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Contents1 Introdution 22 Interval Parameters 42.1 De�nitions and Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.2 Interval Arithmeti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.3 Interval Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Model of an EJB Server Implementation 63.1 Queueing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2 The Aggregated Server and Container (sub)Model . . . . . . . . . . . . . . . 93.3 Instane-Ative and Client-Bloking Probabilities . . . . . . . . . . . . . . . 104 Interval Adaptation of the Model 124.1 Computation of the Probabilities �kn . . . . . . . . . . . . . . . . . . . . . . 124.2 Monotoniity Properties of �1 and �2 . . . . . . . . . . . . . . . . . . . . . . 134.3 Computation of the Probabilities p(j) . . . . . . . . . . . . . . . . . . . . . . 155 Experimental Results 156 Conlusions 181 IntrodutionBuilding a performane model typially involves two di�erent types of abstration: �rstly,the strutural properties of a real system (existing or planned) are modelled. The result ofthis strutural abstration may for example be a queueing network model or a Petri net.Seondly, quantitative behaviour, suh as e.g. the arrival proess of ustomers or routingbehaviour, of omponents of the real system has to be haraterised. The result of thisabstration step is usually a set of model parameters. However, often not every aspet ofthe real system is known exatly when the model is developed. Espeially in early phases ofdesign and implementation, unertainties may exist. This is true for both, strutural as wellas parametrial model aspets. This work deals with unertainties assoiated with modelparameters.The use of intervals to haraterise parameter unertainties in performane models has�rst been proposed by Majumdar [Maju 91℄. There are many situations where parameterintervals our naturally: although an exat value for a parameter may not be known,the designer may provide a reasonable range of values for that parameter. If parametersare obtained via measurement, on�dene intervals are an important tool to inrease thereliability of the results. Parameter intervals may also our in a situation where boundinganalysis is used at one level of a hierarhial model produing input parameter intervalson another level. Parameter intervals are also suitable for worst-ase analysis as well as2



sensitivity studies. Furthermore, the mathematial treatment of other approahes to modelparameter unertainties suh as e.g. parameter histograms is based on intervals [Luth 98a℄.When parameters of an analytial model are haraterised by intervals, performanemeasure intervals an be obtained by adapting existing solution algorithms and formulaefor the orresponding model haraterised by single value (SV) parameters. This is done byreplaing onventional arithmeti by so-alled interval arithmeti. I.e., basi operations andelementary funtions for real numbers are replaed by orresponding arithmeti de�ned forintervals. However, the so-alled dependeny problem may ause extremely wide intervals forthe omputed performane measures [Neum 90℄. Interval splitting as an approah to over-ome this problem is proposed by Majumdar and Ramadoss [Maju 95℄. Improved intervalsplitting methods applied in this work are proposed in [Luth 00℄. In [Luth 98b℄, L�uthi andHaring use monotoniity properties to obtain an eÆient interval solution for the well-knownmean value analysis (MVA) algorithm for losed single lass queueing network models. Thereare two major advantages of using interval arithmeti as opposed to traditional tehniques forunertainty analysis like Monte-Carlo [Rubi 81℄ and Quasi-Monte-Carlo [Nied 78℄ methodsor sensitivity analysis (see for example [Have 95℄ for a omparison of these two approahesin the ontext of Markov reward models): (a) results produed by interval analysis are safeperformane bounds, i.e., it is guaranteed that the possible range of performane measuresis always enlosed by the obtained interval results; (b) if interval splitting is applied, theauray of the obtained interval results is automatially known to the analyst.So far, researh on using intervals as parameters for performane models does not inludeappliation of proposed methods to real models of real systems. In this paper we report expe-rienes made by adapting an existing analytial performane model to interval