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PrefaceThe motivation of the RelMiCS events since 1994 is to bring together researchers whouse the calculus of relations as a conceptual or methodological tool in some aspect ofComputer Science.The �rst RelMiCS meeting took place in January 1994, at the Internationales Forschungs-und Begegnungszentrum f�ur Informatik in Schlo� Dagstuhl in the Saarland, Germany,organised by Chris Brink (University of Cape Town) and Gunther Schmidt (Universit�atder Bundeswehr M�unchen). RelMiCS 2 was held by Armando Haeberer (Pontif�icia Uni-versidade Cat�olica do Rio de Janeiro) in Paraty, South of Rio de Janeiro, in August 1995.Continuing the established one and a half year rhythm, RelMiCS 3 took place in Ham-mamet, Tunisia, in January 1997, organised by Ali Jaoua (Universit�e de Tunis - II). Afourth event in September 1998 in Stefan Banach Center in Warsaw, Poland, is organizedby Ewa Orlowska.The present report is one of the results of the Hammamet meeting, besides a forthcomingspecial issue of the journal Information Sciences. Papers have been carefully reviewed. Aselection has been made after which papers underwent the corrections suggested.We are very grateful to all the participants of the Hammamet RelMiCS 3 meeting onRelational Methods in Computer Science, to the referees, and in particular to the authorsof this volume.Ali Jaoua Peter Kempf, Gunther SchmidtTunis Munich
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Some Notes on Logic Programmingwith a Relational Machine(Extended Abstract)James Lipton Emily ChapmanDept. of Mathematics, Wesleyan UniversityAbstractWe study the use of relation calculi for compilation and execution of Horn Clauseprograms with an extended notion of input and output. We consider various otherextensions to the Prolog core.1 IntroductionLogic programming is programming with predicates in a certain fragment of logic. Morebroadly speaking, it is programming with executable speci�cations: code that has inde-pendent mathematical meaning consistent with its input-output behavior. Speci�cationsare often formalized as relations. In this paper we explore how Logic Programming itselfmay be pro�tably understood, extended and compiled in terms of an underlying equa-tional relational calculus, in which relation variables play a fundamental role, similar insome regards to the role of function variables in the lambda-calculus. The variables in theresulting terms correspond to predicate (second order) variables in the original program,whereas all �rst order variables are eliminated. Subsequent abstraction provides closedform solutions to all the program predicates.In this study we use the relation algebra formalism as an executable algebra of logicprograms, somewhat in the Backus tradition[Backus]. Our approach here, as in [BroLip,Colp] is to translate logic programs into combinatory relation expressions, which are thenexecuted via rewriting and output-formatting algorithms. It will be useful to illustrateour intentions here with an example.Consider the following Horn Clause program de�ning the transitive closure of a graphconn(X,X).conn(X,Y):-edge(X,Z),conn(Z,Y). edge(a,b).edge(b,c).edge(a,l).edge(l,c).and the queries| ?- conn(a,c).| ?- conn(X,c).This rather carefully chosen example can be easily reformulated in �rst-order-variable-free relational terms as follows. We introduce the binary relation variables conn and edgeand translate the program into a pair of relation equations. Composition of relations isdenoted by \ ; ". edge = f(a; b); (b; c); (a; l); (l; c)gconn = id [ (edge; conn)1



where id denotes the identity relation. The queries are then represented by the relationexpressions: f(a; c)g \ conn and (1; f(c; c)g) \ connwhere 1 is the universal relation H�H and H is the set of closed terms in the programsignature (hence (1; f(c; c)g) represents the set of all pairs whose second component is c).Some questions that arise naturally at this point are: can such a translation be de�nedfor an arbitrary Horn Clause program, or even for extensions of conventional programs,what kind of relation calculus is suitable for it, and can the resulting relational expressionsbe easily executed, controlled and optimised?The aim of these notes is to sketch out in some detail a relation calculus, a translation,a semantics and a rewriting system that give evidence for an a�rmative answer to thesequestions. The relational abstract machine sketched here is described in detail in [Chap,Ruhlen]1.A translation that will work for all Horn Clause programs (with equality) is neces-sarily a bit more involved than the one just shown. The one presented here draws onfoundational ideas of Tarski, Givant, Freyd, Maddux, and Broome that have appearedat di�erent times in the relational and allegory-theoretic literature although it is di�er-ent from all of them in that is it aimed at producing executable intermediate relationalcode. Our work thus builds computation into the relational formalism, and shows howthe relation calculus o�ers a new vehicle for proof search and automated deduction aswell.In the earlier paper [BroLip] cited, the authors showed how the existence of a logicallycorrect executable translation of Horn clause programs follows from results of Tarski andothers, and explored other \pure" relational programming formalisms. Here that workis considerably re�ned, and a simple rewriting system explicitly written out and showncorrect.Combinatory approaches to logic programming have appeared elsewhere in the lit-erature: Bellia and Occhiuto develop an algebra of programs that captures uni�cation,rewriting and narrowing in [BelOcc]. Our contribution is to de�ne a more expressive al-gebra of logic programs, which admits �rst-order queries, extensions to equational logic,negation and higher order logic, as well as to show that such an algebra can be foundwithin the relation calculus, a well-understood mathematical formalism which easily in-corporates other programming paradigms.A great deal of work has been done in speci�cation re�nement using relational spec-i�cations based on Hoare's work [Algebra, Naumann, Backh], as well as on relationalapproaches to hardware design [BroHut, JonShe, BroJon]. In light of this work, therelational translation described here may provide a new formal link between logic pro-gramming, hardware speci�cation, and program synthesis.The work presented here also owes a substantial debt to the logic program transfor-mation ideas of Clark [Lloyd] and Warren [WAM].2 A Relation Calculus for Horn Clause ProgrammingIn the following sections we formalize a relational theory and a class of relational structuressuitable as a target compilation language for logic programs. The relational theory is close1The machine has been implemented in SWI-Prolog. Check http://www.cs.wesleyan.edu/~liptonfor details. 2



in spirit to the positive fragment of the untyped �-relation calculus MU introduced bydeRoever (see e.g. [deRoe, BakRoe, FriasMad]) with additional equations that captureuni�cation requirements over the Herbrand Universe.2.1 A Language and Meta-language for Horn-clause Program-mingWe begin by �xing a �rst-order signature for a Horn Clause program� = C� [ F�;where C� is the set of constant symbols of � and F� the set of function symbols. Welet �(f) denote the arity of the function symbol f . Let T� be the set of closed termsover �. We �x a countable set of variables X (not to be confused with relation variablesintroduced in a later section) and let T�(X ) be the set of open terms over X .PairingWe will need to formalize an object-level pairing function, in order to account for thecoding of vectors of terms in our relational language, that is to say, explicit vectors ofterms manipulated by the compiler. This is done by adding a second, top-level tier to ourconcept of term and signature.Many e�ciencies in the translation of n-ary predicates to binary relations are achievedby working with relations that stand for pairs of vectors of length at least n, rather thanthose of length exactly n, since this permits dynamic expansion of arities on demand. Bythis device we are able to compile programs independently of queries, which may introducean unpredictable number of new variables. This dictates certain choices of notation andconventions, such as associating pairs to the right (like simple type expressions).We de�ne the set of [�-closed] extended terms over � by letting �+ be the signaturewith constants given by all [closed] terms over � together with the binary function symbol[ ; ]:A �-open or �-closed extended term is a closed term over this meta-signature, built upfrom �-terms that are open or closed. In other words, we abuse language, and let closedor open refer to the bottom-tier terms that occur in our pairs. We will never need top-tiervariables. Spelling it out via an inductive de�nition:De�nition 2.1 Let � be a signature and T� the set of terms over �. Then the set T +� ofextended terms is de�ned as follows:1. If u is a [closed] term over � it is a [�-closed] extended term.2. If u1; u2 are [�-closed] extended terms then so is [u1; u2].Henceforth open or closed extended term will mean �-open or �-closed.
3



Formal Vectors and ConcatenationThe presence of a formal pairing operator [ , ] in T +� allows us to de�ne an internal productof terms within the collection of extended terms. This pairing operator associates to theright, so that we will write, for example[t1; t2; t3; t4] for [t1; [t2; [t3; t4]]]which we can think of as a formal vector of terms. If u is the extended term [u1; u2; : : : ; un],and x is an extended term, we write ux to denote the extended term[u1; u2; : : : ; un; x]:Thus every extended term u can be assigned a length n and components u1; : : : ; un asfollows:De�nition 2.2 An extended term t has length 1 if it is a �-term, and length n + 1 ifit is of the form ux, where x is not extended, and u is [u1; u2; : : : ; un]. We write k u k forthe length of u and call [u1; u2; : : : ; un] the formal vector representation of u and ui theith component of u.Note that, in general, if u is an extended term of the form [u1; u2; : : : ; un], it is a formalvector of length at least n (since un may be an extended term). If x is a �-term and u; vand extended terms k x k= 1 and k uv k=k u k + k v k.We now associate to each signature � a relation calculus Rel� into which we willcarry out a translation of both language and metalanguage. Among the atomic relationexpressions in the calculus will be the n relation symbols fni (1 � i � n) for eachfunction symbol of arity n in �, formalizing the relation of projection of each term of theform f(u1; : : : ; un) onto its i-th subterm, and the relation symbol (a; a) for each constanta of �.The relation expression (a; a) is a formal counterpart to the singleton relation f(a; a)g.The hd and tl relation expressions are formal projections corresponding to the pairingoperator in the meta-signature �+.2.2 Relational SyntaxDe�nition 2.3 Let Rvar be a countable set of relation variables. The relation calculusRel� has the following syntax. The atomic relation expressions are de�ned byhRatomi ::= hRvari j id j di j 1 j 0 j hd j tl j hR�iwhere R� is the set of relation constants consisting of all expressions ffni : f 2 F�; �(f) =n; 1 � i � ng and f(a; a) : a 2 C�g. Compound expressions are given by the followingBNF grammar:R ::= hRatomi j Ro j R [ R j R \ R j RR j fphRvari:(R)Juxtaposition RR means composition, which we will sometimes write R;R using the in�xoperator \;" to enhance legibility. Powers R(n) denote iterations of composition. Wedenote by <� the open terms (relation expressions) over the variables Rvar. When theunderlying signature is clear from context we will write < for this set of terms. We willsay a term is recursion-free if it contains no occurrences of fp.4



Certain compound relation expressions will play an especially important role in thecalculus, so we introduce them here.De�nition 2.4 De�ne the countable sequence fPi : 1 � ig of projection relations asfollows: P1 = hd P2 = tl; hd � � � Pn = (tl)(n�1); hd � � � (1)In the standard semantics to be discussed below, Pi is a relation between a formal vectorwith at least i + 1 components and its i-th component. That is to say, Pi's set-theoreticinterpretation consists of pairs of formal vectors (u; ui).De�nition 2.5 The relation of partial identity up to the �rst n components on vectorsof length at least n+ 1 is de�ned as follows:In := \1�i�nPi(Pi)o (2)We also de�ne the relation of true identity on such vectors byidn :=  \1�i�nPi(Pi)o! \ tln(tln)o: (3)idn is a subrelation of the identity relation id as a consequence of the equational theorywe will de�ne below and, of course, also in the standard semantics.De�nition 2.6 We also de�ne the relation of identity on f-terms for f a function symbolof arity n in the signature � by idf := \1�i�n fni (fni )oIn the standard interpretation, idf will denote the set of identical pairs of terms beginningwith the function symbol f .Finally, for each pair of ground terms t1; t2 over �, de�ne the formal relation expres-sion (t1; t2), (whose semantics will be the singleton f(t1; t2)g), as follows:(a; a) := already de�ned (4)(f(u1; : : : ; un); f(u1; : : : ; un)) := \1�i�n fni (ui; ui)(fni )o (5)(t1; t2) := (t1; t1)1(t2; t2) (6)It is often convenient to work in a derived relational structure where the formal relations(t1; t2) are new primitives, satisfying the preceding equations. We will not make use ofthis variant here.The reader should also note that unlike idn, In is not a subrelation of the identityrelation. In the standard set-theoretic interpretation to be de�ned below, it will denoteall pairs of vectors (ux; uy), with u of length n.
5



2.3 The Equational Theory Rel�We will be using an equational theory which captures the general properties of relationswe need as well as the behavior of the encoding of the structure of a �-term algebra.We therefore break it down into two components, one we will call DRA, the theoryof distributive relation algebras, and the other R�. The latter theory is quite domainspeci�c. It is the part we would expect to change to capture constraint logic programmingover other domains, although this matter will not be taken up here.Note that the containment A � B abbreviates the equation A \B = B.DRAR \R = R R \ S = S \R R \ (S \ T ) = (R \ S) \ TR id = R R0 = 0 0 � R � 1R [R = R R [ S = S [R R [ (S [ T ) = (R [ S) [ TR [ (S \R) = R = (R [ S) \RR(S [ T ) = RS [RT (S [ T )R = SR [ TRR \ (S [ T ) = (R \ S) [ (R \ T )(R [ S)o = Ro [ So (R \ S)o = So \RoR�� = R (RS)o = SoRoR(S \ T ) � RS \RT RS \ T � (R \ TSo)Sid [ di = 1 id \ di = 0R�1(a; a)1 = 1 (a; a)R(a; a) = (a; a) \R (a; a) � idhd(hd)o \ tl(tl)o � id (hd)ohd = (tl)otl = id (hd)otl = 1idf � T1�i�n fni (fni )o � id (fnj )ofni = 1 (i 6= j)(fni )ofni = id (fni )ogmj = 0(f1)n1i1 (f2)n2i2 � � � (fk)nkik \ id = 0hdofni = 0 = tlofni fni hd = 0 = fni tl hd \ id = 0 = tl \ idid = Sf(a; a) : a 2 C�g [ Sfidf : f 2 F�gWe will also make occasional use of a �xpoint-operator, which will be used in relationalstructures satisfying axiom fp fpx:E(x) = E(fpx:E(x)): (7)The so-called modular law included in DRARS \ T � (R \ TSo)Splays an important role in the work discussed here. In the presence of the other DRAaxioms it is equivalent to its left-modular formulationT \ RS � R(RoT \ S)and the equational formulationT \RS = R(RoT \ S) \ T:6



The reader should consult [BroLip] for an example of how the modular law is used toimprove termination behavior of certain relational rewrite systems, in particular in thecomputation of transitive closure.We will have need for the following simpli�cation of the modular law in special con-texts.Lemma 2.7 In the equational theory DRA, from SSo � id we can infer A \ SR =S(SoA \ R). >From SoS � id we can infer A \RS = (ASo \R)S.Proof: By the modular law we have, in the �rst case, A \ SR = S(SoA \ R) \ A. ButS(SoA \ R) � SSoA \ SR � idA \ SR = A \ SR. Thus S(SoA \ R) \ A reduces toS(SoA \ R). The argument for the second claim is symmetric.In the standard interpretation de�ned below, the axiomsfni hd = 0 = fni tlrule out the occurrence of extended terms as arguments to function symbols from �.Some of the axioms of R� are a relational translation of the �rst-order theory CET:Clark's equality theory [Lloyd]. The last axiom is a relational counterpart to the so-calleddomain closure axiom DC�, satis�ed in the Herbrand Universe over a �nite signature,stating that every individual is a constant or a term beginning with one of the functionsymbols in the signature. The axiom scheme(f1)n1i1 (f2)n2i2 � � � (fk)nkik \ id = 0for f1; : : : ; fk function symbols of � of arities n1; : : : ; nk respectively, enforces OC, theoccurs-check axiom scheme :(x = t[x]) for every term t not identical to x in which xexplicitly occurs.In [Maher], building on earlier results of Mal'cev, Maher shows that CET + OC +DC� is complete, decidable, and admits a partial elimination of quanti�ers. This can beexploited to give a compact representation of the set-theoretic content of relations overthis equational theory. See [BroLip] for details.A number of useful identities follow from the equations above, and the de�nitions (6),(4) and (5). 1o = 1 0o = 0 11 = 1 ido = id idR = RA \B = B ) A [B = A A � B ) Ao � Bofni \ gmj = 0 fni � di(u; v) \R = (u; u)R(v; v) A \RS � R(RoA \R)A \RS = R(RoA \ S) \A = (ASo \R)S \Aidn � idas well as the facts that \ and [ are the lattice-theoretic in�mum and supremum withrespect to containment.2.4 Semantics2.4.1 Two-tiered StructuresOur semantics must interpret formal vectors of terms. It is convenient to do this via atwo-tiered notion of model, the lower tier of which is a conventional �-algebra, and theupper tier of which interprets the product structure.7



De�nition 2.8 A �+-algebra U is a pair of structures (U0;U1) with the carrier of the�rst contained in the second (U0 � U1), such that U0 is a �-algebra and U1 is a setequipped with a binary injective function h ; iU : U1 � U1 ! U1. We will refer to the setU1 as the carrier of the �+-algebra U , and denote it by U , and the function h ; iU as thepairing function supplied by U .A �+-morphism  : (U0;U1) - (V0;V1) is a function from U1 to V1 whose restric-tion to U0 is a �-algebra homomorphism from U0 to V0 and which satis�es  (hx; yiU) =h x;  yiV .The reader can easily check that (T�; T +� ) is an initial �+-algebra, with pairing functionhs; ti = [s; t].2.4.2 Relational StructuresWe will use the expression Rel(U) to denote the full relation algebra P(U � U).We will call a structure A = hA; 0A; 1A; idA; diA;\A;[A; ( )o;A; �Ai interpreting therelational syntax of the the theory DRA a distributive relation algebra or DRA if itsatis�es the axioms DRA. It is called a set-theoretic or standard DRA if, in addition, Ais a subset of the set of binary relations Rel(U) = P(U � U) on some domain U , with0A; 1A the empty and maximal set, and with union, intersection, converse and compositionstandardly interpreted.A structure A = hA; 0A; 1A; idA; diA; (a; a)AhdA; tlA; (fni )A;\A;[A; ( )o;A; �Aif2F�;a2C�iscalled a Rel�-algebra if it interprets relational syntax in the obvious way, and satis�esthe equational theory Rel�. It is set-theoretic or standard if in addition A is a subset ofRel(U) for some �+-algebra U , and in addition to the conditions satis�ed by standardDRA's, it interprets R�'s relational constant symbols (a; a) and fni in a standard way:(a; a)A = f(aU ; aU)g(fni )A = f(x;y) : (9v1 � � � vn�1)(x = fU(v1; : : : ; vi�1;y; vi+1; : : : ; vn�1))g:De�nition 2.9 Given a �+-algebra U , a U-interpretation is a mapping[[ ]]U : < ! Rel(U)satisfying[[(a; a) ]]U = f(aU ; aU)g [[tl ]]U = f(ht1; t2i; t1) : t1; t2 2 Ug[[id ]]U = f(u; u) : u 2 Ug [[di ]]U = f(u; v) : u 6= v 2 Ug[[hd ]]U = f(ht1; t2i; t1) : t1; t2 2 Ug [[R [ S ]]U = [[R ]]U [ [[S ]]U[[1 ]]U = U � U [[R \ S ]]U = [[R ]]U \ [[S ]]U[[0 ]]U = ;[[RS ]]U = f(x; y) : 9v((x; v) 2 [[R ]]U ^ (v; y) 2 [[S ]]U )g[[fni ]]U = f(x;y) : (9v1 � � � vn�1)(x = fU(v1; : : : ; vi�1;y; vi+1; : : : ; vn�1))g[[fpx:E(x) ]]U = Sn�0E(n)where E(0) = ; and E(n+1) = [[E(x) ]]U [x E(n)].The notation [[ ]]U [x  R] means the function that returns the same value as [[ ]]U onall inputs save x, for which the output is R.It is easy to show that any environment (function � from relation variables to sets inRel(U)) extends uniquely to a U -interpretation. We also note that any interpretation8



is sound for the axioms DRA. We are interested in interpretations which also satisfy theaxioms R�. We call these Rel�-interpretations.In addition to the semantics just given, natural categorical models exist: tabular dis-tributive allegories [FreySce] provide a semantics for a considerably more general notionof logic program, over a �nite product category [FFL, NFDP, PowKin, CorMont]. Wewill not have need of this generality to describe relational complilation of conventionalHorn Clause programs, although, in the presence of types and other programming fea-tures, there are interesting applications of such structures to logic programming, abstractinterpretation and compilation.Lemma 2.10 If � is a signature with at least one function symbol and one constantsymbol, and if U is the free �+-algebra (consisting of all closed extended terms over �),then Rel(U) is a set-theoretic Rel�-algebra in which axiom fp holds. Thus, the theoryRel� + fp is sound in any U-interpretation.The proof is straightforward: every full power set is a complete (Boolean) relation algebra.The axioms R�, as mentioned above, translate into the �rst-order statement of CET+OC+ DC�, which holds in the free extended term algebra T +� .De�nition 2.11 Let IU be the set of interpretations into Rel(U).We denote by v;u;t the pointwise order and operations on IU induced by the cor-responding set-theoretic operations on Rel(U). [[ ]]U? and [[ ]]U> denote the maximal andminimal interpretations obtained by setting all relational variables equal to the interpre-tations of 0 and 1 respectively.We now state some useful properties of interpretations, which follow from well knownfacts about lattices.Theorem 2.12 The structure hIU ;v;u;t; [[ ]]U?; [[ ]]U>i is a complete lattice, with supre-mum and in�mum de�ned pointwise. Furthermore, each [[ ]]U is completely determinedby its values on relation variables. If [[ ]]U1 and [[ ]]U2 are two interpretations with [[X ]]U1 �[[X ]]U2 for each relation variable X then [[ ]]U1 v [[ ]]U2.Theorem 2.13 Let X1; : : : ; Xn be relation variables, and let F be a corresponding setfFi(X1; : : : ; Xn) : 1 � i � ngof relation expressions with at most the Xi free. De�ne �F : IU ! IU by�F( [[ ]]U )(Xi) = [[Fi(X1; : : : ; Xn) ]]U :Then1. �F is continuous (hence monotone).2. �F has a least �xed point, [[ ]]U�, which is the least interpretation in IU satisfying theequations Xi = Fi(X1; : : : ; Xn):[[ ]]U� is equal to the supremum of a countable chain F [[ ]]Un of interpretations, where[[ ]]Uo = [[ ]]U? and [[ ]]Un+1 = �F ( [[ ]]Un). 9



