Using Relational M ethods
In Computer Science

ALl Jaoua
PeTER KEMPF

GUNTHER SCHMIDT (EDS)

Bericht Nr. 1998-03
Juli 1998

Universitat der Bundeswehr Minchen

Fakultat far

INFORMATIK

Werner-Heisenberg-Weg 39 « D-85577 Neubiberg

Ali Jaoua, Peter Kempf and Gunther Schmidt (eds.)

Using Relational Methods in Computer Science

July 1998

Institut fiir Softwaretechnologie
Universitat der Bundeswehr Miinchen
D-85577 Neubiberg

Preface

The motivation of the RelMiCS events since 1994 is to bring together researchers who
use the calculus of relations as a conceptual or methodological tool in some aspect of
Computer Science.

The first ReIMiCS meeting took place in January 1994, at the Internationales Forschungs-
und Begegnungszentrum fir Informatik in Schlofl Dagstuhl in the Saarland, Germany,
organised by Chris Brink (University of Cape Town) and Gunther Schmidt (Universitat
der Bundeswehr Miinchen). RelMiCS 2 was held by Armando Haeberer (Pontificia Uni-
versidade Catélica do Rio de Janeiro) in Paraty, South of Rio de Janeiro, in August 1995.
Continuing the established one and a half year rhythm, RelMiCS 3 took place in Ham-
mamet, Tunisia, in January 1997, organised by Ali Jaoua (Université de Tunis - IT). A
fourth event in September 1998 in Stefan Banach Center in Warsaw, Poland, is organized
by Ewa Orlowska.

The present report is one of the results of the Hammamet meeting, besides a forthcoming
special issue of the journal Information Sciences. Papers have been carefully reviewed. A
selection has been made after which papers underwent the corrections suggested.

We are very grateful to all the participants of the Hammamet RelMiCS 3 meeting on
Relational Methods in Computer Science, to the referees, and in particular to the authors
of this volume.

Ali Jaoua Peter Kempf, Gunther Schmidt
Tunis Munich

i

Contents

Some Notes on Logic Programming with a Relational Machine

Jim LipToN, EMILY CHAPMAN

Relational Programming in Libra
BARRY DWYER

Modelling Message Buffers with Binary Decision Diagrams
HOLGER SCHLINGLOFF

Visiting Some Relatives of Peirce’s
MICHAEL BOTTNER

iii

35

59

71

iv

Some Notes on Logic Programming
with a Relational Machine
(Extended Abstract)

JAMES LIPTON EMiLy CHAPMAN
Dept. of Mathematics, Wesleyan University

Abstract

We study the use of relation calculi for compilation and execution of Horn Clause
programs with an extended notion of input and output. We consider various other
extensions to the Prolog core.

1 Introduction

Logic programming is programming with predicates in a certain fragment of logic. More
broadly speaking, it is programming with executable specifications: code that has inde-
pendent mathematical meaning consistent with its input-output behavior. Specifications
are often formalized as relations. In this paper we explore how Logic Programming itself
may be profitably understood, extended and compiled in terms of an underlying equa-
tional relational calculus, in which relation variables play a fundamental role, similar in
some regards to the role of function variables in the lambda-calculus. The variables in the
resulting terms correspond to predicate (second order) variables in the original program,
whereas all first order variables are eliminated. Subsequent abstraction provides closed
form solutions to all the program predicates.

In this study we use the relation algebra formalism as an executable algebra of logic
programs, somewhat in the Backus tradition[Backus]. Our approach here, as in [BroLip,
Colp] is to translate logic programs into combinatory relation expressions, which are then
executed via rewriting and output-formatting algorithms. It will be useful to illustrate
our intentions here with an example.

Consider the following Horn Clause program defining the transitive closure of a graph

conn(X,X). edge(a,b).
(X,Y) :-edge(X,Z) ,conn(Z,Y) edge (b,c).
conn 9 . g 3 3 9 . edge(a,l))
edge(l,c).

and the queries

| ?- conn(a,c).
| ?- conn(X,c).

This rather carefully chosen example can be easily reformulated in first-order-variable-
free relational terms as follows. We introduce the binary relation variables conn and edge
and translate the program into a pair of relation equations. Composition of relations is
denoted by “; 7.

edge = {(a,b),(b,c),(a,1),(I,c)}
conn = idU (edge;conn)

where id denotes the identity relation. The queries are then represented by the relation
expressions:
{(a,c)} Nconn and (1;{(c,c)}) N conn

where 1 is the universal relation H x H and H is the set of closed terms in the program
signature (hence (1;{(c,c)}) represents the set of all pairs whose second component is ¢).

Some questions that arise naturally at this point are: can such a translation be defined
for an arbitrary Horn Clause program, or even for extensions of conventional programs,
what kind of relation calculus is suitable for it, and can the resulting relational expressions
be easily executed, controlled and optimised?

The aim of these notes is to sketch out in some detail a relation calculus, a translation,
a semantics and a rewriting system that give evidence for an affirmative answer to these
questions. The relational abstract machine sketched here is described in detail in [Chap,
Ruhlen]'.

A translation that will work for all Horn Clause programs (with equality) is neces-
sarily a bit more involved than the one just shown. The one presented here draws on
foundational ideas of Tarski, Givant, Freyd, Maddux, and Broome that have appeared
at different times in the relational and allegory-theoretic literature although it is differ-
ent from all of them in that is it aimed at producing ezecutable intermediate relational
code. Our work thus builds computation into the relational formalism, and shows how
the relation calculus offers a new vehicle for proof search and automated deduction as
well.

In the earlier paper [BroLip] cited, the authors showed how the existence of a logically
correct executable translation of Horn clause programs follows from results of Tarski and
others, and explored other “pure” relational programming formalisms. Here that work
is considerably refined, and a simple rewriting system explicitly written out and shown
correct.

Combinatory approaches to logic programming have appeared elsewhere in the lit-
erature: Bellia and Occhiuto develop an algebra of programs that captures unification,
rewriting and narrowing in [BelOcc]. Our contribution is to define a more expressive al-
gebra of logic programs, which admits first-order queries, extensions to equational logic,
negation and higher order logic, as well as to show that such an algebra can be found
within the relation calculus, a well-understood mathematical formalism which easily in-
corporates other programming paradigms.

A great deal of work has been done in specification refinement using relational spec-
ifications based on Hoare’s work [Algebra, Naumann, Backh], as well as on relational
approaches to hardware design [BroHut, JonShe, BroJon]. In light of this work, the
relational translation described here may provide a new formal link between logic pro-
gramming, hardware specification, and program synthesis.

The work presented here also owes a substantial debt to the logic program transfor-
mation ideas of Clark [Lloyd] and Warren [WAM].

2 A Relation Calculus for Horn Clause Programming

In the following sections we formalize a relational theory and a class of relational structures
suitable as a target compilation language for logic programs. The relational theory is close

!The machine has been implemented in SWI-Prolog. Check http://www.cs.wesleyan.edu/~1lipton
for details.

in spirit to the positive fragment of the untyped p-relation calculus MU introduced by
deRoever (see e.g. [deRoe, BakRoe, FriasMad]) with additional equations that capture
unification requirements over the Herbrand Universe.

2.1 A Language and Meta-language for Horn-clause Program-
ming
We begin by fixing a first-order signature for a Horn Clause program

Y =Cs U Fs,

where Cyx is the set of constant symbols of ¥ and Fy the set of function symbols. We
let a(f) denote the arity of the function symbol f. Let Ts be the set of closed terms
over X. We fix a countable set of variables X (not to be confused with relation variables
introduced in a later section) and let 7s(X) be the set of open terms over X.

Pairing

We will need to formalize an object-level pairing function, in order to account for the
coding of vectors of terms in our relational language, that is to say, explicit vectors of
terms manipulated by the compiler. This is done by adding a second, top-level tier to our
concept of term and signature.

Many efficiencies in the translation of n-ary predicates to binary relations are achieved
by working with relations that stand for pairs of vectors of length at least n, rather than
those of length exactly n, since this permits dynamic expansion of arities on demand. By
this device we are able to compile programs independently of queries, which may introduce
an unpredictable number of new variables. This dictates certain choices of notation and
conventions, such as associating pairs to the right (like simple type expressions).

We define the set of [X-closed] extended terms over X by letting 3 be the signature
with constants given by all [closed] terms over ¥ together with the binary function symbol

It

A Y-open or Y-closed extended term is a closed term over this meta-signature, built up
from Y-terms that are open or closed. In other words, we abuse language, and let closed
or open refer to the bottom-tier terms that occur in our pairs. We will never need top-tier
variables. Spelling it out via an inductive definition:

Definition 2.1 Let S be a signature and Ts the set of terms over ©.. Then the set Tg of
extended terms is defined as follows:

1. If w is a [closed] term over % it is a [S-closed] extended term.
2. If uy, ug are [S-closed] extended terms then so is [uy, us].

Henceforth open or closed extended term will mean >-open or >-closed.

Formal Vectors and Concatenation

The presence of a formal pairing operator [,] in 75 allows us to define an internal product
of terms within the collection of extended terms. This pairing operator associates to the
right, so that we will write, for example

[tl, t2, t3, t4] for [tl, [tz, [tg, t4”]

which we can think of as a formal vector of terms. If u is the extended term [uy, us, . . ., uy],
and z is an extended term, we write uz to denote the extended term

[Ul,UQ, .. .,un,x].

Thus every extended term w can be assigned a length m and components uq,...,u, as
follows:

Definition 2.2 An extended term t has length 1 if it is a X-term, and length n + 1 if
it is of the form ux, where x is not extended, and u is [uy, s, ..., u,]. We write || u || for
the length of u and call [uy,us, ..., uy,] the formal vector representation of u and u; the
1th component of u.

Note that, in general, if u is an extended term of the form [uy, us, ..., u,], it is a formal
vector of length at least n (since u, may be an extended term). If z is a X-term and u, v
and extended terms || z [|= 1 and || uv ||=]| v || + || v ||.

We now associate to each signature X a relation calculus RelY into which we will
carry out a translation of both language and metalanguage. Among the atomic relation
expressions in the calculus will be the n relation symbols f* (1 < i < n) for each
function symbol of arity n in 3, formalizing the relation of projection of each term of the
form f(uy,...,u,) onto its i-th subterm, and the relation symbol (a, a) for each constant
a of ¥.

The relation expression (a,a) is a formal counterpart to the singleton relation {(a, a)}.
The hd and tl relation expressions are formal projections corresponding to the pairing
operator in the meta-signature .

2.2 Relational Syntax

Definition 2.3 Let R,, be a countable set of relation variables. The relation calculus
Rel> has the following syntax. The atomic relation expressions are defined by

(Rotom) == (Ryar)|id|di|1|0|hd]tl]|(Rs)

where Ry, is the set of relation constants consisting of all expressions {fI' : f € Fs,a(f) =
n,1 <i < n} and {(a,a) : a € Cs}. Compound expressions are given by the following
BNF' grammar:

R == (Ruom) | R° | RUR | RNR | RR | fp(Ryu).(R)

Juztaposition RR means composition, which we will sometimes write R; R using the infix
operator ;" to enhance legibility. Powers R™ denote iterations of composition. We
denote by Rs the open terms (relation expressions) over the variables Ryq.. When the
underlying signature is clear from context we will write R for this set of terms. We will

say a term is recursion-free if it contains no occurrences of fp.

4

Certain compound relation expressions will play an especially important role in the
calculus, so we introduce them here.

Definition 2.4 Define the countable sequence {P; : 1 < i} of projection relations as
follows:

Pp=hd P,=thhd - Py = (t)"hd .- (1)

In the standard semantics to be discussed below, P; is a relation between a formal vector
with at least ¢+ + 1 components and its +-th component. That is to say, P;’s set-theoretic
interpretation consists of pairs of formal vectors (u, ;).

Definition 2.5 The relation of partial identity up to the first n components on vectors
of length at least n + 1 is defined as follows:

L=) P(P) (2)

1<i<n

We also define the relation of true identity on such vectors by

id, = (N R-(R-)") N (H)°. (3)

1<i<n

id,, is a subrelation of the identity relation id as a consequence of the equational theory
we will define below and, of course, also in the standard semantics.

Definition 2.6 We also define the relation of identity on f-terms for f a function symbol
of arity n in the signature ¥ by

idp o= () frFP)°

1<i<n

In the standard interpretation, idy will denote the set of identical pairs of terms beginning
with the function symbol f.

Finally, for each pair of ground terms ty,ts over X3, define the formal relation expres-
sion (t1,t3), (whose semantics will be the singleton {(t1,t2)}), as follows:

(a,a) := already defined (4)
(f(ulvvun)vf(ulvvun)) = m fzn(ulvul)(fzn)o (5)
(t1,t2) := (t1,t1)1(ta, o) o (6)

It is often convenient to work in a derived relational structure where the formal relations
(t1,t2) are new primitives, satisfying the preceding equations. We will not make use of
this variant here.

The reader should also note that unlike #d,,, I,, is not a subrelation of the identity
relation. In the standard set-theoretic interpretation to be defined below, it will denote
all pairs of vectors (ux,uy), with u of length n.

2.3 The Equational Theory RelY

We will be using an equational theory which captures the general properties of relations
we need as well as the behavior of the encoding of the structure of a X-term algebra.
We therefore break it down into two components, one we will call DRA, the theory
of distributive relation algebras, and the other R3. The latter theory is quite domain
specific. It is the part we would expect to change to capture constraint logic programming
over other domains, although this matter will not be taken up here.

Note that the containment A C B abbreviates the equation AN B = B.

DRA

RNR=R RNS=SNR RN(SNT)=(RNS)NT
Rid=R RO=0 OCRC1
RUR=R RUS=SUR RU(SUT)=

RU(SNR)=R=(RUS)NR
R(SUT)=RSURT (SUT)R=SRUTR
RN(SUT)=(RNS)U(RNT)
(RUS)°=R°US° (RNS)°=S8°NR°
R®=R (RS)°=S°R°
R(SNT)CRSNRT RSNTC (RNTS°)S
idUdi=1 idndi=0

(RUS)UT

RY

1(a,a)1 =1 (a,a)R(a,a) = (a,a) N R (a,a) Cid
hd(hd)° Ntl(t1)° Cid (hd)°hd = (t1)°tl =id (hd)tl =1
idf = Mi<icn [1 ()7 C id (fPeffr=1 (i#))
(FP)0f =id (")) =
(fOR)i+ (fr)it N id=0
hdfr =0=tl°fF fPhd=0= ftl hdNid=0=tlNid

id=U{(a,a) :aeCs} U Ulids: feFs}

We will also make occasional use of a fixpoint-operator, which will be used in relational
structures satisfying axiom fp

fpz.E(z) = E(fpx.E(x)). (7)

The so-called modular law included in DRA
RSNT C(RNTS°)S

plays an important role in the work discussed here. In the presence of the other DRA
axioms it is equivalent to its left-modular formulation

TNRSCR(R'TNS)
and the equational formulation

TNRS=RRTNS)NT.

The reader should consult [BroLip] for an example of how the modular law is used to
improve termination behavior of certain relational rewrite systems, in particular in the
computation of transitive closure.

We will have need for the following simplification of the modular law in special con-
texts.

Lemma 2.7 In the equational theory DRA, from SS° C id we can infer AN SR =
S(S°ANR). ;From S°S C id we can infer AN RS = (AS° N R)S.

Proof: By the modular law we have, in the first case, AN SR = S(S°’AN R) N A. But
S(S°’ANR) C SS°’ANSR CidANSR = AN SR. Thus S(S°AN R) N A reduces to
S(S°AN R). The argument for the second claim is symmetric. 1

In the standard interpretation defined below, the axioms

rule out the occurrence of extended terms as arguments to function symbols from .

Some of the axioms of RY are a relational translation of the first-order theory CET:
Clark’s equality theory [Lloyd]. The last axiom is a relational counterpart to the so-called
domain closure axiom DC's, satisfied in the Herbrand Universe over a finite signature,
stating that every individual is a constant or a term beginning with one of the function
symbols in the signature. The axiom scheme

(foit(fo)il -+ (fe)iF N id=0

for fi,..., fi function symbols of ¥ of arities ny,...,n; respectively, enforces OC, the
occurs-check axiom scheme —(z = t[z]) for every term ¢ not identical to z in which z
explicitly occurs.

In [Maher|, building on earlier results of Mal'cev, Maher shows that CET + OC +
DC(C's is complete, decidable, and admits a partial elimination of quantifiers. This can be
exploited to give a compact representation of the set-theoretic content of relations over
this equational theory. See [BroLip] for details.

A number of useful identities follow from the equations above, and the definitions (6),
(4) and (5).

1°=1 0°=0 11=1 1d® = 1d 1dR =R
ANB=B=AUB=A ACB= A°C B°
fingr=0 frcd
(u,v) N R = (u,u)R(v,v) ANRS C R(R°ANR)
ANRS = R(RPANS)NA=(AS°NR)SN A
idy, Cid
as well as the facts that N and U are the lattice-theoretic infimum and supremum with
respect to containment.

2.4 Semantics
2.4.1 Two-tiered Structures

Our semantics must interpret formal vectors of terms. It is convenient to do this via a
two-tiered notion of model, the lower tier of which is a conventional X-algebra, and the
upper tier of which interprets the product structure.

7

Definition 2.8 A Y *-algebra U is a pair of structures (Uy,Uy) with the carrier of the
first contained in the second (Uy C Uy), such that Uy is a Y-algebra and Uy is a set
equipped with a binary injective function {_,)y : Uy x Uy — Uy. We will refer to the set
Uy as the carrier of the X1 -algebra U, and denote it by U, and the function (-, _)y as the
pairing function supplied by U.

A ¥t -morphism o : (U, Uy) —— (Vo, V1) is a function from Uy to Vi whose restric-
tion to Uy is a L-algebra homomorphism from Uy to Vo and which satisfies ({x,y)y) =
(Y, Py)y.

The reader can easily check that (7s, 75) is an initial $T-algebra, with pairing function

(s, t) = [s,t].

2.4.2 Relational Structures

We will use the expression Rel(i/) to denote the full relation algebra P(U x U).

We will call a structure A = (A4,0%, 1% id*, di* N* U%, ()>¥ o%) interpreting the
relational syntax of the the theory DRA a distributive relation algebra or DRA if it
satisfies the axioms DRA. It is called a set-theoretic or standard DRA if, in addition, A
is a subset of the set of binary relations Rel(U) = P(U x U) on some domain U, with
0%,1% the empty and maximal set, and with union, intersection, converse and composition
standardly interpreted.

A structure A = (A, 0% 1% id* di*, (a, a)®hd™ t1*, (f7)*, 0% U%, ()%, o) perginecs
is
called a RelX-algebra if it interprets relational syntax in the obvious way, and satisfies
the equational theory RelX. It is set-theoretic or standard if in addition A is a subset of
Rel(U{) for some Y T-algebra U, and in addition to the conditions satisfied by standard
DRA’s, it interprets RY’s relational constant symbols (a,a) and f] in a standard way:

(a,a)* = {(a",a")}
M =A{(z.y) : Qui-vpr)(@ = f 01 v Y Vi, - v0m))

Definition 2.9 Given a X" -algebra U, a U-interpretation is a mapping

[H]u R — RGI(Z/{)

satisfying
[(a,a)lyy = {(a*.a")} [0 1 = {((t1,t2),t1) 1 11,12 € U}
lid]y = {(wu):uelU} [di o = {(w,v):u#veU}
[hd]y = {(<t17t2> 1) itnt €Uy [RUSTy = [RlyU [S]y
%(1)%11 = é)fXU [R STy = [Rlun [STu
y _

€ [Rly A (v,y) € [STu)}
x=fYv1, . V1, Y Vigts s Un 1))}

where E© =0 and EMY) = [£(x) [z < E™)].

The notation [_];/[z < R] means the function that returns the same value as [_];; on
all inputs save x, for which the output is R.

It is easy to show that any environment (function n from relation variables to sets in
Rel(d)) extends uniquely to a U-interpretation. We also note that any interpretation

8

is sound for the axioms DRA. We are interested in interpretations which also satisfy the
axioms RY. We call these RelX-interpretations.

In addition to the semantics just given, natural categorical models exist: tabular dis-
tributive allegories [FreySce] provide a semantics for a considerably more general notion
of logic program, over a finite product category [FFL, NFDP, PowKin, CorMont]. We
will not have need of this generality to describe relational complilation of conventional
Horn Clause programs, although, in the presence of types and other programming fea-
tures, there are interesting applications of such structures to logic programming, abstract
interpretation and compilation.

Lemma 2.10 If ¥ is a signature with at least one function symbol and one constant
symbol, and if U is the free =" -algebra (consisting of all closed extended terms over ¥),
then Rel(d) is a set-theoretic RelX-algebra in which axiom fp holds. Thus, the theory
RelX + fp is sound in any U-interpretation.

The proof is straightforward: every full power set is a complete (Boolean) relation algebra.
The axioms R, as mentioned above, translate into the first-order statement of CET
+0C+ DCg, which holds in the free extended term algebra Ty .

Definition 2.11 Let Ty, be the set of interpretations into Rel(U).

We denote by C, 1M, U the pointwise order and operations on Iy induced by the cor-
responding set-theoretic operations on Relld). [J; and []y; denote the mazimal and
minimal interpretations obtained by setting all relational variables equal to the interpre-
tations of 0 and 1 respectively.

We now state some useful properties of interpretations, which follow from well known
facts about lattices.

Theorem 2.12 The structure (I, C,0,U, [1;7, [1yf) is a complete lattice, with supre-
mum and infimum defined pointwise. Furthermore, each [];; is completely determined
by its values on relation variables. If [y and [1;7 are two interpretations with [X];y C
[X 17 for each relation variable X then [Jj C [1i7-

Theorem 2.13 Let Xq,...,X,, be relation variables, and let F be a corresponding set
of relation expressions with at most the X; free. Define ®x : T,y — Ty by

Or([1e)(X3) = [Fi(Xy, o, Xo) Ty
Then
1. @ is continuous (hence monotone).

2. ®x has a least fived point, [];;, which is the least interpretation in Ty, satisfying the
equations
Xi = F;(le ce e ,Xn)

[1z7 is equal to the supremum of a countable chain | | [];; of interpretations, where
0 L n+1 n
[17 = 1 and 117" = @#([10)-

Proof: Straightforward. Proofs of most of these facts occur in one form or another in
the literature. The last assertion is the well-known Tarski-Knaster theorem. I

For the rest of this paper we fix a finite signature ¥ (assumed to have at least one
function symbol and one constant), and take the universe U above to be the set of extended
ground terms 75, with pairing function given by

() (u,v) = [u, v].

When U is so chosen we call the resulting semantics a standard interpretation of R into
Rel(T4), and denote it by the unadorned bracket []. Since interpretations into the same
range can only differ on relation variables and open relation expressions, we sometimes
refer to [R], for closed R, as “the” standard interpretation of R.

We close the section by recalling a few elementary definitions from the theory of
relations.

