and reconstruction of trees and thus to im-
prove the realism of 3D Geoinformation systems (GIS).

In our environment trees play an essential role. Particularly in urban areas, they are too often
the only representatives of nature. Because of their complex structure and costly acquisi-
tion, trees are often neglected, or at least only acquired in a very simplified form for GIS,
especially for 3D city models. The distinctive shape and texture of individual trees that can
strongly influence the appearance of their whole environment is only represented for very
locally limited architectural models. Detailed 3D representations of individual trees can sub-
stantially enhance the realism of city models. Additionally, they can be used for applications
such as architectural planning or the production of movies.

In this thesis we aim at the extraction of the 3D branching structure of individual unfoliaged
deciduous trees from terrestrial wide-baseline image sequences. Deciduous trees are popular
in most cities worldwide (in the Temperate Zone) as they provide shadow in summer while
letting the sunlight through in winter. Thus, they form the majority of trees in urban areas.
From a practical point of view, terrestrial images for the data acquisition for city models
are often acquired when trees are unfoliaged, as facades, etc. are more readily visible then.
From a scientific, but also from a practical point of view, unfoliaged trees have the advantage,
that they explicitly show the branches. Extracting the 3D branching structure from images
automatically is a challenging task, which to our knowledge nobody has tried to do without
(substantial) manual intervention.

Images are attractive as source data for object extraction because of the low cost for data
acquisition and the comprehensive information on color and texture they contain. However,
to construct 3D models of trees bottom-up/data-driven from wide-baseline image sequences,
the branches have to be matched. This is difficult due to the geometric complexity and mu-
tual occlusions of branches along with weak contrast and background clutter in the images.
Additionally, as shown in Figure 1.1, the order of branches can vary from different points of
view due to the pronounced 3D structure of trees. This means that the ordering constraint,
i.e., a point left of another point on an epipolar line in one image is also left of the corre-



2 Introduction

sponding point on the epipolar line in the other image, often employed to guide matching, is
often not valid for branches even for images taken close to each other.

Figure 1.1: Varying order of branches from different points of view. Two different branches
are marked in green and red.

In this thesis we show how generative statistical modeling makes it feasible to extract and
reconstruct 3D branching structures from wide-baseline image sequences in spite of the
problems stated above. Figure 1.2 shows the basic concept of the approach: trees are gen-
eratively modeled by means of L-systems from computer graphics and the parameters of
tree models are determined statistically by maximum a posteriori (MAP) estimation. In
this framework for tree extraction, Lindenmayer-, or in short L-systems (Prusinkiewicz and
Lindenmayer 1990) bring biological information into the modeling while the statistical sam-
pling builds the link to the images of the real scene.

Figure 1.2: Generative statistical modeling: L-systems are used to model trees in a general
way based on botanical knowledge – MAP estimation is employed to find their individual
characteristics in real scenes.

Our main contributions can be summarized as follows:

1. L-systems are devised for modeling trees in images conditioned on different branching
types.

2. Background estimation by means of gray scale morphology and detail recovery is
conducted as basis for generative modeling.
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3. MAP estimation is employed for the optimization of parameters using a Gaussian like-
lihood function based on intensity differences.

4. A Bayesian framework has been devised to refine the generic prior distributions for the
parameters based on the extracted branches. The improved priors are integrated into
the MAP estimation.

5. A proposal mechanism has been designed to guide the sampling sequence. Consid-
ering the characteristics of individual parameters and their mutual influence, the sam-
pling becomes more reasonable and efficient.

6. Trees are classified into different branching types and the corresponding L-system is
applied for a more plausible description.

By these means, main branches of trees can be extracted and reconstructed in 3D from image
sequences in the form of Virtual Reality Modeling Language (VRML 2.0, ISO/IEC 14772-
1:1997) models, as shown in Figure 1.3.

Figure 1.3: 3D tree extraction and reconstruction in the form of a VRML model (right) from
an image sequence (left).

The thesis is organized as follows: Chapter 2 sets the methodological background. Selected
previous approaches on tree extraction from various sources are summarized in Chapter 3.
Chapter 4 describes the generative modeling of trees by means of L-systems along with the
definition of different branching types. The extraction of the branching structure is presented
in Chapter 5 comprising the generation and evaluation of 3D hypotheses, MAP estimation,
the classification of branching types, and the Bayesian refinement of priors. Results of ex-
periments on a simulated tree model and trees in real scenes are presented and discussed in
Chapter 6. Finally, Chapter 7 summarizes the thesis and gives an outlook.



Chapter 2

Methodological Background

This chapter reviews some of the concepts and techniques employed in the presented ap-
proach, including modeling methods, statistical algorithms, and the object extraction strat-
egy.

Markov Chain Monte Carlo (MCMC) is used as basic statistical sampling method. We show
properties of Markov Chains and advantages of MCMC sampling for scientific computation
in Section 2.1 introducing and discussing some MCMC algorithms of interest. In Section 2.2
we present the statistical framework for learning and optimization with Bayesian inference
at the core. Maximum a posteriori (MAP) estimation, which also works based on Bayesian
inference, is also included in this Section.

We introduce generative modeling and the concept of generative statistical object extraction
from images in Section 2.3 followed by gray-scale morphology in Section 2.4. Section 2.5
focuses on L-systems, which can be used to model the structure of trees by simulating their
growth. In the same section state-of-the-art approaches of tree modeling including one com-
mercial software we have used to produce a sample tree are presented.

Finally, the geometric basis of the approach – a highly precise structure from motion proce-
dure – is briefly described in Section 2.6.

2.1 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a class of statistical sampling algorithms widely
applied as a general purpose computing technique for probability model simulation, integra-
tion, and optimization. It has been introduced in physics in the late 1940’s and nowadays
plays an important role in statistics, computer science, and econometrics. The main ad-
vantage of MCMC techniques is that they can sample efficiently in large spaces with high
dimensionality.
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2.1.1 Monte Carlo Sampling

Monte Carlo sampling is a basic numerical computing technique. In many practical (statis-
tical) applications it is hard to make exact inferences for the proposed probabilistic models.
Approximation by means of numerical sampling, e.g., Monte Carlo sampling, thus becomes
very important.

Monte Carlo sampling is named after the town Monte Carlo, which is world famous because
of the luxurious casino. The essential idea of Monte Carlo sampling is therefore random
sampling, i.e., drawing dices. It can be traced to a rudimentary version invented by Fermi in
the 1930s, even earlier than the first computer appeared (Robert and Casella 2008). Its first
well-known practical application was during building the first nuclear reactor in 1942.

Monte Carlo simulation draws a set of samples xi, i = 1, ..., n, from a target distribution p(x)
in a space Ω. They are independent and identically-distributed (iid) random variables.

The n samples can be used to approximate the target density of a function f (x)

E{ f (x)} =
1
n

n∑
i=1

f (xi) −−−−−→n→∞

∫
Ω

f (x)p(x)dx , (2.1)

where E{ f (x)} is an unbiased estimate of f (x). According to the law of large numbers, E
will surely converge to the integral of f (x).

Theoretically, if the sampling is dense enough, the Monte Carlo samples can also be directly
used for optimization:

x̂ = argΩ′ max p(xi) −−−−−→n→∞ argΩ max p(x) , (2.2)

where Ω′ is the sample space, Ω′ ∈ Ω.

In practice, however, one often encounters complicated and/or combined distributions with
high-dimensional sampling spaces, and then the inefficiency of Monte Carlo can be fatal.
More sophisticated techniques which can guide the sampling routine, e.g., MCMC, are
needed.

2.1.2 Markov Chains

A Markov Chain, as shown in Figure 2.1, is a mathematical model for stochastic systems
whose states, discrete or continuous, are governed by transition probabilities. It consists of a
series of random variables, named states X0, X1, ..., Xn and can be denoted by

(Ω, P(X0),K) ,

with
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Ω: the state space;

P(X0): the initial probability – the marginal distribution for X0, which specifies
the starting state;

K: the kernel – the transition probability from the previous state(s) to the current
state.

Figure 2.1: A first order Markov Chain.

A Markov process starts from the initial state X0 and moves successively to the next state
controlled by the transition probability. Each move is usually called a “step”, as the Markov
process is considered to walk in the state spaceΩ. Giving equal probability to every potential
step, the Markov process represents a random walk.

The main property of the Markov process is that the current state only depends on the most
recent previous states. The typical Markov Chain, namely the first order Markov Chain, is
shown in Figure 2.2 and can be formulated as:

Xt|Xi−1, ..., X0 ∼ P(Xi|Xi−1, ..., X0) = P(Xi|Xi−1) , (2.3)

in which only the last state influences the current one.

The kernel K is defined as the conditional probability for subsequent variables, i.e., the
probability of Xi given Xi−1:

Ki(Xi, Xi−1) ≡ P(Xi|Xi−1) .

The simplest form of a Markov Chain is the homogeneous (or stationary) one, in which the
transition probability is constant for all states (independent on time or position i ∈ {0, n}):

P(Xi|Xi−1) = const. (2.4)

For Markov Chains in discrete state spaces, we denote the transition probability by T =

T (Xi, Xi−1). The probability of state Xi as derived from that of the previous state is given as:

P(Xi) =
∑
Xi−1

P(Xi−1)T (Xi, Xi−1) . (2.5)

For continuous state spaces, the representation of a Markov Chain can be expressed using
the integral kernel K:
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P(Xi) =

∫
P(Xi−1)Ki(Xi, Xi−1)dXi−1 . (2.6)

Stability of Markov Chains

Stability means that starting from any initial state, a Markov Chain will convergence to an
invariant distribution, i.e., a stationary probability. This is a very important and attractive
feature of Markov Chains.

In practical applications, the target distribution p(x) often cannot be directly observed. The
goal of designing Markov Chains is then to devise a stationary probability that can represent
p(x). I.e., the samples xi from Markov Chain states Xi simulate samples drawn from the
target distribution.

The invariant distribution should be reached by

P(X0)Kn −−−−−→n→∞ P(X) , (2.7)

where n indicates the number of times that K has been multiplied. Stability means that after
a limited number of transitions (steps), any initial distribution will converge to a station-
ary distribution. This implies that the stability of Markov Chains depends on the transition
probability K. To ensure stability, K must be constructed guaranteeing the following two
properties:

1. Ergodicity: A Markov Chain is called ergodic if it is possible for the chain to explore
the whole state space. I.e., the probability of visiting all other states is always positive.
Ergodic Markov Chains are often also called “irreducible”.

2. Aperiodicity: An ergodic chain is called aperiodic (or acyclic) if there does not exist a
periodic structure in the chain.

The purpose of employing Markov Chains is to guide the “routine” of sampling more ef-
ficiently, i.e., conducting a walk mostly in interesting regions, and to converge as soon as
possible.

2.1.3 MCMC Techniques

Markov Chain Monte Carlo is a class of techniques for generating fair samples xi for the
states Xi in the state space Ω using a Markov Chain guiding the sampling. The stability of
a Markov Chain, as mentioned above, is advantageous to ensure convergence. A typical
MCMC is illustrated in Figure 2.2.

The current state Xi is determined by the transition kernel K and in first order Markov Chains
additionally only by the last state Xi−1 (X ∼ P(x)). The variable xi is drawn stochastically
(x ∼ U[a, b], iid) for each state Xi.
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Figure 2.2: MCMC with first order Markov Chain.

Detailed Balance

MCMC samplers are Monte Carlo samplers which ideally employ ergodic and aperiodic
Markov Chains. The invariant distribution derived from the stationary chains can be used to
approximate the target distribution p(x). One way to construct an appropriate sampler is to
satisfy the reversibility, i.e., detailed balance, condition:

p(Xi)T (Xi−1, Xi) = p(Xi−1)T (Xi, Xi−1) , (2.8)

which is a sufficient, but not a necessary condition to ensure that the invariant distribution of
the Markov Chain is identical to the target distribution p(x).

Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm was introduced in (Metropolis et al. 1953) and has
been further developed by Hastings (1970). MH is one of the most popular MCMC tech-
niques. It is a generalization of the basic Metropolis algorithm and many practical MCMC
algorithms can be seen as special cases or extensions of the MH algorithm.

In basic MCMC, a new step Xi+1 proposed by the Markov Chain will only be accepted when
its probability is higher than that for its predecessor. The MH algorithm relaxes this criterion
by accepting “worse” candidates, conditioned on an acceptance probability A(Xi, X∗):

A(Xi, X∗) = min
{

1,
p(Xi)q(X∗|Xi)
p(X∗)q(Xi|X∗)

}
. (2.9)

Figure 2.3 shows the basic MH algorithm. The Markov Chain moves forward to X∗ as the
next state Xi+1 if A(Xi, X∗) > random number u, otherwise it remains at Xi.

The acceptance probability guarantees the following two properties:

1. In case the new candidate is better than the current, i.e., the second term is larger
than 1, A(X, X∗) = 1. Since u is sampled in [0, 1], a better candidate will always be
accepted.
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Figure 2.3: Metropolis-Hastings algorithm.

2. In case the new candidate is evaluated worse, instead of being rejected immediately, it
still has a chance to be accepted proportional to its evaluation based on the acceptance
probability.

The latter property gives the MH algorithm the potential to overcome local minima, which
often occur in complex distributions. Figure 2.4 shows a function with multiple local min-
ima. Instead of converging to the next local minimum, the sampler has the possibility to go
“up-hill” by conditionally accepting worse candidates and thus to reach the global minimum.

The transition kernel in MH is based on the ratio of the proposed and the current step, im-
plying the gradient of the function. Small hills can thus be easily overcome because a low
gradient means a large acceptance probability.

An important feature of the MH algorithm is, that the target density p(X) needs only to be
known up to a multiplicative factor, since only the ratio p(Xi)/p(X∗) has to be computed. This
makes this sampling algorithm very attractive for Bayesian computation, where the posterior
distribution is often only known up to a normalization factor.

Applications of MCMC Sampling
MCMC is used as a general purpose (computing) technique, e.g., in the following areas:

1. Simulation: MCMC produces samples of the probability model underlying the target
system and represents typical states of the latter.
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Figure 2.4: Metropolis-Hastings algorithm renders it feasible to overcome local minima by
allowing “worse” hypotheses.

