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Kurzfassung

Menschen weltweit werden mit Hochwasserereignissen scitexdlicher Starke konfrontiert.
Um Eigentum und, noch viel wichtiger, Leben zu retten, isteeiechtzeitige und zuverlassige
Hochwasserwarnung und folglich -vorhersage unerlassliciel dieser Arbeit ist es deshalb,
ein auf Fuzzy-Regeln basiertes Hochwasserwarnsystem f§wskalige Einzugsgebiete und die
Vorhersage von extremen Hochwasserereignissen mit Wéekgrerioden von 100 Jahren und
mehr unter Berucksichtigung von Unsicherheiten zu entviicke

Da extreme Hochwasserereignisse mit einer Jahrlichkail@® oder mehr Jahren in der Realitat
nicht in jedem Einzugsgebiet bereits beobachtet und aafgezet wurden, ist eine Erweiterung
der Datenbank auf Grund von Modellsimulationen zwingentiveadig. In dieser Arbeit wer-
den hierzu das hydrologische Modell WaSiM-ETH (Wasserhalis-Simulations-Modell ETH)
sowie von Bliefernicht et al. (2008) generierte Niedersgsfalder verwendet. Die Kalibrierung
des Modells erfolgt mit dem SCE (Shuffled Complex Evolution}i@perungsalgorithmus. Um
reproduzierbare Kalibrierungsergebnisse zu erzielendimdotwendige Kalibrierungszeit mog-
lichst gering zu halten, werden unterschiedliche Optimmgskonfigurationen untersucht und
eine Kalibrierungsstrategie fur das mesoskalige Einzeigieg des Oberen Mains entwickelt.

Um eine kontinuierliche und zuverlassige Vorhersage zargaren, ist die Idee entwickelt wor-
den, Fuzzy-Regelsysteme flr unterschiedliche Vorhersageimte (3 Tage; 6, 12 und 48 Stun-
den) fur die drei Hauptpegel des Oberen Mains aufzustetlenim Zusammenspiel eine kon-
tinuierliche Vorhersage sicher stellen. Der Fokus der §eSaorhersage liegt hierbei in der zu-
verlassigen Wiedergabe von geringen und mittleren Abfedisigungen sowie der zuverlassi-
gen und rechtzeitigen Vorhersage von Uberschreitungear @ordefinierten Meldestufe. Eine
vorhergesagte Uberschreitung der Meldestufe fuihrt zuneidéechsel der Vorhersagesysteme
von der 3-Tages- zu der 6-, 12- und 48-Stundenvorhersagen #®kus auf der Vorhersage der
Hochwasserganglinie liegt. In diesem Zusammenhang wedEffizienz der beiden klassischen
Regelsysteme, Mamdani und Takagi-Sugeno, sowie die Kortidimanterschiedlicher Eingangs-
grofl3en, unter anderem Tukey Tiefenfunktion, ndher untétsitEin weiterer Effizienzvergleich
wird zwischen den Mamdani Regelsystemen der 48-Stundesergade und dem hydrologischen
Modell WaSiM-ETH durchgefuhrt. FUr das Training der beidRagelsysteme wird der SA (Sim-
ulated Annealing) Optimierungsalgorithmus verwendet.

Die einzelnen Fuzzy-Regelsysteme werden schliel3lich inetgmickelten Hochwasserwarnsys-
tem ExpHo-HORIX (Expertensystem Hochwasser - HORIX) zusangeiigt. Standardméafig
wird fur jede Vorhersage die NiederschlagsunsicherhditGrund von Ensemble-Vorhersagen
innerhalb ExpHo-HORIX analysiert und ausgewiesen. Im Hadserfall konnen fur die stiind-
lichen Fuzzy-Regelsysteme Modellunsicherheiten des hygischen Modells, das fir die Gener-
ierung der Datenbank von Extremereignissen verwendetayargsatzlich ausgewiesen werden.
Hierzu mussen zusatzlich Ergebnisse der SCEM Analyse (@&rand, 2009) vorliegen.
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1 Introduction

" ... there is an increased risk of tremendous floodings withé next hours and days.”

People worldwide know those news from radio or TV and oftextypes of the last serious floods
are back in mind. Some of them are well prepared for suchtgngmand need only a few hours
to take their flood protection measures. Some are not. For &very minute is most valuable. In
both cases, a timely and reliable flood forecast is essdatitthie people to save goods and, more
important, lives.

Recent flood events have shown again that crisis manageméns afatural hazard still has to
be improved. Since 1998 floods in Europe have caused someedifsd the displacement of
about half a million people and at least 25 billion Euro inuresd economic losses (European
Commission, 2011). As reaction the European Water Frameioective entered into force and
introduced the idea of integrated water resources managente catchment planning. Further-
more, after the flood disaster of the Elbe river in the sumni&002 the German government
presented the Five-Point Program in order to improve thegmtgon of flood damage on a nation-
wide level. Linked to this program is the BMBF funded initi&iRIMAX - Risikomanagement
extremer Hochwasserereignissmong others, one research aspect of RIMAX is the improve-
ment of flood forecasts, in particular, of extreme floods wéturn periods of 100 years and
more.

Nowadays, classical rainfall-runoff models with conceptand / or physically based approaches
are performed for flood forecasts. Often, the processingedipitation ensembles with these
models requires high computation times. Therefore, anyarsabf uncertainties, resulting from
the precipitation forecasts and the applied hydrologicadlet, can often not be carried out in real
cases due to the lack of time. However, if uncertainties@merned, false alarms are more likely.
These false alarms can be very expensive and reduce the pulsit in the flood forecast and
warning system.

Besides the continuous improvement of classical raintaibff models, new approaches like
Artificial Neural Network (ANN) and Fuzzy Inference SystelffdS) are investigated in con-
junction with a timely and reliable flood forecast, inclugithe consideration of uncertainties.
In recent years, these approaches have been well-establigthin various fields of hydrology.

Due to their very small computation times they are most eitra for flood forecasts and the
corresponding analysis of uncertainties.

In the framework of the RIMAX initiative, the performance afzzy inference systems consid-
ering timely and reliable flood forecasts is investigatethinithe projecHORIX - Development
of an operational expert system for flood risk managemensidenng prediction uncertainty
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One objective of this project is the development of a robfistzy based warning system for
meso-scale catchments considering extreme flood evertisretiirn periods of 100 years and
more.

Considering one river catchment (extreme) flood events, wtazise high damages, are seldom.
Long observation periods are required to record those sveltwever, in most cases observation
periods are too short and events of higher return perioda@rescorded yet. Thus, only flood
events of lower return periods are available for the desigitood warning systems. However,
these data are not sufficient for a reliable setup of warnysgesns, in particular considering
extreme flood events. In order to overcome this problem,rakapproaches exist. For example
considering reconstructed data of very old extreme floodtsJeeside the recorded ones. Another
approach is to extend the observed database by simulatiggessible flood events as it is per-
formed within the HORIX project. However, with such an apmtoancertainties resulting from
the simulations using simplified model descriptions ocauaddition to the prediction uncertain-
ties of precipitation. Therefore, the whole model chg@meration of possible rainfall scenarios
- modelling the corresponding discharge with a rainfall-aihmodel - analysis the uncertainty
coming from the rainfall-runoff modes investigated. Based on the results of the rainfall-runoff
model and the uncertainty analysis a robust and reliableyfbased forecast system is developed.

Most of the work, which is presented here, has been perforwitidn the framework of the
HORIX project. In the context of the project this thesis irtigetes the following questions:

1. Can unobserved extreme flood events with return periodO0fykars or more be
simulated by classical rainfall-runoff models? In part&uis it possible to reduce the
calibration time of those rainfall-runoff models by perfang optimization algorithm?

2. Canfuzzy inference systems ensure a reliable and contérflend forecast for differ-
ent forecast time horizons? How simple and user-friendiythese systems?

3. Can a user-friendly and flexible warning system based aryfu#erence systems be
developed which considers precipitation and model uniceigea?

Based on the questions presented above this work is strdciurine following way: After a
short review of hydrological modelling, the basic concegitthe performed hydrological model
WaSiM-ETH (Water balance Simulation Model) and optimiaatalgorithm SCE (Shuffled Com-
plex Evolution) are introduced i€hapter 2. Chapter 3 starts with a short review of fuzzy
modelling, followed by a more detailed introduction of theske concepts of fuzzy logic and the
performed training algorithm SA (Simulated Annealing) &is inot as common in hydrological
modelling. Furthermore, the basics of Tukey depth functiom presented. Relevant details on
the study area chosen for this thesis, the Upper Main basiahiltee available data are provided
in Chapter 4. Chapter 5 presents the core of this thesis as the first two of the abatedst
guestions are answered for the Upper Main catchment. Thelafmd user-friendly and flexible
warning system based on fuzzy inference systems (quesfienpdesented ifChapter 6. The
thesis closes with a summary including some general coiclssind an outlook on future work
in Chapter 7.



2 Hydrological Modelling

Hydrology is the science of water including its properties states in the atmosphere, on the
ground and in the underground. Thus, it considers the hgdicédl cycle, the water resources, and
the interactions between them. Models are generally a gietgbtlescription of the very complex
reality, and are used to reproduce the behavior and pracebserved in the field. Hydrological
models are mathematical descriptions of the underlyingsighy processes involved within the
whole water cycle. They are developed and adjusted for afgpewestigation aim (Rosbjerg
and Madsen, 2005). With such models values for certain pointuture situations which cannot
be observed in situ can be investigated. Further fields dfcgtipn are summarized in Table 2.1.
However, a wide variety of processes on different tempandlspatial scales are involved in the
cycling of water. Therefore, it is very difficult to find apgmeate approximations for the setup
of hydrological models. In contrast to hydrological modaiscipitation models or groundwater
models only consider one specific part of the water cycle.

Fields of application \ Examples
Planning and design - water resources management (e.g. reservoir control)

- forecast of hydrological events (e.qg. flood forecast)

- investigations of certain effects on the hydrological
cycle (e.g. climate change)

Research and exploration | - investigation of concepts and hypotheses

- development of new approaches for the description
of hydrological processes

Visualization and abstraction - illustration of complex interrelations (e.g. impact of
climate or land use change on flood events)

Table 2.1:Fields of application of hydrological models (Fleckenstein, 2005).

For the selection of a hydrological model aspects like tivestigation aim, the availability of
data, the size of the catchment, and the involved hydroébgicocesses have to be considered.
Within the frame of this work a hydrological model is requirehich provides reasonable and
reproducible simulations of extreme flood events for obsghwit also for unobserved events. In
particular for the latter, it is important that the hydroloe) model is able to maintain the main
physics of dynamic processes within the unsaturated zotmassimulations beyond the observed
data range are more reliable.
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In order to achieve a good flood forecast correctly portrgyite pre-event catchment conditions
(e.g. soil moisture) is a crucial factor at the beginninghef simulations (Niehoff, 2001). Further-

more, the processes of interception, evapotranspiragiooy accumulation and melting as well
as infiltration and formation of surface runoff have to beaddk®d as precisely as possible for a
satisfying representation of the flood formation proceskes the spatial resolution Smith et al.

(2004) recommend the use of distributed instead of lumpedietsdor catchments having a high

spatial variability of precipitation.

For this investigation the hydrological model WaSiM-ETHsHaeen chosen because (1) it sat-
isfies the mentioned requirements of a model with respectltable simulations of observed
and unobserved flood events and (2) it has been already stbeapplied in the field of flood
forecasting.

For example Jasper et al. (2002) investigated the influehdéferent precipitation predictions
on flood forecasts. Thereby, they applied the hydrologiaadeh WaSiM-ETH for the simulation
of extreme flood events within the complex alpine Ticino2dsca-Maggia basin (2627 Km
Italy) between 1993 and 2000. The simulations have beerdb@sa 500 times 500 m model
grid and an hourly time step. The model was performed in a omg eoupled atmospheric-
hydrological model environment for the processing of ertdeweather forecasts of five different
high-resolution numerical weather prediction (NWP) models

Cullmann (2006) performed WaSiM-ETH in a similar way as it #d within the frame of the

HORIX project. The aim of his investigation was to build up atfood forecast system for

observed and unobserved flood events based on artificiahlneetworks. For the generation
of the required data the hydrological model WaSiM-ETH waisugefor the gauge Kriebstein

(Zschopau basin, East German Ore Mountains, 175% kman hourly time and a 1000 m spatial
resolution. Thereby, a new calibration scheme which orktgdasingle flood events into account
was developed and the resulting uncertainties were igastl.

A further application of WaSiM-ETH with respect to flood fesst was performed by Marx
(2007). Within his developed one-way-coupled meteoraalghydrological forecast system he
applied WaSiM-ETH for the alpine Ammer basin (709%Germany). For this purpose, WaSiM-
ETH was set up with an hourly time step and a spatial resaluwdial00 m in order to represent
the high spatial differences in a satisfying way.

A successful application of a hydrological model dependsredible model parameter values.
But a variety of hydrological models contain not only phy#lichased parameters, but conceptual
ones. These parameters cannot be measured directly, aefbtieehave to be adjusted by the
model user. Traditionally this is done by a trial-and-ercafibration process which depends
strongly on the model understanding (knowledge of the ba@gizoaches and interactions in the
model) and the experience of the modeler. Consequently, #reuah calibration is subjective
and a very time consuming task. Model errors, insufficientpss description and measurement
errors come along as further uncertainties of the calidnagirocess. Another important fact
which complicates the calibration process is that it is ro@gible to identify an unique parameter
set for the model due to the nonlinearity of hydrologicalgasses which are reproduced. That
leads to the so-calledquifinality problem(Beven and Freer, 2001), which means that several
sets of model parameter vectors can be found which havesslyngdood model performances. A
further difficulty is the dependency of model parametershenahosen objective function on the
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base of which the model is calibrated (Janssen and Heuhd&@f#%; Gupta et al., 1998; Madsen,
2003). The best state of a model is represented by an optinfiine chosen objective function
describing the relation between a model output variablatarabrresponding measured value. In
summary, the calibration of hydrological models is a vergnptex task which cannot be solved
easily. Modern optimization algorithm try to show one way oftithis very complex problem.

In recent years the performance of tBhuffled Complex EvolutiofsCE) algorithm as an op-
timization algorithm for the calibration process has besven to be efficient and effective in
locating optimal model parameters of different hydroladimodels. Thereby, it is assumed that
the found (local) optimum belongs to a set of optima whichcwstered around the global op-
timum. The first application of the SCE algorithm was perfadnbg Duan et al. (1992) for the
conceptual rainfall-runoff model SIXPAR, a simplified resgaversion of the SAC-SMA (Sacra-
mento soil moisture accounting) model used by the North @eRiver Forecast Center in the
USA as an operational flood forecasting model. Further inyatons with the SAC-SMA model
were performed by Sorooshian et al. (1993) and Hogue et@0)Xor several study basins in the
Upper Mississippi catchment, USA. Kuczera (1997) compéryadprobabilistic search algorithm
(SCE, genetic algorithm using traditional crossover, rpldtrandom start using either simplex or
guasi-Newton local searches) in order to calibrate the fisdehparameter of the modified con-
ceptual rainfall-runoff model SFB for the Chichester rivastn (180 km) in Australia. Madsen
(2000) applied the SCE algorithm for the calibration of the&k&1L1/NAM rainfall-runoff model
for the Danish Tryggevaelde catchment (130%knfror the meso-scale catchment Dietzholze (81
km?) in central Germany Eckhardt and Arnold (2001) applied t6& $ptimization algorithm for
an automatic calibration of a modified version of the modelA$\5oil and Water Assessment
Tool). In this study the SCE algorithm was found to be robustthe most efficient.

In this work the SCE algorithm has been chosen for the caithraf the applied rainfall-runoff
model WaSiM-ETH because (1) it seems that the algorithm fiobdast and reliable results in an
acceptable period of time and (2) it has already been sucdigsspplied in combination with
hydrological models.

In the following, general concepts and classifications afrbipgical models and optimization
algorithms are presented first. The basic principles oft(@ chosen hydrological model WaSiM-
ETH, and (2) of the optimization algorithm SCE for the caliima process are described after-
wards. The performance of both considering the study argezetJilain is discussed in Chap-
ter 5.1.

2.1 Concepts and classifications

Hydrological models. In general, hydrological models are mostly rainfall-rdmobdels or water
balance models. The difference between both is, that thesfotthe first lies on the calculation
of discharge on the base of occurring rainfall events witltmnsidering further major compo-
nents of the water cycle. The focus of the latter lies on theukition of all major components
of the water cycle including the genesis of discharge as amggeircomponent. Due to the fact
that the hydrological cycle covers a wide range of physicatesses on different temporal and
spatial scales several hydrological model approachesvaikalle. Furthermore, the fundamen-
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tal problem in studying and modelling hydrological systamstill that most of the action takes
place in the underground and that the amount of data not efdyring to the subsurface is lim-
ited (Beven, 2003). That is the reason why only the most inambprocesses can be taken into
account within the setup of the hydrological model in a gigeplication whereas the considered
processes themselves depend on the purpose of modellingthd-oight choice of hydrologi-
cal model Rosbjerg and Madsen (2005) state the request foo@gte modelling, in which the
actual purpose of the modelling is governing the scalesstphistication level in process de-
scription and parametrization, the calibration and vaideprocedures as well as the uncertainty
assessment.

Historically, the first hydrological model, the Rational Met, was developed by Mulvaney
(1851) as a helpful tool for the design of bridges and cusve@ince then, a wide variety of
hydrological models has been developed. A comprehensieeview of the most popular ones
is given by Singh (1995). For the classification of hydrotadimodels many different schemes
have been introduced. A widely-used classification is the after Dyck and Peschke (1995).
They classified hydrological models into three groups atiogrto the degree of physical consid-
erations of involved processes:

1. Black box models (empiricalthese simplest models are often derived from system
theory in a mostly pure empirical way. They are generallyduse event-based mod-
elling purposes. The basic assumption of these models tisahmdall and runoff are
related in a reasonable linear way. Examples are the runefficient and the original
unit hydrograph models (Sherman, 1932).

2. Grey box models (conceptuathese models are based on process-oriented approaches
where the governing physical laws of water flow are not careid explicitly in full
detail but through semi-empirical equations. These matelsften based on a lumped
spatial discretisation. Examples are the Stanford Wagershodel (Crawford and
Linsley, 1966) or the original HBV model (Bergstrom, 1995).

3.  White box models (physically basedhese very complex models try to describe all
processes of the system in a complete physically based wagy dre both compu-
tationally and parametrically demanding as the processedescribed by nonlinear
partial differential equations and more than one spaceiar@dimension are involved.
Although they are physically based some parameters st tabe calibrated because
their effective value cannot be measured on the requirelé scal resolution in the
field. A very common example for such a model type is the Systélydrologique
Européen (SHE) model (Abbott et al., 1986a,b).

