
Standard and Mixed Finite Elements:A Comparison and Applications in HydrologyEvelina Holban�, Ulrich Hornungy,Youcef Kelanemer{, and Mari�an Slodi�cka{Department of Computer ScienceUniversity of the Federal Armed Forces MunichD-85577 Neubiberg, GermanyAbstractThe goal of this paper is to compare the standard and the mixed hybrid �nite elementmethods (FEMs). The relative L2 errors for pressure and ux are computed with respectto the CPU time which each method needs for solving the corresponding linear algebraicsystem. Several examples of linear elliptic partial di�erential equations (PDEs) related tothe transport in porous media are presented.Key words: Standard and mixed hybrid FEM, porous media, error, CPU timeAMS classi�cation: 65N301 IntroductionSubsurface contaminant transport is governed by a number of spreading, retardation and trans-formation mechanisms such as advection, dispersion, di�usion, interfacial mass transfer, adsorp-tion and volatilization, and biological and chemical reactions. It is a multi-phase and multi-component process. Three-dimensional models of movement in a porous medium are based onthe macroscopic mass balance equation for component i in phase � (see Abriola and Pinder [1])@t(��"�!�i ) +r � (��q�!�i )� r � J�i = ��"� [f�i + e�i ] ; (1)where �� h kgm3 i is the mass density of phase �; "� [1] is the volume fraction occupied by phase�; q� �ms � is the Darcy's velocity of phase �; !�i [1] is the mass fraction of component i in phase�; J�i h kgm2si is the ux vector representing the di�usive ux of component i in phase �; f�i h1siis the source of component i in phase �; e�i h1si is the gain of mass of component i due to thephase change.In fact, the whole situation is much more complicated due to uncertainty of data and corre-sponding boundary conditions. There exist many numerical methods for solving the subsurfacetransport. The FEMs are widely used for simulation in applied physics and engineering. Thesemethods are better adapted to general shapes and geometries than the classical �nite di�erenceor spectral methods allow.�The author was supported by the Hanns Seidel Foundation.{The author was supported by the BMBF (German Federal Ministry for Education, Science, Research andTechnology) Grant Number 03-HO7BWM.



Transport in porous media is in general governed by nonlinear elliptic-parabolic equations.After discretization in time and linearization, each of these equations leads in almost all cases toan elliptic PDE. Thus, in this comparison we consider linear elliptic PDEs which are solved ina domain 
 � R2. The state variable of the equation is called pressure and the velocity (whichis proportional to the gradient of the pressure) is called ux.The common idea for the FEMs is to triangulate a given domain. In this way one mesh(elements, faces, and vertices) is constructed. The next step is to de�ne appropriate basisfunctions on each element in order to approximate the pressure and the ux.We want to compare the two basic approaches, mixed and standard. Both methods usedi�erent variational formulations and di�erent functional spaces for the approximation. Weconsider the simplest conforming standard method, where the pressure is approximated bypiecewise linear continuous functions and the ux is obtained by numerical di�erentiation ofthe pressure. On the other hand, we consider the mixed hybrid FEM, where the pressure isapproximated by piecewise constant functions. For the approximation of the ux the simplestRaviart-Thomas space RT0 is used. The essential feature of the mixed approach is the continuityof the normal components of the ux on the inter-element boundaries.For the comparison we have chosen three di�erent problems occurring in subsurface trans-port. Both approaches (mixed and standard FEM) are compared for these examples taking intoaccount di�erent criteria of errors and e�ciency.All computations were done on a SPARCstation 20 Model 712 with 128 Mb of memory anda 75 MHz processor.2 A Short Description of Standard and Mixed Finite ElementsIn this paper we consider boundary value problems for u 2 H1(
) (called the pressure �eld) ofthe form 8>>>>><>>>>>: r � ~q = f in 
~q = �Kru in 
u = uD on �Dq� = qN on �Nq� � 0; u � uS ; q�(u� uS) = 0 on �S ; (2)where 
 is a bounded domain in R2 with polygonal boundary � = �D[�N [�S , the conductivityK 2 L1(
) a uniformly positive real-valued function on 
, and the normal ux q� = ~q � ~� onthe boundary (here ~q = (qx; qy) is the ow �eld and ~� = (�x; �y) the outer normal vector on �).The distributed data is the source �eld f 2 L2(
), and the boundary data are the Dirichlet datauD 2 H1=2(�D), the Neumann data qN 2 H�1=2(�N) and the Signorini data uS 2 H1=2(�S).Let us denote a regular triangulation of 
 (cf. Ciarlet [3], Chap. 3) by T h with the meshdiameter h. We consider piecewise linear standard �nite elements (cf. Ciarlet [3]). Thus, oneach element T 2 T h we have three linear basis functions associated with the vertices. Wecompute the approximation uh and then by postprocessing we obtain ~qh.For the mixed hybrid method (see Brezzi and Fortin [2]) we have to approximate simultane-ously� the solution - by piecewise constant functions on T h,� the ux - by linear functions from the Raviart-Thomas space RT0,� Lagrange multipliers - by piecewise constant functions on the interior edges of the trian-gulation T h.



