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deals with unertainties assoiated with model parameters. The issue of model parametersbeing subjet to unertainties and variabilities is also addressed in more detail in [15℄.The use of intervals to haraterize parameter unertainties in performane models hasbeen introdued in related works [14, 24, 12℄. There are many situations where parameterintervals our naturally: although an exat value for a parameter may not be known,the designer may provide a reasonable range of values for that parameter. If parametersare obtained via measurement, on�dene intervals are an important tool to inrease thereliability of the results. Parameter intervals may also our in a situation where boundinganalysis is used at one level of a hierarhial model produing input parameter intervalson another level. Parameter intervals are also suitable for worst-ase analysis as well assensitivity studies. Furthermore, the numerial treatment of other approahes to modelparameter unertainties suh as e.g. parameter histograms [10℄, or fuzzy number parameters[11℄ is based on intervals.When parameters of an analytial model are haraterized by intervals, performane mea-sure intervals an be obtained by adapting existing solution algorithms and formulae for theorresponding model haraterized by single value (SV) parameters. This adaptation is doneby replaing onventional arithmeti by so-alled interval arithmeti. I.e., basi operationsand elementary funtions for real numbers are replaed by orresponding arithmeti de�nedfor intervals. There are two major advantages of using interval arithmeti as opposed to othertehniques for unertainty analysis like Monte-Carlo [21℄ and Quasi-Monte-Carlo [19℄ meth-ods and sensitivity analysis (see for example [6℄ for a omparison of these two approahesin the ontext of Markov reward models): (a) results produed by interval analysis are safeperformane bounds, i.e., it is guaranteed that the possible range of performane measuresis always enlosed by the obtained interval results; (b) if interval splitting is applied, theauray of the obtained interval results is automatially known.However, there is also a major drawbak of using interval arithmeti: the so-alled depen-deny problem may ause extremely wide intervals for the omputed performane measures[18℄. Interval splitting as an approah to overome this problem has been proposed by Ma-jumdar and Ramadoss: In [16℄, a brute fore splitting algorithm is used to obtain reasonabletight performane measure intervals. In [20℄, following an approah proposed in [22℄, sele-tive interval splitting with signi�antly redued omputational omplexity is onsidered. Inthis paper, a new seletive splitting algorithm is presented that uses oasional single valuemodel evaluations to further redue the overall omputational omplexity for produing in-terval results. In the ase of so-alled N-monotoniity (i.e., monotoniity w.r.t. all inputparameters), L�uthi and Haring use monotoniity properties to obtain an eÆient intervalsolution without interval splitting [12℄. In this work we show that monotoniity w.r.t. justone or more interval parameters an also be exploited to obtain a more eÆient intervalsplitting solution.The appliation of the interval splitting algorithms presented in this paper is demon-strated along the lines of two models that we have adapted to interval parameters: a basianalytial model of the MACA-BI protool for ad ho wireless mobile networks and a moreomplex queueing network model of an Enterprise JavaBeans implementation. The orre-3



sponding models with onventional parameters are presented in [3℄ and [9℄, respetively.The paper is organized as follows: sine many readers may not be familiar with in-terval arithmeti, the orresponding mathematial bakground is summarized in Setion 2.An overview of existing splitting approahes as well as our new splitting algorithm is pre-sented in Setion 3. This setion also inludes onsiderations on possibilities to exploit singleparameter ourrene and partial monotoniity properties. Setions 4 and 5 provide two ap-pliation examples for the proposed tehniques. In Setion 6, the results are summarizedand onlusions are drawn.2 Interval ParametersTypially, performane measures in analytial models an be expressed as mathematialfuntions of a number of input parameters. These input parameters are usually real numbersor integers. Thus, we onsider a real funtion f as follows:f : IRn ! IR;x = (x1; : : : ; xn) ! f(x):As disussed in Setion 1, we are interested in using intervals as input parameters forperformane measure funtions. In the following, we give some basi de�nitions of intervalsand related terms. A detailed introdution an be found in books like [18, 1, 17℄.2.1 Basi De�nitionsA real interval is a set of the formX = [x; x℄ = fx 2 IR j x � x � xg;where x; x 2 IR and x � x. x and x are alled endpoints of the interval. In partiular, xis alled lower bound, and x is alled upper bound of the interval X = [x; x℄. By IIIR wedenote the set of all real intervals. An interval X 2 IIIR is alled thin if x = x, and it isalled thik, if x < x. If S is a nonempty bounded subset of IR, we denote the hull of S bytuS = [inf(S); sup(S)℄. The hull is the tightest interval enlosing S. E.g., tufa; bg = [a; b℄, ifa � b, and tufa; bg = [b; a℄, if a > b. We denote the set of interval vetors X = (X1; : : : ; Xn)with n omponents by IIIRn. An element X 2 IIIRn is interpreted as the set of all vetorsx 2 IRn suh that xi 2 Xi, i = 1; : : : ; n. For example, in the ase n = 2, this is a retangle.An interval vetor is also referred to as a box.For a real funtion f , ontinuous on every losed box on whih it is de�ned, the range ofa box X is de�ned as: f �(X) = tuff(x) j x 2 Xg = ff(x) j x 2 Xg:Beause of the ontinuity of f , the range is itself an interval:f �(X) = [f; f ℄:4



In general, the omputation of the range is a onstrained optimization problem withbox onstraints. I.e., the global minimum f(x) = minx2X f(x) and the global maximumf(x) = maxx2X f(x), subjet to x 2 X have to be found.In the speial ase of so-alled N -monotoni funtions, the range an be omputed us-ing only real value evaluations of f with appropriate ombinations of parameter intervalendpoints as input parameters. To be more spei�, let f(x1; : : : ; xn) be monotoniallyinreasing w.r.t. all parameters xi, i 2 I and monotonially dereasing w.r.t. all parame-ters xi, i 2 D, where I [ D = f1; : : : ; ng. Then the range of f with interval parametersX1 = [x1; x1℄; : : : ; Xn = [xn; xn℄ an be omputed as follows:f �(X1; : : : ; Xn) = [f(y1; : : : ; yn); f(z1; : : : ; zn)℄ ;where yi = xi, zi = xi if i 2 I, and yi = xi, zi = xi if i 2 D. In [12℄, this situation isdisussed in detail for the example of the Mean Value Analysis (MVA) algorithm (see forexample the book [8℄) for losed single lass queueing networks. A generalized monotoniitytheorem, allowing exploitation of partial N-monotoniity is given in Setion 3.5.2.2 Interval ExtensionsFor many performane measures, monotoniity properties do not hold and general optimiza-tion methods are often diÆult to apply and of high omputational omplexity. Sometimesthe exat range of a funtion need not be known, but an interval enlosing the range suÆ-iently tight may be adequate as well. Thus, in the following we introdue the onept ofinterval extensions and interval arithmeti for their eÆient omputation.An interval funtion F : IIIRn ! IIIR is an interval extension of the real funtion f :IRn ! IR if (for simpli�ation purposes we leave aside onsideration of de�nition regions)[18℄: F (x) = f(x) for x 2 IR;f(x) 2 F (X) for all x 2 X 2 IIIR: (1)Interval extensions provide enlosures of the range of a real funtion:F (X) � ff(x)jx 2 Xg:A property of interval funtions that is important for interval splitting tehniques thatare onsidered in Setion 3, is inlusion isotony. An interval funtion F : IIIRn ! IIIR isalled inlusion isotone if for all X; Y 2 IIIR,X � Y ) F (X) � F (Y ):
5