parameters.In a software performane model of an Enterprise JavaBeans (EJB) server implementationpresented by Llad�o and Harrison [Llad 00℄, the timing parameters are not known exatly.Due to restrited aess to the real system, aurate measurements to obtain the servierate parameters for various omponents of the system annot be performed. In order toapture this type of parameter unertainty the timing parameters of the model are replaedby intervals laid around parameter estimates obtained via expert guess. An approximatemathematial solution of the model is adapted to handle these interval parameters. For thatpurpose, the solution algorithm is transformed into interval arithmeti. Moreover, intervalsplitting is used to obtain suÆiently tight performane measure intervals. This way, theunertainty in model parameters is also reeted in the performane results. Additionally,sensitivity analysis of the system under study is supported by the interval version of themodel. This type of analysis is of speial importane in the presene of unertain parame-ters. Results of these studies will be reported in future work. For the adaptation to intervalparameters, some of the original expressions are rewritten suh that the e�et of the depen-deny problem is redued. Furthermore, monotoniity of intermediate results is exploited.With these optimisations, the eÆieny of the interval splitting algorithm an be signi�antlyimproved.The rest of the paper is organised as follows: in the next setion, some mathematialbakground about interval parameters is disussed in more detail. Setion 3 presents the3



software performane model to be adapted to interval parameters. Tehniques to obtaina more eÆient interval solution by rewriting the original expressions and by exploitingmonotoniity of intermediate results are onsidered in Setion 4. Setion 5 demonstrates thee�et of these optimisations along the lines of some experiments. In Setion 6, the resultsare summarised and possibilities for future work are disussed.2 Interval Parameters2.1 De�nitions and IntrodutionA real interval is a set of the formX = [x; x℄ = fx 2 IR j x � x � xg;where x; x 2 IR and x � x. x and x are alled endpoints of the interval. In partiular, x isalled lower bound, and x is alled upper bound of the interval X = [x; x℄. If S is a nonemptybounded subset of IR, we denote the hull of S by tuS = [inf(S); sup(S)℄. The hull is thetightest interval enlosing S. An interval vetor X = (X1; : : : ; Xn) is also referred to as abox. For a real funtion f , ontinuous on every losed box on whih it is de�ned, the rangeof a box X is de�ned as:f �(X) = tuff(x) j x 2 Xg = ff(x) j x 2 Xg:Given a performane model with interval parameters we are usually interested to �nd therange of assoiated performane measures. Beause of the ontinuity of f , the range is itselfan interval: f �(X) = [f; f ℄. In general, the omputation of the range is a global optimisationproblem with box onstraints. I.e., the global minimum f(x) = minx2X f(x) and the globalmaximum f(x) = maxx2X f(x), subjet to x 2 X have to be found.In the speial ase of so-alled N -monotoni funtions, the range an be omputed us-ing only single value evaluations of f with appropriate ombinations of parameter intervalendpoints as input parameters. To be more spei�, let f(x1; : : : ; xn) be monotoniallyinreasing w.r.t. all parameters xi, i 2 I and monotonially dereasing w.r.t. all parame-ters xi, i 2 D, where I [ D = f1; : : : ; ng. Then the range of f with interval parametersX1 = [x1; x1℄; : : : ; Xn = [xn; xn℄ an be omputed as follows:f �(X1; : : : ; Xn) = [f(y1; : : : ; yn); f(z1; : : : ; zn)℄ ;where yi = xi, zi = xi if i 2 I, and yi = xi, zi = xi if i 2 D. In [Luth 98b℄, suh a situation isdisussed in detail for the example of the Mean Value Analysis (MVA) algorithm for losedsingle lass queueing networks.2.2 Interval ArithmetiFor many performane measures, monotoniity properties do not hold and general optimi-sation methods are often diÆult to apply and of high omputational omplexity. However,4



an enlosure F (X) � ff(x)jx 2 Xg for the range an be obtained using so-alled intervalarithmeti (for a detailed introdution see for example the book [Neum 90℄): On the set ofintervals, the elementary operations Æ 2 f+;�; �; =; ^g =: 
 are de�ned by setting:X Æ Y = tufx Æ y j x 2 X; y 2 Y g = fx Æ y j x 2 X; y 2 Y g; 8Æ 2 