This can be done by static condensation, i.e. at �rst we compute the Lagrange multipliers, thenthe pressure uh, and �nally the ux ~qh.Both numerical methods lead to linear algebraic systems with positive de�nite matrices,which are solved by the conjugate gradient method (CG) preconditioned by an incompleteCholesky factorisation.3 The Methodology of the ComparisonLet (u; ~q) denote the exact solution of the problem (2). The idea of this comparison is tocompute a numerical approximation (uh; ~qh), and to evaluate the error of approximation usingthe following criteria:1. The relative L2 error of the pressure given asEu;2 = qR
(u� uh)2 dxqR
(u)2 dx :2. The relative L2 error of the uxEq;2 = qR
(qx � qhx)2 dx+ R
(qy � qhy )2 dxqR
(qx)2 dx+ R
(qy)2 dx :3. The relative mass balance error (relative to the total source) de�ned byEmass = R� qh� d�� R
 f dxR
 f dx :4. The relative outow error through the unilateral boundary given asEout = R�S qh� d�S � R�S q� d�SR�S q� d�S :All integrals used here are to be understood in the sense of numerical integration. By computa-tions we have tested di�erent quadrature rules but the results were almost the same. Thus, wehave chosen for this paper the simplest (midpoint) quadrature rule.We realize that the best algebraic solver can be di�erent for each numerical method. If onetook di�erent solvers for di�erent �nite element methods, then the comparison would depend onthe computer implementation and thus the results would be misleading. Hence we have takenthe same algebraic solver for both standard and mixed FEM.Let us note that for a given triangulation T h each numerical method has a di�erent numberof basis functions. Thus it seems not to be reasonable to compare both methods for a �xed mesh.One can expect that the method with a larger number of basis functions will give smaller errors,but the computation will be more time consuming and it will need more memory. Therefore, anappropriate criterion is related to the CPU time needed for computations. On the other hand,for small values of h most of the CPU time is spent (for both numerical methods) for solvingthe corresponding algebraic system. For these reasons we will show the relation between theCPU time for CG and the corresponding error. In order to make the CG stopping criterion