2.3 Interval ArithmetiAn important lass of inlusion isotone interval extensions is obtained by interval evaluationof arithmeti expressions. This is done by de�ning elementary arithmetial operations andfuntions for intervals. Arithmeti expressions are subsequently de�ned as reursive om-binations of onstants, interval variables, elementary operations, and elementary funtions.For a formal de�nition see the book [18℄. Sine most funtions representing performanemeasures are atually arithmeti expressions, interval arithmeti an serve as a powerfultool to obtain interval extensions of performane measures.On the set of intervals, the elementary operations Æ 2 f+;�; �; =; ^g =: 
 are de�ned bysetting: X Æ Y = tufx Æ y j x 2 X; y 2 Y g = fx Æ y j x 2 X; y 2 Y g; 8Æ 2 
;for all X; Y 2 IIIR suh that x Æ y is de�ned for all x 2 X, y 2 Y .The elements ' of a prede�ned set � of elementary ontinuous real funtions are extendedto interval arguments by de�ning:'(X) = tuf'(x) j x 2 Xg = f'(x) j x 2 Xg;for all X 2 IIIR suh that '(x) is de�ned for all x 2 X. Suh a set � of elementary funtionsmay for example inlude abs (absolute value), the square and square root funtions, exp(exponential), ln (natural logarithm), or the trigonometri funtions sin, os, tan.From monotoniity properties it follows that the elementary operations Æ 2 f+;�; �; =gan be omputed in terms of the end points of the intervals X = [x; x℄; Y = [y; y℄ 2 IIIR:X Æ Y = tufx Æ y; x Æ y; x Æ y; x Æ yg:In partiular, X + Y = [x + y; x+ y℄;X � Y = [x� y; x� y℄;X � Y = [min(xy; xy; xy; xy);max(xy; xy; xy; xy)℄;X=Y = X � [1=y; 1=y℄; if 0 =2 Y:Analogously, (pieewise) monotoniity of the elementary funtions an be exploited tode�ne their evaluations along the lines of omputations with the interval endpoints of theargument. E.g., beause of the monotoniity of the exponentiation funtion we know thatfor any X = [x; x℄ 2 IIIR, exp(X) = [exp(x); exp(x)℄.Using the interval extensions of elementary operations and funtions, an arithmeti ex-pression in n variables an be evaluated with intervals by substituting the variables by theorresponding intervals and step by step appliation of interval arithmeti. E.g., given theintervals X1 = [1; 2℄ and X2 = [4; 5℄, the arithmeti expression f(x1; x2) = (2x1 + x2)x1 is6



evaluated as follows: f(X1; X2) = (2 � [1; 2℄ + [4; 5℄) � [1; 2℄= ([2; 4℄ + [4; 5℄) � [1; 2℄= [6; 9℄ � [1; 2℄ = [6; 18℄:Given an arithmeti expression f(x1; : : : ; xn), in [18℄ it is shown that the orrespondinginterval evaluation f(X1; : : : ; Xn) is inlusion isotone and that it provides an enlosure ofthe range f �(X) = f �(X1; ; : : : ; Xn) of the real arithmeti expression. I.e.,X 01 � X1; : : : ; X 0n � Xn =) f(X 01; : : : ; X 0n) � f(X1; : : : ; Xn); (2)and f �(X) = ff(x)jx 2 Xg � f(X): (3)Eq. (2) is originally proved in [17℄, Eq. (3) follows diretly from the de�nitions of intervalarithmeti.2.4 Dependeny ProblemAs disussed above, interval arithmeti an serve as a tool to obtain interval extensions ofreal funtions. However, due to an e�et known as dependeny problem, equality is oftennot obtained in Eq. (3). This e�et is also known as overestimation. The root of thedependeny problem is the memoryless nature of interval arithmeti if a parameter oursmultiple times in an arithmeti expression [18℄. For every ourrene of a variable in anexpression it is treated independently. For example, the expression X � X is evaluated tofx1 � x2 j x1; x2 2 Xg = [x� x; x� x℄, instead of fx� x j x 2 Xg = [0; 0℄.Sometimes an expression an be re-formulated to redue the number of ourrenes ofan interval parameter. Examples of this tehnique are presented in Subsetions 4.1 and 5.2.However, in general the dependeny problem may often ause ruial overestimation of theatual range of an evaluated funtion. For example, the iterative nature of the well-knownMVA algorithm (N iterations for a queueing network with N jobs) auses an inreasingnumber of parameter ourrenes with inreasing number of jobs. Fig. 1 shows the overesti-mation of the response time interval using the interval arithmetial evaluation of the MVA.In this example, a queueing network with two queueing enters is analyzed. One of theservie demands and the terminal think time are haraterized by interval parameters. Thediagram shows the relative width of the interval evaluation in multiples of the atual rangefor the response time. For example with 10 jobs in the network, the response time intervalobtained via interval arithmeti is more than 120 as wide as the atual interval of possibleresponse times.A way to overome overestimation due to the dependeny problem is to split the originalinput parameter intervals into subintervals and evaluate the arithmeti expression usingthese subintervals as input parameters. Approahes in that diretion are disussed in thefollowing setion. 7



Figure 1: Overestimation of response time intervals with MVA.3 Interval SplittingThe prinipal idea for interval splitting is to subdivide the input parameter intervals intoseveral subintervals, ompute interval evaluations of the arithmeti expression with the subin-tervals as input parameters, and �nd the overall result by omputing the minimum of alllower bounds and the maximum of all upper bounds of the intermediate results. Analogously,an interval parameter vetor (box) is split into subboxes. The basi idea is illustrated in thefollowing subsetion desribing a brute-fore splitting algorithm. Eq. (2) guarantees thatresults obtained via interval splitting yield enlosures of the range that are at most as wideas the interval evaluation using the original input parameter intervals. In [22℄ it is shownthat the results obtained from interval splitting onverge to the atual range if the widthof the subintervals approahes zero. For the sake of readability, in the algorithms disussedin the following setions, we restrit the onsiderations to a single interval input parameterX = [x; x℄. The generalization to multiple interval input parameters is straight forward.Considerations regarding omputational omplexity are however also inluded for the aseof n interval parameters.3.1 Brute Fore Interval SplittingIn the brute fore splitting (BFS) algorithm, in every iteration the input parameter intervalsare split into two subintervals of equal length. The parameter (sub)intervals onsidered initeration s (i.e. splitting degree s) are olleted in P s, the set of potential input parameterintervals. The respetive algorithm is depited in Fig. 2.In step S1 of the BFS algorithm, after the initialization, the interval evaluation of f withthe original parameter interval X is omputed.8