:Furthermore, the elements ' of a prede�ned set � of elementary ontinuous real funtionsare extended to interval arguments by de�ning:'(X) = tuf'(x) j x 2 Xg = f'(x) j x 2 Xg;for all intervals X suh that '(x) is de�ned for all x 2 X.From monotoniity properties it follows that the elementary operations Æ 2 f+;�; �; =gan be omputed in terms of the endpoints of the intervals X = [x; x℄; Y = [y; y℄: X + Y =[x+ y; x+ y℄, X � Y = [x� y; x� y℄, X � Y = [min(xy; xy; xy; xy);max(xy; xy; xy; xy)℄, andX=Y = X � [1=y; 1=y℄, if 0 =2 Y . Analogously, (pieewise) monotoniity of the elementaryfuntions an be exploited to de�ne their evaluations along the lines of omputations with theinterval endpoints of the argument. E.g., beause of the monotoniity of the exponentiationfuntion we know that for any interval X = [x; x℄, exp(X) = [exp(x); exp(x)℄. Using theinterval extensions of elementary operations and funtions, an arithmeti expression an beevaluated with intervals by substituting the variables by the orresponding intervals and stepby step appliation of interval arithmeti.Interval arithmeti an serve as a tool to obtain interval extensions of real funtions.However, due to an e�et known as dependeny problem, in general, interval arithmeti doesnot provide the exat range of a funtion. This e�et is also known as overestimation. Theroot of the dependeny problem is the memoryless nature of interval arithmeti if a parameterours multiple times in an arithmeti expression sine eah ourrene of an interval variablein an expression is treated independently [Neum 90℄. For example, the expression X � Xis evaluated to fx1 � x2 j x1; x2 2 Xg = [x � x; x � x℄, instead of fx � x j x 2 Xg = [0; 0℄.Sometimes an expression an be reformulated to avoid multiple ourrene of parametersor at least to redue the number of ourrenes of an interval parameter. The appliationof this tehnique is demonstrated in Setion 4. However, in general multiple ourreneof interval parameters annot always be avoided. Therefore the dependeny problem oftenauses ruial overestimation of the atual range of an evaluated funtion.2.3 Interval SplittingA way to overome overestimation due to the dependeny problem is to split the originalinput parameter intervals into subintervals and evaluate the arithmeti expression using thesesubintervals as input parameters. The prinipal idea for interval splitting is to subdivide theinput parameter intervals into a number of subintervals, ompute interval evaluations of thearithmeti expression with the subintervals as input parameters, and �nd the overall resultby omputing the minimum of all lower bounds and the maximum of all upper bounds of the5



intermediate results. Analogously, an interval parameter vetor (box) is split into subboxes.In [Skel 74℄ it is shown that the results obtained from interval splitting onverge to the atualrange if the width of the subintervals approahes zero. This means that it is guaranteed thatinterval splitting is indeed a tehnique to obtain suÆiently tight interval results.In the brute fore splitting (BFS) algorithm, in every iteration the input parameter inter-vals are split into two subintervals of equal length. The parameter (sub)intervals onsideredin iteration s (i.e. splitting degree s) are olleted in P s, the set of potential input parameterintervals. In every iteration, the splitting degree s is inremented and a new set P s of inputparameter intervals to be onsidered is initialised. Subsequently, P s is �lled with subintervalsof all intervals X 2 P s�1. Finally, the minimum of all lower bounds and the maximum ofall upper bounds of evaluations of these subintervals is omputed. These steps are iterateduntil the di�erene between suessive iterations beomes smaller than a prede�ned stoppingriterion �.Note that the number of subintervals at splitting degree s is 2s. More general, if nparameters are haraterised by intervals (i.e. we have an n-dimensional input parameterbox), it holds that jP sj = 2sn. The appliation of the BFS algorithm for the solution ofinterval-based omputer performane models is presented in [Maju 95℄.The high omplexity of BFS an be signi�antly redued if not every subinterval isonsidered for further splitting. Given a subinterval X it may eventually be onluded fromthe obtained interval results that neither the lower nor the upper bound of the range isprodued by that subinterval. In that ase, X need not be onsidered any further in thesearh for the lower