comparable with the error of discretization we have chosen "CG = Ch 43 (the exponent 43 wasestablished empirically). The choice of the constant C for "CG depends on the example and themethod.It is known that the mixed hybrid and the classical mixed methods are mathematicallyequivalent (cf. Brezzi and Fortin [2], Chap. V, Th. 1.1). Thus we have ~qh 2 RT0(
; T h).Analyzing the basis functions for the Raviart-Thomas space RT0 , one can easily see that foran arbitrary edge e between two triangles T1; T2 2 T h, the outow from T1 through the edgee is equal to the inow to T2. That is why the mixed method has an exact mass balance. Onthe other hand, the standard FEM allows jumps of the normal components of the ux alongthe interior edges; hence the mass balance cannot be exact. Of course, this is true only if thecorresponding algebraic system has been exactly solved, i.e. for "CG = 0. If "CG > 0, we cannotcompute (uh; ~qh) exactly and we will have some small error of the mass balance for the mixedmethod, which can be diminished by taking su�ciently small "CG. For this reason we will studythe behaviour of the mass balance error with respect to the mesh step h for the standard FEM,only.The disadvantage of discontinuities of the normal component of the ux on the interelementboundaries for standard FEM can be removed, e.g., by using the method developed by Cordesand Kinzelbach [4]. For the comparison of this modi�ed standard FEM with the mixed FEMwe refer the reader to Mose, Siegel, Ackerer and Chavent [9]. We also refer the reader to Cordesand Kinzelbach [5] for the theoretical comparison among �nite element, �nite volume and �nitedi�erences methods.For all examples considered here the domain 
 is a square in the two-dimensional plane R2.In the following sections we prescribe the conductivity K and the exact solution u in closed formand determine the source f and the boundary data uD, qN , and uS accordingly.4 Oscillating Coe�cientsAnalysis of ow in heterogeneous porous media is, in general, very di�cult due to spatial vari-ability of the soil. For this reason we have chosen the following example for the comparisonbetween mixed and standard FEMs.We consider single-phase ow through a highly heterogeneous porous medium. The owis governed by Darcy's law and can be described by an elliptic PDE with rapidly oscillatingcoe�cients.Let 
 be a square [0; L]� [0; L] with L = �. The boundary as �D = f(0; y) : 0 < y <Lg [ f(L; y) : 0 < y < Lg, �N = f(0; y) : 0 < y < Lg [ f(L; y) : 0 < y < Lg, and �S = ;. Theconductivity is oscillatory in space and it is given byK(x; y) = 10A sin(Bx) sin(By):The exact solution chosen is u(x; y) = 1 + sin(x) sin(y):We carry out this comparison for two settings of the parameters (A;B) = (2; 10), (A;B) =(3; 2) and for several di�erent uniform meshes. Here the parameter A denotes the amplitudeof the soil conductivity and B governs the wave length of the oscillation of the medium. Theerrors of the pressure Eu;2 for both settings of parameters are shown in Figure 4.2. Mixed andstandard FEMs have the same order of convergence O(h2) for the pressure, and the errors arecomparable.
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Figure 4.2: Oscillating Coe�cients: Eu;2 (Mixed, Standard)
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Figure 4.3: Oscillating Coe�cients: Eq;2 (Mixed, Standard)Flux errors Eq;2 are drawn in Figure 4.3. Here the order of convergence is O(h) for bothmethods and the error is smaller for the standard FEM. The behaviour of the mass balanceerror Emass for standard element FEM is shown in Figure 4.4.5 Point SourceGroundwater contamination by nonaqueous phase liquids (NAPL) - due to improper industrialwaste disposal and leaking underground storage tanks - has become a serious problem. If theNAPL contaminants are volatile, soil venting, a well established method for soil remediation
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Figure 4.4: Oscillating Coe�cients: Emass (Standard FEM)