Brute-fore Splitting (f;X; �)S1 s 0P 0  fXgF 0 = [f 0; f0℄ f(X)doS2 s s+ 1P s  ;S3 8Z = [z; z℄ 2 P s�1 do beginm = (z + z)=2P s  P s [ f[z;m℄; [m; z℄gendS4 F s = [f s; f s℄ �minZ2P s f(Z); maxZ2P s f(Z)�S5 until (f s � f s�1 < �) and (f s�1 � f s < �)Figure 2: Brute fore splitting algorithm with one interval parameter.In every iteration, the splitting degree s is inremented and a new set of input parameterintervals under onsideration (P s) is initialized (step S2). Subsequently, in step S3 of thealgorithm, P s is �lled with subintervals of all intervals X 2 P s�1. Finally, the minimumof all lower bounds as well as the maximum of all upper bounds of evaluations of thesesubintervals is omputed in step S4. Steps S2�S4 are iterated until the di�erene betweensuessive iterations beomes smaller than a prede�ned stopping riterion � (step S5).Note that the number of subintervals in onsideration with splitting degree s is 2s. Moregeneral, if n parameters are haraterized as intervals (i.e. we have an n-dimensional inputparameter box), it holds that jP sj = 2sn. The appliation of the BFS algorithm for thesolution of interval-based omputer performane models is proposed in [16℄.3.2 Seletive Interval SplittingIn the ourse of omputation in the BFS algorithm, it an be observed that not neessarilyevery interval in P s needs to be onsidered for further splitting. Consider for examplethe following situation: let Y and Z be two parameter subintervals in P s. We denotethe respetive interval evaluations by f(Y ) = [f(Y )℄; f(Y )℄ and f(Z) = [f(Z); f(Z)℄. Iff(Z) > f(Y ), we know that the atual lower bound f of the range f �(X) = [f; f ℄ an notbe obtained by evaluation of any point x 2 Z, sine we know that f � f(Y ).More general, if we denote the set of parameter subintervals Z 2 P s�1 [ P s that havealready been evaluated by Pev, we know that:f � minY 2Pev f(Y ):9



Figure 3: 4+1 situations to be onsidered in seletive interval splitting.Thus, in the situation desribed above, the subinterval Z need not be onsidered for furthersplitting to �nd the lower bound of the range f �(X). This idea of seletive interval splittingwas introdued by Skelboe in the ontext of general purpose optimization of rational intervalfuntions [22℄ and its appliation to performane models is presented in [20℄.In the following we onsider the omputation of the lower bound f of the range f �.Computation of the upper bound f an be done analogously. If an interval Zi with intervalevaluation f(Zi) = [f(Zi); f(Zi)℄ is onsidered to be inluded in the set of P s that maypotentially produe the lower bound f of the range f �(X), four situations have to be distin-guished for eÆient seletive interval splitting. These situations are depited in Fig. 3. Inthis �gure, f s = minY 2Pev f(Y ), and minub = minY 2Pev f(Y ):1. In the �rst situation, f(Z1) > minub. Thus, in the sequel Z1 an be ignored w.r.t. thesearh for f .2. In the seond situation, f(Z2) � minub. This means that Z2 is a parameter intervalthat may eventually produe f . However, neither f s nor minub are a�eted by f(Z2).3. In the ase depited as situation three, additionally, f(Z3) < f s. Thus, by inlusion ofZ3 in Pev, f s has to be updated to the value f(Z3).4. In the fourth situation, we have f(Z4ab) < minub. Thus, minub has to be updated.Furthermore, there may now eventually be some intervals Y 2 Pev suh that f(Y ) >minub. Suh Y are no longer of interest for �nding f . Thus, they should be removedfrom P s or P s�1. Situation 4a in Fig. 3 shows the ase where non of the intervals inPev is a�eted, whereas in situation 4b the interval C would be dropped from the setof potential interval parameters sine f(C) > f(Z4b).The situations desribed above an be exploited to integrate �ltering mehanisms into theBFS algorithm that dramatially redue the number of interval evaluations that have to be10



Seletive Interval Splitting (f;X; �)S1 s 0P 0  fXgF 0 = [f 0; f0℄ f(X)minub f 0doS2 s s+ 1f s  1P s  ;S3 8Z = [z; z℄ 2 P s�1 do beginS4 m (z + z)=2Z1  [z;m℄; Z2  [m; z℄S5 for i 1; 2 do beginS6 if (f(Zi) � minub then beginS7 P s  P s [ fZigS8 if (f(Zi) < f s) then f s  f(Zi)S9 if (f(Zi) < minub then beginS10 minub f(Zi)S11 hek lb (P s�1); hek lb (P s)endendendendS12 until (f s � f s�1 < �)Figure 4: Seletive splitting algorithm with one interval parameter (onsidering lower boundonly). hek lb (P )S1 8Y 2 P doS2 if f(Y ) > minub then P  PnfY gFigure 5: Cheking routine for the seletive splitting algorithm.11



omputed to obtain a suÆiently tight enlosure of the range f �(X). In Fig. 4, the seletiveinterval splitting (SIS) algorithm is depited. Note, that in the depited algorithm, only thelower bound of the enlosure of the range is onsidered. The upper bound an be omputedanalogously. The initialization (step S1) is extended by setting the minimum of all upperbounds to1 (i.e., MAXREAL or some equivalent value). In the iteration initialization (stepS2), the lower bound of the enlosure is also initialized to 1. As in the BFS algorithm,every parameter interval in P s�1 (step S3)) is split into two intervals (step S4) whih aresubsequently onsidered for further treatment (step S5). However, situation (1) in Fig. 3 is�ltered by the ondition in step S6 of the SIS algorithm. I.e., only those parameter intervalsthat may eventually produe the lower bound of the enlosure are onsidered. This meansthat in the sequel, we are dealing with situations (2) to (4). In step S7, the parameterintervals of interest are inluded in the next set P s of potential parameter intervals. Step8 deals with situation (3) of Fig. 3. I.e., it is deided whether the lower bound f s of theenlosure of iteration s has to be updated. Situation (4) is managed in step S9 of thealgorithm. The minimum of all upper bounds is eventually updated (step S10) and in stepS11 it is heked (the heking routine is listed in Fig. 5), whether parameter intervals haveto be removed from P s�1 or from P s due to the update of minub. Steps S2 to S11 areiterated until the hange in the lower bound f s of the enlosure is suÆiently small (stepS12). In the subroutine depited in Fig. 5, all intervals Y in the set P are heked (step S1)and eventually removed from P if f(Y ) > minub (step S2).If the lower and upper bounds of the enlosure are omputed simultaneously, identialparameter evaluations an be used to optimize the omputational e�ort. To aelerate thedeisions in the hek lb routine, the sets P s�1 and P s an be implemented as sorted linearlists as it is also suggested in [22℄. Note that for multiple (n) interval parameters, everyparameter box X 2 P s�1 has to be split in 2n subboxes. However, as it is illustrated inSetion 5, after some initial iterations the number of interval evaluations eventually inreasesonly linearly with the splitting degree s. This is due to the �ltering e�et of the SIS algorithm.3.3 Seletive Interval Splitting with Midpoint EvaluationGiven an interval Z = [z; z℄ 2 P s�1, onsider the lower bound f �(Z) of the range f �(Z). Inthe SIS algorithm disussed in the previous setion, we use the fat that f �(Z) 2 f(Z) =[f(Z); f(Z)℄ for the seletion proess. To be more spei�, the seletion threshold minub ishosen as the minimum of the values f(Z) for all parameter intervals Z that have alreadybeen evaluated. However, by de�nition we also know that f �(Z) � f(z) for any z 2 Z.I.e., the real funtion evaluation f(z) for any point z 2 Z is also an upper bound for thelower bound of the range f �(Z). Thus, we know that f �(Z) 2 [f(Z); f(z)℄ for any arbitraryz 2 Z. This yields indeed a sharper threshold than f(Z), sine also f(z) � f(Z) holds forany z 2 Z.In the seletive splitting with midpoint evaluation (SSME) algorithm, depited in Fig. 6,the interval midpoint z = (z + z)=2 of every interval Z = [z; z℄ 2 P s�1 is used to obtaina sharper threshold for the seletion deision. Steps S1 to S8 of the SSME algorithm are12