Many natural processes are inherently stochastic, but still follow essential rules, which
can be expressed in the form of probability models. For example, the random growth
of tree models can be governed by L-systems (cf. Section 2.5.1). The fair samples
generated by MCMC will vary in appearance, but still present typical tree structure as
described by L-systems. Another example is the generation of Gaussian noise with
given mean and variance in image processing.

2. Integration and Computing: The computation of integrals is a typical task in scientific
computing. Monte Carlo integration is used to deal with distributions in very high
dimensional spaces. The expectation c is estimated as follows:

c =

∫
Ω

p(x) f (x)dx ; ĉ =
1
n

n∑
i=1

f (xi) , (2.10)

whereΩ is the integral space, ĉ the approximation with Monte Carlo, and n the number
of samples drawn from p(x).

3. Bayesian Inference and Learning: MCMC is an important computing tool for maxi-
mum likelihood estimation (MLE) learning of parameters p(x; θ) as well as maximum
a posteriori (MAP) estimation (cf. Section 2.2.2). Unsupervised learning with hidden
variables (simulated from the posterior) needs simulation to find suitable models. As
Bayesian inference has become an important framework in many areas, e.g., image
understanding and computer vision, MCMC techniques are of increasing interest.

4. Optimization: MCMC is the most often used technique for searching the global optima
of complex distributions, e.g., the Bayesian posterior probability (MAP).
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MCMC is a general technique for many problems with a high-dimensional solution space.
In some cases it is even the only known approach to provide solutions within an acceptable
computation time.

Reversible Jump Markov Chain Monte Carlo

Reversible Jump Markov Chain Monte Carlo (RJMCMC) is an extension of the MCMC
algorithm to handle state spaces of variable dimension. It is a variant of the Metropolis-
Hastings algorithm and can deal with dimension jumps, i.e., allows modeling with varying
numbers of parameters or/and objects. As proposed in (Green 1995), the Markov Chain
sampler can extend its search by switching between spaces with variable dimensions. These
movements are called “reversible jumps” as any “jump” must be reversible, i.e., it must be
possible to return to the previous state.

RJMCMC has a mixed transition kernel, as demonstrated in Figure 2.5. A set of moves –
birth, death, split, and merge of components – is defined and chosen according to mixture
probabilities.

Figure 2.5: Reversible jump consists of a mixture of MCMC kernels (Andrieu et al. 2003).
Assume that we are concerned with sampling the locations µ and the number k of components
of a mixture model. The various moves are carried out according to the mixture probabilities
(bk, dk, sk,mk, u). The superscript “(0)” indicates the initial state.

RJMCMC allows for a large, even infinite, number of candidate models, as long as the
cross-model kernels keep the balance condition. In this framework a Bayesian process can
be integrated to generate a wide variety of new models, which are inferred based on old ones
and can be more promising. Thus, RJMCMC is also a powerful model selection scheme.
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Unfortunately, there is also a number of problems with RJMCMC: 1) The design of the tran-
sition kernels is more complicated. 2) The extension of the search space makes RJMCMC
usually time-consuming. The latter is the reason why RJ is not integrated into our search
scheme, although it is attractive for possible future work (cf. Chapter 7).

2.2 Bayesian Inference and MAP Estimation

Classical probability theory is based on the study of independent trials. This means that
knowledge of previous trials in one area has no influence on the prediction for a current
trial in another, but similar area. Contrary to this, modern probability theory studying chance
processes assumes that investigating previous observations of a similar model will very likely
help us to derive better predictions for further experiments.

A basic assumption is since Helmholtz (1860) that biologic (and also machine) vision com-
putes the most probable interpretation(s) from input images. Let I be an image and X be a
semantic representation of the world. Then, with the conditional probability π(X|I) holds:

X∗ = argmax
{
π(X|I)

}
(2.11)

In numerical statistics, usually the posterior is sampled and multiple solutions are kept:

(X1, X2, ..., Xk) ∼ π(X|I) (2.12)

When studying a physical process, one often has only the observation data rather than the
underlying distributions. Statistical inference is used to estimate the adequate model along
with the associated parameters based on the observed data. Bayesian inference is a means
for statistical inference using Bayes’ theorem. Observations, also called evidence, are used
to infer the probability that a hypothesis may be true.

As our knowledge about the underlying model and its parameters is “updated” along with the
accumulation of more and more evidence, this can be also seen as a learning process about
the statistical characteristics of the parameters from the observations.

2.2.1 Bayesian Inference and Learning

Assume that we want to estimate the parameter θ based on observations x = {x1, x2, ..., xn}.
Bayes’ theorem shows how to update the probability, or in other words to infer the posterior,
with given evidence as follows:

P(θ|x) =
f (x|θ)p(θ)

P(x)
, (2.13)

where
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– p(θ) is the prior of the parameter θ;

– f (x|θ) is the likelihood function (the conditional probability of observing evidence x
given the parameter θ);

– P(θ|x) is the posterior (the conditional probability of a hypothesis given the observed
evidence).

The denominator

P(x) =

∫
Ω

f (x|θ′)p(θ′)dθ′ (2.14)

is the marginal probability of x, i.e., the probability of observing x under all possible θ. This
integral can also be seen as a normalization term to make sure that the posterior integrates to
unity. Since P(x) = P(x ∩ θ) = f (x|θ)p(θ), the updated posterior will never become greater
than 1. And more important, as it does not depend on θ, this term can be treated as constant
when optimizing the latter.

The term

f (x|θ)
P(x)

summarizes the influence of the evidence on the belief in the hypothesis. It shows that better
evidence, i.e., evidence that supports the proposed parameter, leads to a higher posterior
probability for the hypothesis.

While evidence accumulates, there are two kinds of learning processes based on Bayesian
inference:

• Discriminative learning models the posterior P(θ|x): The degree of belief in a hypoth-
esis tends to become either very high or very low making a discriminative learning for
a decision (accept/reject) or a classification possible.

• Generative learning models the joint probability P(x, θ): Knowledge, i.e., priors, about
the proposed parameter(s) θ of the model is improved to the conditional probability
P(θ|x) by integrating verified evidence x (cf. Section 5.7).

Taking the classification task as example, generative learning creates explicit models, which
represent the training data of the object category. A generative classifier learns the prior
and the likelihood of the classes γ P(γ) and P(x|γ) and classifies x by maximizing P(γ|x) ∝
P(x|γ)P(γ). A discriminative approach, in contrast, learns the posterior P(γ|x) directly. It
finds the best classifier for the given data set focusing on discriminative characteristics be-
tween individual categories. Current approaches often combine these two concepts to deal
with the classification problems with relatively similar categories. I.e., they learn object
categories generatively and train models for each category discriminatively.
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The predominant feature of Bayesian inference is that the predictions for the parameters are
in the form of probability distributions (posteriors) instead of point predictions for conven-
tional approaches. Usually, the posterior has a low entropy and the effective volume of the
search space is relatively small.

Another advantage is the potential for automatic model selection (Bishop 2008): The addi-
tional uncertainty of a set of candidate models with different complexity can be addressed
in a Bayesian framework. A prior is given for the different models and the posterior for the
models based on the observation X can be expressed as:

p(M|X) ∝ p(M)p(X|M) . (2.15)

The model which best balances complexity and goodness of fit is determined based on op-
timizing the “marginal likelihood”, also called “model evidence”, presenting the preference
of the evidence for the candidate model (Bishop 2008).

2.2.2 Maximum A Posteriori Estimation

Maximum a posteriori (MAP) estimation optimizes the posterior based on Bayesian infer-
ence. In comparison with the often used maximum likelihood (ML) estimation, MAP esti-
mation does not only employ the likelihood as the optimization objective, but also integrates
the prior of the estimated parameters.

Let X be the observations and Θ the space of parameters. Then, the likelihood function can
be expressed as

Θ 7→ L(D) = L(X|Θ) . (2.16)

The maximum likelihood estimate of Θ is

Θ̂ML = argΘmax
{
L(X|Θ)

}
. (2.17)

Based on Bayesian inference, the posterior distribution of Θ can be written as:

Θ 7→ P(Θ|X) =
L(X|Θ)p(Θ)∫

Ω
L(X|Θ′)p(Θ′)dΘ′

(2.18)

with p the prior and Ω the domain of Θ.

The denominator of the posterior does not depend on Θ. Therefore, it can be seen as a
constant in the optimization. The maximum estimate for the posterior is thus equivalent to
that of the numerator:

Θ̂MAP = argΘmax
{

L(X|Θ)p(Θ)∫
Ω

L(X|Θ′)p(Θ′)dΘ′

}
= argΘmax

{
L(X|Θ)p(Θ)

}
. (2.19)
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MAP estimation can be seen as an extension or a regularization of ML estimation: the empiri-
cal knowledge about the parameters is considered as well by integrating the prior information
of them. Using the posterior also lowers the entropy of the target function to be optimized
and thus the search space is narrowed down to a smaller, often more reasonable region.

Because of the augmented optimization objective, computing of the MAP estimate has often
to deal with more complicated (very likely non-analytic) distributions in a much larger search
space. A general numerical solution for the computation of MAP estimates is to use MCMC
techniques (cf Section 2.1.3).

2.3 Generative Statistical Object Extraction

Conventional object extraction focuses on bottom-up, feature-based methods. These data-
driven methods, however, can encounter big difficulties when the extraction is strongly un-
certain. This is particularly true if images are used as, possibly the only, data source, and
problems with weak contrast, background clutter, occlusions, etc., have to be tackled. Addi-
tionally, for complex 3D structures like branching systems, invalid conventional constraints
for matching make feature-based methods even less suitable.

As a top-down model-driven method, generative modeling has become a tendency of recent
research to deal with the uncertainty of data and complex target structures. The basic idea
of generative statistical modeling is to generate multiple hypothetic models by statistically
varying the parameters of the model and evaluating the proposed hypotheses by comparing
them with the observed (image) data, possibly after projecting them into the image space.
The goal is to find the best combination of parameters, i.e., the best estimate of the underlying
model, to describe the target physical process or object.

2.3.1 Generative Statistical Modeling and Extraction from Images

Generative models in a statistical framework are a class of models employing full probabil-
ity information for all parameters. Suppose we want to study the unobservable parameter θ
based on the observation X. Generative modeling means to generate samples from the joint
probability distribution P(θ, X) over both observation data and target (unobserved) parame-
ters.

For a better understanding of generative modeling, we compare it with discriminative mod-
eling. In the latter, only models of the target parameter(s) conditioned on the observed pa-
rameters are available. I.e., a discriminative model only allows sampling from p(θ|X) the
probability of one or a very limited number of target parameters conditioned on the observed
quantities X with known values of other parameters. Opposed to this, in generative modeling
the probability for all parameters p(θ) in the model is obtained. Generative models produce
the observable population, also called simulated data, randomly/statistically by sampling all
parameters θ. While discriminative modeling shows better performance in classification and
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regression, for which the joint distribution is not required, generative modeling provides
more flexibility for complex learning tasks, for which the goal is often to tune θ and maxi-
mize the data likelihood (for ML) or the posterior for the parameters conditioned on the data
(for MAP).

In many cases, the space of parameters is vast and meaningful solutions may be distributed
very sparsely. Usually, the more flexible a model is used, the higher dimensional a solution
space must be searched. Furthermore, besides the large sampling space, the distributions
are often complex with possibly many local extrema. MCMC techniques, as introduced in
Section 2.1, are therefore in many cases used to find solutions.

For generative statistical object extraction in images, the target object is modeled with geo-
metrical and physical features as parameters. Probability distributions are derived for these
parameters based on their characteristics known from empirical knowledge. By sampling
the parameter distributions, a large number of hypothetic models is generated. The best eval-
uated hypothesis, usually in the form of an ML or a MAP estimate, describing the target
object along with its parameter values, is the result of the extraction.

When using images, the evaluation of 3D hypotheses must be conducted in 2D space, as
the images are the observed data. The models are projected into the geometry of the given
images resulting in simulated images which are compared with the given images resulting
in the likelihood for the evaluation. For a correct projection and thus a reliable evaluation,
highly precise 3D orientation should be used (cf Section 2.6).

The procedure of image-based generative statistical 3D object extraction can be summarized
as follows (Mayer et al. 2008):

1. A model is devised with a possibly large number of parameters, which may include
the number of components.

2. By sampling the parameters statistically, a 3D hypothesis is generated.

3. The 3D hypothesis is projected into image space using as good as possible known
orientation parameters, resulting in 2D simulated images.

4. The hypothesis is evaluated by comparing its simulated images to the corresponding
given images.

5. The solution space will be sampled, to find the best set of parameters describing the
underlying model.

2.3.2 Generative Statistical Approaches

In this section, several approaches for generative statistical object extraction are presented.
Although these approaches are not concerned with tree extraction, approaches for which are
given in Chapter 3, our work is inspired by them.
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(Dick et al. 2004) describes the automatic 3D reconstruction of architectural models from
image sequences (cf. Figure 2.6). Buildings, especially their facades, are interpreted by
stochastically varying the given models and projecting them into images. The results shows
the potential of this approach although it is restricted to a small number of objects (facades,
windows, columns, etc.) and it has been tested with a very limited number of examples.

Figure 2.6: Reconstruction of architectural models from image sequences (Dick et al. 2004).

Stoica et al. (2004) employ a framework based on a Gibbs point process. A data term
describing roads in images in the form of statistical hypothesis tests is linked to a prior stating
that roads form a connected network of lines, favoring aligned segments and penalizing
superposition. An estimate for the road network is found by minimizing an energy function
employing RJMCMC (cf. Section 2.1.3). As for Dick et al. (2004) above, an interesting
feature of the approach is, that one can sample from the prior distribution. If this results
in road-like structures, one knows that the structures described by the model are actually
road-like. Results for SPOT and aerial optical images as well as ERS radar data show the
feasibility but also the shortcomings of the approach.

(Alegre and Dallaert 2004) presents a probabilistic approach for the semantic interpretation
of building facades. It combines low-level segmentation and high-level hierarchical classifi-
cation of structural elements generated by vertical splits and horizontal divisions (cf. Figure
2.7).