and cleanup, is often used. The idea is to create an air ow through the contaminated zoneand extract the contaminant by a volatilization process. This process involves pumping the gasphase out of the vicinity of the extraction wells. The air ow through the porous medium isgoverned by Darcy's law, and the active wells can be described as point sinks (see Hornung,Kelanemer and Slodi�cka [8]).For these reasons we have chosen the following example as our second model problem. Wewant to solve the problem8>>>>>><>>>>>>: ��v = �2 + log(x2 + y2)� � �0 in 
v = (1 + x2 + y2) log(x2 + y2)4� on �D�rv � ~� = �1 + log(x2 + y2) + (x2 + y2)�12� (x; y) � ~� on �N (3)in 
 = (�1; 1)� (�1; 1). This problem admits the unique solution given byu(x; y) = a(x; y) log(x2 + y2);where a(x; y) = 1 + x2 + y24� :Let us transform (3) into8>>>>>><>>>>>>: ��~v = �2 + log(x2 + y2)� in 
~v = (x2 + y2) log(x2 + y2)4� on �D�r~v � ~� = �1 + log(x2 + y2)2� (x; y) � ~� on �N : (4)This has the unique solution de�ned as~u(x; y) = u(x; y)� u0(x; y);where u0(x; y) = a(0; 0) log(x2 + y2) = log(x2 + y2)4� :This idea of subtracting the singular part from the solution can be found in the literature,e.g., Douglas, Ewing and Wheeler [6]. The errors Eu;2 and Eq;2 are drawn in Figure 5.5. Theorders for both numerical methods are the same as for the oscillatory coe�cients, but now theerrors are smaller for the mixed method. The mass balance error Emass for standard elementFEM is shown in Figure 5.6.6 Unilateral Boundary ConditionsWhen a land�ll is exposed to rainfall, the in�ltrating water may become contaminated. Toprevent this, one can construct a capillary barrier. In principle, this consists of a two-layeredsystem of granular material with a sloping interface (bottom coarse and top �ne layer). Due tothe capillary forces recharging water will be stored in the �ne layer and drain o� laterally ratherthan in�ltrate downwards. The e�ectivity of such a system can be measured by the lateral
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Figure 5.5: Point Source: Eu;2,Eq;2 (Mixed, Standard)
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Figure 5.6: Point Source: Emass (Standard FEM)outow in the layers relative to the amount of in�ltrated precipitation. The water will ow outthrough the boundaries during saturation.One possibility how to mathematically model this kind of boundary conditions is to use the`Signorini-problem' (unilateral boundary conditions UBC, cf. Glowinski, Lions and Tr�emoli�eres[7]). That means that the situation on the boundary will change as follows: the ux is zero whenunsaturated conditions are achieved, otherwise, the outward component of the ux is positive.In the following example we solve a Poisson equation (the conductivity K = 1) in thedomain 
 = [0; L]� [0; L] (L = 1) with the right-hand side f and the boundary data uD andgN , according to the exact solution given in closed formu(x; y) = �A(Y0 � y)3+ �B(y � Y0)3+(x� L) + C(x� L)2sin(y � Y0)3+;where A;B;C; L and Y0 are real parameters and the function (:)+ is the truncation function:(y)+ = max fy; 0g.The boundaries are �D = f(0; y) : 0 � y � Lg, �N = f(x; 0) : 0 < x < Lg [ f(x; L) : 0 < x <Lg, �S = f(L; y) : 0 � y � Lg and uS = 0.When the parameters A and B are positive and 0 < Y0 < L, we can observe that u satis�esthe Signorini conditions on one part of the boundary x = L, roughly speaking, u � 0 and q� = 0on f(L; y) : 0 � y � Y0g and u = 0 and q� > 0 on f(L; y) : Y0 < y � Lg. We let the parameterstake the values A = 1, B = 1, C = 3, and Y0 = 0:5. We solve this problem by an iterativeprocess until the solution satis�es the unilateral condition on �S . The problem has numericallybeen solved with both (standard and mixed hybrid) FEMs. The results show that the globalrelative L2 errors Eu;2 for the pressure (Figure 6.7) and the ux Eq;2 (Figure 6.8), for the same
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Figure 6.7: UBC: Eu;2 (Mixed, Standard)
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Figure 6.8: UBC: Eq;2, Eout (Mixed, Standard)CPU time, are a little less for standard FEM. On the other hand, the outow error Eout onthe �S is10 times larger for the standard method than for the mixed method (Figure 6.8).The behaviour of the absolute outow error on the unilateral boundary �S (x = 1) is drawnin Figures 6.9, 6.10 for di�erent CPU times. Here the mixed hybrid FEM is superior to thestandard method.7 Conclusions� The mixed FEM has an exact mass balance (this follows from the de�nition of the RT0space). The standard FEM does not have this property, but the relative mass balanceerror can be made small enough for su�ciently small h (see Figures 4.4, 5.6).� A consequence of the mass preservation of mixed FEM are better results for the uxthrough the boundary Eout, but the order of convergence for both methods seems to bethe same (Figure 6.8).� The situation with Eu;2 and Eq;2 is more complicated. For the point source examplethe mixed hybrid method is better; on the other hand for unilateral boundary conditions(UBC) the opposite is true. For the example with oscillating coe�cients Eu;2 is almostthe same for both methods and Eq;2 is much better for standard FEM.Both numerical methods have the same order of convergence O(h2) for Eu;2 and O(h) forEq;2 (taking into account the superconvergence properties). The exact mass balance for
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Figure 6.9: UBC: The outow error on �S (Standard FEM)