Definition 2.14 A binary relation R is reflexive if id C R, coreflexive if R C id,
functional if R°R is coreflexive, and injective if RR° is coreflezive.

When stating that a certain relation expression is, e.g. injective or coreflexive, we mean
that it is so when interpreted in the standard semantics. When we mean that it can be
proved so in one of the equational theories defined in this paper, we will so indicate.

Coreflexive relations play a critical role here, since logic programs are translated into
such relations, (although some components of logic programs are built up from more
general relations). Coreflexive relations are often a good way to code data in the calculus
of binary relations, that is to say, by embedding sets S into the calculus of relations as
S¢ = {(z,z) : * € S}. Diverse approaches to the formalization of data types in the
relation calculus has been studied extensively by the Eindhoven group [Backh] and by
Bird and de Moor [Algebra).

Three particularly important coreflexive relations associated with any binary relation
R are its formal diagonal, domain and range.

A(R) = Rnid

Dom(R) R1nid = RR°Nid
Ran(R) = R°1nid=R°RNid

3 Logic without Variables

One of the main results in [TarGiv] due to Tarski, Maddux and Givant (the so-called
equipollence theorem), is that every first-order sentence in a theory ¢ over a theory
with a pairing operator has a semantically equivalent equational counterpart X, = 1
in the theory QRA of relation algebras with quasi-projections. Tarski and Givant also
prove a stronger proof-theoretic version of this result, and exhibit a bijective recursive
transformation of sentences ¢ to their associated relation expressions X, and of first-
order proofs of the former to equational derivations of the latter. We will not make direct
use of the results or proofs here, but the work undertaken in this paper was inspired by
it. The main contribution of the paper is to apply this transformation to compilation

10

and evaluation of logic programming by extending it to map proof search in a fragment
of first-order logic into rewriting in the appropriate relational theory.

We now sketch a simple proof of a semantic form of the equipollence theorem, for the
special case of algebras of relations definable on a term algebra by first-order formulas
over a given signature. Let 3 be a finite language. The atomic statements of 7Ty are of
the form

tl - tz

which can be rewritten (after introducing a new variable z) as a conjunction of two basic
equations x = t; x = ts. If we continue introducing variables, we can write this as a
conjunction of elementary or flat equations of the form = =a or x = f(y, ..., y,) where
a is a constant in X and the x, y; are variables. We assume all atomic formulas are of this
form.

Now we define a translation ()" from formulas # in the language of 7s to relation ex-
pressions as follows. Recall that Rgalways contains the reserved projection operations hd
and t/? Let n be a natural number greater than the largest number of variables occurring
in any sentence to be considered below.

Now define, for (0 <i < n)

Slzpl SQZPQ Sn—IZPn—l Sn:tln

where the P; are given in (1) Observe that, in the standard interpretation for 1 < i < n,
we have (u,v) € [S;] iff v is the k" component of u. Now define

Qr = [Si(S)° idy =[] S;(5))°

j#i<n j<n

Observe that (u,v) € [id,] means u and v are vectors of length n and have the same
components (u); for (1 < ¢ < n), and that «[Q; Jv means all but the i-th component
of u and v agree. Let xq,---,x, be all the variables, free or bound, that may occur in
0. Recall all atomic formulas 6 may be taken elementary: either z; = a,2; = x; or

Tiy = f(ﬁCil, Ce 7.’L'Z'n).

(21 = ay = SaaSini, (0 A8 = (o0 (0) Nidy
(@i = ;) = i8¢ i, Cor = il (o)
(xio = f(xiu s 7xin))r = njs’io; f]n, SZO] Nid, (EL’BZQO)T = QZ(@)TQZ Nidy

Then we have the following result, where Hyx denotes the free X-algebra, with carrier
the set of closed Y-terms.

Theorem 3.1 (Freyd, Maddux, Tarski) Let 6 be a sentence over the language of Ty ,
and let xq,---,x, contain all the variables, free or bound, that may occur in 6. Then
He EO0 < [(0)"] = [id,]. For open formulas ¢ with free variables among x1, . .., T,

{(ar, .. yan) ([ar, s an][ars s an]) € [(9)7 1} = {(ar, s an) s Hs Fplaa /..o an/as]}

The proof is a straightforward induction on the structure of formulas?.
Proof:

2called quasiprojections by Tarski and, in an essentially equivalent form, tabulations of the maximal
relation on the product by Freyd[FreySce].

3The authors are indebted to Peter Freyd [Freyd92] for (a variant of) this formulation and proof of
the variable elimination result.

11

0= (x;=a):
Let 4 be an n-tuple of terms in Hy, , and suppose

(w,i) € [(x; =a)"] = [Si(a,a)S?Nid,] .

This implies that u; = a, hence Hs = (z; = a)[ur/z1, ..., uy/x,]. Conversely u; = a
forces (i, 4) € [(z; = a)"].

0 = (v; = xj):
Suppose (4, %) € [(z; = x;)"] = [SiS¢ Nid,]. Then u; = uj and Hs = (v; = x;)[i/7].

The converse is also immediate.

0=ux,=f(xiy,...,2;):
Suppose (@, %) € [(f(zi,...,z;,))"], that is to say, in

(M, [S0: 1735510 Tid]

Then u;y = f(uiy,...,u;,) and Hs = 0[i/Z]. The converse is immediate.

0=p A 0:
Suppose (@, %) € [(¢ A 0)"]. Then (i, %) € [(¢)"] and (@, @) € [(6)"]. By the induction
hypothesis, Hy = ¢[i/Z] and Hy = 0[i/Z] and hence Hy = (¢ A 0)]d/7]

0= -p:

Suppose (i, @) € [(—¢)"]. Then (@, %) € id, — [(¢)"] which is equivalent to saying that
(i,4) € [(p)"] is not the case. Using the induction hypothesis, this is equivalent to
Hg = o[i/Z], and hence to Hs | —p[d/7].

0 = dz;p:

If (@,%) € [(Fz;0)"] we must have (@, %) € [Q(p)"Q]. This means there is an n-tuple
of terms ¢ with v; = u; for every j between 1 and n except ¢, and (¢,7) € [(¢)"]. By
the induction hypothesis, this means Hy = ¢[0/Z]. But this is equivalent to Hy =
Jx;pl/7]. The converse is left to the reader. I

We now turn our attention to the translation of Horn Clause programs. We will want to
carry this out in a way that not only preserves meaning, as in the preceding translation,
but in a way that is faithful to the operational semantics of the program. We will thus
make different, more economical choices, and carry out the translation into RelX, defined
above, a relational calculus without negation, and with extra constants for capturing the
structure of terms in a way that such variable dependent phenomena as unification are
easily converted to a variable-free combinatory reduction.

It should be noted that the absence of negation in Rel¥is no handicap, vis-a-vis first-
order formulas with negation over the Herbrand Universe, because of the well-known
results of Mal’cev [Mal’cev, Maher] that any such formula is equivalent to a two-quantifier
formula in which negation occurs only immediately preceding equations between terms,
which can be modelled in Rel¥ using di for disequality.

12

4 Embedded Prolog

4.1 Capturing Horn Clause Reasoning over Term Models

We introduce a family of relational terms that will prove useful in translating logic pro-
grams over the Herbrand Universe into relational equations. One component of this trans-
lation involves a sequence of intermediate transformations of the constituent predicates
p(ti,...,t,) of the program into relation expressions. We first introduce new variables
T=uxy,...,1, and rewrite p(ty, ..., t,) as

Py, xp) Axy =t A AT, =ty

Conjunctions will be replaced by commas below.

In the relational translation of programs, conjunctions of equations of the form z; = t¢;
are translated to relation expressions K(tl, ..., ty) defined by induction on the structure
of the terms t;, as discussed below. We show that the relevant relational translations
preserve unification identities derived from Clark’s equality theory. This will require a
number of ancillary lemmas and definitions, to which the rest of the section is devoted.

Recall that a relation A is simple or functional if A°A C id and injective if AA° C id,
i.e. if A° is functional. Injectivity and functionality are preserved under composition and
intersection. Thus, in particular, P; is functional (and hence (P;)° injective) for every j,
since it is built up from hd and ¢/ by composition.

Definition 4.1 Let D be the disjoint union of the set open terms over ¥ and the set of
sequences (ty,- -+, t,) of open terms (m > 1). Define

K : D — Relld)
as follows. Let m,n,r be natural numbers greater than 0, and w be a term, or a sequence

of n terms over some set xy,---,xy, of variables. K,,(u) is defined by induction on the
structure of u.

K(a) = (a,a)l
K(z) = (P)°
K(f(ug,...ou)) = () fIK (u)

K(<t17"'vtn>) = ﬂPtK(tz)

We also define, for w in D
K(u) =id N K (u)1 and A(K)(u) =id N K(u)

Terms ¢t and sequences (t) of terms of length 1 are treated differently by K in the preceding
definition. Note that the sequences (t1,...,t,) in D are true members of the cartesian
product of copies of the set of terms, and not the formal vectors [ty,...,#,] in 75 . Observe
also that K (u) is always injective, and that for any substitution 6 (whose range is among
the set of terms over the variables zy, - - -, x,, in the universe of discourse), since

Of (ur,...,u,) = f(Ouy,...,0u,),

we have K(0f (u1,...,uy)) =), il (0u;)
In the standard set-theoretic interpretation, the K terms capture the structure of term
equations in the following sense.

13

Lemma 4.2 Let (t,---,t,) be a sequence of terms with free variables among 1, - -+, Ty, .
Let u and y be formal vectors of ground terms of lengths n and m respectively, and u',y'
arbitrary extended terms. Let i be the sequence (uy, ..., u,). Then

(uula yy,) S [[K(<t1a Ty tn>)]] — ,HE): U= [tla s)tn][yl/xla Ty ym/xm]a
where Hsx, s the Herbrand Universe over 3.

If we think of an m-tuple y of terms as denoting a substitution ©, for the variables
T1,v 0, T, then [K({t1,---,t,))] is the set of instance-substitution pairs

{(G)y[tlv B vtnv—]?e)y—) ty e ,TEm}

where the underscores denote arbitrary additional components.

Proof:[of lemma 4.2] We first show by induction on the structure of terms ¢ with free
variables among xy, - - -, x,, that for a ground term v and and an m-tuple of ground terms

Y= <?/1,' ' 7ym> we have
(u,y) € [K()] ifand only if Hs Eid=tyi/z1, , Ym/Tm]-

Suppose t is the constant a. Then (u,y) € [K(a)] = [(a,a)1] = {(a,w) : w € T5 } if

and only if w is a. But a = a[y1/z1,- -, Ym/Tm)-
If ¢ is the variable x; then (u,y) € [K(z;)] if and only if (y,u) € [P;] which means
u is y;. But this is equivalent to u = z;[y; /x1, Y/ Tm)-

If ¢ is a term of the form f(vy,...,v,) then (u,y) € [K(¢)] if and only if

(w,y) € [[) FFE@)]

i<n

But this means that for each i between 1 and n (u,y) € [f"K(v;)], or, equivalently, for
some ground terms wyq,...,w, 1 and z;

u = f(wl, ey Wi1y B4y Wi 1y - - ,wn,l)

in the Herbrand universe, and (z;,y) € [K(v;)].
By the induction hypothesis z; is v;[y1 /21, +, Ym/Tm]. Since this is true for every i
we obtain
w= f(vy,...,0n)[y1/x1, " Ym/Tm)

which is what we wanted to prove.

If t = (ty,---,t,) then (ut/,yy’) € [K(t)] if and only if (uv',yy’) € [N, DK ()
Thus, for each i between 1 and n (uu',yy') € [PiK(t;)], hence for each i (u;,y) € K(¢;
But then, by the preceding case w; is t;[y1 /21, +, Ym/Tm], S0 wis t{y1/T1,*, Ym/Tm]- 1

]
).

Corollary 4.3 If m > 0, u is a formal vector of length m of ground terms in Ts, U
the corresponding sequence (uy, ..., Uy, T is any extended term, and (ty,--- t,) is an
m-tuple of open terms (for the same m) then

(uz,ux) € idN K({ty, -, tm)1] < (FOHs E U= (t1, -, tm)0
where 0 is understood to range over substitutions for the variables free in the t;.

14

We say two sequences of terms (¢, ..., ty,) and (sq,. .., s,,) are jointly unifiable by a single
substitution @ if for every i, ;0 = s;0.

Lemma 4.4 Let (t1,...,t,) and (S1,...,8m) be sequences of open terms, with n > m.
Then, if (t1,. .. ,tm) and (s1,...,Sm) are jointly unifiable, and 0 is a most general unifier,

[(e tn)) VK (51,5 sm)) T = T ({06, 200)) T

If they are not unifiable, the interpretation of the intersection is the empty set.
In addition, if the two sequences are standardized apart

[((ty, .t o)) NV K ((s1,...,5m)) lu = [K((t16, ..., t.0)) |y (8)
if they are unifiable. The intersection is empty otherwise.

The proof is an immediate consequence of lemma (4.2) and its corollary.

Proof: By lemma (4.2), if u and y are formal vectors of ground terms of lengths n and

m respectively, @ = (uy, ..., u,) and u',y" are arbitrary extended terms, then
(wu',yy') € [K({t1,...,tn)) VK ((S1,--y8m)) Jus
<

%E):ﬁ: <t17"'7tn>[y1/x17"'7ym/xm] ANt = <81,...,8n>[y1/$1,'--,ym/l’m].

Letting @ be the substitution represented by [y1 /21, -+, ym/Tm], this implies
(t1y. . tn)0 = (s1,...,8,)0

in the Herbrand universe. Thus [K({(t1,...,t,)) N K((S1,...,8m)) iy is precisely the set
of instances of [ti, ..., t,]) where ¢ is any mgu of (t1,...,t,) and (sq, ..., s,,,) whose range
is in the set of terms over the variables x1, -+, z,,. 1

This lemma underscores a fundamental feature of variable-elimination in logic pro-
gramming: unification is reduced to intersection of combinators. But one issue remains
to be resolved before these results can be fully exploited. The use of K expressions in logic
program reduction would appear to require standardizing their arguments apart, limiting
their usefulness. Fortunately the term sequences that actually arise in our compilation
are more robust, as we show in the next, somewhat technical lemma which has surprising
consequences for the translation.

Lemma 4.5 (Diagonal Lemma) Suppose (ti,...,t,) is a sequence of terms in Ts all
of whose free variables are among xy ..., x, (for the samen). Call a component t; of such
a sequence nontrivial if t; # x;. Further suppose that for each j between 1 and n if ;
occurs freely in a nontrivial term t; then i # j and t; is x;.

Then for any formal vectors of ground terms u,d in Ts of length n and any formal vec-
tors of ground Ts-terms y, z, if (uy,dz) € K({t1,...,t,)) then (uy,uy) € K({t1,...,t))
as well. Thus

K((t1,...,ty)) =id VK ({t1, ... ty)). (9)

Thus, under these hypotheses, K expressions behave like K-terms and (8) holds without
the restriction that term arguments be standardized apart. It turns out that the hypothe-
ses of this lemma are always met by the term sequences that will be constructed in the

15

translation of Prolog programs described below. The reader should note, however, that
identity (9) does not hold in general.

Proof: Suppose (uy,dz) € K((t1,...,tn)) =), BK(t;). Then, by lemma (4.2), for each
i

U; = ti[dl/xl, C ,dn/xn]
Suppose t;,,...,t;, are all the nontrivial terms among the ¢;, and that z;,...,z;, are

variables occurring in these terms. Then, by hypothesis, for all £ between 1 and s,
tjk = Tj,- Thus

K(<t17"'vtn>) = mPJkK(xﬂk) N m PZK(tt)
k i@{1,0is}
= 2o n () PE®).

k i@ {1, s}
Thus for each k between 1 and s, u; = d; . Since the z; are only variables free in
nontrivial ¢;, for each such t;, u; = t;[dy/xy, ..., dy/x,] = ti[ur /21, . .., uy/xy,]. For every
other ¢;, t; = x;, so we immediately have u; = t;[u;/xy, ..., u,/x,]. Therefore

(g, .oy ty) = (b1, oot U /2y, oo un /2],

from which (uy,uy) € K({t1,...,t,)) by lemma (4.2). But then every uy in the domain
of K({t1,...,t,)) is in the domain of K((t1,...,t,)) Nid, whence

K((try .. ta)) = id N K ((t, ... 1)

Definition 4.6 A sequence (t1,...,t,) of terms in Ty is called clean if it satisfies the
hypothesis of the preceding lemma.

Observe that (t1,...,t,) is clean if and only if the substitution ¢z = {t;/z; : t; non-trivial}
induced by the equations {z; =¢t; : 1 < i < n} is idempotent.

Lemma 4.7 Suppose (ti,...,t,) is clean, and (uy,uy) € K((t1,...,t,)). Then the sub-
stitution 0, = {uy/x1, ..., u,/x,} satisfies the equations

in the sense that x;0, = t;0, for (1 <i<mn).

The proof is just a restatement of the fact, shown in the proof of lemma (4.5) that, for
each 1,

w; = tijuy/xy, . U 2.

4.1.1 Switching Relations

Definition 4.8 Fiz the natural number n > 1 and let ' = (iy,...,in) be a sequence of
distinct members of the set {1,...,n} natural numbers. Then define the relations W (i)
as follows:

Wit ... ia) = () P, (P)".
j=1

W (i, ..., i,) is called a switching relation. We also use the notation W (o) where o is
the permutation of the first n natural numbers into r.

16

We now state three useful properties of switching relations, whose simple proofs are left
to the reader.

Lemma 4.9 W (iy,...,i,) is functional and injective, provably in the equational theory
RelX

Lemma 4.10 Let &, and i be formal vectors of terms of length at least n + 1 over the
Herbrand Universe. Then

j=1

Furthermore, if ty, ..., t, is a tuple of n terms, o a permutation on {1,...,n}, and W =

W (o)

WK ((tr, - ta)) W] = [K ((to-101)s - s to10a)]
Lemma 4.11 If o is a permutation of the first n nonzero natural numbers
W(o™) = W(o)°.
provably in the theory Reld:.

Another useful property of switching relations follows immediately from 2.7.

Lemma 4.12 One can prove in the equational theory DRA that for any relation expres-
sions R, () and switching relations W

RNWQW® = W(W°RW N Q)W?°

5 Relational Translation of Programs: A Sketch

An atomic formula is said to be linear or pure if its arguments constitute a linear sequence
of variables, that is to say, one in which all variables are distinct.
The first step in the Clark completion of a prolog program is the linearization of head
predicates. A clause
p(ty, ..., t.): =TI

is replaced by
p(r1, ... xp): —xy =ty ...,y = by, Tl

where the z; are fresh. The variables free in the tail but not in the head are then
existentially quantified:

p(xy, ..., xy) : —3Y[xy = b, ..., 2, = t,, TI).

Now all clauses with head predicate letter p how have precisely the same head, and are
thus equivalent to a single clause with this head, but with tail replaced by a disjunction
of the newly formed tails:

p(r1,...,x) —\/Bi

where each B; is of the form

i1 = tia, ..., 20 = ti, T1] (10)

17

We are now going to describe a series of additional transformations that have the
effect of putting the logic program into a form that maintains its set of ground atomic
consequences over the Herbrand Universe, while bringing it closer to the eventual shape
of the desired relational equation. The first transformation involves the linearization of
the predicates in the tails B;, with the subsequent generation of equations, some of which
then get modified. This is then followed by the introduction of selection operators. We
describe it in two steps: linearization and selection.

1. Linearization: First we linearize the tails. Proceeding left-to-right, every atomic
formula ¢(s1 ..., $,) in Tl; (the non-equational part of B;) is rewritten as

21 =81y s Zm = Smy (215 -y Zm),
where

Case 1: Either s; is a variable that has not occurred earlier in the same atomic
predicate, and z; is identical to s; (so the equation reads s; = s;), or

Case 2: z; is a fresh variable, which is then existentially quantified on the outside.
That is to say the existential quantifier Jy; becomes Jy;Z, where Z is the se-
quence of all distinct fresh variables in the sequence Z7 - -- Z; of variables now
occurring in the ¢ predicates ¢1(21), . .., q¢(2;) in the non-equational part of the
tail.

Starting with the first index greater than r, the arity of the head predicate, which
has already required the introduction of variables zq,...,x, that may now occur
freely in the tail because Case 1, above, obtained, all new distinct existentially
quantified variables are renamed in increasing order from left to right, so that every
variable occuring in the entire tail B; except for the original bound variables y; is
part of a master list xq,...x; where k£ is bounded by the sum of the arities of all
the predicate occurrences in the head or tail of the clause.

Finally, we move all generated equations, now of the form x; = t; (where the ¢; are
terms originally ocurring in the clause predicates) to the beginning of the quantifier-
free part of the tail. Thus the tail is now of the form

El?jiaxr—l—l te 'I’w[fl?l = tla sy Ly = tval(xr+17 s 7xr+a(1))7 o '7qZ(£Ca7 s 7xa+0¢(Z))]a

where r is the arity «(p) of the head predicate, (i) the arity of the i-th tail predicate,
and a is r 4+ the sum of the arities of the preceding ¢ — 1 tail predicates.

Now we rename the remaining existentially bound variables from g; originally oc-
curring in the tail, so they are added to the (end of the) master list of variables
£Cj.

Finally, for any variable z; not occurring on the left hand side of one of the equations
z; = t; the equation z; = x; is added to the equational part in its proper place.
The equational part is now written in sequence form as # = . It is a sequence of
length bounded by n, the weight of the corresponding clause in the original prolog
program, which is the sum of the number of variables k occurring in the tail and
not in the head, and the arities of the predicate occurrences either in the head or
tail of the original clause,

wt(C) =k +n+ S5

18

It may be less than the weight because of the possible occurrence of Case 1 above
which ensured reuse of variables that would not obstruct linearity (distinctness of
variables) of each predicate in the tail. For reference, each clause has the following
appearance

p(ry, .., 2y) _\/le‘ (11)
where
B! =3z, 12T =t qa(21), . . ., o, (17)] (12)

and where each 7 is the j-th block of distinct variables of length the arity of g;;,
starting with the sum of the arities of the preceding predicate occurrences, including
that of the head. Letting x5 be the sequence of variables now occurring in the head,
the entire master sequence of variables ¥ = zyx7,...,2Z; may contain repetitions
because of Case 1 above, but, we repeat, each block is linear.

2. Selection: Each sequence z; of variables occurring in the i-th block in the tail
can now be viewed as the result of applying a selection operator p; to the master
sequence I

piT = Tj.

This yields normalized disjuncts of the form

D; = 3wnin -+ w0l = £ gi (). . . g, (peF)]- (13)

We now replace all implications in clauses by bi-implications, as in the Clark com-
pletion. We will call the resulting program P,, consisting of the clauses:

pi(x1, ..., xy) —\/Dij (14)

the completed or normal form of P.