In recent years the differences between grey and white baketedave slowly blurred. On
the one hand conceptual models have been extended by dly$siased modules due to the
continuously increasing computer power. On the other hangesmodules of pure physically
based models were reduced to conceptual ones because whitiadidn of available data. Due
to the rapid development of different hydrological modelsyd@e(2003) introduced two further
model groups in addition to the ones after Dyck and Pesch@5(1

1. Simplified distributed models based on distribution fumtdi the models of this group
attempt to maintain a distributed description of catchmesponses without the de-
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tailed process representation of fully distributed modeirder to represent the spa-
tial variability of runoff generation they use a kind of dibution function. Examples
of this model group are the well known TOPMODEL (Beven and Kyk1979) and
the VIC model (Liang et al., 1994).

2. Data-based modelsr data-driven modelsthe idea of those models is to let the data
speak for themselves and to have no prior assumptions abeunbdel structure.
Examples are the soft computing approaches like artificalral networks (ASCE,
2000a,b) and fuzzy logic (Bardossy, 1996, Chapter 3).

Beside the model classification considering the degree afipalydescriptions of involved pro-
cesses, the classifications according to the temporal aatéhkpesolution are commonly used.
The classification with respect to the temporal resolutidfedntiates between agvent-based
and acontinuoustime application of the hydrological model. Concerning that&l resolution
the models can be classified considering the degree of exed®n of the spatial variability of
processes, input, boundary conditions and / or system Ks¥atd) geometric characteristics into
lumped semi-distributedandfully distributedmodels (Singh, 1995). Lumped models simplify
the behavior of spatially distributed systems and assuateribdel parameters have an homoge-
neous character over the catchment area. An example for@eldimodel is the original version
of the HBV model (Bergstrom, 1995). Semi-distributed modslshee PREVAH model (Gurtz
et al., 1999) subdivide the watershed into hydrologicapoase units with similar hydrologi-
cal characteristics. Fully distributed models take anieipccount of the spatial heterogeneity
of the investigated catchment due to the fact that, depgnainthe chosen grid size, different
responding areas can be spatially differentiated parainete(e.g. WaSiM-ETH; Schulla and
Jasper, 2002). Usually a lumping of small scale physics @éontledel grid scale occurs in real
applications of physically based models (Beven, 1989).

Optimization algorithms. In general, optimization algorithms are logical procedushich are
used to search thesponse surfacgsingh, 1995), which is described by the objective function
the defined parameter space. They are applied in order tohignchodel parameter values which
optimize, that means minimize or maximize as appropriateyalue of the considered objective
function. After Singh (1995) the common optimization aifuns can be classified intocal
searchandglobal search methods

1. Local search methodshese methods are designed in order to efficiently find thre mi
imum of unimodal functions. Thereby, the algorithm continsly proceeds downhill,
that means in direction of the objective function improvetse and should conse-
qguently reach the function minimum, irrespective of whéredearch is started within
the parameter space. The result of the optimization depend4) the direction of
search, (2) the distance of search in one direction, anchi¢cision, when to stop
the optimization because no further improvement can besgeti There exists a va-
riety of local search methods which differ in the realizataf the algorithm with re-
spect to the three boundary conditions. In general, theSmiaation algorithms can
be further classified intdirect searcrandgradient basednethods (Singh, 1995). The
difference between them is that the direct search methodusds the function value
whereas the gradient based method uses both pieces of atformthe function value
and the function gradient. In the field of calibrating hyagptal models, many direct
search methods have been tested, among the first ones w&egbebrock method
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(Rosenbrock, 1960) and the Simplex method (Nelder and Me&¥h)1 Considering
the gradient based method the steepest descent approdud Mewton method are
widely applied (Singh, 1995). However, the performance athbmethods for the
calibration of hydrological models was not generally $gingy. One reason for this is
the fact that the response surface of the objective funcomsidering the optimization
of a hydrological model is not unimodal, but multi-modal. Gequently, the local
search method is not appropriate for the calibration of snoHels.

2. Global search methodsin contrast to the local search methods these methods are
designed to efficiently find the minimum of multi-modal fuiocts. This group can
be further classified into (1deterministicand (2)stochasticmethods, as well as (3)
combinationof both. After Singh (1995) only (random) stochastic and boration
methods have been performed for the calibration of hydroddgnodels. Due to many
model parameters which have to be adjusted during the ggatian process a pure
random approach is not efficient. Therefore, one widely w&edhastic method is
the Adaptive Random Search (ARS) approach after Masri et @r.8)lwhich takes
also the probability of searching areas into account. Irfitid of calibrating hydro-
logical models one simple combination method is the MuliHsSimplex approach
(Duan et al., 1992). A further more sophisticated combaresipproach is the Shuffled
Complex Evolution (SCE, Duan et al., 1993) method which is thasethe nonlinear
simplex approach and belongs to the evolutionary optinaratlgorithms. Many in-
vestigations (Duan et al., 1992; Sorooshian et al., 1998zKra, 1997; Hogue et al.,
2000; Madsen, 2000; Eckhardt and Arnold, 2001) show thatSGE& optimization
algorithm is a good choice for the calibration of hydroladimodels.

Another classification is proposed by Berlik (2009, Figur®) 2Thereby, the optimization algo-
rithms are grouped into (Qradient based(2) random and (3)enumerative methods

optimization methods

— T

gradient based random enumerative
direct indirect pure according to complete modified
l l ranom Ws l l
Simplex Newton Monte Carlo Simulated Evolutionary Exhaustive Branch-and-
Algorithm Method Method Annealing Optimization  Search Bound

Figure 2.1: Classification of optimization algorithms after Berlik (2009, modified; accortbirngoldberg,
1989)

Gradient based methods which use the information of thegmaoh order to find the optimum are
further divided into direct and indirect search algorithimscontrast to this, random optimization
methods take random processes into account as it occurdurenarlhey are further grouped
into pure random algorithms and algorithms which try to atetnatural processes (e.g. cooling
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process of crystals, survival of the fittest). The last greequmerative optimization methods,
evolves the objective function for each possible paramsgemithin the predefined parameter
space and is therefore very time consuming.

2.2 Hydrological model WaSiM-ETH

The hydrological modeWater balance Simulation Mod@lVaSiM-ETH) was developed at ETH
Zurich (Schulla, 1997) as a deterministic, fully distriédf modular model. The terrestrial water
balance is simulated using physically based algorithmgiiewertical fluxes and lateral ground-
water fluxes (WaSiM-ETH version 2), whereas other lateraieffue.g. surface runoff, interflow)
are treated in a lumped manner. In recent years the modeldmssuccessfully used in a wide
temporal and spatial range, from event-based to contingmuaslations. Primarily applied in
a small catchment in the Swiss Alps (Schulla, 1997) furtheestigations using WaSiM-ETH
were performed for impact studies of climate or land use gham the terrestrial water balance
(WaSiM, 2009). In recent years it has been also successillyea in the field of flood forecasts
in small and medium-size catchments (Jasper et al., 200En&ah, 2006; Marx, 2007). Since
its first application WaSiM-ETH has been continuously deped. In the following the main
modules of the WaSiM-ETH Release 6.4 version 2 (Figure 2.Bichvis performed in this work
(Chapter 5.1), are described according to Schulla and J&&p@?) and Wagner (2008):

Meteorological part of

. WaSiM-ETH
evapotranspiration
from soil and < ' :
|
from the vegetation :

infiltration / generation
of surface runoff

direct flow/$ E 5 :
+ soil (root)storage —
unsaturated zone _|

\
+ \

4—% > \ saturated zone  «» S

‘ discharge routing ‘

total discharge

Figure 2.2: Main modules of the hydrological model WaSiM-ETH Release 6.4 versionc@rding to
Schulla and Jasper (2002).

Interpolation of the meteorological input data. Meteorological information, which is required
as driving force of rainfall-runoff models, is usually akdile as station data. In order to transfer
the information of the given data source into the requireatiapresolution of the grid-based
model WaSiM-ETH following interpolation techniques areyded in WaSiM-ETH:

1. Inverse distance weighting (IDW) interpolatiomput variables have a stronger hori-
zontal than vertical dependency. All stations within a et search radius are used
for the interpolation.
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2. Thiessen polygora special case of IDW, which considers only the nearestreasen
station per grid point.

3. Altitude-dependent regressiomput variables have a stronger vertical than horizon-
tal dependency (e.g. in mountainous catchments). Forhlasawvith horizontal and
vertical dependency a combination of IDW and altitude-dejeat regression can be
selected.

4. Bilinear interpolation gridded meteorological data sources are available (esults
of a meteorological model).

Topography dependent adjustment of radiation and temperatire. A radiation and air tem-
perature adjustment is required to compensate shadowiectefn mountainous regions. The
impact of the topography on both variables is consideredgutiie approach after Oke (1987),
which calculates a correction factor depending on sunsthimation, incident and zenith angle,
and an empirical factor considering diffuse short waveatoin.

Potential and actual evapotranspiration. The potential evapotranspiration can be estimated
applying the approach after Penman-Monteith (Monthei®¥5] Brutsaert, 1982), Wendling
(1975), or Hamon (Federer and Lash, 1983). In comparisoenoian-Monteith the other meth-
ods are less complex and can only be performed on daily tiepes sWVithin WaSiM-ETH version

2 the soil moisture is modeled using Richards-equation (Rishd 931). Therefore, for the es-
timation of the real evapotranspiration the relation betwthe soil water content and the actual
capillary pressure of the soil is approximated using the 8anuchten (1976) equation.

Snow accumulation and snowmelt. The fraction of snow is calculated using the interpolated
air temperature, one predefined temperature, at which 50 gfegipitation are falling as snow,
and one specified temperature-transition range (SchutlaJasper, 2002). Snowmelt can be
estimated applying the temperature-index approach, thpdeature-wind-index approach, or one
combinated approach after Anderson (1973) and Braun (198t later can only be performed
on a daily time step.

Interception. The interception is calculated after the snow module. Tiesethe interception
storage is able to store melt water as well as rain water ogriliend and vegetation. Thereby,
a simple bucket approach is used with a capacity dependinpeteaf area index (LAl), the
vegetation coverage degree, and the maximum height of ther wa the leafs. The extraction
of water out of the interception storage by evaporation ssiaeed to be at a potential rate. If the
interception storage is filled, further precipitation wall directly to the soil surface.

Infiltration and generation of surface runoff. The infiltration model is an integrated part of
the soil model. Running WaSiM-ETH version 2, infiltration isnsidered in the calculation of
Richards-equation. If precipitation intensities are latgpan the actual hydraulic conductivity of
the soil surface runoff is generated.

Unsaturated zone.For modelling the vertical fluxes in the unsaturated zone WaSTH version

2 uses Richards-equation (Richards, 1931, Equation 2.J8adstf the TOPMODEL approach
(Beven and Kirkby, 1979, WaSiM version 1). Richards-equaisocalculated one-dimensional

10
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in the vertical direction, in the spatially and temporallgatetized form for each grid cell.

0O o0dq 0 ¥ (0)
ot 090z 0z ( K(©) 0z ) 2.1)
with  © [m3md]  water content
t [s] time
k [m/s] hydraulic conductivity
Y [m] hydraulic head as sum of the suctignand geodetic altitude
q [m/s] specific flux
z [m] vertical coordinate

Hydraulic conductivity and hydraulic head, which are fuoes of the water content, are parametrized
using the approach of Van Genuchten (1976). Thereby, thessean of the saturated hydraulic
conductivityks with depthzis taken into account by introducing the recession congtant

Ksz = K Krec (2.2)

which enables the generation of interfl@y. Due to its definition the recession constlgt can
only have values between 0.1 and 1.

For a specific soil layemthe interflowQ) is calculated as follows:
Qi = ks(6m) - Az- dr -tanB (2.3)

Thereby, the parameter drainage densjtyepresents river density as a scaling parameter and
therefore has to be adjusted during the calibration pro¢geissthe local slope angle and limited to
45°. Groundwater recharge is defined as the remaining vestipalicolating water. Furthermore,
it is assumed that the matrix flow dominates macropore flonh&uts-equation is interpreted as
a combination of mass balance and Darcy equation, due t@athéhat in general the horizontal
resolution of the model is 1 km or larger and therefore not garable to the original lab scale.
Hence, the corresponding parameters of the model are atsollyocomparable to laboratory
ones. Furthermore, they consider natural heterogeneiiidxsn the horizontal resolution and
consequently have to be interpreted as effective lumpeaihpeters. Since the mass balance is
calculated in a iterative way, the actual conductivity iscked considering the generation of all
vertical fluxes.

Groundwater and baseflow.A horizontally two-dimensional groundwater model can bepted

to the unsaturated zone. Interactions between surface aadiesubsurface water are simulated
using the leakage principle. If this module is chosen baseflehich is the portion of river
discharge derived from groundwater, can only be generateshwroundwater levels reach the
river bed or lake bottom level. If the model is run without teundwater module baseflow
is calculated for each cell of the model grid, and not onlyiarrcells, applying the following
approach (Schulla and Jasper, 2002):

Qe = Qo- ks- elMewNaea0) ke (2.4)

11
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with Qg [m/s] baseflow
Qo [] scaling factor for baseflow
ks [m/s] saturated hydraulic conductivity
hew [m.a.s.l.] groundwater table
hgeqo [M.a.s.l.] geodetic altitude of the soil surface
ke [m] recession constant for baseflow

The parameter®y andkg are conceptual parameters which have to be calibrated. Véovire
practice, the value d{g is often set to 1 and the value @ can be estimated to the value of the
maximum (observed) baseflow (Schulla, 2006).

Flow concentration within the subcatchment.For an entire subcatchment baseflow is generated
as an average value. In contrast to this, interflow is geeérfr each grid cell separately and
then averaged over space. Furthermore, surface runoffiisddo the outlet of the subcatchment
according to the flow time zones grid. In order to get the tatabff surface runoff of the lowest
flow time zone is added to baseflow and interflow. Consideritgnten a single linear storage
approach is applied to direct rund@p and interflowQ;. In general, the runoff componeg at
timet is calculated by runoff compone@g at timety and the recession constaits

Q = Qo -e MK (2.5)

with At =t —tp. During the calibration process the two recession constanidirect flow) and
K| (interflow) have to be adjusted.

Discharge routing. Discharge routing in the river bed channel is performed binarkatic wave
approach using different flow velocities for different walievels in the channel. Thereby, flow
times are calculated applying the equation after Mannitng:&er (Schulla and Jasper, 2002).
After the translation of the wave, a single linear storagapplied accounting for diffusion and
retention. Finally, discharges from different subcatchta@re superposed.

2.3 Algorithm for calibration: Shuffled Complex
Evolution

In the last two decades the evolutionary approach has echag@ powerful technique beside
the traditional ones (Chapter 2.1). Simor{2009) gives an overview of the most significant
differences between evolutionary and more traditionahogation methods:

- Evolutionary algorithms search not just with a single pobut with a population of
points in parallel.

- Evolutionary algorithms are only influenced by the objextiunction and the corre-

sponding fitness levels, and do not require derivative médron or other auxiliary
knowledge.

12
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- Evolutionary algorithms do not use deterministic traiogitrules, but probabilistic
ones.

- Evolutionary algorithms have no restrictions for the défn of the objective function
and therefore are generally more straightforward to apply.

- Evolutionary algorithms can find a diverse set of model paat@r vectors with similar
model performances.

In recent years a variety of different evolutionary optiatian routines were developed. One of
them is theShuffled Complex EvolutiqisCE) algorithm which was developed at the University
of Arizona (Duan et al., 1992, 1993, 1994). The algorithmohgk to the family of genetic
optimization algorithms and is based on the biological ettoh process in order to find theest
adjusted parameter vector. Thereby, a cloud of differeividuals try to evolve themselves into
the best state (global optimum) by changing the genetiamm&tion - the parameter values. For
this purpose the following four concepts have been combi(iBgrobabilisticanddeterministic
approaches (2) clustering (3) systematicand (4)competitive complex evolutigfCCE) of a
complex of points. The latter is one key component of the SCthateand based on the Nelder
and Mead (1965) Simplex downhill search method. Due to tbiskination of concepts the
optimization process does not stick within a local, but ebglamptimum by theory. In practice,
it is assumed that the found optimum belongs to a set of Iqu#ha which are clustered around
the global optimum.

A parameter vectop = { p1, p2, ..., pa} includes ald parameters of the hydrological model which
have to be adjusted. Considering the SCE algorithm a d-dirmealsparameter space is defined
for the optimization of the parameter vector, and each patanvectorp; represents onidi-
vidual within a population P= {p4,p,,...,pnp}, WhereasNP equals the number of parameter
vectors. Figure 2.3 illustrates an example for the 2-dinwead case. The parametexsandY
define the parameter space used for the optimization betj@egrand [0 6]. The contour lines
represent the surface of the chosen objective function avitital optimum af1,2) and a global
at(4,2). In order to reach the best state the following six evolusitaps are carried out:

1. Generation of population PNP parameter vectorp; are randomly sampled in the
feasible d-dimensional parameter space and the corresgpwalue of the objective
function O; € O = {O4,03,...,Onp} is calculated for each vector (Figure 2.3a with
NP = 10). If no a priori information is available a uniform prdbkty distribution is
used for the generation process.

2. Ranking of the individualg;: depending on the chosen objective functioniifegen-
erated parameter vectors are ranked in ascending and desg@mnder, respectively.
Thus, the first point of the sorted population is the paramesetor with the worst
value ofO, the last point the parameter vector having the best val@ of

3. Partitioning into complexesthe populatiorP is classified intdNGScomplexes each
including NPG parameter vectors (Figure 2.38GS= 2, asterics and point PG =
5). The first complex includes evelyGS« (k— 1) + 1 ranked parameter vector, the
second complex eveMGS« (k— 1) 4 2, the third everfNGS« (k— 1) + 3, and so on
(k=1,2,...,NPG).

13
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o 1 2 3 4 5
X X X

a) Generation of the population b) Partitioning into complexes c) Independent evolution
considering subcomplexes

0 1 2 3 4 5 0 1 2 3 4 5 c0 1 2 3 4 5
X X

X
d) Evolution by means of reflection  e) Evolution by means of contraction f) Evolution by means of mutation

o 1 2 3 4 5 0o 1 2 3 4 5
X X X
g) End of NSPL evolution cycles h) Rearrangement of complexes i) End of optimization

Figure 2.3: General scheme of the SCE algorithm for the 2-dimensional case aftarddah (1992, 1993,

14

1994; modified): Evolution of a populatidghincludingNP = 10 parameter vectors considering
two complexes (points, asterics) with subcomplexed BS= 3 parameter vectors.