Proof: Straightforward. Proofs of most of these facts occur in one form or another inthe literature. The last assertion is the well-known Tarski-Knaster theorem.For the rest of this paper we �x a �nite signature � (assumed to have at least onefunction symbol and one constant), and take the universe U above to be the set of extendedground terms T +� , with pairing function given byh i(u; v) = [u; v]:When U is so chosen we call the resulting semantics a standard interpretation of < intoRel(T+� ), and denote it by the unadorned bracket [[ ]]. Since interpretations into the samerange can only di�er on relation variables and open relation expressions, we sometimesrefer to [[R ]], for closed R, as \the" standard interpretation of R.We close the section by recalling a few elementary de�nitions from the theory ofrelations.De�nition 2.14 A binary relation R is re
exive if id � R, core
exive if R � id,functional if RoR is core
exive, and injective if RRo is core
exive.When stating that a certain relation expression is, e.g. injective or core
exive, we meanthat it is so when interpreted in the standard semantics. When we mean that it can beproved so in one of the equational theories de�ned in this paper, we will so indicate.Core
exive relations play a critical role here, since logic programs are translated intosuch relations, (although some components of logic programs are built up from moregeneral relations). Core
exive relations are often a good way to code data in the calculusof binary relations, that is to say, by embedding sets S into the calculus of relations asSc = f(x; x) : x 2 Sg. Diverse approaches to the formalization of data types in therelation calculus has been studied extensively by the Eindhoven group [Backh] and byBird and de Moor [Algebra].Three particularly important core
exive relations associated with any binary relationR are its formal diagonal, domain and range.�(R) = R \ idDom(R) = R1 \ id = RRo \ idRan(R) = Ro1 \ id = RoR \ id3 Logic without VariablesOne of the main results in [TarGiv] due to Tarski, Maddux and Givant (the so-calledequipollence theorem), is that every �rst-order sentence in a theory ' over a theorywith a pairing operator has a semantically equivalent equational counterpart X' = 1in the theory QRA of relation algebras with quasi-projections. Tarski and Givant alsoprove a stronger proof-theoretic version of this result, and exhibit a bijective recursivetransformation of sentences ' to their associated relation expressions X' and of �rst-order proofs of the former to equational derivations of the latter. We will not make directuse of the results or proofs here, but the work undertaken in this paper was inspired byit. The main contribution of the paper is to apply this transformation to compilation10



and evaluation of logic programming by extending it to map proof search in a fragmentof �rst-order logic into rewriting in the appropriate relational theory.We now sketch a simple proof of a semantic form of the equipollence theorem, for thespecial case of algebras of relations de�nable on a term algebra by �rst-order formulasover a given signature. Let � be a �nite language. The atomic statements of T� are ofthe form t1 = t2which can be rewritten (after introducing a new variable x) as a conjunction of two basicequations x = t1 x = t2. If we continue introducing variables, we can write this as aconjunction of elementary or 
at equations of the form x = a or x = f(y1; : : : ; yn) wherea is a constant in � and the x; yi are variables. We assume all atomic formulas are of thisform.Now we de�ne a translation ( )r from formulas � in the language of T� to relation ex-pressions as follows. Recall that <�always contains the reserved projection operations hdand tl2 Let n be a natural number greater than the largest number of variables occurringin any sentence to be considered below.Now de�ne, for (0 � i � n)S1 = P1 S2 = P2 : : : Sn�1 = Pn�1 Sn = tln:where the Pi are given in (1) Observe that, in the standard interpretation for 1 � i � n,we have (u; v) 2 [[Sk ]] i� v is the kth component of u. Now de�neQni = \j 6=i�nSj(Sj)o idn = \j�nSj(Sj)oObserve that (u; v) 2 [[idn ]] means u and v are vectors of length n and have the samecomponents (u)i for (1 � i � n), and that u [[Qi ]]v means all but the i-th componentof u and v agree. Let x1; � � � ; xs be all the variables, free or bound, that may occur in�. Recall all atomic formulas � may be taken elementary : either xi = a; xi = xj orxi0 = f(xi1 ; : : : ; xin).(xi = a)r = Si(a; a)Soi \ idn (' ^ �)r = (')r \ (�)r \ idn(xi = xj)r = SiSoj \ idn (:')r = idn � (')r(xi0 = f(xi1 ; : : : ; xin))r = TjSi0 ; fnj ;Soij \ idn (9xi')r = Qi(')rQi \ idnThen we have the following result, where H� denotes the free �-algebra, with carrierthe set of closed �-terms.Theorem 3.1 (Freyd, Maddux, Tarski) Let � be a sentence over the language of T� ,and let x1; � � � ; xn contain all the variables, free or bound, that may occur in �. ThenH� j= � () [[(�)r ]] = [[idn ]]. For open formulas ' with free variables among x1; : : : ; xnf(a1; : : : ; an) : ([a1; : : : ; an]; [a1; : : : ; an]) 2 [[(')r ]]g = f(a1; : : : ; an) : H� j= '[a1=x1; : : : ; an=xs]gThe proof is a straightforward induction on the structure of formulas3.Proof:2called quasiprojections by Tarski and, in an essentially equivalent form, tabulations of the maximalrelation on the product by Freyd[FreySce].3The authors are indebted to Peter Freyd [Freyd92] for (a variant of) this formulation and proof ofthe variable elimination result. 11



� � (xi = a):Let ~u be an n-tuple of terms in H� , and suppose(~u; ~u) 2 [[(xi = a)r ]] = [[Si(a; a)Soi \ idn ]] :This implies that ui = a, hence H� j= (xi = a)[u1=x1; : : : ; un=xn]. Conversely ui = aforces (~u; ~u) 2 [[(xi = a)r ]].� � (xi = xj):Suppose (~u; ~u) 2 [[(xi = xj)r ]] = [[SiSoj \ idn ]]. Then ui = uj and H� j= (xi = xj)[~u=~x].The converse is also immediate.� � xi0 = f(xi1 ; : : : ; xin):Suppose (~u; ~u) 2 [[(f(xi1 ; : : : ; xin))r ]], that is to say, in\j [[Si0 ; fnj ;Soij ]] \ [[idn ]]:Then ui0 = f(ui1; : : : ; uin) and H� j= �[~u=~x]. The converse is immediate.� � ' ^ �:Suppose (~u; ~u) 2 [[(' ^ �)r ]]. Then (~u; ~u) 2 [[(')r ]] and (~u; ~u) 2 [[(�)r ]]. By the inductionhypothesis, H� j= '[~u=~x] and H� j= �[~u=~x] and hence H� j= (' ^ �)[~u=~x]� � :':Suppose (~u; ~u) 2 [[(:')r ]]. Then (~u; ~u) 2 idn � [[(')r ]] which is equivalent to saying that(~u; ~u) 2 [[(')r ]] is not the case. Using the induction hypothesis, this is equivalent toH� 6j= '[~u=~x], and hence to H� j= :'[~u=~x].� � 9xi':If (~u; ~u) 2 [[(9xi')r ]] we must have (~u; ~u) 2 [[Q(')rQ ]]. This means there is an n-tupleof terms ~v with vj = uj for every j between 1 and n except i, and (~v; ~v) 2 [[(')r ]]. Bythe induction hypothesis, this means H� j= '[~v=~x]. But this is equivalent to H� j=9xi'[~u=~x]. The converse is left to the reader.We now turn our attention to the translation of Horn Clause programs. We will want tocarry this out in a way that not only preserves meaning, as in the preceding translation,but in a way that is faithful to the operational semantics of the program. We will thusmake di�erent, more economical choices, and carry out the translation into Rel�, de�nedabove, a relational calculus without negation, and with extra constants for capturing thestructure of terms in a way that such variable dependent phenomena as uni�cation areeasily converted to a variable-free combinatory reduction.It should be noted that the absence of negation in Rel�is no handicap, vis-a-vis �rst-order formulas with negation over the Herbrand Universe, because of the well-knownresults of Mal'cev [Mal'cev, Maher] that any such formula is equivalent to a two-quanti�erformula in which negation occurs only immediately preceding equations between terms,which can be modelled in Rel� using di for disequality.12



4 Embedded Prolog4.1 Capturing Horn Clause Reasoning over Term ModelsWe introduce a family of relational terms that will prove useful in translating logic pro-grams over the Herbrand Universe into relational equations. One component of this trans-lation involves a sequence of intermediate transformations of the constituent predicatesp(t1; : : : ; tn) of the program into relation expressions. We �rst introduce new variables~x = x1; : : : ; xn and rewrite p(t1; : : : ; tn) asp(x1; : : : ; xn) ^ x1 = t1 ^ : : : ^ xn = tn:Conjunctions will be replaced by commas below.In the relational translation of programs, conjunctions of equations of the form xi = tiare translated to relation expressions _K(t1; : : : ; tn) de�ned by induction on the structureof the terms ti, as discussed below. We show that the relevant relational translationspreserve uni�cation identities derived from Clark's equality theory. This will require anumber of ancillary lemmas and de�nitions, to which the rest of the section is devoted.Recall that a relation A is simple or functional if AoA � id and injective if AAo � id,i.e. if Ao is functional. Injectivity and functionality are preserved under composition andintersection. Thus, in particular, Pj is functional (and hence (Pj)o injective) for every j,since it is built up from hd and tl by composition.De�nition 4.1 Let D be the disjoint union of the set open terms over � and the set ofsequences ht1; � � � ; tni of open terms (m � 1). De�neK : D! Rel(U)as follows. Let m;n; r be natural numbers greater than 0, and u be a term, or a sequenceof n terms over some set x1; � � � ; xm of variables. Km(u) is de�ned by induction on thestructure of u. K(a) = (a; a)1K(xi) = (Pi)oK(f(u1; : : : ; ur)) = \i�r f ri K(ui)K(ht1; � � � ; tni) = \i�n PiK(ti)We also de�ne, for u in D_K(u) = id \K(u)1 and �(K)(u) = id \K(u)Terms t and sequences hti of terms of length 1 are treated di�erently by K in the precedingde�nition. Note that the sequences ht1; : : : ; tni in D are true members of the cartesianproduct of copies of the set of terms, and not the formal vectors [t1; : : : ; tn] in T +� . Observealso that K(u) is always injective, and that for any substitution � (whose range is amongthe set of terms over the variables x1; � � � ; xm in the universe of discourse), since�f(u1; : : : ; un) = f(�u1; : : : ; �un);we have K(�f(u1; : : : ; un)) = Ti fiK(�ui)In the standard set-theoretic interpretation, the K terms capture the structure of termequations in the following sense. 13



Lemma 4.2 Let ht1; � � � ; tni be a sequence of terms with free variables among x1; � � � ; xm.Let u and y be formal vectors of ground terms of lengths n and m respectively, and u0; y0arbitrary extended terms. Let ~u be the sequence hu1; : : : ; uni. Then(uu0; yy0) 2 [[K(ht1; � � � ; tni) ]] () H� j= ~u = [t1; : : : ; tn][y1=x1; � � � ; ym=xm];where H� is the Herbrand Universe over �.If we think of an m-tuple y of terms as denoting a substitution �y for the variablesx1; � � � ; xm, then [[K(ht1; � � � ; tni) ]] is the set of instance-substitution pairsf(�y[t1; : : : ; tn; ];�y ) : y 2 T m� gwhere the underscores denote arbitrary additional components.Proof:[of lemma 4.2] We �rst show by induction on the structure of terms t with freevariables among x1; � � � ; xm that for a ground term u and and an m-tuple of ground termsy = hy1; � � � ; ymi we have(u; y) 2 [[K(t) ]] if and only if H� j= ~u = t[y1=x1; � � � ; ym=xm]:Suppose t is the constant a. Then (u; y) 2 [[K(a) ]] = [[(a; a)1 ]] = f(a; w) : w 2 T +� g ifand only if u is a. But a = a[y1=x1; � � � ; ym=xm].If t is the variable xi then (u; y) 2 [[K(xi) ]] if and only if (y; u) 2 [[Pi ]] which meansu is yi. But this is equivalent to u = xi[y1=x1; � � � ; ym=xm].If t is a term of the form f(v1; : : : ; vn) then (u; y) 2 [[K(t) ]] if and only if(u; y) 2 [[\i�n fni K(vi) ]] :But this means that for each i between 1 and n (u; y) 2 [[fni K(vi) ]], or, equivalently, forsome ground terms w1; : : : ; wn�1 and ziu = f(w1; : : : ; wi�1; zi; wi+1; : : : ; wn�1)in the Herbrand universe, and (zi; y) 2 [[K(vi) ]].By the induction hypothesis zi is vi[y1=x1; � � � ; ym=xm]. Since this is true for every iwe obtain u = f(v1; : : : ; vn)[y1=x1; � � � ; ym=xm]which is what we wanted to prove.If t = ht1; � � � ; tni then (uu0; yy0) 2 [[K(t) ]] if and only if (uu0; yy0) 2 [[Ti�n PiK(ti) ]].Thus, for each i between 1 and n (uu0; yy0) 2 [[PiK(ti) ]], hence for each i (ui; y) 2 K(ti).But then, by the preceding case ui is ti[y1=x1; � � � ; ym=xm], so u is t[y1=x1; � � � ; ym=xm].Corollary 4.3 If m � 0, u is a formal vector of length m of ground terms in T�, ~uthe corresponding sequence hu1; : : : ; umi, x is any extended term, and ht1; � � � ; tmi is anm-tuple of open terms (for the same m) then(ux; ux) 2 [[id \K(ht1; � � � ; tmi)1 ]] () (9�)H� j= ~u = ht1; � � � ; tmi�where � is understood to range over substitutions for the variables free in the t1.14



We say two sequences of terms ht1; : : : ; tmi and hs1; : : : ; smi are jointly uni�able by a singlesubstitution � if for every i, ti� = si�.Lemma 4.4 Let ht1; : : : ; tni and hs1; : : : ; smi be sequences of open terms, with n � m.Then, if ht1; : : : ; tmi and hs1; : : : ; smi are jointly uni�able, and � is a most general uni�er,[[K(ht1; : : : ; tni) \K(hs1; : : : ; smi) ]]U = [[K(ht1�; : : : ; tn�i) ]]U :If they are not uni�able, the interpretation of the intersection is the empty set.In addition, if the two sequences are standardized apart[[ _K(ht1; : : : ; tni) \ _K(hs1; : : : ; smi) ]]U = [[ _K(ht1�; : : : ; tn�i) ]]U (8)if they are uni�able. The intersection is empty otherwise.The proof is an immediate consequence of lemma (4.2) and its corollary.Proof: By lemma (4.2), if u and y are formal vectors of ground terms of lengths n andm respectively, ~u = hu1; : : : ; uni and u0; y0 are arbitrary extended terms, then(uu0; yy0) 2 [[K(ht1; : : : ; tni) \K(hs1; : : : ; smi) ]]U()H� j= ~u = ht1; : : : ; tni[y1=x1; � � � ; ym=xm] ^ ~u = hs1; : : : ; sni[y1=x1; � � � ; ym=xm]:Letting � be the substitution represented by [y1=x1; � � � ; ym=xm], this impliesht1; : : : ; tni� = hs1; : : : ; sni�in the Herbrand universe. Thus [[K(ht1; : : : ; tni) \K(hs1; : : : ; smi) ]]U is precisely the setof instances of [t1; : : : ; tn] where  is any mgu of ht1; : : : ; tni and hs1; : : : ; smi whose rangeis in the set of terms over the variables x1; � � � ; xm.This lemma underscores a fundamental feature of variable-elimination in logic pro-gramming: uni�cation is reduced to intersection of combinators. But one issue remainsto be resolved before these results can be fully exploited. The use of _K expressions in logicprogram reduction would appear to require standardizing their arguments apart, limitingtheir usefulness. Fortunately the term sequences that actually arise in our compilationare more robust, as we show in the next, somewhat technical lemma which has surprisingconsequences for the translation.Lemma 4.5 (Diagonal Lemma) Suppose ht1; : : : ; tni is a sequence of terms in T� allof whose free variables are among x1 : : : ; xn (for the same n). Call a component ti of sucha sequence nontrivial if ti 6= xi. Further suppose that for each j between 1 and n if xjoccurs freely in a nontrivial term ti then i 6= j and tj is xj.Then for any formal vectors of ground terms u; d in T� of length n and any formal vec-tors of ground T�-terms y; z, if (uy; dz) 2 K(ht1; : : : ; tni) then (uy; uy) 2 K(ht1; : : : ; tni)as well. Thus _K(ht1; : : : ; tni) = id \K(ht1; : : : ; tni): (9)Thus, under these hypotheses, _K expressions behave like K-terms and (8) holds withoutthe restriction that term arguments be standardized apart. It turns out that the hypothe-ses of this lemma are always met by the term sequences that will be constructed in the15



translation of Prolog programs described below. The reader should note, however, thatidentity (9) does not hold in general.Proof: Suppose (uy; dz) 2 K(ht1; : : : ; tni) = Ti PiK(ti). Then, by lemma (4.2), for eachi ui = ti[d1=x1; : : : ; dn=xn]:Suppose ti1 ; : : : ; tin are all the nontrivial terms among the ti, and that xj1; : : : ; xjs arevariables occurring in these terms. Then, by hypothesis, for all k between 1 and s,tjk = xjk . Thus K(ht1; : : : ; tni) = \k PjkK(xjk) \ \i 62fj1;:::;jsgPiK(ti)= \k PjkP ojk \ \i 62fj1;:::;jsgPiK(ti):Thus for each k between 1 and s, ujk = djk . Since the xjk are only variables free innontrivial ti, for each such ti, ui = ti[d1=x1; : : : ; dn=xn] = ti[u1=x1; : : : ; un=xn]. For everyother ti, ti = xi, so we immediately have ui = ti[u1=x1; : : : ; un=xn]. Thereforehu1; : : : ; uni = ht1; : : : ; tni[u1=x1; : : : ; un=xn];from which (uy; uy) 2 K(ht1; : : : ; tni) by lemma (4.2). But then every uy in the domainof K(ht1; : : : ; tni) is in the domain of K(ht1; : : : ; tni) \ id, whence_K(ht1; : : : ; tni) = id \K(ht1; : : : ; tni):De�nition 4.6 A sequence ht1; : : : ; tni of terms in T +� is called clean if it satis�es thehypothesis of the preceding lemma.Observe that ht1; : : : ; tni is clean if and only if the substitution '~t = fti=xi : ti non-trivialginduced by the equations fxi = ti : 1 � i � ng is idempotent.Lemma 4.7 Suppose ht1; : : : ; tni is clean, and (uy; uy) 2 K(ht1; : : : ; tni). Then the sub-stitution �u = fu1=x1; : : : ; un=xng satis�es the equationsxi = ti (1 � i � n)in the sense that xi�u = ti�u for (1 � i � n).The proof is just a restatement of the fact, shown in the proof of lemma (4.5) that, foreach i, ui = ti[u1=x1; : : : ; un=xn]:4.1.1 Switching RelationsDe�nition 4.8 Fix the natural number n � 1 and let ~� = hi1; : : : ; ini be a sequence ofdistinct members of the set f1; : : : ; ng natural numbers. Then de�ne the relations W (~�)as follows: W (i1; : : : ; in) = n\j=1 Pij (Pj)o:W (i1; : : : ; in) is called a switching relation. We also use the notation W (�) where � isthe permutation of the �rst n natural numbers into ~�.16



We now state three useful properties of switching relations, whose simple proofs are leftto the reader.Lemma 4.9 W (i1; : : : ; in) is functional and injective, provably in the equational theoryRel�Lemma 4.10 Let ~x, and ~y be formal vectors of terms of length at least n + 1 over theHerbrand Universe. Then(~x; ~y) 2 [[W (i1; : : : ; in) ]] () H� j= n̂j=1 xij = yj:Furthermore, if t1; : : : ; tn is a tuple of n terms, � a permutation on f1; : : : ; ng, and W =W (�) [[W o _K(ht1; : : : ; tni)W ]] = [[ _K(ht��1(1); : : : ; t��1(n)i) ]]:Lemma 4.11 If � is a permutation of the �rst n nonzero natural numbersW (��1) = W (�)o:provably in the theory Rel�.Another useful property of switching relations follows immediately from 2.7.Lemma 4.12 One can prove in the equational theory DRA that for any relation expres-sions R;Q and switching relations WR \WQW o = W (W oRW \Q)W o5 Relational Translation of Programs: A SketchAn atomic formula is said to be linear or pure if its arguments constitute a linear sequenceof variables, that is to say, one in which all variables are distinct.The �rst step in the Clark completion of a prolog program is the linearization of headpredicates. A clause p(t1; : : : ; tr) : �T lis replaced by p(x1; : : : ; xr): �x1 = t1; : : : ; xn = tn; T l:where the xi are fresh. The variables free in the tail but not in the head are thenexistentially quanti�ed:p(x1; : : : ; xr) : �9~y[x1 = t1; : : : ; xn = tn; T l]:Now all clauses with head predicate letter p how have precisely the same head, and arethus equivalent to a single clause with this head, but with tail replaced by a disjunctionof the newly formed tails: p(x1; : : : ; xr) : �_Biwhere each Bi is of the form 9~yi[x1 = ti1; : : : ; xn = tin; T li] (10)17