Since we will not need this result in our adequacy theorem we do not take the trouble
to establish that the preceding program transformations maintain ground atomic conse-
quences in any term model. It is, however, straightforward to prove, using arguments
similar to the proof of the fact that the Clark completion of a program has the same
atomic (in fact positive) consequences as the program (see e.g. [Shep88, Lloyd]), and
repeated applications of the logical equivalence, for fresh g, ..., ¥y,

AZ[A(ty, ..., t,)] <= Ty, ... i =t Ao Ay =ty AN A(Y1, .., Yn)]

In the case of Prolog programs with positive and negative equations, treated briefly in a
later section, the completed (or normalized program) plays a central role, and should be
seen as the proper logical formulation of the program captured by our relational transla-
tion.

We note following for future reference.

Lemma 5.1 The sequences t that occur in the equational part of each disjunct in the
normal form of a program are clean in the sense of definition (4.6).

This is clear from the way fresh variables are introduced in the normalization process.
Our resulting set of equivalences are now almost ready to be cast in first-order-variable-

free relational form. We need to define one more operation on sequences of variables (or

on their indices): the permutation o; of the indices of Z induced by the selection operator

Pi-

19

Definition 5.2 Let p; be the i-th selection operator defined above. and w' the length of
the i-th disjunct’s master list of variables. Then the associated permutation of indices

oi:{1,2,...,w'} = {1,2,...,w'}
is given by letting Tq;(1), - .., Toyw) be the sequence I followed by all remaining variables

in & in order. o; simply shifts the i-th block of variables to the front of the sequence.

5.1 The Relational Step

We now transform the normalized program defined above into a finite set of relation
equations. For each predicate letter ¢ € II we introduce a relation wvariable g. Now
consider the normalized clause defining predicate p, of arity m. Each disjunct © in its
tail of the form (13) is translated into the relation expression (0)"

id N L, [K (&) "W (o)W (00)° N - - - 0 W (00) W (00)] L. (15)
We then translate the whole clause (14) by
p=(0)"U---U(Op)".
As an immediate consequence of the preceding lemma and lemma (4.5), we have
Lemma 5.3 If K(f) occurs in a disjunct of a normalized Prolog program, then
K(f) = K(f)Nid.

The result of applying this procedure to all predicate definitions in the canonical comple-
tion of a Horn Clause program P is a set Ep of n equations ey, ..., e, in the n predicate
letters of the program (now viewed as relation variables). The typical equation e; being

of the form _
I_7j = U @g

as described above. The @{ contain the symbols p; as relation variables corresponding to
the original predicate letters in the program.
We can write this dependency of relation variables as

P = Fj(Py, - Py)- (16)
We call this equational system Ep, the equational translation of P.

“Gaussian Elimination”

A final and obvious step is to bind all the variables with the fp-operator. We assume that
one predicate letter, say p; is the one to be queried. Dropping the overbars on relation
variables, we rewrite the last equation of system (16) above as

Pn = fpzn-Fn(pla <oy Pn-1, Zn)
and substitute into equation n — 1, obtaining
Pn—1 = anl(pla -y Pn—1, fpzn-Fn(pla <oy Pn—1, Zn))

20

Now we bind the (possibly multiple) occurrences of p, 1 and so on, eventually obtaining
a single Rg-expression
m = 1pz.Fi(2,..) (17)

where the right hand side is a closed (no-free-relation-variable) term. We will call the
right-hand expression R, and say that R, arises from translation of the predicate p,
defined by the program P.

Definition 5.4 A positive relation expression R € Rys (or the defining equation p = R
for some identifier p) is said to be a (relational) logic program if R is of the form R,,
i.e. it arises from the translation of a predicate q defined by a logic program P.

5.1.1 An Example

We illustrate the steps outlined above with an example. We start with the well-known
program P44 defining addition of formal numerals over the Herbrand Universe for {o, s}:

add(o,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

Just for reference, the Clark completion (minus the addition of Clark’s equality theory)
is:

add(xy,x2,23) +— Jr(ry =o0,x2=x,23 =12) V

Az, y, z(x1 = s(x), 2z = y, 23 = $(2), add(x, y, 2)).

After renaming the bound variables z, z as x4, x5, (y is already named by x3) the
normal form of Pis:

add(zy, e, 23)
(<.T17.T2,£C3> — <07 I’Q,I'2>)
V
333'4, x5(<xla T2, X3, T4, x5> = <8($4), T2, 8($5), Ty, $5>
A add(z4, T, x5)).

Letting p be the selector function (1,2,3,4,5) — (4,5,2), and o the associated per-
mutation (1,2,3,4,5) — (4,5,2,1,3), and writing & for (1, zs,x3, 24, r5), this can be

rewritten:
add(z1, e, x3)

<x17 T, I'3> - <07 X, x2>
V
Axy, 5(T = (s(xy4), T2, $(5), T4, x5) A add(pT)).

The relational translation is:
add = K(o,x9,x3) UBLIK(s(24), 22, 5(25), 24, 25) O W (o) add W (o).
or

add = fp.Z K(o,a:g,a:g) UIg[K(s(:zz4),:1:2,3(:65),564,565) N W(o)ZW(0)°]1s.

21

6 Adequacy of the Translation

We now show the translation preserves the intended meaning of the program. To this
end we need to define canonical interpretations of both the original program and of the
induced equational system (16), or its associated closed form (17).

Let P be a Prolog program, IT = {p;,...,p,} the predicate symbols occurring in it,
Y} its signature, and Tp the Kowalski-VanEmden continuous operator it induces on the
power-set of the Herbrand base (see e.g. [Lloyd]). Let Tp o= 0, Tp T(nsny= Tp(Tr Tn)
and T 1, the least fixed point |JTp T, of Tp, that is to say, the least Herbrand model of
P.

Define, for each p; € I and n in w

{Ip: 1" = {(u,u) : pi(u) € T, 1}

and
{pilt" = {(u,u) : pi(u) € T, 10}

Let p; be relation variables associated with the predicate symbols p; and let

be the equational translation Ep of P. Let F be the set of open relational terms
F;(Pys---,Py), and R, = fpz;.F;(...) the associated closed form solutions of this equa-
tional translation.

Let &£ be the induced operator on relational interpretations into the standard model
P(Ts x T4), as in the statement of theorem (2.13). By the same theorem, ®r has
a least fixed point []* which is the supremum of a chain of interpretations []°
[[]]L, o [, ... We will drop subscripts in the discussion below, when speaking of
a typical predicate symbol p; € II to simplify notation.

Lemma 6.1 For each relation variable p and any interpretation []

Proof: Straightforward, using the semantics of the fp construct and the Tarski-Knaster
theorem. 1

If s is the arity of the program predicate letter p, define the s-th restriction [p]
by

of [p]

E]

[Pl ={(lw, .- w) [,) T € Ts ([w1, .y us, 2], [ug, ..., us, z]) € [P]-
Then we have the following Soundness and Completeness theorem for our translation:

Theorem 6.2 (Adequacy) For each p € 11
Wy = bl

Proof: We establish the two claims below by induction on n, from which the theorem
follows immediately.

*

1. For each natural number n [[T)]]”L C {p}

22

2. For each natural number n {{p}" C [p]* .

s

Claim (1): Since [p]" B is empty, the base case is immediate. Suppose the claim holds for

nand (u,u) € [p]") . “The clause defining p in the normal form P, is of the form

8

pler,. . an) s =\ Di (19)

each D; is of the form

Di = E"anrl o xw[f = t_; qi1 (plf)a <o Qi (péf)] (20)

where the sequence &, say of length m, is the concatenation ¢ - - - £, of arguments occurring
in the clause

p(t?)) D =i (t_i), e Qi (t;) (21)

of the original program P.
The corresponding equation in Ep is

= e,

where

0; = LIK({E) N W (o0)gaW (01)° N - - N W (o) G W (00)°) -
So our supposition (u,u) € [[ﬁ]]”| implies that for some i (1 < i < /) there is an extended

term z, (ux,ux) € [O;]". Since [Is]™ consists of formal vectors of length at least s + 1
sharing their first s components, there is an extended term y such that the length of uy
is at least one greater than that of £, (uy, uy) t_) and for each 7 between 1 and ¢,
(uy,uwy) € [W(o;)giW (o;)°]". But then, by corollary (4.3), for some ground substitution
0, (uy)1,. .., (uy)m) = t0 (where m is the length of £), from which we have the following
consequences:

e u = .0, in other words p(u) is a f-instance of the head p(ty) of the original program
clause (21).

o (t02,102) € [W(o;)GGW (0;)°]" for each j between 1 and £ and some extended term
z, hence (by lemma 4.10)
o (t;02',1:02") € [q;]", whence (£;6,1,0) € [2;1" where r; is the arity of g;.

i

By the induction hypothesis (£;60,%;0) € {{g;]}", whence (by definition of {{[}*), ¢;(£;0) €
T 1,. But then every f-instance of the tail of clause (21) holds in the least Herbrand
model of P, hence so does p(tof). But recall that u = £of so this means (u,u) € {p]*,
which is what we wanted to prove.

The other direction, which requires a symmetric argument, is left to the reader. I

23

6.1 Extending the Translation to Equations and Disequations
Enriched Terms

We will have need of a metalanguage of enriched terms for discussing certain operations
on terms (such as unification and anti-unification). To this end, we introduce operators

2 Lt
of the arities shown, and define an enriched term to be an expression of the form
L. Dt M =s M=se M- T =8y, (22)

where the ¢; and s; are terms (members of the term model of), and where m > 0 and
n > 0. Simply put: enriched terms are either un-enriched terms or they are built by
application of the unary operator — to un-enriched terms, and by iterated applications of
the binary symbol M to enriched terms. The binary operator associates to the right so
that the typical enriched term may be written in the form (22).

6.1.1 Horn Clauses with Equations

We now consider programs comprised of finite sets of clauses of the form
p(ty,....t,): —eOTI

where e, the equality component, is a finite set of equality formulas
UL~ VL ey Uy ™~ Uy

with w,v terms, and ~ one of the symbols {=,#}, and T is a pure Horn clause tail.
We now summarize the normalization procedure for such programs.

Head linearization: We first introduce fresh variables in the head, a la Clark, adding
new equations to the equality component of the tail, and existentially quantifying
all variables “free” in the tail, that is to say, occurring in the tail and not in the
head.

p(ry, ... xp) s =3[y =t1, ..., 2, =t,,e 0TI

The equality component is now the expanded sequence z; = tq,...,z, = t,, e.

First processing of equality component: . Modify every equality formula v ~ v in
the equality component as follows:

1. If u ~ v is u = v where both u and v are variables, replace v with u everywhere
in the tail, and remove v from the sequence of existentially quantified variables.

2. If u ~ v and u is a variable, and the above conditions are not met, do not
modify the equation.

3. Otherwise, replace v ~ v with z = u A z ~ v, where z is fresh and is added to
the sequence of existentially quantified variables.

Linearization of the tail Now we proceed exactly as with pure prolog programs, re-
placing sequences of terms ¢; occurring in atomic predicates in the tail with se-
quences of variables x; (which may or may not be fresh, depending on whether Case
1 or Case 2 obtains in the linearization procedure described in section 5), and adding
new equations x; = t; to the equality component of the clause.

24

Renaming: finally all variables occurring in the tail are renamed in the same way as in
the pure Prolog case, so as to form part of a master list © = xy,...,z,. Each clause
now looks like this:

p(xy,.yy) s =Ty g, ~ by, @, ~ b, DT,

where the new tail 71" is the linearized version of the old, and where the equality
formulae z;; = t;; include processed equality formulae from the original clause as
well as equations added during the linearization steps. Unlike the pure Horn clause
case, there may be repeated occurrences of variables on the left-hand side of the
equality formulas. As before, we force all variables in the clause to occur on the
left hand side of equality formulas, via the possible addition of identities z; = z; if
necessary.

Enrichment: We now replace all equality formulas of the form z;, # ¢; and rewrite
then as x;; = —t;;. Finally we gather all equations (now possibly involving enriched
terms) which share a common variable x on the left hand side

x:tjl,...,x:tj

s

and write then as the single equation
I:tjlﬂ"'ﬂtjs

where some of the t’'s may be of the form —u, u a term.

At the expense of adding enriched terms, we have now brought the clause into a
form where each variable occurring anywhere in the clause occurs exactly once on
the left hand side of an equality formula, and where no occurrences of disequality
remain.

p(T1, .oy @) s =gy T[T = 81,0, 1, = 8, OT.

Relational step: The clause is now translated to a relation expression in a manner very
similar to the pure case

P = LIA(K)(S1,--,80) N W (o)W (1) N -+ N W (00)@eW (00)°) L

where A(K)(s1,...,sy) is the diagonal K (s1, ..., s,)Nid, but where we now need to
expand the definition of K to include sequences of enriched terms. This is discussed
next.

Definition 6.3 K maps enriched terms, and sequences of such to relation expressions as
follows:

K(a) = (a,a)l
K(z;) = (B)°
K(f(ur,..oun) = ['K (u;)

i<n

K(<t1v"'atn>) = szK(tz)

K(~t) = diK()

25

We now need to extend lemma 4.7 in the appropriate way. It should be noted that
in the enriched case, the analogue of diagonal lemma (4.5) is of no use. We can no
longer assume that sequences (t1,...,t,) of enriched terms appearing in expressions of
the form A(K)((t1,...,t,)) are clean in the sense of that lemma. Thus the diagonal
A(K)((ty, ..., t,)) may be a proper subset of K(t1,...,t,)), which is why we are forced
to use the diagonal in the translation. With this choice, we obtain the correct translation
of equational component of a logic program clause in the following sense.

Lemma 6.4 Let z;, ~ t;,,..., 7 ~ t; be a sequence of equality formulas, where the t;,
are terms, and (sq,...,S,) the sequence of enriched terms produced by the enrichement
process described above, with x1,...,x, the list of all free variables occurring in the t;,
(and hence the s;). Then (where 6, is the substitution {uy/xy, ... uy/2y}):

[A(K)((s0y---y8n))] = {(v,v):v=uz where

u,z € Toyu = [uq,. .., u,] and
x'heu ~ ti10u7 SR xzkeu ~ tika
In other words, the diagonal of K((so,...,sn)) consists of precisely those ground substi-

tutions that satisfy the original equations and disequations.

With this lemma, it is easy to extend the adequacy theorem (6.2) to the equational Horn
clause case. For details the reader is referred to [Chap].

7 Evaluation

The equational theory Ep induced by a program P now opens up a new way of computing
queries to logic programs of a quite general nature, via directed relational rewriting. In
this section we sketch a rewrite system, together with a deterministic rewriting strategy
that simulates SLD resolution of conventional prolog queries . It is our first concern
to show that the conventional operational interpretation of the original program can be
recovered relationally, before addressing alternative evaluations.
Suppose P is a program with predicate symbols IT = {p;,...,p,} and G is a query,
say of the form
a1 ({1)7 T Qm(fm) (23)

where the ¢; are members of II of arity (i) and the #; are tuples of terms of appropriate
arities. Let the corresponding relation variables in the induced equational theory Ep be
Di.
Definition 7.1 The translation Ag of a query G of the form (23) is the relation expres-
ston: .

Kt ...t,) @ n...Nng, .
where GG' is W (o)W (0;)°, o; being the permutation on {1,...,m} such that

<t0'i(1)? PN 7tai(n)> = tltl ce ti*lt_’;i»l . Em

in other words, the permutation asociated with the i-th selector p;, as in definition (5.2).

*

In the canonical semantics, the meaning of the translated query [Ag]* is easily seen to
coincide with the set of ground terms satisfying G in the least Herbrand model of P.

26

Evaluation of the query G is simulated by rewriting the relation expression Ag according
to certain strategy outlined below.

We have a choice to make in the way we describe evaluation. We may explicitly model
recursion at the object level by using the fix-point operator in our syntax, replacing all
relation variables by their closed form solutions, or we may handle it metalogically by
dynamically replacing relation variables by their definitions when they are evaluated in
rewriting. We adopt the latter approach here.

Termination occurs when the resultant term has no free variables (or, when closed
forms are used, when the term is recursion-free: without occurrences of fp). We now
describe the rewriting system and the evaluation strategy used, and sketch a proof of its
soundness and completeness. It should be remarked that certain reductions in the system
below are best called meta-reductions, since they involve rules that carry out in one step
some rather intricate rewriting of expressions. For example, we carry out the rewriting

K(ty,...,ty) NK(s1,...,8m) = K(0t,...,0t,) (24)
(25)
where
e the tuples £ = (t,...,t,) and §= (s1,...,5n) are standardized apart
e m <n and
e 0 is an mgu® of (t1,...,t,) and (s1,...,5.,).
and
K(ty, ... ,t)) VK (s1,...,8n) —= 0 (26)
if no unifier of (¢1,...,¢,) and (s1,..., ;) exists.

These rules are sound with respect to RelX-interpretations (lemma 4.4).
Another meta-reduction is

W(O’)OK(tl‘, - ,tn)W(O') AN K(ta(l) - ,ta(n)) (27)

LK(ty, ... t), s K(ty,....t) ifk <n. (28)

which is sound with respect to RelX-interpretations by lemmas 4.9, 4.10, 4.11 and 4.12.

Each meta-reduction abbreviates a sequence of term rewritings. That is to say, is
equationally derivable in the theory Rel>. The chief aim of the translation presented
in this paper is to exploit the benefits of variable free rewriting in compilation, so it is
essential that, in practice, these reductions be carried out within the relational syntax.
The presentation of this rewriting system and a proof of its correctness is straightforward,
but lengthy. It will not be discussed further in this sketch.

We also use some bona-fide rewriting rules, which are just directed equations from the
theory of Distributive Relation Algebras, or fp-algebras, hence obviously sound for Rel:-
and fp-interpretations.

“whose range is among the set of terms over the master list of variables 1, -, Zm

27

Table 1: Nondeterministic Logic Programming Reductions

(AUB)NC V= (ANnC)u(AnCQ)
AN(BNC) += (AnB)NnC

AN(QUR) += (ANQ)U(ANR)
ANnfpr.&(z) = ANE(fpr.&(x))

P

1_71' — E(ﬁlvvﬁn) (lglgn)

Table 2: Meta-reductions

ANTI,QI, s Ly[I.AL, mQ][NA

ANW (o) QW (o) = W(o)[W () W(o) NQIW (0)°
W(o)°K (tr,...,tn)W(o) K(tf,(1 o(n))

K(u) N K(v) s K(6v) (9 = mgu(u,v), || u |<] v)
K(v) N K(u) == K(0v) (0= mgu(u,v), || u[[<[| v)
K(v) N K(u) s 0 (u,v not unifiable)

LK (ty, ... t)], Ly K(ty,....t) (s <n)

7.1 The Evaluation Strategy

The typical query _
Kti...to) NG NOGrr-

is evaluated as follows:

1. Associate to the left (second reduction):

(K(t...to) NG N ... NG
where, since g7’ is W (o1)@aW (01)°,
2. apply the modular law in the form of the second meta-reduction:
W (o) (W(o1)°K(t1 ... ty)W (o) N@)W (1)’ N ... O G

apply the third meta-reduction (which permutes the indices of the sequence i .. tm)

— —

W (01) (K (Tyy1y -« -ty o) NG W (01)° O .. O G

3. replace g by its definition ©; U ©, where O, is U2<i<r O, for some r:

—

W(O'l)([.(({gl(l) N tgl(m)) N [@1 U 62])W(0'1)0 N %I ...N q_ml.
and

4. Distribute the first N accross the union:

—

W(O‘l)([(K(tm(m) .. .Egl(m))ﬂ@l)U(K({gl(m) .. .Egl(m))ﬂgg)])W(Ul)oﬂ@’ﬁ. NG

(29)
Now we concentrate on the evaluation of (K’(fal(m) .+ toy(my) N ©1) which is an
expression of the form (see (15)):

—

I’((tm(l) .. .tﬁ,l(m)) N IS[I'((ﬁ) NW () GaW ()’ N - - AW () G@W (10)°] L.

28

5. Now we apply the first meta-reduction:

—

LILK (T 1) - - -ty) I N K (@) VW ()G W (1)° 0 - - - O W (1)@ W (1)), 0 K (2.

Observing that t_;,l(l) is precisely the truncation of the sequence fgl(l) .. .fgl(m) to its
first s components, and that 501(1) is precisely #; (since the first selector permutation
is in fact the identity) and applying the last meta-reduction:

LIK (t) 0 K (@) N W (1)@t (11)° N - - - O W () GaW (1)), 0 K ().
Letting u' be the result of applying mgu(i, t1) to i, we obtain
LUK @) O W (r)gaW (1)) N - - - O W (m)@@aW (70)°] L, N K (). (30)

This brings us back to the evaluation of a basic form term-sequence N W (relation-
variable)W?° ‘
K(u")y "W (m)qgaW (m)°

so we proceed as before, left-to-right.

As we are, in essence, reducing the entire SLD-tree, termination requires a finite
SLD-tree. To simulate search along one branch, we would have to define termination
to mean the reduction to a relation term one of whose unionands is relation-variable-
free. This can be enforced with a different reduction strategy that we will not
consider here. See [Ruhlen] for details.

7.1.1 Returning Answers

The meta-reduction rules have the effect of reducing every composition and intersection
of a K-term K (i) that can occur in evaluation to another K-term. Thus a resulting
variable-free expression will be a union of such terms. These expressions, which constitute
a normal form of the rewriting system, can be returned to the user, or alternatively, they
can be printed as a normalized constraint-set description of the solution. This notion of
printing has been described in [BroLip]. Although this extra strength is not exploited
in the results of this paper, the printing algorithm reduces any variable-free relation
expression using the full relation-algebra connectives (that is to say, including negation)
to a two-quantifier formula in which negation occurs only immediately before atomic
formulas (equations between terms) using the quantifier elimination algorithm of Mal’cev
[Mal’cev], also described in [Maher]. Tt is therefore able to return readable answers to a
considerably stronger relational rewriting system in which arbitrary first-order constraints
over the Herbrand Universe are used as queries and outputs. The quantifier elimination
process is the basis of Constructive Negation [Chan, Stuckey].

7.2 Soundness and Completeness of Evaluation

Soundness of evaluation is an immediate consequence of the fact that every rewrite rule
R+ R’ is equationally sound: in any interpretation into P(7T5 X T5)

[R] = [R']

Suppose we are given a program P and a query G as in (23), with a finite SLD tree
with leftmost selection rule. Since our reduction system is equationally sound, and the

29

adequacy theorem shows that a pair of ground terms (u,u) is in [Ag]| precisely when

the components of u make the query true in the least Herbrand Model ofSP, the only way
completeness can fail to hold is if evaluation of Ag fails to terminate. If it does terminate,
i.e. Ag reduces to a closed term A, then we have the following:

L [Ac]" = [A]".

2. For s the number of terms in query G, [[AG]]*| = {(u,u) : u ground and Mp
G(u)} where Mp is the least Herbrand model of P.

Thus, in order to establish completeness it suffices to prove the following theorem.