Independent evolution of complexemsach complex evolves independently from the
othersNSPLtimes (e.g. NSPL= 3). Within each complex a further subcomplex is
sampled according to a trapezoidal probability distritmutincludingNPSparameter
vectors (Figure 2.3d\PS= 3). Thereby, the probability distribution is specifiedlsuc
that the parameter vector with the best valueCohas the highest chance of being
chosen for the subcomplex, and the parameter vector witkvdnst value ofO has
the least chance. Then each subcomplex undergoes conséctlie following three
evolution steps:

a) Reflection considering the subcomplex the parameter vector haviagmbrst
value O; is reflected through the centroid whereby a new parametdove
generated (Figure 2.3d). If (1) the new parameter vectemiénhin the parameter
space, and (2) the corresponding value of the objectivdifumis better than that
of the old one, the old parameter vector is replaced by thearew
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b) Contraction if no improvement of the objective function is obtained wihe
reflection step, the contraction step is attempted (FigLBe)2 Thereby, the new
parameter vector is computed halfway between the centraddize parameter
vector having the worst valug;. If the new parameter vector has a better value
of the objective function than the old one, the old paramegetor is refused and
the new one is taken.

c) Mutation if neither the reflection nor the contraction step lead tanaprove-
ment of O, a free mutation takes place (Figure 2.3f). Within the felaspa-
rameter space a new parameter vector is randomly genenateceplaces the
parameter vector having the worst valDg

5. Rearrangement of the complexafter NSPLevolution cycles (Figure 2.3g) the com-
plexes are shuffled. The complex structure is broken up heingle population and
the predefined convergence criteria are checked. If no cgewee criterion is satisfied
the algorithm starts again with the ranking of the individuatep 2), followed by the
partitioning into new complexes (Figure 2.3h).

6. End of optimizationthe evolution of the population and the optimization of plagam-
eter vectors, respectively, ends if one of the followingvaygence criteria is satisfied
(Figure 2.3i): (1) the improvement of the objective funatig less than a predefined
thresholdPCENT Q (2) the maximal number of evolution steld®AXN, or (3) of shuf-
fling loopsKST OPis obtained.

For the performance of the SCE optimization algorithm in thagk the original SCE Fortran
Code (Duan et al., 1992) is modified so that it can be appliedlloreleases and versions of
WaSiM-ETH on a windows and unix platform (Zimmermann andd3ak, 2008). Theoretically
99 model parameters of different model modules and subeegts can be optimized simulta-
neously. Furthermore, it can be chosen if initial grids (eegnsidering the soil moisture) and /
or different WaSiM-ETH configuration files should be usedtfa optimization process. Due to
the fact that the objective function has an important infageon the optimization result (Janssen
and Heuberger, 1995; Krause et al., 2005) the user can clhatseen six different objective
functions (Table 2.2) and combinations of them dependinthermodel aim. In addition a user
specified weighting of the discharge components (peak floaseverall) for the calculation of
the objective function can be performed.

The objective functiomoot mean square errofRMSE measures the deviation of simulated and
observed data in a quadratic sense and is sensitive torsuflianssen and Heuberger, 1995).
A perfect fit of the model would lead to an objective functicsiue of zero. A less sensitive
objective function considering outliers is theean absolute errofMAE) which accounts for the
deviations in an absolute sense (Janssen and HeubergBj, 29Perfect fit of the model would
lead to an objective function value of zero. Thelume error(VE) gives dimension of ratio
between the overall simulated discharge volume and thegponding observed one. Due to its
definition it is not sensitive to systematic model over- amdlerestimation. As the perfect fit
would be indicated with an objective function value of one adified versionO = |[1-VE]| is
implemented in the SCE optimization code. For the model efiicy after Nash and Sutcliffdl§
1970) the objective function ranges between 1.0 (perfecafitl —. If the efficiency is lower
than zero a prediction using the mean value of the observadnauild lead to better results than
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Table 2.2: Objective functions which can be chosen for the SCE optimization of theolygical model
WaSiM-ETH (Zimmermann and Pakosch, 2008); objective functionS. simulated datalM:

the model itself. One drawback of tiNSis that it is not very sensitive to systematic model over-
and underestimations (Krause et al., 2005). In this apgbicahe model efficiency is modified
and calculated & = 1— N Sduring the optimization procedure in order to minimize thgative
function (now, perfect fit correspond to 0.0). Toerrelation coefficients defined according to
Bravais-Pearson. More often titeefficient of determinatiofr?) is used, which estimates the
combined dispersion against the single dispersion of tisered and simulated data. The main
disadvantage of this objective function is that it only ddess the dispersion and is therefore
not very sensitive to systematic model over- and underesioms (Krause et al., 2005). For the
minimization of the objective function during the optimiian process the correlation coefficient
is modified and implemented &3 = |1—r2]. The sum of square erro{SSB measures the
squared discrepancy between the simulated and obsenaddpérfect fit of the model leads to

Criterion

| abbreviation | equation

Root mean square error

Mean absolute error

\Volume error

RMSE

MAE

VE

Nash-Sutcliffe efficiency NS

Correlation coefficient

Sum of square error

SSE

N
O=q 3 IS—Mi
N N
O= Z S/Z M;
i=1 i=1
3 (5-M)?
O=1-+¢ .
2, (W)
o (S-S

measured dat@dy: number of data.

a value of zero for th&SE
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The idea of vagueness, which means it exists something rhargjasttrue andfalse (classical
bivalent logic and ordinary set theory, respectively), @syold and can even be traced back to
Aristotle, the "father of logic”. The limited, two-valuedew dramatically simplifies our world
and lacks rapport with reality where complexity is far higkigan the principles of the bivalent
logic. Nevertheless, it lasted until the early 20th centwhen the idea of vagueness was dis-
cussed anew and solutions for the problem were investigatgd Russel, 1923; Black, 1937,
Lukasiewicz, 1957). For example, in 1917 Lukasiewicz dshbd the three-valued logic which
accepts the valudsue, falsg andunknown The formalization of vagueness, thezzy set theory
was introduced by Zadeh (1965) with his publication "FuzeysS Fuzzy set theory is basically
a theory of classes witfuzzy which means unsharp boundaries and it contains the bramthe
e.g. fuzzy logic, fuzzy arithmetic, fuzzy data analysigzy clustering, and fuzzy kriging. With
the fuzzy set theory it is possible to define further degréésith besides thabsolutely trueand
theabsolutely falsgrespectively, as intermediate truth degrees.

Since its introduction in the mid 1960ies fuzzy set theorg baen further investigated (e.g.
Dubois and Prade, 1980; Kaufmann and Gupta, 1991; Zimmearni®91; Bardossy and Duck-
stein, 1995) and performed within different fields of resbarin particular, the development of
fuzzy-controllers (Mamdani, 1974) has to be mentioned fwinich the widely used Mamdani
inference system results. On the basis of this inferendesythe second most common Takagi-
Sugeno inference system (Takagi and Sugeno, 1985) wasogedelIn general, fuzzy inference
is the process of formulating the mapping from a given inpatrt output using fuzzy logic. Fuzzy
logic itself is based on IF-THEN rules using fuzzy sets araxfuoperators. The two mentioned
fuzzy inference systems differ in their definition of theeruksponses (THEN-part). In recent
years both inference systems have been successfully uateddfor modelling purposes in the
field of hydrology.

For the modelling of the non-linear infiltration process Bisly and Disse (1993) applied the
Mamdani inference system. They investigated a Green and Aaged fuzzy model as well as a
fuzzy system based on the Richards-equation. Both were ddpliea small area on a 5-minute

base. The results of the modelled moisture content were amdwith those of the Green and
Ampt model as well as those of a FEM solution of Richards-aqnaf hey showed that the fuzzy

inference systems are an alternative for calculating thiération and the movement of the soil

moisture in a heterogeneous soil column. The advantagée skt up fuzzy models are that they
are transparent for the user due to their structure, andargtsensitive to parameter changes.

In order to improve river level forecasting See and Opengli®99) investigated a hybrid multi-
model approach by combining a Mamdani type system and diciaitineural network. The
assessment of the required rules was done with a genetigtalgo The results of the 6 hour
forecast for the river Ouse, England, were compared witkelod an Autoregressive Moving Av-
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erage (ARMA) and a naive prediction model. The study showatittie hybrid model performed
well on global statistics, and, more specifically, on praédg key alarm triggering levels. The
first results showed a high potential of the system for theavgment of river level forecast and
further investigations on this hybrid multi-model apprbacere carried out (See and Openshaw,
2000; See and Abrahart, 2001; Abrahart and See, 2002).

Xiong et al. (2001) used a Takagi-Sugeno inference systemtder to combine the forecast results
of different rainfall-runoff models in a systematic way.éjapplied five rainfall-runoff models to
daily data of 11 catchments in different climates and thenlwoed the results in order to achieve
better forecast results. The results were compared wietirom Shamseldin et al. (1997) who
combined the same results of the hydrological models usiagsimple and weighted average
method and the neural network method. The comparison slatthe investigated fuzzy system
has behaved almost in the same way as the other methods,tbugherter simulation times. The
study confirmed that the Takagi-Sugeno inference systeraasyasimple and very effective tool
for enhancing the accuracy of river forecasts, in the cdrdemodel combination.

For the conceptual and modular rainfall-runoff model HBV ldaoha et al. (2001) developed
four fuzzy-based modules (Mamdani inference) for the satioih of different processes involved
in the generation of runoff from precipitation. The fuzzgsed modules for snowmelt, evapo-
transpiration, runoff, and basin response were invegthhy incorporating only one of them into
the conceptual HBV model at a time while retraining the HBV ierdor the other modules.
Finally, all fuzzy-based modules were coupled togetheeyTdpplied the modified models on the
catchment of the river Neckar (13957 KmGermany, for which daily data were available. The
observed discharge could be well reproduced by the fuzggdaodel. The advantage of this
model is that no model parameter for the description of tlwe frocesses has to be found which
makes the approach easier and faster to work with.

In order to deal with parameter uncertainties Ozelkan anckBtein (2001) developed a fuzzy
conceptual rainfall-runoff model framework. The uncertas due to the input data and the model
parameters were investigated by applying fuzzy logic arayuegression. They applied their
framework to the Lucky Hill sub-watershed of the Walnut Gubatchment (150 kR), USA. The
study showed that the decision makers gain insight aboumtte| sensitivity and the uncertainty
due to the model structure by performing this fuzzy logierfeavork and input data.

Bardossy et al. (2003) performed the Mamdani inference sy$be the modelling of nitrogen
leaching for three different agricultural soils within tA8687 knf Saale River Basin, Germany,
on a monthly time base. For the assessment of rules the Sadulmnealing algorithm was
applied. Additional expert knowledge was implemented inithhe optimization as fixed rules.
Although the nitrate leaching is a complex non-linear peablit could be modelled effectively
and transparently for the user with the chosen fuzzy inferesystem.

For the modelling of rainfall-runoff dynamics Vernieuweadt (2005) investigated the grid parti-
tioning method, the subtractive clustering and the Gustaféessel clustering for the construction
of Takagi-Sugeno inference systems. The study area wasvéteZwalm (114 knd), Belgium.
The modelling was performed on a daily and hourly time basee Joal was to assess whether
these models can be used as a water management tool or notestiis led to the conclusion
that fuzzy models can potentially be used as an alternaisaddrge forecasting tool.
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Jacquin and Shamseldin (2006) developed a rainfall-runoffel using the Takagi-Sugeno infer-
ence system. Due to the fact that a strong relation betwessgitation and discharge exists they
investigated five different function combinations (e.gitunydrograph) for the definition of the
rule response. The global search method was based on theéiemaly algorithm of Sotiropou-
los et al. (1998) for the optimization of rules. They applikdir fuzzy models for six meso-scale
catchments in different climate zones (Nepal, China, I&lasSA, Australia) on a daily base.
The results of this study indicate that fuzzy inference eyt are a suitable alternative to the
traditional modelling of the non-linear rainfall-runoffqress.

For the modelling of the water level - discharge relatiopdtohani et al. (2006) used the Takagi-
Sugeno inference system. The investigated fuzzy systemes peeformed for several gauges of
the Narmada river system in central India on a daily base.rébelts of the fuzzy models were
compared to those of a back propagation artificial neuravot model. They showed that the
fuzzy modelling approach is superior compared to the adlifieeural network approach.

Another comparison of the artificial neural network and tinezl/ logic approach has been done
by Alvisi et al. (2006). For the 1, 3, 6, 9 and 12 hour forecdsthe water level at the river
Reno (1051 krf), Italy, five neural nets plus the Mamdani and Takagi-Sugefesence systems
were set up individually. For the parameterization an estdpping procedure was used (ASCE,
2000a) for all systems. The forecasting time horizon wagdichdue to the fact that no rainfall
data were considered as known or forecasted within the dstditne horizon.

Gemmar et al. (2006) investigated the Takagi-Sugeno inéergaystem for water level forecasts.
At gauge Saarburg (river Saar, 57 RnGermany, a set of four fuzzy systems for the 6, 8, 10 and
12 hour water level forecast were optimized semi-autoratyic The performed non-negative-
least-squares approach ensured that no negative paramittes Takagi-Sugeno conclusion were
achieved as results of the optimization procedure. Theysshdwed that Takagi-Sugeno infer-
ence systems are very simple and very effective and havemgpeantial as an alternative tool for
water level forecasts besides the traditional rainfatieftimodels.

In order to model catchment scale nitrate dynamics Shretthh (2007) applied the Mamdani
inference system on a daily time step for the Weida catchifi@ kn?), Germany. Two fuzzy
systems were trained on measured and simulated (WaSiM-EJPMODEL version) data for
the flow components by applying the Simulated Annealingrdlgm. The results were compared
with a multiple linear regression model. They showed that ¢cbmbined process based data
driven approach provides an effective methodology for theiktion of catchment scale nitrate
dynamics, and that both performed Mamdani inference systm® superior compared to the
simple multiple regression model.

Casper et al. (2007) investigated a Takagi-Sugeno infenerocke! in order to predict the actual

discharge of the Diirreych catchment (73nGermany, on the basis of soil moisture and rainfall
data. In a whole 18 TDR probes were installed at soil depthsd®n 8 and 90 cm. Soil moisture

was recorded in time intervals of 1 or 2 hours. Casper et aD{p6howed that it was possible

to predict the system behavior only by using soil moistur¢hm rule premises. However, the

results showed that in order to capture the whole systemndipsathe measurement locations
have to represent all relevant runoff generation variablasge to the fact that the fuzzy system

cannot extrapolate, time series of soil moisture have téedomll possible system states in order
to predict the runoff at the outlet.
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3 Fuzzy Modelling

Further fuzzy applications such as water management andial@enaking tools are given in
Simonovt (2009). He discusses among others the application of #ay fapproach for the man-
agement of regional water supply systems and for the sadtiginvater resources management of
aquifers.

The examples given above show that both inference systermsdeni and Takagi-Sugeno have
been successfully introduced for modelling purposes infitdd of hydrology in recent years.
Considering flood forecasts the Takagi-Sugeno inferendersyis more common than the Mam-
dani one. However, in this work both fuzzy inference systamesperformed and compared. In
the following the basics of fuzzy sets, fuzzy logic, bothZyzanference systems and the used
optimization algorithm for the rule setup are described. fEgher details see Dubois and Prade
(1980), Zimmermann (1991), Klir and Yuan (1995), as well asdBasy and Duckstein (1995).

3.1 Fuzzy Sets

The ordinary set theory is based on the bivalent logic whitdwa only values ofa = {0,1}.
That means for each pointit can be clearly decided whether it belongs to theasat not,x € a

or x ¢ a. In contrast to this, the fuzzy set theory allows all valués éunction in the defined
interval [0, 1]. Therefore, a partial membership of a poiraf an universe seX to a fuzzy subset
Ais possible, whereas the fuzzy sub&éturther referred to as fuzzy set) is a set of ordered pairs:

A= {(x Ha(X)) 1 X € X; pa(x) € 0,1} (3.2)

Ua(X) is called the membership (characteristic) function of thez§ setA and represents the
grade of membership ofin A by associating each point X a real number of the intervéd, 1|.
The closema(x) is to 1 the more point belongs to the fuzzy sét and vise versa. Furthermore,
if ua(X) is equal to zero, point does not belong to the fuzzy sat If at least one point of a
fuzzy setA has a membership value of orfeis a so-callechormal fuzzy setFuzzy sets are often
defined by a graphical diagram of its membership functions the key component of a fuzzy
set, and all operations with fuzzy sets are defined througihtlembership functions. In order to
obtain an approximation of a fuzzy si&fit is sometimes advisable to calculate so-calietevel
setsof a fuzzy sefA. It consists of all elements of the fuzzy gewhich fulfill the definition of A
to at least a degree. Therefore, it is the ordinary set of points that belongshtfuzzy sefA at
least to the degree:

A@) = {x € X, ua(x) > a} (3.2)
A(ar) CAlar) if ar1>ap

Furthermore, if allr-levels are convex, which means that the membership fumctiosists of an
increasing and a decreasing part, the corresponding fet2yis also convex:

Pa(AX1+ (1= A)x2) = min(Ha(X), Ha(X2)) (3.3)

with X1, X2 € X andA € [0,1]. Equation 3.3 means that all points which are located ontth&ht-
line segment connectirg andx; are in fuzzy sel if A is convex. Depending on the variable
to describe, the membership functions may have differempeat and be continuous or discrete.
Figure 3.1 shows the four common types of continuous merhigefanction p(x) which are
described in more detail in Chapter 3.1.2.
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Figure 3.1: Four common types of continuous membership functip(g: a) single point, b) triangular,

c) trapezoidal, and d) LR (Left - Right) whekgx) andR(x) are continuous strictly decreasing
functions.

3.1.1 Operations on fuzzy sets

For the application of fuzzy sets basic set operations ayeimed. The classical definition for
the complement of a fuzzy set as well as the union and thesed&on of two fuzzy sets are
described in the following (Figure 3.2) as suggested by B4d665). Thereby, lefA andB be
two fuzzy sets of the universé described through their membership functipngx) and g (X)
(Figure 3.2a).

Fuzzy-complement: The complement of a fuzzy sét is denoted byA’ and its membership
function is defined by (Figure 3.2b):
Ha(X) = 1= Ha(X) (3.4)

Fuzzy-union: The union of two fuzzy setd andB is C = AUB and its membership function is
defined by (Figure 3.2d):

He (X) = max pa(X), s (X)) (3.5)

Fuzzy-intersection: The intersection of two fuzzy sefsandB is D = AN B and its membership
function is defined by (Figure 3.2c):

Hp (X) = min(pa(x), ue(X)) (3.6)

The results of the fuzzy complement, union and interse@rmagain fuzzy sets of the universe
setX. Furthermore, if ordinary subsetsXf so calleccrisp setsare considered the above defined
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Figure 3.2: Schematic diagram of a) two fuzzy sé&sndB; b) fuzzy setA and its fuzzy-compleme®’;
c) fuzzy-intersectiofAN B) of fuzzy setsA andB; d) fuzzy-union(AUB) of fuzzy setsA and
B.

fuzzy operations yield to the usual union and intersectidawever, the intersection of a fuzzy
setA with its complemen# is not necessary empty (Bardossy and Duckstein, 1995).