(Brenner and Ripperda 2006) and (Ripperda and Brenner 2007) focus on stochastical gram-
mars for the organization of facade elements. They recursively split facades in the form of a
derivation tree (cf. Figure 2.8). They employ RJMCMC (cf. Section 2.1.3) for the control of
the stochastical search process. Besides the images, Ripperda and Brenner (2007) use also
depth (terrestrial laser) data for facade reconstruction.
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Figure 2.7: Hierarchical partitioning of a facade (Alegre and Dallaert 2004).

Müller et al. (2006) introduce a shape grammar, which is named CGA shape, for the pro-
cedural modeling of buildings with high visual quality and much geometric detail (cf. Fig-
ure 2.9). CGA shape improves the split grammar with the repeat split rule, the scaling of
rules, and the component split. Although it is inspired by L-systems (cf. Section 2.5.1),
CGA shape works as a “sequential grammar”, i.e., it simulates the spatial variation of fea-
tures and components instead of the growth over time. Furthermore, this approach has been
proven to be efficient by successfully generating massive urban models. More recent work
of Van Gool et al. (2007) also uses an architecture-oriented shape grammar focusing on 3D
facade reconstruction from single images based on prior knowledge of architectural struc-
tures.

Mayer and Reznik (2007) employ terrestrial image sequences to automatically generate fa-
cade planes oriented vertically by determining the vertical vanishing point. They use infor-
mation in patches around corners in the rectified facade images to delineate windows (cf.
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Figure 2.8: The facade is split in the form of a derivation tree (Brenner and Ripperda 2006).

Figure 2.9: Different models are generated by statistical sampling based on a shape grammar
(Müller et al. 2006).

Figure 2.10) in an appearance-based way using an Implicit Shape Model – ISM (Leibe and
Schiele 2004). A generative approach simulating windows by black rectangles is employed
for bright facades.

2.4 Gray-Scale Morphology

Mathematical Morphology was developed in 1964 for analyzing mineral characteristics
from thin cross sections and was later generalized to gray-scale functions and images
(Serra 1983).
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Figure 2.10: Facade interpretation (Mayer and Reznik 2007) – hypotheses of window centers
(crosses) and extracted windows (boxes) after MCMC search.

The basic morphological operations are Dilation and Erosion. They are used for removing
noise, isolating individual elements, and joining disparate elements.

Dilation expands the shapes contained in the input image using the so called “structuring
function”. It is mathematically defined as:

( f ⊕ g)(x) = in fx′∈G( f (x − x′) + g(x′)) ,

where f indicates the input image and g the structuring function.

The structuring function can be of any shape or size, but is often a relatively small square
or disk with the reference point at the center. The structuring function is shifted over the
image. If the structuring function consists of a region with value 0 and everything else is
−∞, Dilation is similar to a local maximum operator – the maximal pixel value in the region
is determined and replaces the current image pixel (at the reference point).

Generally, Dilation causes an expansion (dilation) of the object in size, while Erosion is the
converse process and causes a contraction of objects:

( f 	 g)(x) = in fx′∈G( f (x + x′) − g(x′)) .

The structuring function plays a leading role, but both Dilation and Erosion have a smoothing
effect with Dilation smoothing concavities and Erosion eliminating protrusions.

The higher order operations, Opening and Closing, are defined by combining Dilation and
Erosion:
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( f ◦ g)(x) = (( f 	 g) ⊕ g)(x) ;

( f • g)(x) = (( f ⊕ g) 	 g)(x) .

(Köthe 1996) proposes to design the structuring function g(x) as an “isotropic” square or
disk with s the radius of the disk or the square’s inscribed circle:

gs(x) := ds(x) =

{
0, i f |x| ≤ |s|
−∞, otherwise

(2.20)

For our problem domain there are two important characteristics of Opening and Closing
when dealing with so-called “blobs”:

• Light/dark blobs that smaller than |s| can be eliminated by Opening/Closing with ds.

• Light or dark blobs that larger than |s| are not changed by Opening or Closing with ds.

Here, blobs indicate smooth regions, which are lighter or darker than the background, and
different from their environment. They have a close link to extrema of the image function
(Mayer 1998).

Figure 2.11 presents results of morphological operators with square-shaped structuring func-
tions. Please note that although in many cases Dilation has a similar effect to Closing (and
Erosion to Opening), Opening and Closing do less damage to the original image information
as the second step undoes parts of the first step.

2.5 Modeling and Visualization of Trees

The modeling of trees is an interesting but rather challenging topic in both botanical science
and computer graphics although they have different interests. The latter is focusing on the
realistic visualization of existing trees while the botanical scientists are more interested in
the underlying rules of trees’ growth. Current approaches in computer graphics try to make
use of grammar descriptions, e.g., L-systems (Section 2.5.1), to simulate potential structures
instead of directly drawing them. The combination of botanical- and geometry-based mod-
eling helps to understand the organization of branches better and leads to more reasonable
results.

2.5.1 L-systems

Lindenmayer-, or in short L-systems are a mathematical tool for modeling plant development
based on formal grammars generating strings. They have been introduced by the Hungarian
biologist Astrid Lindenmayer in 1968 and initially been used to simulate morphogenesis,
e.g., the development of multicellular organisms. In the book “The Algorithmic Beauty of
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Figure 2.11: Results of morphological operators with square-shaped structuring functions
with s = 2pixels (for Erosion and Opening) and s = 6pixels (for Dilation and Closing),
respectively.

Plants”, Prusinkiewicz and Lindenmayer (1990) describe algorithmic plant generation over
time using L-systems.

L-systems are based on fractal mathematics (Koch snowflake or Koch island, introduced
by Koch in 1904) and the concept of string rewriting, i.e., successive replacement of the
input string, resulting into new strings based on predefined rules (called Productions). The
simulation of development, i.e., branching of trees, starts with an initial string, called axiom.
By means of string rewriting using Production Rules, subsequent strings grow in length
seen to reflect development. An important property of L-systems is that they preserve the
characteristics of the original string while generating new patterns.

Figure 2.12 shows an example of the growth process based on an L-system. It is generated by
the simulation tool described in Section 4.2.4. A deterministic L-system, as the one shown
in Figure 2.12, is the simplest instance of an L-system, where the structure is predefined
with constant values, e.g., the branching angle of a new branch is fixed to 28°. In practice,
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the most common extension for L-systems is parametrization, i.e., to set parameters such as
length, diameter, and branching angle, to control the structure. This extends the flexibility
and allows to design more sophisticated tree structures.

Figure 2.12: Example of branching structures generated by an L-system after 1 (left), 2
(middle), and 3 (right) iterations with the given Production Rule and branching angle (cf.
also Section 4.2).

A further extension, namely stochastical L-systems, can simulate randomness during growth
by a stochastic rewriting mechanism. Trees of the same type show a diverse appearance,
which can be simulated by setting the values of the parameters and/or choosing the Produc-
tion Rules randomly. The basic botanical characteristics are preserved by using a certain set
of Production Rules. Random simulation results in unique tree models.

Because they recursively use the same Production Rule(s), models produced by L-systems
show basic biological features such as a hierarchical structure and self-similarity. Modeling
with L-systems thus enforces tree-like branching structures. Yet, L-systems alone only give
means to (possibly) “randomly” generate and visualize trees, but not to analyze image data.

2.5.2 Approaches and Tools for Tree Modeling

Because of their elegant mathematical formulation, L-systems have become widely used in
Computer Graphics. The modeling, visualization, and animation of trees are interesting for
applications such as the production of movies and video games.
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Related Approaches

Mĕch and Prusinkiewicz (1996) extend L-systems into a framework, termed “open L-
systems”, to model and visualize plants by their growth and their interaction with the en-
vironment. Plant and environment are modeled separately and information is exchanged.
The development of plants is modeled considering branch collisions, the competition for
growth space and light (cf. Figure 2.13), and the interaction between roots competing for
water and soil.

Figure 2.13: A model of deciduous trees competing for light (Mĕch and Prusinkiewicz 1996).

(Lintermann and Deussen 1996) presents a method for interactive modeling and animation
of natural branching structures. Objects are created according to a rule based description.
Geometric information is encapsulated in the objects and can be edited by methods such
as free form deformation. Global and partial constraints allow the modeling of specific
plants. The rule system is represented by a structure tree with components that can be edited
graphically. Overall, complex branching structures can be developed fast and flexibly.

(Lintermann and Deussen 1999) gives an extension of the above approach by letting the user
design a wide variety of plants by mostly intuitive mechanisms. The introduced modelor pro-
vides a highly interactive user-interface for plant generation. Figure 2.14 shows an example
of a tree modeled with this approach.

Deussen and Lintermann (2004) present a broad overview over different ways to model
vegetation, showing impressive results for the visualization of trees. Their focus is on a
naturally looking visualization. They do not deal with the problems arising when one tries to
invert visualization by extracting objects and estimating their parameters from given images.

Modeling with X f rogT M

The efforts of Bernd Lintermann and Oliver Deussen resulted in the software X f rogT M,
which has been introduced in (Lintermann and Deussen 1996) and (Lintermann and
Deussen 1999). X f rogT M developed by Greenworks is one of the most popular tools for
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Figure 2.14: Tree modeling by sequences of components: First, two components are com-
bined and the parameters are adjusted (left). Two more branching levels are then constructed
(middle). Adding the leaves yields the final tree (right) (Lintermann and Deussen 1999).

plant modeling and animation. It provides a user friendly interface for interactive tree mod-
eling (cf. Figure 2.15). Focusing on realistic visualization, the plants in X f rogT M are divided
into components such as tree, leaf, stem, wreath, and ball, not considering their botanical de-
scription. Users have comprehensive local control over each branch and leaf and can globally
control environmental influences like phototropism and gravitropism. X f rogT M works more
like a simulator than an illustrator, i.e., the user cannot expect to reconstruct or design a spe-
cific tree. The result is a textured wireframe model, which can be exported in popular 3D
formats, such as VRML, 3DMax, and Maya. We use X f rogT M to produce sample trees for
our experiments (cf. Figure 2.15 and Section 6.1).

2.6 3D Reconstruction

The geometrical basis of this work is highly precise 3D orientation and reconstruction for
wide-baseline image sequences. A Structure from Motion (SfM) procedure is used to locate
both the target object in the form of 3D points and the camera positions. (Mayer 2005) and
(Mayer 2007) present a robust procedure to automatically relatively orient images highly
precisely making use of calibration information.

We assume that the images are taken unconstrained with a hand-held camera and, therefore,
(slight) rotations of the camera cannot be avoided. The vertical direction is important for
tree extraction, because the trunk is supposed to be a (mostly) vertical line in the scene. An
approach to determine the vertical direction from the vertical vanishing points in the images,
which was devised in (Mayer and Reznik 2007) for facade interpretation (cf. Section 2.6.2),
is employed.
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Figure 2.15: A simulated model for experiments in this thesis is generated by X f rogT M, “an
interactive tool for tree modeling” (Lintermann and Deussen 1996).

2.6.1 Structure from Motion

SfM procedures are the basis for 3D object extraction from image sequences. SfM aims at
producing 3D geometrical information from a set of (2D) images. A standard SfM setup
consists in imaging a static 3D scene with a moving camera providing an image sequence.

A highly precise SfM procedure making use of camera calibration information, (Mayer
2005) and (Mayer 2007), is employed. At the core of the approach are least-squares match-
ing, direct relative orientation by means of the five-point-algorithm (Nistér 2004), robust
estimation based on random sample consensus – RANSAC (Fischler and Bolles 1981), and
robust bundle adjustment.

First, Förstner (Förstner and Gülch 1987) points are extracted. They are matched via cross-
correlation. Likely conjugate pairs are refined via least-squares matching with an affine geo-
metrical model. These highly precise points are used for direct relative orientation employing
the five-point-algorithm and (calibrated) trifocal tensors T (Hartley and Zisserman 2004)
robustly estimated by means of RANSAC. The use of calibration information via the five-
point-algorithm allows to much better deal with scenes close to or even plainly planar. Max-
imum sets of inliers to RANSAC are robustly bundle adjusted, allowing for a much better
differentiation between correct and false hypotheses.

The trifocal tensors link two images to a third resulting in image triplets. Image triplets are
connected based on the projection matrices for images common between triplets. E.g., the
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triplets [1, 2, 3] and [2, 3, 4] have the image 2 and 3 in common. Already known 3D points
are further projected into newly linked images to generate i+1-fold points, with i being the
current number of images the point is visible in. After the connection, the sequence is bundle
adjusted.

Figure 2.16: Result of structure from motion reconstruction and detection of vertical planes
(Mayer 2007).

2.6.2 Vertical Orientation Using Vanishing Points

In (Mayer 2007) an approach to determine the vertical direction in 3D from the vertical
vanishing points in the images of a sequence is devised for facade interpretation. Facades
usually comprise a considerable number of vertical lines. The 3D Euclidean model can be
oriented vertically based on the vertical vanishing point derived from the vertical lines ro-
bustly extracted using RANSAC (Fischler and Bolles 1981) along with the given calibration
information. Figure 2.16 shows planes determined based on the vertically oriented model via
RANSAC.

The vertical direction, i.e., the direction of gravity, is also essential for modeling the growth
of trees and their extraction. Particularly, most trunks grow nearly vertically. We assume
that a number of vertical lines, e.g., of building facades, can be found in the background for
images taken in urban scenes enabling the determination of the vertical direction.

Figure 2.17 gives an example (one scene in Chapter 6; cf. Figure 6.4) for 3D orientation:
green pyramids show the camera positions and spheres indicate the 3D feature points.
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Figure 2.17: Six images (top) and 3D orientation for tree in the foreground (cf. Section 6.2)
seen from a) left, b) front, c) right, and d) “bird view”. 3D points are presented as gray
spheres, with the color taken from the images. The green pyramids present the cameras with
the tip at the location of the projection center and the base symbolizing the orientation of the
image plane.



Chapter 3

Related Research

Early work on tree extraction was based on aerial imagery, e.g., (Pinz et al. 1993), and only
later Light Detection and Ranging (LIDAR) data (usually recording first and last pulse) was
used. It focused on forest inventories trying to determine parameters such as tree height, den-
sity of trees, and stem diameter. Recently, novel small footprint and full waveform LIDAR
systems have been successfully used for more advanced tasks such as single tree segmen-
tation and tree species classification. Most related work has focused on aerial images and
LIDAR data or a combination of them.