Theorem 7.2 Suppose G = q1(t1), ..., qm(tm) is a query for a logic program P, and has
a finite SLD tree with the leftmost selection rule. Let Ag be the relational query associated
with G. Then there is a closed term A such that Ag —— A.

Proof: By induction on the depth of the given SLD tree. Suppose G has the following
finite SLD tree:

where each G is of the form
Bifls, q2(t20:), - -, G (tmbs).
and where B; is the tail of the ¢-th clause in the program P whose head predicate is p;:
p1(tio) + —qi(Uir), - -, qieltie).
Then G is precisely the goal:
(g1 (ui1), . .- que(uiie))01, ga(t261), . . ., qe(tebr),

where 6; is a most general unifier of uyy and {1
The SLD tree below this goal is finite (and of smaller depth than the original goal),
hence so is the SLD tree (with left-most selection rule) below the first subgoal Gq; =

q11 (Uflel)-

30

Let Ag,, be the relational translation of this goal, namely
K (ui161) N qu

We may apply the induction hypothesis to conclude that our evaluation strategy will
reduce Ag,, to a relation-variable-free A;y, which, in fact, must be the K-term corre-
sponding to the computed answer substitution for this goal.

Recall (from 29) that evaluation of the original query Ag yields, in several steps, an
expression of the form

W(Ul)([([.('(fgl(m) .. .t_:,l(m)) N @1) U (K(t_;,l(m) .. .t_:,l(m)) N @2)])W(01)0 NG N...NG .
the leftmost reducible subexpression of which reduces to (30)
LK (ug161) O W (r)@aW (11)°) N W (r2)@zW (72)° 0 - - N W () qeeW (1)) T 0 K (D).

Since the first selector W () is the identity, the leftmost reducible subterm K (u716;) N
W (m)qiW (11)° is precisely Ag,, which reduces to A;;. We are left with (using primes to
hide the switching relations W):

W (o) (L[An NGz O - NG s 0K () U (K (foym) - - - Loy o)) N O2))W (a1)°
NG N...0g,.

The stack of goals (relation-variables) present is bounded by the size of the original SLD
tree, and for each one we argue in the same way, eventually producing a union of relation-
variable free goals

A=AlU...UA,

where v is the number of success nodes on the fringe of the original SLD tree. I

8 Related and Future Work, and Conclusions

There have been other efforts in the literature to remove variables from Prolog, and to
make evaluation and compilation more algebraic. Bellia and Occhiuto develop an algebra
of programs that captures unification, rewriting and narrowing in [BelOcc]. Our work
rests heavily on the fact that such an algebra can be found within the relation calculus,
whose semantics is well-understood, and which admits natural extensions to higher-order
and linear contexts, as well as a rich representation theory (see e.g. the treatment of
Allegories in [FreySce]). The compilation process described here can be viewed as an
application of the canonical inclusion of a regular category into its associated category of
relations. The greater generality of the categorical framework opens the way to applying
this technique to extensions of the logic and to constraints, as well as to a denotational
treatment based on relations, which we are currently exploring.

Categorical treatments of logic programming provide alternative ways of algebraicizing
the subject, which are, in a sense, variable free (see e.g. [AspMart, Diac, PowKin, FFL,
NFDP, Pym]). Corradini and Montanari [CorMont] have given a categorical analysis of
logic program execution in terms of transition systems. None of these approaches have as
yet been applied to compilation or the definition of an abstract machine for logic programs,
although this might be an interesting alternative to the work in this paper.

31

At this point there are a number of questions raised by this approach which we hope to
address. Can a significant portion of our relational machine be captured with a Church-
Rosser, strongly normalizing set of rewrite rules? Comon and Jouannaud and Kirchner’s
work [Comon, CoHaJo] on rewriting systems for unification and disunification suggests
that this is quite feasible, as does the work of Bellia and Occhiuto, op. cit.

We would also like to exploit the rich semantics of relational formalisms to obtain new
notions of observables, and abstract interpretation, as well as to extend the relational
compilation to higher-order logic programming.

To some extent this work was a foray into the terrain of relation-based computing as a
separate discipline, with logic programming as an extended case-study . Some instances
of “pure” relational programming languages, of limited expressive power, were studied in
[BroLip]. A useful rewriting system for the full relation calculus seemed a lot to ask for in
the absence of some computational paradigm and we thought it would help, at the start,
to anchor such a system in logic programming-inspired reductions.

Work by the RUBY group at Oxford on hardware [BroHut, JonShe|, and on pro-
gram synthesis via relations by Bird and de Moor[Algebra], Maddux[Maddux, RelSem],
Naumann [Naumann| and Backhouse [Backh], to name a few of the many researchers
in this field, suggests that the relational paradigm can provide significant computational
insights at almost every level of the field. Exploration —via relations— of possible connec-
tions between program synthesis and a more general notion logic of programming seems
particularly tempting.

References

[AspMart] A. Asperti and S. Martini. Projections instead of variables, a category theoretic inter-
pretation of logic programs. In Proceedings of the 6 International Conference on Logic
Programming, pages 337-352. MIT Press, 1989.

[WAM] Hassan Ait-Kaci, Warren’s Abstract Machine: A Tutorial Reconstruction, MIT Press, Series
in Logic Programming. 1991.

[Backh] Backhouse, R, et. al., “A Relational Theory of Data Types,” in Workshop on Constructive
Algorithmics: The Role of Relations in Program Development, Utrecht University, 1990.

[Backus] Backus, J., “Can Programming be liberated from the von Neumann style?” in ACM Turing
Award Lectures, ACM Press (Addison-Wesley), New York, 1987.

[BakRoe] de Bakker, J. and de Roever, “A Calculus for Recursive Program Schemes” , ed. Nivat, A.,
in Automata, Languages and Programming, 1973.

[BelOcc] Bellia, M., and Occhiuto, M. E.; “C-expressions, a variable-free calculus for equational logic
programming”, in Theoretical Computer Science 107, Elsevier, 1993.

[Naumann] David A. Naumann “A recursion theorem for predicate transformers on inductive data
types”, Information Processing Letters, volume 50, 6, pp. 329-336, 1994.

[BirdMoorl] R S Bird, Oege de Moor and P Hogendijk. Generic programming with types and relations.
Journal of Functional Programming, 6(1), 1996.

[Algebra] Bird, R. S. and De Moor, O. Algebra of Programming. Prentice Hall, 1996

[BroHut] Brown, C. and Hutton, G., “categories, Allegories and Circuit Design”, in Proceedings of
the 9th Symposium on Logic in Computer Science, IEEE, 1994.

[Broome86] Broome, P. Transformations of Parallel Programs with Higher-order Relational Operators,
Ph. D. dissertation, Univ. of Delaware, 1986.

32

[Broome91]

[BrLi92]

[BroJon]

[Chap]

[Chan]

[Clark]

[CorMont]

[Comon]

[CoHalJo]

[clp94]

[BroLip]

[Colp]

[Diac]

[FriasMad]

[FFL]

[Freyd92]

[FreySce]

[NFDP]

[LakRed]

[JafLas]

Broome, P. “Applications of Algebraic Logic to Recursive Query Optimization,” 8th Army
Conference on Applied Mathematics and Computing, 1991.

Broome, P.; and Lipton, J., “Constructive Relational Programming”, Transactions of the
9th Army Conference on Applied Mathematics and Computing, ARO-Report 92-1, 1992.

Brown, Carolyn and Jones, G., “Hardware Component Allegories”, in Proc. LICS 1994,
IEEE.

Compilation of Logic Programs to a Relational Machine, Honors Thesis, Wesleyan Univer-
sity, 1997.

Chan, D. Constructive Negation Based On the Completed Database, Logic Programming:
Proceedings of the Fifth International Conference and Symposium Eds. R. A. Kowalski and
K. A. Bowen, MIT Press, Cambridge, MA, pp 111-125, 1988.

Clark, K., “Negation as Failure”, in Logic and Data Bases, Gallaire and Minker eds., Plenum
Press, New York, 1978.

Corradini, A. and Montanari, U. An algebraic semantics for structured transition systems
and its application to logic programs. In Theoretical Computer Science 103. Elsevier, 1993.

Comon, H. “Disunification, A Survey”, in Logic and Automation, Lassez and Plotkin, eds.,
MIT, 1992.

Comon, H., Haberstrau, M., Jouannaud, J-P, “Decidable problems in shallow equational
theories”, in Proc. 7th. Symp. of LICS, IEEE Computer Society Press, 1992.

Joxan Jaffar and Michael Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20, 1994.

Broome, P and Lipton, J., “Combinatory Logic Programming: Computing in Relation
Calculi” in Proceedings of the 1994 International Symposium on Logic Programming, M.
Bruynooghe, ed., M.I.T. Press, pp. 269-285, 1994.

Lipton, J., “A Relational Foundation for Logic Programming”, to appear.

R. Diaconescu. Category Semantics for Equational and Constraint Logic Programming. PhD
thesis, Oxford University, 1994.

“Completeness of a Relational Calculus for Program Schemes”, proceedings of LICS 98,
IEEE, 1998.

Finkelstein, S., Freyd, P. and Lipton, J., “Logic Programming in Tau-Categories”, in
Computer Science Logic 94, LNCS 933, Springer, pp. 249-263, 1995.

e-mail manuscript, Categories, Relations and Computation bulletin board, Feb. 15, 1992.
Freyd,P. and Scedrov, A., Categories,Allegories, North-Holland, 1990.

Finkelstein, S., Freyd, P. and Lipton, J., “A New Framework for Declarative Program-
ming”, to appear in Theoretical Computer Science, Elsevier.

T. K. Lakshman and Uday S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In Proceedings of the 1991 IEEE Symposium on Logic Pro-
gramming, pages 202-220, 1991.

Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proceedings of
Symposium on Principles of Programming Languages. ACM, 1987.

33

[JonShe]

[Lloyd]

[Maddux]

[RelSem]

[Maher]

[MdM96]

[Mal’cev]

[Miller]

[Moor92]

[MycOXk]

[Peirce]

[PowKin]

[Pym]

[deRoe]

[Ruhlen)]

[Schmidt]

[Shep88]

[Stuckey]

[TarGiv]

Jones, G. and Sheeran, M., “Circuit Design in RUBY”. In Formal Methods in VLSI Design,
ed. J. Staunstrup, North-Holland, 1990.

Lloyd, J. W., Foundations of Logic Programming, second ed., Springer-Verlag, 1987.

Maddux, R., “Introductory course on relation algebras, finite-dimensional cylindric alge-
bras, and their interconnections”, in Algebraic Logic (Proc. Conf. Budapest 1988) ed. by
H. Andreka, J. D. Monk, and I. Nemeti, Colloq. Math. Soc. J. Bolyai 54 North-Holland
Amsterdam, 1991, 361-392.

Maddux R., Relation-Algebraic Semantics, in Theoretical Computer Science, Volume 160,
June 1996.

Maher, M., “A Complete Axiomatization of the Theories of Finite, Rational and Infinite
Trees” Proceedings of the third IEEE Symposium on Logic and Computer Science, 1988.

R. McPhee and O. de Moor, ”Compositional Logic Programming”, in Proceedings of the
JICSLP’96 post-conference workshop: Multi-paradigm logic programming, M. Chakravarty
and Y. Guo and T. Ida, eds., Technische Universitit Berlin, also PRG Report 96-28, Oxford,
1996.

Mal’cev, A.I.,“On The Elementary Theories of Locally Free Universal Algebras”, Sowviet
Math. Doklady, 1961, pp.768-771.

Miller, M., Nadathur, G., Pfenning, F. and Scedrov, A., “Uniform Proofs as a Foundation
for Logic Programming.” Annals of Pure and Applied Logic, 1990.

de Moor, Oege, Categories, Relations and Dynamic Programming, Dissertation, and Tech-
nical Monograph PRG-98, Oxford Computing Lab, Oxford, 1992.

A. Mycroft and R. A. O’Keefe. A Polymorphic Type System for Prolog. Artificial Intelli-
gence, 23(3):295-307, 1984.

Pierce, C.S., The Logic of Relatives, Studies in Logic. Johns Hopkins University, Baltimore,
1882, 235-277.

Power, J. and Kinoshita, Y., A new foundation for logic programming. In FExtensions of
Logic Programming ’96. Springer Verlag, 1996.

Pym, D., Functorial Kripke models of the Am-calculus. Lecture at Newton Institute Se-
mantics Programme, Workshop on Category Theory and Logic Programming, Cambridge,
September 1995.

de Roever, W.P., “Recursion and Parameter Mechanisms: an Axiomatic Approach”, Report
IW 20/74, Matematisch Centrum, Amsterdam, 1974.

Development of a Rewrite System for Relational Algebra Equations Modeling Horn Clause
Resolution Master’s Thesis, Wesleyan University, 1997.

Schmidt, G. and Stréhlein, T., Relations and Graphs, EATCS Monographs, Springer, 1993.

Sheperdson, J.C., Negation in Logic Programming, in Deductive Databases and Logic
Programming, Jack Minker, Rd., Morgan Kaufman, Los Altos, CA, 1988.

Stuckey, P. “Constructive Negation for Constraint Logic Programming” in Proceedings of
the 6th IEEE Symposium on Logic and Computer Science, New York, pp.328-339, 1991.

Tarski, A. and Givant, S., A formalization of set theory without variables, Colloquium

publications, V. 41, American Mathematical Society, Providence, RI, 1987.

34

Relational Programming in Libra

BARRY DWYER
University of Adelaide, South Australia, 5005.

Abstract

Libra is a general-purpose programming language based on the algebra of binary
relations. It attempts to unify functional and logic programming, retaining the ad-
vantages of both, and avoiding some of the problems. It has all the features needed
of a programming language, and a straightforward semantic interpretation. Since
program specifications are easily expressed as relations, it offers a simple path from
a specification to a program and from the program to its proof of correctness. The
algebra of binary relations has several operators whose effects are like those of famil-
iar procedural language constructs, for example, relational composition is analogous
to sequential execution. The Libra language is illustrated by its application to a
simple programming exercise. Some conclusions are drawn.

1 Introduction

This paper is a condensed version of a technical report [3] describing the Libra program-
ming language. An implementation of Libra is available from

ftp://ftp.cs.adelaide.edu.au/pub/dwyer/libra
or via the author’s web page at

http://www.cs.adelaide.edu.au/"dwyer

1.1 What is a Binary Relation?

In mathematics, the expression XpY is true if X and Y satisfy the relation ‘p’. For
example X <Y is true if X and Y satisfy the relation ‘<’. There are three ways the ‘<’
relation can be considered:

1. As the (infinite) set of all (X,Y") pairs for which X < Y.
2. A predicate that can be applied to (X,Y") pairs.

3. As a ‘relator’ (in the sense of [10, 11]) that, given X, will yield all Y values greater
than X.

In Libra, a relation to describe changes in temperature could be defined as follows:
transition—>{’Cold’,’Warm’;’Warm’,’Hot’;’Hot’, ’Warm’;’Warm’,’Cold’}.

The braces enclose a set of 4 elements, each of which is an ordered pair of terms. The
relation is given the name ‘transition’ — or rather the name ‘transition’ maps onto the
relation. The two means used in this example: set and pair formation, are Libra’s only
means of structuring data. Members of sets are unordered, but pairs are ordered.

There are three ways this relation could be used:

1. It could generate the four pairs of values.

35

2. It could be used to test whether a pair of values satisfy the relation.

3. Given the first term of a pair or pairs, it could give the corresponding second terms
as a result. For example, given ’Warm’, it could yield both ’Cold’ and ’Hot’.

The first two ways of looking at relations are shared by all sets. The third view puts the
relation in a more active role, and is described as ‘applying’ the relation to an argument
to generate one or more values as a result. This is analogous to the view we take of
applying functions in a functional programming language. Libra distinguishes these three
roles syntactically.

To generate the members of ‘transition’, we write:

? @ transition.
(’Cold’,’Warm’)
(*Warm’,’Hot’)
(*Warm’,’Cold’)
(’Hot’,’Warm’)

The ‘@ operator generates each element of a set, in arbitrary order. It may be read as
‘all’ or ‘for all’. In the existing Libra system, successive elements are generated by back-
tracking, but in principle they could be generated in parallel. We may imagine that the
computation splits into several threads: four in this case. The threads are independent,
and cannot communicate with one another.

To test set membership, we may write:

? (’Warm’,’Hot’) 7?7 transition.
’True’

The ‘?” operator may be read as ‘is a member of” and corresponds to the mathematical
symbol ‘€’.
To apply a relation to an argument, we write:

? ’Warm’ ! transition.
’Hot’
’Cold’

There is an important distinction to make here. Applying a relation to an argument gen-
erates several result values, two in this case. It does not yield the set, {’Hot’; ’Cold’}.
Applying relations that generate many values is computation intensive rather than storage
intensive, but there are ways for a programmer to trade time for space if desired.

Libra does not support a fourth mode of using relations: given the second term of
a pair, to determine its corresponding first terms. Accordingly, the first term of a pair
is called its argument, and the second term is called its value. It is possible to go from
argument to value, but not in general from value to argument — any more than existing
programming languages allow inputs to be derived from outputs. This is stressed by the
alternative notation for pairs: using ‘=>":

transition -> {’Cold’->’Warm’; ’Warm’->’Hot’;
’Hot’->’Warm’; ’Warm’->’Cold’}.

from which it will be seen that the name ‘transition’ and the relation it defines are also
an ordered pair.

36

1.2 Why Binary Relations?

Why should a programming language be based on the algebra of binary relations? One
view is that it is an attempt to combine the advantages of both functional programming
and logic programming.

An advantage of pure functional programming is ‘referential transparency’: the idea
that a program is an algebraic expression, which when simplified, yields the value of the
program, i.e., its output. An aspect of this idea is that functions can be given names, and
that any occurrence of the name can be replaced by the corresponding function.

A difficulty that besets functional programming languages is that a function always
has exactly one value. This makes it hard to deal with exceptions: dividing a number
by zero yields no result, yet finding the square root of a number yields two results. This
difficulty is avoided in a logic language such as Prolog, which can produce no result by
‘failing’, or produce two results by back-tracking.

On the other hand, Prolog has its own difficulties. Although a subset of Prolog can be
understood in terms of propositional calculus, most Prolog programs need to use extra-
logical predicates, which can only be understood with reference to a specific model of
program execution. A language based on the algebra of relations can combine the best of
both approaches, while avoiding some of their problems.

A different view is that relations are to general-purpose programming languages what
matrices are to scientific languages. They are large scale data structures, which can
be manipulated as wholes. In the scientific field, matrices have led to the evolution
of specialised parallel computer architectures such as vector processors, but there is no
similar well-established concept that has formed the basis of parallel architectures in more
diverse fields — unless one counts the n-ary relations used in databases. Perhaps binary
relations will provide such a concept. (The reader may recall that the original Connection
Machine [4] was based on similar ideas, but it failed to exploit the full power of relational
algebra.)

A third view is that relational algebra contains a rich supply of operators useful to
programmers. For example, a common programming exercise is, given a list of words, to
display the positions of each word. In the algebra of binary relations, if W is the list of
words, the result is essentially given by the expression W1,

A fourth view is that relations include functions as special cases. They are like multi-
valued functions, and can do anything that functions can. They are also known to be a
universal model for data representation, being the building blocks of relational databases.

In Libra, there is no distinction between a relation as data or a relation as an op-
erator, except how it is used. The syntax of Libra is such that, the limitations of the
ASCII character set aside, any legal program is a valid expression in the algebra of binary
relations that specifies the program’s behaviour. This gives Libra a flavour similar to the
specification language ‘Z’. Libra is not an attempt to imitate ‘Z’, but it makes it easy to
derive a Libra program from a ‘Z’ specification.

1.3 Some Previous Work

The Libra language owes its inspiration to Sanderson’s Relator Calculus [10, 11]. However,
there is a fundamental shift of viewpoint from his work. Sanderson regarded programming
constructs such as ‘if...else’ and ‘while...do’ as having proved their worth, and based the
Relator Calculus on similar constructs. Their disadvantage is that their mathematical
properties are messier than the similar concepts of union and closure, except when the

37

program is functional.

Another source of inspiration is the work of MacLennan [5, 6], who wrote several rela-
tional programs using the language RPL. RPL was really a functional language that could
operate on relational data structures. Its control structure did not exploit backtracking
or parallelism. It also had the blemish that different operators were used to denote the
same operation, depending on whether it acted on relations expressed as data (extensional
relations) or as program (intensional relations). It was also awkward to mix operations
on intensional and extensional structures.

This defect of RPL was addressed by Drusilla [1], which allows the same operator to
be used uniformly on intensional or extensional relations, or a mixture of both. Drusilla
also distinguishes the three modes of using relations identified earlier: as sets of pairs,
as predicates that can be applied to pairs, and as means of generating results from an
argument. The Drusilla compiler uses an extension of Milner type checking [7] to deduce
the correct ways of combining relations from these properties. The same process also
performs conventional type checking, detecting potential programming errors. In this
respect Drusilla is superior to Libra, which leaves type checking until execution time.
On the other hand, Libra allows operators to be overloaded, so that, for example, the
programmer can extend the built-in ‘+” operator, which originally applies only to integers,
to apply to vectors and matrices. Overloading is natural to a relational language, where
arguments can map to several values, but it is complex with Milner type checking, because
the types of operands and results are deduced from the types of operators, which therefore
have to be fixed [9].

The ‘Z’ specification language [8] has also been an influence on Libra. Libra includes
many constructs found in ‘Z’. Libra could serve as a specification language. It is possi-
ble to turn a Libra specification into an executable program using theorems of discrete
mathematics.

The immediate precursors to Libra are a language proposal written by the author [2],
and Hydra [9], a partial implementation of it. Like Drusilla, the proposal tried to rectify
defects of MacLennan’s RPL, but adopted solutions different from Drusilla’s in almost
every case. This is probably because Drusilla has a functional programming background,
whereas Libra is based on logic programming. Both Drusilla and Libra attempt to meld
the functional and logic styles, but start from opposite ends of a spectrum. Hydra was
influenced by Drusilla, and revealed several problems in the language proposal.

An important difference between Drusilla and Libra is their treatment of iteration.
Drusilla simulates iteration by recursion — which is to be expected of a functional lan-
guage — whereas Libra uses transitive closure. A typical Libra program is free of recur-
sion, making its structure more transparent. Recursion can simulate ‘go to’ statements.
Badly used, it can make a program just as hard to understand as they do. Thought was
given to banning recursion in Libra. It remains available — in case of emergency. Another
difference is that Libra uses sets and pairs as its basic structuring operations, whereas
Drusilla uses lists and tuples. Libra’s approach seems more appropriate to a relational
language. The elements of sets have no particular order, which means that they can be
dealt with in parallel, at least in principle. Operations on different elements can never
interact with each other, again simplifying understanding of the program.

Another Libra feature worthy of note is ‘reduction’, which enables the elements of a
set, or sequence to be combined under a suitable binary operation. For example, reducing
a set of numbers under ‘+’ forms their total. A special case of reduction is to choose an
arbitrary member of a set. This is useful in problems that admit of many solutions, but
where only one solution is needed.