0.2 0.4 0.6 0.8 1
y (x=L)

log(CPU)=2.05 [s]

0
0.0001
0.0002
0.0003
0.0004
0.0005

0.2 0.4 0.6 0.8 1
y (x=L)

log(CPU)=2.62 [s]

0
0.0001
0.0002
0.0003
0.0004
0.0005

0.2 0.4 0.6 0.8 1
y (x=L)

log(CPU)=0.559 [s]

0
0.0001
0.0002
0.0003
0.0004
0.0005

0.2 0.4 0.6 0.8 1
y (x=L)

log(CPU)=1.62 [s]

0
0.0001
0.0002
0.0003
0.0004
0.0005

Figure 6.10: UBC: The outow error on �S (Mixed FEM)



mixed FEM does not imply the fact that the Eq;2 error will be smaller for mixed than forstandard FEM.The examples studied show that before deciding on the choice of a numerical algorithm, oneshould carefully investigate the following aspects:� the type of problem which has to be solved,� the most important error criterion for the solution (potential, ux, outow, ...),� hardware restrictions (memory, speed of computations, ...).The standard FEM may be superior in one situation, whereas mixed FEM may be better inanother.Remark Here we have made comparisons for linear elliptic di�erential equations. We realizethat for nonlinear or time dependent problems new aspects can arise that may lead to resultsdi�erent from the conclusions presented here.References[1] Abriola L. M. and Pinder G. F. (1985) A multi-phase approach to the modeling of porousmedia contamination by organic compounds 1. Equation development, Water Resour. Res.21.1, 11-18[2] Brezzi F. and Fortin M. (1991) Mixed and hybrid �nite element methods, Springer Verlag,New York Inc.[3] Ciarlet P. (1978) The �nite element method for elliptic problems, North-Holland PublishingCompany, Amsterdam-New York-Oxford[4] Cordes C. and Kinzelbach W. (1992) Continuous groundwater velocity �elds and path linesin linear, bilinear, and trilinear �nite elements, Water Resour. Res. 28.11, 2903-2911[5] Cordes C. and Kinzelbach W. Comment on \ Application of the mixed hybrid �nite elementapproximation in a groundwater ow model: Luxury or necessity?" by R. Mos�e, P. Siegel,P. Ackerer and G. Chavent (submitted to Water Resour. Res.)[6] Douglas J.Jr., Ewing R.E. and Wheeler M.F. (1983) The approximation of the pressureby a mixed method in the simulation of miscible displacement, R.A.I.R.O. Anal Num�er.,17.1, 17-33[7] Glowinski R., Lions J.L. and Tr�emoli�eres R. (1976) Analyse num�erique des in�equationsvariationnelles, DUNOD, Paris[8] Hornung U., Kelanemer Y. and Slodi�cka M. (1995) Soil Venting, (to appear in the Proceed-ings of the IFIP Conference \Modelling and Optimization of Distributed Parameter Systemswith Applications to Engineering", Warsaw 1995, edited by Malanowski K., Nahorski Z.and Peszy�nska M.)[9] Mos�e R., Siegel P., Ackerer P. and Chavent G. (1994) Application of the mixed hybrid �niteelement approximation in a groundwater ow model: Luxury or necessity?, Water Resour.Res. 30.11, 3001-3012