Because of the weaker relationship to our approach, in this chapter we only summarize the
work on tree extraction based on 1) aerial images and LIDAR data (restricted to individual
trees) and 2) terrestrial LIDAR data. We only present details for approaches which employ
terrestrial images as we do.

3.1 Extraction of Individual Trees from Aerial Images and
LIDAR Data

As we deal in our work with individual trees, we restrict the discussion of approaches for
aerial data to those focusing on single trees.

Of first interest is (Cheng et al. 2006), which like our work proposes a statistical (Bayesian)
framework also consisting of a generative component for extracting individual trees from
aerial images. It comprises segmentation, stereo, and 3D fitting. Both data-driven (inverse
modeling, 2D data to 3D geometries) and generative – model-driven (3D models to 2D im-
ages) components are integrated. 3D fitting based on super-ellipsoids resolves inconsisten-
cies of segmentation and stereo. Experiments with small synthetic and real scenes show the
basic feasibility of the approach.

Most research on aerial data focuses on LIDAR data, possibly in conjunction with image
data, the latter particularly in the near infrared, where vegetation has particularly distinctive
reflection properties.
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Hyyppä et al. (2005) aim in their empirical study on the accuracy of the estimation of tree
volumes from aerial data. They estimate a segment for each tree from image data, but found,
that the height is much more reliably determined from LIDAR data than from data generated
by image matching.

Persson et al. (2004) use LIDAR data for the determination of the outline as well as the height
of individual trees. Image data, again in the infrared, is used to mostly reliably differentiate
pine, spruce, and deciduous trees.

Andersen et al. (2002) present a Bayesian object recognition framework for the analysis of
forest scenes. The scenes are modeled by the locations, heights, and crown configurations of
the trees in the area (cf. Figure 3.1). Posteriors for the parameters are inferred via RJMCMC
(cf. Section 2.1.3), which is then used in the MAP (cf. Section 2.2.2) estimation.

Figure 3.1: A forest scene (left) and the MAP estimate of tree locations and crown dimen-
sions superimposed on LIDAR data (Andersen et al. 2002).

Reitberger et al. (2006) employ full waveform LIDAR data focusing on the classification
into deciduous and coniferous trees. They show, that by defining features making use of
the high point densities possible by the full waveform information, it is possible to reliably
distinguish the two classes by means of unsupervised classification.

Finally, Horváth et al. (2008) construct a “gas of circles” model – regions in the image
domain composed of an unknown number of circles of approximately the same radius –
using higher-order active contours for tree crown extraction from aerial images.

3.2 Tree Extraction from Terrestrial LIDAR Data

With the more widespread availability of terrestrial laser-scanners, there is a growing interest
to use them in forest applications. The large number of points from terrestrial scans renders
it possible to generate very detailed models. Yet, opposed to our work, the focus of the
research is mostly on the determination of parameters for forest inventory.
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Aschoff and Spiecker (2004) compute horizontal layers from oriented scans, detect cross-
sections of the trunks as (semi-) circles by Hough transformation in them, and then fit circles
or ellipses. Cross sections at a height of 1.3 m are used to compute the diameter at breast
height (DBH), a very important parameter for forest inventory.

Bienert et al. (2006) have conducted a number of experiments showing that it is possible to
mostly robustly automatically detect trees and determine forest inventory parameters such as
DBH and tree height. They determine the ground height in a histogram of point heights and
based on it they compute the density of points in a horizontal layer at a height of 1.3 m. If the
density is high, they try to fit a circle. If a circle with the typical diameter of trees is found, it
is checked by using the same procedure a couple of centimeters higher, thus avoiding random
results for bushes.

Closer to our work, (Pfeifer et al. 2004), (Gorte and Pfeifer 2004), as well as (Gorte and
Winterhalder 2004) focus on detailed models for trees (cf. Figure 3.2). Besides comput-
ing the visual hull on horizontal layers for dense coniferous trees, which the laser cannot
penetrate, Pfeifer et al. (2004) aim at fitting cylinders to the trunk and the thicker branches.
The fitting is based on non-linear least-squares optimization and thus needs initial values. A
partial solution for the latter is to track detected branches by extending a found cylinder and
searching for points close to it. A possibly better solution is provided by Gorte and Pfeifer
(2004): The laser points are rasterized in 3D voxel space and operations such as closing from
mathematical morphology and thinning are used to obtain a connected 3D skeleton (Figure
3.2, b). By means of shortest path computation wrong connections are eliminated. A la-
beled skeleton is obtained, which could be used to determine centers for the cylinders for
(Pfeifer et al. 2004). (Gorte and Winterhalder 2004) further segments the remaining vox-
els into different branches and finally, branch labels are assigned to the original laser points
(Figure 3.2, c). We note that for all these approaches a relatively high point density is needed
to avoid gaps in the skeleton, or even more critical, to fit cylinders at all.

Figure 3.2: Detailed modeling of individual trees based on laser point cloud segmentation.
a) Combined laser point cloud from four scan positions. b) Skeletonization. c) Labeled laser
points indicating different branches (Gorte and Winterhalder 2004).
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3.3 Tree Extraction from Terrestrial Images

The approaches introduced in this Section are more similar to our work, employing terrestrial
images as the only data source and focusing on the representation of individual trees with
their specific characteristics.

Haering et al. (1997) segment groups of foliaged deciduous trees in color images based
on texture without any 3D interpretation. Also (Forsyth et al. 1996) focus only on a 2D
interpretation, yet for individual trees. They particularly model the symmetries of coniferous
trees.

In (Sakaguchi and Ohya 1999), images from multiple viewpoints are employed. First, the
images are converted to gray-scale images and the tree silhouette in each image is extracted
by manually removing the background. A volume is then carved out by intersecting the
view cones generated from the tree silhouettes in multiple images. The voxels of the volume
are colored with the average brightness of the rays from the different images. A branching
process is started on the ground extending into dark areas assumed to correspond to the trunk
or branches. The given results are plausible, but there is much human intervention involved.

Shlyakhter et al. (2001) generate volumes as in (Sakaguchi and Ohya 1999), but from them
3D medial axes are constructed preserving the “botanical fidelity of the branching pattern
and the leaf distribution” (Shlyakhter et al. 2001) via an open L-system (cf Section 2.5.1).
Figure 3.3 shows the proposed framework, in which the manual intervention includes the
segmentation of trees from background and the control of the L-system, e.g., the determina-
tion of Production Rules and the number of iterations.

In (Reche et al. 2004), as shown in Figure 3.4, volumetric opacity estimation is used for geo-
metrical reconstruction and a realistic visualization is achieved by means of view-dependent
interactive texturing. Neubert et al. (2007) employ 3D particle flow for the estimation of
the tree volume in voxel space (cf. Figure 3.5). Trees are captured and rendered by estimat-
ing opacity in a volume, then generating and displaying view-dependent textures attached
to cells of the volume. Textures generated based on the estimated opacity are attached to
billboards in cells of the volume.

(Quan et al. 2006) presents a semi-automatic approach for modeling and reconstructing
plants from close-range images (cf. Figure 3.6). It focuses on realistic visualization with
interactive aid for the segmentation by the user and uses high quality SfM (cf. Section 2.6.1)
and dense depth estimation as basis. The geometry of each leaf is automatically determined
from the multiple views by fitting a deformable generic leaf model. The texture of each leaf
comes from image segmentation or the generic model if the leaf is occluded in the images.
The high quality result is ensured by much manual effort and the proposed model only works
well for relatively large leaves and thick branches compared to the image resolution.

Some of the shortcomings in (Quan et al. 2006) are overcome by (Tan et al. 2007), which is
again based on high quality SfM and dense depth estimation (cf. Figure 3.7). In contrast to
(Quan et al. 2006), not each leaf is extracted individually, but the leave population is partly
supplemented with leaf replicas. First, the source image is segmented into leaf-regions based
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Figure 3.3: Tree extraction with visual hull and skeleton construction: Each of the input
images a) is segmented into the tree and the background b), and the silhouettes are used to
construct the visual hull c). The system constructs a tree skeleton d) as an approximation to
the medial axis of the visual hull, and an L-system is applied to grow the small branches and
the foliage e) (Shlyakhter et al. 2001).

on color employing the user-defined image footprint of leaves. The 3D position of each
leaf is determined by the closest 3D points or estimated branch segment. Its orientation
is approximated by fitting the shape of the region to the leaf model or leaf points in its
vicinity. In the reconstruction it is tried to utilize the structural regularity, i.e., self-similarity
and structural patterns of branches and arrangement of leaves, of trees. Yet, practically just
shape patterns of visible branches are employed to reconstruct missing parts of branches. The
modeling is more automatic, but the user needs to set several parameters for the recovery of
the occluded branches and leaves and is given the option to refine the branch shapes.

The most current approaches are (Chen et al. 2008) and (Tan et al. 2008). Both model trees
based on user sketches achieving very realistic-looking results.

In (Chen et al. 2008) the input is a freehand sketch from the user including main branches
and optionally the crown. The sketch is matched to a database of predefined tree models,
which contains typical tree exemplars and their associated global parameters, to find a suit-
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Figure 3.4: Capturing and rendering of trees from photographs: a) An image of an oak. b)
Mask used for opacity estimation. c) Two cross slices of the resulting opacity. d) Synthetic
image from the direction of the original view, using view-dependent rendering (Reche et
al. 2004).

Figure 3.5: Estimation of the tree density: a) Initial density values from three input images.
b) Voxel grid by back-projection. c) Refined voxel grid. d) Density values for one image
plane. High density values are marked by large squares (Neubert et al. 2007).

Figure 3.6: Image-based modeling of poinsettia plant: a) One image out of 35 images. b)
Recovered model rendered from the same viewpoint as a). c) Recovered model rendered
from a different viewpoint. d) Recovered model with modified leaf textures (Quan et al.
2006).
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Figure 3.7: Image-based tree modeling based on high quality SfM (Tan et al. 2007).

able “template” for modeling. The matching is conducted by comparing the sketch and the
orthographic projection of the tree exemplar by means of a Markov Random Field (MRF)
with each branch segment modeled as a node and its depth as a variable. Similar to (Tan et
al. 2007), the principle of self-similarity is used to complete the rest of the branches and the
leaves (cf. Figure 3.8). The template for leaves is determined by the tree template or selected
by the user from the database.

Figure 3.8: Overview of the sketch-based tree modeling (Chen et al. 2008).

Tan et al. (2008) (cf. Figure 3.9) use a sketch and a (single) image for the modeling of trees.
Users are required to indicate the crown in the form of the leaf region as well as the branch
structure including the trunk from its root upward and possibly a part of the visible branches.
The visible branches are completed by image matching. Their encoded structure patterns
together with some predefined patterns are used to build up a small library of elementary
sub-trees for the derivation of the entire tree. Tan et al. (2008) have improved their rule
based basic method by simulating the growth of trees by the replacement with sub-trees.
Leaves are then added according to the branching structure and textured based on the input
image.

All the given approaches provide plausible results in terms of visualization, but substantial
human intervention is needed. Approaches conducting a fully automatic extraction are still
limited.
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Figure 3.9: Tree modeling from a single image: a) Input image. b) Strokes drawn by the
user: only two strokes for this example. c) Automatic synthesis of the tree branches. d)
Complete tree model rendered from the same viewpoint as the input image (Tan et al. 2008).



Chapter 4

Modeling of Trees

The target objects of this thesis are unfoliaged trees, which implies visible branching struc-
tures. The 3D tree structure has a high complexity because of the numerous components
(branches) and their weak mutual constraints. When it is projected into terrestrial images
from different points of view, the order of branches on corresponding epipolar lines in dif-
ferent images might change. Additionally, the branches can have a weak contrast with the
background, can be occluded by each other, and disturbed by clutter in the background.
Because of all this, it is one of the harder objects to be extracted in urban scenes.

In our generative statistical approach, for which preliminary versions have been published in
(Huang and Mayer 2007a, Huang and Mayer 2007b, Huang 2008, Huang and Mayer 2009),
we employ L-systems (cf. Section 2.5.1) for the modeling of trees. Parametrized and context-
sensitive L-systems are devised for a profound semantic description of branching structures.

For the actual 3D reconstruction, a branch is modeled as a cylinder or a cylinder sequence,
using VRML for graphical interpretation. VRML (Virtual Reality Modeling Language, also
known as Virtual Reality Markup Language formerly) is a standard file format for 3D vector
graphics. We chose VRML because it is a cross-platform format and can be rendered by
many popular (free or commercial) 3D modeling tools and web browsers. The version we
use is VRML 2.0 (ISO/IEC 14772-1:1997).

In this chapter, we firstly introduce three basic branching types that we employ for trees in
Section 4.1. In Section 4.2, L-systems are devised for the pre-defined branching types. The
geometrical representation of tree models in 3D is described in Section 4.3. Finally, based
on botanical and empirical knowledge, generic priors for branching parameters are given in
Section 4.4 for the initial sampling.

4.1 Branching Types

We integrate basic botanical knowledge for the branching structure of trees into our mod-
eling. According to (Deussen and Lintermann 2004), branching structures of trees can be
basically divided into two main groups: “monopodial” and “sympodial”.
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The monopodial – m branching system (cf. Figure 4.1, m) has a prominent main axis, which
is stronger and longer than the side branches. The side branches are again stronger and longer
than their side branches of the second order, etc. Because of the dominant axis, monopodial
branching structures have a radially symmetric crown.

Figure 4.1 (sd) and (sm) show the two main types of sympodial branching. “Sympodial-
dichasium” – sd branching means, that two buds sprout and grow synchronously. Thus,
these trees have bilaterally symmetric crowns. The most common branching structure is
“sympodial-monochasium” – sm, where one of the secondary branches has approximately
the same direction as the original branch. Sympodial-monochasium branching results into
only partially symmetric structures, which still often appear very similar to monopodial
branching.

Figure 4.1: Branching types: (m) monopodial; (sd) sympodial-dichasium; (sm) sympodial-
monochasium.

Knowing the branching type helps to describe the structure more specifically. After the
classification of branching types (cf. Section 5.6), specific Production Rules (cf. below) can
be used for the further extraction.