38

Libra is intended to assist the development of relational programming by encouraging
experiment. To this end, the current interpreter is designed for simplicity and ease of
extension and modification.

2 The Libra Language

2.1 Basic Syntax

Libra syntax is based on that of Prolog. This aided its implementation, but has some-
times resulted in compromise. Libra’s lowest-level terms are variables, integers, atoms,
delimiters and operators. Variables and integers are defined as in Prolog. All variable
names begin with a capital letter.

There are two kinds of atoms. Those beginning with capitals, such as *Warm’, are
called ‘literals’, and stand for themselves. (They are enclosed in quotes to distinguish
them from variable names.) Literals give meaningful names to discrete values. The only
pre-defined literals are ’True’ and ’False’, but the programmer can invent new ones.
All other atoms are called ‘names’. There are three kinds of names: strings beginning with
a small letter and comprising letters, underscores or digits, any string enclosed in quotes
that is not a literal, and strings of the symbols +-*/\"<>=:.70#$&. A name maps to one
or more expressions. Referential transparency means that wherever a name appears, it can
always be replaced by any of the things it stands for. Operators are merely a notational
convenience. As in Prolog, any name may be defined as an operator. The expression 1+2
is indistinguishable from +(1,2). Both are interpreted as relational application, i.e., as
(1,2) ' (+). Tt may seem strange to treat ‘+’ as a relation rather than a function, but a
function is merely a special case of a relation.

2.2 User Commands

The Libra programming environment is a command loop in which the user may choose
one of the following actions:

e To create mappings from names to expressions.

e To evaluate an expression. If there are several results, all are displayed.
e To display the definitions associated with a name.

e To drop existing definitions, either wholly or in part.

e To add new operators to the language.

e To load prewritten programs.

e To dump the current set of definitions.

e To obtain on-line help.

A typical program file consists of a series of definitions followed by a query. A definition
has the form ‘name -> expression.’, and a query has the form ‘? expression.’

39

2.3 Structures

Libra’s basic structuring operations are set formation and pair formation.

Sets are written as lists of elements between braces ‘{}’, separated by semicolons.
{2;3;1} and {1;2;2;3} both denote the same set. The members of sets may be structured
and may even be of different kinds, e.g., {(1,2);{1,2};1;°True’}. A shorthand is
provided for ranges of integers: {M..N} denotes the set containing the integers M to N
inclusive.

In contrast to ‘extensional’ sets whose members are listed explicitly, it is also possible
to define an ‘intensional’ set by a means of a pattern and a predicate. For example:

{(X,Y) : X<Y}

denotes the set of all (X,Y’) pairs such that X is less than Y, i.e., it is the same as the
relation ‘<’ itself.

There is an important restriction on a set defined in this way. It is possible to test a
given element for membership of it, but it is not possible to generate its members. Libra
cannot deduce what set is implied by a pattern and a predicate. Such sets are called
‘filters’ to distinguish them from those whose members are listed explicitly, which are
called ‘generators’. A generator can be used as a filter, but a filter can’t be used as a
generator.

Ordered pairs are defined by an argument and a value, e.g.:

Arg -> Value
or
Arg, Value

[

maps the input Arg onto the output Value. They are formed by the infix operators °,
and ‘=>’, which differ only in that ‘=>’ binds its operands more loosely than ‘,’. Having
a choice of operators saves parentheses.

2.4 Binary Relations

Binary relations are merely sets of pairs, e.g:
swap —> {X,Y -> Y,X}.

Defines a relation that swaps a pair of values. It is possible to use this relation as a filter
to test if one pair is the reverse of another, for example:

7 ((1,2), (2,1)) ? swap.
’True’

(The first (unary) ‘?’ may read as ‘evaluate’, the second (binary) ‘?’ tests for set mem-
bership, and is equivalent to ‘€’.)

It is not possible to use swap as a generator. However, it allows a third mode of use:
as a relator [10, 11] or ‘constructor’. The swap relation can be applied to the pair (1,2)
to construct the pair (2,1) as follows:

? (1,2) ! swap.
(2,1)

40

It is possible to write what appears to be a ternary relation, e.g:
ternary -> {X,Y,Z : X<Y<Z}.
But this is identical to:
ternary -> {X,(Y,Z) : X<Y<Z}.

This means that ternary relations, quaternary relations, and so on, do not exist in Libra,
although it is usually harmless to pretend that they do.

2.5 The Ranks of Relations

There is a hierarchy of relations in Libra: ‘generators’, ‘constructors’, and ‘filters’. As
we have just seen, a constructor may be used as a constructor or a filter. A generator
may used as a generator, a constructor or a filter. A filter may be used only as a filter.
The distinction is made as follows. A generator contains no variables, but constructors
and filters do. In a constructor, only the first term of a pair may introduce new variable
names, which may be reused in the second term. A filter contains a pair whose second
term introduces new variables. If a relation contains several pairs, its lowest ranking pair
determines the rank of the relation.

There are no parameters associated with the name of a relation; each pair carries its
own argument pattern:

max -> {X,Y -> X : X>Y; A,B -> B : B>=A}

In addition to the means of definition given so far, which are simply those for sets,
constructors also allow the second term of a pair to be defined by an expression. For
example:

succ —> {X -> X+1}.

maps succ to a relation that adds one to its argument.

2.6 Sequences

Sequences are relations whose arguments occupy the range 1-n, for some n > 0. Sequences
are written as lists enclosed in square brackets; for example [97,98,99] denotes the
relation {1,97; 2,98; 3,99}. ‘Strings’ are sequences whose terms are characters, i.e.,
small integers. For convenience, [97,98,99] may also be written as "abc".

The empty sequence is denoted by []. It is the same object as the empty set, denoted
by {}. The expression [M..N] denotes the sequence whose first term is the integer M and
whose last term is the integer N. So that:

[3..5]
denotes the relation:
{1->3; 2->4; 3->5}
Sequences, sets, and pairs may be nested as required, e.g.,
{(1,2); {3;4}; [5,(6,7)1%
denotes the set containing the pair (1,2), the set {3;4}, and the two-term sequence

[5,(6,7)].

41

2.7 Application

Applying a relation to an argument generates outputs:

?23 1 {X ->X-1; X -> X+1}.
2
4

If a relation is applied to an argument that fails to unify with any of its argument patterns,
it has no value, and is said to be ‘inapplicable’. Even if it unifies, a relation may be
inapplicable if a predicate following ‘:’ yields ’False’.

There are several other operators closely related to relational application. One is called
‘functional application’ (), and is written thus:

? max~(1,3).
3

It differs from relational application only when the relation yields several values; functional
application yields only one, arbitrarily. Among other things, it is useful when a problem
has several solutions, but any solution will do.

There is an asymmetry between the evaluation of the two operands of the application
operators. The argument is always fully evaluated, but the relation is evaluated lazily —
only those values matching the argument are evaluated. For example, given the definition:

factorial -> {0->1; N->Nxfactorial(N-1):N>0}.
and the query:

? factorial(2%3-6).
1

The expression 2*3-6 is fully evaluated to yield 0, which then unifies with 0 in the
factorial relation. The argument also unifies with N in the second term, but fails the
predicate N>0. Thus the expression Nxfactorial (N-1) is not evaluated. This illustrates
an important point. A program typically defines a complex relation — often infinite. If
the whole program had to be evaluated (i.e., its input-output relation was computed)
before it could be applied to an argument, Libra would not be a practical programming
language.

2.8 Relational Operators

Since relations are sets, they may be combined using set operators, such as join, meet or
omit. In addition, there are several operators that apply only to relations:

The composition A o B of relations A and B is denoted by A o B (the letter ‘0’). The
expression X! (g o f) has the same effect as £ (g(X)) or (X!g) !f. Relational composition
is similar to sequential execution in a procedural language. It is guaranteed that the second
relation is applied after the first.

Two operators, else and but, provide the operations of ‘relational extension’ (anal-
ogous to functional extension) and ‘over-ride’ (A & B). If A is applicable to an input
argument, A else B maps it to the output values of A, and B is ignored. However, if A is
inapplicable to the argument, A else B maps it to the outputs of B.

42

The expression A but B is equivalent to B else A. It is often used when it is de-
sired to derive a relation that is like an existing one, except in some particular, e.g:
{X -> X but [2!'X, 1!'X]} swaps the first two elements of X.

The inverse A~' of A (denoted in Libra by A~-1) is such that (X,Y) is a pair in
A=l if and only if (Y, X) is a pair in A. Asking for the inverse of a relation is to ask
what arguments can produce a given value. The relation: square -> {X -> X#X} has
as its inverse the relation that finds the positive and negative square roots of the perfect
squares. Although the inverse of a generator is a generator, and the inverse of a filter is
a filter, since Libra cannot solve equations, the inverse of a constructor is only a filter.

There are four ‘restriction’ operators. Each modifies a relation by restricting its ar-
guments or values according to membership of a set. The left restriction operator ‘<?’ is
such that s<?r restricts the domain of r to arguments in s. It comprises those pairs in r
whose first terms are members of s. The left anti-restriction operator ‘<\?’ is such that
s<\?r restricts r to arguments not in s. The right restriction operator ‘?>’ is such that
r?>s restricts the codomain of r to values in s. The right anti-restriction operator ‘\?7>’
is such that r\?>s restricts r to values not in s.

2.9 Sequence Operators

Sequences are relations, so any set or relational operator can be applied to them. However,
they have a few operators of their own.

Sequences may be concatenated, using the operator ‘&&’, so that "ab"&&"cd" is the
string "abcd".

It is easy to find the n-th element of a sequence, e.g., 2!"abcd" and "abcd"~2 both
yield 98. The expression [2..3]o0"abcd" simplifies to "bc" — illustrating how a substring
can be selected from a string. It is also straightforward to convert a single character to
and from its ASCII equivalent; 1!"a" = 97, and [97] = "a".

Given the argument [5,6,7,8], the built-in function head returns the term 5, the
function tail returns the sequence [6,7,8], the function last returns the term 8, and
the function front returns the sequence [5,6,7].

The built-in sort function takes a set as argument and yields a sequence whose terms
are the elements of the set in Prolog’s standard order. For example:

? {2;3;1}!sort.
[1,2,3]

The sort function always sorts into ascending order. However, the postfix <- operator
reverses a sequence, so that:

? ({2;3;1}!sort)<-.
[3,2,1]

is a combination that sorts a set into descending order.

2.10 Homogeneous Relational Operators

Relations that have the same argument and value types are called homogeneous. They
can be applied to their own results, allowing transitive closure — an important concept
in Libra, analogous to iteration or search.

The infix ‘~+’ operator is used to apply a relation to its own output a fixed number
of times; R"+2 is equivalent to R o R, R"+3 is equivalent to R o R o R, and so on (R?

43

R3, etc. in mathematical notation). R~+1 (R!) is simply R itself, and R"+0 (R?) is the
identity function on the domain of R.

The postfix ‘~+’ operator forms the transitive closure of a homogeneous relation (R*
in mathematical notation). It is defined by the infinite union:

Rt =R'UR*UR?...

There is an important restriction on the relations whose closure Libra can compute:
they must be acyclic. Libra’s implementation of transitive closure is not sophisticated
enough to recognise that in exploring longer and longer paths, no new terms are added
to the closure.

It is entirely possible to devise an algorithm that finds the transitive closure of a cyclic
relation. One way is, when exploring a path, to test whether the next vertex to be added
to the path is already on it. Another way is to test whether a newly generated pair is
already part of the result. Why aren’t these methods built into Libra?

There are three reasons: The first is that transitive closure is often used where cycles
obviously cannot occur:

? (0,1) ! ({M,N —> N,M+N}"+).
(1,1)
(1,2)
(2,3)

(the Fibonnaci series). Testing whether a cycle has occurred would be an unnecessary
overhead in such a situation.

The second reason is that the transitive closure of a relation can be very large. Complex
search problems can be modelled by closures. A typical search has the form:

7 start ! (improve”+ 7> solution).

which finds all solutions by repeatedly using improve to transform the initial state, start,
until it is in solution. Keeping track of the states generated by improve~+ might use all
available storage.

The third reason also relates to search problems: it is usually necessary to record
how a solution has been reached. This means storing the sequence of moves chosen.
This sequence becomes part of the input and output of improve, so it would defeat an
automatic cycle detector. On each iteration around a cycle, the sequence of moves grows
longer. However, a built-in cycle detector could not distinguish this growing sequence
from the rest of the state, and would consider each iteration to generate a new state.

The ‘“+ operator always applies its relation at least once. The similar ‘“*’ operator
forms the reflexive transitive closure of a relation:

R*=RUR'UR*UR?...

A closure operator often needs both the termination condition and its complement to
be written, so a limit (*~) operator is provided for greater convenience. Mathematically,
the limit R" of relation R yields the pairs that are in the reflexive transitive closure of R,
but to whose second term R is inapplicable. In terms of graphs, the limit operator finds
all the paths that cannot be extended further.

The inverse A™! of relation A (denoted by A~-1) is such that (X,Y) is a pair in A™" if
and only if (Y, X) is a pair in A. The ‘~~’ operator can take any non-negative exponent.
The expression A™-N is directly equivalent to (A"-1) “+N; i.e., it yields all paths of length
N in the reversed relation.

44

2.11 Higher-Order Relations

A higher-order relation is one whose values are other relations. The following example
defines a class of functions that add a number to their arguments:

add -> {X -> {Y -> X+Y}}.
When add is given the argument ‘1°,

? add(1).
{(A,(1 + A}

it yields a function that adds 1 to its argument.
‘Set reduce’ (>>->) is an important higher-order operator that applies its second
operand, an associative commutative binary operator, to combine the values of its first,

e.g.,
? 0{1;2;3;4}>>->(+).
10

Each second operand yields a different relation, e.g.,

7 0{1;2;3;4F>>->(%).
24

Reduction has an important property: it first generates, then gathers together several
threads into a single result. Reduction provides the only way threads interact. The symbol
for set reduction emphasises this many-to-one aspect.

The sequence reduction operator, >>=>, operates on sequences in a similar way. Its
second operand need not be commutative. One use of >>=> is to flatten a sequence:

? I:llabcll, lldefll, "Xyz"]>>=> (&&) .
"abcdefxyz"

Any binary operator can be ‘amplified’ [10] using the ‘zip’ operator, \\:

? ([1,2,31,[4,5,61)\\(+).
[5,7,9]

The effect of this is to add the terms pairwise.
The \\ operator may be used to define new operators, or to overload existing ones:

>+> —> {R1,R2 —> (R1,R2)\\(+)1}.

defines an operator that is capable of vector addition — among other things. Because of
the way \\ and the built-in + operator are defined, there is no ambiguity about which +
applies in a given case; \\ can only apply to relations, and the built-in + operator only
applies to integers.

45

3 An Example Program

The syntax and semantics of Libra are fully defined elsewhere [3], but to give the flavour
of Libra, this section explains the development of a simple program. It illustrates the use
of relations both as data and as program objects.

Consider the following planning problem:

A farmer has with him a sack of corn, a chicken, and a rather vicious dog. He
reaches a river, which he must cross in a small boat. The boat has only space
enough for the farmer and one item. He must therefore ferry the corn, chicken
and dog from the left bank to the right bank of the river one item at a time.
The problem is that he cannot leave the dog alone with the chicken, for it will
certainly eat it, nor can he trust the chicken alone with the corn. How can he
ferry them all across safely?

We may sketch a solution immediately. Starting with an initial state in which every-
thing is on the left bank of the river, the program must choose a sequence of moves that
result in everything being moved to the right bank. This suggests the following:

solution -> (initial_state!safe_move~+) = final_state.

We assume that safe_move is a relation that applied to a state to give a new state, such
that the new state is ‘safe’, i.e., nothing gets eaten. It is a relation rather than a function,
because several moves are possible from a given state. The transitive closure operator
(~+) will compose all possible sequences of choices to implement a search.

This scheme has a basic flaw: if the problem has a solution, it will simply yield > True”’.
To be useful, the program should generate plans showing how the problem is solved. A
plan could be a sequence of either moves or states — or both. In the solution given here,
the plan is a sequence of states, from which it is easy to deduce the moves.

A second problem is that the transitive closure operator lets a program become trapped
in a cycle. For example, the farmer could ferry the chicken back and forth across the river
for ever. The way to avoid such cycles is to make sure that each new state added to the
plan is not already part of it. This is why it is better to record the plan as a sequence
of states rather than a sequence of moves. A solution should not pass through the same
state twice, but it might need to make the same move several times.

The solution should therefore have the form:

solution -> [initial_state]'!add_to_plan~+ 7> solved.

Initially, the plan consists of a single term: the initial state, which we include in the
plan because we want the program to check that it doesn’t return to it. Since the test
for completion is no longer a simple equality, we use right restriction to make sure the
finished plan is in the set solved.

We may now elaborate initial_state:

initial_state -> (everything, {}).
everything -> {’Farmer’; ’Dog’; ’Corn’; ’Chicken’}.

A state is a pair whose first member is the set of things on the left bank of the river, and
whose second member is the set of things on the right bank. We need to keep to track
of the position of the farmer, but it is not necessary to worry about the boat; where the
farmer goes, the boat goes too.

The problem is solved by all plans whose last term is the desired final state:

46

solved -> {Plan : last(Plan) = final_statel}.
final_state -> ({}, everything).

States may be added to the plan by generate and test:
add_to_plan -> suggest o verify.

where suggest generates a possible state, and verify ensures that it is not already in
the plan.

The argument of suggest is the existing plan, and its output should include the new
state, but in addition it needs to copy the existing plan — otherwise verify could not
check the new state or add it to the plan.

suggest -> {Plan -> Plan, last(Plan)!cross_river}.

This definition extracts the last state from the plan, and uses cross_river to generate
new states.

The verify relation is straightforward, remembering that a sequence of states is a set
of (integer, state) pairs. The set of states already visited is the codomain of the plan:

verify -> {Plan, State -> Plan && [State] : State \7 codom Plan}.

This appends the new state to the existing plan. We now must explain why we didn’t
write, in one step:

add_to_plan -> {Plan -> Plan && [last(Plan)!cross_river]
: last(Plan) !cross_river \? codom Plan}.

The expression last(Plan) !cross_river generates a new state. We add it to the plan,
provided that it is new. Unfortunately, the expression appears twice, and cross_river
being a relation, there is no guarantee that it will yield the same value in each place.
Therefore the state being added to the plan is not necessarily the one that proved to be
new. The two references to the variable State in the earlier two-step approach ensure
that the same state is used in both places.

The cross_river relation operates on states rather than on plans. Crossing can occur
left-to-right or right-to-left:

cross_river -> left_to_right join right_to_left.

Ferrying an object from left to right is a two step process consisting of first choosing
an object on the left bank, then moving it to the right bank. As with add_to_plan, using
a connecting variable ensures that the object taken from the left bank is the same object
added to the right bank. Whichever object is chosen, the farmer must go with it:

ferry_object -> {Left, Right -> Left, Right, @Left}
o {Left, Right, Choice
-> Left omit {Choice} omit {’Farmer’},
Right join {Choice} join {’Farmer’}}.

Since the farmer is on the left bank, the farmer can be the chosen object. If so, the farmer
is removed from the left bank twice, and added to the right bank twice, but since we are
dealing with sets, this won’t matter. When the farmer is the chosen object, this models
his crossing the river alone.

Crossing from left to right occurs only when the farmer is on the left bank, so we check
the argument of ferry_object to ensure it is in the set farmer_on_left:

47

left_to_right -> farmer_on_left <? ferry_object \7> unsafe.

We use right anti-restriction to ensure the result is not in unsafe, e.g., by leaving the dog
alone with the chicken.
The name farmer_on_left maps to a set, defined as follows:

farmer_on_left -> {Left, Right : ’Farmer’ 7 Left}.

Next, we define the set of unsafe states. Assuming the right bank was in a safe state
after the previous move and will certainly be safe once the farmer reaches it, we only need
to concern ourselves with the safety of the left bank. There are three unsafe situations,
when the dog is left with the chicken, when the chicken is left with the corn, or when all
three are left together. This may be expressed as follows:

unsafe -> {Left, Right : Left includes {’Chicken’; ’Corn’}
v Left includes {’Dog’; ’Chicken’}}.

This completes the strategy for moving things from left to right. To program moving
things from right to left we have a choice: to write a new relation analogous to the
left_to_right relation, to write a generalised ‘transfer’ relation that accepts ‘Left’ and
‘Right’ as arguments, or to notionally exchange left and right:

swap —> {Left,Right -> Right,Left}.

Armed with which, the right_to_left relation is simply:
right_to_left —-> swap o left_to_right o swap.
That is the problem solved. Typing:

? solution.

causes all solutions to be displayed.

4 Type Checking

Because operators may be overloaded, it is sometimes necessary to test the type of the
argument of a relation. Types are simply sets, and any set expression can be used as a
type. Types may be checked using the set membership operator, e.g., X ? integers is
true if X is an integer.

Some useful sets are built-in:

e integers

e naturals
e positives
e characters
e booleans
e literals

e sets

48

e relations
e sequences
e strings

e any

A few of these sets are defined as generators, although their main use is as filters. For
example, X 7 integers yields ’True’ if and only if X is an integer. On the other hand,
the expression @integers will (start to) generate all the integers.

‘Naturals’ is the set of non-negative integers, and ‘positives’ is the set of positive
integers. ‘Characters’ is the set of integers from 0 to 255. These are all generators, as is
‘booleans’, which generates the set {’True’; ’False’}.

The remaining sets are filters. The set ‘literals’ includes all atoms beginning with a
capital letter — including *True’ and ’False’. The set ‘sets’ contains sets of all kinds,
including relations, sequences and strings. ‘Relations’ contains only those sets that consist
of ordered pairs. ‘Sequences’ are functions whose arguments range from 1 to n. ‘Strings’
are sequences whose values are characters. ‘Any’ denotes the universal set; X 7 any is
always true.

Because any valid set expression may be used to define a type, some of the built-in
sets are related, for example:

sets -> sets_of any.
sequences -> sets_of (positives x any).

It is also possible to define new types:

integer_pairs -> integers x integers.

5 Program Execution

It is important to know how a Libra program is executed, for two reasons: to know what
ranks of relation (generator, constructor or filter) allow execution to be possible, and to
be able to make some estimate of program complexity.

A Libra program is best thought of as a collection of threads of control. A thread of
control usually carries an argument with it. When a relation is applied to the argument,
each result generates a new thread of control. In the current interpreter each result thread
is explored in turn by back-tracking, but it is better to consider that they are all executed
in parallel; there is no way for the program to communicate between the threads, and
the order in which they will be executed is unpredictable anyway. A second way in which
several threads can arise is by a thread invoking the ‘@’ (for all) operator, which generates
a thread for each member of a set. Closure operators apply a relation to its own results.
If the relation is a function, yielding a single result, the effect is like a loop. But if the
relation yields several threads, closure increases their number exponentially.