In some cases above definitions for the union and intersectié fuzzy sets are not adequate
because their results contradict our intuitions. In theses other functions can be applied which
are generally classified into t-norms (intersection) acdrterms (union). All functions within
the two classes have to fulfill corresponding boundarieséiaed in the following.

T-norm: A bivariate functioni : [0,1] x [0,1] — [0, 1] (i for intersection) is called a t-norm if all
following four conditions are fulfilled:

1. i(a0)=0,i(a,l)=a Vae [0,1] Boundary condition
2. i(ab)<i(c,d)ifa<c,b<d Vab,c,de[0,1 Monotonicity

3. i(a,b)=i(b,a) Va,b e [0,1] Symmetry

4. i(ai(b,c)) =i(i(a,b),c) Va,b,c < [0,1] Associativity

T-conorm: A bivariate functionu : [0,1] x [0,1] — [0, 1] (u for union) is called a t-conorm if all
following four conditions are fulfilled:

1. u(@0)=aual)=1 Vae [0,1] Boundary condition
2. u(a,b)<u(c,d)ifa<c,b<d Vab,c,de[0,1] Monotonicity

3. u(a,b)=u(b,a) Va,b e [0,1] Symmetry

4. u(a,u(b,c)) =u(u(a,b),c) Va,b,c e [0,1] Associativity
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3.1 Fuzzy Sets

Considering Equation 3.4 each t-norm can be transfered twadrm and vice versa:
from t-normi to t-conormu  u(a,b)=1—i(1—a,1—b) (3.7)
form t-conormuto t-normi  i(a,b)=1—u(l—a,1-Db) (3.8)

In literature several t-norms with their correspondingbharms can be found (Klir and Yuan,
1995). Furthermore, different interpretations of the agiens exist. For example, Zimmermann
(1991) interprets the intersection operator given in Eignad.6 adogical and(AND), the union
operator given in Equation 3.5 amjical or (OR). Due to their definition as t-norm and t-conorm,
respectively, the minimum operator is an optimistic, theximaim a pessimistic operator (Klir
and Yuan, 1995).

3.1.2 Fuzzy numbers

A fuzzy number is a special case of a general fuzzy set anditides a generalization of the usual
concept of numbers. It is a normal (at least one pointpd) = 1) and convex (Equation 3.3)
fuzzy set of the set of real numberls

A= {(x,1a() : X€ U; pa(x) € [0,1]} (39)

The convexity assumption ensures thatdhkevel sets of a fuzzy number are intervals which can
be represented in the interval form as

Ala) = [xa(a), xz(a)] (3.10)

with  A(a) fuzzy number atr-level
(a)  lower bound of thex-level interval
Xz(a)  upper bound of ther-level interval

The 0-level set is defined as the supmarpA) of a fuzzy number which includes all points with
ana-level greater than O:
supgA) = {x e X; ua(x) > 0} (3.12)

Because of Equation 3.11 any real number can be considerefuagyanumber with a single
point support and is called erisp number(compare Figure 3.1a) instead of a fuzzy number.
Although the definition of fuzzy numbers is very general,yoalfew types are common. The
definition of LR-fuzzy numbers after Dubois and Prade (198Q0)eirry popular and widely-used,
in particular, the simplest variants of LR-fuzzy numberse thangular and trapezoidal fuzzy
numbers.

LR-fuzzy number: A LR-fuzzy numberA is defined as\ = (am, & ,ar) r and its membership
function (compare Figure 3.1d) is defined by:

L(aMaL‘X if x € [(aw —ay), av]
HA(X) = R(HM if X € [aw, (am +ar)] (3.12)
0 else
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3 Fuzzy Modelling

whereL(x) andR(x) are continuously, strictly decreasing functions definedOori| with values
in [0, 1] satisfying the conditions:

Lx)=R(x)=1if x<0 and L(x)=R(x)=0 if x<1.
The support of the LR-fuzzy numbéris supfA) = [(ay —aL), (am +agr)].

Triangular fuzzy number: A triangular fuzzy numbeA is defined a®\ = (a1,am,a2)t and its
membership function (compare Figure 3.1b) is defined by:

a1 X€[a, av]
HA(X) = { 2% if X € [au, a] (3.13)
0 else

wherea; < ay < ap. The support of the triangular fuzzy numbiis supgA) = (a1, ay].

Trapezoidal fuzzy number: A trapezoidal fuzzy numbekis defined a#\ = (a;,am 1,am 2, &2)R
and its membership function (compare Figure 3.1c) is defiryed

s (fx€[ag, aua
1 if X € [am,1, au 2
PA(X) = AV ’ ’ (3.14)
ias  XE[av2, a
0 else

wherea; < aum 1 < au2 < a. The support of the trapezoidal fuzzy numi#eis supA) =
(a1, ap].

Operations on fuzzy numbers.In contrast to the general fuzzy sets for which Boolean opera-
tions can be performed, arithmetic operations like addidod subtraction, can only be applied
on fuzzy numbers. Furthermore, the union and intersectidinzzy numbers are usually not
themselves fuzzy numbers. Figure 3.2c shows the resulteofuizy-intersection of the two
fuzzy numbersA andB which is a general fuzzy set (no fuzzy number) because thealdy
assumption is not fulfilled.

The classical (crisp) arithmetic can be transferred to yuzts using theextension principle
(Zadeh, 1965), which is one of the most basic concepts fod¢welopment of fuzzy arithmetic.
In general, a seX can be mapped to a sétusing a functionf : X — Y:

f:X—=Y for every xc X,yeY and fix)=y (3.15)

Considering fuzzy arithmetic, the image of a fuzzy Aet X with a membership functiopa(X)
inY is in demand. The result is the fuzzy &¢€ Y with the following membership function:

N — H -1
Ue(y) = {Zup{uA<x>,y—f<x>,xe><} 1020 3.16
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3.2 Fuzzy Logic and Fuzzy Inference Systems

wheref~1(y) is the inverse of (x). Considering ther-level sets, everf(a) can be transformed
to aa-level setB(a) by:

B(a) ={y:y=f(x);xeA(a)} = f(A(a)) (3.17)

Here, f(A(a)) is just an ordinary function defined dx(a). Furthermore, a fuzzy vector can be
defined, for which the Cartesian product is introducedAdlf...,A; are fuzzy sets irXy, ..., X|
then thea-level set of the Cartesian product, thatdsx ... x A}, is the same as the traditional
Cartesian product of the-level sets:

(A]_X...XA|)(CY)=A1(G)><...><A|(C¥) (318)

With the help of the extension principle, the definition of Bartesian product, and the definition
of a-level sets the classical arithmetic operations can bendetd for fuzzy numbers. In the
following the four main fuzzy operators (addition, subtrae, multiplication, and division) are
defined considering the-level intervals of any two LR-fuzzy numbefga) = [Xa1(a),Xa2(ar)]
andB(a) = [xg1(a),xg2(a)] (Equation 3.10):

fuzzy addition A

(ar) a),%a2(a) +xs2(a)] (3.19)
fuzzy subtraction A(a)

(a)

(a)

a(a)+xga( ( (

1(a) —xg2(a),xa2(a) —xg1(a)]  (3.20)
XA71(G) *XB,1 (G) XAz(G - XB (G)] (3.21)

(a)

fuzzy multiplication A ) -
xa1(a)/xg2(a), Xp2(a)/Xg, 1(0)] (3.22)

fuzzy division A

An example of the four above defined arithmetic operatordudmezy numbers is given in Ap-
pendix A for a better understanding.

3.1.3 Fuzzy sets versus probabilities

At first glance fuzzy set theory is often considered as a vpegigal case of probability theory.
Indeed, fuzzy set theory and probability are related anthgedoe similar in many respects (e.g.
both use the unit interval and describe uncertainty), bair tboncepts are different. In each
case the key component is a characteristic function, nathelyjnembership functiop(x) in the
fuzzy set theory, and the density functib(x) for the probability. Some essential differences of
both concepts are listed in Table 3.1 showing the propeofiéise characteristics functions(x)
and f (x) (Bardossy and Duckstein, 1995). In the case of fuzzy failbeecombinations of both
concepts are sometimes necessary (see Dubois and Prafe Zidghermann, 1991; Klir and
Yuan, 1995).

3.2 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy inference systems are widely used as fuzzy contsoligzzy expert systems, fuzzy pattern
recognition, and fuzzy filters. In general, these systeragganuped under the notion of fuzzy
decision support systems. As already mentioned fuzzyenfar is the process of formulating
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3 Fuzzy Modelling

fuzzy set theory probability

membership functiom (x) density functionf (x)

- quantifies similarities to imprecisely de- provides information on expectations over
fined properties (degree of credibility) a large number of experiments

- is normalized by its maximum value - is normalized by the area under the function

- cannot be bimodal due to the convexity as-can be bimodal
sumption

- the sum of two fuzzy numbers are calgu-the sum of two density functions are calcu-
lated with the extension principle lated with some type of convolution integral

Table 3.1: Essential differences between fuzzy set theory and probability cenirsirthe properties of the
characteristics functiong(x) and f (x) (Bardossy and Duckstein, 1995).

the mapping from a given input to an output using fuzzy logiich itself is based on linguistic
IF-THEN rules using fuzzy sets and fuzzy operators. Thetfanality and structure of fuzzy
inference systems are always the same. Basically, a fuzegeinée system can be split into three
general parts:

1. Fuzzification of the crisp inputsDuring the fuzzification process the membership
function valuesu;(x) of the given crisp inpuk are determined for all defined fuzzy
setsi of the argumenA (see Chapter 3.1.2).

2. Application of fuzzy logicDepending on the fuzzified inputs the degree of fulfillment
DOF; of each rulej and the corresponding respon&sire determined applying fuzzy
logic operators (IF-THEN rules).

3. Aggregation to one single outpuEach rule gives one certain respor®ewhich is
finally aggregated to one crisp outpubf the inference system. Depending on the
type of fuzzy inference system one further step cadlefizzificatiorhas to be applied
after the aggregation of all rule responses in order to &elvae crisp outpuy.

In practice, two different types of fuzzy inference systars widely-used: th#amdani infer-
ence systerand theTakagi-Sugeno inference systein both systems the fuzzification process
and the application of fuzzy logic are performed in the sarag, ut the basic difference lies in
the definition of the responsé&?. Due to the fact that both inference systems are performed in
this work, the basics of fuzzy logic and both inference systare described in the following.

3.2.1 Fuzzy Logic

One key component of a fuzzy inference system is its fuzzyclogre which uses linguistic
IF-THEN rules and the basics of fuzzy set theory. In genexat, fuzzy rule is defined as:
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3.2 Fuzzy Logic and Fuzzy Inference Systems

IF X1iSA1 O XisA2® ... ® xxisAk THEN yisR (3.23)

with  Xg,...,Xk crisp input (premise vectdixy, ..., Xk })

y crisp output

A fuzzified argument

R response of rule

i=1..,1 index of predefined membership functions

1..K number of arguments

©) fuzzy logic operator (e.g. AND, OR)

In case of fuzzy rules (Equation 3.23) the variables withi@ t~-part are generally namexd-
gumentgA), the variable of the THEN-parespons€R). For all types of fuzzy inference sys-
tems the arguments are described through several fuzzyemsrabd membership functions, re-
spectively (represented by indéx The rule response of the Mamdani inference system (Chap-
ter 3.2.2) is defined as fuzzy numbdts as the arguments. The response of the Takagi-Sugeno
inference system is defined as a first order polynomial fond® = f(x1 k) (Chapter 3.2.3).
The statementk is A k. means that point belongs to the fuzzy numbenf the considered argu-
mentK, and is normally replaced b¥ . Furthermore, Equation 3.23 can be defined farzzy

rule systemin which more than one fuzzy rule are applied in order toeepnt a process, as:

IF Al,oA,o .. oA THEN R (3.24)
with A fuzzified argument
R response of rule
i=1..,1 index of predefined membership functions
1..K number of arguments
j=1,..,J index of defined rules
© fuzzy logic operator (e.g AND, OR)

In fuzzy rule systems it is often the case that different yuzges and rule premises, with different
responses are fulfilled to a certain degree. Due to the fattlhie definition of theule premise
(IF-part of each rule) is independent of the type of fuzzyeiehce system, the truth value and
thedegree of fulfilmen(DOF;) of a rule, are calculated the same way for both considerzzy/fu
inference systems. Therefore, the logic operators of theelescribed fuzzy rule system have
to be derived from those of the bivalent logic. In Table 3.theaessential logical operators as
well as the implication operator considering two crisp gegndB are given.

Here, only two values "true” (1) and "false” (0) can be assigmo any rule, and furthermore, no
exceptions can be tolerated. Depending on the conditiotiseofule premise, the truth level of
a binary rule is again a binary function based on 0 and 1 (Tal@e In contrast to this a fuzzy
rule is not based on a binary function as the rule premisessdan operations of fuzzy numbers
(compare Chapter 3.1.2). Consequently, the truth level di surule is no longer just 0 or 1,
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3 Fuzzy Modelling

A | B|NOT(A) | AANDB | AORB | IF ATHEN B
A ANB AVB A—B
11 0 1 1 1
10 0 0 1 0
01 1 0 1 1
00 1 0 0 1

Table 3.2: Essential Boolean logical (NOT, AND, OR) and implication (IF - THEN) @ders considering
two crisp set#\ andB.

but also something in between. In order to find the truth le¥eln applied fuzzy rule premise
with the premise vectorxy, ..., Xk ) the degree of fulfillment@OF) is calculated for the interval
[0, 1]. Equation 3.24 shows that the truth value of a rule dependseonsed arguments and fuzzy
operations. As pointed out in Chapter 3.1 the generalizati@tassical bivalent operators for the
fuzzy set theory is not unique. Therefore, several poss#slfor the definition of the degree
of fulfilment for basic logical operators exist, whereag tfwo most common onegroduct
inferenceand min-max inferenceare defined for the two basic logical operators (AND, OR) in
the following. Thereby, lef; andA; be two fuzzy numbers.

Product inference: Considering the product inference, the degree of fulfilli2®t of a rule
depending on the logical operator and the given premisewéct, ..., Xk ) is defined as:

DOF(A]_ AND Az) = [,lAl(X]_) . UAZ(XZ) (3.25)
DOF (A1 ORA2) = Up, (X1) + Ha,(X2) — Haq (X1) - Hag(X2) (3.26)

Min-max inference: Considering the min-max inference, the degree of fulfillni2®f of a rule
depending on the logical operator and the given premisewéct, ..., Xk ) is defined as:

DOF(A]_ AND A2> = min(uAl(xl), “AZ(XZ)) (3.27)
DOF(A]_ OR Az) = ma)(uAl(xl), IJAZ(XZ)) (3.28)

In the case of product inference the order of the arguments &a influence on the calculated
DOF if no AND operator is used. Furthermore, all arguments ofiteenise have to be fulfilled in
order to achieve a rule response, whereas in the case of thmax inference only the extremes
(minimum, maximum) are important. In practice and also is thork, the combination of the
AND operator together with the product inference is wideged for the calculation of the degree
of fulfilment due to its order independence and its simplitd program.

3.2.2 Mamdani inference system

The most widely used fuzzy system is the Mamdani inferensgeay (Mamdani, 1974, 1977). It
was among the first methods which were used for control systam this is still the main field of
its application. Although, it has been successfully introed in the field of hydrology in recent
years its applications for modelling purposes are stilirfeted to a few specific case studies (e.g.
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3.2 Fuzzy Logic and Fuzzy Inference Systems

See and Openshaw, 1999; Bardossy et al., 2003; Alvisi et@D§)2 In case of the Mamdani
inference system Equation 3.24 is written as:

IF AL oA, . oA THEN B (3.29)

with A fuzzified argument
fuzzified response
i=1..1 index of predefined membership functions of arguments
1,...,L index of predefined membership functions of response
1..K number of arguments
j=1,...,J index of defined rules
©) fuzzy logic operator (AND, OR)

The fuzzification and inference steps are performed on temise vectorxy,...,xk) as for all
fuzzy inference systems. The characteristic feature sfitiierence system is the definition of the
rule responses as fuzzy numb&¥s= B ; (compare Equation 3.24). Thus, the aggregation step
is split into (1) the combination of the rule respon&gs to one aggregated fuzzy resporg)

and (2) the defuzzification step in which the aggregatedyfuegponses(y) is transferred into a
crisp outputy. Due to the application of the extension principle theresegeveral possibilities
for both steps. In the following the methods which are useatiiswork are described .

Combination of rule responses to one aggregated fuzzy respse.As the majority of rules are
only partly fulfilled the response, ; are truncated using the calculated degrees of fulfillments
DOFj. The results of this are no longer fuzzy numbers but fuzzg.s@hese fuzzy sets are
aggregated to one fuzzy respory) by applying fuzzy operators, in this case theighted sum
additive combination

1
 max, 37y (Ug;(U) - DOF) |

J

HB(Y) > (us,;(y) - DOF;) (3.30)
=1

where the denominator is the maximum of the sum. That enskhiaéshe resulting membership

function is in[0, 1]. The advantage of this combination is that as soon as onésralgplicable
the response is not empty.

Defuzzification of the aggregated responsé he aggregated fuzzy resporBg) is defuzzified
to one crisp system outpytby using thecenter-of-gravitynethod:

_ S yme(y)dy
J22 us(y)dy
whereC(B) stands for the centroid. The crisp outgus defined as the value within the range of

B(y) for which the area under the graph of membership fundtigfy) is divided into two equal
Subareas.

y=C(B) (3.31)

For modelling purposes the center-of-gravity generallytes the best results. However, one
disadvantage is that if the single truncated rule respomgefar apart from each other the calcu-
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lated centroid could be zero wherefore the system respphss the misleading result of zero,
too.

Union of aggregation and defuzzification stepsif the weighted sum additive combination and

the center-of-gravity method are combined the crisp outfpat fuzzy inference system can be
calculated directly as a weighted center-of-gravity ofitidevidual rule responses:

_ 33-1(DOF; - C(By,j(y))

3.32
y 57, DOF (3.32)
with DOF degree of fulfillment
C(Bj(y)) centroid of fuzzified response
l=1,..L index of predefined membership functions of response
i=1,..J index of defined rules

That means there is no need to define the aggregated refponse a fuzzy set within a separate
step. This combination of methods is simple to program amg&eomputation times low. One
further advantage is that this combination does not assegt gnportance to uncertain responses
By j(y). Figure 3.3 shows the basic scheme of the Mamdani infereystera as it is performed
within this work.