4.2 L-systems for Tree Modeling

We generatively model trees by means of L-systems (cf. Section 2.5.1), which provide de-
scriptive power for the structure of trees in terms of their growth, or more particularly
branching. As shown in Fig 4.2, the modeling starts based on the predefined Variable(s)
V , Constants S , and the Initial State ω. The core process of L-systems is the generation of
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symbol-chains (sometimes also called “strings”) with the given Production Rules P to de-
scribe the growth of trees. In generative statistical modeling, prior distributions are added
for the sampling of parameters.

Figure 4.2: Overview of L-system.

4.2.1 Parametrized L-systems

An L-system is formally defined as follows:

G = (V , S , ω, P)

with

V (Variable): F

S (Constants): +, –, <, >, [, ]

ω (Initial State): F

where the Variable “F” corresponds to growth, i.e., a new branch, while the Constants de-
scribe rotation around certain axes (“+” and “−” indicate turn left and right – inclinations;
“<” and “>” indicate roll left and right – azimuths) and the creation of sub-branches (en-
closed by brackets “[” and “]”). The Production Rules instruct to replace “F” with the given
string in the next iteration.

We have devised Production Rules for monopodial – m, sympodial-dichasium – sd and
sympodial-monochasium – sm branching as follows:

P(m) : F = F[+>F][–<F]F
P(sd) : F = F[+<F][–<F]
P(sm) : F = F[+>F]F .
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The Variable and the Constants are parametrized, i.e., the values of the size of the cylinder
and the angles of rotation are not fixed. A Production Rule can be expressed in parametrized
form, e.g.,

P(m) : F = F(l1,d1)[+(β1) >(α1) F(l2,d2)][–(β2) <(α2) F(l2,d2)]F(l3,d3) ,

which indicates the basic parameters:

li : Length;
di : Diameter;
αi : Angle of azimuth – angle with x-axis of branch projected into horizontal plane;
βi : Angle of inclination – angle between branch and horizontal plane.

The setup of the three coordinate-axes as well as the definition of the parameters are shown
in Figure 4.3.

Figure 4.3: Definition of parameters.

Parametrization is an important extension for L-systems largely enhancing the flexibility
of modeling. For instance, a so-called “stochastic L-system” can generate a large number
of different examples from a simple set of Production Rules by sampling the values for
parameters randomly. In the generative statistical framework we propose, the parameters are
estimated by a sophisticated statistical search, as described in Chapter 5, adapting the models
to trees in real scenes projected into images from different points of view.
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4.2.2 Dual-variable L-systems

When extending L-systems to dual-variable systems, additionally to the basic Variable “F”,
which indicates growth, an additional Variable “I” is employed to control the branching. “I”
is only used to derive the next level string and does not generate any branches.

For example, for monopodial – m trees, the L-system Gm is defined as follows:

G(m) = (V , S , ω, P)

with

V(m) (Variables): F, I

S (m) (Constants): +, –, <, >, [, ]

ω(m) (Initial State): I

P1(m) (Production Rule): F = FF

P2(m) (Production Rule): I = F[+>I][–<I] I ,

where the Production Rules instruct to replace “F” or “I” with the given strings in the next
iteration.

Starting from ω(m)=I, after two iterations of P2, applying it to all possible instances of “I”,
and one iteration of P1, the result is:

FF[+>F[+>I][–<I]I][–<F[+>I][–<I]I]F[+>I][–<I]I .

Using the Production Rule P1 (possibly several times) results into branches with a number
of connected “F”s accumulated. Hence, there are two description levels of branches: The
first level is “branch”, i.e., a sequence of “F”s (cf. Figure 4.4, right), while the second level
is “branch components”, i.e., individual “F”s.

The L-systems for sympodial-dichasium – sd and sympodial-monochasium – sm trees are
defined in the same way, but with different Production Rules for “I”:

P2(sd) : I = F[+<I][–<I]
P2(sm) : I = F[+>I]F[–<I]I .

A Production Rule can again be expressed in parametrized form, e.g.,

P2(m) : I = F(l1,d1)[+(β1)>(α1)I][–(β2) <(α2) I]I .

As the additional variable can be seen as a “structuring variable”, dual-variable L-systems
have an extended ability to control the branching structure. Figure 4.4 shows a comparison
of results from single- and dual-variable L-systems.
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Figure 4.4: Resulting branches for dual-variable L-system (right) compared to the result
from single-variable system (left) with similar Productions (bottom). It is assumed that all
branches/branch components have the same length.

The most important advantage of dual-variable systems is their hierarchical representation
of branches on different levels. As branches are described in the form of sequences of “F”s,
the predecessors always have a larger or at least an equal number of “components” than
their successor. This implies that the parent branches have a higher probability to be longer,
stronger, and most important, more complex in geometry. Dual-variable systems thus allow
for a more flexible structure control and hence have the capability to represent botanical
features more precisely.

4.2.3 Context-sensitive L-systems

The L-systems that we use are “context-sensitive” (also known as “context-dependent”).
They have the advantage that influences between members, i.e., branches can be represented.
Particularly, context influences the values of parameters, or more precisely, their distributions
(cf. also Section 5.7). Table 4.1 shows the relationships between parameters. The different
types of influence can be summarized as follows:

1. Iid (independent and identically-distributed) parameters: There is no influence on each
other. Each parameter follows a distribution with a range of values.
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Relation Azimuth (α) Inclination (β) Size (l, d)

First Level Only full circle iid iid
Inside Level neighbor-based neighbor-based iid
Between Levels predecessor-based predecessor-based contraction coefficient

Table 4.1: Context relationship of branch parameters.

2. Neighbor-based parameters: The interaction of adjacent branches (neighbors) repre-
sents the competition for growth space. This narrows the distribution range for the
parameters of each branch based on the density of its neighbors.

The Azimuth on the first level is a special case. There, the Azimuths should be dis-
tributed over the full circle [0°,360°), but at the same time leave space between neigh-
bors. However, no prior information limits the direction of each branch. Thus, each
Azimuth still follows iid on the full range, but values close to each other will be ac-
cumulated into one hypothesis. This results in stronger hypotheses because more evi-
dence is concentrated.

3. Predecessor-based parameters: This models the influence of parent branches on their
children. The values of the predecessor are employed when deriving the distributions
of its successors.

4. Contraction coefficient: This relationship is similar to the predecessor-based one. It is
listed separately, because only a fixed ratio is used rather than deriving distributions.

Detailed information on the actual implementation is given in Section 5.7.

4.2.4 L-system Simulator

We have developed a simulation tool for L-systems, first to understand their basic behavior,
but also as the L-system generator when extracting trees from images. An example generated
by it simulating a plant’s growth process is shown in Figure 2.12 (cf. Section 2.5.1). This
example is quite simple as the parameters are fixed and only one Production Rules has been
used. More simulation results can be found in Figures 4.4 and 4.5 (2D and 3D). The simulator
consists of two main parts:

1. String generation: Starting from the Initial State ω, new strings, possibly with dual-
variables, are generated according to the pre-defined Production Rule(s).

• The parameters are stochastically sampled according to the given distributions,
e.g., Gaussians.

• The Production Rules are (possibly stochastically) selected.

• The growth level is controlled by the manually given number of iterations.

2. Representation in 3D: The final string is interpreted and visualized using VRML.
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Figure 4.5: Examples generated by L-system simulator.

4.3 Geometrical Modeling of Branches

We employ cylinders as the geometrical primitive for the 3D modeling of trees. Branches
are represented as cylinders or cylinder sequences.

As we focus on automatic and precise reconstruction rather than realistic representation,
relatively simple models are used instead of triangle or polygon meshes used for representing
3D geometry in visualization. The most important reason is that simple 3D models can
be more efficiently projected into 2D image space. As we model trees generatively, for
evaluation (cf. Section 5.4.1) every hypothesis needs to be projected into the 2D image for
each camera position. Because a large number of projections needs to be computed, a simple
geometric model is advantageous. Another advantage of a simple model is that it can be
more reliably derived, as fewer parameters can be determined more stable.

Varying Width

For the dominant structure of trees, i.e., trunks and main branches, the variation of width
is sometimes hard to be ignored. A simple cylinder is no more appropriate for the repre-
sentation. A cylinder sequence, which consists of multiple cylinders providing much more
flexibility for modeling, is therefore employed. The parameters for each component are then
varied, to match the local details.

Figure 4.6 shows an example. The cylinder pieces are connected by spheres to avoid abrupt
changes of the profile. Spheres are used as they are the simplest geometric element for
projection – they are invariant concerning a projection in any direction. This simple transition
is not perfectly smooth, but considering the ratio of sphere size to diameter change, the effect
is usually still acceptable.
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Figure 4.6: Modeling of branch with varying width.

Most branches, as shown in Figure 4.7, are modeled as sequences of cylinders in this work.
This “refinement” renders a more realistic visualization of trees possible.

Figure 4.7: Branches modeled as sequences of cylinders in 3D.

Hierarchical Structure Improvement

A hierarchical process is employed to balance the reconstructed detail and the computational
effort for modeling. First, a single cylinder is used for modeling the whole branch. The
main structure is acquired, resulting in the first-level model (cf. red cylinder in Figure 4.8).
Yet, some branches might not be correctly presented. In the second phase, the individual
branches are modeled in more detail by sequences of cylinders. Each cylinder is adjusted to
fit the real scene more precisely. As shown in Figure 4.8 (green), the Diameter of each of the
component cylinders (green) in the refined model is adjusted individually, to match the local
branch width.
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Figure 4.8: Hierarchical improvement for varying width: Initially reconstructed branch (red)
and refined structure (green).

Figure 4.9 shows an implementation for a trunk. Additionally to the adaption of the width,
the lower end position is adjusted to match the given model. Although the lower end of
the trunk is often better determined than the upper one because of less clutter, refinement is
still needed: The blue sphere indicates the initial width of the single-cylinder model and the
initial position of the lower end position preliminarily determined by means of line extraction
and matching (cf. Section 5.1).

Figure 4.9: Detailed modeling of a trunk. The model is refined by a sequence of individual
cylinders (left), whose widths are adjusted matching the given model (right). The blue sphere
indicates the end position and width before the refinement.
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4.4 Priors for Parameters

The Production Rules for the different branching types only give a general description of the
natural branching process. For generative modeling (cf. Section 2.3), we thus also statisti-
cally sample the parameters which are defined for the general model, i.e., the parametrized
Production Rules. Prior distributions play an important role in the sampling by encoding em-
pirical knowledge. They guide the search and therefore reasonable samples can be produced
more efficiently.

We have derived a set of generic prior distributions from basic botanical knowledge and
empirical observations. The priors of this Section are used for the the first level of branches,
i.e., when the extraction starts, and no further information about the target tree is available
yet. For the second and further levels, the distributions for the branching angles are updated
considering the predominant influence from their parents (cf. Section 4.2.3).

4.4.1 Prior for Azimuth

As shown in Figure 4.3, the Azimuth is defined as the angle around the z-axis with 0° at the x-
direction. Empirically we know, that most trees have (partially-) radially symmetric crowns.
Therefore, we assume that on the first level the branches are symmetrically distributed on
the full circle and, as shown in Figure 4.10, a uniform distribution in the domain [0°,360°) is
used for the Azimuth α as basic prior:

α ∼ U[0°, 360°) .

Figure 4.10: Prior distribution of Azimuth.



48 Modeling of Trees

4.4.2 Prior for Inclination

Inclination is defined as the angle to the horizontal plane (cf. Figure 4.3). Because we use the
full-circle Azimuth, the Inclination β is restricted to the half-circle, from -90° (downwards)
to 90° (upwards). The 0° Inclination is defined for the horizontal plane.

Figure 4.11: Prior distribution of Inclination.

If nothing else is known, we use a normal distribution

β ∼ N(µβ, σβ
2) ,

as shown in Figure 4.11, with mean µβ = 45° and standard deviation σβ = 20°, because for
most types of trees a majority of branches points upwards due to phototropism.

4.4.3 Priors for Branch Size

We assume that the lengths of branches on the same level are independent of each other
and follow a similar distribution, i.e., are iid. Without any further information, a Gaussian
distribution seems to be most suitable. Mean and standard deviation are manually given for
the first level of branches:

l ∼ N(µl, σl
2)



4.4 Priors for Parameters 49

Although the diameter of a branch should be constrained by its length, i.e., a long branch
should not be too thin, we assume that it follows an iid Gaussian as well, because the under-
lying ratio varies too much for different kinds of trees:

d ∼ N(µd, σd
2) .

For most examples in this work, we use the following empirically defined values µl = 1
meter, σl = 0.3 meter and µd = 0.1µl, σd = 0.2µd.
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Framework for Generative Statistical
Tree Extraction

The branching structure of trees is hard to extract from images from different points of view
because of the following difficulties:

1. Background clutter and weak contrast: The extraction can be disturbed by possibly
weak contrast in the images and the background clutter from other objects, e.g., fa-
cades or other trees, as we assume an urban environment.

2. Occlusions: Because of the geometric complexity of trees, branches, which have a
relatively long and thin structure, are often partially or entirely occluded by the trunk
or other branches from certain points of view.

3. Invalid ordering constraint: To construct 3D models of trees, one needs to match the
branches. The ordering constraint, i.e., a point left of another point on an epipolar line
in one image is also left of the corresponding point on the epipolar line in the other
image, employed in many cases to guide matching, is often not valid for branches even
for images taken from points of view close to each other.

All this means that the bottom-up extraction and matching of branches does not seem promis-
ing and suitable constraints describing the structure of trees are essential for their 3D recon-
struction. We thus decided to model the tree structure generatively and to extract the tree
top-down/model-driven. The modeling is based on L-systems, which are widely used in
computer graphics to simulate the structure and growth of vegetation (cf. Section 4.2). Dur-
ing generative modeling (cf. Section 2.3), the parameters of the model are determined by
statistical sampling to fit the image sequence, which is our (only) link to the real scene. The
branches are presented in 3D object space as (sequences of) cylinders (cf. Section 4.3).

L-systems provide a semantic description for trees, which ensures reasonable structures. Yet,
L-systems alone only give means to generate random trees, because of the missing link to the
information from real scenes. Therefore, we employ statistical optimization by maximum a
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posteriori estimation – MAP (cf. Section 2.2.2), to link the 3D tree model to the real scene,
i.e., to find a plausible structure for the tree visible in the images.