We are now going to describe a series of additional transformations that have thee�ect of putting the logic program into a form that maintains its set of ground atomicconsequences over the Herbrand Universe, while bringing it closer to the eventual shapeof the desired relational equation. The �rst transformation involves the linearization ofthe predicates in the tails Bi, with the subsequent generation of equations, some of whichthen get modi�ed. This is then followed by the introduction of selection operators. Wedescribe it in two steps: linearization and selection.1. Linearization: First we linearize the tails. Proceeding left-to-right, every atomicformula q(s1 : : : ; sm) in T li (the non-equational part of Bi) is rewritten asz1 = s1; : : : ; zm = sm; q(z1; : : : ; zm);whereCase 1: Either si is a variable that has not occurred earlier in the same atomicpredicate, and zi is identical to si (so the equation reads si = si), orCase 2: zi is a fresh variable, which is then existentially quanti�ed on the outside.That is to say the existential quanti�er 9~yi becomes 9~yi~z, where ~z is the se-quence of all distinct fresh variables in the sequence ~z1 � � � ~z` of variables nowoccurring in the ` predicates q1(~z1); : : : ; q`(~z`) in the non-equational part of thetail.Starting with the �rst index greater than r, the arity of the head predicate, whichhas already required the introduction of variables x1; : : : ; xr that may now occurfreely in the tail because Case 1, above, obtained, all new distinct existentiallyquanti�ed variables are renamed in increasing order from left to right, so that everyvariable occuring in the entire tail Bi except for the original bound variables ~yi ispart of a master list x1; : : : xk where k is bounded by the sum of the arities of allthe predicate occurrences in the head or tail of the clause.Finally, we move all generated equations, now of the form xi = ti (where the ti areterms originally ocurring in the clause predicates) to the beginning of the quanti�er-free part of the tail. Thus the tail is now of the form9~yi9xr+1 � � �xw[x1 = t1; : : : ; xw = tw; q1(xr+1; : : : ; xr+�(1)); : : : ; q`(xa; : : : ; xa+�(`))];where r is the arity �(p) of the head predicate, �(i) the arity of the i-th tail predicate,and a is r + the sum of the arities of the preceding `� 1 tail predicates.Now we rename the remaining existentially bound variables from ~yi originally oc-curring in the tail, so they are added to the (end of the) master list of variablesxj.Finally, for any variable xj not occurring on the left hand side of one of the equationsxi = ti the equation xj = xj is added to the equational part in its proper place.The equational part is now written in sequence form as ~x = ~t. It is a sequence oflength bounded by n, the weight of the corresponding clause in the original prologprogram, which is the sum of the number of variables k occurring in the tail andnot in the head, and the arities of the predicate occurrences either in the head ortail of the original clause, wt(C) = k + n + �ì=1ri:18



It may be less than the weight because of the possible occurrence of Case 1 abovewhich ensured reuse of variables that would not obstruct linearity (distinctness ofvariables) of each predicate in the tail. For reference, each clause has the followingappearance p(x1; : : : ; xn) : �_B0i (11)where B0i = 9xr+1 � � �xn[~x = ~t; qi1( ~x1); : : : ; qi`i(~x`)] (12)and where each ~xj is the j-th block of distinct variables of length the arity of qij,starting with the sum of the arities of the preceding predicate occurrences, includingthat of the head. Letting ~x0 be the sequence of variables now occurring in the head,the entire master sequence of variables ~x = ~x0 ~x1; : : : ; ~x` may contain repetitionsbecause of Case 1 above, but, we repeat, each block is linear.2. Selection: Each sequence ~xi of variables occurring in the i-th block in the tailcan now be viewed as the result of applying a selection operator �i to the mastersequence ~x: �i~x = ~xi:This yields normalized disjuncts of the formDi = 9xn+1 � � �xw[~x = ~t; qi1(�1~x); : : : ; qi`i(�`~x)]: (13)We now replace all implications in clauses by bi-implications, as in the Clark com-pletion. We will call the resulting program Pn, consisting of the clauses:pi(x1; : : : ; xn) : �_Dij (14)the completed or normal form of P.Since we will not need this result in our adequacy theorem we do not take the troubleto establish that the preceding program transformations maintain ground atomic conse-quences in any term model. It is, however, straightforward to prove, using argumentssimilar to the proof of the fact that the Clark completion of a program has the sameatomic (in fact positive) consequences as the program (see e.g. [Shep88, Lloyd]), andrepeated applications of the logical equivalence, for fresh y1; : : : ; yn9~x[A(t1; : : : ; tn)] () 9~xy1; : : : ; yn[y1 = t1 ^ : : : ^ yn = tn ^ A(y1; : : : ; yn)]In the case of Prolog programs with positive and negative equations, treated brie
y in alater section, the completed (or normalized program) plays a central role, and should beseen as the proper logical formulation of the program captured by our relational transla-tion.We note following for future reference.Lemma 5.1 The sequences ~t that occur in the equational part of each disjunct in thenormal form of a program are clean in the sense of de�nition (4.6).This is clear from the way fresh variables are introduced in the normalization process.Our resulting set of equivalences are now almost ready to be cast in �rst-order-variable-free relational form. We need to de�ne one more operation on sequences of variables (oron their indices): the permutation �i of the indices of ~x induced by the selection operator�i. 19



De�nition 5.2 Let �i be the i-th selection operator de�ned above. and w0 the length ofthe i-th disjunct's master list of variables. Then the associated permutation of indices�i : f1; 2; : : : ; w0g ! f1; 2; : : : ; w0gis given by letting x�i(1); : : : ; x�i(w0) be the sequence ~xi followed by all remaining variablesin ~x in order. �i simply shifts the i-th block of variables to the front of the sequence.5.1 The Relational StepWe now transform the normalized program de�ned above into a �nite set of relationequations. For each predicate letter q 2 � we introduce a relation variable q. Nowconsider the normalized clause de�ning predicate p, of arity m. Each disjunct � in itstail of the form (13) is translated into the relation expression (�)rid \ Im[ _K(~t) \W (�1)p1W (�1)o \ � � � \W (�`)p`W (�`)o]Im: (15)We then translate the whole clause (14) byp = (�1)r [ � � � [ (�m)r:As an immediate consequence of the preceding lemma and lemma (4.5), we haveLemma 5.3 If _K(~t) occurs in a disjunct of a normalized Prolog program, then_K(~t) = K(~t) \ id:The result of applying this procedure to all predicate de�nitions in the canonical comple-tion of a Horn Clause program P is a set EP of n equations e1; : : : ; en in the n predicateletters of the program (now viewed as relation variables). The typical equation ej beingof the form pj =[i �jias described above. The �ji contain the symbols pk as relation variables corresponding tothe original predicate letters in the program.We can write this dependency of relation variables aspi = Fj(p1; : : : ; pn): (16)We call this equational system EP , the equational translation of P.\Gaussian Elimination"A �nal and obvious step is to bind all the variables with the fp-operator. We assume thatone predicate letter, say p1 is the one to be queried. Dropping the overbars on relationvariables, we rewrite the last equation of system (16) above aspn = fpzn:Fn(p1; : : : ; pn�1; zn)and substitute into equation n� 1, obtainingpn�1 = Fn�1(p1; : : : ; pn�1; fpzn:Fn(p1; : : : ; pn�1; zn))20



Now we bind the (possibly multiple) occurrences of pn�1 and so on, eventually obtaininga single <�-expression p1 = fpz1:F1(z1; : : :) (17)where the right hand side is a closed (no-free-relation-variable) term. We will call theright-hand expression Rp1 and say that Rp1 arises from translation of the predicate p1de�ned by the program P.De�nition 5.4 A positive relation expression R 2 <� (or the de�ning equation p = Rfor some identi�er p) is said to be a (relational) logic program if R is of the form Rq,i.e. it arises from the translation of a predicate q de�ned by a logic program P .5.1.1 An ExampleWe illustrate the steps outlined above with an example. We start with the well-knownprogram Padd de�ning addition of formal numerals over the Herbrand Universe for fo; sg:add(o,X,X).add(s(X),Y,s(Z)) :- add(X,Y,Z).Just for reference, the Clark completion (minus the addition of Clark's equality theory)is: add(x1; x2; x3)  ! 9x(x1 = o; x2 = x; x3 = x) _9x; y; z(x1 = s(x); x2 = y; x3 = s(z); add(x; y; z)):After renaming the bound variables x; z as x4; x5, (y is already named by x2) thenormal form of Pis: add(x1; x2; x3)  !(hx1; x2; x3i = ho; x2; x2i)_9x4; x5(hx1; x2; x3; x4; x5i = hs(x4); x2; s(x5); x4; x5i^ add(x4; x2; x5)):Letting � be the selector function h1; 2; 3; 4; 5i 7! h4; 5; 2i, and � the associated per-mutation h1; 2; 3; 4; 5i 7! h4; 5; 2; 1; 3i, and writing ~x for hx1; x2; x3; x4; x5i, this can berewritten: add(x1; x2; x3)  !hx1; x2; x3i = ho; x2; x2i_9x4; x5(~x = hs(x4); x2; s(x5); x4; x5i ^ add(�~x)):The relational translation is:add = _K(o; x2; x2) [ I3[ _K(s(x4); x2; s(x5); x4; x5) \ W (�) addW (�)o]I3:or add = fp:Z _K(o; x2; x2) [ I3[ _K(s(x4); x2; s(x5); x4; x5) \ W (�)ZW (�)o]I3:
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6 Adequacy of the TranslationWe now show the translation preserves the intended meaning of the program. To thisend we need to de�ne canonical interpretations of both the original program and of theinduced equational system (16), or its associated closed form (17).Let P be a Prolog program, � = fp1; : : : ; png the predicate symbols occurring in it,� its signature, and TP the Kowalski-VanEmden continuous operator it induces on thepower-set of the Herbrand base (see e.g. [Lloyd]). Let TP "0= ;, TP "(n+1)= TP(TP "n)and T "! the least �xed point STP "n of TP , that is to say, the least Herbrand model ofP. De�ne, for each pi 2 � and n in !f[pi ]gn = f(u; u) : pi(u) 2 Tp"ngand f[pi ]g� = f(u; u) : pi(u) 2 Tp"!gLet pi be relation variables associated with the predicate symbols pi and letpi = Fi(p1; : : : ; pn) (1 � i � n) (18)be the equational translation EP of P. Let F be the set of open relational termsFj(p1; : : : ; pn), and Rpi = fpzi:Fi(: : :) the associated closed form solutions of this equa-tional translation.Let �F be the induced operator on relational interpretations into the standard modelP(T +� � T +� ), as in the statement of theorem (2.13). By the same theorem, �F hasa least �xed point [[ ]]� which is the supremum of a chain of interpretations [[ ]]0 =[[ ]]?; : : : ; [[ ]]n; : : :. We will drop subscripts in the discussion below, when speaking ofa typical predicate symbol pi 2 � to simplify notation.Lemma 6.1 For each relation variable p and any interpretation [[ ]][[p ]]� = [[Rp ]]Proof: Straightforward, using the semantics of the fp construct and the Tarski-Knastertheorem.If s is the arity of the program predicate letter p, de�ne the s-th restriction [[p ]]js of [[p ]]by [[p ]]js = f([u1; : : : ; us]; [u1; : : : ; us]) : 9x 2 T +� ([u1; : : : ; us; x]; [u1; : : : ; us; x]) 2 [[p ]]:Then we have the following Soundness and Completeness theorem for our translation:Theorem 6.2 (Adequacy) For each p 2 �f[p ]g� = [[p ]]�jsProof: We establish the two claims below by induction on n, from which the theoremfollows immediately.1. For each natural number n [[p ]]njs � f[p ]g�.22



2. For each natural number n f[p ]gn � [[p ]]�js.Claim (1): Since [[p ]]0js is empty, the base case is immediate. Suppose the claim holds forn and (u; u) 2 [[p ]]njs . The clause de�ning p in the normal form Pn is of the formp(x1; : : : ; xn) : �_Di (19)each Di is of the formDi = 9xn+1 � � �xw[~x = ~t; qi1(�1~x); : : : ; qi`i(�`~x)]: (20)where the sequence ~t, say of lengthm, is the concatenation ~t0 � � � ~t` of arguments occurringin the clause p(~t0) : �qi1(~t1); : : : ; qi`i(~t`): (21)of the original program P.The corresponding equation in EP isp =[�iwhere �i = Is[ _K(~t) \W (�1)qi1W (�1)o \ � � � \W (�`)qi`W (�`)o]Is:So our supposition (u; u) 2 [[p ]]njs implies that for some i (1 � i � `) there is an extendedterm x, (ux; ux) 2 [[�i ]]n. Since [[Is ]]n consists of formal vectors of length at least s + 1sharing their �rst s components, there is an extended term y such that the length of uyis at least one greater than that of ~t, (uy; uy) 2 [[ _K(~t) ]]n and for each j between 1 and `,(uy; uy) 2 [[W (�j)qjW (�j)o ]]n. But then, by corollary (4.3), for some ground substitution�, h(uy)1; : : : ; (uy)mi = ~t� (where m is the length of ~t), from which we have the followingconsequences:� u = ~to�, in other words p(u) is a �-instance of the head p(~t0) of the original programclause (21).� (~t�z;~t�z) 2 [[W (�j)qjW (�j)o ]]n for each j between 1 and ` and some extended termz, hence (by lemma 4.10)� (~tj�z0; ~tj�z0) 2 [[qj ]]n, whence (~tj�; ~tj�) 2 [[qj ]]njrj where rj is the arity of qj.By the induction hypothesis (~tj�; ~tj�) 2 f[qj ]g�, whence (by de�nition of f[ ]g�), qj(~tj�) 2T "!. But then every �-instance of the tail of clause (21) holds in the least Herbrandmodel of P, hence so does p(~t0�). But recall that u = ~t0� so this means (u; u) 2 f[p ]g�,which is what we wanted to prove.The other direction, which requires a symmetric argument, is left to the reader.
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6.1 Extending the Translation to Equations and DisequationsEnriched TermsWe will have need of a metalanguage of enriched terms for discussing certain operationson terms (such as uni�cation and anti-uni�cation). To this end, we introduce operatorsu2; :1of the arities shown, and de�ne an enriched term to be an expression of the formt1 u : : : u tn u :s1 u :s2 u � � � u :sm (22)where the ti and si are terms (members of the term model of �), and where m � 0 andn � 0. Simply put: enriched terms are either un-enriched terms or they are built byapplication of the unary operator : to un-enriched terms, and by iterated applications ofthe binary symbol u to enriched terms. The binary operator associates to the right sothat the typical enriched term may be written in the form (22).6.1.1 Horn Clauses with EquationsWe now consider programs comprised of �nite sets of clauses of the formp(t1; : : : ; tr) : �e2T lwhere e, the equality component , is a �nite set of equality formulasu1 � v1; : : : ; um � vmwith u,v terms, and � one of the symbols f=; 6=g, and T l is a pure Horn clause tail.We now summarize the normalization procedure for such programs.Head linearization: We �rst introduce fresh variables in the head, �a la Clark, addingnew equations to the equality component of the tail, and existentially quantifyingall variables \free" in the tail, that is to say, occurring in the tail and not in thehead. p(x1; : : : ; xr) : �9~y[x1 = t1; : : : ; xr = tr; e2T l]:The equality component is now the expanded sequence x1 = t1; : : : ; xr = tr; e.First processing of equality component: . Modify every equality formula u � v inthe equality component as follows:1. If u � v is u = v where both u and v are variables, replace v with u everywherein the tail, and remove v from the sequence of existentially quanti�ed variables.2. If u � v and u is a variable, and the above conditions are not met, do notmodify the equation.3. Otherwise, replace u � v with z = u ^ z � v, where z is fresh and is added tothe sequence of existentially quanti�ed variables.Linearization of the tail Now we proceed exactly as with pure prolog programs, re-placing sequences of terms ti occurring in atomic predicates in the tail with se-quences of variables xi (which may or may not be fresh, depending on whether Case1 or Case 2 obtains in the linearization procedure described in section 5), and addingnew equations xi = ti to the equality component of the clause.24



Renaming: �nally all variables occurring in the tail are renamed in the same way as inthe pure Prolog case, so as to form part of a master list ~x = x1; : : : ; xn. Each clausenow looks like this:p(x1; : : : ; xr) : �9xr+1 � � �xn[xi1 � ti1 ; : : : ; xik � tik 2T l0];where the new tail T l0 is the linearized version of the old, and where the equalityformulae xij = tij include processed equality formulae from the original clause aswell as equations added during the linearization steps. Unlike the pure Horn clausecase, there may be repeated occurrences of variables on the left-hand side of theequality formulas. As before, we force all variables in the clause to occur on theleft hand side of equality formulas, via the possible addition of identities xi = xi ifnecessary.Enrichment: We now replace all equality formulas of the form xij 6= tij and rewritethen as xij = :tij . Finally we gather all equations (now possibly involving enrichedterms) which share a common variable x on the left hand sidex = tj1; : : : ; x = tjsand write then as the single equationx = tj1 u � � � u tjswhere some of the t's may be of the form :u, u a term.At the expense of adding enriched terms, we have now brought the clause into aform where each variable occurring anywhere in the clause occurs exactly once onthe left hand side of an equality formula, and where no occurrences of disequalityremain. p(x1; : : : ; xr) : �9xr+1 � � �xn[x1 = s1; : : : ; xn = sn2T l0]:Relational step: The clause is now translated to a relation expression in a manner verysimilar to the pure casep = Is[�(K)(s1; : : : ; sn) \W (�1)q1W (�1)o \ � � � \W (�`)q`W (�`)o]Iswhere �(K)(s1; : : : ; sn) is the diagonal K(s1; : : : ; sn)\id, but where we now need toexpand the de�nition of K to include sequences of enriched terms. This is discussednext.De�nition 6.3 K maps enriched terms, and sequences of such to relation expressions asfollows: K(a) = (a; a)1K(xi) = (Pi)oK(f(u1; : : : ; un)) = \i�n fni K(ui)K(ht1; � � � ; tni) = \i�n PiK(ti)K(:t) = diK(t)K(t1 u t2) = K(t1) \K(t2)25



We now need to extend lemma 4.7 in the appropriate way. It should be noted thatin the enriched case, the analogue of diagonal lemma (4.5) is of no use. We can nolonger assume that sequences ht1; : : : ; tni of enriched terms appearing in expressions ofthe form �(K)(ht1; : : : ; tni) are clean in the sense of that lemma. Thus the diagonal�(K)(ht1; : : : ; tni) may be a proper subset of _Kht1; : : : ; tni), which is why we are forcedto use the diagonal in the translation. With this choice, we obtain the correct translationof equational component of a logic program clause in the following sense.Lemma 6.4 Let xi1 � ti1 ; : : : ; xik � tik be a sequence of equality formulas, where the tijare terms, and hs0; : : : ; sni the sequence of enriched terms produced by the enrichementprocess described above, with x1; : : : ; xn the list of all free variables occurring in the tij(and hence the si). Then (where �u is the substitution fu1=x1; : : : ; un=xng):[[�(K)(hs0; : : : ; sni) ]] = f(v; v) : v = uz whereu; z 2 T +� ; u = [u1; : : : ; un] andxi1�u � ti1�u; : : : ; xik�u � tik ;In other words, the diagonal of K(hs0; : : : ; sni) consists of precisely those ground substi-tutions that satisfy the original equations and disequations.With this lemma, it is easy to extend the adequacy theorem (6.2) to the equational Hornclause case. For details the reader is referred to [Chap].7 EvaluationThe equational theory EP induced by a program P now opens up a new way of computingqueries to logic programs of a quite general nature, via directed relational rewriting. Inthis section we sketch a rewrite system, together with a deterministic rewriting strategythat simulates SLD resolution of conventional prolog queries . It is our �rst concernto show that the conventional operational interpretation of the original program can berecovered relationally, before addressing alternative evaluations.Suppose P is a program with predicate symbols � = fp1; : : : ; png and G is a query,say of the form q1(~t1); : : : ; qm(~tm) (23)where the qi are members of � of arity �(i) and the ~ti are tuples of terms of appropriatearities. Let the corresponding relation variables in the induced equational theory EP bepi.De�nition 7.1 The translation AG of a query G of the form (23) is the relation expres-sion: _K(~t1 : : :~tm) \ q10 \ : : : \ qn0:where qi0 is W (�i)qiW (�i)o, �i being the permutation on f1; : : : ; mg such thatht�i(1); : : : ; t�i(n)i = ~ti~t1 � � �~ti�1~ti+1 � � �~tmin other words, the permutation asociated with the i-th selector �i, as in de�nition (5.2).In the canonical semantics, the meaning of the translated query [[AG ]]� is easily seen tocoincide with the set of ground terms satisfying G in the least Herbrand model of P.26



Evaluation of the query G is simulated by rewriting the relation expression AG accordingto certain strategy outlined below.We have a choice to make in the way we describe evaluation. We may explicitly modelrecursion at the object level by using the �x-point operator in our syntax, replacing allrelation variables by their closed form solutions, or we may handle it metalogically bydynamically replacing relation variables by their de�nitions when they are evaluated inrewriting. We adopt the latter approach here.Termination occurs when the resultant term has no free variables (or, when closedforms are used, when the term is recursion-free: without occurrences of fp). We nowdescribe the rewriting system and the evaluation strategy used, and sketch a proof of itssoundness and completeness. It should be remarked that certain reductions in the systembelow are best called meta-reductions, since they involve rules that carry out in one stepsome rather intricate rewriting of expressions. For example, we carry out the rewriting_K(t1; : : : ; tn) \ _K(s1; : : : ; sm) P7�! _K(�t1; : : : ; �tn) (24)(25)where� the tuples ~t = (t1; : : : ; tn) and ~s = (s1; : : : ; sm) are standardized apart� m � n and� � is an mgu4 of (t1; : : : ; tm) and (s1; : : : ; sm).and _K(t1; : : : ; tn) \ _K(s1; : : : ; sm) P7�! 0 (26)if no uni�er of (t1; : : : ; tm) and (s1; : : : ; sm) exists.These rules are sound with respect to Rel�-interpretations (lemma 4.4).Another meta-reduction isW (�)o _K(t1; : : : ; tn)W (�) P7�! _K(t�(1) : : : ; t�(n)) (27)Ik _K(t1; : : : ; tn)Ik P7�! _K(t1; : : : ; tk) if k � n: (28)which is sound with respect to Rel�-interpretations by lemmas 4.9, 4.10, 4.11 and 4.12.Each meta-reduction abbreviates a sequence of term rewritings. That is to say, isequationally derivable in the theory Rel�. The chief aim of the translation presentedin this paper is to exploit the bene�ts of variable free rewriting in compilation, so it isessential that, in practice, these reductions be carried out within the relational syntax.The presentation of this rewriting system and a proof of its correctness is straightforward,but lengthy. It will not be discussed further in this sketch.We also use some bona-�de rewriting rules, which are just directed equations from thetheory of Distributive Relation Algebras, or fp-algebras, hence obviously sound for Rel�-and fp-interpretations.4whose range is among the set of terms over the master list of variables x1; � � � ; xm
27