What mechanisms remove threads? The simplest is when a relation is inapplicable to
its argument. A thread reaches the relation, but no result emerges. This is typical of a
‘generate and test’ strategy, or pruning during a tree search. A similar effect is achieved
by the restriction operators, which kill off threads according to whether their arguments
are members of a given set or not.

49

Reduction first multiplies threads and then reduces their number to one. When a
thread of control reaches a reduction operator, it generates a thread for each value of
its first operand, which can either generate a set, or apply a multi-valued relation to
an argument. These threads exist within an envelope that allows them to be collected
together again and combined using the second operand of the operator. (The current
implementation relies on Prolog’s ‘findall’ predicate.) Thus, one thread emerges to match
the one that reached the construct — or, if the collection proves empty, none emerges
at all. Functional application (£7X) is a special case of reduction, where the combining
operation has the form {(X,Y)->X}, i.e., one result is chosen arbitrarily. Through this
operator, Libra introduces non-determinism.

It is usually important for a program to terminate. It can fail to through uncontrolled
recursion or transitive closure. The programmer must ensure that a closure terminates
without being trapped in a cycle. There is little the programmer can assume about the
order of execution. Libra does not guarantee that alternatives will be chosen in any
particular order. For example, the expression:

? 0 ! {X->X+1; X->X-1}"x

is capable of generating all the integers — in principle. Depth-first search might generate
0,1,2... or 0,-1,-2,.... A better strategy would be breadth-first search, generating the series
0,1,-1,2,-2,... . However, Libra does not promise to do either of these things, but might
alternately add and subtract one, cycling between the values 0 and 1 for ever.

What does Libra promise about closure? Only this: a result cannot occur until after
an argument that generates it. In the above example, 3 is either the child of 2 or of 4, so
3 cannot be generated until after 2 or 4 has been generated. (Since 4 cannot be generated
until after 3 or 5 has been generated, it is easy to prove that 2 must be generated before
3.) This sequential property derives from the composition operator. In the expression
X!r o s, first r is applied to X, then s is applied to the results. This is guaranteed in any
implementation of Libra.

Another programming consideration is the asymmetry between the treatment of the
operands of ‘apply’ (!). The first operand is always evaluated as fully as possible, but
the second is always evaluated as little as possible. Normally, the first operand will
contain no variables, and is said to be ‘grounded’. If it does contain variables, and cannot
be reduced to a grounded form, it will passed in ‘symbolic’ form, i.e., still containing
variables, although it may become partially simplified. This allows a constructor or filter
to be passed as an argument to a higher order relation. However, if a first operand can be
reduced to a grounded form, it always will be. Passing an expression as a first operand
to some other relation is one way to force its evaluation.

The programmer must be aware that each time any relation is applied to an argument
its results are calculated afresh. If a complex relation is likely to be applied to the same
argument several times, it may be worth evaluating the relation first, and storing it as a
set, of argument-value pairs — provided it is not too large. There are several other ways
of forcing evaluation. For example, finding the inverse of a relation currently forces the
relation to be evaluated.

It is difficult to summarise the rules governing the ranks of relations needed by different
operators in different modes of use. For example, if A meet B is used as a generator, A
must be a generator, but B may be a filter. However, if A join B is used as a generator,
both A and B must be generators. As a general rule, the first operand will need to have at
least the same rank as the mode of use, so that a generator is needed to generate a set, a
constructor is needed to construct a result, but only a filter is needed to test membership.

20

The second operand may need the same or a lower rank, depending on the operator. If
a relation has insufficient rank, an error will be detected during program execution. As
a rule of thumb, the programmer is advised always to place the higher-ranking operator
first, and hope for the best. Currently, the only safe alternative is to consult the source
program of the interpreter.

6 Scope Rules

A program is a set of named definitions of relations. It is itself a relation from names to
expressions. In the current implementation of Libra, all definitions are global in scope.

Variable names are local to the elements of a relation or set. For example, in the
definition:

change -> {X -> X+1;X -> X-1}.

the first two occurrences of X are independent of the last two. They are also independent
in the following construct:

71! {X -> X+1} o {X —> X+1}.
3

If they were not, the argument 1 would not only bind the first relation to the pair (1,1+1),
but the second relation to (1,1+1) as well, so the second relation would not be applicable
to the intermediate result (i.e., 2).

A relation or set that has another set as an element may cause a potential ambiguity.
For example, what should the following definition do?

neighbours -> {X -> {X-1; X+1}}.
The intention seems clear. We would expect:

? neighbours(1).
{0; 2}

The rule is adopted that a variable name has scope throughout the set element in which
it occurs, including any sets occurring within the element. This means caution is needed
in defining higher-order relations. For example, the intention of the following example
is to define a function that will evaluate relation R over the domain X, thus producing a
generator:

eval -> {X,R -> {@X!'{X -> X,X!R}>>->}}.

However, in the construction {X->{X,X!R}}, X is bound to the first argument of eval,
but the programmer’s intention was for X to be local. Libra will detect the problem and
issue a warning. The problem is easily corrected:

eval -> {S,R —> {@S'{X —> X,X!R}>>->}}.

7 Discussion

What, if anything, has been learnt from implementing an interpreter for Libra?

ol

7.1 Type-Checking and Inapplicability

The first lesson — which came as a surprise to the author — is that although the relational
programs developed were quite short, they were surprisingly tricky to debug. Some of the
difficulties arose because the interpreter was under development, some were due to the
author’s lack of practice in relational programming, and some due to the design of Libra
itself. The main problem is the notion of inapplicability. If a relation is presented with
an argument to which it does not apply, it simply produces no result. It is fundamental
to relational programming that this should occur, but it means that if a programming
error leads to the wrong type of argument being passed, then the whole program typically
produces no result. It is not easy to deduce where the error lies from an empty output.

There would seem to be several solutions to this problem. They all involve some
kind of type-checking. Some checking is already done by Libra’s built-in relations. If the
wrong kind of argument is passed to one, a warning results. However, once the relation
is overloaded by the programmer’s own definition, Libra turns off its warning, because
it cannot tell which definition is meant to be effective in any given case. Even if the
programmer’s definition proves inapplicable, Libra can’t know whether it is an error.

Although the definition of a relation can verify the type of its argument, this only
serves to restrict it further. Arguments that do not pass the type test are inapplicable, so
the situation is unchanged. It would be possible for a programmer to define a relation so
that if its argument had the wrong type, it wrote an error message. However, this is not a
modular solution, because overloading the name to map to a relation accepting a different
type of argument (perhaps by a separate package) would require the error condition in
the first definition to be modified.

The solution adopted by Drusilla [1] is to infer data types statically from the types
of operators, and in turn, to deduce the types of programmer-defined relations. In its
basic form, this means that the built-in operators cannot be overloaded. However, it is
possible to imagine an extension of this idea to allow for overloading. Indeed, Drusilla
does precisely this in treating generators, constructors and filters as different types. It
seems to the author that allowing overloading of names is the only logical decision in a
language that allows arguments to yield multiple results.

The author’s personal view is that static type-checking is unduly restrictive. Although
it can detect many programming errors, it is just one of many checks that could be made.
Programs can fail because of division by zero or other arithmetic errors, or by entering an
infinite loop or infinite recursion. However, nobody suggests that we should insist that all
such errors should be detectable statically. Indeed, if we devise a language in which all
programs are guaranteed to terminate, we know it is not Turing-complete, and less than
universal. T believe the same kind of objection applies, in a subtler way, to languages that
are statically type-checkable. What the exact problem is, I don’t know, but I believe it is
the reason why many artificial intelligence languages avoid static type-checking, and why
systems programming languages usually have type loop-holes.

One way to solve these problems would be to make a distinction between ‘inapplica-
bility” and ‘no result’. If no definition is applicable to an argument, it could be treated as
a programming error; or, the definition could remain applicable but deliver a special null
result.

52

7.2 The Domain Problem

This leads naturally to a related problem: the question of what defines the domain of a
relation. A relation maps from its domain to its codomain. In mathematics, this presents
no particular difficulty because a relation is a static object. In a programming language,
there are three possibilities for the domain or codomain: their types, their potential values,
or their actual values. The distinctions are that the type of a domain or codomain might
be the integers, its potential values might be the prime numbers, and its actual values
for some given state of execution might be 2, 3 and 5. The ‘Z’ specification language [8]
distinguishes two of these cases: the values of a domain are chosen from a ‘source’ type
and the values of a codomain from a ‘target’ type. It might be argued that the set of
potential values and the type of an object are the same thing. This is true if the language
has a flexible enough way of specifying types. Libra treats types as ordinary sets, so —
depending on one’s point of view — it either offers a very flexible means of type definition,
or none at all. However, in most statically typed languages the means for defining types
aren’t flexible enough to allow ‘prime numbers’, say, to be declared as a type.

We have already discussed one situation where these distinctions cause a problem:
Libra can’t tell whether a relation is meant to apply to a given argument. If Libra could
determine that an argument was in the domain of the relation but that the relation did not
apply, it could consider this a normal result; but if it could determine that the argument
wasn’t in the domain of the relation — or in the case of overloading, in the domain of any
definition of a name — it could consider it an error.

A second aspect of the domain problem arises in finding the reflexive transitive closure
(=*) or limit (*~) of a relation. Here, it is best to visualise the graph of the relation. The
graph contains a number of edges, and the reflexive transitive closure consists of all paths
of length zero or more. In addition to the paths found by transitive closure (~+), Libra also
adds to the closure a loop linking each vertex to itself. The set of vertices is found from
the edges of the graph: each edge must leave and enter a vertex of the graph. However,
it is possible for a graph to contain isolated vertices. Libra has no way of knowing what
these are.

A solution is to force each relation to specify its domain and codomain. Perhaps this
might be written as follows:

left_to_right ->
(state x state):farmer_on_left<?ferry_object\?>unsafe.

Since Libra sets are dynamic objects, domains and codomains could be used as arbitrary
assertions, to help debugging. Naturally, any solution to the domain problem would also
solve the applicability problem of Section 7.1.

Another advantage of specifying types is to optimise data representations. For exam-
ple, if the result of a relation is known to be of type ‘string’, its representation could be
made an efficient one for strings rather than a general-purpose one that treats the result
merely as a set of pairs.

7.3 Referential Transparency

In the implementation of Libra, a decision was made to evaluate the arguments of relations
— using ‘simplify’ — before applying them, except for the built-in relations, which try to
achieve the same effects more lazily. Originally, this was motivated by an analogy with
procedural languages, which typically require their input parameters to be fully evaluated,

93

but which evaluate conditional constructs lazily. On reflection, it is seen perhaps to be
an arbitrary decision. For example:

and —> {A,B —-> A&B}

defines an and relation exactly like the built-in & relation, except that it always evaluates
both operands. It would clearly be an advantage if no operand were ever evaluated until its
value was needed. It would seem to follow that arguments should be passed by reference
rather than by value, and should not be simplified until necessary.

Such a change would have an important consequence. Consider the definition:

double -> {X -> X+X}.

which is intended to double the value of its argument. Under the existing implementation
of Libra, this operates as follows:

? @{1;2}!double.
2
4

However, if simplify wasn’t called until X was evaluated, the effect would be to evaluate:

o{1;2}+e{1;2}.

?
2
3
3
4

This is certainly referential transparency, but is it sensible? In Section 3, in connection
with the relation add_to_plan, we explained exactly why two instances of the same
variable should be given the same value. In that example, we wanted the program to
make sure that the move it added to its plan was the same move that it had just tested
for safety. But the result is that this destroys the notion of referential transparency, at
least as it is usually understood.

It is possible to argue — as some functional programming languages do — that vari-
ables are an unnecessary concept, and should be eliminated from the language. But to
the author, this would be simply sweeping the problem under the carpet. To achieve the
effect of double, it would be necessary to have some way of duplicating an argument.
Suppose there was a built-in relation called duplicate as follows:

duplicate -> {X -> X,X}.
Then we could define double as:
double -> duplicate o (+).

without using variables. But how are we to know that the two values generated by
duplicate are the same? Surely,

? @{1;2}!duplicate.
should be equivalent to:

? (e{1;2},0e{1;2}).

54

which generates:

(1,1)
(1,2)
(2,1)
(2,2)

In favour of the current interpretation, the language of Conceptual Graphs [12], one
of whose aims is to present a variable-free version of the predicate calculus, introduces
variables into its linear notation for precisely this purpose: to indicate when two occur-
rences of an expression refer to the same object. (In its graphical notation, this is done
simply by pointing at the same vertex twice.)

Although variable names are potentially an evil no better than the infamous ‘goto’, the
author believes that in the restricted context of a relational definition they are harmless,
even beneficial. After all, the alternative is to use built-in relations such as left and
right, effectively defined as:

left -> {L,R -> L}.
right -> {L,R -> R}.

to dissect structured arguments. Libra variables are merely local names for compositions
of such relations.

Choosing when to evaluate expressions can be important for other reasons. In Prolog,
the expression 1+2 means exactly that, and is not evaluated to yield 3 unless the pro-
grammer chooses. One result is that Prolog can manipulate expressions symbolically. A
second is that the programmer has more control over execution. It would be useful to
have a similar feature in Libra.

7.4 Input and Output

The current treatment of files within Libra is very unsatisfactory, and should be improved
as soon as possible. Part of a remedy would be to treat files as relations. A possible set
of file operators was suggested in the language proposal on which Libra is based [2].

One of the properties of files is that they can be modified. Updating a file has a side-
effect on how it will be read, which is not expressed by the Libra programming language.
The core problem is that Libra programs — like functional programs — are expressions,
not procedures taking place in time. It is not easy to see the best way to integrate Libra
with the idea of a time-dependent state.

The problems of file input-output are still more manifest when dealing with the user
of a Libra program. Dialogues generated by several parallel threads could become con-
fusingly intertwined; question and answer would need to be treated atomically. What
happens if several threads decide to ask the user the same question? Should each ques-
tion be answered separately, or should Libra ask the question once and remember the
answer? In a relational language, only the first choice makes sense, since it allows mul-
tiple results, although it might sometimes prove inconvenient. For that matter, perhaps
even a single question should be allowed to have multiple answers.

7.5 Nested Scopes and Modules

In the language proposal on which Libra was based [2], it was proposed that names might
be given limited scope. The reason for this is that in defining a module or library of

95

relations for general use, it might be useful to define local relations that would not be of
general interest. A programmer using the library module should not have to worry about
them. There is a danger that the programmer will define a new relation with the same
name as one in a module, and on invoking it, find that spurious results are produced.

One possible way of avoiding this problem would be to introduce a where operator,
so that:

{add2 -> addl o addil} where {addl -> {X->X+1}}.

would have the effect of making add2 global, but making add1 private to the declaration.
In general, a set of global definitions should be able to access a set of local ones.

Simple as this idea is, it is not currently implemented. For one thing, it is hard to see
how to integrate it with the one-definition-at-a-time approach of the current command
interpreter — whose serial view of the program text is already inappropriate to a relational
language.

Another aspect to consider is the object-oriented approach to programming. In the
context of Libra, where objects are unimportant, many of the problems that object-
oriented languages solve aren’t present. On the other hand, it would be useful to have
some concept similar to inheritance. This means that if a general type of object has been
defined, and a more specialised type of object has been based on it, the specialised object
should be able to inherit the relations from the more general object, or over-ride them
with its own. For example, if the number_of_legs relation applied to members of the set
mammal yields ‘4’, we would want to over-ride this for the set humans to yield ‘2’. Libra
does not provide any means of over-riding one relational definition by another; if two
definitions apply, both take effect. Nor does Libra have any way at present of using the
knowledge that humans are mammals.

A partial solution to this problem would be to use else rather than join to link
definitions of relations having the same name. If a name defines several relations, they
could be tried in turn. As soon as a definition is found that applies to the argument, no
further definitions would be tried. Some means of specifying the search order is needed.
Letting the search order be defined by the sequence of the program text seems a poor
approach, but Libra does not currently offer any other language feature that could be
exploited. A better suggestion, which fits well with the nature of relations, is to allow
the program text to contain modules that are relations from names to definitions, and
compose them using an arbitrary relational expression.

7.6 Efficiency

Treating data and program text in a uniform way causes a major problem in the imple-
mentation of Libra. Consider an operation such as composition. The expression R o S
should compile to a Prolog rule something like:

’R o S’ (X,Z) :- R(X,Y), S(Y,Z).
if R and S are static program objects, but to:
’0’(R,S,’R 0 S’).

if they are data objects (where o is a built-in predicate). The present implementation
represents everything as data, which deals with static objects very poorly. The converse,
of expressing data objects as facts, means that a Prolog implementation would spend much

o6

of its time asserting and retracting facts. A better solution would be to have different
approaches for static and dynamic objects.

One such approach is to follow Drusilla, and choose suitable representations during
compilation. This preserves a uniform syntactic treatment for static and dynamic objects
— although problems arise when they are mixed. Higher-order relations are also a problem
because they may need to accept both static and dynamic arguments at different times.
Catrall [1] seems to make no mention of how Drusilla’s higher-order relations are compiled.

In order to make sensible space-time trade-offs, the programmer needs to distinguish
clearly between dynamic (data) and static (program) objects. Perhaps they could be
distinguished syntactically, e.g:

compose -> {R,S -> {X ->X!'(R o S)}}.

could define a program object that could be applied to an argument (X), leading to the
translation above; whereas:

compose -> {R,S -> R o S}.

might define a data object. However, this approach raises new problems: e.g., finding the
composition of a static and dynamic relation.

References

[1] D.M. Cattrall, The Design and Implementation of a Relational Programming Sys-
tem, PhD Thesis, Dept. of Computer Science, University of York, 1992.

(2] B. Dwyer, ”"Programming Using Binary Relations: a proposed programming lan-
guage”, Technical Report 94-04, Dept. of Computer Science, University of Ade-
laide, 1994.

(3] B. Dwyer, "LIBRA: A Lazy Interpreter of Binary Relational Algebra”, Technical
Report 95-10, Dept. of Computer Science, University of Adelaide, 1995.
(Also available via http://www.cs.adelaide.edu.au/ dwyer.)

[4] W.D. Hillis, The Connection Machine, MIT Press, 1985.

[5] B. J. MacLennan, "Relational Programming”, Technical Report NPS52-85-012,
Naval Postgraduate School, Monterey, CA, 1983.

6] B. J. MacLennan, "Four Relational Programs”, Technical Report NPS52-86-023,
Naval Postgraduate School, Monterey, CA, 1983.

[7] R. Milner, ”A theory of type polymorphism in programming”, Journal of Com-
puter and System Sciences, 17(3) pp348-375, 1978.

[8] B. Potter, J. Sinclair, and D. Till, An Introduction to Formal Specification and Z,
Prentice-Hall 1991.

9] J.D. Prosser, ”A Programming Language Based on the Algebra of Binary Rela-
tions”, Honours Report, Dept. of Computer Science, University of Adelaide, 1994.

[10] J.G. Sanderson, ” A Relational Theory of Computing”, Lecture Notes in Computer
Science 82, Springer-Verlag Berlin 1980.

57

[11] J.G. Sanderson, "Relator Calculus”, Technical Report 84-02, Dept. of Computer
Science, University of Adelaide, 1984.

[12] W.M. Tepfenhart, J.P. Dick, J.F. Sowa (Eds.), ”"Conceptual Structures: Current
Practices”, Lecture Notes in Computer Science 835, Springer-Verlag Berlin 1994.

o8

Modelling Message Buffers with Binary Decision
Diagrams

BERND-HOLGER SCHLINGLOFF
Universitat Bremen, TZI-BISS

1 Introduction

Binary decision diagrams (BDDs, [Bry92|) have been recognized as an extremely efficient
data structure for the representation of transition relations in the verification of finite-
state reactive systems. With BDDs, it is possible to represent relations over domains
with more than 2! elements ([BCDM91]), provided the represented relation is well-
structured. Asynchronous parallel systems such as communication protocols often use
implicit or explicit buffering of messages which are sent between the processes. In these
notes, we analyze the complexity of various possibilities to model the transition relation
of a bounded buffer with BDDs, and discuss alternative approaches to this problem.

2 Binary Decision Diagrams

To make these notes self-contained, we quickly describe the symbolic representation of
sets and relations with BDDs. For a detailed survey, the reader is referred to [Bry92].
Consider a sequence of variables V = (vy, ..., v;,) over domains (Dy, ..., Dy,), where each D;

is finite. An ordered decision diagram (ODD) or deterministic branching program for V
is a tuple (N, L, E, ng), where

e N is a finite set of nodes,
e L: N — VU{T, L} is a labelling of nodes,
e £ C N xDx N is aset of edges (D = J; D;), and
e 1y is the initial node.
The following conditions are imposed:

e F is functional on D;: If £(n) = v;, then for each (n,d,n’) € E it holds that d € D;,
and for each d € D; there is exactly one ng such that (n,d,n,) € F, and

e E is acyclic: If (n,d,n’) € E with £(n) = v; and L(n') = v;, then ¢ < j.

It is easy to see that this definition is equivalent to the one given, e.g., in [Bry92]. Any
ODD accepts (defines) a subset of (D X ... X Dy) via the following definition:

(N,ﬁ,E,’I”LO)): (dlj...,dk,) lf (N,ﬁ,E,’I”LO)):1 (dlj...,dk).

In this definition, the notion =, is declared by:

99

(N,L,E,n) &, (dq,...,dy) if
e L(n)=T,or
e L(n)=v;and m <iand (N,L,E,n) Epny1 (dq,...,dy), or
e L(n)=v; and m =i and (n,d,,,n') € E and (N, L, E,n') =i (dy, ..., dy).

In other words, given a specific tuple, it can be determined whether it belongs to the set
represented by an ODD by traversing its edges according to the components of the tuple.

When drawing ODDs, we usually omit the node labelled 1 and all edges leading to
it. For example, the ODD with two variables v, v' over Dy = Dy = {a,b, c,d} given in
Figure 1 below represents the set of tuples {(a,a), (a,b), (a,c), (a,d), (b,b), (b,d), (c,c),
(¢,d), (d,a), (d,d)}. Binary decision diagrams (BDDs) are ODDs where all domains are
{0,1}. Given any ODD, there exists a BDD of the same order of size which represents
the same set: Choose any binary encoding of the domains, and replace each m-ary branch
by a log m-depth binary decision tree. Thus, in practice only BDDs are used; ODDs can
be understood as abbreviations of the respective binary encoded BDDs. For example,
choosing the encoding a — 00, b — 10, ¢ — 01, and d — 11, the BDD given in the right
half of Figure 1 represents the same set as the respective ODD on its left.

Figure 1: An ordered decision diagram and its binary encoding

The size of an ODD is the number of nodes it consists of. For a given ordering of the
domains, and any set of values, there is a unique minimal ODD representing this set of
values. The size of this minimal representation is not dependent on the size, but only on
the structure of the represented set of values. E.g., the empty set and the set of all tuples
both have an ODD representation of size one.