and upper bound of the range; i.e., X need not be split into additionalsubintervals. This idea of seletive interval splitting was introdued by Skelboe in the ontextof general purpose optimisation of rational interval funtions [Skel 74℄. For the experimentspresented in Setion 5 we use a modi�ed seletive splitting algorithm desribed in [Luth 00℄.This algorithm ombines interval and onventional evaluations to redue the number ofsubintervals that have to be onsidered.3 Model of an EJB Server ImplementationThe model to be adapted to interval parameters represents an EJB (Enterprise JavaBeans)server implementation, as a entral sheduler of a distributed, three-tier, lient-server ar-hiteture. This type of arhiteture is typial for large, Java-supported, Internet applia-tions. The Kensington Enterprise Data Mining system [Ltd℄, [Chat 99℄ is the real applia-tion under study, whose appliation server (or sheduler) implements the EJB-1.1 spei�a-tion [Mir 99℄.EJB is a new omponent arhiteture, reated by Sun, for the development and de-ployment of objet-oriented, distributed, enterprise-level appliations. A bean instane (oromponent) is reated and managed at runtime by a ontainer, so that a task an only a-ess a bean instane through its ontainer. The number of ative (bean) instanes for eahontainer is limited due to memory and performane onstraints.6
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Figure 2: Short-iruited FES sub-network3.1 Queueing ModelSine a method exeution is the most ommon operation over a bean instane, its spei�behaviour is modelled. This onsists of aess to the ontainer server followed by aess tothe instane server required. Bloking an arise sine the exeution of a method in a beaninstane requires this instane to be ative. A more detailed desription of this exeutionan be found in [Llad 00℄.The queueing network model shown in Fig. 1 summarises the method exeution be-haviour. The queueing network onsists of 1 + C + C �M stations, where 1 orresponds tothe thread manager station, C is the number of ontainers in the system (i.e. the numberof di�erent bean lasses) and M is the maximum number of (di�erent) bean instanes for abean lass that an be ative at the same time.Every node in the model has �rst-ome-�rst-served (FCFS) queueing disipline. Formathematial tratability and the desire for an eÆient (approximate) solution, all servietimes are assumed to be exponential random variables and routing probabilities are assumedto be onstant and equal aross eah of the C bean ontainers. The M bean instanesattahed to eah bean ontainer are also equally utilised overall, but the spei� routingprobabilities in eah network-state depend on the bloking properties, whih are desribedbelow.To simplify this system, the Flow Equivalent Server method (FES) is applied (see [Harr 93℄,for example). The FES method redues the number of nodes by aggregating sub-networksinto single, more omplex (i.e. queue length dependent) nodes. Applying this method toour system, eah FES sub-network onsists of M + 1 stations where 1 orresponds to theontainer for a bean lass and M is as above. After short-iruiting, this sub-network results8
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Figure 3: Container (sub)Modelin the losed one shown in Fig. 2, whih is analysed to obtain its throughput for di�erentpopulations N . The throughput funtion will determine the servie rate funtion for an FESnode in the overall network.Bloking is the ritial non-standard harateristi in this network; a lient that hasompleted servie in the ontainer station is bloked if the required bean instane is notative and there is no free instane to passivate, i.e., no idle server in the model. Blokingtime is the time required for the �rst of the M parallel servers to lear its queue in abloking-after-servie disipline.3.2 The Aggregated Server and Container (sub)ModelThe (sub)model of a subsystem omprising a bean ontainer and its M instane servers (i.e.bean method exeution servers) at onstant population N is shown in Fig. 3, where theseond server orresponds to the aggregated node for the M parallel servers.When there are j lients at the outer (ontainer) server and k = N � j at the M parallelservers, the servie rate funtions �1(j) (with bloking) and �2(k), are estimated as follows:�1(j) = 8<: 1=(m1 + �N�jb(N � j)); if (N � j) �M;1=m1; otherwise; (1)wherem1 is the mean servie time for server 1 (the outer server) when there is no bloking and�N�j is the dynami bloking probability, whih is derived in the next subsetion. b(N � j)is the mean bloking time when there are j ustomers at the outer server (N � j ustomersat the parallel servers) and it is estimated by b(k) = k=(M2�) (see [Harr 00℄), where � is theservie rate of eah of the parallel servers.