Table 1: Nondeterministic Logic Programming Reductions(A [ B) \ C P7�! (A \ C) [ (A \ C)A \ (B \ C) P7�! (A \B) \ CA \ (Q [ R) P7�! (A \Q) [ (A \ R)A \ fpx:E(x) P7�! A \ E(fpx:E(x))pi P7�! Fi(p1; : : : ; pn) (1 � i � n)Table 2: Meta-reductionsA \ ImQIm P7�! Im[ImAIm \Q]Im \ AA \W (�)QW (�)o P7�! W (�) [W (�)oAW (�) \Q]W (�)oW (�)o _K(t1; : : : ; tn)W (�) P7�! _K(t�(1) : : : ; t�(n))_K(u) \ _K(v) P7�! _K(�v) (� = mgu(u; v); k u k�k v k)_K(v) \ _K(u) P7�! _K(�v) (� = mgu(u; v); k u k�k v k)_K(v) \ _K(u) P7�! 0 (u; v not uni�able)Is _K(t1; : : : ; tn)Is P7�! _K(t1; : : : ; ts) (s � n)7.1 The Evaluation StrategyThe typical query _K(~t1 : : : ~tm) \ q10 \ : : : \ qm0:is evaluated as follows:1. Associate to the left (second reduction):( _K(~t1 : : : ~tm) \ q10) \ : : : \ qm0;where, since q10 is W (�1)q1W (�1)o,2. apply the modular law in the form of the second meta-reduction:W (�1)(W (�1)o _K(~t1 : : : ~tm)W (�1) \ q1)W (�1)o \ : : : \ qm0;apply the third meta-reduction (which permutes the indices of the sequence ~t1 : : : ~tm)W (�1)( _K(~t�1(1) : : :~t�1(m)) \ q1)W (�1)o \ : : : \ qm0;3. replace q1 by its de�nition �1 [ �2 where �2 is S2�i�r �i for some r:W (�1)( _K(~t�1(1) : : :~t�1(m)) \ [�1 [ �2])W (�1)o \ q20 : : : \ qm0:and4. Distribute the �rst \ accross the union:W (�1)([( _K(~t�1(m) : : :~t�1(m))\�1)[( _K(~t�1(m) : : :~t�1(m))\�2)])W (�1)o\q2 0\: : :\qm0:(29)Now we concentrate on the evaluation of ( _K(~t�1(m) : : :~t�1(m)) \ �1) which is anexpression of the form (see (15)):_K(~t�1(1) : : :~t�1(m)) \ Is[ _K(~u) \W (�1)qi1W (�1)o \ � � � \W (�`)qi`W (�`)o]Is:28



5. Now we apply the �rst meta-reduction:Is[Is _K(~t�1(1) : : :~t�1(m))Is \ _K(~u)\W (�1)qi1W (�1)o \ � � � \W (�`)qi`W (�`)o]Is \ _K(~t):Observing that ~t�1(1) is precisely the truncation of the sequence ~t�1(1) : : :~t�1(m) to its�rst s components, and that ~t�1(1) is precisely ~t1 (since the �rst selector permutationis in fact the identity) and applying the last meta-reduction:Is[ _K(~t1) \ _K(~u) \W (�1)qi1W (�1)o \ � � � \W (�`)qi`W (�`)o]Is \ _K(~t):Letting ~u0 be the result of applying mgu(~u; ~t1) to ~u, we obtainIs[( _K(~u0) \W (�1)qi1W (�1)o) \ � � � \W (�`)qi`W (�`)o]Is \ _K(~t): (30)This brings us back to the evaluation of a basic form term-sequence \ W (relation-variable)W o _K( ~u00) \W (�1)qi1W (�1)oso we proceed as before, left-to-right.As we are, in essence, reducing the entire SLD-tree, termination requires a �niteSLD-tree. To simulate search along one branch, we would have to de�ne terminationto mean the reduction to a relation term one of whose unionands is relation-variable-free. This can be enforced with a di�erent reduction strategy that we will notconsider here. See [Ruhlen] for details.7.1.1 Returning AnswersThe meta-reduction rules have the e�ect of reducing every composition and intersectionof a K-term _K(~t) that can occur in evaluation to another K-term. Thus a resultingvariable-free expression will be a union of such terms. These expressions, which constitutea normal form of the rewriting system, can be returned to the user, or alternatively, theycan be printed as a normalized constraint-set description of the solution. This notion ofprinting has been described in [BroLip]. Although this extra strength is not exploitedin the results of this paper, the printing algorithm reduces any variable-free relationexpression using the full relation-algebra connectives (that is to say, including negation)to a two-quanti�er formula in which negation occurs only immediately before atomicformulas (equations between terms) using the quanti�er elimination algorithm of Mal'cev[Mal'cev], also described in [Maher]. It is therefore able to return readable answers to aconsiderably stronger relational rewriting system in which arbitrary �rst-order constraintsover the Herbrand Universe are used as queries and outputs. The quanti�er eliminationprocess is the basis of Constructive Negation [Chan, Stuckey].7.2 Soundness and Completeness of EvaluationSoundness of evaluation is an immediate consequence of the fact that every rewrite ruleR P7�! R0 is equationally sound: in any interpretation into P(T +� � T +� )[[R ]] = [[R0 ]]Suppose we are given a program P and a query G as in (23), with a �nite SLD treewith leftmost selection rule. Since our reduction system is equationally sound, and the29



adequacy theorem shows that a pair of ground terms (u; u) is in [[AG ]]�js precisely whenthe components of u make the query true in the least Herbrand Model of P, the only waycompleteness can fail to hold is if evaluation of AG fails to terminate. If it does terminate,i.e. AG reduces to a closed term A, then we have the following:1. [[AG ]]� = [[A ]]�.2. For s the number of terms in query G, [[AG ]]�js = f(u; u) : u ground and MP j=G(u)g where MP is the least Herbrand model of P.Thus, in order to establish completeness it su�ces to prove the following theorem.Theorem 7.2 Suppose G = q1(~t1); : : : ; qm( ~tm) is a query for a logic program P, and hasa �nite SLD tree with the leftmost selection rule. Let AG be the relational query associatedwith G. Then there is a closed term A such that AG P7�! A.Proof: By induction on the depth of the given SLD tree. Suppose G has the following�nite SLD tree:
G = q1(~t1); : : : ; q`(~t`)������1 � � � @@@@@�nG1 � � � � � � � � � Gn�� @@ �� @@

where each Gi is of the form Bi�i; q2(~t2�i); : : : ; qm( ~tm�i):and where Bi is the tail of the i-th clause in the program P whose head predicate is p1:p1( ~ui0) : �qi1( ~ui1); : : : ; qi`( ~ui`):Then G1 is precisely the goal:(q11( ~u11); : : : ; q1`( ~u1`))�1; q2(~t2�1); : : : ; q`(~t`�1);where �i is a most general uni�er of ~u10 and ~t1.The SLD tree below this goal is �nite (and of smaller depth than the original goal),hence so is the SLD tree (with left-most selection rule) below the �rst subgoal G11 =q11( ~u11�1). 30



Let AG11 be the relational translation of this goal, namely_K( ~u11�1) \ q11We may apply the induction hypothesis to conclude that our evaluation strategy willreduce AG11 to a relation-variable-free A11, which, in fact, must be the K-term corre-sponding to the computed answer substitution for this goal.Recall (from 29) that evaluation of the original query AG yields, in several steps, anexpression of the formW (�1)([( _K(~t�1(m) : : :~t�1(m)) \ �1) [ ( _K(~t�1(m) : : :~t�1(m)) \�2)])W (�1)o \ q20 \ : : : \ qm0:the leftmost reducible subexpression of which reduces to (30)Is[( _K( ~u11�1) \W (�1)q11W (�1)o) \W (�2)q12W (�2)o \ � � � \W (�`)q1`W (�`)o]Is \ _K(~t):Since the �rst selector W (�1) is the identity, the leftmost reducible subterm _K( ~u11�1) \W (�1)q11W (�1)o is precisely AG11 which reduces to A11. We are left with (using primes tohide the switching relations W ):W (�1)(Is[A11 \ q120 \ � � � \ q1`0]Is \ _K(~t) [ ( _K(~t�1(m) : : :~t�1(m)) \�2))W (�1)o\ q20 \ : : : \ qm0:The stack of goals (relation-variables) present is bounded by the size of the original SLDtree, and for each one we argue in the same way, eventually producing a union of relation-variable free goals A = A01 [ : : : [ A0�where � is the number of success nodes on the fringe of the original SLD tree.8 Related and Future Work, and ConclusionsThere have been other e�orts in the literature to remove variables from Prolog, and tomake evaluation and compilation more algebraic. Bellia and Occhiuto develop an algebraof programs that captures uni�cation, rewriting and narrowing in [BelOcc]. Our workrests heavily on the fact that such an algebra can be found within the relation calculus,whose semantics is well-understood, and which admits natural extensions to higher-orderand linear contexts, as well as a rich representation theory (see e.g. the treatment ofAllegories in [FreySce]). The compilation process described here can be viewed as anapplication of the canonical inclusion of a regular category into its associated category ofrelations. The greater generality of the categorical framework opens the way to applyingthis technique to extensions of the logic and to constraints, as well as to a denotationaltreatment based on relations, which we are currently exploring.Categorical treatments of logic programming provide alternative ways of algebraicizingthe subject, which are, in a sense, variable free (see e.g. [AspMart, Diac, PowKin, FFL,NFDP, Pym]). Corradini and Montanari [CorMont] have given a categorical analysis oflogic program execution in terms of transition systems. None of these approaches have asyet been applied to compilation or the de�nition of an abstract machine for logic programs,although this might be an interesting alternative to the work in this paper.31



At this point there are a number of questions raised by this approach which we hope toaddress. Can a signi�cant portion of our relational machine be captured with a Church-Rosser, strongly normalizing set of rewrite rules? Comon and Jouannaud and Kirchner'swork [Comon, CoHaJo] on rewriting systems for uni�cation and disuni�cation suggeststhat this is quite feasible, as does the work of Bellia and Occhiuto, op. cit.We would also like to exploit the rich semantics of relational formalisms to obtain newnotions of observables, and abstract interpretation, as well as to extend the relationalcompilation to higher-order logic programming.To some extent this work was a foray into the terrain of relation-based computing as aseparate discipline, with logic programming as an extended case-study . Some instancesof \pure" relational programming languages, of limited expressive power, were studied in[BroLip]. A useful rewriting system for the full relation calculus seemed a lot to ask for inthe absence of some computational paradigm and we thought it would help, at the start,to anchor such a system in logic programming-inspired reductions.Work by the RUBY group at Oxford on hardware [BroHut, JonShe], and on pro-gram synthesis via relations by Bird and de Moor[Algebra], Maddux[Maddux, RelSem],Naumann [Naumann] and Backhouse [Backh], to name a few of the many researchersin this �eld, suggests that the relational paradigm can provide signi�cant computationalinsights at almost every level of the �eld. Exploration {via relations{ of possible connec-tions between program synthesis and a more general notion logic of programming seemsparticularly tempting.References[AspMart] A. Asperti and S. Martini. Projections instead of variables, a category theoretic inter-pretation of logic programs. In Proceedings of the 6th International Conference on LogicProgramming, pages 337{352. MIT Press, 1989.[WAM] Hassan Ait-Kaci,Warren's Abstract Machine: A Tutorial Reconstruction, MIT Press, Seriesin Logic Programming. 1991.[Backh] Backhouse, R, et. al., \A Relational Theory of Data Types," in Workshop on ConstructiveAlgorithmics: The Role of Relations in Program Development, Utrecht University, 1990.[Backus] Backus, J., \Can Programming be liberated from the von Neumann style?" in ACM TuringAward Lectures , ACM Press (Addison-Wesley), New York, 1987.[BakRoe] de Bakker, J. and de Roever, \A Calculus for Recursive Program Schemes" , ed. Nivat, A.,in Automata, Languages and Programming , 1973.[BelOcc] Bellia, M., and Occhiuto, M. E., \C-expressions, a variable-free calculus for equational logicprogramming", in Theoretical Computer Science 107, Elsevier, 1993.[Naumann] David A. Naumann \A recursion theorem for predicate transformers on inductive datatypes", Information Processing Letters, volume 50, 6, pp. 329{336, 1994.[BirdMoor1] R S Bird, Oege de Moor and P Hogendijk. Generic programming with types and relations.Journal of Functional Programming, 6(1), 1996.[Algebra] Bird, R. S. and De Moor, O. Algebra of Programming. Prentice Hall, 1996[BroHut] Brown, C. and Hutton, G., \categories, Allegories and Circuit Design", in Proceedings ofthe 9th Symposium on Logic in Computer Science, IEEE, 1994.[Broome86] Broome, P. Transformations of Parallel Programs with Higher-order Relational Operators ,Ph. D. dissertation, Univ. of Delaware, 1986.32
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Relational Programming in LibraBarry DwyerUniversity of Adelaide, South Australia, 5005.AbstractLibra is a general-purpose programming language based on the algebra of binaryrelations. It attempts to unify functional and logic programming, retaining the ad-vantages of both, and avoiding some of the problems. It has all the features neededof a programming language, and a straightforward semantic interpretation. Sinceprogram speci�cations are easily expressed as relations, it o�ers a simple path froma speci�cation to a program and from the program to its proof of correctness. Thealgebra of binary relations has several operators whose e�ects are like those of famil-iar procedural language constructs, for example, relational composition is analogousto sequential execution. The Libra language is illustrated by its application to asimple programming exercise. Some conclusions are drawn.1 IntroductionThis paper is a condensed version of a technical report [3] describing the Libra program-ming language. An implementation of Libra is available fromftp://ftp.cs.adelaide.edu.au/pub/dwyer/libraor via the author's web page athttp://www.cs.adelaide.edu.au/~dwyer1.1 What is a Binary Relation?In mathematics, the expression X�Y is true if X and Y satisfy the relation `�'. Forexample X < Y is true if X and Y satisfy the relation `<'. There are three ways the `<'relation can be considered:1. As the (in�nite) set of all (X; Y ) pairs for which X < Y .2. A predicate that can be applied to (X; Y ) pairs.3. As a `relator' (in the sense of [10, 11]) that, given X, will yield all Y values greaterthan X.In Libra, a relation to describe changes in temperature could be de�ned as follows:transition->{'Cold','Warm';'Warm','Hot';'Hot','Warm';'Warm','Cold'}.The braces enclose a set of 4 elements, each of which is an ordered pair of terms. Therelation is given the name `transition' | or rather the name `transition' maps onto therelation. The two means used in this example: set and pair formation, are Libra's onlymeans of structuring data. Members of sets are unordered, but pairs are ordered.There are three ways this relation could be used:1. It could generate the four pairs of values.35



2. It could be used to test whether a pair of values satisfy the relation.3. Given the �rst term of a pair or pairs, it could give the corresponding second termsas a result. For example, given 'Warm', it could yield both 'Cold' and 'Hot'.The �rst two ways of looking at relations are shared by all sets. The third view puts therelation in a more active role, and is described as `applying' the relation to an argumentto generate one or more values as a result. This is analogous to the view we take ofapplying functions in a functional programming language. Libra distinguishes these threeroles syntactically.To generate the members of `transition', we write:? @ transition.('Cold','Warm')('Warm','Hot')('Warm','Cold')('Hot','Warm')The `@' operator generates each element of a set, in arbitrary order. It may be read as`all' or `for all'. In the existing Libra system, successive elements are generated by back-tracking, but in principle they could be generated in parallel. We may imagine that thecomputation splits into several threads: four in this case. The threads are independent,and cannot communicate with one another.To test set membership, we may write:? ('Warm','Hot') ? transition.'True'The `?' operator may be read as `is a member of' and corresponds to the mathematicalsymbol `2'.To apply a relation to an argument, we write:? 'Warm' ! transition.'Hot''Cold'There is an important distinction to make here. Applying a relation to an argument gen-erates several result values, two in this case. It does not yield the set, {'Hot'; 'Cold'}.Applying relations that generate many values is computation intensive rather than storageintensive, but there are ways for a programmer to trade time for space if desired.Libra does not support a fourth mode of using relations: given the second term ofa pair, to determine its corresponding �rst terms. Accordingly, the �rst term of a pairis called its argument, and the second term is called its value. It is possible to go fromargument to value, but not in general from value to argument | any more than existingprogramming languages allow inputs to be derived from outputs. This is stressed by thealternative notation for pairs: using `->':transition -> {'Cold'->'Warm'; 'Warm'->'Hot';'Hot'->'Warm'; 'Warm'->'Cold'}.from which it will be seen that the name `transition' and the relation it de�nes are alsoan ordered pair. 36



1.2 Why Binary Relations?Why should a programming language be based on the algebra of binary relations? Oneview is that it is an attempt to combine the advantages of both functional programmingand logic programming.An advantage of pure functional programming is `referential transparency': the ideathat a program is an algebraic expression, which when simpli�ed, yields the value of theprogram, i.e., its output. An aspect of this idea is that functions can be given names, andthat any occurrence of the name can be replaced by the corresponding function.A di�culty that besets functional programming languages is that a function alwayshas exactly one value. This makes it hard to deal with exceptions: dividing a numberby zero yields no result, yet �nding the square root of a number yields two results. Thisdi�culty is avoided in a logic language such as Prolog, which can produce no result by`failing', or produce two results by back-tracking.On the other hand, Prolog has its own di�culties. Although a subset of Prolog can beunderstood in terms of propositional calculus, most Prolog programs need to use extra-logical predicates, which can only be understood with reference to a speci�c model ofprogram execution. A language based on the algebra of relations can combine the best ofboth approaches, while avoiding some of their problems.A di�erent view is that relations are to general-purpose programming languages whatmatrices are to scienti�c languages. They are large scale data structures, which canbe manipulated as wholes. In the scienti�c �eld, matrices have led to the evolutionof specialised parallel computer architectures such as vector processors, but there is nosimilar well-established concept that has formed the basis of parallel architectures in morediverse �elds | unless one counts the n-ary relations used in databases. Perhaps binaryrelations will provide such a concept. (The reader may recall that the original ConnectionMachine [4] was based on similar ideas, but it failed to exploit the full power of relationalalgebra.)A third view is that relational algebra contains a rich supply of operators useful toprogrammers. For example, a common programming exercise is, given a list of words, todisplay the positions of each word. In the algebra of binary relations, if W is the list ofwords, the result is essentially given by the expression W�1.A fourth view is that relations include functions as special cases. They are like multi-valued functions, and can do anything that functions can. They are also known to be auniversal model for data representation, being the building blocks of relational databases.In Libra, there is no distinction between a relation as data or a relation as an op-erator, except how it is used. The syntax of Libra is such that, the limitations of theASCII character set aside, any legal program is a valid expression in the algebra of binaryrelations that speci�es the program's behaviour. This gives Libra a 
avour similar to thespeci�cation language `Z'. Libra is not an attempt to imitate `Z', but it makes it easy toderive a Libra program from a `Z' speci�cation.1.3 Some Previous WorkThe Libra language owes its inspiration to Sanderson's Relator Calculus [10, 11]. However,there is a fundamental shift of viewpoint from his work. Sanderson regarded programmingconstructs such as `if...else' and `while...do' as having proved their worth, and based theRelator Calculus on similar constructs. Their disadvantage is that their mathematicalproperties are messier than the similar concepts of union and closure, except when the37



program is functional.Another source of inspiration is the work of MacLennan [5, 6], who wrote several rela-tional programs using the language RPL. RPL was really a functional language that couldoperate on relational data structures. Its control structure did not exploit backtrackingor parallelism. It also had the blemish that di�erent operators were used to denote thesame operation, depending on whether it acted on relations expressed as data (extensionalrelations) or as program (intensional relations). It was also awkward to mix operationson intensional and extensional structures.This defect of RPL was addressed by Drusilla [1], which allows the same operator tobe used uniformly on intensional or extensional relations, or a mixture of both. Drusillaalso distinguishes the three modes of using relations identi�ed earlier: as sets of pairs,as predicates that can be applied to pairs, and as means of generating results from anargument. The Drusilla compiler uses an extension of Milner type checking [7] to deducethe correct ways of combining relations from these properties. The same process alsoperforms conventional type checking, detecting potential programming errors. In thisrespect Drusilla is superior to Libra, which leaves type checking until execution time.On the other hand, Libra allows operators to be overloaded, so that, for example, theprogrammer can extend the built-in `+' operator, which originally applies only to integers,to apply to vectors and matrices. Overloading is natural to a relational language, wherearguments can map to several values, but it is complex with Milner type checking, becausethe types of operands and results are deduced from the types of operators, which thereforehave to be �xed [9].The `Z' speci�cation language [8] has also been an in
uence on Libra. Libra includesmany constructs found in `Z'. Libra could serve as a speci�cation language. It is possi-ble to turn a Libra speci�cation into an executable program using theorems of discretemathematics.The immediate precursors to Libra are a language proposal written by the author [2],and Hydra [9], a partial implementation of it. Like Drusilla, the proposal tried to rectifydefects of MacLennan's RPL, but adopted solutions di�erent from Drusilla's in almostevery case. This is probably because Drusilla has a functional programming background,whereas Libra is based on logic programming. Both Drusilla and Libra attempt to meldthe functional and logic styles, but start from opposite ends of a spectrum. Hydra wasin
uenced by Drusilla, and revealed several problems in the language proposal.An important di�erence between Drusilla and Libra is their treatment of iteration.Drusilla simulates iteration by recursion | which is to be expected of a functional lan-guage | whereas Libra uses transitive closure. A typical Libra program is free of recur-sion, making its structure more transparent. Recursion can simulate `go to' statements.Badly used, it can make a program just as hard to understand as they do. Thought wasgiven to banning recursion in Libra. It remains available | in case of emergency. Anotherdi�erence is that Libra uses sets and pairs as its basic structuring operations, whereasDrusilla uses lists and tuples. Libra's approach seems more appropriate to a relationallanguage. The elements of sets have no particular order, which means that they can bedealt with in parallel, at least in principle. Operations on di�erent elements can neverinteract with each other, again simplifying understanding of the program.Another Libra feature worthy of note is `reduction', which enables the elements of aset or sequence to be combined under a suitable binary operation. For example, reducinga set of numbers under `+' forms their total. A special case of reduction is to choose anarbitrary member of a set. This is useful in problems that admit of many solutions, butwhere only one solution is needed. 38