Fuzzification and Fuzzy Inference

Argument A1 Argument A2 " Argument As Response B
Z Y h Z
T AA T 1 T
IF FEAWAR AND AR AR AND THEN
/ ¥ 5\ ; v 5
“’u Hu H’L H“
T s T A T s 11
F | /v 0 /% AND | /iy /% AND | % LY THEN
/ \ / 5 H 5\ i \ : 5 i 5
(7% Ly 7Y Ly
1+ . A 11 11 A T . a
IF | /% /% AND AND A THEN PR A
F ;N fooN I VA |

J
2 (DOF;-C(Bii(y))
Defuzzification y=-<— <
2 DOF;

=1

Figure 3.3: Basic scheme of the performed Mamdani inference system (argumentssputhse are each
fuzzified by 3 triangular membership functions; grey shaded membershifidos are con-
sidered within the corresponding rule).
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3.2 Fuzzy Logic and Fuzzy Inference Systems

3.2.3 Takagi-Sugeno inference system

Another type of a fuzzy system is the Takagi-Sugeno infexesystem which was developed by
Takagi and Sugeno (1985) on the basis of the Mamdani inferegstem. The characteristic
feature of this inference system is that the response of rdehs a linear combination of the
inputsR! = fj(X1,...,Xk) = bo j + 1 jX1 + b2 jXo + ... + bk jX« (compare Equation 3.24) and thus
no fuzzy number. In the case of the Takagi-Sugeno infereysters Equation 3.24 is written as:

IF AlyoA,o . oA THEN fi(x,....x) (3.33)
with A fuzzified argument
f(x1,...,Xk) linear function of the premise vectéxy, ..., Xk }
1..K number of arguments
i=1..,1 index of predefined membership functions of arguments
j=1,..,3 index of defined rules
©) fuzzy logic operator (e.g. AND, OR)

The fuzzification and inference steps are performed as feuzdy inference systems. Within the
aggregation step the system outpusg calculated as a weighted linear combination of the single
rule responses$;j(xy,...,Xk) by considering the corresponding degree of fulfillmdp@r; as the
majority of rules are only partly fulfilled:

~ 3)-1(DOFj - fj(xa, ..., %))

(3.34)
57_, DOF;
with DOF degree of fulfillment
f (X1, ..y XK) linear function of the premise vectdx;, ..., Xk }
j=1..3J index of defined rules

Due to the fact that the response is defined as a 1st ordergrolgh an optimization algorithm is
generally required for the set up of the Takagi-Sugeno énfee system (see Chapter 3.3.2). With
such an algorithm both (1) the functions constdmtg by j, ..., bk j and (2) the rule premises can
be determined. Figure 3.4 shows the basic modules of Takageno inference system as it is
performed in this work.

In recent years the Takagi-Sugeno inference system hassbieeassfully introduced in the field

of hydrological modelling and is more often used than the Mam approach (see introduction
of Chapter 3). Due to the fact that a strong relation betweeaipitation and discharge exist also
other functions for the definition of rule responses havenbeeestigated. For example, Jacquin
and Shamseldin (2006) have applied the unit hydrographderdo achieve a better fit.
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3 Fuzzy Modelling

Fuzzification and Fuzzy Inference

Argument A1 Argument Az Argument Ak Response
14 P 14
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J
Z(DOFj'fj(Xl ..... XK))
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2 DOF

i=1

<

Yy

Figure 3.4: Basic scheme of the performed Takagi-Sugeno inference systemrm@n¢giare each fuzzi-
fied by 3 triangular membership functions; grey shaded membership fusetierconsidered
within the corresponding rule).

3.2.4 Mamdani versus Takagi-Sugeno inference system.

Although both presented fuzzy inference systems are veryagiessential different system prop-
erties exist due to the definition of rule responses. Adgegand disadvantages of both fuzzy
inference systems are summarized in Table 3.3.

3.2.5 Fuzzy inference systems and artificial neural networks

Beside the fuzzy inference systems artificial neural neta/¢hlrther referred to as neural nets)
are a further soft computing approach which has become \agular in the field of hydrology
in recent years. The role of neural nets in hydrology is ceglgioverviewed in ASCE (2000a,b)
and a vast number of publications considering flood forecastbe found (e.g. Fernando and
Jayawardena, 1998; Castellano-Mendez, 2004; Bruen and 286§; Cullmann, 2006).

In contrast to the fuzzy set approach, which is based on IENHules, neural nets are based
on the functionality of the human brain, the interactionsiefirons. Neural nets are massively
parallel-distributed information processing systems it development is based on following
two general parts, at and between neurons (ASCE, 2000a):

1. Information processing occurs at many single elemeradgs, neurons). The non-

linear transformation of an input to an output signal is perfed by applying an acti-
vation functionf (.).
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3.2 Fuzzy Logic and Fuzzy Inference Systems

Mamdani inference system

|

Takagi-Sugeno inference system

The complete rule system is linguistically i
terpretable and transparent for the user.

Expert knowledge can be easily integrat
by defining additional rules.

Inference system can be set up straight ay
by the user.

More than a few rules are necessary for a
isfying reproduction of the considered pr
cess.

Complex processes are reproduced by a1
linear approximation due to the fuzzy rule
sponses.

The system output is limited to the defing
membership functions of the responses.

In some cases the achieved system ou
has a misleading result due to the applied
fuzzification method.

Additional defuzzification step is necessa
which could require more computation
time.

[
dguaranteed.

n-Only the IF-part can be linguistically inter-

preted by the user whereas the THEN-part is
not transparent.

eDue to the definition of the THEN-part ex-

pert knowledge cannot be easily defined as
additional rules.

v@ptimization procedures are necessary for

the definition of the function constants
bo,j,b1,j, .-, bK,j-

sddnly a few rules are necessary for a satis-
ofying reproduction of the considered process

as linear relations between input and output
can be considered.

ddemplex processes are reproduced by a

eweighted linear approximation as the re-

sponses are 1st order polynomials.

ed heoretically, the system output can be ex-

trapolated using the response function, but
validity is limited to the cases where the rules
are applicable.

pontinuity of the system output surface is

rilo defuzzification step is required which

amakes it more computationally efficient.

Table 3.3: Properties of the Mamdani and the Takagi-Sugeno inference system.
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3 Fuzzy Modelling

2. Between neurons signals are passed through connectisn Bach of these connec-
tion links has an associated weiNitthat represents the connection strength.

Figure 3.5a shows the schematic diagram of npdadthin a simple neural net (Figure 3.5b).
Here, the input vectoX = (x1,...,X5) comes from preceding nodes of the net. The weights
W = (Wyj,...,Wn j) represent the connection strength between the considecbsljrand the
nodes in the preceding to this node. The output of npdg, is obtained by computing the
activation functionf (.) with respect to the inner product of the input vectoand the weights
Wi:

yj =1 (;(Xi - W) —bj> (3.35)

wherebj is the threshold value, so callbdhs, of nodej, which has to be exceeded before the node
can be activated. The most commonly used activation funétidthe sigmoid function. Further
examples of common activation functions are given in Reyasouleh (2008). There exists a
wide variety of different neural nets, e.g. feedforwardna¢nets, Kohonen self-organizing nets,
and recurrent nets, which differ in how single nodes are eotad with each other.

a) schematic diagram of node j b) configuration of a simple 3 layer neural net

net input hidden output net
input layer layer layer output

Figure 3.5: Schematic diagram of a node (a) and general configuration of a simptel#yer neural net
(b) after ASCE (2000a).

Although both, fuzzy inference systems and neural net@ngeto the same group of models,
their concepts are totally different. Table 3.4 gives amraesv of general advantages and disad-
vantages of both soft computing approaches (Nauck et &4;Iardossy and Duckstein, 1995).

In the field of flood forecast several investigations (e.gigllet al., 2006) have been performed,
which compare the neural nets and the fuzzy approach in twdahieve a higher forecast accu-
racy. As in case of traditional modelling of the rainfallnff process the choice of the performed
soft computing approach depends on the question of inagiig For solving complex prob-
lems Abraham (2001) advises (1) to performed fuzzy infezesystems if knowledge can or is
expressed in linguistic variables and rules, and (2) to usiical neural nets if a certain amount
of measured or simulated data is available.
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3.2 Fuzzy Logic and Fuzzy Inference Systems

Fuzzy inference systems

\ Artificial neural networks

Both systems copy the instinctive human way of connectingesawith their
effects by creating a quantitative inner chain of links begwinput and output
without justifying the physical reasons.

Both systems are able to describe the non-linear behavicatafal systems
as universal approximators without using a complex mathiealanodel.

Both work well even when the tra
errors.

ining sets contain noise andsmement

Rule structure is transparent and linguis

interpretable for the user.

tiModel structure has a black-box behavior.

Due to the application of linguistic variablesThe strength of neural nets lies in their learn-

rule systems are easy to model.

Robust fuzzy systems can be set up eve
scarce data sets are available.

A priori expert knowledge can be included

If input data are outside the range of tra

ing aptitude.

nAf certain amount of data is required for the
neural net learning.

. No a priori expert knowledge can be consid-
ered.

nThe system gives always an output and criti-

ing data no system output is achieved due t@l conditions might be missed.

the predefined fuzzy numbers and used fu
operators (critical conditions are recogn
able).

More and more optimization algorithms
available and can be significantly improv
if a priori knowledge is available.

7zy
S_

ré/arious learning algorithms are available
@nd often give the impression that the user
only has to feed data into the model. How-
ever, the learning process might not always
converge.

The problem of overfitting might occur butNeural nets often face the problem of over-
can be overcome if the right number of rulefitting which leads to a poor predictive per-

is used.

formance.

Table 3.4: Comparison of fuzzy inference systems and artificial neural netwdli&adk et al., 1994; Bar-

dossy and Duckstein, 1995).
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3 Fuzzy Modelling

3.3 Training methods for fuzzy inference systems

In case of soft computing methods the teratibrationis generally substituted by the tetearn-
ing andtraining, respectively, as it comes from the human learning anditrgiprocess. Basi-
cally, there exist four methods for the assessment of fuafgrénce systems (Bardossy et al.,
2003):

1. Directly by using experimental data and / or expert knogke
2.  Genetic optimization algorithms.
3. Neuro-fuzzy approaches.

4.  Simulated Annealing.

For the setup of fuzzy controller the direct method is moafplied which requires interviews of
workers in many cases. The learning of fuzzy control rulésgigenetic algorithms is presented
in e.g. Herrera et al. (1998). For modelling purpose thetlastare common as they can handle
great amounts of data. Because of its popularity a short iggiser of the neuro-fuzzy approach
is given first. However, in this work the Simulating Annedgli(Kirkpatrick et al., 1983; Guély
et al., 1999) approach is used as it has been already sudbessgiplied as shown by Bardossy
et al. (2002, 2003) and Alvisi et al. (2006). The goal is to fihd rule system with the opti-
mal performance which includes the function paramegiisby j,...,bk j (Chapter 3.2.3) in the
case of the Takagi-Sugeno inference system. The definitibtie required fuzzy numbers and
membership functions, respectively, are done manually.

3.3.1 Neuro-Fuzzy

As shown in Chapter 3.2.5 both approaches, fuzzy infererstes\s and neural nets, have differ-
ent advantages and disadvantages. The central argumentdonbination of both, which can be
done in two ways, is the enhanced ability to learn. In genénale exists a significant difference
between Neuro-Fuzzy and Fuzzy neural networks. The firsbi®rar less an optimization pro-
cedure for the setup of fuzzy inference systems in whichehening capability of neural nets is
utilised for the assessment of fuzzy inference systemsal#dm, 2005). In contrast to this, Fuzzy
neural networks are neural nets whose inputs, weights atpdisuare fuzzy numbers (Klir and
Yuan, 1995). As only different training methods for fuzzyerence systems are considered in
this chapter, the three classical Neuro-Fuzzy approaat@sperativeconcurrent andintegrated
(hybrid) - are briefly presented in the following.

The simplest Neuro-Fuzzy setup is the cooperative appr@smtaham, 2005, Figure 3.6a). This
learning method is in some view comparable with the Simdlatenealing method as the general
structure of the fuzzy inference system stays untoucheck, tee neural net learning mechanism
determines the membership functions or the rules of theyfaggtem based on the given training
data. Usually, the rule base is set up by applying a clugexjppproach (e.g. self organizing
maps). After the assessment of the fuzzy inference systemetral net goes to the background.
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3.3 Training methods for fuzzy inference systems

a) b)

m

FIS FIS

Data

Output Data Output

Figure 3.6: Schematic diagram of (a) a cooperative and (b) concurrent NewapyFapproach after Abra-
ham (2005, ANN: neural net, FIS: fuzzy inference system).

In contrast to the cooperative Neuro-Fuzzy system the haatavithin the concurrent approach
does not optimize the fuzzy system in one step and goes not toetckground (Abraham, 2005).
The neural net assists the fuzzy inference system contshy@mnd aids to improve the perfor-
mance of the overall system. That means that the predefireay faference system remains
untouched and the learning progress of the overall systkes {alace only in the neural net. De-
pending on the data, the neural net can act as a pre- (Figbig &. postprocessor of the fuzzy
inference system.

Integrated (hybrid) Neuro-Fuzzy systems are neural netshwimitate the structure and the func-
tionality of fuzzy inference systems (Nauck et al., 1994raiam, 2005). Figure 3.7 exemplarily
illustrates a hybrid Mamdani Neuro-Fuzzy system which ®ia®f five neural net layers which

represent the general structure of the Mamdani system. Wowe classical Mandami inference
system as described in Chapter 3.2.2 does not exist any lehygar only the single layers and

their connections are interpreted as a fuzzy inferenceesysiThereby, L1 represents the crisp
input which is fuzzified within L2 through the consideratiohseveral nodes. The fuzzy rule

premise (IF-part) is described by the connections of L2 aBdHurthermore, the connections of
L3 and L4 are interpreted as the THEN-part of a rule systenr&lyethe nodes of L4 represent
the fuzzified responses. Finally, the defuzzification steparformed considering the last layer
L5 of the neural net. The same holds true for the integratadd&NEuzzy systems considering the
Takagi-Sugeno infernce system.

Figure 3.7: Schematic diagram of a five layer Mamdani Neuro-Fuzzy inferencemayateer Abraham
(2005); L1: input layer, L2: fuzzification layer, L3: rule antecedayer, L4: rule consequent
layer, L5: defuzzification layer.
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3 Fuzzy Modelling

It is obvious that the optimized cooperative, concurrent antegrated (hybrid) Neuro-Fuzzy
systems are not fully interpretable due to the fact that theal net is still present after the train-
ing process and cannot be uncoupled. That means that ncatamelfuzzy inference system is
obtained for modelling purposes. Furthermore, the coniylexthese systems are not very prac-
tical in the context of the development of a user-friendlyg &nansparent flood warning system as
itis one aim of this thesis. Therefore, no Neuro-Fuzzy apginds performed for the optimization
of the fuzzy inference systems.

3.3.2 Simulated Annealing

Simulated Annealing is used for optimization problems whéxclude the testing of all possi-
bilities and simple mathematical methods due to their cemp. It is a meta-heuristic opti-
mization method considering combinatorial problems. Tasidof the optimization algorithm
is the Metropolis-Hasting approach. The Simulated Anmgaiethod provides an acceptably
good solution in a fixed amount of time, rather than the bessipte solution. The origin of the
Simulated Annealing method lies in materials science (patkick et al., 1983). There it is used
as a cooling schedule (annealing) of materials in order koese the best configuration of the
molecules. That means the internal energy of the systemohlae minimized. Hence, all pa-
rameters of the optimization algorithm still have notas@onsidering the cooling process (e.g.
temperature, energy). On the way to the best molecule coafign, worse intermediate states
of the molecules are allowed and local minima can be overcdrmee and temperature are key
parameters of this cooling process and play an importaetwithin the transformed optimiza-
tion algorithm. One further key component is the probaptiit allow worse intermediate states
to occur (Equation 3.36 written in molecules energy notaéind model performance notation).

7 old8) %)

(3.36)

with  p/ probability of an intermediate state (Boltzmann factor)
AE energy difference between a new and old state
kg Boltzmann constant
Ta annealing temperature
O(RS) performance of the new model (rule system)
O(RS performance of the old model (rule system)

Thetraveling salesman problegPfeiffer, 2003) is one of the most common example for the ap-
plication of the Simulated Annealing algorithm. The tasksists in finding the (nearly) shortest
path connecting a number of cities visited by a travelingsalan on his sales route. Due to
the fact that there exists a great amount of possible itiresrghis combinatorial problem is very
difficult to solve. For example, if the route goes through ikies and it does not matter in which
direction in time the salesman visits the cities, theretexid! / 2 = 43589145600 possibilities
for his route.

The training of fuzzy rule systems is a similar problem asttheeling salesman problem. K
arguments each withmembership functions are usfk Ik rules can be set up in a whole. Even
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3.3 Training methods for fuzzy inference systems

if the number of rules is fixed td, (”'f]'K) possibilities for the setup of the rule system exist. In

case of the Mamdani inference system the amount of possbikven increases ((b_lK 'JKXL) as
the response is also defined bynembership functions.

For the setup of a rule system the Simulated Annealing dlguaris applied as it was already
performed by Bardossy (1998); Bardossy et al. (2002, 2003 dvidi et al. (2006). Below the
general steps of this procedure are briefly described. Tablesummarizes the parameters of
the Simulated Annealing algorithm which have to be defineabivance as boundary conditions.
Furthermore, it is assumed that the number of rules are fxdahd theK (andL) membership
functions of all arguments (and the response) are predefined

1.

10.

An initial rule systenRSis randomly generated and its performa@&§ is evalu-
ated.

The initial annealing temperatufig is selected and set to the annealing temperature
Ta.

One membership function of an argument within the ruléesyss randomly changed
to another defined membership function of this argumentrelliea new rule system
RS is achieved. In case of the Mamdani inference system therggoe of the new
rule system is extended by the membership functions of #@orese.

The sunty Y ; DOF;(t) is calculated for each rule over all time steys

IF z{\'zl DOF;(t) < 5 DOFyixed then the algorithm continues with step 3.
ELSE the algorithm continues with step 5.

The performance of the new rule syst&tR3) is evaluated with respect to the mini-
mization of the objective function:
IF O(R8) < O(RS then the new rule system replaces the old Bi&=
RS and the algorithm continues with step 3.
ELSE the probability of acceptange (Equation 3.36) is evaluated and com-
pared with a generated random numpen [0, 1]:
IF p' > pthen the old system is replaced by the new BSe= RS.

Steps 3 to 5 are repeatidN times.

The annealing temperaturgis decreased by the scale facidF, given as a boundary
condition.

Steps 3 to 7 are repeatid/ times.
The temperature scale factdr, is modified and the algorithm continues with step 3.
Steps 3 to 9 are repeated until one of the following teatiom conditions is fulfilled:

(1) the final annealing temperature is reached, (2) the o accepted positive
change$C becomes smaller then a predefined threshold.
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3 Fuzzy Modelling

In order to achieve satisfying optimization results théiahitemperature has to be high enough
to ensure that the result is not dependent on this boundagitcan. The higher the annealing
temperaturel,, more worse intermediate states are accepted. This is tengdo overcome a
local minima, in particular, right after the beginning oktbptimization process. The more the
system cools down, the smaller is the probability of acasgaand only a few negative variations
can occur. For the application on fuzzy systems Bardossy €2@02) advise that the number of
attempted changd¢N at a given annealing temperature should be at least as mamg asmber
of arguments multiplied by the number of rules. In genefaré exist several different cooling
schedules consideringy as shown in Reyhani-Masouleh (2008). Step 4 ensures thauthe s
s, DOF;(t), calculated for each rule over all time steps, never becaneler than a fixed
value y DOFyixeq given as a boundary condition. This is an additional featutr@duced to the
common optimization algorithm to achieve more generalfliapble than event depending rules.
Considering the objective function the least-squares nadeghohosen in this work. In contrast to
Gemmar et al. (2006) who applied a non-negative least-squapproach, the SA algorithm can
result in negative parameters of the response functionidemsg the TS systems which makes
this inference system once more less interpretable. Iftbiegbility of acceptancg’ is generally
set to zero the Simulated Annealing algorithm correspoodbé local search concept which
sticks to the first local minimum.