As another example, consider the elementship relation between a set S = {a, b, ¢} and
its powerset 2°. The table and BDD are given in Figure 2. As can be seen, the table
has no “regular” structure, thus both table and BDD are of order S - 2°. If we choose
a different encoding as shown in Figure 3, the BDD representation exploits the fact that
the matrix can be decomposed into isomorphic and constant submatrices.

Given a process P with state space D. Then the transition relation of P is a subset
of D x D. If P consists of k£ parallel processes Py, ..., P, with state spaces Dy, ..., Dy,
then the global state space of P is Dy X .-+ X Dj. Therefore the transition relation can
be described by 2k variables sy, ..., s, 1, ..., S}, where s; and s, are over domain D; and
describe the current and next state of process P;. Again, if each D; has up to m states,
the global transition relation has up to m?* elements and can be described by a BDD over

60

$283584 | 000 001 010 011 100 101 110 111
S051 {} {a} {6} {c} {ab} {a,c} {b,c} {a,bc}
00(a) X X X X
01(b) X X X X
10(c) X X X X

Figure 2: Power set relation and corresponding BDD

S28384 | 000 001 010 011 100 101 110 111
5051 {} {a} {b} {aa b} {C} {aa C} {ba C} {aa b, C}
00(a) X X X X
01(b) X X X X
10(c) | || x X X X

Figure 3: Power set relation and BDD with different encoding

61

5] a b ¢ d

Soo0 So1 Soo So1

081 S10 S0 S11 Su1
a = SppS10 X X X X
b= 501510 X X
C = S00S11 X X
d—= 501511 X X

Figure 4: Matrix and graph of the encoded relation

2k - [log |m|] boolean variables. For example, consider the elementary net of Figure 5; it
models two processes synchronizing on a common transition. The states of the first process
are Dy = {500, So1}, the states of the second are D; = {s10, s11}. Since these domains are
binary, we can use boolean variables sy, s1, sj, 57 to describe the current and next state
of the processes. The global states are a =1 (8005 S10), b 2 (801, 810)s € 2 (800, 811), and
d = (S01,811)- In state d, either both processes idle or both processes synchronize and
go to state a; in each other state, process P; can either idle or make a step from s;y to
s;1, independently of the other process. The transition relation of this system is the one
represented by our example.

NN
N0

Figure 5: An elementary net model of synchronization

The set of reachable states of a system is the image set of the initial state(s) under
the reflexive transitive closure of the transition relation. With BDDs, the transitive
closure of a relation usually is calculated as the smallest fixed point of the recursive
equation R* = [U R:R*. Relational composition is calculated by the definition xR:Sy iff
Jdz(zRz A zRy), and existential quantification over finite (binary) domains is replaced by
a disjunction of the possible values of the domain.

Therefore, to calculate the set of reachable states with BDDs it is necessary to repre-
sent the complete transition relation. Since BDDs are graphs with a nonlocal connection
structure, usually it is not possible to use virtual storage for BDD nodes; present technol-
ogy limits the number of BDD nodes representing a transition function to approx. 10°.
The size of the BDD representation of the reachable states or reflexive transitive closure
of a relation is often totally unrelated to the size of the representation of the relation
itself; in our example, the transitive closure is the universal relation, and thus all states
are reachable, with a BDD representation of size 1.

62

However, the size of a BDD crucially depends on the number and ordering of vari-
ables. In our example, consider the two processes as producer and consumer of messages
which are passed at the synchronization step via handshake. That is, each process has
an additional variable, mg and m,, which are both over a domain M of, e.g., 4 messages
{nil, z1,x2,23}. Process Py produces a message, i.e. sets variable mg to an arbitrary non-
nil value, in the transition from spy to sp;. On transition from (sg1, $11) to (S0, S10) the
value of my is transferred to my, and my is reset to nil. Process P; consumes (resets) vari-
able my in the transition from s1y to s1;. On idling transitions, the value of the message-
variables is stable. The SMV-code (for SMV, see [McM93]) for this system is given in
Figure 6, and the resulting BDD for variable ordering (s, i, 1, S, mo, my, my, m}) is
shown in Figure 7.

MODULE main
VAR sO : boolean; sl : boolean; mO : {nil,x1,x2,x3}; ml : {nil,x1,x2,x3};
INIT (sO =0 & s1 =0)

TRANS (sO=0& s1 =1 -> next(sl) = 1)
& (s0 =1 & s1 =0 -> next(s0) =1)
& (sO0 =1 & s1 =1 ->next(s0) =0 & next(sl) = 0 |

next(s0) = 1 & next(sl) = 1)
& (s0 = 0 & next(s0) = 1 -> next(m0) in {x1,x2,x3}) —-- produce
& (sO0 = 1 & next(s0) = 0 -> next(m0) = nil) -- reset
& (s0 = next(s0) -> next (m0) = m0) -- stable
& (s1 =1 & next(sl) = 0 => next(ml) = m0) -- transfer
& (s1 = 0 & next(s1l) = 1 -> next(ml) = nil) —-- consume
& (s1 = next(sl) -> next(ml) = mil) -- stable

Figure 6: SMV-code for message passing between two processes

Figure 7: BDD for synchronous message passing

As can be seen, the size of this BDD is linear in the number m = |M] of possible
messages. In this example, the linear complexity is caused only by “local diamonds”, i.e.,

63

nodes branching into m successor nodes, which again join into one successor. This struc-

ture arises by the copying instructions next (m0)=m0, next(m1)=m1 and next(ml)=mO0.

Variables mg and m; can be seen as consisting of w boolean variables mgy...mg, and
A . . .

Mi...M1y, Where w = [logm] is the message width. If we interleave the order of these

variables, i.e., use variable ordering (mg1, mg;, M1, Mg, .., Mow, My, Miw, My,), local

diamonds are represented with complexity linear in w, see Figure 8. Thus, for the order-

: ! ! ! ! ! !

ing (So, 4, S1, 1, Mo1, MYy, M11, My, ey Mow, MG, M1y, M},), the BDDs for the above

SMV-code are logarithmic in m.

Figure 8: Interleaved encoding of a local diamond

3 Modelling of Message Buffers

Distributed parallel processes often use asynchronous (buffered) communication. Asyn-
chronous message passing can be modelled with global variables by introducing a separate
buffer process for each communication line. In many systems, the amount of messages
which can be buffered is finite; in such systems buffer overflow often indicates erroneous
behaviour of the system. For a fixed message alphabet M = {nil, xy, ..., £,,_ }, the formal
specification of a bounded buffer of length n with input and output variables ¢ and o over
M is given in Table 3 on page 64.

In the right half of this table, an empty entry means that the respective variable is
set by the environment. An input value of nil in 7 indicates that there is no message to
be sent; in this case the next value of i is determined by the producer. If this process has
put a non-nil value x € M into 4, then this value is appended to the buffer, and ¢ is reset
to nel. The last line indicates a condition of buffer overflow: If a message is to be sent
with the message buffer already filled, ¢ remains stable. If the output variable o is nil and
there is a message to deliver, it is copied into 0. The consumer receives a message y from
o by resetting o to nal.

The content of the buffer b is given as a sequence (zy,...,x,) of messages, where
() denotes the empty buffer. There are various possibilities to implement sequences of

64

i b 0 i’ b o'
nil () nil () nil
T () nil nil () T
nil {(xq1,...,x,) nil (X1, ey Ty1) Ty
r (ry,...,m,) il nil (z,x1,...,Ty_1) Ty

nil () y ()

x () y nil (z)

nil (x1,..,2,) Y (1, .00y Ty)
r (T1,enmy) Y wew |0l (z,mq, ., 7)
T (T, Tn) Y x (X1, ey Tp)

Table 3: Specification of the transition relation of a bounded buffer

messages with BDDs. The most obvious choice is to use n variables by, ..., b, over M,
such that b; contains the front element of the message queue, and incoming messages
are appended into the smallest b, which is empty (contains nil as value). The necessary
assignment operation for this modelling is given in Figure 9.

next(b[jl) := case
(i=nil) & !(o=nil) : b[jl;
(i=nil) & (o=nil) : b[j+1];
'(i=nil) & !(o=nil) : if !(b[j-1]=nil) & b[jl=nil then i
else b[j] fi;
'(i=nil) & (o=nil) : if b[jl=nil then nil
else if b[j+1]=nil then i
else b[j+1] fi fi;
esac;

Figure 9: Bottom-version of buffer slot assignment

In this modelling, we rely on the fact that whenever b; = nil, then for all k£ > j, also
b = nal. This assumption only holds for the reachable states of a buffer which is initially
empty; there are many transitions from illegal, i.e., nonreachable states to other illegal
states in this model. In an explicit representation of the transition relation, one should
try to avoid these redundant entrys. With BDDs, however, even though the size of the
transition relation is much bigger than the transition relation restricted to the reachable
states, its representation is much smaller. Since the value of each buffer slot depends only
on its immediate neighbours, in fact the size of the representation is linear in the number
of slots.

In the above implementation, the buffer content is shifted upon output. We refer to
this modelling as the bottom version, because sent messages can be imagined to “sink
to the ground”. A dual implementation of the buffer shifts down the content one slot
whenever an input is performed, and inserts the new element into the topmost slot b,.
Consequently, we call this modelling, where messages “float to the surface”, the top-
version of a bounded buffer. To perform an output in this version, the content of the
lowest non-nil slot is copied into the output variable o. The respective code segment is
given in Figure 10.

65

next(b[jl) := case

(i=nil) & !(o=nil) : b[jl;

(i=nil) & (o=nil) : if (b[j-1]=nil) then nil else b[j];
'(i=nil) & !(o=nil) : if (b[1]=nil) then b[j+1] else b[j] fi;
'(i=nil) & (o=nil) : if b[jl=nil then nil else b[j+1] fi;
esac;

Figure 10: Top-version of buffer slot assignment

A third possibility is to use a circular implementation of the buffer: On input, the
value of the input variable is copied into slot b;, where b; = nil and b; 1 # nil; on output,
o is set to b;, where b; # nil and b;_; = nil. To be able to distinguish between first and
last element of the queue in this version, we have to make sure that there is at least one
slot with content nil; therefore there has to be one more place than the actual capacity
of the buffer. In the assignment clause in Figure 11, subtraction and addition of one is to
be understood modulo n.

next (b[jl) := case
(i=nil) & !(o=nil) : b[jl;
(i=nil) & (o=nil) : if b[j-1]=nil then nil else b[j];
I (i=nil) & !(o=nil) : if !(b[j-1]=nil) & b[jl=nil & b[j+1]=nil
then i else b[j] fi;
' (i=nil) & (o=nil) : if b[j-1]=nil then nil
else if b[jl=nil then i else b[jl fi;
esac;

Figure 11: Circular version of buffer slot assignment

An alternative to the use of an empty slot would be to introduce queue-pointers for
the position of the first and/or last element of the queue; this idea can be applied to all
three of the above modellings. However, these alternative versions turn out to be worse
than the direct encoding via nil-test which is given above. In general, the queue-pointers
would be functionally dependent of the content of the buffer; such functional dependencies
can blow up the BDD size significantly ([HD93]).

Similarly, we can introduce additional BDD-variables indicating whether the buffer is
empty or full; however, these variables tend to increase the size of the representation by
a linear factor and usually can be replaced by appropriate boolean macro definitions. On
the other hand, such variables can be important if the BDD is represented as a conjunction
of partitioned transition relations, see [BCLI1].

Finally, it is not always advisable to test whether a slot b; contains the value nil by
the test b[i]l=nil. As we will see in the next section, it can be better to increase the
message width w by one, such that the first bit of each message is a kind of checksum,
indicating whether this message is nil or not.

66

4 Complexity Considerations

The BDD for the bottom version of a buffer of size n consists of two parts, one for the
case that the buffer content remains stable, and one for the case that the buffer content
is shifted down by one slot. The first part consists of a sequence of local diamonds for
each slot, similar as in the example above. The BDD for the second part is depicted in
Figure 12 for the special case n = 2 and M = {x, x2, 23}.

Cxfieg

\,4 J
\,\ /,/

Figure 12: BDD for shifting down the buffer content

As can be seen, for a new buffer slot b, 1, O(m?) nodes are added to the BDD for a
buffer of length n. Therefore the representation is of order n-m?2, i.e., linear in the length
and exponential in the width of the buffer. Since the transition relation is “almost” a
function, a matrix representation would require O(m™) entrys, whereas a boolean algebra
or programming language representation such as the SMV code above, is of order m +n
(or even constant, if array subscripts are allowed).

For the top version, the complexity of the representation is comparable to the bottom
version. In the circular version, b/, depends on by, 7, b,—1, and on b;. This non-local
dependency causes a blowup of factor 2, since the emptyness of b; has to be decided
while testing b),. Moreover, to test whether a buffer is full or not we have to test whether
any two adjacent slots are nil. This nonlocal test again blows up the complexity of this
modelling.

As was to be expected, the number of reachable states is identical in the bottom and
top modellings; of course, this number is exponential in the length of the buffer. For
the circular implementation, the number of reachable states is approximately m times as
much, since it contains an additional slot.

67

Table 4 summarizes the size of the BDDs of the transition relation for m = 4 (i.e.,
w = 2), and order i < b, < ... < by < o. All results were obtained with the public-
domain SMV system; other BDD-based verification tools yield similar results. The buffers
were embedded in a simple producer-consumer environment, where the producer and
consumer are asynchronous, and the message to be sent or received does not depend upon
or influence the state of the sender or receiver, respectively.

| length | 3] 5 7] 9] 11
bottom || 714 | 1458 | 2204 | 2950 | 3696

top || 599 | 1113 | 1627 | 2141 | 2655
circular | 1038 | 2350 | 3999 | 5307 | 6833

| reach | 1400 | 12740 | 25| 2%] 2%

Table 4: BDD size of transition relation and reachable state set

In this example, the size of the representation of the set of reachable states was of the
same order of magnitude as the representation of the transition relation. Some consider-
ations about this size are given below.

A critical factor in our approach is the message width w. As indicated in Table 4,
e.g. the bottom implementation of a buffer of length 5 and width 2 has size 1458. For
w = 3, this size is 11774, and for w = 4, it is 108357. In [BS90] it is proved that for
any finite function, a BDD of polynomial size exists iff the function can be realized by a
polynomially bounded depth circuit. For message buffer, certainly the transition function
can be realized by such a circuit; thus there exists a BDD which is polynomial both in n
and w.

If there is no constraint on the order of variables, then such a BDD can be constructed
by interleaving the bits of all slots: Let ¢ = 4...7,, b; = bj1...b;,,, and 0 = 04...0,. Then for
each k < w, (ig, bug, ---, b1k, o) can be regarded as a buffer of width 1. The only “nonlocal
test” in this buffer of length 1 is whether some slot b; is empty: if this is determined by
comparison of bj; and ... and bj,,, then we still have an exponential growth. If we introduce
additional bits (i, bso, ..., b19, 09) which are 0 iff the corresponding message is nil, then
each bit-slice is linear in the length of the buffer. For the order iqg < b0 < ... < by < 09 <
11 < by < ... <bip < o1 < .o <y < bpy < ... < by < 0y, these small BDDs are simply
added, and the overall complexity is O(w - n).

Unfortunately, in many practical examples it is not possible to choose such a bitwise
interleaved order. Usually, the input and output variables are imported from other pro-
cesses, and their order cannot be chosen arbitrarily. An argument similar to the one from
Section 1 on page 63 shows that for any order, in which ¢ is before all buffer bits, the
representation is exponential in w. Therefore, in practical verification, w should be kept
as small as possible. There are several ways to do so:

e For every channel, define a separate message alphabet;

e replace a parametrized message m(t) with ¢t € {¢;,...,tx} by a list of messages my,
ooy Mg

e replace a compound message by a sequence of messages, and

e abstract several different messages into one.

68

When using the latter two methods, one has to be careful to preserve the semantics of the
original model ([CGL92]). Using these techniques, we have been able to verify systems
with up to 27 different messages.

5 Alternative Approaches

In [GL96],[BGI6] it is suggested to extend the BDD data structure for the representation
of message buffers. The new data structures are called QBDDs and QDDs, respectively.
The basic idea is to replace the consecutive testing of buffer variables by a repeated test
of one and only one variable. Therefore, the representation of the transition relation is
independent of the buffer size. Moreover, even systems of which the maximum amount of
buffer space is not statically known can be verified.

However, as we have shown above, the (static) length of a buffer may not be the
most important factor in the representation of the transition relation. Moreover, “buffer
overflow” errors in the system can only be detected with a bounded buffer. Even worse,
in systems on which a full buffer forces delay of the sender, with QBDDs we have to
introduce an additional counter variable. For these type of systems, BDDs seem to be
more adequate than QBDDs or QDDs.

Being able to represent the transition relation is only a necessary prerequisite for
the verification of a system. Equally important is the size of the representation of the
reachable states R of the system. Unfortunately, the size of the BDD for R has no
predictable connection to the size of the BDD for the transition relation.

In many systems both the number of reachable states and its representation are linear
in the number of iteration steps of the model, iff the system is correct. This is due to the
fact that on reachable states, the transition relation is “almost” functional, yielding either
a single or a small number of successor states. On the other hand, from an “impossible”
state usually many other “impossible” states are reachable. A drastic example is Valmari’s
elevator for which the reachable state set (in any representation) explodes as the elevator
breaks through the ceiling and skyrockets into the air. Thus an exponential increase in
(the representation of) R after some number of steps almost certainly indicates an error.

In [GL96] it is claimed that “there are cases where the QBDD representation is strictly
more concise than the BDD representation”. Assume our buffer in a context where the
producer sends one fixed sequence of messages x1, xs, ... x,. That is, the reachable buffer
content is {(), (z1), (zax1), ..oy (Tp...x2w1), (T2), ... (Tp...w2), ..., (x,)}. With the top-
and bottom version of the buffer, the representation of this set is quadratic in v, whereas
with the circular representation and also with QBDDs it is linear in v.

On the other hand, consider the case that the producer can send an arbitrary sequence
of messages. In this case, the top- and bottom-versions are of constant size, whereas the
QBDD implementation is linear in the number of sent messages.

In practical examples, such extreme cases are rare. In our experiments, we have found
no significant difference in the size of the reachability sets of the various alternatives. The
number of parallel processes and their relative order has a much bigger impact on the size
of the BDD for R than the actual implementation of the buffer. Typically we can handle
systems of up to 5 processes, each with approx. 2* — 2° local states, where each process
is equipped with a buffer of n,w < 5. However, there still is a need for heuristics which
use dependencies between the processes to obtain a “good” order for the process state
variables.

An important observation is that the content of a message buffer used to coordinate

69

processes shows regular patterns, which also depend on the state of the processes. E.g.,
in a certain process state the buffer might always contain only copies of two different
messages from M. As another example, some specific message might always be followed
by some other specific message in the buffer. Currently we are investigating methods how
these regularities can be exploited to further reduce the size of the representation of the
reachability set.

References

[BCDMO91] J. Burch, E. M. Clarke, D. Dill, and K. McMillan. Symbolic model checking:

[BCLO1]

[BGI6)

[Bry92]

[BS90]

[CGLY2J

[GLOG]

[HDY3]

[McMO93]

10% states and beyond. In 5" IEEE LICS, June 1991.

J. Burch, E. M. Clarke, and D. Long. Symbolic model checking with parti-
tioned transition relations. In Proc. IFIP Conf. on VLSI, Edinburgh, August
1991.

B. Boigelot and P. Godefroid. Symbolic verification of communication proto-
cols with infinite state spaces using QDDs. In Proceedings of 5" CAV, New
Brunswick, July 1996.

R. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams. ACM Comp. Surv., Vol 24, No 3:293-318, 1992.

R. Boppana and M. Sipser. The complexity of finite functions. In J van
Leeuwen, editor, Handbook of theoretical computer science, Vol. A, chapter 14,
pages 757-805. Elsevier, Amsterdam, 1990.

E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction.
In 19" ACM POPL, January 1992.

P. Godefroid and D. Long. Symbolic protocol verification with queue BDDs.
In Proceedings of IEEE LICS, New Brunswick, July 1996.

A. Hu and D. Dill. Reducing BDD size by exploiting functional dependencies.
In Proc. 308" ACM/IEEE DAC, 1993.

K. McMillan. Symbolic model checking. Kluwer, 1993.

70

Visiting Some Relatives of Peirce’s *

MICHAEL BOTTNER
Max-Planck-Institut fiir Psycholinguistik, Nijmegen, The Netherlands

Abstract

The notion of a relational grammar is extended to ternary relations and illustrated
by a fragment of English. Some of Peirce’s terms for ternary relations are shown to
be incorrect and corrected.

Binary relations have been studied extensively by Peirce and Schroder in the nineteenth
century, and in this century by Tarski and his students. No comparable attention has been
paid to ternary relations. This is surprising, for Peirce had already dealt with ternary
relations on various occasions. But Schroder strictly confined himself to binary relations,
and it is the topic of binary relations that has become the focus of interest for Tarski and
his students. For notable exceptions see Carnap (1929), Copi and Harary (1953), and
Aubert (1955) and the theory of relational database systems.

Peirce has illustrated his ternary relational terms by natural language examples. For

instance, the equation
(ba)m — b(am)

where b = betray, a = enemy, and m = man was explained in English as follows:

“those individuals each of which stand to every man in the relation of
betrayer to every enemy of his are identical with those individuals each of
which is a betrayer to every enemy of a man of that man.”?

This may be hard to swallow and even Peirce himself had some problems here as we shall
see. Therefore I think that Peirce’s discussion of ternary relations can best be studied in
a framework that is as rigorous with respect to syntactic structure as it is to semantic
structure. Such a method is provided by relational grammar. Relational grammar was
proposed in Suppes (1976).

The purpose of this paper is therefore both to extend the notion of a relational gram-
mar by adding ternary relations and to apply this extension to a better understanding of
Peirce’s writings about relations, or “relatives” to use his own term. Our focus is there-
fore more on the establishment of mapping natural language into the language of relation
algebra than on the development of the algebra of ternary relations. The paper continues
my work on relational grammar and builds especially on previous results on anaphoric
pronouns in Bottner (1992, 1994, 1997).

The paper is organized as follows: in section 1, the notion of a relational grammar is
introduced. In section 2, this notion is extended in order to account for ternary relations.
In section 3, an example of a ternary relational grammar is given. In section 4, our
analyses are compared to Peirce’s examples. In section 5, our results are discussed and
put in perspective.

* Previous versions of this paper have been presented at the RelMiCS III workshop in Hammamet
(Tunisia) and at the university of Osnabriick. T would like to thank Melissa Bowerman (Nijmegen),
Chris Brink (Cape Town), Barry Dwyer (Adelaide), Arnold Giinther (Berlin), Peter Jipsen (Cape Town),
Siegfried Kanngieler (Osnabriick), Roger Maddux (Nashville, Tennessee), and Bill Purdy (Syracuse, NY)
for many useful comments on a preliminary version of this paper.

Peirce (1870: 379).