Libra is intended to assist the development of relational programming by encouragingexperiment. To this end, the current interpreter is designed for simplicity and ease ofextension and modi�cation.2 The Libra Language2.1 Basic SyntaxLibra syntax is based on that of Prolog. This aided its implementation, but has some-times resulted in compromise. Libra's lowest-level terms are variables, integers, atoms,delimiters and operators. Variables and integers are de�ned as in Prolog. All variablenames begin with a capital letter.There are two kinds of atoms. Those beginning with capitals, such as 'Warm', arecalled `literals', and stand for themselves. (They are enclosed in quotes to distinguishthem from variable names.) Literals give meaningful names to discrete values. The onlypre-de�ned literals are 'True' and 'False', but the programmer can invent new ones.All other atoms are called `names'. There are three kinds of names: strings beginning witha small letter and comprising letters, underscores or digits, any string enclosed in quotesthat is not a literal, and strings of the symbols +-*/\^<>=:.?@#$&. A name maps to oneor more expressions. Referential transparency means that wherever a name appears, it canalways be replaced by any of the things it stands for. Operators are merely a notationalconvenience. As in Prolog, any name may be de�ned as an operator. The expression 1+2is indistinguishable from +(1,2). Both are interpreted as relational application, i.e., as(1,2)!(+). It may seem strange to treat `+' as a relation rather than a function, but afunction is merely a special case of a relation.2.2 User CommandsThe Libra programming environment is a command loop in which the user may chooseone of the following actions:� To create mappings from names to expressions.� To evaluate an expression. If there are several results, all are displayed.� To display the de�nitions associated with a name.� To drop existing de�nitions, either wholly or in part.� To add new operators to the language.� To load prewritten programs.� To dump the current set of de�nitions.� To obtain on-line help.A typical program �le consists of a series of de�nitions followed by a query. A de�nitionhas the form `name -> expression.', and a query has the form `? expression.'
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2.3 StructuresLibra's basic structuring operations are set formation and pair formation.Sets are written as lists of elements between braces `{}', separated by semicolons.{2;3;1} and {1;2;2;3} both denote the same set. The members of sets may be structuredand may even be of di�erent kinds, e.g., {(1,2);{1,2};1;'True'}. A shorthand isprovided for ranges of integers: {M..N} denotes the set containing the integers M to Ninclusive.In contrast to `extensional' sets whose members are listed explicitly, it is also possibleto de�ne an `intensional' set by a means of a pattern and a predicate. For example:{(X,Y) : X<Y}denotes the set of all (X; Y ) pairs such that X is less than Y , i.e., it is the same as therelation `<' itself.There is an important restriction on a set de�ned in this way. It is possible to test agiven element for membership of it, but it is not possible to generate its members. Libracannot deduce what set is implied by a pattern and a predicate. Such sets are called`�lters' to distinguish them from those whose members are listed explicitly, which arecalled `generators'. A generator can be used as a �lter, but a �lter can't be used as agenerator.Ordered pairs are de�ned by an argument and a value, e.g.:Arg -> ValueorArg, Valuemaps the input Arg onto the output Value. They are formed by the in�x operators `,'and `->', which di�er only in that `->' binds its operands more loosely than `,'. Havinga choice of operators saves parentheses.2.4 Binary RelationsBinary relations are merely sets of pairs, e.g:swap -> {X,Y -> Y,X}.De�nes a relation that swaps a pair of values. It is possible to use this relation as a �lterto test if one pair is the reverse of another, for example:? ((1,2), (2,1)) ? swap.'True'(The �rst (unary) `?' may read as `evaluate', the second (binary) `?' tests for set mem-bership, and is equivalent to `2'.)It is not possible to use swap as a generator. However, it allows a third mode of use:as a relator [10, 11] or `constructor'. The swap relation can be applied to the pair (1,2)to construct the pair (2,1) as follows:? (1,2) ! swap.(2,1) 40



It is possible to write what appears to be a ternary relation, e.g:ternary -> {X,Y,Z : X<Y<Z}.But this is identical to:ternary -> {X,(Y,Z) : X<Y<Z}.This means that ternary relations, quaternary relations, and so on, do not exist in Libra,although it is usually harmless to pretend that they do.2.5 The Ranks of RelationsThere is a hierarchy of relations in Libra: `generators', `constructors', and `�lters'. Aswe have just seen, a constructor may be used as a constructor or a �lter. A generatormay used as a generator, a constructor or a �lter. A �lter may be used only as a �lter.The distinction is made as follows. A generator contains no variables, but constructorsand �lters do. In a constructor, only the �rst term of a pair may introduce new variablenames, which may be reused in the second term. A �lter contains a pair whose secondterm introduces new variables. If a relation contains several pairs, its lowest ranking pairdetermines the rank of the relation.There are no parameters associated with the name of a relation; each pair carries itsown argument pattern:max -> {X,Y -> X : X>Y; A,B -> B : B>=A}In addition to the means of de�nition given so far, which are simply those for sets,constructors also allow the second term of a pair to be de�ned by an expression. Forexample:succ -> {X -> X+1}.maps succ to a relation that adds one to its argument.2.6 SequencesSequences are relations whose arguments occupy the range 1{n, for some n � 0. Sequencesare written as lists enclosed in square brackets; for example [97,98,99] denotes therelation {1,97; 2,98; 3,99}. `Strings' are sequences whose terms are characters, i.e.,small integers. For convenience, [97,98,99] may also be written as "abc".The empty sequence is denoted by []. It is the same object as the empty set, denotedby {}. The expression [M..N] denotes the sequence whose �rst term is the integerM andwhose last term is the integer N . So that:[3..5]denotes the relation:{1->3; 2->4; 3->5}Sequences, sets, and pairs may be nested as required, e.g.,{(1,2); {3;4}; [5,(6,7)]}denotes the set containing the pair (1,2), the set {3;4}, and the two-term sequence[5,(6,7)]. 41



2.7 ApplicationApplying a relation to an argument generates outputs:? 3 ! {X -> X-1; X -> X+1}.24If a relation is applied to an argument that fails to unify with any of its argument patterns,it has no value, and is said to be `inapplicable'. Even if it uni�es, a relation may beinapplicable if a predicate following `:' yields 'False'.There are several other operators closely related to relational application. One is called`functional application' (~), and is written thus:? max~(1,3).3It di�ers from relational application only when the relation yields several values; functionalapplication yields only one, arbitrarily. Among other things, it is useful when a problemhas several solutions, but any solution will do.There is an asymmetry between the evaluation of the two operands of the applicationoperators. The argument is always fully evaluated, but the relation is evaluated lazily |only those values matching the argument are evaluated. For example, given the de�nition:factorial -> {0->1; N->N*factorial(N-1):N>0}.and the query:? factorial(2*3-6).1The expression 2*3-6 is fully evaluated to yield 0, which then uni�es with 0 in thefactorial relation. The argument also uni�es with N in the second term, but fails thepredicate N>0. Thus the expression N*factorial(N-1) is not evaluated. This illustratesan important point. A program typically de�nes a complex relation | often in�nite. Ifthe whole program had to be evaluated (i.e., its input-output relation was computed)before it could be applied to an argument, Libra would not be a practical programminglanguage.2.8 Relational OperatorsSince relations are sets, they may be combined using set operators, such as join, meet oromit. In addition, there are several operators that apply only to relations:The composition A �B of relations A and B is denoted by A o B (the letter `o'). Theexpression X!(g o f) has the same e�ect as f(g(X)) or (X!g)!f. Relational compositionis similar to sequential execution in a procedural language. It is guaranteed that the secondrelation is applied after the �rst.Two operators, else and but, provide the operations of `relational extension' (anal-ogous to functional extension) and `over-ride' (A � B). If A is applicable to an inputargument, A else B maps it to the output values of A, and B is ignored. However, if A isinapplicable to the argument, A else B maps it to the outputs of B.42



The expression A but B is equivalent to B else A. It is often used when it is de-sired to derive a relation that is like an existing one, except in some particular, e.g:{X -> X but [2!X, 1!X]} swaps the �rst two elements of X.The inverse A�1 of A (denoted in Libra by A^-1) is such that (X; Y ) is a pair inA�1 if and only if (Y;X) is a pair in A. Asking for the inverse of a relation is to askwhat arguments can produce a given value. The relation: square -> {X -> X*X} hasas its inverse the relation that �nds the positive and negative square roots of the perfectsquares. Although the inverse of a generator is a generator, and the inverse of a �lter isa �lter, since Libra cannot solve equations, the inverse of a constructor is only a �lter.There are four `restriction' operators. Each modi�es a relation by restricting its ar-guments or values according to membership of a set. The left restriction operator `<?' issuch that s<?r restricts the domain of r to arguments in s. It comprises those pairs in rwhose �rst terms are members of s. The left anti-restriction operator `<\?' is such thats<\?r restricts r to arguments not in s. The right restriction operator `?>' is such thatr?>s restricts the codomain of r to values in s. The right anti-restriction operator `\?>'is such that r\?>s restricts r to values not in s.2.9 Sequence OperatorsSequences are relations, so any set or relational operator can be applied to them. However,they have a few operators of their own.Sequences may be concatenated, using the operator `&&', so that "ab"&&"cd" is thestring "abcd".It is easy to �nd the n-th element of a sequence, e.g., 2!"abcd" and "abcd"~2 bothyield 98. The expression [2..3]o"abcd" simpli�es to "bc"| illustrating how a substringcan be selected from a string. It is also straightforward to convert a single character toand from its ASCII equivalent; 1!"a" = 97, and [97] = "a".Given the argument [5,6,7,8], the built-in function head returns the term 5, thefunction tail returns the sequence [6,7,8], the function last returns the term 8, andthe function front returns the sequence [5,6,7].The built-in sort function takes a set as argument and yields a sequence whose termsare the elements of the set in Prolog's standard order. For example:? {2;3;1}!sort.[1,2,3]The sort function always sorts into ascending order. However, the post�x <- operatorreverses a sequence, so that:? ({2;3;1}!sort)<-.[3,2,1]is a combination that sorts a set into descending order.2.10 Homogeneous Relational OperatorsRelations that have the same argument and value types are called homogeneous. Theycan be applied to their own results, allowing transitive closure | an important conceptin Libra, analogous to iteration or search.The in�x `^+' operator is used to apply a relation to its own output a �xed numberof times; R^+2 is equivalent to R o R, R^+3 is equivalent to R o R o R, and so on (R2,43



R3, etc. in mathematical notation). R^+1 (R1) is simply R itself, and R^+0 (R0) is theidentity function on the domain of R.The post�x `^+' operator forms the transitive closure of a homogeneous relation (R+in mathematical notation). It is de�ned by the in�nite union:R+ = R1 [ R2 [R3 : : :There is an important restriction on the relations whose closure Libra can compute:they must be acyclic. Libra's implementation of transitive closure is not sophisticatedenough to recognise that in exploring longer and longer paths, no new terms are addedto the closure.It is entirely possible to devise an algorithm that �nds the transitive closure of a cyclicrelation. One way is, when exploring a path, to test whether the next vertex to be addedto the path is already on it. Another way is to test whether a newly generated pair isalready part of the result. Why aren't these methods built into Libra?There are three reasons: The �rst is that transitive closure is often used where cyclesobviously cannot occur:? (0,1) ! ({M,N -> N,M+N}^+).(1,1)(1,2)(2,3)..(the Fibonnaci series). Testing whether a cycle has occurred would be an unnecessaryoverhead in such a situation.The second reason is that the transitive closure of a relation can be very large. Complexsearch problems can be modelled by closures. A typical search has the form:? start ! (improve^+ ?> solution).which �nds all solutions by repeatedly using improve to transform the initial state, start,until it is in solution. Keeping track of the states generated by improve^+ might use allavailable storage.The third reason also relates to search problems: it is usually necessary to recordhow a solution has been reached. This means storing the sequence of moves chosen.This sequence becomes part of the input and output of improve, so it would defeat anautomatic cycle detector. On each iteration around a cycle, the sequence of moves growslonger. However, a built-in cycle detector could not distinguish this growing sequencefrom the rest of the state, and would consider each iteration to generate a new state.The `^+' operator always applies its relation at least once. The similar `^*' operatorforms the re
exive transitive closure of a relation:R� = R0 [R1 [R2 [ R3 : : :A closure operator often needs both the termination condition and its complement tobe written, so a limit (^^) operator is provided for greater convenience. Mathematically,the limit R^ of relation R yields the pairs that are in the re
exive transitive closure of R,but to whose second term R is inapplicable. In terms of graphs, the limit operator �ndsall the paths that cannot be extended further.The inverse A�1 of relation A (denoted by A^-1) is such that (X; Y ) is a pair in A�1 ifand only if (Y;X) is a pair in A. The `^-' operator can take any non-negative exponent.The expression A^-N is directly equivalent to (A^-1)^+N; i.e., it yields all paths of lengthN in the reversed relation. 44



2.11 Higher-Order RelationsA higher-order relation is one whose values are other relations. The following examplede�nes a class of functions that add a number to their arguments:add -> {X -> {Y -> X+Y}}.When add is given the argument `1',? add(1).{(A,(1 + A)}it yields a function that adds 1 to its argument.`Set reduce' (>>->) is an important higher-order operator that applies its secondoperand, an associative commutative binary operator, to combine the values of its �rst,e.g.,? @{1;2;3;4}>>->(+).10Each second operand yields a di�erent relation, e.g.,? @{1;2;3;4}>>->(*).24 Reduction has an important property: it �rst generates, then gathers together severalthreads into a single result. Reduction provides the only way threads interact. The symbolfor set reduction emphasises this many-to-one aspect.The sequence reduction operator, >>=>, operates on sequences in a similar way. Itssecond operand need not be commutative. One use of >>=> is to 
atten a sequence:? ["abc","def","xyz"]>>=>(&&)."abcdefxyz"Any binary operator can be `ampli�ed' [10] using the `zip' operator, \\:? ([1,2,3],[4,5,6])\\(+).[5,7,9]The e�ect of this is to add the terms pairwise.The \\ operator may be used to de�ne new operators, or to overload existing ones:'+' -> {R1,R2 -> (R1,R2)\\(+)}.de�nes an operator that is capable of vector addition | among other things. Because ofthe way \\ and the built-in + operator are de�ned, there is no ambiguity about which +applies in a given case; \\ can only apply to relations, and the built-in + operator onlyapplies to integers.
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3 An Example ProgramThe syntax and semantics of Libra are fully de�ned elsewhere [3], but to give the 
avourof Libra, this section explains the development of a simple program. It illustrates the useof relations both as data and as program objects.Consider the following planning problem:A farmer has with him a sack of corn, a chicken, and a rather vicious dog. Hereaches a river, which he must cross in a small boat. The boat has only spaceenough for the farmer and one item. He must therefore ferry the corn, chickenand dog from the left bank to the right bank of the river one item at a time.The problem is that he cannot leave the dog alone with the chicken, for it willcertainly eat it, nor can he trust the chicken alone with the corn. How can heferry them all across safely?We may sketch a solution immediately. Starting with an initial state in which every-thing is on the left bank of the river, the program must choose a sequence of moves thatresult in everything being moved to the right bank. This suggests the following:solution -> (initial_state!safe_move^+) = final_state.We assume that safe_move is a relation that applied to a state to give a new state, suchthat the new state is `safe', i.e., nothing gets eaten. It is a relation rather than a function,because several moves are possible from a given state. The transitive closure operator(^+) will compose all possible sequences of choices to implement a search.This scheme has a basic 
aw: if the problem has a solution, it will simply yield 'True'.To be useful, the program should generate plans showing how the problem is solved. Aplan could be a sequence of either moves or states | or both. In the solution given here,the plan is a sequence of states, from which it is easy to deduce the moves.A second problem is that the transitive closure operator lets a program become trappedin a cycle. For example, the farmer could ferry the chicken back and forth across the riverfor ever. The way to avoid such cycles is to make sure that each new state added to theplan is not already part of it. This is why it is better to record the plan as a sequenceof states rather than a sequence of moves. A solution should not pass through the samestate twice, but it might need to make the same move several times.The solution should therefore have the form:solution -> [initial_state]!add_to_plan^+ ?> solved.Initially, the plan consists of a single term: the initial state, which we include in theplan because we want the program to check that it doesn't return to it. Since the testfor completion is no longer a simple equality, we use right restriction to make sure the�nished plan is in the set solved.We may now elaborate initial_state:initial_state -> (everything, {}).everything -> {'Farmer'; 'Dog'; 'Corn'; 'Chicken'}.A state is a pair whose �rst member is the set of things on the left bank of the river, andwhose second member is the set of things on the right bank. We need to keep to trackof the position of the farmer, but it is not necessary to worry about the boat; where thefarmer goes, the boat goes too.The problem is solved by all plans whose last term is the desired �nal state:46



solved -> {Plan : last(Plan) = final_state}.final_state -> ({}, everything).States may be added to the plan by generate and test:add_to_plan -> suggest o verify.where suggest generates a possible state, and verify ensures that it is not already inthe plan.The argument of suggest is the existing plan, and its output should include the newstate, but in addition it needs to copy the existing plan | otherwise verify could notcheck the new state or add it to the plan.suggest -> {Plan -> Plan, last(Plan)!cross_river}.This de�nition extracts the last state from the plan, and uses cross_river to generatenew states.The verify relation is straightforward, remembering that a sequence of states is a setof (integer, state) pairs. The set of states already visited is the codomain of the plan:verify -> {Plan, State -> Plan && [State] : State \? codom Plan}.This appends the new state to the existing plan. We now must explain why we didn'twrite, in one step:add_to_plan -> {Plan -> Plan && [last(Plan)!cross_river]: last(Plan)!cross_river \? codom Plan}.The expression last(Plan)!cross_river generates a new state. We add it to the plan,provided that it is new. Unfortunately, the expression appears twice, and cross_riverbeing a relation, there is no guarantee that it will yield the same value in each place.Therefore the state being added to the plan is not necessarily the one that proved to benew. The two references to the variable State in the earlier two-step approach ensurethat the same state is used in both places.The cross_river relation operates on states rather than on plans. Crossing can occurleft-to-right or right-to-left:cross_river -> left_to_right join right_to_left.Ferrying an object from left to right is a two step process consisting of �rst choosingan object on the left bank, then moving it to the right bank. As with add_to_plan, usinga connecting variable ensures that the object taken from the left bank is the same objectadded to the right bank. Whichever object is chosen, the farmer must go with it:ferry_object -> {Left, Right -> Left, Right, @Left}o {Left, Right, Choice-> Left omit {Choice} omit {'Farmer'},Right join {Choice} join {'Farmer'}}.Since the farmer is on the left bank, the farmer can be the chosen object. If so, the farmeris removed from the left bank twice, and added to the right bank twice, but since we aredealing with sets, this won't matter. When the farmer is the chosen object, this modelshis crossing the river alone.Crossing from left to right occurs only when the farmer is on the left bank, so we checkthe argument of ferry_object to ensure it is in the set farmer_on_left:47



left_to_right -> farmer_on_left <? ferry_object \?> unsafe.We use right anti-restriction to ensure the result is not in unsafe, e.g., by leaving the dogalone with the chicken.The name farmer_on_left maps to a set, de�ned as follows:farmer_on_left -> {Left, Right : 'Farmer' ? Left}.Next, we de�ne the set of unsafe states. Assuming the right bank was in a safe stateafter the previous move and will certainly be safe once the farmer reaches it, we only needto concern ourselves with the safety of the left bank. There are three unsafe situations,when the dog is left with the chicken, when the chicken is left with the corn, or when allthree are left together. This may be expressed as follows:unsafe -> {Left, Right : Left includes {'Chicken'; 'Corn'}v Left includes {'Dog'; 'Chicken'}}.This completes the strategy for moving things from left to right. To program movingthings from right to left we have a choice: to write a new relation analogous to theleft_to_right relation, to write a generalised `transfer' relation that accepts `Left' and`Right' as arguments, or to notionally exchange left and right:swap -> {Left,Right -> Right,Left}.Armed with which, the right_to_left relation is simply:right_to_left -> swap o left_to_right o swap.That is the problem solved. Typing:? solution.causes all solutions to be displayed.4 Type CheckingBecause operators may be overloaded, it is sometimes necessary to test the type of theargument of a relation. Types are simply sets, and any set expression can be used as atype. Types may be checked using the set membership operator, e.g., X ? integers istrue if X is an integer.Some useful sets are built-in:� integers� naturals� positives� characters� booleans� literals� sets 48



� relations� sequences� strings� anyA few of these sets are de�ned as generators, although their main use is as �lters. Forexample, X ? integers yields 'True' if and only if X is an integer. On the other hand,the expression @integers will (start to) generate all the integers.`Naturals' is the set of non-negative integers, and `positives' is the set of positiveintegers. `Characters' is the set of integers from 0 to 255. These are all generators, as is`booleans', which generates the set {'True'; 'False'}.The remaining sets are �lters. The set `literals' includes all atoms beginning with acapital letter | including 'True' and 'False'. The set `sets' contains sets of all kinds,including relations, sequences and strings. `Relations' contains only those sets that consistof ordered pairs. `Sequences' are functions whose arguments range from 1 to n. `Strings'are sequences whose values are characters. `Any' denotes the universal set; X ? any isalways true.Because any valid set expression may be used to de�ne a type, some of the built-insets are related, for example:sets -> sets_of any.sequences -> sets_of (positives x any).It is also possible to de�ne new types:integer_pairs -> integers x integers.5 Program ExecutionIt is important to know how a Libra program is executed, for two reasons: to know whatranks of relation (generator, constructor or �lter) allow execution to be possible, and tobe able to make some estimate of program complexity.A Libra program is best thought of as a collection of threads of control. A thread ofcontrol usually carries an argument with it. When a relation is applied to the argument,each result generates a new thread of control. In the current interpreter each result threadis explored in turn by back-tracking, but it is better to consider that they are all executedin parallel; there is no way for the program to communicate between the threads, andthe order in which they will be executed is unpredictable anyway. A second way in whichseveral threads can arise is by a thread invoking the `@' (for all) operator, which generatesa thread for each member of a set. Closure operators apply a relation to its own results.If the relation is a function, yielding a single result, the e�ect is like a loop. But if therelation yields several threads, closure increases their number exponentially.What mechanisms remove threads? The simplest is when a relation is inapplicable toits argument. A thread reaches the relation, but no result emerges. This is typical of a`generate and test' strategy, or pruning during a tree search. A similar e�ect is achievedby the restriction operators, which kill o� threads according to whether their argumentsare members of a given set or not. 49