�2(k) = MXn=1 �knn�; (2)where the parameter �kn is the probability that n out of the M servers are busy, giventhat there are k ustomers at the parallel servers altogether; it is also derived in the nextsubsetion.Clearly the visitation rate is the same for both servers. The steady state queue lengthprobability distribution for this network { p(j) for the state with j tasks at server 1 and9



N � j at server 2 { is then alulated as a produt form in standard fashion in the followingway: p(j) = 1G 1Qjk=1 �1(k)QN�jk=1 �2(k) ; (3)where G is alulated as G = NXj=1 1Qjk=1 �1(k)QN�jk=1 �2(k) : (4)Throughput T (N) at population N is then given by:T (N) = NXj=1 p(j)�1(j) : (5)3.3 Instane-Ative and Client-Bloking ProbabilitiesLet zk denote the equilibrium probability that, at an instant when a task ompletes servieat the ontainer server (with rate 1=m1) with k tasks at the M instane servers, at least oneof the instane servers is idle. Let � denote the probability that the instane required by atask ompleting servie at the ontainer server is ative, i.e. that the task an immediatelyjoin that instane's queue (whether or not empty) and so is not bloked. Then the dynamibloking probability for a task ompleting servie at the outer (ontainer) server when thereare k tasks at the parallel servers is:�k = (1� zk)(1� �) m1m1+�kb(k)zk + (1� zk) m1m1+�kb(k) : (6)This quantity is the ratio of the equilibrium probability ux from unbloked states with ktasks at the parallel servers to a bloked state, divided by the total ux from unblokedstates (see [Kell 79℄, for example). � is approximated by M=I, assuming the next arrivalto the parallel servers requires eah of the I instanes (I is the total number of instanesavailable to eah lient) with equal probability. From Eq. (6), �k an be expressed as follows:�k = qm21 + 4b(k)zk(1� zk)(1� �)m1 �m12b(k)zk : (7)The parameter zk is estimated by onsidering an M -state Markov hain �kt for eahpopulation size k � M at the parallel servers, where eah state orresponds to the numberof busy queues in the system.For population size k � M at the parallel servers, let the equilibrium probability that� � �k1 = l (l = 1; : : : ;M) be denoted by �k(l). The following reursive funtion is derived10



C Containers or bean lassesM Parallel serversI Di�erent instanesN Populationm1 Mean servie time for outer server� Servie rate for eah of the parallel serversj Clients at the outer server�1(j) Servie rate for outer server with queue length j�2(k) Servie rate for aggregated server with queue length kb(k) Mean bloking time when there are k lients at the parallel servers�(k) Bloking probability when there are k lients at the parallel servers�kn Probability that n out of M parallel servers are busy, when thereare k lients at the parallel servers� Probability that the instane required by task ompleting servie atthe outer server is ativezk Probability that when a task ompletes servie at the outer server withk tasks at the parallel servers, at least one of these servers is idlep(j) Steady state probability distribution of queue length at outer serverTable 1: Notation for the model parametersfrom the balane equations determined by the M -state Markov hain.�k(n) = 8>>><>>>: 1; if n = 1;(I�n+1)(k�1)n(n�1)m1�I �k(n� 1); if 2 � n < M;(I�n+1)(k�1)(m1M2�+(1��)k)M2m21�2In(n�1) �k(n� 1); if n =M: (8)Normalising the �k(n) to give the probabilities�kn = �k(n)PMl=1 �k(l) ; (9)we now estimate zk by 1� �kM and �k follows for M � k < N . The same applies to �2(k),but when there is no bloking, i.e. when k � M or k � I, �2(k) = kI�k+I�1 .Table 1 summarises the notation used for the di�erent parameters of the model.
11