After the trunk has been located by line extraction and image matching (cf. Section 5.1), the
generative statistical approach based on the estimated background images (cf. Section 5.2)
is employed for branch extraction. Section 5.3 shows how likely candidates for branches are
generated by statistically sampling parameters. The candidates are verified by comparison
with real images (cf. Section 5.4) leading to a MAP estimate as presented in Section 5.5. In
Section 5.6 it is shown how the trees are classified into different branching types (cf. Sec-
tion 4.1) after the first level of branches have been extracted, so that specific Production
Rules can be applied for a more efficient modeling. The prior distributions for the parame-
ters are refined in a Bayesian framework based on the extracted branches (Section 5.7) and
integrated into the MAP estimation.

5.1 Extraction of the Trunk

While this thesis focuses on the branching structure, a basic part of many trees we are inter-
ested in is the trunk. Here, we define the trunk as the part under the crown, or more precisely,
the part from the ground to the first branch(es). For it, we extract straight lines, assuming
that the trunk corresponds to a thick, mostly vertical line (cf. Section 2.6.2). It thus defines
the lower part of the main axis outside the crown.

Vertical lines, i.e., hypotheses for trunks, are extracted based on the line extractor introduced
in (Steger 1998), which extracts curvilinear structures from images with sub-pixel precision.
Lines are extracted using an explicit model for the lines as well as their surroundings and the
bias induced by asymmetrical (contrast along) lines can be removed. By knowing the vertical
vanishing point and that trunks are mostly straight, we can restrict the hypotheses for trunks
to approximately vertical straight lines.

These hypotheses are verified by matching them in several images. We use trifocal tensors
(TFT) (Hartley and Zisserman 2004) derived from the known orientation parameters to
predict from lines in two images hypotheses for lines representing the trunk in further images.

In an urban environment, there may be several other trees, tree-like objects, or even vertical
structures of buildings near the target tree. I.e., multiple vertical straight lines can be ex-
tracted by image matching and all these lines are hypotheses for the target trunk. We sort
out wrong hypotheses based on the assumption that the images have been taken specifically
to extract the target tree and that thus all the photos have been taken convergently focusing
on the target tree. This implies that the target tree appears in all images and is located not
too far from the center. Lines, indicating other objects, can thus be filtered because of the
following two reasons:

1. A line cannot be found in at least one image of the sequence: A line found by matching
in two images is projected to all other images based on TFTs (cf. Figure 5.1) and if it
is outside the image space, or cannot be found there, it is rejected.
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2. A line moves largely in the images: Figure 5.2 shows the projections of hypotheses
into several images. As all images were assumed to be taken focusing on the target
tree, all other lines than line 0 show larger displacements from different points of view.

Figure 5.1: Trifocal tensor used for verification of trunk hypotheses (images I to III and lines
0 and 1).

Thus, the trunk is basically determined and then modeled as a single cylinder to provide a
basis for further extraction. Yet, the extraction of line segments cannot guarantee a precise
trunk. Especially, the upper end of the trunk will very likely not be at the correct position.
Thus, the “growth” of branches begins by searching in the vicinity of the upper end of the
trunk, to compensate for the uncertainty of the line extraction, rather than starting exactly
there. After that, the trunk model is improved in the form of a cylinder sequence (cf. Sec-
tion 4.3) and the lower end position of the trunk is refined at the same time.

5.2 Background Estimation

In the proposed generative statistical extraction, branch hypotheses generated by the L-
system and statistical parameter sampling are projected into 2D images from all viewpoints
resulting in simulated images for evaluation (cf. Section 5.4). A simulated image is com-
posed of the projection of hypotheses and an estimated background, which reconstructs the
scene except for the target tree. We use gray-scale morphology in the background estimation
to remove the fine structure of trees from the foreground, and an iterative process recon-
structing details from the original images which are then integrated into the background.
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Figure 5.2: The target tree (0-black) shows a high stability concerning its location in different
views, because the photos were taken convergently focusing on it.

5.2.1 Morphological Transformation

In images unfoliaged trees mostly consist of relatively thin linear structures and it can be
assumed that in large parts they have a color different from the background, e.g., sky or
building facades. This fine structure has to be removed to obtain an image of the background
into which we then can project our hypotheses for branches. Here this is done by means of
mathematical gray-scale morphology (cf. Section 2.4).

According to the characteristics of the scene, particularly the lighting conditions, both Clos-
ing (for dark trees on light background) and Opening (for light trees on dark background,
e.g., night scenes) are employed.

A circular structuring, i.e., rotation invariant, element is used according to (Köthe 1996),
because the branching structures consist of lines in substantially different directions. The
size of the structuring element is derived from the diameter of the trunk in an image, as the
trunk is always at least as thick as all branches. Figure 5.3 shows an example for background
estimation using gray-scale Closing.

Unfortunately, Closing or Opening with such a large structuring element strongly blur, i.e.,
eliminate details of, the background. As described below, we therefore have devised an
iterative recovery process to reconstruct background details.
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Figure 5.3: Background estimation: original image (left) and after gray-scale Closing (right).

5.2.2 Detail Reconstruction

The basic idea is to iteratively reconstruct details from the original image to enhance the
background. The basis for this is a distinction between fore- and background.

Segmentation into Foreground and Background

As shown in Figure 5.4, the estimated background is compared with the original image in
a very small sub-domain Ds with a radius of 3 pixels, i.e., smaller than the width of most
branches. The criterion for the segmentation is if the average absolute gray value difference
inside the domain is lower than 3 gray values, used as an estimate for the image noise: if it
is true, Ds belongs to the Background (ΩB), otherwise to the Foreground (ΩF).

Reconstructing Details

The background image is reconstructed by adding details from the original image as follows
(cf. Figure 5.5):

g′e(x, y) =

{ gr(x, y), ∀Ds ⊂ ΩB;

ge(x, y), ∀Ds ⊂ ΩF

(5.1)

with ge and gr the gray value at the current center pixel of Ds in the estimated background
image and the original image, respectively. The g′e is the gray value at the corresponding
pixel in the reconstructed background image. By inserting gray values from the original
image for the Background ΩB into the estimated background, fine detail is reconstructed.
After Gaussian smoothing, the improved background image is used for the next iteration.

Figure 5.6 shows the original image (left), the result after gray-scale Closing (center), and
after three reconstruction iterations (right). For the latter two, the histograms below show the
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Figure 5.4: Determination of Background ΩB and Foreground (ΩF) by comparing the orig-
inal image (r) and the estimated background (e) in a sub-domain Ds (enlarged to make it
clearly visible).

Figure 5.5: Iterative detail reconstruction by inserting gray values of pixels in the Back-
ground ΩB from the original image gr(x, y) into the estimated image g′e(x, y).

gray value differences to the original image. In the histograms the effect of detail recovery,
i.e., most small deviations are reconstructed, can be seen very clearly.
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Figure 5.6: Original image (left), after gray-scale Closing (center), and after three reconstruc-
tion iterations (right). The bottom row shows the histograms of the gray value differences to
the original image with the same scale for the vertical axis.

5.3 Sampling of Branch Parameters

Hypotheses for branches are generated by sampling their parameters. We have devised a
combined scheme with initial plain Monte Carlo and sequential Markov Chain Monte Carlo
(cf. Section 2.1), in short MC+MCMC, sampling. Additionally, a flexible way to determine
the sampling sequence of the parameters is introduced. The parameters to be sampled are
chosen by a proposal mechanism, which is driven by conditional probabilities considering
the nature of individual parameters and their mutual influence.

Figure 5.11 illustrates the generation of branches. Based on the trunk, branches are grown by
sampling their parameters Azimuth, Inclination, Length, and Diameter statistically, guided
by appropriate prior distributions (cf. Section 4.4). A newly generated hypothesis is pro-
jected into the background images (cf. Section 5.2) via the given highly precisely known
orientation parameters (cf. Section 2.6). The generated simulated images are matched with
the given images (cf. Section 5.4).

5.3.1 Combined MC and MCMC Sampling

A combined sampling method – Monte Carlo (MC) plus sequential Markov Chain Monte
Carlo (cf. Section 2.1) – is used for sampling. Since the parameters, especially the branching
angles, are distributed sparsely in a large space, plain MC, i.e., random numbers are drawn
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from the given prior distributions, is used in the first coarse sampling phase. The parameters
are refined in the second phase by means of MCMC, i.e., the space of parameters is locally
sampled.

The following procedure, as shown in Figure 5.7, was empirically found to work reasonably
well: The best samples from MC, i.e., ten from one hundred, are taken as candidates for a
refined search using ten MCMC iterations for each. The number of candidates is reduced to
three after the first round of refinement and the best solution is finally found after another
twenty MCMC iterations for each of them.

Figure 5.7: Combined MC and MCMC sampling: flow chart. The sampling is conducted for
either a single parameter or a parameter combination (cf. Section 5.3.2).

Basic MC search as well as the Metropolis-Hastings algorithm (cf. Section 2.1.3) integrated
into our MCMC algorithm, both help to avoid local minima while solutions are efficiently
found. Figure 5.8 illustrates how local minima can be avoided by these means.

Initial prior distributions for the parameters have been devised (cf. Section 4.4). They are
updated during the extraction according to the already extracted branches by means of a
Bayesian refinement process (cf. Section 5.7), resulting in an efficient and plausible search.

5.3.2 Flexible Sampling Sequence

When generating a new proposal in a Markov Chain, often a combination of multiple param-
eters is to be sampled and these parameters are in most cases at least very slightly correlated.
We empirically found that it is not efficient to change the values of all parameters at the same
time or even in a fixed order. This is exemplified in Figure 5.9 for a simple two-parameter



58 Framework for Generative Statistical Tree Extraction

Figure 5.8: Combined MC+MCMC sampling helps to avoid local minima: Simple MCMC
can very likely be trapped in local minima (empty circles). The MC step generates multiple
start points for the further MCMC sampling to enlarge the probability for finding the global
minimum. In this case, the best three (red) of ten MC iterations are chosen to be optimized
via MCMC (blue arrows) and the position 2 (second best result after MC) finally leads to the
global minimum (red filled circle).

search: If both parameters θ1 and θ2 are sampled independently at the same time, the quality
of the proposed candidates becomes random – while one change leads to a better result, the
other might lead to a worse one.

Sampling the parameters in a fixed order (branching angles jointly, length and then diameter)
as proposed in Section 5.3.1 has been proven meaningful. Yet, also it can be inefficient: The
sampling can be pointless even when only a single parameter is tuned while keeping the
others constant. E.g., as shown in Figure 5.10 (left), given an improper angle from the
previous step, varying the length will lead to almost the same evaluation in terms of overlap
in the image. Or if a wrong start position for a branch is used for the determination of an
angle, as shown in Figure 5.10 (right), the tuning of the angle can be meaningless.

Thus, a proposal mechanism has been devised to choose potentially meaningful candidates
rather than random ones. We dynamically consider the characteristics of individual parame-
ters and their performance in the sampling. As only the performance of the last candidate(s)
is used (to either reject or accept the proposals, i.e., to stay or move forward in the search), it
works in a Markov Chain style. The proposal mechanism also takes into account that for long
linear structures in 3D space such as branches, the angles play an important role particularly
as achieving solutions is computationally expensive.

This sampling mechanism is driven by a probability function:
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Figure 5.9: Generation of proposals in a Markov Chain. The devised flexible sampling
mechanism works more efficient by considering the characteristics of individual parameters
as well as their mutual influence.

Figure 5.10: Tuning a single parameter in a fixed sampling order can be inefficient. Hy-
potheses: contours with dashed lines; branch in image: filled contours with solid lines.

g(θ) = g0(θ)
∑
θi∈Θ′

g(θ | θi) g(θi) (5.2)

with θ the current candidate, θ ∈ Θ (the global space of parameters), and Θ′ indicating the
space of parameters sampled in the last step, Θ′ ⊆ Θ.
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This probability function consists of two parts: 1) The initial probability g0, which is derived
from the distributions of individual parameters. 2) A probability conditioned on the sampling
result in the last step, representing the influence of the sampling sequence.

Initial probability

The initial probability is defined in a way giving parameters with a larger search space a
higher priority. Table 5.1 gives the g0 for the parameters of branches on the first level. For
parameters following Gaussian distributions, g0 = 2σ/Ω, where Ω indicates the solution
space. For Azimuth and Inclination, the solution spaces are 360° and 180°, respectively.
The Ω for Length and Diameter are approximately limited by 0 and a derived upper limit of
µ + 3σ. For parameters with uniform distribution, g0 = 1.

Parameter Distribution Solution Space (Ω) g0

Azimuth U[0°, 360°) [0°, 360°) 1
Inclination N(45°, (20°)2) (-90°, 90°] 0.22
Length N(1, 0.32) ≈(0, 1+0.9] 0.32
Diameter N(0.1, 0.022) ≈(0, 0.1+0.06] 0.25

Table 5.1: Initial probabilities g0 for parameters on the first level based on their distributions.

Conditional probabilities

The parameters sampled in the last step (θi ∈ Θ
′) and their performance influence the current

step via a conditional probability:

g(θ | θi) =

{ |Θ′|−1Per f , ∀θi = θ;

|Θ′|−1, ∀θi , θ,

(5.3)

with |Θ′| the cardinality of Θ′, i.e., the number of parameters that have been sampled in the
last step, and Per f indicating the performance of the sampling: if the hypothesis had been
accepted, then Per f = 0, otherwise Per f = 1.

To illustrate how this works, a simplified example for the Azimuth is given in Table 5.2, with
g(θi) = 1 ∀θi ∈ Θ

′: For sampling four parameters, the number of all possible combinations is
15. However, assuming that all previously sampled parameters have an identical influence on
the sampling for the Azimuth in the current step, this number reduces to five: Azimuth alone,
Azimuth with one to three other parameter(s) and any other parameter(s) without Azimuth.
Taking the performance of the sampling into account (cf. Equation 5.3), the probabilities for
Azimuth for all possible cases are listed in Table 5.2.