Seletive Splitting with Midpoint Evaluation (f;X; �)S1 s 0S2 minub f((x+ x)=2)... ...S9 fm  f((zi + zi)=2)S10 if (fm < minub) then beginS11 minub fmS12 hek lb (P s�1); hek lb (P s)endendendendS13 until (f s � f s�1 < �)Figure 6: Seletive splitting algorithm with midpoint evaluation, one interval parameter(onsidering lower bound only).idential to the SIS algorithm and are thus not listed in Fig. 6. However, in step S9, fmis assigned the real funtion evaluation of the interval midpoint. In the sequel (steps S10to S12), fm is used to determine the threshold minub whih is subsequently used to deidewhih parameter intervals are of interest for further investigation.Fig. 7 shows the e�et of the sharper deision threshold minub obtained via evaluationof the interval midpoints. The bullets in that �gure represent the real funtion evaluationsof the respetive parameter interval midpoints. Here, the real funtion evaluations of themidpoint are assumed to be in the middle of the interval evaluations. This does of oursenot hold in general, but does not e�et the prinipal mehanism of midpoint evaluation asan additional �ltering tehnique. We denote the midpoint of parameter interval Y by my.Note that as opposed to Fig. 3, in Fig. 7 the threshold minub is determined as the minimumof all midpoint evaluations. Thus, using the SSME algorithm, the parameter interval Cwould not have been inluded in Pev in the �rst plae beause f(C) > f(ma) = minub.Considering the parameter intervals Z1 to Z4b in Fig. 7 we an observe that both Z1 and Z2need not be split any further, sine from f(Z2) > minub we onlude that f =2 f(Z2). I.e., asopposed to the onventional seletive splitting algorithm, Z2 is �ltered out due to the sharperseletion threshold obtained via midpoint evaluation. Next, onsider situation (4a): usingonventional SIS, the threshold minub is updated, but non of the parameter intervals in Pevis a�eted by that update. The situation with SSME is di�erent: beause f(mZ4a) < (f(B),the parameter interval B an be removed from the set of parameter intervals of further13



Figure 7: E�et of midpoint evaluation for interval splitting.interest.This example as well as the experimental results presented in Setions 4 and 5 illustratesthat the additional �ltering e�et of the SSME algorithm may usually be worth the higheromputational expense due to the additional real funtion evaluation neessary to obtain thetighter threshold.Due to ontinuity properties, funtions desribing performane measures are usually atleast pieewise monotoni. Thus, using interval endpoints instead of the interval midpointto obtain an even tighter threshold may be heuristially argued. However, even with justa single interval parameter, this would double the additional e�ort due to real funtionevaluations and experiments have shown that often the improvement of the �ltering e�etis almost negligible. Furthermore, this approah does not sale well to multiple intervalparameters, beause in the lak of knowledge of monotoniity behavior, given n intervalparameters, real funtion evaluations on all 2n orners of the n-dimensional parameter boxwould have to be omputed.Instead of the stopping riterion of the algorithms listed in Figs. 4 and 6 (f s� f s�1 < �),an alternative stopping riterion an be used: f s � minub < �. This stopping riterionautomatially provides a bound (namely �) on the di�erene between the lower endpoint fof the atual range f �(X) = [f; f ℄ and the lower endpoint f s of the enlosure obtained viainterval splitting, beause the relation f 2 [f s; minub℄ holds.3.4 Exploitation of Single Parameter OurreneAs it is disussed in Subsetion 2.4, the overestimation due to the dependeny problem stemsfrom multiple ourrenes of one or several input parameters in an expression. However, ifnot all input parameters our more than one in the arithmeti expression, the followingtheorem holds. 14



Theorem 1 (Moore) Let f(�1; : : : ; �n; �1; : : : ; �m) = f(�; �) be an arithmetial expressionin n+m variables. Suppose that the variables �k, k = 1; : : : ; m, our only one in f . Giveninterval vetors X 2 IIIRn, Y 2 IIIRm, it holds that:f �(X; Y ) = tuff(x; y) j x 2 X; y 2 Y g = [x2X f(x; Y ):A proof of this theorem an be found in [17℄ or in [18℄. The interpretation of this theoremis that �nding the range of an expression with interval parameters is a lassial optimizationproblem only w.r.t. those parameters that our multiple times. Parameters that our onlyone in the arithmeti expression an be treated with interval arithmeti without produingadditional overestimation. Regarding interval splitting, this means that in prinipal onlyparameters that our more than one in the expression have to be split into subintervals.Thus, in the BFS approah, the number of splitting ombinations in iteration s is reduedfrom 2s(n+m) to 2sn.However, in the seletive splitting approahes, avoiding to split ertain parameter inter-vals may ause extremely low e�etiveness of the �ltering mehanism of these algorithms.In many situations, reduing the number of split parameter intervals via exploitation ofsingle ourrene of parameters may ause the seletive approahes to behave like the BFSalgorithm. I.e., eventually no �ltering may take plae. Consider the following simple ex-ample: f(X; Y ) = X + X + Y , X = [0; 1℄, Y = [0; 10℄. Sine Y appears only one in theexpression of f , only X might be onsidered for splitting. Now onsider the evaluation off using the following subintervals of X: X 0 = [0; �℄ and X 00 = [1 � �; 1℄. Evaluation of fyields: f(X 0; Y ) = [0; 10 + 2�℄ and f(X 00; Y ) = [2 � 2�; 12℄ for any arbitrarily small � > 0.Sine 2� 2� < 10 + 2�, even X 00 is not �ltered out by seletive splitting. From this we mayonlude that however small the subintervals of X are hosen, non of them is �ltered out byseletive splitting. Thus, in this ase the seletive splitting approah behaves like the BFSalgorithm. Depending on the desired auray, reduing the number of parameter intervalsthat are split at the ost of swithing from seletive to (almost) brute fore splitting mayor may not redue the total omputational omplexity. This e�et is also illustrated in theexperimental results presented in Setion 4.3.5 Exploitation of Partial N-MonotoniityMonotoniity of the evaluated expression w.r.t. one or more input parameters an be ex-ploited to redue the number of parameters that have to be split. To obtain the range ofan expression, two separate runs of the interval splitting algorithm an be performed. Thisyields the lower and upper bounds of an enlosure of the range, respetively. In the two runsof the splitting algorithm, parameter intervals for parameters with monotoniity propertiesan be replaed by appropriate endpoints of the original parameter intervals. This reduesthe number of interval parameters in the splitting algorithm, and hene drastially reduesthe omputational omplexity. The following theorem and assoiated orollary provide theformal justi�ation for this simpli�ation. 15