4 Interval Adaptation of the ModelAs disussed in Setion 2, the general strategy to adapt an existing analytial model to inter-val parameters is to substitute single value parameters by intervals and perform step by stepinterval arithmetial evaluations of all intermediate expressions. In general, the dependenyproblem arising with multiple ourrene of input parameters in the involved alulationsan be overome by interval splitting tehniques. However, the eÆieny | and thus thepratial appliability | of splitting tehniques an be signi�antly improved if the inter-val adaptation is optimised in two respets: (a) wherever possible, monotoni behaviour ofintermediate expressions should be exploited to avoid overestimation of intermediate inter-vals, and (b) wherever possible, expressions should be rewritten suh that the number ofourrenes of interval input parameters is redued. In the following subsetions we showthe appliation of these tehniques to the various omputational steps of the model solutiondesribed in the previous setion. Computations that are not subjet to the dependenyproblem are not onsidered.4.1 Computation of the Probabilities �knFor the omputation of the bloking probabilities �k and the servie rates �2(k) we need theprobabilities �kn that n out of M parallel servers are busy, when there are k lients at theparallel servers (M � k � N and 1 � n � M). Furthermore, we also need the probabilityzk = 1� �kM that at least one of the parallel servers is idle when a task ompletes servie atthe outer server while there are k tasks at the parallel servers.Due to the reursion in Eq. (8), m1 and � our multiple times in eah of the expressions�k(n). Sine with the exeption of the ase n = M , m1 as well as � appear only in thedenominator, this does not ause overestimation of intervals for �k(n). However, in thenormalisation step, the dependeny problem is in e�et, beause by having �k(n) in thenumerator and the sum PMl=1 �k(l) in the denominator, m1 and � have both inreasing aswell as dereasing inuene on �kn.In the following we rewrite the expressions for �k(n) in a way that allows to anel asmany ourrenes of m1 and � as possible in the normalisation. In a �rst step, we extratthe interval parameters m1 and � from the reursion of Eq. (8). This an be done by de�ningthe following reursive expression �k(n) that does not depend on m1 and �:�k(n) = 8<: 1; if n = 1;(I�n+1)(k�1)n(n�1)I �k(n� 1); if 2 � n �M: (10)Using these �k(n), the �k(n) de�ned in Eq. (8) an be rewritten as:�k(n) = 8<: �k(n)(m1�)n�1 ; if 1 � n < M;�k(M)(m1M2�+(1��)k)M2(m1�)M ; if n = M: (11)12



To rewrite the normalisation step, we need the ratios �k(l)=�k(n), 1 � l � M . Beausel = M is a speial ase in the de�nition of �k(n), 1 � l < M and l = M are treatedseparately: �k(l)�k(n) = �k(l)�k(n)(m1�)n�l; if l < Mand�k(M)�k(n) = �k(M)(m1M2�+ (1� �)k)�k(n)(m1�)M�nm1M2� = �k(M)�k(n) " 1(m1�)M�n + (1� �)kM2(m1�)M�n+1# :Now the reiproals of the probabilities �kn, 1 � n < M an be rewritten as follows:��1kn = MXl=1 �k(l)�k(n) = 1 + n�1Xl=1 �k(l)(m1�)n�l�k(n) + M�1Xl=n+1 �k(l)�k(n)(m1�)l�n+�k(M)�k(n) " 1(m1�)M�n + (1� �)kM2(m1�)M�n+1# (12)= 1 + 1�k(n) 24n�1Xl=1 �k(l)(m1�)n�l + MXl=n+1 �k(l)(m1�)l�n + �k(M)(1� �)kM2(m1�)M�n+135 :Note that in this expression for ��1kn , 1 � n < M , the omputation is separated ina part where m1 and � ontribute with an inreasing e�et and a part where m1 and �ontribute with a dereasing e�et, respetively. Within these parts, the parameters m1 and� are anelled as often as possible. This signi�antly redues the e�et of the dependenyproblem as ompared to the original expressions in Eqs. (8) and (9).Again, the ase n = M is treated separately:��1kM = MXl=1 �k(l)�k(M) = 1 + 1�k(M) M�1Xl=1 �k(l)(m1�)M�l+1M2(m1�) + (1� �)k (13)= 1 + M2�k(M) [M2 + (1� �)k=(m1�)℄ M�1Xl=1 �k(l)(m1�)M�l:Sine in that expression it an be seen that m1 and � ontribute with an inreasing e�et to��1kM , the probability zk = 1� �kM is monotonially inreasing w.r.t. the parameters m1 and�. Thus, an interval Zk = [zk; zk℄ an be obtained by single value evaluation of zk using theendpoints of m1 and �'s parameter intervals. I.e., zk = zk(m1; �) and zk = zk(m1; �).4.2 Monotoniity Properties of �1 and �2In the interval omputation of �1(j) and �2(k), we do not take into aount the fat that�kn (and therefore also zk) are not independent from m1 and �. Along the lines of step by13