Reduction �rst multiplies threads and then reduces their number to one. When athread of control reaches a reduction operator, it generates a thread for each value ofits �rst operand, which can either generate a set, or apply a multi-valued relation toan argument. These threads exist within an envelope that allows them to be collectedtogether again and combined using the second operand of the operator. (The currentimplementation relies on Prolog's `�ndall' predicate.) Thus, one thread emerges to matchthe one that reached the construct | or, if the collection proves empty, none emergesat all. Functional application (f~X) is a special case of reduction, where the combiningoperation has the form {(X,Y)->X}, i.e., one result is chosen arbitrarily. Through thisoperator, Libra introduces non-determinism.It is usually important for a program to terminate. It can fail to through uncontrolledrecursion or transitive closure. The programmer must ensure that a closure terminateswithout being trapped in a cycle. There is little the programmer can assume about theorder of execution. Libra does not guarantee that alternatives will be chosen in anyparticular order. For example, the expression:? 0 ! {X->X+1; X->X-1}^* .is capable of generating all the integers | in principle. Depth-�rst search might generate0,1,2... or 0,-1,-2,.... A better strategy would be breadth-�rst search, generating the series0,1,-1,2,-2,... . However, Libra does not promise to do either of these things, but mightalternately add and subtract one, cycling between the values 0 and 1 for ever.What does Libra promise about closure? Only this: a result cannot occur until afteran argument that generates it. In the above example, 3 is either the child of 2 or of 4, so3 cannot be generated until after 2 or 4 has been generated. (Since 4 cannot be generateduntil after 3 or 5 has been generated, it is easy to prove that 2 must be generated before3.) This sequential property derives from the composition operator. In the expressionX!r o s, �rst r is applied to X, then s is applied to the results. This is guaranteed in anyimplementation of Libra.Another programming consideration is the asymmetry between the treatment of theoperands of `apply' (!). The �rst operand is always evaluated as fully as possible, butthe second is always evaluated as little as possible. Normally, the �rst operand willcontain no variables, and is said to be `grounded'. If it does contain variables, and cannotbe reduced to a grounded form, it will passed in `symbolic' form, i.e., still containingvariables, although it may become partially simpli�ed. This allows a constructor or �lterto be passed as an argument to a higher order relation. However, if a �rst operand can bereduced to a grounded form, it always will be. Passing an expression as a �rst operandto some other relation is one way to force its evaluation.The programmer must be aware that each time any relation is applied to an argumentits results are calculated afresh. If a complex relation is likely to be applied to the sameargument several times, it may be worth evaluating the relation �rst, and storing it as aset of argument-value pairs | provided it is not too large. There are several other waysof forcing evaluation. For example, �nding the inverse of a relation currently forces therelation to be evaluated.It is di�cult to summarise the rules governing the ranks of relations needed by di�erentoperators in di�erent modes of use. For example, if A meet B is used as a generator, Amust be a generator, but B may be a �lter. However, if A join B is used as a generator,both A and B must be generators. As a general rule, the �rst operand will need to have atleast the same rank as the mode of use, so that a generator is needed to generate a set, aconstructor is needed to construct a result, but only a �lter is needed to test membership.50



The second operand may need the same or a lower rank, depending on the operator. Ifa relation has insu�cient rank, an error will be detected during program execution. Asa rule of thumb, the programmer is advised always to place the higher-ranking operator�rst, and hope for the best. Currently, the only safe alternative is to consult the sourceprogram of the interpreter.6 Scope RulesA program is a set of named de�nitions of relations. It is itself a relation from names toexpressions. In the current implementation of Libra, all de�nitions are global in scope.Variable names are local to the elements of a relation or set. For example, in thede�nition:change -> {X -> X+1;X -> X-1}.the �rst two occurrences of X are independent of the last two. They are also independentin the following construct:? 1 ! {X -> X+1} o {X -> X+1}.3If they were not, the argument 1 would not only bind the �rst relation to the pair (1,1+1),but the second relation to (1,1+1) as well, so the second relation would not be applicableto the intermediate result (i.e., 2).A relation or set that has another set as an element may cause a potential ambiguity.For example, what should the following de�nition do?neighbours -> {X -> {X-1; X+1}}.The intention seems clear. We would expect:? neighbours(1).{0; 2}The rule is adopted that a variable name has scope throughout the set element in whichit occurs, including any sets occurring within the element. This means caution is neededin de�ning higher-order relations. For example, the intention of the following exampleis to de�ne a function that will evaluate relation R over the domain X, thus producing agenerator:eval -> {X,R -> {@X!{X -> X,X!R}>>->}}.However, in the construction {X->{X,X!R}}, X is bound to the �rst argument of eval,but the programmer's intention was for X to be local. Libra will detect the problem andissue a warning. The problem is easily corrected:eval -> {S,R -> {@S!{X -> X,X!R}>>->}}.7 DiscussionWhat, if anything, has been learnt from implementing an interpreter for Libra?51



7.1 Type-Checking and InapplicabilityThe �rst lesson | which came as a surprise to the author | is that although the relationalprograms developed were quite short, they were surprisingly tricky to debug. Some of thedi�culties arose because the interpreter was under development, some were due to theauthor's lack of practice in relational programming, and some due to the design of Libraitself. The main problem is the notion of inapplicability. If a relation is presented withan argument to which it does not apply, it simply produces no result. It is fundamentalto relational programming that this should occur, but it means that if a programmingerror leads to the wrong type of argument being passed, then the whole program typicallyproduces no result. It is not easy to deduce where the error lies from an empty output.There would seem to be several solutions to this problem. They all involve somekind of type-checking. Some checking is already done by Libra's built-in relations. If thewrong kind of argument is passed to one, a warning results. However, once the relationis overloaded by the programmer's own de�nition, Libra turns o� its warning, becauseit cannot tell which de�nition is meant to be e�ective in any given case. Even if theprogrammer's de�nition proves inapplicable, Libra can't know whether it is an error.Although the de�nition of a relation can verify the type of its argument, this onlyserves to restrict it further. Arguments that do not pass the type test are inapplicable, sothe situation is unchanged. It would be possible for a programmer to de�ne a relation sothat if its argument had the wrong type, it wrote an error message. However, this is not amodular solution, because overloading the name to map to a relation accepting a di�erenttype of argument (perhaps by a separate package) would require the error condition inthe �rst de�nition to be modi�ed.The solution adopted by Drusilla [1] is to infer data types statically from the typesof operators, and in turn, to deduce the types of programmer-de�ned relations. In itsbasic form, this means that the built-in operators cannot be overloaded. However, it ispossible to imagine an extension of this idea to allow for overloading. Indeed, Drusilladoes precisely this in treating generators, constructors and �lters as di�erent types. Itseems to the author that allowing overloading of names is the only logical decision in alanguage that allows arguments to yield multiple results.The author's personal view is that static type-checking is unduly restrictive. Althoughit can detect many programming errors, it is just one of many checks that could be made.Programs can fail because of division by zero or other arithmetic errors, or by entering anin�nite loop or in�nite recursion. However, nobody suggests that we should insist that allsuch errors should be detectable statically. Indeed, if we devise a language in which allprograms are guaranteed to terminate, we know it is not Turing-complete, and less thanuniversal. I believe the same kind of objection applies, in a subtler way, to languages thatare statically type-checkable. What the exact problem is, I don't know, but I believe it isthe reason why many arti�cial intelligence languages avoid static type-checking, and whysystems programming languages usually have type loop-holes.One way to solve these problems would be to make a distinction between `inapplica-bility' and `no result'. If no de�nition is applicable to an argument, it could be treated asa programming error; or, the de�nition could remain applicable but deliver a special nullresult.
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7.2 The Domain ProblemThis leads naturally to a related problem: the question of what de�nes the domain of arelation. A relation maps from its domain to its codomain. In mathematics, this presentsno particular di�culty because a relation is a static object. In a programming language,there are three possibilities for the domain or codomain: their types, their potential values,or their actual values. The distinctions are that the type of a domain or codomain mightbe the integers, its potential values might be the prime numbers, and its actual valuesfor some given state of execution might be 2, 3 and 5. The `Z' speci�cation language [8]distinguishes two of these cases: the values of a domain are chosen from a `source' typeand the values of a codomain from a `target' type. It might be argued that the set ofpotential values and the type of an object are the same thing. This is true if the languagehas a 
exible enough way of specifying types. Libra treats types as ordinary sets, so |depending on one's point of view | it either o�ers a very 
exible means of type de�nition,or none at all. However, in most statically typed languages the means for de�ning typesaren't 
exible enough to allow `prime numbers', say, to be declared as a type.We have already discussed one situation where these distinctions cause a problem:Libra can't tell whether a relation is meant to apply to a given argument. If Libra coulddetermine that an argument was in the domain of the relation but that the relation did notapply, it could consider this a normal result; but if it could determine that the argumentwasn't in the domain of the relation | or in the case of overloading, in the domain of anyde�nition of a name | it could consider it an error.A second aspect of the domain problem arises in �nding the re
exive transitive closure(^*) or limit (^^) of a relation. Here, it is best to visualise the graph of the relation. Thegraph contains a number of edges, and the re
exive transitive closure consists of all pathsof length zero or more. In addition to the paths found by transitive closure (^+), Libra alsoadds to the closure a loop linking each vertex to itself. The set of vertices is found fromthe edges of the graph: each edge must leave and enter a vertex of the graph. However,it is possible for a graph to contain isolated vertices. Libra has no way of knowing whatthese are.A solution is to force each relation to specify its domain and codomain. Perhaps thismight be written as follows:left_to_right ->(state x state):farmer_on_left<?ferry_object\?>unsafe.Since Libra sets are dynamic objects, domains and codomains could be used as arbitraryassertions, to help debugging. Naturally, any solution to the domain problem would alsosolve the applicability problem of Section 7.1.Another advantage of specifying types is to optimise data representations. For exam-ple, if the result of a relation is known to be of type `string', its representation could bemade an e�cient one for strings rather than a general-purpose one that treats the resultmerely as a set of pairs.7.3 Referential TransparencyIn the implementation of Libra, a decision was made to evaluate the arguments of relations| using `simplify' | before applying them, except for the built-in relations, which try toachieve the same e�ects more lazily. Originally, this was motivated by an analogy withprocedural languages, which typically require their input parameters to be fully evaluated,53



but which evaluate conditional constructs lazily. On re
ection, it is seen perhaps to bean arbitrary decision. For example:and -> {A,B -> A&B}de�nes an and relation exactly like the built-in & relation, except that it always evaluatesboth operands. It would clearly be an advantage if no operand were ever evaluated until itsvalue was needed. It would seem to follow that arguments should be passed by referencerather than by value, and should not be simpli�ed until necessary.Such a change would have an important consequence. Consider the de�nition:double -> {X -> X+X}.which is intended to double the value of its argument. Under the existing implementationof Libra, this operates as follows:? @{1;2}!double.24However, if simplify wasn't called until X was evaluated, the e�ect would be to evaluate:? @{1;2}+@{1;2}.2334This is certainly referential transparency, but is it sensible? In Section 3, in connectionwith the relation add_to_plan, we explained exactly why two instances of the samevariable should be given the same value. In that example, we wanted the program tomake sure that the move it added to its plan was the same move that it had just testedfor safety. But the result is that this destroys the notion of referential transparency, atleast as it is usually understood.It is possible to argue | as some functional programming languages do | that vari-ables are an unnecessary concept, and should be eliminated from the language. But tothe author, this would be simply sweeping the problem under the carpet. To achieve thee�ect of double, it would be necessary to have some way of duplicating an argument.Suppose there was a built-in relation called duplicate as follows:duplicate -> {X -> X,X}.Then we could de�ne double as:double -> duplicate o (+).without using variables. But how are we to know that the two values generated byduplicate are the same? Surely,? @{1;2}!duplicate.should be equivalent to:? (@{1;2},@{1;2}). 54



which generates:(1,1)(1,2)(2,1)(2,2)In favour of the current interpretation, the language of Conceptual Graphs [12], oneof whose aims is to present a variable-free version of the predicate calculus, introducesvariables into its linear notation for precisely this purpose: to indicate when two occur-rences of an expression refer to the same object. (In its graphical notation, this is donesimply by pointing at the same vertex twice.)Although variable names are potentially an evil no better than the infamous `goto', theauthor believes that in the restricted context of a relational de�nition they are harmless,even bene�cial. After all, the alternative is to use built-in relations such as left andright, e�ectively de�ned as:left -> {L,R -> L}.right -> {L,R -> R}.to dissect structured arguments. Libra variables are merely local names for compositionsof such relations.Choosing when to evaluate expressions can be important for other reasons. In Prolog,the expression 1+2 means exactly that, and is not evaluated to yield 3 unless the pro-grammer chooses. One result is that Prolog can manipulate expressions symbolically. Asecond is that the programmer has more control over execution. It would be useful tohave a similar feature in Libra.7.4 Input and OutputThe current treatment of �les within Libra is very unsatisfactory, and should be improvedas soon as possible. Part of a remedy would be to treat �les as relations. A possible setof �le operators was suggested in the language proposal on which Libra is based [2].One of the properties of �les is that they can be modi�ed. Updating a �le has a side-e�ect on how it will be read, which is not expressed by the Libra programming language.The core problem is that Libra programs | like functional programs | are expressions,not procedures taking place in time. It is not easy to see the best way to integrate Librawith the idea of a time-dependent state.The problems of �le input-output are still more manifest when dealing with the userof a Libra program. Dialogues generated by several parallel threads could become con-fusingly intertwined; question and answer would need to be treated atomically. Whathappens if several threads decide to ask the user the same question? Should each ques-tion be answered separately, or should Libra ask the question once and remember theanswer? In a relational language, only the �rst choice makes sense, since it allows mul-tiple results, although it might sometimes prove inconvenient. For that matter, perhapseven a single question should be allowed to have multiple answers.7.5 Nested Scopes and ModulesIn the language proposal on which Libra was based [2], it was proposed that names mightbe given limited scope. The reason for this is that in de�ning a module or library of55



relations for general use, it might be useful to de�ne local relations that would not be ofgeneral interest. A programmer using the library module should not have to worry aboutthem. There is a danger that the programmer will de�ne a new relation with the samename as one in a module, and on invoking it, �nd that spurious results are produced.One possible way of avoiding this problem would be to introduce a where operator,so that:{add2 -> add1 o add1} where {add1 -> {X->X+1}}.would have the e�ect of making add2 global, but making add1 private to the declaration.In general, a set of global de�nitions should be able to access a set of local ones.Simple as this idea is, it is not currently implemented. For one thing, it is hard to seehow to integrate it with the one-de�nition-at-a-time approach of the current commandinterpreter | whose serial view of the program text is already inappropriate to a relationallanguage.Another aspect to consider is the object-oriented approach to programming. In thecontext of Libra, where objects are unimportant, many of the problems that object-oriented languages solve aren't present. On the other hand, it would be useful to havesome concept similar to inheritance. This means that if a general type of object has beende�ned, and a more specialised type of object has been based on it, the specialised objectshould be able to inherit the relations from the more general object, or over-ride themwith its own. For example, if the number_of_legs relation applied to members of the setmammal yields `4', we would want to over-ride this for the set humans to yield `2'. Libradoes not provide any means of over-riding one relational de�nition by another; if twode�nitions apply, both take e�ect. Nor does Libra have any way at present of using theknowledge that humans are mammals.A partial solution to this problem would be to use else rather than join to linkde�nitions of relations having the same name. If a name de�nes several relations, theycould be tried in turn. As soon as a de�nition is found that applies to the argument, nofurther de�nitions would be tried. Some means of specifying the search order is needed.Letting the search order be de�ned by the sequence of the program text seems a poorapproach, but Libra does not currently o�er any other language feature that could beexploited. A better suggestion, which �ts well with the nature of relations, is to allowthe program text to contain modules that are relations from names to de�nitions, andcompose them using an arbitrary relational expression.7.6 E�ciencyTreating data and program text in a uniform way causes a major problem in the imple-mentation of Libra. Consider an operation such as composition. The expression R o Sshould compile to a Prolog rule something like:'R o S'(X,Z) :- R(X,Y), S(Y,Z).if R and S are static program objects, but to:'o'(R,S,'R o S').if they are data objects (where o is a built-in predicate). The present implementationrepresents everything as data, which deals with static objects very poorly. The converse,of expressing data objects as facts, means that a Prolog implementation would spend much56



of its time asserting and retracting facts. A better solution would be to have di�erentapproaches for static and dynamic objects.One such approach is to follow Drusilla, and choose suitable representations duringcompilation. This preserves a uniform syntactic treatment for static and dynamic objects| although problems arise when they are mixed. Higher-order relations are also a problembecause they may need to accept both static and dynamic arguments at di�erent times.Catrall [1] seems to make no mention of how Drusilla's higher-order relations are compiled.In order to make sensible space-time trade-o�s, the programmer needs to distinguishclearly between dynamic (data) and static (program) objects. Perhaps they could bedistinguished syntactically, e.g:compose -> {R,S -> {X ->X!(R o S)}}.could de�ne a program object that could be applied to an argument (X), leading to thetranslation above; whereas:compose -> {R,S -> R o S}.might de�ne a data object. However, this approach raises new problems: e.g., �nding thecomposition of a static and dynamic relation.References[1] D.M. Cattrall, The Design and Implementation of a Relational Programming Sys-tem, PhD Thesis, Dept. of Computer Science, University of York, 1992.[2] B. Dwyer, "Programming Using Binary Relations: a proposed programming lan-guage", Technical Report 94-04, Dept. of Computer Science, University of Ade-laide, 1994.[3] B. Dwyer, "LIBRA: A Lazy Interpreter of Binary Relational Algebra", TechnicalReport 95-10, Dept. of Computer Science, University of Adelaide, 1995.(Also available via http://www.cs.adelaide.edu.au/~dwyer.)[4] W.D. Hillis, The Connection Machine, MIT Press, 1985.[5] B. J. MacLennan, "Relational Programming", Technical Report NPS52-83-012,Naval Postgraduate School, Monterey, CA, 1983.[6] B. J. MacLennan, "Four Relational Programs", Technical Report NPS52-86-023,Naval Postgraduate School, Monterey, CA, 1983.[7] R. Milner, "A theory of type polymorphism in programming", Journal of Com-puter and System Sciences, 17(3) pp348{375, 1978.[8] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Speci�cation and Z,Prentice-Hall 1991.[9] J.D. Prosser, "A Programming Language Based on the Algebra of Binary Rela-tions", Honours Report, Dept. of Computer Science, University of Adelaide, 1994.[10] J.G. Sanderson, "A Relational Theory of Computing", Lecture Notes in ComputerScience 82, Springer-Verlag Berlin 1980.57



[11] J.G. Sanderson, "Relator Calculus", Technical Report 84-02, Dept. of ComputerScience, University of Adelaide, 1984.[12] W.M. Tepfenhart, J.P. Dick, J.F. Sowa (Eds.), "Conceptual Structures: CurrentPractices", Lecture Notes in Computer Science 835, Springer-Verlag Berlin 1994.