Theorem 2 Let f(�1; : : : ; �n; �1; : : : ; �m; �1; : : : ; �l) = f(�; �; �) be an arithmetial expres-sion in n +m + l variables. Suppose that f is monotoni inreasing w.r.t. �i, i = 1; : : : ; mif all other parameters are �xed and f is monotoni dereasing w.r.t. �j, j = 1; : : : ; l if allother parameters are �xed. Given interval vetors X 2 IIIRn, Y 2 IIIRm, and Z 2 IIIRl itholds that: f �(X; Y; Z) = tuff(x; y; z) j x 2 X; y 2 Y z 2 Zg= " infx2X f(x; y; z); supx2X f(x; y; z)# :The proof of Theorem 2 an be found in Appendix A.Corollary 3 Under the assumptions of Theorem 2 it holds that:f �(X; Y; Z) � h f(X; y; z); f(X; y; z) i :The orollary is proved in Appendix B. Corollary 3 guarantees that an enlosure forthe range f �(X; Y; Z) an be obtained as follows: ompute the evaluation of the expressionwhere parameters with monotoni inreasing e�et are replaed by the respetive lowerbounds of the parameter intervals, and where parameters with monotoni dereasing e�etare replaed by the respetive upper bounds of the parameter intervals. This evaluation yieldsan interval beause the input parameters without monotoniity properties are still intervals.The lower bound of this evaluation interval yields the lower bound of the enlosure. Theupper bound of the enlosure is omputed analogously. The amount of overestimation ofthat enlosure an be redued by interval splitting as desribed in the previous setions.However, Theorem 2 implies that only the parameter intervals X = (X1; : : : ; Xn) withoutknown monotoniity properties have to be split whereas parameters with monotoniity anbe replaed by appropriate single values.3.6 Summary of Splitting ConsiderationsIn the previous subsetions, possibilities to exploit di�erent parameter harateristis tooptimize the SIS and SSME algorithms are disussed. In partiular, three properties areused to handle input parameters: (1) an input parameter an be an interval or a single value(i.e., thik or thin), (2) it may our one or multiple times, (3) monotoni behavior of thearithmeti expression may exist (and be known) or not. These parameter properties andassoiated parameter treatment in the splitting algorithm are summarized in Table 1. Inthis table, the notation \�" stands for \don't are".Fig. 8 lists the generalized splitting algorithm (GSA), whih uses alls of the SSME al-gorithm and onsiders speial parameter properties. In this listing, XIvM denotes a vetorof (thik) interval parameters that our multiple times in the arithmeti expression. XIvSdenotes a vetor of interval parameters that are not supposed to be split. XMon+ (XMon�)denotes a vetor of parameter intervals that have monotoni inreasing (dereasing) e�et.16



Table 1: Summary of parameter properties for interval evaluation.Parameter properties Treatment in splitting algorithmThin Single ourrene Monotoniityyes � � Treat as real number(no speial onsideration)� yes � Treat as interval without splittingor split in interval splitting algo-rithm(depending on situation)no no yes Double all of interval splittingwithappropriate endpoints as single val-uesno no no Split in interval splitting algorithmFinally, xSV denotes a vetor of single value parameters (or thin intervals). If there are no pa-rameters with known monotoniity properties, the SSME algorithm is alled only one (stepS1). The notation SSME (f(XIvM; XIvS; xSV); XIvM; �) indiates that f is evaluated with allparameters (XMon+ and XMon� are dropped beause they do not exist in that ase), but onlythe parameters XIvM are supposed to be split. If there are parameters with known mono-toniity properties, the SSME algorithm is alled with the lower bounds xMon+ of parameterintervals in XMon+ and with the upper bounds xMon� of parameter intervals in XMon� toobtain the lower bound f of the evaluation (step S2). Analogously, the upper bound f ofthe evaluation is obtained by alling the SSME algorithm with the upper bounds xMon+ ofparameter intervals in XMon+ and with the lower bounds xMon� of parameter intervals inXMon� (step S3).4 Interval Parameters in a Model for Wireless MobileNetworksAs an illustrative example we use a model of the MACA-BI (Multiple Aess with CollisionAvoidane By Invitation) protool for so-alled ad ho wireless mobile networks desribedby Gerla et al. [3℄.4.1 Normalized Throughput for the MACA-BI ProtoolUsing the following parameters:� : : : the aggregate rate of paket generation,17



Generalized Splitting (f(XIvM; XIvS; XMon+; XMon�; xSV); �)if (XMon+ [XMon�) = ; thenS1 F = [f; f ℄ SSME (f(XIvM; XIvS; xSV); XIvM; �)else beginS2 f  SSME(f(XIvM; XIvS; xMon+; xMon�; xSV); XIvM; �)S3 f  SSME(f(XIvM; XIvS; xMon+; xMon�; xSV); XIvM; �)endFigure 8: Generalized interval splitting algorithm onsidering di�erent parameter types. : : : the ontrol paket length,� : : : the maximum propagation time,Æ : : : the data paket length,in [3℄, an expression for the normalized throughput of the single hop ase is derived:S = ÆÆ + 2�e���� + ( + 2�)e�� :In this expression, the paket length parameter Æ ours twie, � and � our three times, just ours only one. Thus, it is likely that S is subjet to the dependeny problem ausingoverestimation of throughput intervals if intervals are used for the model parameters. Asdisussed in Subsetion 2.4, the widening e�et of the dependeny problem an sometimesbe dereased if the expression is rewritten suh that interval parameters our less often. IfS is rewritten in the following way:S 0 = 11 + �2�e���� + ( + 2�)e��� =Æ ;the paket length parameter Æ ours only one whereas the number of ourrenes of theother parameters does not hange. In the sequel we refer to the expression S as the originalthroughput expression, S 0 is referred to as the optimized expression.Derivation of the expression w.r.t. the four parameters yields that S is monotonially in-reasing w.r.t. Æ and S is monotonially dereasing w.r.t. � and  as long as all parameters arepositive. In the following omparisons, these monotoniity properties an be used to reduethe number of interval parameters in the splitting algorithms as disussed in Setion 3.5.
18