In summary, the main effects of the proposed mechanism on the sampling sequence are as
follows:

1. If a parameter has not been selected in the last step, its probability to be selected
increases.
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Θ′ α α+1 α+2 α+3 no α

g(α)Per f =0 0 1/2 2/3 3/4 1
g(α)Per f =1 1 1 1 1 1

Table 5.2: Probabilities for Azimuth α conditioned on the selection and the performance in
the last step for all possible cases. (α+ 1 means Azimuth plus one additional parameter, etc.;
Per f = 0 means that the last hypothesis had been accepted.)

2. Parameters which led to better results have the tendency to be kept fixed while other
parameters are varied.

5.4 Evaluation of Branch Hypotheses

For every image the generated 3D hypotheses (cf. Section 5.3) are projected into the esti-
mated background (cf. Section 5.2) via the given highly precisely known orientation param-
eters (cf. Section 2.6). This results into the simulated images, as shown in Figure 5.11 (top).
Hypotheses are evaluated by comparing simulated and given images (Figure 5.11, bottom)
by means of a Gaussian likelihood function (see below).

Figure 5.11: A hypothesis is projected into the estimated background for images from dif-
ferent points of view (top), to be compared with the original images (bottom).

5.4.1 2D Projection

We use a simple and efficient 2D representation derived from the 3D representation instead
of the actual projection of the 3D cylinders. The latter would entail a larger computational
effort and for statistical sampling many projections are needed. Another reason is that the
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projection of the branches results into patches of nearly constant brightness anyhow: Empir-
ical investigations have shown that the texture of the bark is hard to estimate and shading is
not significant for most branches for the images we have used in our experiments.

The chosen 2D representation consists of trapezoids. A trapezoid is described by its

– direction (angle with x-axis)

– length

– width of begin

– width of end.

We determine the parameters of a trapezoid as follows: The 2D coordinates of the centers of
the begin and the end are obtained by projecting the centers of the 3D circles, i.e., the end
points of the axis delimiting the cylinder on both sides, into the image via

x′ = PX (5.4)

with (homogeneous) 3D points X, image points x′, and the projection matrix P (Hartley and
Zisserman 2004).

To compute reasonable approximations for the widths, we connect each end point of the axis
of the cylinder with the projection center and determine the normal plane to this vector. The
distance between the projections of the end point of the axis and of a point on the normal
plane with distance radius of the cylinder from the axis, i.e., a circle on the normal plane,
equals half the width in the image, as shown in Figure 5.12. The color is taken as average of
the trunk color.

5.4.2 Likelihood Function

The likelihood function is defined as follows:

θ 7→ f (x|θ) (5.5)

with x the observation (image), based on which the underlying population parameter θ is to
be estimated.

Often the likelihood function is written as L(θ|x) = f (x|θ), because the likelihood is seen
to estimate unknown parameters based on known observations, which is opposite to a con-
ditional probability. To avoid confusion, we present the likelihood function in this work,
always in probability form, i.e., L(x|θ) or L(X|Θ).

If a set of mutually independent random samples X1, X2, ..., Xn has been drawn, the observed
random variables x = x1, x2, ..., xn are also mutually independent and the joint probability
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Figure 5.12: Determination of the widths of the projected ends of a branch.

density function (PDF) is therefore equivalent to the product of the marginal PDFs. The
likelihood function can then be expressed as

L(x|θ) = P(X1 = x1, X2 = x2, ..., Xn = xn|θ) =

n∏
i=1

PXi(xi|θ) . (5.6)

For the evaluation of the hypotheses we follow (Tu and Zhu 2006). We let D indicate the
domain of comparison and Is(x, y) and Io(x, y) the intensities of a pixel (x, y) in the simulated
and the original image, respectively. Assuming that the difference for each pixel (reconstruc-
tion residual) follows an iid Gaussian N(0, σ2), with σ2 the variance of the intensity noise,
the likelihood function L can be expressed as:

L(D) =
∏

(x,y)∈D

N(Is(x, y) − Io(x, y), σ2) (5.7)
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5.5 MAP Estimation

One of the difficulties for tree extraction in urban scenes is the high uncertainty of the ap-
pearance caused by the complex structure of urban spaces leading to background clutter.
The reliability of the likelihood function defined above, which only takes into account the
2D representation of hypotheses, is therefore limited. We thus employ maximum a poste-
riori (MAP) estimation (cf. Section 2.2.2) for the parameters’ optimization with the priors
substantially stabilizing in the decision process:

θ̂MAP(x) = argθmax
{

f (x|θ)p(θ)
}
. (5.8)

p(θ) in the objective function is the summarized prior information for all parameters:

p(θ) =
∏
θi∈Θ

p(θi) . (5.9)

The priors are combined by multiplication as we assume that they are basically independent
of each other. Please note that the priors introduced in Section 4.4 are updated during the
extraction process by Bayesian refinement, introduced later in Section 5.7, based on already
accepted branches.

The MAP estimation can therefore be formulated as:

Θ̂MAP = argΘmax
{
L(D)

∏
θi∈Θ

p(θi)
}
. (5.10)

In MAP estimation, thus not only the appearance of the hypotheses, but also the probabilities
of their parameters are taken into account. By integrating prior information, hypotheses with
reasonable parameters have a higher probability to be accepted.

Please note, that in the optimization, the multipliers, L(D) and p(θi) in the objective function
do not have to be normalized, as the criterion of acceptance is:

L(D)
∏
θi∈Θ

p(θi)

L′(D)
∏
θ′i∈Θ

p(θ′i )
=

L(D)
L′(D)

·
p(θ1)
p(θ′1)

· · · · ·
p(θn)
p(θ′n)

. (5.11)

I.e., the normalization term for the individual multiplier does not influence the decision.
Another advantage of using multiple products in the objective function is that unreasonable
hypotheses can be filtered out very early, as their influence on the result is strong.

The MAP estimates can be computed by 1) combined MC+MCMC sampling (cf. Sec-
tion 5.3.1) and 2) a selection mechanism controlling the sampling sequence of the parameters
(cf. Section 5.3.2).
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5.6 Classification of Branching Types

We have divided branching structures into three types and devised particular L-systems (Pro-
duction Rules) for every type (cf. Sections 4.1 and 4.2). Before the extraction starts, however,
it is usually unknown which type the target tree belongs to.

If no prior knowledge is available, we classify the target tree into the most similar branching
type by analyzing the layout of the first level branches after extracting them. Then, specific
Production Rules are used for a more plausible and efficient extraction.

5.6.1 Relaxed Search and Vertical Shift

The extraction of the first level branches defined as those that grow directly from the trunk
begins without knowing the branching type. Thus, there is no constraint for organizing the
search for the branches, such as, that for m-trees, multiple branches should grow from the
same position on the trunk. We, therefore, employ a relaxed search for this level.

Particularly, the begin point of the first level branches, particularly the vertical shift of their
joint position along the trunk, is added as an additional parameter (cf. Figure 5.13). This
parameter is sampled together with the other parameters. This way, branches do not have to
start exactly at the determined end point of the trunk, but are allowed to grow in its vicinity.

Figure 5.13: Additional parameter Z describing the vertical shift for a flexible begin point of
first level branches.

The main advantage of the relaxed search is that it makes it possible to compensate for errors
in the determination of the length of the trunk. As the trunk is extracted by line extraction and
image matching (cf. Section 5.1), its length can only be roughly determined. By adding the
additional parameter, the trunk does not need to end exactly where the first branch appears.
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The proper branching type is derived based on the layout of the branches extracted with the
relaxed search.

5.6.2 Classification Criteria

As shown in Table 5.3, we use two Criteria, which are independent, i.e., can be checked in
parallel, to distinguish the branching types:

Branching Type Criterion 1 Criterion 2

monopodial (m) ∆zmax ≤ ∆zsm (αtrunk − α) ≤ ∆αm

sympodial-dichasium (sd) (αtrunk − α) > ∆αm

sympodial-monochasium (sm) ∆zmax > ∆zsm –

Table 5.3: The two Criteria used for the classification of branching types.

1. According to Criterion 1, trees are supposed to be of the sympodial-monochasium –
sm type if for the maximal difference of the Z-coordinates holds ∆Zmax > ∆Zsm, an
empirically chosen threshold. This means that not all joint positions of the extracted
branches are concentrated in a relatively small area (cf. also Figure 5.14).

Figure 5.14: Classification of branching types: sm type according to Criterion 1.

2. Criterion 2 pertains to the deviation angles of the first level branches from the trunk
direction. If for one of them holds (αtrunk − α) ≤ ∆αm, with αm again an empirically
chosen threshold, trees are classified as monopodial – m type (cf. Figure 5.15). It
means that there is a branch which follows the direction of the trunk. Otherwise, the
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branches are assumed to be more suitably described by the sympodial-dichasium – sd
type.

Figure 5.15: Classification of branching types: m type versus sd type according to Criterion
2 while Criterion 1 does not hold.

For the further levels the appropriate Production Rules and priors of the corresponding L-
system (cf. Sections 4.1, 4.2, and 4.4) are employed.

5.6.3 Botanical versus Geometrical Classification

The classification used up to this point is based on the botanical features of trees. The main
difference between the branching types is their development, i.e., the way of generating
branches. This is encoded into the different Production Rules of the L-system. Yet, for tree
extraction for real scenes we actually focus on the existing geometry of trees rather than the
rules behind their growth as the latter cannot be observed in the images.

Particularly, the classification Criterion 1 described above implies the possibility to general-
ize the branch organization according to what can actually be observed in images: The dif-
ference between the m- and sm-type in the given case is just if a single or multiple branches
are allowed for one growth node. E.g., if the growth nodes of the branches of an sm-tree
are found very near to each other, it looks like an m-type (Figure 5.16, left). Inversely, if
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Figure 5.16: Example of an sm-tree with growth nodes very near to each other which looks
like an m-tree (left) and an m-tree with missing branch (dashed lines) which resembles an
sm-tree (right).

the branches of an m-tree are extracted only sparsely (cf. Figure 5.16, right), its structure
resembles an sm-type tree.

In practice, the appearance of trees shows a high diversity and mixed, unclear structures can
often be found. Considering the errors possible in extraction, trees in cluttered city scene
can thus be falsely classified. That the sm-type can roughly be seen as a special case (sparse
version) of the m-type has the following consequences: If an m-tree is recognized as an
sm-type, some branches could very likely be missed. In the reverse situation, meaningless
search will be conducted. Considering the diversity of tree structures and the possible errors
in the search, a more generalized type of classification can be helpful.

We thus propose a new classification as shown in Figure 5.17: Both m- and sm-type are
summarized into a generalized type named “mono-axial”. We use the synonymous word
“axial” instead of “podial” here, because the former is a geometrical term. From the botanical
point of view, the central axis of an sm-tree consists of several individual components that are
defined on different levels and, therefore, it is different from that of the m-type in spite of that
they are geometrically the same. Yet, as we can only observe and reconstruct geometrical
characteristics, this difference is of no interest here.

The sd-type is extended from “dichasium” to “pleiochasium”, which means that pleio-
(i.e., multiple-) branching is allowed. This provides more flexibility for many other tree
structures as shown in Figure 5.17 (top right).

5.7 Bayesian Refinement of Priors

Prior information for the model can be derived from scientific knowledge, but also from pre-
vious empirical evidence. In this work, we make use of both: 1) Basic botanical knowledge
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Figure 5.17: Geometrical classification of branching types.

is encoded for parameter estimation; 2) Already verified hypotheses for branches provide
reliable evidence.

The basic prior distributions introduced in Section 4.4 are employed at the beginning of
the sampling. Additional evidence can make the sampling more reasonable and efficient.
Particularly, we make use of the evidence gained during extraction and improve the priors
based on extracted (intermediate) results.

Ideally, the priors for the parameters could be learned based on the extracted trees, possibly
conditioned on specific species. In practice, however, despite of the same genes, i.e., under-
lying rules for growth, even trees of the same species can show a very different appearance
because of, e.g., different climate, lighting conditions, and growth space competition. Priors
can only be meaningfully learned if the trees live in similar environment and a large number
of example trees has been extracted. The former cannot be ensured in city scenes due to
the strong influence of dense built-up areas on temperature and illumination. The latter is
promising, but entails a lot of effort.

We, therefore, propose a “local” learning/adaptation of priors, which only considers the tar-
get tree and refines its priors based on already found branches. The refined priors are then
used for the extraction of further branches of the tree. This leads to more plausible results
and restricts the further search, thus making the sampling more efficient. Please note that the
refined priors are not suitable for other trees, because they are inferred under possibly very
special conditions.
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The prior refinement is conducted in a Bayesian framework. In Bayesian learning, the degree
of belief in a hypothesis tends to become more specific (rather higher or lower) by frequently
using Bayes’ theorem while accumulating evidence.

According to the statistical inference terminology, “population” refers to the branches about
which we want to infer and “evidence” (or “observation” or “sample”) to the subset of the
population that has been observed. The goal is to learn about the statistical characteristics of
the population, i.e., the branching parameters, from the evidence. Based on the given priors
(cf. Section 4.4), we use Bayesian inference to update the probability density function (PDF)
for parameters based on new evidence.

Denoting the evidence by E, the general inference function is

p′(θ|E) =
p(E|θ)p(θ)

p(E)
. (5.12)

p(E) is thus the marginal probability of E

p(E) =
∑

p(E|θi)p(θi) . (5.13)

We denote the result of the inference by p′(θ|E) instead of P(θ|E). This is because in this
refinement framework we prefer to call it updated prior rather than posterior.

Prior refinement must consider different relationships between parameters, as described in
Section 4.2.3. An overview of the relationships can be found in Table 4.1. For context-
independent parameters, e.g., Inclinations of branches inside one level, Bayesian refinement
is used to integrate new evidence. For context-sensitive parameters, i.e., on different branch-
ing levels, inheritance and a decay model for the growing space, simulating the influence of
the parent and the competition in the neighborhood, respectively, are employed.