step interval arithmeti, we treat �1(j) and �2(k) as if they were depending on the inputparameters m1, �, and �kn, with M � k � N and 1 � n � M . Thus, we are interested inmonotoniity properties of �1(j) and �2(k) w.r.t. these input parameters.From Eq. (2) one an see that �2(k) is monotonially inreasing w.r.t. � as well as w.r.t.�kn. Thus, omputation of an interval for �2(k) is straight forward and an be done alongthe lines of omputations with the endpoints of intervals for � and �kn.Next we onsider �1. To redue the e�et of the dependeny problem we avoid omputa-tion of intermediate intervals for �j and b(j). Instead, we substitute �j and b(j) in Eq. (1).For a shorter notation we onsider �1(N � j)�1 = '(j) and show monotoniity properties of'(j) w.r.t. m1, �, and zj:'(j) = �1(N � j)�1 = m1 + �jb(j) (14)= m1 + qm21 + 4jM2�zj(1� zj)(1� �)m1 �m12zj :Using the notation Æ = 4jM2�zj(1� zj)(1� �), for the derivative w.r.t. m1 we get:�'(j)�m1 = ��m1 24m1 + qm21 + Æm1 �m12zj 35 = 1 + 12zj 24 2m1 + Æ2qm21 + Æm1 � 135 : (15)Sine (2m1+Æ)2 = 4m21+4Æm1+Æ2 is greater than �2qm21 + Æm1�2 = 4m21+4Æm1, it followsthat 2m1+Æ2pm21+Æm1 > 1. Hene, �'(j)�m1 > 1: (16)Derivation w.r.t. � yields:�'(j)�� = �j(1� zj)(1� �)m1M2�2qm21 + 4jM2�zj(1� zj)(1� �)m1 < 0: (17)Finally, using the notation r = 4b(j)(1� �), the derivative w.r.t. zj is:�'(j)�zj = rzj(1�2zj)m12pm21+rzj(1�zj)m1 �qm21 + rzj(1� zj)m1 +m12z2j (18)= m1 h�2m1 � rzj + 2qm21 + rzj(1� zj)m1 i4z2jqm21 + rzj(1� zj)m1 < 0;beause �2m1 � rzj + 2qm21 + rzj(1� zj)m1 < 0() 4m21 + 4rzjm1 � 4rz2jm1 < 4m21 + 4m1rzj + r2z2j() �4rz2jm1 < r2z2j ; 14



whih holds sine r; zj; m1 > 0. From Eqs. (16), (17), and (18) it follows that �1(j) ismonotonially dereasing w.r.t. m1, and monotonially inreasing w.r.t. � and zN�j. Thus,an interval for �1(j) an be obtained by evaluating the single value expressions from Eqs. (1)and (7) using the endpoint ombinations: (m1; �; zN�j) = (m1; �; zN�j) and (m1; �; zN�j) =(m1; �; zN�j), respetively.4.3 Computation of the Probabilities p(j)To ompute the throughput of the submodel (see Eq. (5)), the queue length probabilitiesp(j) are required. If these probabilities are omputed as de�ned in Eqs. (3) and (4), asimilar problem as in the omputation of the �kn arises due to the normalisation step. Thus,we rewrite the omputation of p(j) suh that as many fators as possible an be anelledduring the ourse of the omputation. Using the notations: t1(k) = Qkl=1 �1(l) and t2(k) =QN�kl=1 �2(l), p(j) and G an be rewritten as follows:p(j) = 1G � t1(j)t2(j) (19)and G = NXl=1 1t1(l)t2(l) : (20)Using the relationst1(j)t1(k) = 8>>><>>>: Qjl=k+1 �1(l); if k < j;1; if k = j;Qkl=j+1 1�1(l) ; if k > j; and t2(j)t2(k) = 8>>><>>>: QN�kl=N�j+1 1�2(l) ; if k < j;1; if k = j;QN�jl=N�k+1 �2(l); if k > j;we an rewrite the reiproals of the probabilities p(j) as follows:p(j)�1 = NXk=0 t1(j)t2(j)t1(k)t2(k) = j�1Xk=0 Qjl=k+1 �1(l)QN�kl=N�j+1 �2(l) + 1 + NXk=j+1 QN�jl=N�k+1 �2(l)Qkl=j+1 �1(l) : (21)5 Experimental ResultsAs already stated, rewriting expressions to redue the e�et of the dependeny problem andusing monotoniity properties of intermediate results an signi�antly redue the amount ofoverestimation for interval results. In this setion, we illustrate the e�et of the reformula-tions desribed in Setion 4 with the example of the rewritten expressions for the probabilities�kn (see Eqs. (8) and (9) for the original expressions and Eqs. (10), (12), and (13) for therewritten expressions). 15



Figure 4: Interval results obtained for the probabilities �kn omparing original and rewrittenexpressions. Eah diagram shows results for a di�erent value of n (�k1; : : : �k6) for varyingvalues of k = 1; : : : ; 25. 16



In the following experiments we use parameter values taken from evaluations desribedin [Llad 00℄: M = 6 bean servers per ontainer, I = 20 di�erent bean instanes, and apopulation of N = 25. The estimates for the servie rate of the bean servers � and the meanservie time of the outer server m1 are subjet to unertainty. Thus, these parameters areharaterised by the intervals �(iv) = 1=4:1� 5% and m(iv)1 = 0:4� 5%. Note that if one ormore parameters are haraterised by an interval, every (intermediate) result depending onthese parameters is itself an interval.Fig. 4 shows the intermediate interval results obtained for the probabilities �kn, k =6; : : : ; 25, n = 1; : : : ; 6. For eah �kn, three intervals are depited: 'orig.' denotes the intervalresults obtained using the original expressions without interval splitting, 'rewr.' denotesintervals for �kn obtained using the rewritten expressions without interval splitting, and'range' denotes the range for the �kn intervals obtained with interval splitting to an aurayof � = 10�9 (for omparison purposes). Every interval is depited by showing its lower(lb) and upper bounds (ub). It an be seen that if the original expressions are used, thedependeny problem auses a signi�ant overestimation of the �kn intervals for n > 1. If therewritten expressions are used for the interval alulation of the �kn intervals, they almostpreisely math the exat range of values obtained via interval splitting.Fig. 5 shows the e�et of using the original respetively rewritten expressions for theintermediate probability intervals �kn when omputing intervals for the submodel throughputT (N) (see Eq. (5)). During the omputation of the throughput, the other intermediate results(�1(j), �2(k), p(j)) are omputed using the adaptations as desribed in Setion 4. Fig. 5(a)depits throughput intervals for populations N = 1; : : : ; 25. It an be seen in this �gure thatusing the original expressions for �kn, the throughput interval is muh more overestimatedthan the throughput interval obtained using the rewritten expressions for �kn.Unfortunately, due to the dependeny problem during the omputation of T (N), alsothe throughput intervals obtained by using the rewritten expressions are more than 10 timesas wide as the atual range of the throughput (the innermost intervals in Fig. 5(a)). Thus,in both ases, interval splitting has to be applied to obtain reasonable tight enlosures ofthe throughput range. However, even though interval splitting may be neessary for both,original as well as optimised (w.r.t. interval omputation) expressions, the omputationale�ort is signi�antly redued when using the rewritten formulae. Fig. 5(b) depits the om-putational omplexity required to obtain the range for the throughput with an aurayof � < 10�2. To obtain the range of the throughput, the seletive splitting with midpointevaluation (SSME) approah is used, whih performs both, interval as well as onventionalevaluations [Luth 00℄. Thus, for eah version (original and rewritten expressions), threegraphs are shown: the number of interval evaluations (iv), the number of single value evalu-ations (sv), and the weighted sum iv + sv=2 (total) | the omputational omplexity for aninterval evaluation is approximately twie as high as for a single value evaluation. Note thatusing the original expressions for the probabilities �kn inreases the number of evaluationsduring the interval splitting algorithm by a fator of more than 5. Similar observations aremade if the original expressions of the other rewritten formulae are used.This example shows that the adaptation of existing solution tehniques to interval param-17



(a) (b)Figure 5: Comparison of original and rewritten expressions: (a) throughput interval resultsand (b) omputational omplexity for interval splitting algorithm.eters has to be done with great are. For as many steps as possible, intermediate expressionshave to be optimised for an eÆient interval omputation. I.e., wherever possible, mono-toniity properties as well as possibilities to anel ourrenes of interval parameters haveto be exploited.6 ConlusionsParameters of quantitative performane models of omputer and teleommuniation sys-tems are not always known exatly. Parameter intervals are a onvenient way to aptureunertainty in model parameters. Existing analytial solution algorithms an be adaptedto intervals by replaing onventional arithmetial operations and elementary funtions byorresponding interval operations. An unpleasant e�et of interval arithmeti is the so-alled dependeny problem ausing overly wide interval results. Interval splitting methodsto overome this problem have been proposed in the literature. In this paper we present theappliation of suh methods to the approximate solution of a queueing network modelling anEnterprise JavaBeans server implementation. In this model, servie rate parameters are har-aterised as intervals in order to apture assoiated unertainty. The original performanemeasure formulae are optimised for an eÆient interval arithmetial solution. A numerialexample illustrates the e�et of these modi�ations on the eÆieny of the interval splittingapproah that is used to obtain tight performane measure intervals.The example resolution suggest that interval adaptation has to be done with great are.Although an interval-based solution algorithm an be obtained by simply substituting on-ventional by interval operations in the original solution algorithm, the analyst is advised to18
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