Notation \ Simulated Annealing parameter

To initial annealing temperature

DT, decreasing rate of annealing temperature (scale factor)

NN number of iterations used for each temperature

NM number of temperature changes before temperature de-

crease rat®T, is modified

Y DOFixed | minimum sum ofDOF which is calculated for each rule
over all time steps

PC portion of accepted positive changes (stopping criterion)
IS initial value for the random number generator

Table 3.5: Parameters of the Simulated Annealing algorithm

According to Pfeiffer (2003) the advantages of Simulatesh@aling can be summarized as fol-
lowed:

1. Itis easy to program.
2. Good optimization results are located about 1 to 10 % dpart the optimum.
3. Itis one of the best investigated meta-heuristic opttiin methods.

4. There exist several hundred applicabilities of the allyor.

The disadvantage is the difficulty to find the right combioatof parameters as boundary condi-
tions for the performed Simulated Annealing optimizatidm.general, an optimized fuzzy rule
system is considered as good, if:
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1. itis complete. That means that in case of the Mamdanienfss system for every
input vector the corresponding response is a hon-empty feetzand all questions
concerning the modeled process can be answered.

2. therules are representative and transparent.

3. the modeled output fits the observed variable well.

3.4 Tukey depth function

Data depth is a concept which recently receives increasitggast and is more and more used
in multivariate statistics. Dyckerhoff (2004) overviewsetmost important depth function, e.g.
the Mahalanobis depth (Mahalanobis, 1936), the half-sgap¢h (Tukey, 1975), the simplicial
depth (Liu, 1988), the majority depth (Singh, 1991), andzatreoid depth (Koshevoy and Mosler,
1997). These functions are successfully applied in the Bélchultivariate statistics including
among others multivariate rank tests and quality contral @nd Singh, 1993), outlier detection
(Cramer, 2003), cluster analysis and classification (Hqli963). In the field of hydrology the
use of data depth is very limited so far. Chebana and Ouard8)2Ged the Tukey data depth to
define weights for the regional estimation of hydrologicgtemes. Bardossy and Singh (2008)
applied the same data depth to find a set of robust parametersdor a hydrological model.
Bliefernicht (2010) investigated the performance of thedepth function for the detection of
precipitation extremes.

In general, data depth is a concept that measures the adgndifed pointz in a given data cloud
X1,X2,...,%n € 09, Tukey (1975) introduced in his pioneering work the halksp depth as a
tool for visualizing bivariate data sets and to identify ttenter of a multivariate dataset as an
analogous to the univariate rank, respectively. Furthezgtigations were advanced by Donoho
and Gasko (1992), Ruts and Rousseeuw (1996), Rousseeuw ayfd(8&@8), Zuo and Serfling
(2000), and others. Considering the simplest case, the @gpiha valuezin an one-dimensional
data seiX = {x1,X2, ...,X,} is the minimum of number of data points (#) lying on the leftlam
the right side ofz

D1(z X) =min(#{i : % <z} ,#{i : % > z}) (3.37)

That means that in one-dimension the minimum and the maxiwfuamndata set have the depth
equal to 1, the second lowest and the last-second highegefite 2, and so on. Furthermore, the
upper and lower quartiles have a deptltoh/4, and the median a depth ®n/2. Considering
the d-dimensional case, the half-space d&pttof a pointz = {21, 2, ..., z4} € 09 relative to the
d-dimensional data cloud = {X1,X2,...,Xn} With X; = {X1,X2,...,Xq} is the least depth af in
any one-dimensional projection or view of the data set. Theans that the depth of a point
gives an indication of how deep the point is inside the d-disienal data cloud. Furthermore,
the half-space depth can be seen as the smallest numbeagbalats in any closed half-space
with boundary througla, and therefore it can be written as (Donoho and Gasko, 1992):
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Dq(z;X) = Hrrﬂinl#{i uTx >u'z) (3.38)
ull=

whereu ranges over all vectors % with ||u]| = 1.

Depth is not equivalent to density. A point with maximal depan be thought of as a multidi-
mensional median and the deepest point, respectively. ®itedefinition the half-space depth is
a nested convex, nonnegative and bounded function whi@fisatthe following four important
properties (Zuo and Serfling, 2000):

1.  Affine invariancethe depth of a poirt € 09 is independent of the underlying coordi-
nate system and of the scales of the underlying measurements

2.  Maximality at center the depth function obtains maximum value at center (eguate
deepest point) for distributions having a uniquely definee @.g. point of symmetry).

3. Monotonicity relative to the deepest paiihe depth at a poirt increases monotoni-
cally as it moves toward the deepest point along any fixedmaugh the center.

4. Vanishing at infinity the depth of a poirt approaches zero dg|| approaches infinity.

One further advantage of depth functions are their robgstimehigher dimensions. By addikg
bad data points to the d-dimensional datad§ednly thek-outermost depth contours can at most
be corrupted, whereas the inner ones have to reflect the sh#pegood data as before.

In the context of this thesis, Tukey depth is investigatedrasdditional source of information

for the assessment of different flood events. Thereby, argiand unusual conditions can be
classified with the help of Tukey depth based on the argun@mbmations under investigation.

Ordinary argument combinations are represented througfh deépth values. In contrast to this
seldom argument conditions are interpreted as outliereamd/ery small depth values according
to the definition of Tukey depth function. Here, the applimatof Tukey depth function as an

additional source of information is investigated in two walyirst, it is considered as an additional
argument within the Mamdani inference systems in order firave the 48 hour forecast ability of

these systems (Chapter 5.3.2). Second, the extrapolati@vioe of Mamdani inference systems
is investigated based on Tukey depth (Chapter 5.3.3).
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4 The study area: Upper Main

4.1 Catchment characteristics

Figure 4.1: Location of Germany, Europe (dark gray, left), and the Upper Maiinbaghe North-East of
the national state Bavaria in Germany (dark gray, right).

The river catchment of the Upper Main is part of the Rhine baanhis located in the North-East
of the national state Bavaria in Germany (Figure 4.1). ltnefe the rather dry region of Bavaria.
It covers an area of about 4646 knand stretches approximately from latitude 49.8 N to 50.5
N and longitude 10.5 E to 11.8 E, with a mean North-South estitéenof approximately 70 km,
and a mean West-East extension of about 90 km (LfW, 1978) ehietosed by the low mountain
range of the Thuringian Forest in the North, the Hal3bergeaiWest, the Franconian Switzerland
in the South, the Franconian Forest and the foothills of ticbtElgebirge in the South-East and
East. The highest point lies with 1044 m.a.s.l. in the Sdtdkt of the catchment, and the lowest
with 230 m.a.s.l. in the South-West near the outlet gaugerdiem. The mean elevation is about
429 m.a.s.l.. About 75 % of the area has an elevation betw@@ra@d 500 m.a.s.l., and about
25 % of the area is a low mountain region with a height betweé¥nté 850 m.a.s.l.. The Upper
Main river itself arises by the confluence of the two headvgaiéhite and Red Main (near gauge
Mainleus), and ends with the confluence of the river RegnithénSouth-West of the catchment
(about 6 km downstream of gauge Kemmern, Figure 4.2). Thagpof the White and the Red
Main are located in the low mountain range of the Fichtelggbin the South-East, where the
highest annual precipitation of the catchment occurs. Th@a\ain rises at 887 m.a.s.l. and
has a flow distance of 45 km before it converges with the Red Maose spring is located at
581 m.a.s.l. and has a flow length of 55 km. After the confluesfcthe two headwaters the
Upper Main itself has a flow distance of about 70 km. Two climand geological very different
sides characterise the course of the river: (1) the UppenMalley and its bigger tributaries
with less precipitation, and (2) the spring regions withhhpgecipition, often in combination with
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snowmelt, which causes flood events. The main tributariesiaer Rodach, Itz and Baunach
from the North, and less important the tributary Weismaamfithe South (Figure 4.2).

Elevation
- 1044 m.a.s.l.

. 0 m.a.s.l

Figure 4.2: Catchment of the Upper Main river including the three main gauges Kemmadd (n?),
Schwiirbitz (2419 krf), and Mainleus (1166 kA) as well as the main tributaries Baunach, Itz,
Rodach, Weismain, White and Red Main.

For thousands of years the Upper Main was a typical riveriferlow mountain range with vast
meander and flood plains. Since the 12th century the riverusad as a route of transportation
for felled timber coming from the Franconian Forest. Tosgtihe requirements of timber rafting
the course of the river was changed dramatically: the rivas straightened, the river bed was
narrowed, and the river banks were fixed. Today, the consegsgeof these measures are still
serious: The flood risk has been increased for people livindpiwnstream areas, the enforced
flood wave propagation causes erosions of the riverbed, aodat habitats have been lost (LfU,
2008).

Climate: Spatial differences of the mean annual precipitation arg destinctive. With 1100
mm the highest annual precipitation occurs at the Westidlsf the Fichtelgebirge in the East,
followed by 700 mm in the Red Main valley in the South-East, 888 mm in the Upper Main
valley in the Western part of the catchment. Except for tlohtélgebirge precipitation is equally
distributed over the year. In case of the Fichtelgebirgghdly more precipitation occurs in winter.
The mean annual temperature ranges betwedn i@ the high mountain range of the Fichtelge-
birge and 7C in the Upper Main valley (HAP, 2008).

Land use: With about 53 % of the catchment area agriculture is the dantitand use type.
Further 41 % of the area is covered by forests. Only 5 % of tka & urbanized, which is far
below the nationwide average of 12.8 %, and also below therizawvaverage of 10.8 % (StBA,
2004). The rest of the area belongs to natural grasland wigh banks.

Geology and soil:The investigation area is subdivided into three geologieitk: (1) the Meso-

zoic overburden in the West and South-West of the catchnoarsists of Frankische Sandsteinke-
uper (HalBberge), and Jurassic rock layers of the Franc@ian2) The East Bavarian Bruch-
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4.1 Catchment characteristics

schollenland, which stretches out over the Red Main vallepsists of Bunter, Muschelkalk,

Keuper, Black, Brown, and White Jura. (3) The crystalline beklextends over the Franconian
Forest and the Fichtelgebirge in the East and South-Eakeafatchment. It mainly consists of
metamorphic rocks as Gneiss and Mica, however, in the regitre Fichtelgebirge it is Granite.

The two dominant soil types are (1) Cambic Podzols from saneésand quartzite, and (2) Vertic
Cambisols from marlstone and claystone weathering. Thegleemating on the top of bedrocks
Sandsteinkeuper and Lias. Because of this soil structurtéeshating clay and loam layers the
permeability into the lower soil horizon is moderate to low.

Groundwater: Except for the aquifers underneath the flood plains of thgelarivers, which
consist of sands and gravel, and the karst aquifer in thenggutinkische Alb) fractured aquifers
are predominant within the catchment area. Important acgidre the Frankische Keuper and the
Bunter of the Bruchschollenland. Both are fractured aquifensch have been made available for
drinking water supply using springs but mainly deep wellbe karst aquifer of the Frankische
Alb is only tapped by springs. The delivery of such springs eaceed 100 I/s. Because of
the marginal thickness of the soil layers, the bad filter prop and the high flow velocity karst
areas are very sensible regions for water supply, in pdatica pollutants. The schist and crys-
talline rocks of the Thuringian-Franconian uplands redethie fractured aquifers and have been
made available mainly by small springs. Partially largenugdwater occurrences are within the
guaternary sands and gravels of the Main valley.

Discharge and flood eventsFor the Upper Main area, flood events appear predominantgras
sequences of long-lasting precipitation events duringevjioften in combination with snowmelt.
They occur straight after the causative weather pattenwe hashort time of concentration, and
therefore short advance warning times. The Upper Main areharacterized through asymmet-
ric discharges with high flood and low low water contribusaiue to low storage capacities of
the soil and high precipitation events. During flood everdsawvlevels of rivers rise very quickly
having steep and short-lived flood peaks. Within the Whiter\daiea surface runoff is dominant
because of the low storage capacity of the crystalline dract aquifer. Here, flood events oc-
cur periodically as a consequence of high precipitatiorte amarginal to medium snow covers.
Because of their local characteristics thunderstorms havgr@at impacts during summertime.
The mean travel time of flood waves from gauge Bad Berneck (dogars of the White Main
spring) to the gauge Mainleus amounts to about 9.5 hours.sltipe of the Red Main valley is
flatter than that of the White Main. The Sandsteinkeuper atahlower storage capacity as
the crystalline fractured aquifer. Marginal snow cover ambination with frozen or saturated
soil layers causes the risk of flooding during wintertime.cémtrast to the White Main, mean
flood events occur in response to heavy thunderstorms dsuamgnertime at the Red Main. The
mean travel time of flood waves from gauge Bayreuth (downstrethe Red Main spring) to
the gauge Mainleus amounts to approximately 8 hours. Inel&4, travel times of flood waves,
based on investigations of past flood events, and impontiéataries are given.

For 54 gauges of the investigation area current water lewvéls corresponding discharges as
well as measurements of the last six days are availableeon{imly for the three Upper Main
gauges Mainleus (1166 K& Schwirbitz (2419 ki) and Kemmern (4244 kfi flood forecast
is performed by the Bavarian Administration (Bayerische Hea$sernachrichtendienst: Bayer.
HND). For these three gauges the five highest observed dgehare given in Table 4.2, the five
highest observed water levels in Table 4.3 (Bayer. HND, 2005)
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4 The study area: Upper Main

flow distance river length | travel time | tributaries
[km] [h]
gauge Bad Berneck - gauge MainleugVvhite Main | 38 9to 10
gauge Bayreuth - gauge Mainleus | Red Main 33 61010
gauge Mainleus - gauge Schwirbitz Upper Main| 22.8 3to6 Weismain, Rodach
gauge Schwirbitz - gauge KemmerUpper Main| 47.3 10to 20 | Itz, Baunach

Table 4.1: Travel times of flood waves and tributaries of the Upper Main catchmene{B&IND, 2005).

Rank | Kemmern Schwrbitz Mainleus
date Q [ni/s] date Q [ni/s] date Q [ni/s]
1 25.12.1967 1000 | 24.12.1967 764 | 26.01.1995 357
2 07.01.1982 771 | 28.12.1947 676 | 21.12.1993 263
3 24.02.1970 749 | 09.02.1946 616 | 31.12.1986 255
4 04.01.2003 731 | 06.01.1982 605 | 01.04.1988 249
5 29.01.2002 712 | 03.01.2003 576 | 13.02.2005 247

Table 4.2: The five highest observed discharges (Bayer. HND, 2005) for tlee tbpper Main gauges
Kemmern (4244 ki, observation period: 1931 - 1998), Schwiirbitz (2419 kobservation
period: 1941 - 1999), and Mainleus (1166 ¥mbservation period: 1983 - 1999).

Rank | Kemmern Schwirbitz Mainleus
date W [cm] date W [cm] date W [cm]
1 07.01.1982 687 | 06.01.1982 546 | 26.01.1995 442
2 02.11.1998 668 | 26.01.1995 538 | 21.12.1993 414
3 27.01.1995 667 | 10.03.1981 531 | 01.11.1998 408
4 24.02.1970 664 | 02.11.1998 529 | 31.12.1986 408
5 11.03.1981 664 | 03.03.1999 489 | 01.04.1988 406

Table 4.3: The five highest observed water levels (Bayer. HND, 2005) for thexethipper Main gauges
Kemmern (4244 ki observation period: 1931 - 1998), Schwiirbitz (2419 kobservation
period: 1941 - 1999), and Mainleus (1166 ¥mbservation period: 1983 - 1999).

For a better classification of the occurred flood events @8, 4.3) discharges of different flood
frequencies (Table 4.4) as well as different warning ley&&ble 4.5) of the three Upper Main
gauges are given (Bayer. HND, 2005). Since for the latter ardter levels are given by the
Bayer. HND the corresponding discharges are calculateddenirsy the corresponding rating
curve (Bayer. HND, 2005).

Considering the discharges it becomes obvious that excepn®flood event in the year 1967
only smaller flood events arountdQ»o occured within the Upper Main basin. Furthermore,
looking at the water levels flood events exceeding warningllé (large-scale overflowing of
urban areas and large-scale dike improvements are negessiroccured within the two smaller
gauge catchments Schwiirbitz (2419%rand Mainleus (1166 kR) owing flood frequencies
around 2 and 5 years.
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Kemmern Schwiirbitz Mainleus

[m/s]  [mnyh] [m?/s]  [mnyh] | [mP/s]  [mnyh]
HQ1 300 0.26 250 0.37 125 0.39
HQ> 400 0.34 325 0.48 165 0.51
HQs 510 0.43 410 0.61 210 0.65
HQ10 640 0.55 520 0.77 260 0.80
HQ2o 780 0.66 640 0.95 320 0.99
HQso 980 0.83 800 1.19 400 1.24
HQ100 1150 0.98 950 1.41 460 1.42
HQ1000 1800 1.53 1500 2.23 730 2.25

Table 4.4: Discharges of different flood frequencielQ (Bayer. HND, 2005) for the three Upper Main
gauges Kemmern (4244 K Schwirbitz (2419 ki), and Mainleus (1166 kA).

Warning level | Kemmern Schwiirbitz Mainleus
Wienl  Q[mP/g | Wieml  Q[md/s | Wleml  Q[m¥/g
WL 1 420 151 350 138 250 55
WL 2 480 216 400 209 290 80
WL 3 570 326 450 306 320 99
WL 4 700 766 530 513 400 182

Table 4.5:Warning levels (Bayer. HND, 2005) for the three Upper Main gaugesridern (4244 k),
Schwiirbitz (2419 krf), and Mainleus (1166 k). Discharges are calculated considering the
corresponding rating curve (Bayer. HND, 2005, WL 1: overflowingame minor places; WL
2: overflowing of agricultural areas and some traffic obstructions; \Waverflowing of some
houses / basements, closure of main roads, and some dike improvemeardsessary; WL 4.
large-scale overflowing of urban areas and large-scale dike improwsm@e necessary).

4.2 Data basis

For a successful calibration and validation of a deterrtimand fully distributed hydrological
model (WaSiM-ETH) as well as of fuzzy inference systems woretegical and hydrological
observation data are required. These historical datadscrould consist of long and ideally
continuous time series. In case of the fully distributedrbja@bical model further grid based data
as topology, land use and soil are necessary.