71

1 Relational Grammar

A denoting grammar is a context-free phrase structure grammar that provides a semantic
function for each production rule.? A relational grammar is a denoting grammar with
the restriction that denotations are elements of an extended relation algebra over some
set D.3 An estended relation algebra over D is any collection of subsets of and binary
relations over D that is closed with respect to union, complement, conversion, composition
and Peirce product.* In line with Brink, Kahl and Schmidt (1997) we use the following
notation:

e union: AUB
e complement: A
e intersection: AN B

e Cartesian product: A X B

9

e conversion: R
e composition: R;S
e Peirce product: R : A

In addition, we shall use the following operations that can be defined in terms of the
previous operations:

e domain: domR = {x € D|(Jy)(zRy)}

e (progressive) involution: R* = (R : A)
e range-restriction of R by A: R| A= RN (D x A)

We refer to the identity relation by 7. We refer to the maximal subset of D by the constant
U and to the maximal binary relation over D by the constant V.
An example of a relational grammar is the following:

PRODUCTION RULE SEMANTIC FUNCTION
NP - TN+P+EQ+NP [NP]= [I'N]:[NP]
NP — TN+P+UQ+NP [NP]= [TN]NTI
NP - N [NP] = [N]

The symbols abbreviate the names of conventional grammatical categories: NP = noun
phrase, N = common noun, TN = transitive noun, P = preposition, UQ = universal
quantifier, EQ = existential quantifier. A lexicon for this grammar would be as follows:

P of, to

EQ some, a, an

N flower, lady, horse, ...

UQ each, every

TN owner, enemy, lover, woman, ...

2Suppes (1973).
3Suppes (1976).
4Suppes (1976).

72

NP:O: H

NP: H

T™N:O P EQ N:H

owner of a horse

Figure 13.

This grammar derives semantic trees for terms like, e.g., owner of a horse or owner of
every horse. A semantic tree is a derivation tree in the sense of the theory of formal lan-
guages where the nodes of the tree, in addition to their category labels, bear denotations
as semantic labels. An example of a semantic tree is given in Figure 1.

2 Ternary Relations

Relational grammar is restricted to subsets of some domain D and binary relations over
D. This would not be sufficient to provide meanings for sentences like, e.g., Mary is
sitting between John and Bill or John gives Mary a book since between denotes a ternary
relation and so does give. We therefore shall extend our ontology by ternary relations.

One way to introduce ternary relations is to introduce them as Cartesian products of
a binary relation over D and a subset of D. This definition, however, has the following
drawback. One and the same ternary relation gets two representations that need to be
identified by stating separately

<a,<bc>>=<<a,b>c>.

We therefore prefer to start from ordered triples and define a ternary relation as a set of
ordered triples.

Relational operations have been defined for binary relations. Adding ternary relations
requires a slight redefinition of our relational operations. In the case of union and inter-
section it is understood that both operands should be of the same type, i.e. either D, D?
or D?®. In the case of complement of X we understand the complement with respect to
either D, D? or D? depending on the type of X.

We assume two operations R! and R° as primitive: R’ switches the last two places
of a ternary relation and R° moves the first place of a ternary relation to the end. The
operation that reverses a ternary relation R can be expressed by the composition of a
transposition and a cyclic permutation: R,

Since binary relations are sets, the operation of a Peirce product can be generalized to
ternary relations provided that m < n. Let R denote an n-ary relation on D and let S
denote an m-ary relation. Then the generalized Peirce product of R and S is defined

R:S ={<x,.,Tpm>|FCn mi1)-.(32) (STp_ms AN Rxy...7,)}. (31)

This definition looks rather complicated but in fact captures only three cases: either R is
binary and S is unary, or R is ternary and S is unary, or R is ternary and S is binary. If
in particular R is a ternary relation over D and S C D, then R : S is a binary relation

73

over D, and if R is a ternary relation over D and S is a binary relation over D, then
R:S5SCD.

In a similar fashion, the operation of range-restriction is generalized
R[S :={<z1,...,2np >€ R| < Tp_pm, ..., T, >€ S} (32)

where R is an n-ary relation and S is an m-ary relation. If R is a binary relation and S
some subset of the domain the operation coincides with the operation defined in section
1. If R is a ternary relation and S is a subset of the domain R [S denotes a binary
relation over D. If R is a ternary relation and S is a binary relation over the domain
R | S denotes a subset of D.

Composition is defined as an operation on the set of binary relations. We extend this
operation to pairs of a ternary relation R and a binary relation S like this:

Rozs S ={<z,y,z>|(3Fu)(Rryu ANuSz)}. (33)

Therefore
(Roz2 S)ryz iff (Ju)(Rryu A uSy}.

Since dom can be defined in terms of Peirce product, it shares this ambiguity with it:
if R is a binary relation, then domR is a set, and if R is a ternary relation, then domR is
a binary relation.

Since involution can be defined in terms of Peirce product and complement, a notion
of generalized involution can be defined

R®:=(R:S). (34)

Many more operations can of course be defined in the context of ternary relations. But
since our main focus is on the interaction of ternary relations with either binary relations
or sets, so-called exterior operations will be more important than interior operations
involving just the set of ternary relations. We have therefore refrained from defining

various types of composition since we have not found them exemplified in any construction
of English.

Definition 1 Let D be some nonempty set. An extended ternary relation algebra of sets
over D is any subset of

P(D)UP(D?*)UP(D?
that is closed with respect to

. union

1. complement

111. transposition

w. cycle

V. composition

vi. composition of a a ternary relation with a binary relation
vit. generalized Peirce product

viit. generalized domain-restriction.

74

Notice that this list of operations appears to lack conversion. But in fact it occurs twice
because both transposition and cycle coincide with conversion in the case of binary rela-
tions. Notice that we do not have composition of two ternary relations because this would
return a quaternary relation. This does not mean that quaternary relations of this kind
do not arise in natural language. Peirce himself has given the example praiser of — to a
maligner of — to —.°

Some simple arithmetical properties of operations of ternary relations are listed below.

Theorem 1 Let R C D?3.
i. R" =R.
it. R°“=R.
wi. If X, Y are either both subsets of D or both binary relations over D, then
R:(XUY)=(R:X)U(R:Y).
w. If A and B are arbitrary subsets of D, then
(R': A): B=(R:B): A.
v. If A and B are subsets of D, then
(RHB): AcC (R: AP,
Proof of Theorem 1.
i. This is simply an extension of the binary case.

ii. This follows from the fact that a cyclic transposition of a set with thre elements
needs to be applied three times to return the original set.

iii. Obvious.
iv. The left hand side is equivalent to
(32)(z € BA (Qy)(y € AN Razy)).
The right hand side is equivalent to
(Fy)(y € AN (3z)(z € B A Rzyz)).

Since
Rlzzy < Rryz,

both expressions are equivalent.
v. By (34), the equation can be reduced to
RI:B:ACR:A:B.
The left hand side is equivalent to
(3z)(z € AN (Vy)(y € B — Rxyz)).
The right hand side is equivalent to
(Vy)(y € B — (32)(z € A A Rxyz)).

Since the second follows from the first the theorem is proved. Note that this property
cannot be strengthened to equality, since both expressions are not equivalent.

SPeirce (1902).

75

PRODUCTION RULE SEMANTIC FUNCTION

VP — TVP+EQ+ NP [VP]= [TVP]:[NP]
VP — TVP+UQ+ NP [VP]= [TVP)NF]
TVP - TV [TVP] = [TV]
TVP - DV +EQ+NP+P [TVP]= [DV]:[NP]
TVP - DV +UQ+NP+P [TVP] = [DV]NF]
VP — DV +EQ+ NP+ P+ EQ [VP] = dom(([DV];[TN])N (D3 | I)):[NP]
+TN + P+ Dem+ NP
VP — DV +EQ+ NP+ P+ EQ [VP] = dom(([DV];[TN])N(D? | I)):[NP]
+TN + P + Pers
VP — DV +EQ+NP+P+UQ [VP] = dom(([DV];[TN])N(D? | I)): [NP]
+TN + P + Pers
VP — DV+EQ+NP+UQ+NP [VP]= ([DV]:[NP])NP
VP— DV4+UQ+NP+EQ+NP [VP]= ([DVINP]):[NP]
VP - DV+EQ+NP+EQ+NP [VP|= ([DV]: [NP’]) [NP]
VP— DV+UQ+NP+UQ+NP [VP]= ([DVIINPHINF]

Table 5. Ternary Extension of Relational Grammar

3 Grammar Extension

To derive semantic trees for English expressions we propose the grammar of Table 5.
Familiar grammatical categories are referred to by the following additional symbols: TVP
= transitive verb phrase, DV = ditransitive verb, Dem = demonstrative pronoun, and
Pers = personal pronoun.

A lexicon for the extended grammar would be as follows:

P to

Dem that

DV qive, betray, ...
Pers him, her, it, them

Ditransitive verbs differ from monotransitive verbs like, e.g., own by having two objects
rather than one. One object is called the direct object (DO), the other object is called
the indirect object (10). A paradigm ditransitive verb is give. In the verb phrase gives a
flower to some lady the direct object is a flower and the indirect object is (t0) a lady.
According to our extended grammar, the semantic tree for this verb phrase would be the
one shown in Figure 14 where F' and L are subsets of D denoted by the noun flower
and lady, respectively, and G = {< x,y,z >} is a ternary relation on D denoted by the
ditransitive verb give where x denotes the giver, y denotes the receiver, and z denotes the
object given.

For the expression betray a woman to a man our grammar derives the denotation

(B:W): M

where M is the subset of D denoted by man, W is the subset of D denoted by woman
and B is a ternary relation on D denoted by betray. That this denotation provides the
correct denotation follows from the fact that it is equivalent to the set

{z|(Jy)(y € M A (F2)(2 € W A Bzyz)}. (35)

76

VP: (G:F): L

TVP: G: F EQ NP:L

DV: G EQ N:F N:L

gives a flower to some lady

Figure 14.
VP: (G:H):(O:H)

TVP: G: H EQ NP: O: H
DV: G EQ NP:H P T™: 0 P EQ NP:H
N: H N: H
give a horse to an owner of a horse
Figure 15.

For the expression betray every woman to every man our grammar derives the denotation
(B")™M. (36)

Applying our definition, we have

(BVYM =(BV:M)=(B:W):M)=(B:W): M. (37)
An element z of this set fulfils the condition
(Vz)(z € M — (Vy)(y € W — Bzryz)), (38)

and this captures the intuitive meaning of the verb phrase in question.

Our grammar also derives semantic trees for expressions with binary relations occurring
in argument position. An example would be the tree in Figure 15 where H is a set denoted
by horse, O is a binary relation denoted by owner and G is a ternary relation as in (14).
For the expression

betray each man to an enemy of every man (39)
our grammar derives the term

(BY) - (A™) (40)

7

VP: dom((G;0)N(D* | 1)) : H

Dv:G EQ NP:H P EQ TN:O P Dem NP:H

N: H N: H

give a horse to an owner of that horse

Figure 16.

where B is the ternary relation denoted by the ditransitive verb betray, A is a binary
relation denoted by the transitive noun enemy, and M is the set denoted by the common
noun man. By definition, this term is equivalent to

(B:M):(A:M). (41)
By simple computation this expression will turn out to be equivalent to
{z|(Fy)(Vz)(z € M — yAz N\ Bxyz)}, (42)

which is an appropriate translation of (39).

Our grammar also derives semantic trees for expressions with anaphoric pronouns in
Figure 16. Notice that the Peirce product and conversion operations are not sufficient
here and some additional operation is required. In a similar fashion, a semantic tree can
be derived for the expression betray a man to an enemy of him. The root denotation of

this tree is
dom((B; A) N (D3 1)) : M. (43)

Any element x of this set fulfils the condition
(Fy)(y € M A (3z)(Bayz A zAy)) (44)
which captures the intuitive meaning of the verb phrase. Correspondingly, the expression
betray a man to every enemy of him (45)

would by our grammar be assigned the denotation

dom((B; A)n (D3 [1)) : M. (46)
This term is equivalent to the set
{z|(Fy)(y € M A (Vz)(2Ay — Buayz))}, (47)

which is in line with our intuition about the meaning of (45).

In Table 1 a grammar was given for a fragment of English that is large enough to derive
many of Peirce’s English examples to illustrate his operations and their use to construct
complex terms. In the next section we use our fragment to check Peirce’s constructions.

78

4 Peirce’s Relatives

Our grammar is able to derive semantic trees for most of the terms with ternary relations
considered in Peirce (1870). A term expressing a ternary relation is called a “conjugate
term” by Peirce. Peirce illustrates his relational terms by examples from everyday English.
Peirce made occasional blunders in his notation as had been pointed out before.®

In order to be able to correctly assess the terms proposed by Peirce we need to explain
some of his notation. Peirce uses juxtaposition and exponentiation in case the first term is
a relation and the second term is relational or absolute. So zy may correspond to standard
relational composition in case both x and y are binary relations, or to the Peirce product
in case y is an absolute term and x is a binary relation. Similarly, ¥ may correspond to
standard involution if z is a binary relation and y is an absolute term, or to generalized
involution in case x is a ternary relation and ¥ is a binary relation or absolute.

Relations as Arguments Peirce also considers the case of a binary relation occurring
in argument position like, e.g., in

giver of a horse to an owner of a horse. (48)

In Peirce’s notation, this corresponds to the term gohh. This is equivalent to the root
denotation of the tree of Figure 15. But in the case of

betrayer of each man to an enemy of every man (49)

Peirce appears to have got it wrong. The term he proposed is ba™. On our account, the
denotation would be (40). Notice that the respective denotations are not equivalent.

This term can be analyzed either by (ba)™ or by b(a™). Recall that by juxtaposition
of two terms x and y, Peirce denotes either relational composition” or Peirce product.®
Assume juxtaposition denotes composition. Then ba denotes a ternary relation and (ba)™
denotes a binary relation. This cannot be correct, since (4) is an absolute term and should
denote a set. Assume therefore that juxtaposition denotes the Peirce product. Then b(a™)
denotes a binary relation too. Consider now the possibility that ba denotes the Peirce
product. Then ba denotes a set. And if ba denotes a set then (ba)™ is not defined. Notice
that ™ always denotes a set. But if a™ denotes a set, b a ternary relation and b(a™)
denotes the Peirce product of b and @™, then b(a™) denotes a binary relation. But this is
not correct, since b(a™) is supposed to denote a set. Similar remarks hold for other terms
with three quantifiers proposed by Peirce.

Anaphora Some of Peirce’s terms involve anaphoric pronouns. For instance, for the
expression betrayer of a man to every enemy of him, the term b®m is proposed by Peirce.’
This is not correct. For b*m is equivalent to

{z|(3y)(y € M A (Vz)(xAz — Bxzy)}, (50)

and (50) is not equivalent to (47).

6Cf. Brink (1978) and Martin (1978).
Tef. Brink (1978: 288).

8cf. Martin (1978: 27).

9Peirce (1870: 378 and 426).

79

Peirce proposed the term goh as a denotation for'®
giver of a horse to the owner of that horse. (51)

Martin pointed out correctly that this is wrong but did not give a correct term for (51)."
Recall that our grammar derives a semantic tree in Figure 16 for a structure that is closely
related. If we assume the denotation for own to be a left-unique binary relation, then the
tree in Figure 16 would also be a semantic tree for (51).
Scope Peirce sharply distinguishes two notions of give:'?
g1: giver of —- to —-

go: giver to —- of —-

This distinction corresponds to a difference in syntactic structures with g; occurring in a
structure with the direct object preceding the indirect object like in, e.g.

give a flower to every lady, (52)

and g occurring in a structure with the indirect object preceding the direct object like
in, e.g.,
give every lady a flower. (53)

More important than the relative order of the direct and indirect objects is the scope of
direct and indirect objects. In principle, two situations can be distinguished: either the
direct object is in the scope of the indirect object as is the case in (52) or the indirect
object is in the scope of the direct object. The first situation is called the patient analysis.
The second situation is called the recipient analysis. It is often claimed that (53) has the
same meaning as (52)."3

According to Peirce the meaning of bm® would be betrayer of all women to a man.'
Notice that bm" is equivalent to

{z|(Vy)(y € W — (32)(z € M A Bryz))}. (54)

On this analysis, the indirect object man falls inside the scope of the direct object women,
which runs against common linguistic intuition. But the denotation of the phrase betrayer
of all women to a man should rather be

{z|(F2)(z € M A (Vy)(y € W — Bzyz))}. (55)

Our grammar accounts for this fact by introducing the order DV DO IO in two steps, but
introducing the order DV IO DO in one step and assigning

(BYV): M (56)

as a denotation for the phrase betrayer to a man of all women. This denotation is identical
to the one provided for the phrase betrayer of all women to a man.

0Peirce (1870: 370).
HMartin (1978: 29).
2Peirce (1870: 370).
I3Keenan and Faltz (1985: 193).
4Peirce (1870: 378).

80

5 Concluding Remarks

In this paper, we have (i) extended the notion of relational grammar such that it is able
to accommodate ternary relations, (ii) illustrated this notion by a fragment of English
that deals with transitive and ditransitive phrases, (iii) pointed out certain inadequacies
in terms proposed by Peirce, and (iv) given correct interpretations for terms that had
been pointed out to be flawed. In addition we would like to point out that our grammar
extends the set of syllogisms considerably. For instance, it will be able to identify the
argument

Some man gave every lady a rose
Every rose is a flower
FEvery lady was given a flower

as a valid syllogism of English. With additional rules introducing negative particles no
and not we may end up with about 88 different syllogistic forms.

Our notion of an extended relation algebra as a structure closed with respect to cer-
tain operations resembles the notion of a “bonding algebra” proposed by Herzberger.'®
Herzberger proposed a structure closed with respect to relational composition, major
permutation, minor permutation, bonding, and relative complement, where major per-
mutation shifts the first argument into final position, minor permutation switches the first
two arguments and bonding identifies the last two arguments of a relation. In line with
Peirce, Herzberger does not distinguish between the operations of relational composition
and Peirce product. This may be satisfactory in the case where only binary relations and
sets are considered. However, the operations can be well distinguished: if R is a ternary
relation and S is a binary relation, then R;S will return a ternary relation but R : .S will
return a set. Moreover, the operations turn out not to be sufficient. Some notion of union
or intersection is required as is a notion of restriction. We would otherwise not be able to
derive an appropriate structure for the tree in Figure 16.

Relational grammar is not compelled to distinguish two variants of a ternary relation
depending on the order of their arguments. On the contrary, Peirce’s assumption of two
different notions for give is rather unnatural from the standpoint of natural English where
one and the same form is used throughout. If we assume only one predicate for give we
would then have to derive g, from ¢; or g; from go.1

Unlike most conventional linguistic approaches our grammar is semantically driven
rather than syntactically driven. The sentences

give a horse to an owner of a horse
give a horse to an owner of that horse

exhibit an almost identical syntactic structure. The only difference is that one structure
has an existential quantifier ¢ where the other structure has the demonstrative pronoun
that. Linguists have speculated that quantifiers and demonstrative pronouns belong to one
and the same syntactic category of determiners. Under this assumption one should expect
that the semantic trees for these expressions are very similar. But under our anlysis, this
turns out not to be the case. The respective semantic trees are given in Figure 15 and
in Figure 16. The semantic tree for the expression with the anaphoric pronoun that is
much flatter than the tree for the expression without the anaphoric pronoun. But this is

5Herzberger (1981).
'6This is in fact done in Béttner (To appear).

81

not surprising since the anaphoric reference requires information given at some location
of the tree to be available at a distant location of the tree. It is an open question whether
relational semantics has to stay with the flat tree of Figure 16 or can be tailored to fit
better a more hierarchical structure.

The flat-tree problem is inherited by any standard one-dimensional representation.
Peirce himself proposed a two-dimensional representation better known under the name
of existential graphs. Existential graphs have become a major focus in the design of
systems of knowledge represention in computer science under the name of conceptual
graphs.!” The problem will be to find uniform procedures to map the variant forms of a
natural language syntax to two-dimensional graph structures.

References

[1] Aubert, K. E. (1955) On the foundations of the theory of relations and the logical
independence of generalized concepts of reflexivity, simmtery, and transitivity. Archiv
for Mathematik og naturvidenskab 52, 9-56.

[2] Bottner, M. (1992) Variable-free semantics for anaphora. Journal of Philosophical
Logic 21, 375-390.

(3] Bottner, M. (1994) Open problems in relational grammar. In Patrick Suppes. Scien-
tific Philosopher, Vol. 3, ed. by P. Humphreys, Dordrecht: Kluwer, 319-335.

[4] Bottner, M. (1997) Natural Language. In Relational Methods in Computer Science,
ed. by Brink, C., Kahl, W. and G. Schmidt, New York: Springer, 229-249.

[5] Bottner, M. (To appear) Relationale Grammatik. Tiibingen: Niemeyer.

[6] Brink, C. (1978) On Peirce’s notation for the logic of relatives. Transactions of the
Charles S. Peirce Society 14, 285-304.

[7] Brink, C., Kahl, W. and G. Schmidt (1997) Relational Methods in Computer Science.
New York: Springer.

[8] Carnap, R. (1929) Abriss der Logistik. Wien: Springer.

9] Copi, I. M. and F. Harary (1953) Some Properties of n-Adic Relations. Portugaliae
Mathematica 12, 143-152.

[10] Herzberger, H. G. (1981) Peirce’s Remarkable Theorem. In Pragmatism and Purpose.
Essays presented to Thomas A. Goudge, ed. by L. W. Sumner, J. G. Slater and F.
Wilson. University of Toronto Press, 41-58.

[11] Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural Language.
Dordrecht: Reidel.

[12] Martin, R. M. (1978) Of lovers, servants, and benefactors. Journal of Philosophic
Logic 7, 27-48.

17Sowa (1993).

82

[13]

[14]

[15]

[16]

[17]

[18]

Peirce, C. S. (1870) Description of a Notation for the Logic of Relatives, resulting
from an Amplification of the Conceptions of Boole’s Calculus of Logic. Writings of
Charles Peirce, 1867-1871, Bloomington: Indiana University Press, 1984, 359-429.

Peirce, C. S. (1882) Brief Description of the Algebra of Relatives. Writings of Charles
Peirce, 1879-188/, Bloomington: Indiana University Press, 1986, 328-333.

Peirce, C. S. (1902) Relatives. Dictionary of Philosophy and Psychology Vol. 2, ed.
by J. M. Baldwin. MacMillan: New York, London, 447-450.

Sowa, John F. (1993) Relating Diagrams to Logic. In Conceptual Graphs for Knowl-
edge Representation, ed. by G. Mineau, B. Moulin and J. F. Sowa. Springer, 1-35.

Suppes, P. (1973) Semantics of context-free fragments of natural languages. In Ap-
proaches to Natural Language ed. by K.J.J. Hintikka et al. Dordrecht, 370-94.

Suppes, P. (1976) Elimination of quantifiers in the semantics of natural language
by use of extended relation algebras. Revue Internationale de Philosophie 117-118,
243-59.

83