Figure 9: Single value (SV) as well as various interval (IV) results for the normalized through-put of the example model with varying network load �.4.2 Experimental Results with Interval ModelFor the experiments disussed in this setion, we use the single value parameters from [3℄(data paket length = 296 bytes, ontrol paket length is 20 bytes, propagation delay is 54�s, hannel speed is 1Mbps), as a bases and assume parameter unertainties in the way thatevery parameter � is desribed as � � 10%, i.e., as the interval [0:9�; 1:1�℄. Along the linesof [3℄, using bits and �s as units, the parameter intervals are:� D = [Æ; Æ℄ = 2368� 10% = [2131:2; 2604:8℄,� G = [; ℄ = 160� 10% = [144; 176℄,� T = [� ; � ℄ = 54� 10% = [48:6; 59:4℄.The load parameter � is varied (logarithmially saled) from 10�6 to 1:0 and is also subjetto an unertainty of �10%. In eah step, the load fator � is inreased by the fator 1:5.Fig. 9 depits the results of this experiment, inluding the single value (SV) normalizedthroughput, results from interval evaluation of S (IV/orig) and S 0 (IV/opt) as well as theatual range of the interval evaluation (IV/range). 'lb' denotes lower bounds and 'ub' denotesupper bounds. In this �gure, the overestimation aused by the dependeny problem an beobserved. Diret interval evaluation of S 0 yields almost exatly the range, whereas evaluationof S yields muh wider intervals. However, this fat an only be reognized if the range is19



known. Thus, interval splitting has to be applied to gain ontrol over the auray of theinterval results.Table 2 lists the results for the omputational omplexity when using the various intervalsplitting approahes (BFS, SIS, SSME) and di�erent values for the desired auray � =10�2; : : : ; ��6. For a omparison of the omputational omplexity of the di�erent splittingalgorithms, four variants of the interval model are onsidered: in the variant denoted as'NAIVE', monotoniity properties and the single ourrene of parameters are not exploited,i.e., all four parameter intervals are split into subintervals. In the 'ESO' (exploitation ofsingle ourrene) variant, monotoniity properties are not used but parameter intervalsthat our only one in the expression are not split (see Subsetion 3.4). In the variantdenoted by 'MONO 2', monotoniity properties of S w.r.t. Æ and  are exploited, whereas �and � are split (see Subsetion 3.5). Finally, in the variant 'MONO', all known monotoniityproperties are exploited and thus only � has to be onsidered for interval splitting. For the'NAIVE' and 'ESO' variants, two sub-variants are onsidered: using the original expressionS ('orig.') and using the rewritten expression S 0 ('opt.'). This distintion is not made forthe 'MONO2' and 'MONO' variants, beause in these two, the parameter Æ is treated via itsinterval endpoints anyway (only the number of ourrenes of Æ is redued if using S 0 insteadof S). The table lists the number of neessary interval evaluations for the various splittingalgorithms. In the ase of the SSME algorithm, also the number of neessary single value(SV) evaluations and the weighted sum iv+sv=2 is listed (a SV evaluation is estimated to beof approximately half the omputational omplexity as an interval evaluation). The valuesrepresent the total numbers of evaluations neessary to gain all results depited in Fig. 9,i.e., results for 35 di�erent � intervals. Omitted results reet experiments that had to beaborted beause of time and/or memory onstraints.Several observations an be inferred from the results of Table 2: in general, BFS is notan option for eÆient interval evaluation as ompared to seletive interval splitting suh asSIS or SSME. Comparing SIS and SSME, the SSME approah always manages to furtherredue the number of interval evaluations. In the SSME algorithm, the redution of intervalevaluations is ahieved at the ost of additional SV evaluations (the midpoint evaluations).However, almost always the total ost of SSME is smaller than that of SIS. As disussedin Setion 3.4, exploitation of single parameter ourrene disables the �ltering e�et of theseletive splitting tehniques as soon as the desired auray gets small. Thus, avoiding tosplit parameter intervals that our only one in the evaluated expression only makes sense forBFS. However, as the results in Table 2 suggest, it is more eÆient to use a seletive splittingalgorithm (SIS or SSME) without exploitation of single parameter ourrene than to useBFS with exploitation of single parameter ourrene. Another important onlusion thatan be drawn from the results of these experiments is that rewriting an expression to reduethe number of parameter ourrenes may signi�antly redue the neessary omputationale�ort for interval splitting. This e�et an be seen by omparing the 'Orig.' with the'Opt.' results. Furthermore, exploitation of monotoniity properties is even more important,beause only parameters without known monotoniity properties have to be split. Thus,with exploitation of monotoniity the problem dimension in the splitting algorithms an be20



Table 2: Complexity results for example.Auray Variant BFS SIS SSMEIV eval. IV eval. IV eval. SV eval. IV+SV/2� = 10�2 NAIVE/Orig. 1,216,678 414,998 178,822 32,952 195,298NAIVE/Opt. 1,190 1,190 1,190 802 1,591ESO/Orig. 83,830 57,614 31,150 13,166 37,733ESO/Opt. 350 350 350 341 521MONO 2 350 350 350 341 521MONO 210 210 210 178 299� = 10�3 NAIVE/Orig. { 4,741,110 1,302,758 167,421 1,386,469NAIVE/Opt. 247,206 10,790 4,598 1,701 5,449ESO/Orig. { { { { {ESO/Opt. 2,094 2,094 2,038 1,990 3,033MONO 2 2,094 850 634 414 841MONO 414 342 320 256 448� = 10�4 NAIVE/Orig. { { 3,831,862 486,351 4,075,038NAIVE/Opt. { 59,702 20,950 5,726 23,813ESO/Orig. { { { { {ESO/Opt. 168,334 164,962 144,590 143,354 216,267MONO 2 168,334 2,702 1,742 950 2,217MONO 3,110 760 668 511 924� = 10�5 NAIVE/Orig. { { { { {NAIVE/Opt. { 235,302 85,350 21,091 95,896ESO/Orig. { { { { {ESO/Opt. { { { { {MONO 2 { 7,226 4,426 2,197 5,525MONO 28,630 1,652 1,404 1,034 1,921� = 10�6 NAIVE/Orig. { { { { {NAIVE/Opt. { 1,005,974 374,310 90,240 419,430ESO/Orig. { { { { {ESO/Opt. { { { { {MONO 2 { 21,960 12,882 5,951 15,858MONO 301,902 4,718 3,922 2,822 5,333
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Figure 10: MACA-BI model with interval parameters and interval splitting: omputationalomplexity vs. desired auray.redued to the number of interval parameters without monotoniity.In Fig. 10, the omparison of the two seletive splitting tehniques SIS and SSME issummarized: the number of neessary interval and SV evaluations is depited for varyingvalues of � (desired auray). The four diagrams show results for the variants 'NAIVE/Orig','NAIVE/Opt', 'MONO2', and 'MONO'. It an be seen that with the exeption of 'MONO'(here, only one parameter is split), the additional ost due to SV evaluations in the SSMEalgorithm is always more than ompensated by the dereased number of interval evaluationsin that approah.Fig. 11 illustrates that the omputational omplexity for interval splitting may stronglydepend on the values of the parameters. This �gure depits the number of expression evalu-ations neessary during interval splitting for varying midpoints of the �-interval. For orien-tation purposes, the SV throughput results are also depited (labeled on the right y-axes). Itis interesting to see that in all ases the splitting e�ort is highest where S is non-monotoni(i.e., where S takes its maximum). This means, that interval splitting is more ostly when itis atually required, i.e., when the upper throughput bound is not obtained by using intervalendpoints of the input parameters. 22