The grid based data used for the setup of the hydrologicaleimd&SiM-ETH in this study is
provided by the Bayerischen Landesamt fur Umwelt (LfU, 200Bh Gauss-Kruger coordinates
(12° central meridian). As topographic data the DGM 25 of Bavanid &huringia (Figure 4.2),
as land use data the Corine Land Cover Raster Data 2000 (Fid})readd as soil data the Bo-
denubersichtskarte 1000 (Figure 4.4) are given with a uéisol of 50 m. Latter is parameterized
after Schulla (1997). The required coordinates of the génggions are taken from Bayer. HND
(2005).

Considering the meteorological input the preprocessedaddéefernicht et al. (2008) are used

for both modelling systems. For the calibration and val@aphase precipitation, temperature,
global radiation, air humidity, and wind data of a tempordaiution of one hour and a spatial
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Corine Land Cover 2000

I continuous urban fabric

[ discontinuous urban fabric
M industrial or commercial units
[ road and rail networks
[ port areas

I airports

[ mineral extraction sites
I dump sites

[ construction sites
[ green urban areas
I sport and leisure facilities
[T non-irrigated arable land
[ pastures

["] complex cultivation patterns
[ land principal occupied by agriculture *
[ broad-leaved forest

I coniferous forest

I mixed forest

[ natural grassland
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[ sparsely vegetated areas

Bl water courses

I water bodies

Figure 4.3: Land use within the Upper Main basin considering the Corine Land CoveleRBata 2000

(DLR, 2000).

soil

I moor

[ silty clay
I sandy clay
B sand

[ silt
[clay

[ silty clay loam
[ clay loam
[ lloam

[ sandy loam
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Figure 4.4: Geology within the Upper Main basin considering the soil map BUK 1000 fré861(LfU,
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4.2 Data basis

resolution of 1000 m x 1000 m are provided. Furthermore, éineesdata are given as areal data on
an one hour and daily time resolution for the fuzzy inferesggtems. In order to investigate the
robustness and the uncertainties of the hydrological ma@&SiM-ETH, different turning band
realisations are available (1 hour, 1000 x 1009 40.09.1998 - 31.12.1998). For the simula-
tion of unobserved extreme flood events (Chapter 5.4.1) 14@ing band realisations for seven
different precipitation frequencies (10, 25, 50, 100, 2500, 1000 a) have been generated by
Bliefernicht et al. (2008) and preprocessed as input datthéhydrological model (1 hour, and
1000 x 1000 rA spatial resolution) and for the fuzzy inference systems(ir and daily temporal
resolution, mean areal values).

Discharge data are provided by the LfU (2005) on a daily andremhour time resolution for 14
gauges within the Upper Main basin (compare Figure 5.1):

Kemmern (A = 4244 knf) Schwiirbitz (A = 2419 knf)
Unterlangenstadt (A= 715 kn¥) Unterzettlitz (A = 508 kn?)
Leucherhof (A& = 380 kn?) Heinersdorf (& = 379 kn?)
Coburg (A = 368 kn?) Bayreuth (4 = 332 kn?)
Kodnitz (Ag = 313 kn¥) Horb (Ag = 254 kn¥)
Untersteinach (A = 245 knf) Neukenroth (& = 139 kn?)
Steinberg (& = 96 kn?) Wallenfels (A = 96 ki)

For these gauges daily discharge records are provided &&8@f IDischarge data with an one
hour time resolution are available for all 14 gauges fromal&82005. For the investigation of
fuzzy inference systems hourly data of gauge Mainleus (kK69 are provided from 1991 to

2005.
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5 Model development for the Upper
Main basin

5.1 Hydrological Modelling

Records of (extreme) flood events are very seldom within theedMain basin. However, those
data are essential for a successful setup of a timely arabtelivarning system considering ex-
treme flood events. Since only 30 flood events are hourly decbbetween 1991 and 2004 and
the highest one corresponds to a return period of around&@@ yiee database has to be extended.
In this work, the database is extended by simulations wighhtydrological model WaSiM-ETH.

In this context, an optimization strategy considering tkESlgorithm is developed for the cali-
bration of the WaSiM-ETH model Upper Main in order to keep pomation times low.

The performance of the hydrological model WaSiM-ETH witthie Upper Main basin including
the calibration and validation phase, as well as the sinanatof possible extreme flood events
are presented in the following.

5.1.1 Model setup

The setup of the hydrological model WaSiM-ETH release 6ive 2 is presented as it is re-
quired for successful simulations of flood events in the rreesde Upper Main basin within the
framework of the HORIX project. Table 5.1 summarizes the end&aSiM-ETH modules.

WaSiM-ETH module | Approach

Evapotranspiration Penman-Monteith

Snow Temperature-Index approach
Interception Storage approach after MORECS
Infiltration and Soill Richards-equation

Groundwater Conceptual

Discharge routing Kinematic wave approach
Temporal resolution | 1 h

Spatial resolution 1000 m

Table 5.1: WaSiM-ETH 6.4 model configuration applied for the Upper Main basin.

Temporal resolution. For a good reproduction of a discharge hydrograph, in pdardor flood
events, a high temporal resolution is adequate, but résdrizy the availability of measurement
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5.1 Hydrological Modelling

data during the calibration and validation period. Since 1890ies both, measured precipita-
tion and discharge data are available on a hourly time digate®n. Thus, the model temporal
resolution is one hour.

Spatial resolution. The spatial resolution used in this study is 1000 x 106Qwhich results in
a regular grid of 105 x 81 grid points for the Upper Main basin.

Subcatchments.Current discharge data are available online for 54 gaugewetAsr, the delin-
eation of the Upper Main catchment into 14 subcatchmentassdbon the partition of an existing
WaSiM-ETH version 1 model (Blasy and @verland, 2004) to emgigrformance comparisons
(Pakosch and Disse, 2006). Figure 5.1 shows the 14 subcattiwhich have been used for
the calibration. The gauges Mainleus, Rodach, Weismain,lan@rigure 5.1, red points) are
required for the recording of simulated discharges, amahgre for an offline coupling with the
hydrodynamic model SOBEK (Disse et al., 2009). For the sefupeofuzzy inference systems
simulated data of gauge Kemmern, Schwirbitz and Mainleeicansidered. Due to a missing
gauging station at the confluence of the rivers Upper MainReghitz (about 6 km downstream
of gauge Kemmern), the outlet of this setup is set to the g&egemern.

— river network
[ Neukenroth
[ Steinberg
Il Coburg
[ Horb

[ JWallenfels
B Heinersdorf
I Unterlangenstadt
Il Untersteinach \
Il Schwirbitz
Il Leucherhof
[ JKemmern

I Kodnitz

W Unterzettlitz

[ Bayreuth
@l Itz

@® R: Rodach
@® W: Weismain
@® M: Mainleus

Figure 5.1: Derived subcatchments of the WaSiM-ETH model Upper Main and the locatitme addi-
tional recording points Itz, Rodach, Weismain, and Mainleus (red points).

Meteorological input. Considering the meteorological input data no data intetmriaand no
data correction is performed since these data are pregedby Bliefernicht et al. (2008) within
the HORIX project (Chapter 4.2). Therefore, 1000 x 10G0mterpolated data grids are available
for the calibration and validation.

Soil parameterization. Vertically, the soil is represented by 30 equidistant layef 0.33 m

thickness each. The soil hydraulic properties are takem f&zhulla and Jasper (2002). The
soil column is less precisely discretized, because thecetuimn is saturated during (extreme)
flood events and therefore has no impact on the flood hydrbogtsgif. Furthermore, due to the
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5 Model development for the Upper Main basin

modelling purpose WaSiM-ETH is considered as a pure rairialoff instead of a hydrological
model.

Hydrogeology. Due to further research objectives within the HORIX projé2isée et al., 2009)
the two dimensional groundwater module is not performedHerderivation of baseflow. In-
stead baseflow is calculated by applying the conceptuabagprafter Schulla and Jasper (2002,
Equation 2.4).

Discharge routing. The properties of the river network are derivated with theSWW&ETH
preprocessing todlanalysand aligned with the existing river network of a previougdst(Blasy
and @verland, 2004).

5.1.2 Calibration and validation

Before the hydrological model WaSiM-ETH can be performedtfa simulation of extreme
flood events in the Upper Main basin the model parameterstodve adjusted to the catchment
characteristics. As mentioned in Chapter 2 this can be daherddy manual calibration (trial-
and-error) or as in this work by applying the SCE optimizaatgorithm (Chapter 2.3). The focus
of the calibration lies primarily on the good representatad flood events. However, the right
simulation of the entire flow spectrum should also be enstoredcertain degree. The calibration
and validation of the WaSiM-ETH model is performed basedharavailable meteorological and
discharge data (Chapter 4.2). No verification of the simdla&eaporation, interception, snow
storage, groundwater level or single runoff components lmmarried out due to the lack of
observed data.

Calibration and validation period

With respect to the investigation aim the calibration pgi@not set to one specific flood event,
but over a two year period, from 01.11.1997 to 31.10.1999hWihe chosen calibration period
both representative runoff characteristics of the UppeinNdasin are included, one of the highest
winter flood event and low to medium flow conditions during soen. For the validation the
period from 01.11.1993 to 30.10.1997 is chosen. Furthezmsingle flood events within the
validation period are considered for the evaluation of tleeleh performance as the focus of the
model lies predominately on the simulation of flood events.

Main WaSiM-ETH calibration parameters

The parameterization of the evapotranspiration, snowmeddeption modules are taken from the
existing WaSiM-ETH version 1 model (Blasy and @verland, 20 are not further considered
in the calibration process. Furthermore, no parameteriderisg the soil hydraulic functions
(e.g. pedotransfer functions) is calibrated since WaSIiMHES interpreted as a rainfall-runoff
instead of a hydrological model for the modelling purposeusation of extreme flood events.
Table 5.2 summarizes the remaining model parameters wlaokrglly have to be calibrated
specifically for each of the 14 subcatchments.

Considering the unsaturated zone, the drainage dedsityhich linearly controls the strength

of interflow (Equation 2.3), and the recession conskatwhich accounts for the reduction of
the saturated hydraulic conductivity with depth (Equatih8) have to be calibrated. Due to
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Notation \ WaSiM-ETH calibration parameters
dr [m~1] | drainage density
Krec [-] recession constant for saturated hydraulic conductivity depth
Qo [-] scaling factor for baseflow
ks [m] | recession constant for baseflow
Kp [h] | recession constant for direct runoff
K| [h] recession constant for interflow

Table 5.2: General calibration parameters with respect to the chosen WaSiM-ETpl setu

the setup without a groundwater model the scaling faQgrand the recession consta of
the conceptual baseflow approach (Equation 2.4) are cadibia addition. Furthermore, the
calibration of the two recession constaKis (direct flow) andK, (interflow), which account for
retention by applying a single linear storage approach &kgu 2.5), is required.

Investigation of the WaSiM-ETH parameter space

The boundaries of the parameter space considering the WBS#imodel parameters (Table 5.2)
have a significant influence on the optimization results hilvi first step of this work (Pakosch
and Disse, 2007; Pakosch, 2006) the parameter space ofribeagjealibration parameters con-
sidering the chosen WaSiM-ETH modules is investigated. @asethese results different SCE
setups are explored in order to make the optimization of frdrdlogical model WaSiM-ETH
more efficient (e.g. short computation times).

The behavior of the WaSiM-ETH model parameters is investigjaonsidering th&eneral Sensi-
tivity Analysis(GSA, Madsen, 2000, 2003; Spear and Hornberger, 1980).ni¢tisod is based on
traditionalMonte Carlosimulations and combined with the statistibab sample Kolmogoroff-
Smirnovtest (Plate, 1993). For each parameter set of the Monte Gandagions WaSiM-ETH is
performed and six different objective functions (Table) 22 calculated based on the results. For
each objective function separately the parameter set®erzisn a way so that the parameter set
in first position has the worst, the last the best value of tieative function. Afterwards two sub-
sets are formed consisting of the 100 worst and the 100 besmteder sets. After Madsen (2000)
the degree of parameter sensitivity can be determined base¢de two sample Kolmogoroff-
Smirnov test. Thereby, the empirical distribution funogdor the two subsets are plotted as well
as the maximum distance between both and the level of signdemr, respectively, are calculated
(Table 5.3). If the distribution of a parameter for the bediset is identical to the distribution for
the worst subset, the parameter is insensitive to the medpbnse or objective function consid-
ered. One drawback of the method is that it only considergesiparameter and no interactions
between the parameters under investigation can be analysed

Level of significance \ Property of the parameter
a < 1% high sensitive
1% < a < 10% medium sensitive
10% < «a low sensitive

Table 5.3: Definition of the sensitivity classes for the General Sensitivity Analysis &eesen (2000).

For the investigation of the parameter space and the behaivibe model parameters three sub-
catchments (compare Figure 5.1) Heinersdorf (379)k®teinberg (96 ki), and Kddnitz (313
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km?) are chosen because of their different catchment sizes laahateristics. For the Monte
Carlo simulations the parameter spaces of the WaSiM-ETHpetexs are identically defined for
the three subcatchments (Table 5.4). Because of their defisi{Chapter 2.2) the boundaries of
the parameterkc, kg, andQgp are set very narrow. In contrast to this, the values of tharpar
tersd,, K|, andKp range over several magnitudes due to missing experiendbs ldpper Main
basin. 5000 WaSiM-ETH parameter sets are sampled withig-thenensional parameter space
for the Monte Carlo simulations by using thiiform Latin Hypercube Samplingethod (Iman
et al., 1981) for each subcatchment separately.

WaSiM-ETH | Limits of the parameter space
parameter minimum maximum

d  [m] 0.01 100

Krec [] 0.1 1.0

Qo [-] 0.05 0.15

ks [m] 0.5 1.5

Kp [h] 0.01 100

K [h] 0.01 100

Table 5.4: Limits of the WaSiM-ETH parameter considering Monte Carlo simulations and theastb
ments Heinersdorf (379 ki) Steinberg (96 k) and Kddnitz (313 krf).

Figure 5.2 shows an illustration of the Monte Carlo simulagio Thereby, depending on the
chosen parameter pairs the values of the objective funadtiaihis case RMSE, are plotted over
the whole parameter range. The resulting surface, whiclessribed by the objective function
in the parameter space and which is caltegponse surfacéSingh, 1995), gives an overview
of local and global optima. The dark blue areas indicatellopdima and the red diamonds
represent the locations of global optima based on the 500fté/©arlo simulations considering
the corresponding RMSE values.

Considering the parametekgc, ks, andQq (Figure 5.2, rows 2, 4, 6) satisfying RMSE values
occur over the whole defined parameter range. In contrasiigprnore or less clear structures
of the response surfaces are distinguishable for the dtinee fparameterd;, K;, andKp (Fig-
ure 5.2, rows 1, 3, 5). Therefore, this illustration of theré® Carlo results may indicate that
the parameterkec, ks, andQg are less sensitive than the parametikr¥,, andKp considering
objective function RMSE. Furthermore, if the parameter galaf the global optimum are close
to the boundary an extension and new limits of the paramptaresshould be considered.

In addition to Figure 5.2 the empirical functions of the paeters are plotted for the different
subcatchments as described above for the GSA. Figure Svigsstxemplary the results for the
parameter&p, d;, andk.ec considering the objective functions VE and RMSE for the stdica
ment Heinersdorf (379 kA). The impacts of the different parameters on the dischaegerne
apparent in the figure. For example it shows, that the paemket has no influence on the
discharge volume because both empirical functions areedigFigure 5.3a). But the RMSE
evaluation shows that the paramelgy has an important impact on the shape of the modelled
hydrograph (Figure 5.3d). Therefore, both results confliendefined characteristic of the con-
ceptual parametelp to be insensitive with respect to discharge volume, butisemdo the
shape of the hydrograph. Figure 5.3b and 5.3e show that tlaeng#erd, influences both, the
discharge volume and the shape of the hydrograph. In contréisis, parametekec has almost
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Figure 5.2: lllustration of the RMSE response surfaces based on 5000 Monte Gemldations for the
three subcatchments Heinersdorf (379ktop 6 plots), Steinberg (96 Km6 plots at centre),
and Kédnitz (313 krh, bottom 6 plots).

55



5 Model development for the Upper Main basin

a)

VE L= 05 /

RMSE “* /

b)

1

2o

0
d

1
L= 0.5 /
£>2 -1 0 1 2
k
Tec
1
u= 0.5 /
E)2 -1 0 1 2
k
rec

Figure 5.3: GSA results for the subcatchment Heinersdorf (37%)koonsidering the WaSiM-ETH pa-
rameterKp (left), d; (centre), andkc (right) as well as the objective functions VE (a - ¢) and
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Figure 5.4: Comparision of the GSA results for the subcatchments Heinersdorf (379 Kiadnitz (313
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normalized).
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5.1 Hydrological Modelling

no impact on the volume and shape of the hydrograph, andftinerie a low sensitive parameter
(Figure 5.3c, f). These RMSE results confirm the interpretetiof Figure 5.2.

Figure 5.4 shows the dependency of the parameter space oattlienent characteristics exem-
plary for parameted,. Considering the subcatchment Heinersdorf (378)kmwhich is character-
ized by wide floodplains it can be expected that the adjustédaevof parameted, is located in
the lower half of the investigated parameter space (Figuta, 5l). The same result holds for the
subcatchment Kédnitz (313 KmFigure 5.4b, e) which has around the same catchment size and
is mainly characterized by wide floodplains, but also songldr reaches. In contrast to this, the
subcatchment Steinberg (96 Rnis considerably smaller than the other two and characte iy
higher mountain reaches of the Franconian Forest. For diisadchment it can be expected that
the adjusted parameter valuedyfis located in the upper half of the investigated parametacep
(Figure 5.4c, f). Furthermore, it seems that the paramegresford;, has to be extended to even
higher values for the SCE optimization because the empificeition representing the 100 best
parameters does not flatten at the upper end. Later, thisngsiem is affirmed by the results of
the SCE optimization (see Table 5.9).

WaSiM-ETH | Parameter sensitivity
parameter Heinersdorf| Kddnitz Steinberg
VE RMSE| VE RMSE| VE RMSE

d MY |[H H |H H |[H H
Krec [-] M H L H H H
Qo [-] H M L L H L
Ks [m] H H H H H L
Kp [h] L H L H L H
K| [h] L H L H L H

Table 5.5: GSA results after Madsen (2000) for the subcatchments Heinersd®k{&), Steinberg (96
km?) and Kédnitz (313 krf) considering the evaluated levels of significance (Table 5.3) and the
objective functions VE and RMSE (H: high sensitive; M: medium sensitivégw sensitive).