5.7.1 Context-independent Parameters

We assume that context-independent parameters follow iid Gaussians. The initial prior p(θ0)
is refined by new evidence as follows:

p(θ) = p(θ | θ0)p(θ0) = N(θi, σ
2
i )N(θ0, σ

2
0) . (5.14)

After multiple evidence (employing weight wi for each of them) has been integrated, the
refined prior can be expressed as

p(θ) =

n∏
i=0

wi N(θi, σ
2
i ) . (5.15)

We give the first evidence the weight w1 = 1. The weight of other evidence is scaled accord-
ing to the likelihoods wi = Li/L1 · w1, i.e., wi = Li/L1. w0 = 2 is used to give the prior value
a slightly stronger weight. After normalization, this means
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µθ =

σ2
θ

n∑
i=0

wiµi

σ2
i

n∑
i=0

wi

; σ2
θ =

(
n∑

i=0

wi
σ2

i

)−1

n∑
i=0

1
wi

. (5.16)

An example for the refinement of the Inclination is given in Figure 5.18.

Figure 5.18: Prior distribution for Inclination and its refinement: dotted line (red) – initial
prior; dash-dot line (magenta) – after first branch; dashed line (blue) – after second branch;
solid line (black) – final prior after three iterations.

5.7.2 Context-sensitive Parameters

For the kth level of branches, with k > 1, the context-sensitive Azimuths and Inclinations are
assumed to obey Gaussians around the values of their predecessor branches j

α j,k ∼ N(α j,k−1, σ
2
α,k) ;

β j,k ∼ N(β j,k−1, σ
2
β,k) .

Initial values are inherited from the parent branches without explicitly considering pho-
totropism or gravity. In the upper levels, the density of branches increases, restricting the
space for each branch. Assuming that branches grow exponentially

Nk+1 = Nkeλ (5.17)
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with Nk the number of branches on the kth level and λ the growth constant, the sequential
reduction of the space Φ for an individual branch on level k can be formulated by an expo-
nential decay

Φk = Φ0e−λk (5.18)

with Φ0 indicating the initial space and −λ the decay constant. The latter can be derived
from the L-system. For a typical sd-type tree, N1 = N0eλ = 2N0, and thus λ is ln 2. For sm-
and m-trees, λ is ln 3 according to their Production Rules.

As the standard deviations of the angle distributions imply the possible growth space, they
follow the derived exponential decay:

σα,k = σα,0e−λk ; σβ,k = σβ,0e−λk . (5.19)



Chapter 6

Experiments

With the experiments we demonstrate the potential, but also the shortcomings of the pro-
posed generative statistical approach for tree extraction. We test our approach on both sim-
ulated model and real scenes. The input data are wide baseline image sequences, which
consist for the simulated 3D models of snapshots made while rotating them and for real
scenes of photos taken unconstrained with hand-held consumer cameras. The output is the
reconstructed branching structure represented in the form of VRML models (cf. Section 4.3).

Current approaches such as (Chen et al. 2008) and (Tan et al. 2008) aim at the efficient gen-
eration of realistic looking trees based on significant user input, particularly in terms of the
basic tree structure. Opposed to this, we want to demonstrate the strengths and weaknesses
of the devised modeling for trees and their extraction in a fully automatic way with minimal
human intervention (cf. Section 6.3).

First, an experiment on a simulated model is described in Section 6.1. This makes it pos-
sible to evaluate the accuracy of the reconstructed results, as ground-truth data is available.
Section 6.2 shows several reconstructions based on real scenes, demonstrating that prob-
lems, e.g., with background clutter and weak contrast, can also be handled. Assessment and
discussion in Section 6.3 conclude the chapter.

6.1 Tests with Simulated Tree Models

The first experiment uses a simulated model of a sympodial-monochasium (sm-) tree gener-
ated manually with the software X f rogT M. As input images, six snapshots were taken while
rotating the 3D model unconstrained. Figure 6.1 shows an overview over the tree extraction
process.

Figure 6.2 shows the original (top) and the reconstructed (bottom) model from different
viewpoints. Most branches, even those completely occluded in some views, have been re-
constructed. Figure 6.3 presents a comparison with the ground-truth model from the front
and the top, and more important, from an additional direction of view (bottom left). The
latter is an extrapolation far from the given snapshot positions (cf. Figure 6.8) and shows
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Figure 6.1: Tree extraction process overview: a) One of the input images. b) Locating the
trunk by line extraction. c) Extraction of first level branches and determination of the exact
upper end of the trunk. d) Detailed modeling of trunk. e) Further extraction of branches. f)
Reconstructed model from the same view point as a).

Figure 6.2: Images of model of a sympodial-monochasium (sm-) tree generated by X f rogT M

from three of six different viewpoints (top) and result from the same viewpoints (bottom).

that although the input images cover a relatively narrow angle of view (about 45°), the main
branches were determined with correct branching angles.
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Figure 6.3: Comparison of simulated (green) and reconstructed (red) model from three of
six different viewpoints (top), one other viewpoint (bottom left), and the top (bottom right).

In our generative model, L-systems are employed because of their mathematically elegant
form and their suitability for this application. For a computer graphics tool such as X f rogT M

with emphasis on realistic visualization and ease-of-use, however, directly working with L-
systems is complicated and inefficient. Although L-systems are also the basis of X f rogT M,
the latter works on an abstraction level distinctly above the L-systems and its models do not
directly follow any L-system, which can be compared with those of our work. We, therefore,
treat X f rogT M models with respect to the L-systems in the same way as real trees without
using any extra prior information, e.g., the tree type or particular Production Rules.
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Figure 6.4: Result for a young monopodial (m-) tree – three of six images (top) as well as
the reconstructed model seen from the same points of view (bottom).

6.2 Experiments for Real Scenes

For real scenes, we employ wide-baseline image sequences as source data. The photos are
taken unconstrained with hand-held consumer cameras with about 5 Mega pixels.

Figure 6.4 presents in the top row three of six images showing a young monopodial (m-) tree.
Below, the reconstruction result is presented from the same viewpoints. Although tiny twigs
could not be extracted, the 3D model consists of most of the main branches and basically
represents the characteristics of the target tree. One can notice that in spite of the occlusion
(Figure 6.4, middle) and varying order (see also Figure 1.1) of the left two branches, they are
correctly found and reconstructed.

Please note that the new “mono-axial” type is applied here instead of typical m-type (cf.
Section 5.6.3) to produce a better result, as trees in real scene often show a mixed structure.

In Figure 6.5, for the scene introduced in Fig 6.4 a rough model of the surrounding objects
including background buildings is manually given as a reference. The cameras are shown
as green pyramids with the tips of the pyramids symbolizing the projection centers and the
bases the directions.

Figure 6.6 presents an aged tree (sm-type). Two difficulties of extracting aged trees are the
complex geometry of the (main) branches and a large number of small twigs. Again, the
input sequence consists of six images and the majority of the branching structure has been
reconstructed. Here, one can see the limitations by using only cylinders for the branches:
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Figure 6.5: Reconstruction of a young m-tree in a city scene (cf. also Figure 6.4). Green
pyramids symbolize the camera positions (tip) and poses (base).

the two curved long branches on the right side can only be roughly represented as connected
straight parts. The attempt to extract the small twigs encountered strong clutter and failed to
give a meaningful result.

Figure 6.7 shows that our approach works also under very different lighting conditions. The
background estimation can detected the night scene and adapt itself to the switched fore- and
background intensities by employing Opening (cf. Section 2.4) instead of Closing. Again,
although several branches are completely occluded in some of the images, they still could be
reconstructed.

6.3 Assessment and Discussion

A quantitative assessment of the results is carried out by comparing the reconstructed model
with the simulated (ground truth) model based on their 2D projections, even though an eval-
uation in 3D would have been preferable. Yet, the computation of intersections of cylinders
in 3D is far from trivial. Particularly, the output of X f rogT M is a triangulated surface model
without explicit axes for the branches. This makes it impossible to directly compare it to our
cylinders for the branches. One could avoid the intersection of the cylinders by rasterizing
them in 3D voxel space, but this is again not directly possible for the surface representation
of the ground truth data.

For the quantitative evaluation in 2D space the 3D models are marked with a particular color,
green for the ground truth model and red for the reconstruction, and projected into images
taken from all six given viewpoints as well as an additional view point (cf. Figure 6.8). The
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Figure 6.6: Result for an aged sympodial-monochasium (sm-) tree – three of six images (top)
as well as the reconstructed model seen from the same points of view (bottom).

Figure 6.7: Result for a monopodial (m-) tree in night scene– image quadruple (top) as well
as the reconstructed model seen from the same points of view (bottom).

latter is added to demonstrate the quality of the 3D result for an extrapolation outside the
given range of views.
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Figure 6.8: An additional extrapolated view (red), which is approximately perpendicular to
the last of the snapshot positions (green), is also used for the evaluation.

The corresponding projections from each view are composed into a sequence of evaluation
images. One of them is shown in Figure 6.9. We use blue color to indicate the overlap of
both projections and thus define different types of regions as follows:

Figure 6.9: Regions in evaluation image: True Positive (blue), False Negative (green), and
False Positive (red).

– True Positive (TP, blue): Reconstructed regions comply with the ground truth data.

– False Negative (FN, green): Ground truth data which could not be reconstructed.
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– False Positive (FP, red): Incorrect reconstruction – does not comply with the ground
truth data.

Following (Heipke et al. 1998), we use the “Completeness” and “Correctness” of the result
for evaluation.

Completeness

The Completeness is the percentage of the ground truth data which complies with the recon-
structed data:

Completeness =
T P

T P + FN
, (6.1)

with Completeness ∈ [0, 1].

Figure 6.10 shows the Completeness values for the seven views given in Figure 6.8. It can
be seen that the Completeness of reconstruction is stable concerning different view angles.

Figure 6.10: Completeness of the reconstructed result for seven points of view.

Correctness

The Correctness is the percentage of the reconstructed data which represents ground truth
data, i.e., the percentage of correctly reconstructed data:

Correctness =
T P

T P + FP
, (6.2)
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Figure 6.11: Correctness of the reconstructed result for seven points of view.

with Correctness ∈ [0, 1].

Figure 6.11 plots the Correctness. Also the Correctness is rather stable for all points of view.

Particularly, Completeness and Correctness on view 7, i.e., the additional extrapolated view,
show only a slight deviation from that of the given views, although the result has not been
calculated based on this view.

Discussion – Automation

The main strength of the work presented in this thesis is its high degree of automation. In
comparison with the approaches given in Section 3, there is no need for user input, e.g.,
sketching or indicating the trunk and the crown area, or user intervention, e.g., manual cor-
rection. The whole process from reading the image sequence to generating the VRML model
is fully automatic.

Particular highlights are the automation of the following two steps:

– Determination of the trunk and its joint point with the first level branches, i.e., the
crown (cf. Section 5.1)

– Selection of Production Rules of L-systems (cf. Section 5.6)

They are the key links connecting all the other steps in the extraction and reconstruction of
trees. Being manually conducted in related approaches implies their importance as well as
complexity.
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As our output is a “relative model”, manual input needed for our work consists of absolute
coordinates and scale when we want to integrate our model with building models.

Discussion – Visualization

Focusing on the branching structure, we direct less effort on texture and realistic geometry.
We use a uniform color for our tree model, particularly the average gray value of the target
tree in the images, assuming that in comparison with the background, the color difference
of the branches can be ignored. Although some geometrical refinement is done as shown in
Section 4.3, the geometric modeling of complex structures is still limited. E.g., the curved
shapes in Figure 6.6 is only roughly represented.



Chapter 7

Summary and Outlook

Figure 7.1: Generative statistical extraction of trees. a) Target tree in one of the input images.
b) Background estimation. c) A hypothesis for a branch is projected into the estimated
background for evaluation. d) 3D reconstruction of the target tree.

In this thesis we present an approach for the generative statistical 3D extraction of unfoliaged
trees with their particular characteristics from terrestrial wide-baseline image sequences of
urban scenes. The descriptive power for trees of L-systems, statistical sampling with Markov
Chain Monte Carlo (MCMC), Bayesian inference, and maximum a posteriori (MAP) esti-
mation are combined into a generative statistical approach. Figure 7.1 gives an overview of
important steps and the result.

The highlights of our approach can be summarized as follows:

1. Background estimation: For the generative modeling projecting the branches into the
individual images, the background is estimated by means of gray-scale morphology
and an iterative detail reconstruction process.

2. MC+MCMC sampling: For statistically sampling the sparsely distributed branching
parameters we have proposed an efficient scheme combining plain Monte Carlo (MC)
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and sequential MCMC. By using the Metropolis-Hastings algorithm, the search be-
comes robust.

3. Probability controlled sampling sequence: A proposal mechanism has been devised to
control the sampling sequence in the Markov Chain taking into account the character-
istics of the individual parameters and their recent performance. By the more effective
sampling, much computational effort is saved.

4. Bayesian refinement of priors: The generic prior distributions for parameters are re-
fined in a Bayesian framework taking into account already accepted hypotheses. The
updated priors are used in the MAP estimation.

5. Classification of branching types: After extracting the basic branches on the first level,
the type of the L-System is derived by means of classification and Production Rules of
specific L-systems are applied for a refined modeling.

By these means we are able to extract and reconstruct major branches representing the basic
structure of individual trees even when they are partly occluded and the images are taken
under difficult lighting conditions.

Concerning future work, a more detailed geometrical modeling by means of generalized
cylinders (Deussen and Lintermann 2004) seems to be a promising way for a better represen-
tation of complex branches. Only approximately circular cross-sections on not necessarily
parallel planes that are connected by means of triangles lead to more or less short cylindrical
pieces. The trunk or a branch will be modeled by attaching the generalized cylinders and the
triangles can be colored or textured to represent the bark.

The disadvantage of conventional MCMC is that the number of objects that can be repre-
sented as well as their parameters is fixed. One thus cannot change the components of the
model or switch between different models during search. Reversible Jumps (Green 1995),
which allow proposals that change the dimensionality of the parameter space in MCMC,
could be integrated into our approach for a more flexible search possibly in conjunction with
model selection, e.g., using Akaike’s Information Criterion – AIC (Akaike 1973). The latter
allows to better decide between thin twigs and the background. Search is thus optimized by
an informed selection of competing hypotheses while at the same time avoiding overfitting
to the data.

Generative statistical modeling is not confined to L-systems. Basically, just a means to
construct realistically looking trees that can be efficiently controlled is needed. For this, e.g.,
the tree modeling of (Deussen and Lintermann 2004) could be a basis.

We finally assume that the upper stages of branches with very thin twigs which are hard
to estimate from the noisy data might be grown stochastically with the derived Production
Rules and the learned priors to match the image density.
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