Figure 11: MACA-BI model with interval parameters and interval splitting: omputationalomplexity vs. �.5 Model of an EJB Server ImplementationAs a more omplex example we use a model of an EJB (Enterprise JavaBeans) serverimplementation, whih in this ase works as the entral sheduler of a distributed, three-tier, lient-server arhiteture. The real appliation modelled is the Kensington EnterpriseData Mining system [7, 2℄ whose appliation server (or sheduler) implements the EJB-1.1spei�ation [23℄.Spei�ally, the behavior of a method exeution is modelled sine it is the most ommonoperation in the system. Detailed desription of this exeution and derivation of the modelan be found in [9℄.5.1 EJB Submodel to be Adapted to Interval ParametersThe model that is used to illustrate the appliation of interval splitting tehniques orre-sponds to a sub-model of the system desribed above whih is also derived in [9℄. Thissub-model is shown in Fig. 12 and it was obtained via the appliation of the Flow EquivalentServer method (FES) (see [5℄, for example) in order to redue the omplexity of the original23
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Figure 13: Container (sub)Modelmodel.Bloking is the ritial non-standard harateristi in this network. A lient that hasompleted servie in the outer node may be bloked under ertain irumstanes (see [9℄ fordetails). In this ase bloking time is the time required for the �rst of the M parallel serversto lear its queue in a bloking-after-servie disipline.The M parallel servers are aggregated into a single node as it is shown in Fig. 13. Atonstant population N (j lients at the outer server and k = N�j at theM parallel servers)the servie rate funtions �1(j) and �2(k), are estimated as follows:�1(j) = ( 1=(m1 + �N�jb(N � j)); if (N � j) �M;1=m1; otherwise; (4)where m1 is the mean servie time for server 1 (the outer server) when there is no blokingand �N�j is the dynami bloking probability. b(N � j) is the mean bloking time whenthere are j ustomers at the outer server (N � j ustomers at the parallel servers) and itis estimated by b(k) = k=(M2�) (see [4℄), where � is the servie rate of eah of the parallelservers. The omputation of the probabilities �N�j is beyond the sope of this paper; the
24



details an be found in [9℄. The servie rate of the aggregated seond server is:�2(k) = MXn=1 �knn�; (5)where the parameter �kn is the probability that n out of the M servers are busy, given thatthere are k ustomers at the parallel servers altogether. The probabilities �kn are omputedonsidering an M-state Markov hain for eah population size k �M at the parallel servers,where eah state orresponds to the number of busy queues in the system. The followingreursive funtion for the orresponding equilibrium probabilities �k(n) is derived from thebalane equations determined by the M-state Markov hain:�k(n) = 8>><>>: 1; if n = 1;(I�n+1)(k�1)n(n�1)m1�I �k(n� 1); if 2 � n < M;(I�n+1)(k�1)(m1M2�+(1��)k)M2m21�2In(n�1) �k(n� 1); if n =M: (6)The parameter I is related to the bloking behavior, a detailed explanation is beyond thesope of this paper. Normalizing the �k(n) gives the probabilities�kn = �k(n)PMl=1 �k(l) : (7)Clearly the visitation rate is the same for both servers (see Fig. 13). The steady state queuelength probability distribution for this network { p(j) for the state with j tasks at server 1and N � j at server 2 { is then alulated as a produt form in standard fashion. Finally,the throughput of the FES submodel given N threads in the submodel an be omputed:T (N) = NXj=1 p(j)�1(j) : (8)5.2 EJB Submodel with Interval ParametersThe omputational steps for the solution of the submodel throughput, given that the serviedemand parameters � and m1 are intervals are adapted to interval arithmeti. Duringthis adaptation several equations are re-formulated to derease overestimation due to thedependeny problem. Moreover, monotoniity properties of ombined omputation steps areexploited to further redue the amount of overestimation. As an example for the adaptationproess we disuss the interval adaptation of the probabilities �kn (see Eqs. (6) and (7)). Theomplete adaptation proess is desribed in more detail in [13℄.Due to the reursion in Eq. (6), m1 and � our multiple times in eah of the expressions�k(n). Sine with the exeption of the ase n = M , m1 as well as � appear only in thedenominator, this does not ause overestimation of intervals for �k(n). However, in thenormalization step, the dependeny problem is in e�et, beause by having �k(n) in the25



numerator and the sum PMl=1 �k(l) in the denominator, m1 and � have both inreasing aswell as dereasing inuene on �kn.In the following we rewrite the expressions for �k(n) in a way that allows to anel asmany ourrenes of m1 and � as possible in the normalization. In a �rst step, we extratthe interval parameters m1 and � from the reursion of Eq. (6). This an be done by de�ningthe following reursive expression �k(n) that does not depend on m1 and �:�k(n) = ( 1; if n = 1;(I�n+1)(k�1)n(n�1)I �k(n� 1); if 2 � n � M: (9)Using these �k(n), the probabilities �kn an be rewritten to redue the e�et of the dependenyproblem. For n < M , the reiproals ��1kn an be omputed as follows:��1kn = 1 + 1�k(n) 24n�1Xl=1 �k(l)(m1�)n�l + MXl=n+1 �k(l)(m1�)l�n + �k(M)(1� �)kM2(m1�)M�n+135 :Note that in this expression for ��1kn , 1 � n < M , the omputation is separated in a part wherem1 and � ontribute with an inreasing e�et and a part where m1 and � ontribute with adereasing e�et, respetively. Within these parts, the parameters m1 and � are anelled asoften as possible. This signi�antly redues the e�et of the dependeny problem as omparedto the original expressions in Eqs. (6) and (7). The ase n = M is treated separately:��1kM = 1 + M2�k(M) [M2 + (1� �)k=(m1�)℄ M�1Xl=1 �k(l)(m1�)M�l:Sine in this expression m1 and � ontribute solely with an inreasing e�et to ��1kM , theprobability �kM is monotonially dereasing w.r.t. the parameters m1 and �. Thus, aninterval XkM = [�kM ; �kM ℄ an be obtained by single value evaluation of �kM using theendpoints of m1 and �'s parameter intervals. I.e., �kM = �kM(m1; �) and �kM = �kM(m1; �).5.3 Experimental Results with Interval-Based EJB ModelIn the following omparison we use two di�erent adaptations of the EJB model to intervalarithmeti. In the version denoted as 'orig.', the normalization step during the omputationof the probabilities �kn is done along the lines of the original equations given in [9℄. For theomputation of results labeled 'rewr.', the rewritten expressions as disussed in Subsetion 5.2are used reduing the dependeny problem in this spei� omputational step. Note thatfor SV parameters, the original and rewritten equations are mathematially equivalent, there-formulation only makes a di�erene for interval evaluations.In the experiments we use parameter values taken from evaluations desribed in [9℄:M = 6 bean servers per ontainer and I = 20 di�erent bean instanes. The estimatesfor the servie rate of the bean servers � and the mean servie time of the outer server26