58



Modelling Message Bu�ers with Binary DecisionDiagramsBernd{Holger SchlingloffUniversit�at Bremen, TZI-BISS1 IntroductionBinary decision diagrams (BDDs, [Bry92]) have been recognized as an extremely e�cientdata structure for the representation of transition relations in the veri�cation of �nite-state reactive systems. With BDDs, it is possible to represent relations over domainswith more than 2100 elements ([BCDM91]), provided the represented relation is well-structured. Asynchronous parallel systems such as communication protocols often useimplicit or explicit bu�ering of messages which are sent between the processes. In thesenotes, we analyze the complexity of various possibilities to model the transition relationof a bounded bu�er with BDDs, and discuss alternative approaches to this problem.2 Binary Decision DiagramsTo make these notes self-contained, we quickly describe the symbolic representation ofsets and relations with BDDs. For a detailed survey, the reader is referred to [Bry92].Consider a sequence of variables V �= (v1; :::; vk) over domains (D1; :::; Dk), where each Diis �nite. An ordered decision diagram (ODD) or deterministic branching program for Vis a tuple (N;L; E; n0), where� N is a �nite set of nodes,� L : N ! V [ f>;?g is a labelling of nodes,� E � N �D �N is a set of edges (D = SiDi), and� n0 is the initial node.The following conditions are imposed:� E is functional on Di: If L(n) = vi, then for each (n; d; n0) 2 E it holds that d 2 Di,and for each d 2 Di there is exactly one nd such that (n; d; nd) 2 E, and� E is acyclic: If (n; d; n0) 2 E with L(n) = vi and L(n0) = vj, then i < j.It is easy to see that this de�nition is equivalent to the one given, e.g., in [Bry92]. AnyODD accepts (de�nes) a subset of (D1 � :::�Dk) via the following de�nition:(N;L; E; n0) j= (d1; :::; dk) if (N;L; E; n0) j=1 (d1; :::; dk):In this de�nition, the notion j=m is declared by:
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(N;L; E; n) j=m (d1; :::; dk) if� L(n) = >, or� L(n) = vi and m < i and (N;L; E; n) j=m+1 (d1; :::; dk), or� L(n) = vi and m = i and (n; dm; n0) 2 E and (N;L; E; n0) j=m+1 (d1; :::; dk).In other words, given a speci�c tuple, it can be determined whether it belongs to the setrepresented by an ODD by traversing its edges according to the components of the tuple.When drawing ODDs, we usually omit the node labelled ? and all edges leading toit. For example, the ODD with two variables v, v0 over D1 = D2 = fa; b; c; dg given inFigure 1 below represents the set of tuples f(a; a), (a; b), (a; c), (a; d), (b; b), (b; d), (c; c),(c; d), (d; a), (d; d)g. Binary decision diagrams (BDDs) are ODDs where all domains aref0; 1g. Given any ODD, there exists a BDD of the same order of size which representsthe same set: Choose any binary encoding of the domains, and replace each m-ary branchby a logm-depth binary decision tree. Thus, in practice only BDDs are used; ODDs canbe understood as abbreviations of the respective binary encoded BDDs. For example,choosing the encoding a 7! 00, b 7! 10, c 7! 01, and d 7! 11, the BDD given in the righthalf of Figure 1 represents the same set as the respective ODD on its left.mv
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Figure 4: Matrix and graph of the encoded relation2k � dlog jmje boolean variables. For example, consider the elementary net of Figure 5; itmodels two processes synchronizing on a common transition. The states of the �rst processare D0 = fs00; s01g, the states of the second are D1 = fs10; s11g. Since these domains arebinary, we can use boolean variables s0; s1; s00; s01 to describe the current and next stateof the processes. The global states are a �= (s00; s10), b �= (s01; s10), c �= (s00; s11), andd �= (s01; s11). In state d, either both processes idle or both processes synchronize andgo to state a; in each other state, process Pi can either idle or make a step from si0 tosi1, independently of the other process. The transition relation of this system is the onerepresented by our example.'?&- %6$� $?%�&6'-����s00����s01 ����s10����s11P0 P1Figure 5: An elementary net model of synchronizationThe set of reachable states of a system is the image set of the initial state(s) underthe re
exive transitive closure of the transition relation. With BDDs, the transitiveclosure of a relation usually is calculated as the smallest �xed point of the recursiveequation R� = I [ R;R�. Relational composition is calculated by the de�nition xR;Sy i�9z(xRz ^ zRy), and existential quanti�cation over �nite (binary) domains is replaced bya disjunction of the possible values of the domain.Therefore, to calculate the set of reachable states with BDDs it is necessary to repre-sent the complete transition relation. Since BDDs are graphs with a nonlocal connectionstructure, usually it is not possible to use virtual storage for BDD nodes; present technol-ogy limits the number of BDD nodes representing a transition function to approx. 106.The size of the BDD representation of the reachable states or re
exive transitive closureof a relation is often totally unrelated to the size of the representation of the relationitself; in our example, the transitive closure is the universal relation, and thus all statesare reachable, with a BDD representation of size 1.62



However, the size of a BDD crucially depends on the number and ordering of vari-ables. In our example, consider the two processes as producer and consumer of messageswhich are passed at the synchronization step via handshake. That is, each process hasan additional variable, m0 and m1, which are both over a domainM of, e.g., 4 messagesfnil; x1; x2; x3g. Process P0 produces a message, i.e. sets variable m0 to an arbitrary non-nil value, in the transition from s00 to s01. On transition from (s01; s11) to (s00; s10) thevalue of m0 is transferred to m1, and m0 is reset to nil. Process P1 consumes (resets) vari-able m1 in the transition from s10 to s11. On idling transitions, the value of the message-variables is stable. The SMV-code (for SMV, see [McM93]) for this system is given inFigure 6, and the resulting BDD for variable ordering (s0; s00; s1; s01; m0; m00; m1; m01) isshown in Figure 7.MODULE mainVAR s0 : boolean; s1 : boolean; m0 : {nil,x1,x2,x3}; m1 : {nil,x1,x2,x3};INIT (s0 = 0 & s1 = 0)TRANS (s0 = 0 & s1 = 1 -> next(s1) = 1)& (s0 = 1 & s1 = 0 -> next(s0) = 1)& (s0 = 1 & s1 = 1 -> next(s0) = 0 & next(s1) = 0 |next(s0) = 1 & next(s1) = 1)& (s0 = 0 & next(s0) = 1 -> next(m0) in {x1,x2,x3}) -- produce& (s0 = 1 & next(s0) = 0 -> next(m0) = nil) -- reset& (s0 = next(s0) -> next(m0) = m0) -- stable& (s1 = 1 & next(s1) = 0 -> next(m1) = m0) -- transfer& (s1 = 0 & next(s1) = 1 -> next(m1) = nil) -- consume& (s1 = next(s1) -> next(m1) = m1) -- stableFigure 6: SMV-code for message passing between two processesnnn
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nodes branching into m successor nodes, which again join into one successor. This struc-ture arises by the copying instructions next(m0)=m0, next(m1)=m1 and next(m1)=m0.Variables m0 and m1 can be seen as consisting of w boolean variables m01:::m0w andm11:::m1w, where w �= dlogme is the message width. If we interleave the order of thesevariables, i.e., use variable ordering (m01, m001, m11, m011; :::, m0w, m00w, m1w, m01w), localdiamonds are represented with complexity linear in w, see Figure 8. Thus, for the order-ing (s0, s00, s1, s01, m01, m001, m11, m011; :::, m0w, m00w, m1w, m01w), the BDDs for the aboveSMV-code are logarithmic in m. ����
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Figure 8: Interleaved encoding of a local diamond

3 Modelling of Message Bu�ersDistributed parallel processes often use asynchronous (bu�ered) communication. Asyn-chronous message passing can be modelled with global variables by introducing a separatebu�er process for each communication line. In many systems, the amount of messageswhich can be bu�ered is �nite; in such systems bu�er over
ow often indicates erroneousbehaviour of the system. For a �xed message alphabetM �= fnil; x1; :::; xm�1g, the formalspeci�cation of a bounded bu�er of length n with input and output variables i and o overM is given in Table 3 on page 64.In the right half of this table, an empty entry means that the respective variable isset by the environment. An input value of nil in i indicates that there is no message tobe sent; in this case the next value of i is determined by the producer. If this process hasput a non-nil value x 2 M into i, then this value is appended to the bu�er, and i is resetto nil. The last line indicates a condition of bu�er over
ow: If a message is to be sentwith the message bu�er already �lled, i remains stable. If the output variable o is nil andthere is a message to deliver, it is copied into o. The consumer receives a message y fromo by resetting o to nil.The content of the bu�er b is given as a sequence hx1; :::; x�i of messages, wherehi denotes the empty bu�er. There are various possibilities to implement sequences of64



i b o i0 b0 o0nil hi nil hi nilx hi nil nil hi xnil hx1; :::; x�i nil hx1; :::; x��1i x�x hx1; :::; x�i nil nil hx; x1; :::; x��1i x�nil hi y hix hi y nil hxinil hx1; :::; x�i y hx1; :::; x�ix hx1; :::; x�i y (� < n) nil hx; x1; :::; x�ix hx1; :::; xni y x hx1; :::; xniTable 3: Speci�cation of the transition relation of a bounded bu�ermessages with BDDs. The most obvious choice is to use n variables b1; :::; bn over M,such that b1 contains the front element of the message queue, and incoming messagesare appended into the smallest b� which is empty (contains nil as value). The necessaryassignment operation for this modelling is given in Figure 9.next(b[j]) := case(i=nil) & !(o=nil) : b[j];(i=nil) & (o=nil) : b[j+1];!(i=nil) & !(o=nil) : if !(b[j-1]=nil) & b[j]=nil then ielse b[j] fi;!(i=nil) & (o=nil) : if b[j]=nil then nilelse if b[j+1]=nil then ielse b[j+1] fi fi;esac; Figure 9: Bottom-version of bu�er slot assignmentIn this modelling, we rely on the fact that whenever bj = nil, then for all k � j, alsobk = nil. This assumption only holds for the reachable states of a bu�er which is initiallyempty; there are many transitions from illegal, i.e., nonreachable states to other illegalstates in this model. In an explicit representation of the transition relation, one shouldtry to avoid these redundant entrys. With BDDs, however, even though the size of thetransition relation is much bigger than the transition relation restricted to the reachablestates, its representation is much smaller. Since the value of each bu�er slot depends onlyon its immediate neighbours, in fact the size of the representation is linear in the numberof slots.In the above implementation, the bu�er content is shifted upon output. We refer tothis modelling as the bottom version, because sent messages can be imagined to \sinkto the ground". A dual implementation of the bu�er shifts down the content one slotwhenever an input is performed, and inserts the new element into the topmost slot bn.Consequently, we call this modelling, where messages \
oat to the surface", the top-version of a bounded bu�er. To perform an output in this version, the content of thelowest non-nil slot is copied into the output variable o. The respective code segment isgiven in Figure 10. 65



next(b[j]) := case(i=nil) & !(o=nil) : b[j];(i=nil) & (o=nil) : if (b[j-1]=nil) then nil else b[j];!(i=nil) & !(o=nil) : if (b[1]=nil) then b[j+1] else b[j] fi;!(i=nil) & (o=nil) : if b[j]=nil then nil else b[j+1] fi;esac; Figure 10: Top-version of bu�er slot assignmentA third possibility is to use a circular implementation of the bu�er: On input, thevalue of the input variable is copied into slot bi, where bi = nil and bi�1 6= nil; on output,o is set to bj, where bj 6= nil and bj�1 = nil. To be able to distinguish between �rst andlast element of the queue in this version, we have to make sure that there is at least oneslot with content nil; therefore there has to be one more place than the actual capacityof the bu�er. In the assignment clause in Figure 11, subtraction and addition of one is tobe understood modulo n.next(b[j]) := case(i=nil) & !(o=nil) : b[j];(i=nil) & (o=nil) : if b[j-1]=nil then nil else b[j];!(i=nil) & !(o=nil) : if !(b[j-1]=nil) & b[j]=nil & b[j+1]=nilthen i else b[j] fi;!(i=nil) & (o=nil) : if b[j-1]=nil then nilelse if b[j]=nil then i else b[j] fi;esac; Figure 11: Circular version of bu�er slot assignmentAn alternative to the use of an empty slot would be to introduce queue-pointers forthe position of the �rst and/or last element of the queue; this idea can be applied to allthree of the above modellings. However, these alternative versions turn out to be worsethan the direct encoding via nil-test which is given above. In general, the queue-pointerswould be functionally dependent of the content of the bu�er; such functional dependenciescan blow up the BDD size signi�cantly ([HD93]).Similarly, we can introduce additional BDD-variables indicating whether the bu�er isempty or full; however, these variables tend to increase the size of the representation bya linear factor and usually can be replaced by appropriate boolean macro de�nitions. Onthe other hand, such variables can be important if the BDD is represented as a conjunctionof partitioned transition relations, see [BCL91].Finally, it is not always advisable to test whether a slot bi contains the value nil bythe test b[i]=nil. As we will see in the next section, it can be better to increase themessage width w by one, such that the �rst bit of each message is a kind of checksum,indicating whether this message is nil or not.
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4 Complexity ConsiderationsThe BDD for the bottom version of a bu�er of size n consists of two parts, one for thecase that the bu�er content remains stable, and one for the case that the bu�er contentis shifted down by one slot. The �rst part consists of a sequence of local diamonds foreach slot, similar as in the example above. The BDD for the second part is depicted inFigure 12 for the special case n = 2 andM = fx1; x2; x3g.
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o0 o0 o0>Figure 12: BDD for shifting down the bu�er contentAs can be seen, for a new bu�er slot bn+1, O(m2) nodes are added to the BDD for abu�er of length n. Therefore the representation is of order n �m2, i.e., linear in the lengthand exponential in the width of the bu�er. Since the transition relation is \almost" afunction, a matrix representation would require O(mn) entrys, whereas a boolean algebraor programming language representation such as the SMV code above, is of order m+ n(or even constant, if array subscripts are allowed).For the top version, the complexity of the representation is comparable to the bottomversion. In the circular version, b0n depends on bn, i, bn�1, and on b1. This non-localdependency causes a blowup of factor 2, since the emptyness of b1 has to be decidedwhile testing b0n. Moreover, to test whether a bu�er is full or not we have to test whetherany two adjacent slots are nil. This nonlocal test again blows up the complexity of thismodelling.As was to be expected, the number of reachable states is identical in the bottom andtop modellings; of course, this number is exponential in the length of the bu�er. Forthe circular implementation, the number of reachable states is approximately m times asmuch, since it contains an additional slot. 67



Table 4 summarizes the size of the BDDs of the transition relation for m = 4 (i.e.,w = 2), and order i < bn < ::: < b1 < o. All results were obtained with the public-domain SMV system; other BDD-based veri�cation tools yield similar results. The bu�erswere embedded in a simple producer-consumer environment, where the producer andconsumer are asynchronous, and the message to be sent or received does not depend uponor in
uence the state of the sender or receiver, respectively.length 3 5 7 9 11bottom 714 1458 2204 2950 3696top 599 1113 1627 2141 2655circular 1038 2350 3999 5307 6833reach 1400 12740 216 220 223Table 4: BDD size of transition relation and reachable state setIn this example, the size of the representation of the set of reachable states was of thesame order of magnitude as the representation of the transition relation. Some consider-ations about this size are given below.A critical factor in our approach is the message width w. As indicated in Table 4,e.g. the bottom implementation of a bu�er of length 5 and width 2 has size 1458. Forw = 3, this size is 11774, and for w = 4, it is 108357. In [BS90] it is proved that forany �nite function, a BDD of polynomial size exists i� the function can be realized by apolynomially bounded depth circuit. For message bu�er, certainly the transition functioncan be realized by such a circuit; thus there exists a BDD which is polynomial both in nand w.If there is no constraint on the order of variables, then such a BDD can be constructedby interleaving the bits of all slots: Let i = i1:::iw, bj = bj1:::bjw, and o = o1:::ow. Then foreach k � w, (ik; bnk; :::; b1k; ok) can be regarded as a bu�er of width 1. The only \nonlocaltest" in this bu�er of length 1 is whether some slot bj is empty: if this is determined bycomparison of bj1 and ... and bjn, then we still have an exponential growth. If we introduceadditional bits (i0; bn0; :::; b10; o0) which are 0 i� the corresponding message is nil, theneach bit-slice is linear in the length of the bu�er. For the order i0 < bn0 < ::: < b10 < o0 <i1 < bn1 < ::: < b11 < o1 < ... < iw < bnw < ::: < b1w < ow, these small BDDs are simplyadded, and the overall complexity is O(w � n).Unfortunately, in many practical examples it is not possible to choose such a bitwiseinterleaved order. Usually, the input and output variables are imported from other pro-cesses, and their order cannot be chosen arbitrarily. An argument similar to the one fromSection 1 on page 63 shows that for any order, in which i is before all bu�er bits, therepresentation is exponential in w. Therefore, in practical veri�cation, w should be keptas small as possible. There are several ways to do so:� For every channel, de�ne a separate message alphabet;� replace a parametrized message m(t) with t 2 ft1; :::; tkg by a list of messages mt1,..., mtk;� replace a compound message by a sequence of messages, and� abstract several di�erent messages into one.68



When using the latter two methods, one has to be careful to preserve the semantics of theoriginal model ([CGL92]). Using these techniques, we have been able to verify systemswith up to 27 di�erent messages.5 Alternative ApproachesIn [GL96],[BG96] it is suggested to extend the BDD data structure for the representationof message bu�ers. The new data structures are called QBDDs and QDDs, respectively.The basic idea is to replace the consecutive testing of bu�er variables by a repeated testof one and only one variable. Therefore, the representation of the transition relation isindependent of the bu�er size. Moreover, even systems of which the maximum amount ofbu�er space is not statically known can be veri�ed.However, as we have shown above, the (static) length of a bu�er may not be themost important factor in the representation of the transition relation. Moreover, \bu�erover
ow" errors in the system can only be detected with a bounded bu�er. Even worse,in systems on which a full bu�er forces delay of the sender, with QBDDs we have tointroduce an additional counter variable. For these type of systems, BDDs seem to bemore adequate than QBDDs or QDDs.Being able to represent the transition relation is only a necessary prerequisite forthe veri�cation of a system. Equally important is the size of the representation of thereachable states R of the system. Unfortunately, the size of the BDD for R has nopredictable connection to the size of the BDD for the transition relation.In many systems both the number of reachable states and its representation are linearin the number of iteration steps of the model, i� the system is correct. This is due to thefact that on reachable states, the transition relation is \almost" functional, yielding eithera single or a small number of successor states. On the other hand, from an \impossible"state usually many other \impossible" states are reachable. A drastic example is Valmari'selevator for which the reachable state set (in any representation) explodes as the elevatorbreaks through the ceiling and skyrockets into the air. Thus an exponential increase in(the representation of) R after some number of steps almost certainly indicates an error.In [GL96] it is claimed that \there are cases where the QBDD representation is strictlymore concise than the BDD representation". Assume our bu�er in a context where theproducer sends one �xed sequence of messages x1, x2, ... x� . That is, the reachable bu�ercontent is fhi, hx1i, hx2x1i, ..., hx� :::x2x1i, hx2i, ... hx�:::x2i, ..., hx�ig. With the top-and bottom version of the bu�er, the representation of this set is quadratic in �, whereaswith the circular representation and also with QBDDs it is linear in �.On the other hand, consider the case that the producer can send an arbitrary sequenceof messages. In this case, the top- and bottom-versions are of constant size, whereas theQBDD implementation is linear in the number of sent messages.In practical examples, such extreme cases are rare. In our experiments, we have foundno signi�cant di�erence in the size of the reachability sets of the various alternatives. Thenumber of parallel processes and their relative order has a much bigger impact on the sizeof the BDD for R than the actual implementation of the bu�er. Typically we can handlesystems of up to 5 processes, each with approx. 24 � 25 local states, where each processis equipped with a bu�er of n; w � 5. However, there still is a need for heuristics whichuse dependencies between the processes to obtain a \good" order for the process statevariables.An important observation is that the content of a message bu�er used to coordinate69



processes shows regular patterns, which also depend on the state of the processes. E.g.,in a certain process state the bu�er might always contain only copies of two di�erentmessages fromM. As another example, some speci�c message might always be followedby some other speci�c message in the bu�er. Currently we are investigating methods howthese regularities can be exploited to further reduce the size of the representation of thereachability set.References[BCDM91] J. Burch, E. M. Clarke, D. Dill, and K. McMillan. Symbolic model checking:1020 states and beyond. In 5th IEEE LICS, June 1991.[BCL91] J. Burch, E. M. Clarke, and D. Long. Symbolic model checking with parti-tioned transition relations. In Proc. IFIP Conf. on VLSI, Edinburgh, August1991.[BG96] B. Boigelot and P. Godefroid. Symbolic veri�cation of communication proto-cols with in�nite state spaces using QDDs. In Proceedings of 5th CAV, NewBrunswick, July 1996.[Bry92] R. Bryant. Symbolic boolean manipulation with ordered binary decision dia-grams. ACM Comp. Surv., Vol 24, No 3:293{318, 1992.[BS90] R. Boppana and M. Sipser. The complexity of �nite functions. In J vanLeeuwen, editor, Handbook of theoretical computer science, Vol. A, chapter 14,pages 757{805. Elsevier, Amsterdam, 1990.[CGL92] E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.In 19th ACM POPL, January 1992.[GL96] P. Godefroid and D. Long. Symbolic protocol veri�cation with queue BDDs.In Proceedings of IEEE LICS, New Brunswick, July 1996.[HD93] A. Hu and D. Dill. Reducing BDD size by exploiting functional dependencies.In Proc. 30th ACM/IEEE DAC, 1993.[McM93] K. McMillan. Symbolic model checking. Kluwer, 1993.
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Visiting Some Relatives of Peirce's �Michael B�ottnerMax-Planck-Institut f�ur Psycholinguistik, Nijmegen, The NetherlandsAbstractThe notion of a relational grammar is extended to ternary relations and illustratedby a fragment of English. Some of Peirce's terms for ternary relations are shown tobe incorrect and corrected.Binary relations have been studied extensively by Peirce and Schr�oder in the nineteenthcentury, and in this century by Tarski and his students. No comparable attention has beenpaid to ternary relations. This is surprising, for Peirce had already dealt with ternaryrelations on various occasions. But Schr�oder strictly con�ned himself to binary relations,and it is the topic of binary relations that has become the focus of interest for Tarski andhis students. For notable exceptions see Carnap (1929), Copi and Harary (1953), andAubert (1955) and the theory of relational database systems.Peirce has illustrated his ternary relational terms by natural language examples. Forinstance, the equation (ba)m = b(am)where b = betray, a = enemy, and m = man was explained in English as follows:\those individuals each of which stand to every man in the relation ofbetrayer to every enemy of his are identical with those individuals each ofwhich is a betrayer to every enemy of a man of that man."1This may be hard to swallow and even Peirce himself had some problems here as we shallsee. Therefore I think that Peirce's discussion of ternary relations can best be studied ina framework that is as rigorous with respect to syntactic structure as it is to semanticstructure. Such a method is provided by relational grammar. Relational grammar wasproposed in Suppes (1976).The purpose of this paper is therefore both to extend the notion of a relational gram-mar by adding ternary relations and to apply this extension to a better understanding ofPeirce's writings about relations, or \relatives" to use his own term. Our focus is there-fore more on the establishment of mapping natural language into the language of relationalgebra than on the development of the algebra of ternary relations. The paper continuesmy work on relational grammar and builds especially on previous results on anaphoricpronouns in B�ottner (1992, 1994, 1997).The paper is organized as follows: in section 1, the notion of a relational grammar isintroduced. In section 2, this notion is extended in order to account for ternary relations.In section 3, an example of a ternary relational grammar is given. In section 4, ouranalyses are compared to Peirce's examples. In section 5, our results are discussed andput in perspective.� Previous versions of this paper have been presented at the RelMiCS III workshop in Hammamet(Tunisia) and at the university of Osnabr�uck. I would like to thank Melissa Bowerman (Nijmegen),Chris Brink (Cape Town), Barry Dwyer (Adelaide), Arnold G�unther (Berlin), Peter Jipsen (Cape Town),Siegfried Kanngie�er (Osnabr�uck), Roger Maddux (Nashville, Tennessee), and Bill Purdy (Syracuse, NY)for many useful comments on a preliminary version of this paper.1Peirce (1870: 379). 71