(a) (b)Figure 14: Comparison of original and rewritten expressions: (a) throughput interval resultsand (b) omputational omplexity for interval splitting with varying number of threads (withdesired auray � = 10�2).m1 are subjet to unertainty. Thus, these parameters are haraterized by the intervals�(iv) = 1=4:1� 5% = [0:2317; 0:2561℄ and m(iv)1 = 0:4� 5% = [0:38; 0:42℄.Fig. 14 shows the e�et of using the original respetively rewritten expressions for theintermediate probability intervals �kn when omputing intervals for the submodel throughputT (N). Fig. 14(a) depits throughput intervals for populations N = 1; : : : ; 25. It an be seenin this �gure that using the original expressions for �kn, the throughput interval is muhmore overestimated than the throughput interval obtained using the rewritten expressionsfor �kn.Unfortunately, due to the dependeny problem ourring in the omputation of T (N),even the throughput intervals obtained by using the rewritten expressions are more than 10times as wide as the atual range of the throughput (the innermost intervals in Fig. 14(a)).Thus, in both ases, interval splitting has to be applied to obtain reasonable tight enlosuresof the throughput range. However, even though interval splitting may be neessary for both,original as well as optimized (w.r.t. interval omputation) expressions, the omputationale�ort is signi�antly redued when using the rewritten formulae. Fig. 14(b) depits the om-putational omplexity required to obtain the range for the throughput with an auray of� < 10�2. To obtain the range of the throughput, the SSME approah is used, whih per-forms both, interval as well as onventional evaluations . For eah version of the expressions(original and rewritten), three di�erent plots are shown: the number of neessary intervalevaluations (iv), the number of neessary single value evaluations (sv), and the weighted sum27



(a) (b)Figure 15: Computational e�ort for interval splitting for the EJB model with interval pa-rameters and varying auray � = 20; : : : ; 2�13.iv+sv=2 (total) | the omputational omplexity for an interval evaluation is approximatelytwie as high as for a single value evaluation. Note that using the rewritten �kn-expressionsdereases the number of evaluations during the interval splitting algorithm by a fator ofmore than 5.In Fig. 15, the splitting omplexity of the SIS algorithm is ompared to that of the SSMEalgorithm. In this omparison, the number of threads is N = 20. Fig. 15(a) depits omplex-ity results using the original expressions for the probabilities �kn, whereas Fig. 15(b) showsomplexity results obtained using the rewritten expressions. Both diagrams show omplexityvalues for logarithmially saled auray values � = 20; : : : ; 2�13 (i.e, deviation of obtainedinterval results from the atual range). Again, the omputational e�ort is shown in terms ofthe number of neessary IV evaluations. In both ases, the SSME algorithm out-performsSIS by a fator of about 2. Note that with BFS (not depited here), the omputationalomplexity would have grown exponentially, whereas the �ltering e�et of both seletivesplitting algorithms auses an almost perfetly linear inrease of the omputational e�ortwhen the auray is inreased.By omparing Fig. 15(a) and Fig. 15(b) it an also be seen that using expressions thatare rewritten in order to redue overestimation, the omputational e�ort of interval splittingan be signi�antly redued. For example, to obtain an auray of � = 2�13 with SSME,the equivalent of 87930 interval evaluations is neessary if the original expressions are used,whereas only 12415 interval evaluations are neessary when using the rewritten expressions.Hene this example illustrates that the adaptation of existing solution tehniques to intervalparameters has to be done with great are. For as many steps as possible, intermediateexpressions have to be optimized for an eÆient interval omputation. I.e., wherever possible,monotoniity properties as well as possibilities to anel ourrenes of interval parametersshould be exploited. 28



6 ConlusionsReent studies have shown that using intervals as input parameters for models of om-puter and ommuniation systems is appropriate to represent unertainties in parametervalues that are usually provided as single value numbers. The representation of unertain-ties in performane models is of speial importane in early phases of system design andimplementation and for situations with restritions to obtain data for input parameters viameasurement. If intervals are used to haraterize model parameters, any given parameterunertainty is also reeted in the model output, i.e., in orresponding performane mea-sures. This an be gained by adaptation of an existing onventional solution algorithm tointerval parameters: every arithmetial operation of the original solution is replaed by aorresponding interval arithmeti operation.However, the so-alled dependeny problem, well-known in interval mathematis, oftenauses signi�ant overestimation on the obtained performane measure intervals. This meansthat the atual range of possible results, given the onstraints de�ned by the set of intervalparameters, may be a muh smaller interval than the one obtained via interval arithmeti.This e�et an be overome if the original input parameter intervals are split into smallerintervals. For every ombination of subintervals, the interval solution is omputed and theoverall minimum and maximum yield the bounds for a tighter performane measure interval.In this paper we give an overview of existing interval splitting algorithms suh as brutefore splitting and seletive interval splitting. We introdue a new splitting tehnique alledseletive splitting with midpoint evaluation (SSME) that ombines onventional and intervalmodel evaluations to redue the overall omputational omplexity. Furthermore, we showhow partial monotoniity properties an be exploited to give a more eÆient interval solution.Two example models are inluded in this work to illustrate the appliation of the proposedinterval splitting tehniques. Along the lines of these examples a omparison of the varioussplitting algorithms is inluded and it shows that in most situations the new SSME approahperforms better than plain seletive splitting.AknowledgementsThe authors would like to thank Shikharesh Majumdar, Carleton University, Ottawa, Canada,for his ontributions and disussions related to this work that stem from an ongoing ollab-oration.A Proof of Theorem 2By de�nition, the range f �(X; Y; Z) is:f �(X; Y; Z) = tuff(x; y; z) j x 2 X; y 2 Y z 2 Zg= " infx2X;y2Y;z2Z f(x; y; z); supx2X;y2Y;z2Z f(x; y; z)# :29



Thus, we have to prove that infx2X;y2Y;z2Z f(x; y; z) = infx2X f(x; y; z) (10)and that supx2X;y2Y;z2Z f(x; y; z) = supx2X f(x; y; z): (11)Clearly, infx2X;y2Y;z2Z f(x; y; z) � infx2X f(x; y; z):Thus, to proof Eq. (10), it is suÆient to show that:infx2X;y2Y;z2Z f(x; y; z) � infx2X f(x; y; z) (12)This inequality follows diretly from the monotoniity properties of f : let x = (x1; : : : ; xn) 2IRn, y = (y1; : : : ; ym) 2 IRm, and z = (z1; : : : ; xl) 2 IRl be arbitrarily hosen. Sine f ismonotoni inreasing w.r.t. yi, i = 1; : : : ; m it holds:f(x; y; z) = f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl)� f(x1; : : : ; xn; y1; y2; : : : ; ym; z1; : : : ; zl)� � � � � f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl):Beause f is monotoni dereasing w.r.t. zj, j = 1; : : : ; l we ontinue:f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl) � f(x1; : : : ; xn; y1; : : : ; ym; z1; z2; : : : ; zl)� � � � � f(x1; : : : ; xn; y1; : : : ; ym; z1; : : : ; zl):I.e., for any x 2 IRn, y 2 IRm, z 2 IRl we have:f(x; y; z) � f(x; y; z);whih proves Eq. (12) and hene Eq. (10). Eq. (11) is proved analogously. This ompletesthe proof of Theorem 2.B Proof of Corollary 3From the properties of interval extensions (see Eq. (1)) it follows that for all x 2 X:f(x; y; z) 2 f(X; y; z):Thus, infx2X f(x; y; z) 2 f(X; y; z) = h f(X; y; z); f(X; y; z) i :Hene it follows that: f(X; y; z) � infx2X f(x; y; z):Analogously, f(X; y; z) � supx2X f(x; y; z);whih ompletes the proof of Corollary 3. 30
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