1 Relational GrammarA denoting grammar is a context-free phrase structure grammar that provides a semanticfunction for each production rule.2 A relational grammar is a denoting grammar withthe restriction that denotations are elements of an extended relation algebra over someset D.3 An extended relation algebra over D is any collection of subsets of and binaryrelations over D that is closed with respect to union, complement, conversion, compositionand Peirce product.4 In line with Brink, Kahl and Schmidt (1997) we use the followingnotation:� union: A [ B� complement: A� intersection: A \ B� Cartesian product: A�B� conversion: �R� composition: R;S� Peirce product: R : AIn addition, we shall use the following operations that can be de�ned in terms of theprevious operations:� domain: domR = fx 2 Dj(9y)(xRy)g� (progressive) involution: RA = (R : A)� range-restriction of R by A: R � A = R \ (D � A)We refer to the identity relation by I. We refer to the maximal subset ofD by the constantU and to the maximal binary relation over D by the constant V .An example of a relational grammar is the following:PRODUCTION RULE SEMANTIC FUNCTIONNP ! TN + P + EQ+NP [NP ] = [TN ] : [NP ]NP ! TN + P + UQ +NP [NP ] = [TN ][NP ]NP ! N [NP ] = [N ]The symbols abbreviate the names of conventional grammatical categories: NP = nounphrase, N = common noun, TN = transitive noun, P = preposition, UQ = universalquanti�er, EQ = existential quanti�er. A lexicon for this grammar would be as follows:P of, toEQ some, a, anN 
ower, lady, horse, ...UQ each, everyTN owner, enemy, lover, woman, ...2Suppes (1973).3Suppes (1976).4Suppes (1976). 72



NP: O : HNP: HTN: O P EQ N: Howner of a horseFigure 13.This grammar derives semantic trees for terms like, e.g., owner of a horse or owner ofevery horse. A semantic tree is a derivation tree in the sense of the theory of formal lan-guages where the nodes of the tree, in addition to their category labels, bear denotationsas semantic labels. An example of a semantic tree is given in Figure 1.2 Ternary RelationsRelational grammar is restricted to subsets of some domain D and binary relations overD. This would not be su�cient to provide meanings for sentences like, e.g., Mary issitting between John and Bill or John gives Mary a book since between denotes a ternaryrelation and so does give. We therefore shall extend our ontology by ternary relations.One way to introduce ternary relations is to introduce them as Cartesian products ofa binary relation over D and a subset of D. This de�nition, however, has the followingdrawback. One and the same ternary relation gets two representations that need to beidenti�ed by stating separately< a;< b; c >>=<< a; b >; c > :We therefore prefer to start from ordered triples and de�ne a ternary relation as a set ofordered triples.Relational operations have been de�ned for binary relations. Adding ternary relationsrequires a slight rede�nition of our relational operations. In the case of union and inter-section it is understood that both operands should be of the same type, i.e. either D, D2or D3. In the case of complement of X we understand the complement with respect toeither D, D2, or D3 depending on the type of X.We assume two operations Rt and Rc as primitive: Rt switches the last two placesof a ternary relation and Rc moves the �rst place of a ternary relation to the end. Theoperation that reverses a ternary relation R can be expressed by the composition of atransposition and a cyclic permutation: Rtc.Since binary relations are sets, the operation of a Peirce product can be generalized toternary relations provided that m < n. Let R denote an n-ary relation on D and let Sdenote an m-ary relation. Then the generalized Peirce product of R and S is de�nedR : S := f< x1; :::; xn�m > j(9xn�m+1):::(9xn)(Sxn�m+ ^ Rx1:::xn)g: (31)This de�nition looks rather complicated but in fact captures only three cases: either R isbinary and S is unary, or R is ternary and S is unary, or R is ternary and S is binary. Ifin particular R is a ternary relation over D and S � D, then R : S is a binary relation73



over D, and if R is a ternary relation over D and S is a binary relation over D, thenR : S � D.In a similar fashion, the operation of range-restriction is generalizedR � S := f< x1; :::; xn >2 Rj < xn�m; :::; xn >2 Sg (32)where R is an n-ary relation and S is an m-ary relation. If R is a binary relation and Ssome subset of the domain the operation coincides with the operation de�ned in section1. If R is a ternary relation and S is a subset of the domain R � S denotes a binaryrelation over D. If R is a ternary relation and S is a binary relation over the domainR � S denotes a subset of D.Composition is de�ned as an operation on the set of binary relations. We extend thisoperation to pairs of a ternary relation R and a binary relation S like this:R �3;2 S = f< x; y; z > j(9u)(Rxyu ^ uSz)g: (33)Therefore (R �3;2 S)xyz i� (9u)(Rxyu ^ uSyg:Since dom can be de�ned in terms of Peirce product, it shares this ambiguity with it:if R is a binary relation, then domR is a set, and if R is a ternary relation, then domR isa binary relation.Since involution can be de�ned in terms of Peirce product and complement, a notionof generalized involution can be de�nedRS := (R : S): (34)Many more operations can of course be de�ned in the context of ternary relations. Butsince our main focus is on the interaction of ternary relations with either binary relationsor sets, so-called exterior operations will be more important than interior operationsinvolving just the set of ternary relations. We have therefore refrained from de�ningvarious types of composition since we have not found them exempli�ed in any constructionof English.De�nition 1 Let D be some nonempty set. An extended ternary relation algebra of setsover D is any subset of P(D) [ P(D2) [ P(D3)that is closed with respect toi. unionii. complementiii. transpositioniv. cyclev. compositionvi. composition of a a ternary relation with a binary relationvii. generalized Peirce productviii. generalized domain-restriction. 74



Notice that this list of operations appears to lack conversion. But in fact it occurs twicebecause both transposition and cycle coincide with conversion in the case of binary rela-tions. Notice that we do not have composition of two ternary relations because this wouldreturn a quaternary relation. This does not mean that quaternary relations of this kinddo not arise in natural language. Peirce himself has given the example praiser of { to amaligner of { to {.5Some simple arithmetical properties of operations of ternary relations are listed below.Theorem 1 Let R � D3.i. Rtt = R.ii. Rccc = R.iii. If X; Y are either both subsets of D or both binary relations over D, thenR : (X [ Y ) = (R : X) [ (R : Y ):iv. If A and B are arbitrary subsets of D, then(Rt : A) : B = (R : B) : A:v. If A and B are subsets of D, then((Rt)B) : A � (R : A)B:Proof of Theorem 1.i. This is simply an extension of the binary case.ii. This follows from the fact that a cyclic transposition of a set with thre elementsneeds to be applied three times to return the original set.iii. Obvious.iv. The left hand side is equivalent to(9z)(z 2 B ^ (9y)(y 2 A ^Rtxzy)):The right hand side is equivalent to(9y)(y 2 A ^ (9z)(z 2 B ^Rxyz)):Since Rtxzy $ Rxyz;both expressions are equivalent.v. By (34), the equation can be reduced toRt : B : A � R : A : B:The left hand side is equivalent to(9z)(z 2 A ^ (8y)(y 2 B ! Rxyz)):The right hand side is equivalent to(8y)(y 2 B ! (9z)(z 2 A ^Rxyz)):Since the second follows from the �rst the theorem is proved. Note that this propertycannot be strengthened to equality, since both expressions are not equivalent.5Peirce (1902). 75



PRODUCTION RULE SEMANTIC FUNCTIONV P ! TV P +EQ+NP [V P ] = [TV P ] : [NP ]V P ! TV P + UQ+NP [V P ] = [TV P ][NP ]TV P ! TV [TV P ] = [TV ]TV P ! DV +EQ+NP + P [TV P ] = [DV ] : [NP ]TV P ! DV + UQ+NP + P [TV P ] = [DV ][NP ]V P ! DV +EQ+NP + P +EQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P +Dem+NPV P ! DV +EQ+NP + P +EQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P + PersV P ! DV +EQ+NP + P + UQ [V P ] = dom(([DV ]; [TN ]) \ (D3 � I)) : [NP ]+TN + P + PersV P ! DV +EQ+NP + UQ+NP 0 [V P ] = ([DV ] : [NP 0])[NP ]V P ! DV + UQ+NP +EQ+NP 0 [V P ] = ([DV ][NP 0]) : [NP ]V P ! DV +EQ+NP +EQ+NP 0 [V P ] = ([DV ] : [NP 0]) : [NP ]V P ! DV + UQ+NP + UQ+NP 0 [V P ] = ([DV ][NP 0])[NP ]Table 5. Ternary Extension of Relational Grammar3 Grammar ExtensionTo derive semantic trees for English expressions we propose the grammar of Table 5.Familiar grammatical categories are referred to by the following additional symbols: TVP= transitive verb phrase, DV = ditransitive verb, Dem = demonstrative pronoun, andPers = personal pronoun.A lexicon for the extended grammar would be as follows:P toDem thatDV give, betray, ...Pers him, her, it, themDitransitive verbs di�er from monotransitive verbs like, e.g., own by having two objectsrather than one. One object is called the direct object (DO), the other object is calledthe indirect object (IO). A paradigm ditransitive verb is give. In the verb phrase gives a
ower to some lady the direct object is a 
ower and the indirect object is (to) a lady.According to our extended grammar, the semantic tree for this verb phrase would be theone shown in Figure 14 where F and L are subsets of D denoted by the noun 
owerand lady, respectively, and G = f< x; y; z >g is a ternary relation on D denoted by theditransitive verb give where x denotes the giver, y denotes the receiver, and z denotes theobject given.For the expression betray a woman to a man our grammar derives the denotation(B : W ) :Mwhere M is the subset of D denoted by man, W is the subset of D denoted by womanand B is a ternary relation on D denoted by betray. That this denotation provides thecorrect denotation follows from the fact that it is equivalent to the setfxj(9y)(y 2 M ^ (9z)(z 2 W ^ Bxyz)g: (35)76



VP: (G : F ) : LTVP: G : F EQ NP: LNP: F PDV: G EQ N: F N:Lgives a 
ower to some ladyFigure 14.VP: (G : H) : (O : H)TVP: G : H EQ NP: O : HDV: G EQ NP: H P TN: O P EQ NP: HN: H N: Hgive a horse to an owner of a horseFigure 15.For the expression betray every woman to every man our grammar derives the denotation(BW )M : (36)Applying our de�nition, we have(BW )M = (BW :M) = ((B : W ) :M) = (B : W ) :M: (37)An element z of this set ful�ls the condition(8z)(z 2M ! (8y)(y 2 W ! Bxyz)); (38)and this captures the intuitive meaning of the verb phrase in question.Our grammar also derives semantic trees for expressions with binary relations occurringin argument position. An example would be the tree in Figure 15 where H is a set denotedby horse, O is a binary relation denoted by owner and G is a ternary relation as in (14).For the expression betray each man to an enemy of every man (39)our grammar derives the term (BM) : (AM) (40)77



VP: dom((G;O) \ (D3 � I)) : HDV: G EQ NP: H P EQ TN: O P Dem NP: HN: H N: Hgive a horse to an owner of that horseFigure 16.where B is the ternary relation denoted by the ditransitive verb betray, A is a binaryrelation denoted by the transitive noun enemy, and M is the set denoted by the commonnoun man. By de�nition, this term is equivalent to(B :M) : (A :M): (41)By simple computation this expression will turn out to be equivalent tofxj(9y)(8z)(z 2M ! yAz ^ Bxyz)g; (42)which is an appropriate translation of (39).Our grammar also derives semantic trees for expressions with anaphoric pronouns inFigure 16. Notice that the Peirce product and conversion operations are not su�cienthere and some additional operation is required. In a similar fashion, a semantic tree canbe derived for the expression betray a man to an enemy of him. The root denotation ofthis tree is dom((B;A) \ (D3 � I)) :M: (43)Any element x of this set ful�ls the condition(9y)(y 2M ^ (9z)(Bxyz ^ zAy)) (44)which captures the intuitive meaning of the verb phrase. Correspondingly, the expressionbetray a man to every enemy of him (45)would by our grammar be assigned the denotationdom((B;A) \ (D3 � I)) :M: (46)This term is equivalent to the setfxj(9y)(y 2M ^ (8z)(zAy ! Bxyz))g; (47)which is in line with our intuition about the meaning of (45).In Table 1 a grammar was given for a fragment of English that is large enough to derivemany of Peirce's English examples to illustrate his operations and their use to constructcomplex terms. In the next section we use our fragment to check Peirce's constructions.78



4 Peirce's RelativesOur grammar is able to derive semantic trees for most of the terms with ternary relationsconsidered in Peirce (1870). A term expressing a ternary relation is called a \conjugateterm" by Peirce. Peirce illustrates his relational terms by examples from everyday English.Peirce made occasional blunders in his notation as had been pointed out before.6In order to be able to correctly assess the terms proposed by Peirce we need to explainsome of his notation. Peirce uses juxtaposition and exponentiation in case the �rst term isa relation and the second term is relational or absolute. So xy may correspond to standardrelational composition in case both x and y are binary relations, or to the Peirce productin case y is an absolute term and x is a binary relation. Similarly, xy may correspond tostandard involution if x is a binary relation and y is an absolute term, or to generalizedinvolution in case x is a ternary relation and y is a binary relation or absolute.Relations as Arguments Peirce also considers the case of a binary relation occurringin argument position like, e.g., ingiver of a horse to an owner of a horse: (48)In Peirce's notation, this corresponds to the term gohh. This is equivalent to the rootdenotation of the tree of Figure 15. But in the case ofbetrayer of each man to an enemy of every man (49)Peirce appears to have got it wrong. The term he proposed is bam. On our account, thedenotation would be (40). Notice that the respective denotations are not equivalent.This term can be analyzed either by (ba)m or by b(am). Recall that by juxtapositionof two terms x and y, Peirce denotes either relational composition7 or Peirce product.8Assume juxtaposition denotes composition. Then ba denotes a ternary relation and (ba)mdenotes a binary relation. This cannot be correct, since (4) is an absolute term and shoulddenote a set. Assume therefore that juxtaposition denotes the Peirce product. Then b(am)denotes a binary relation too. Consider now the possibility that ba denotes the Peirceproduct. Then ba denotes a set. And if ba denotes a set then (ba)m is not de�ned. Noticethat am always denotes a set. But if am denotes a set, b a ternary relation and b(am)denotes the Peirce product of b and am, then b(am) denotes a binary relation. But this isnot correct, since b(am) is supposed to denote a set. Similar remarks hold for other termswith three quanti�ers proposed by Peirce.Anaphora Some of Peirce's terms involve anaphoric pronouns. For instance, for theexpression betrayer of a man to every enemy of him, the term bam is proposed by Peirce.9This is not correct. For bam is equivalent tofxj(9y)(y 2M ^ (8z)(xAz ! Bxzy)g; (50)and (50) is not equivalent to (47).6Cf. Brink (1978) and Martin (1978).7cf. Brink (1978: 288).8cf. Martin (1978: 27).9Peirce (1870: 378 and 426). 79



Peirce proposed the term goh as a denotation for10giver of a horse to the owner of that horse: (51)Martin pointed out correctly that this is wrong but did not give a correct term for (51).11Recall that our grammar derives a semantic tree in Figure 16 for a structure that is closelyrelated. If we assume the denotation for own to be a left-unique binary relation, then thetree in Figure 16 would also be a semantic tree for (51).Scope Peirce sharply distinguishes two notions of give:12g1: giver of |- to |-g2: giver to |- of |-This distinction corresponds to a di�erence in syntactic structures with g1 occurring in astructure with the direct object preceding the indirect object like in, e.g.give a 
ower to every lady; (52)and g2 occurring in a structure with the indirect object preceding the direct object likein, e.g., give every lady a 
ower: (53)More important than the relative order of the direct and indirect objects is the scope ofdirect and indirect objects. In principle, two situations can be distinguished: either thedirect object is in the scope of the indirect object as is the case in (52) or the indirectobject is in the scope of the direct object. The �rst situation is called the patient analysis.The second situation is called the recipient analysis. It is often claimed that (53) has thesame meaning as (52).13According to Peirce the meaning of bmw would be betrayer of all women to a man.14Notice that bmw is equivalent tofxj(8y)(y 2 W ! (9z)(z 2M ^ Bxyz))g: (54)On this analysis, the indirect object man falls inside the scope of the direct object women,which runs against common linguistic intuition. But the denotation of the phrase betrayerof all women to a man should rather befxj(9z)(z 2M ^ (8y)(y 2 W ! Bxyz))g: (55)Our grammar accounts for this fact by introducing the order DV DO IO in two steps, butintroducing the order DV IO DO in one step and assigning(BW ) :M (56)as a denotation for the phrase betrayer to a man of all women. This denotation is identicalto the one provided for the phrase betrayer of all women to a man.10Peirce (1870: 370).11Martin (1978: 29).12Peirce (1870: 370).13Keenan and Faltz (1985: 193).14Peirce (1870: 378). 80



5 Concluding RemarksIn this paper, we have (i) extended the notion of relational grammar such that it is ableto accommodate ternary relations, (ii) illustrated this notion by a fragment of Englishthat deals with transitive and ditransitive phrases, (iii) pointed out certain inadequaciesin terms proposed by Peirce, and (iv) given correct interpretations for terms that hadbeen pointed out to be 
awed. In addition we would like to point out that our grammarextends the set of syllogisms considerably. For instance, it will be able to identify theargument Some man gave every lady a roseEvery rose is a 
owerEvery lady was given a 
oweras a valid syllogism of English. With additional rules introducing negative particles noand not we may end up with about 88 di�erent syllogistic forms.Our notion of an extended relation algebra as a structure closed with respect to cer-tain operations resembles the notion of a \bonding algebra" proposed by Herzberger.15Herzberger proposed a structure closed with respect to relational composition, majorpermutation, minor permutation, bonding, and relative complement, where major per-mutation shifts the �rst argument into �nal position, minor permutation switches the �rsttwo arguments and bonding identi�es the last two arguments of a relation. In line withPeirce, Herzberger does not distinguish between the operations of relational compositionand Peirce product. This may be satisfactory in the case where only binary relations andsets are considered. However, the operations can be well distinguished: if R is a ternaryrelation and S is a binary relation, then R;S will return a ternary relation but R : S willreturn a set. Moreover, the operations turn out not to be su�cient. Some notion of unionor intersection is required as is a notion of restriction. We would otherwise not be able toderive an appropriate structure for the tree in Figure 16.Relational grammar is not compelled to distinguish two variants of a ternary relationdepending on the order of their arguments. On the contrary, Peirce's assumption of twodi�erent notions for give is rather unnatural from the standpoint of natural English whereone and the same form is used throughout. If we assume only one predicate for give wewould then have to derive g2 from g1 or g1 from g2.16Unlike most conventional linguistic approaches our grammar is semantically drivenrather than syntactically driven. The sentencesgive a horse to an owner of a horsegive a horse to an owner of that horseexhibit an almost identical syntactic structure. The only di�erence is that one structurehas an existential quanti�er a where the other structure has the demonstrative pronounthat. Linguists have speculated that quanti�ers and demonstrative pronouns belong to oneand the same syntactic category of determiners. Under this assumption one should expectthat the semantic trees for these expressions are very similar. But under our anlysis, thisturns out not to be the case. The respective semantic trees are given in Figure 15 andin Figure 16. The semantic tree for the expression with the anaphoric pronoun that ismuch 
atter than the tree for the expression without the anaphoric pronoun. But this is15Herzberger (1981).16This is in fact done in B�ottner (To appear). 81



not surprising since the anaphoric reference requires information given at some locationof the tree to be available at a distant location of the tree. It is an open question whetherrelational semantics has to stay with the 
at tree of Figure 16 or can be tailored to �tbetter a more hierarchical structure.The 
at-tree problem is inherited by any standard one-dimensional representation.Peirce himself proposed a two-dimensional representation better known under the nameof existential graphs. Existential graphs have become a major focus in the design ofsystems of knowledge represention in computer science under the name of conceptualgraphs.17 The problem will be to �nd uniform procedures to map the variant forms of anatural language syntax to two-dimensional graph structures.References[1] Aubert, K. E. (1955) On the foundations of the theory of relations and the logicalindependence of generalized concepts of re
exivity, simmtery, and transitivity. Archivfor Mathematik og naturvidenskab 52, 9-56.[2] B�ottner, M. (1992) Variable-free semantics for anaphora. Journal of PhilosophicalLogic 21, 375-390.[3] B�ottner, M. (1994) Open problems in relational grammar. In Patrick Suppes. Scien-ti�c Philosopher, Vol. 3, ed. by P. Humphreys, Dordrecht: Kluwer, 319-335.[4] B�ottner, M. (1997) Natural Language. In Relational Methods in Computer Science,ed. by Brink, C., Kahl, W. and G. Schmidt, New York: Springer, 229-249.[5] B�ottner, M. (To appear) Relationale Grammatik. T�ubingen: Niemeyer.[6] Brink, C. (1978) On Peirce's notation for the logic of relatives. Transactions of theCharles S. Peirce Society 14, 285-304.[7] Brink, C., Kahl, W. and G. Schmidt (1997) Relational Methods in Computer Science.New York: Springer.[8] Carnap, R. (1929) Abriss der Logistik. Wien: Springer.[9] Copi, I. M. and F. Harary (1953) Some Properties of n-Adic Relations. PortugaliaeMathematica 12, 143-152.[10] Herzberger, H. G. (1981) Peirce's Remarkable Theorem. In Pragmatism and Purpose.Essays presented to Thomas A. Goudge, ed. by L. W. Sumner, J. G. Slater and F.Wilson. University of Toronto Press, 41-58.[11] Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural Language.Dordrecht: Reidel.[12] Martin, R. M. (1978) Of lovers, servants, and benefactors. Journal of PhilosophicLogic 7, 27-48.17Sowa (1993).
82



[13] Peirce, C. S. (1870) Description of a Notation for the Logic of Relatives, resultingfrom an Ampli�cation of the Conceptions of Boole's Calculus of Logic. Writings ofCharles Peirce, 1867-1871, Bloomington: Indiana University Press, 1984, 359-429.[14] Peirce, C. S. (1882) Brief Description of the Algebra of Relatives.Writings of CharlesPeirce, 1879-1884, Bloomington: Indiana University Press, 1986, 328-333.[15] Peirce, C. S. (1902) Relatives. Dictionary of Philosophy and Psychology Vol. 2, ed.by J. M. Baldwin. MacMillan: New York, London, 447-450.[16] Sowa, John F. (1993) Relating Diagrams to Logic. In Conceptual Graphs for Knowl-edge Representation, ed. by G. Mineau, B. Moulin and J. F. Sowa. Springer, 1-35.[17] Suppes, P. (1973) Semantics of context-free fragments of natural languages. In Ap-proaches to Natural Language ed. by K.J.J. Hintikka et al. Dordrecht, 370-94.[18] Suppes, P. (1976) Elimination of quanti�ers in the semantics of natural languageby use of extended relation algebras. Revue Internationale de Philosophie 117-118,243-59.

83