Table 5.5 summarizes the GSA results after Madsen (200®idenng the evaluated levels of
significance (Table 5.3) and the two objective functions Vil RMSE for each model parameter
of the three subcatchments. Depending on the objectivaifumthe sensitivity of the model pa-
rameter can range over all three sensitivity classes andtlbgavhole defined parameter space.
Furthermore, the GSA results contradict the visual inttgiron of the corresponding response
surface in some cases (ekgc). In particular for the three model parametkgs, ks,Qo a higher
dimensional sensitivity analysis should be carried outago for the other three, as the dimen-
sion of the investigated parameter space is extremely esbwith the applied projections. Since
no clear statements about the parameter sensitivitied paedmeters can be derived from the
GSA results it is not advisable to reduce the parameter spat®dering the SCE optimization.

Investigation of the SCE boundary conditions

Beside the definition of the parameter space for the WaSiM-pakhmeters the definition of
the six SCE parameters has an important influence on the agtiom procedure (Chapter 2.3).
Table 5.6 summarizes the parameters of the SCE algorithmhwviiaize to be set in advance.

As mentioned in Chapter 2.3 an appropriate objective fundfi@ble 2.2) for the optimization
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5 Model development for the Upper Main basin

Notation \ Parameters of the SCE algorithm
MAXN maximal number of evolution steps
KSTOP | maximal number of shuffling loops
PCENTO| convergence criterion

NGS number of complexes
NPS number of parameter vectors within one subcomplex
NSPL number of evolution steps before shuffling

Table 5.6: Parameters which set the boundary conditions of the SCE optimization algorithm.

has to be additionally chosen depending on the investigatio (simulation of the whole dis-
charge spectrum or only single flood / drought periods, .eBug to the number of SCE boundary
parameters and the available objective functions a vaoigtgssible setups for the SCE optimiza-
tion are investigated in order to find one SCE setup with whicliable and efficient, in terms
of computation times, optimization of the hydrological nebWaSiM-ETH can be performed. In
the following the results of three SCE setups (default, renended, Upper Main, Table 5.7) are
presented and discussed in more detail. Thereby, the t1&@& setup uses the fixed boundary
conditions which are deposited within the source code. Hewean the publications of Duan
et al. (1992, 1993, 1994) advices for the definition of theratauy conditions depending on the
number of model parameters are given and considered whkinscommended SCE setup. Af-
ter the investigation of a variety of different SCE setups, thpper Main setup is found as the
one which fulfills all requirements of the calibration (shoomputation times, etc.) in the best
manner.

SCE Investigated cases

boundary conditions default\ recommendeqi Upper Main
MAXN 15000 15000 15000
KSTOP 5 5 5
PCENTO 0.001 0.001 0.001
NGS 3 4 3

NPS 5 5 3
NSPL 9 8 4
Objective Function SSE RMSE RMSE

Table 5.7:Boundary conditions of three investigated SCE optimization setups.

As the investigation of the parameter space the investigati the SCE boundaries is performed
within the three subcatchments Heinersdorf (37FkrSteinberg (96 k), and Kodnitz (313
km?) within a first step (Pakosch and Disse, 2007; Pakosch, 2@lfre WaSiM-ETH requires
a long initial phase of about two years initial model grids $0il moisture, etc. are generated
in advance to keep computation times further low. Howeveime lag of further two months
is chosen before the objective function is calculated tacedransient oscillation effects at the
beginning of the simulation.

The defined parameter spaces are given in Table 5.8. Exaghiefgubcatchment Steinberg the
parameter boundaries for the investigation of the diffeBfDE setups are identical to those of the
Monte Carlo simulations. Based on the interpretation of thetd&arlo simulations and the GSA
results the upper boundary for parameteis extended for the subcatchment Steinberg. Table 5.9

58



5.1 Hydrological Modelling

WaSIiM-ETH | Limits of the parameter space

parameter SCE optimization Monte Carlo
Heinersdorf & Kddnitz| Steinberg
minimum  maximum| minimum maximum minimum  maximum
dr [m— 0.01 100 0.01 200 0.01 100
Krec [] 0.1 1.0 0.1 1.0 0.1 1.0
Qo [] 0.05 0.15 0.05 0.15 0.05 0.15
kg [m] 0.5 15 0.5 15 0.5 1.5
Kb [h] 0.01 100 0.01 100 0.01 100
K| [h] 0.01 100 0.01 100 0.01 100

Table 5.8: Limits of the WaSiM-ETH parameter considering the SCE optimization and Monte €ian-
ulations as well as the subcatchments Heinersdorf, Steinberg, and Kddnitz

Subcatchment| WaSIM-ETH | SCE setup Monte Carlo?
parameter default | recommended Upper Main
Heinersdorf dr m—1 19.939 20.043 21.603 19.960
Krec [] 0.800 0.843 0.786 0.156
Qo [] 0.020 0.019 0.034 0.089
ks [m] 0.988 0.993 1.073 0.994
Kb [h] 0.161 0.147 1.093 18.289
K [h] 0.089 0.098 0.080 4.878
RMSE 0.0132 0.0132 0.0133 0.0154
NS 0.8254 0.8253 0.8116 0.7865
runs” 713 783 114 5000
Steinberg dr [m—1] | 165.827 165.200 165.180 90.937
Krec [] 0.901 0.789 0.802 0.148
Qo [] 0.127 0.148 0.028 0.083
ks [m] 1.036 1.203 0.991 1.312
Kb [h] 9.681 12.079 13.353 7.267
K| [h] 0.026 0.129 0.082 0.299
RMSE 0.0508 0.0508 0.0508 0.0562
NS 0.8694 0.8694 0.8693 0.8435
runs® 455 598 184 5000
Kodnitz dr [m_l] 8.799 8.874 8.776 11.955
Krec [] 0.776 0.804 0.769 0.631
Qo [] 0.076 0.073 0.068 0.141
ks [m] 1.146 0.906 1.008 1.475
Kb [h] 0.126 0.142 0.260 2.385
K, [h] 0.054 0.104 0.018 0.299
RMSE 0.0227 0.0227 0.0228 0.0243
NS 0.8682 0.8681 0.8675 0.8256
runs® 719 981 230 5000

Table 5.9: Optimization results for the subcatchments Heinersdorf (379) kBteinberg (96 ki), and
Kodnitz (313 knf) considering three different SCE setupsResults of the Monte Carlo sim-
ulation representing the lowest RMSE val@enumber of WaSiM-ETH simulations).
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5 Model development for the Upper Main basin

summarizes the results for the three optimization runsdohesubcatchment and compares it with
the results of the Monte Carlo simulations.

Although the objective function values of the SCE and Montdd2amulations are of comparable
guality, significant differences with respect to singlegmaeter values occur. This can be traced
back to the fact that it is not possible to identify an uniqaegmeter set for the model due to
the nonlinearity of hydrological processes which are rdpoed. This means that several sets
of model parameter vectors can be found which have simigotyd model performances, which
leads to the so-called equifinality problem (Beven and F@}1).

Comparing the results of the three different SCE setups itrhescapparent that the adjusted
WaSiM-ETH parameter sets are grouped around the same yallkaving satisfying and com-
parable Nash-Sutcliffe values. The only difference lieshi@ number of required simulations
which is minimized in the case of the Upper Main setup. Furtteee, Figure 5.5 exemplarily
shows that almost no differences between the three SCE agtinmydrographs are visually dis-
tinguishable as they are all aligned. However, some drak#aith respect to the simulation of
low and medium discharge conditions occur, which are aetépiconsidering the WaSiM-ETH
setup of the soil column and the calibration aim. Due to threselts the Upper Main setup is
selected for the calibration of all subcatchments in thedyppain basin with the SCE algorithm.
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Figure 5.5: Comparison of the results of the different SCE setups (default: resiimeended: blue, Upper
Main: black)with the best RMSE Monte Carlo simulation (green) considetiigatchment
Kodnitz (313 kn?; grey: observed discharge).

Performance of the SCE calibration for the Upper Main model.

As already mentioned the focus of the calibration lies prilman the good representation of
flood events. However, the correct simulation of the entwe pectrum should be ensured to
a certain degree. Therefore, an optimization strategyvsldped with which the calibration of
the WaSiM-ETH parameters is carried out in an iterative wayah, 2010): Since WaSiM-ETH
requires a long initial phase of about 2 years in case of theetUMain basin model grids con-
sidering soil moisture, etc. are generated in advance tp &eeulation times additionally low.
However, a time lag of a further two months is chosen befagethjective function is calculated
to reduce transient oscillation effects. The optimizai®then performed considering the initial
model grids. The resulting parameters are compared witinttigl one. If the parameter values
used for the model initialisation differ significantly, nemitial model grids are generated con-
sidering the results of the SCE optimization. Afterwards & otimization process is started
considering the new inital model grids. These steps areatedauntil no significant differences
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5.1 Hydrological Modelling

between the parameter values occur. For all subcatchnenfmatrameter space is defined as for
the subcatchment Steinberg (Table 5.8).

Figure 5.6 shows the hourly time series of the calibraticuits for the two main stations along
the Upper Main river, Schwiirbitz (2419 Knand Kemmern (4244 kf). The overall perfor-
mance is satisfying, and the discharge hydrographs arelemauin a reasonable way. Nash-
Sutcliffe efficiencies and RMSE values of the SCE optimizatitam all considered gauges within
the Upper Main basin are given in Table 5.10.
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Figure 5.6: Calibration results of the main stations Schwiirbitz (241$ kop) and Kemmern (4244 kim
bottom) using SCE setup Upper Main (left: 01.11.1997 - 31.10.1999; rightt0QIA98 -
24.11.1998; gray: observed; blue: simulated).

Figure 5.7 shows the hourly time series of the validationlte$or the two main stations Schwiir-
bitz (2419 kn?t) and Kemmern (4244 kf). The performance of the validation is comparable
to the one of the calibration period (Table 5.10). For thedhaad smaller basins model per-
formances vary in both directions between calibration asdiation period. For the complete
basin model efficiencies are in the same range. But consglémmlin NS values of the three
smallest subcatchments Neukenroth (13FkrBteinberg and Wallenfels (both 96 kpnfor the
shown flood event a significant performance degradatiorcsgr@zable. However, they have no
great impact on the simulation of flood hydrographs at theggauSchwiirbitz (2419 kfy and
Kemmern (4244 krf). This is also the case for other flood events within the ‘aiah period:
e.g. flood event 04.02.1997 - 09.03.1997: lin NS(Neukenrath.61, lin NS(Steinberg) = 0.55,
lin NS(Wallenfels) = 0.66. Since for the other gauges the @hefficiencies are within the same
range for the whole validation period and for single floodreset is assumed that the setups
of the WaSiM-ETH model and the SCE optimization are chosemiaaeptable way for these
gauges. Considering the three smallest subcatchmentsguseed that the setup of the WaSiM-
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5 Model development for the Upper Main basin

Gauge Ag | Calibration Validation lin NS
[km?] | RMSE | lin NS | whole period| flood event 19.02.94 - 20.04.94

Kemmern 4244 | 0.0134| 0.90 0.88 0.78
Leucherhof 380 | 0.0115| 0.83 0.74 0.77
Heinersdorf 379 | 0.0113| 0.82 0.73 0.85
Coburg 368 | 0.0262| 0.86 0.85 0.83
Schwirbitz 2419 | 0.0149| 0.95 0.90 0.91
Horb 254 | 0.0381| 0.89 0.83 0.86
Unterlangenstadt 715 | 0.0348| 0.87 0.86 0.85
Neukenroth 139 | 0.0506| 0.86 0.80 0.64
Steinberg 96 | 0.0508| 0.87 0.80 0.65
Wallenfels 96 | 0.0450| 0.84 0.79 0.68
Untersteinbach | 245 | 0.0360| 0.84 0.82 0.85
Kodnitz 313 | 0.0230| 0.87 0.80 0.79
Unterzettlitz 508 | 0.0163| 0.89 0.85 0.85
Bayreuth 332 | 0.0198| 0.87 0.80 0.74

Table 5.10:Performance values of the SCE calibration (RMSE, lin NS) and of the validéiiroNS) for
all gauges within the Upper Main model (for the validation phase the lin NS sdhrethe
whole time period and an example of a flood event are given).
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Figure 5.7: Validation results of the main stations Schwiirbitz (241F ktap) and Kemmern (4244 Km
bottom) using SCE setup Upper Main (left: 01.11.1993 - 31.10.1997; righD21094 -
20.04.1994; gray: observed; blue: simulated).
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5.1 Hydrological Modelling

ETH model has to be improved since the performance of the S@ip Epper Main is satisfying

and reasonable for the other subcatchments. In this cotfitexincertainty of the precipitation
input should be checked for these subcatchments due tdaleairons within the low mountain

region (compare Figure 5.1, 4.2). Because of missing obsenvstations the estimation of the
precipitation is difficult for these regions.

5.1.3 Simulations of extreme flood scenarios

For the setup of fuzzy rule based forecast systems consglesitreme flood events (Chap-
ter 5.4.1) a database is generated by simulations with tiiterai@d WaSiM-ETH model Upper
Main. The performance and the results of these simulatiompr@sented in the following.

In a first step extreme precipitation events are generatelibjernicht et al. (2008) as input
for the rainfall-runoff model WaSIiM-ETH. In order to keepetlvariability of precipitation, a
stochastic simulation is performed in four steps. (1) Tleabprecipitation of an extreme event is
estimated by an extreme value distribution based on blockmea(e.g. annual) of areal precipi-
tation of the whole considered catchment. (2) Hourly prigaiion fields in a spatial resolution of
1 km x 1 km are simulated by a three-dimensional turning baathod (Mantoglou and Wilson,
1987). A more detailed description of this step is also giveBliefernicht et al. (2008). (3) The
amount of areal precipitation is disaggregated accordirige spatial and temporal distribution of
the simulated hourly precipitation fields. (4) Finally,stevo and three are repeated to derive an
ensemble of different realisations. The strong interahvatdability of the precipitation process
is accounted by splitting the data into two classes (summenanter term). For both classes only
the hourly observations of extreme events are used to dstitmastatistical properties needed for
the simulation. Based on this methodology 100 realisatibegtoeme summer and winter events
are generated for seven return periods (10, 25, 50, 1005280and 1000 a). The event duration
is 48 hours for a summer event and 72 hours for a winter eveig.assumed, that the temporal
distribution of an extreme event is not known. That is alsordason why ensembles of precip-
itation should be taken into account for real flood forecaBtsssible realisations of the hourly
areal precipitation of an 1000-year extreme event witheipper Main basin in summer and in
winter are shown in Figure 5.8. It has to be emphasised tleatetturn period and the resulting
amount of areal precipitation always refer to the whole UWgain basin. Thus, considering the
precipitation amount within single subcatchments lardedinces can occur.

Within the second step the rainfall-runoff model is perfedhsing the generated extreme pre-
cipitation events as input. In order to ensure the modelihthe whole flood hydrograph, that
means the increasing and decreasing branch, the simdaifahe summer extreme events are
performed over a seven, the winter events over an eight degyeriod. Furthermore, two differ-
ent sets of initial model grids considering dry and wet cbads are generated for both seasons
separately. Since most of the high flood events are influelmgedowmelt a third initial condition
ensuring a certain snow amount within the Upper Main basgerserated for the winter season.
Examples of simulated hydrographs for different real@atiof the 250-year extreme precipita-
tion event considering wet preconditions in summer andaviat gauge Mainleus (1166 Kjn
are shown in Figure 5.9. Furthermore, the simulated minigmmaximum, and mean peak with
corresponding standard deviatiom)(for each considered return period of precipitation in sum-
mer and winter under wet precondition are exemplarily giveRigure 5.10 for gauge Mainleus
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Figure 5.8: Possible realisations of the hourly areal precipitation of an 1000-yé&ames event within the
Upper Main basin in summer (top) and in winter (bottom).
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Figure 5.9: Examples of simulated hydrographs for five different realisations of B0ey2ar extreme pre-
cipitation event considering wet preconditions in summer (left) and wintehtjrigt gauge
Mainleus (1166 krf).
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Figure 5.10: Simulated minimum, maximum, and mean peak with corresponding standard devation (
for each considered return period of precipitation in summer (left) and wrigdt) under
wet precondition at gauge Mainleus (1166%m

(see Appendix B for all preconditions at the gauges Kemmntechwirbitz, and Mainleus).

The comparison of Figure 5.10, B.1 to B.3 with the dischargaesbf different flood frequencies
(Table 4.4) shows that (realistic) extreme flood eveH{Q{100) can be simulated with the applied
rainfall-runoff model. Considering the three main gaugesnias, Schwirbitz, and Kemmern
the variability of the peak heights within one and betweendtiferent precipitation return pe-
riods are caused by the temporal and spatial distributiathe@fyenerated extreme precipitation
events as well as the interactions of the different tribatar Furthermore, the total precipita-
tion volume of different realisations of one return peri@h @ary within different subcatchments
meanwhile the total volume of the overall areal precipatastays constant within the Upper Main
basin. This results in different flood hydrographs considethe shape and the volume within
single subcatchments. However, this influence becomesigsgicant with the increase of the
subcatchment size. Figure 5.11 exemplarily shows spas#iltltions of the total precipitation
volume of the 250-year extreme precipitation summer evathimthe Upper Main basin.

Considering the maximum values of the extreme peaks and fieeeshit precipitation return pe-

total precipitation
21 [mm/48h]

total precipitation
21 [mm/48h]

4 [mm/a8h] 4 [mm/a8h]

Figure 5.11: Spatial distributions of the total precipitation volume of the 250-year extremeptation
summer event within the Upper Main basin considering the WaSiM-ETH modseidaoies.
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5 Model development for the Upper Main basin

riods the maximum ones occur mainly during summertime asglespeak event caused by an
extreme convective precipitation event. Furthermorentliean values of the simulated peaks re-
sulting from precipitation events of lower return periotiew that in average higher peaks occur
during multiple peak events in combination with snowmelvintertime. This confirms the ob-
served flood events of the last decades. Furthermore, thdated peak heights are consistent
with those of the classical statistics (Table 4.4). Basedhesd results it can be assumed that
(realistic) extreme flood events are simulated with thefadlinunoff model WaSiM-ETH. There-
fore, these simulations can be used for the training of ayffi@zcast system (Chapter 5.4.1).
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5.2 Fuzzy Modelling

5.2 Fuzzy Modelling

Fuzzy inference systems own many degrees of freedom whiahtbae adjusted for modelling
purposes (Chapter 3). Having fixed the type of fuzzy inferesystem, that means the general
structure and calculation rules (Mamdani or Takagi-Sugemdecision on the form, the number,
the support and the peak of the membership functions for eegtiment and, in the case of
the Mamdani inference system (MS), each response is refjuiFerthermore, the number of
rules and the IF-THEN rules themselves have to be defined.theofakagi-Sugeno inference
system (TS) the definition of the linear response equat®nscessary, that means, a decision on
the arguments used for the response equation is requirezhwitreases the degree of freedom
further.

Due to the many degrees of freedom a fuzzification and opditioiz strategy has to be developed
to ensure the comparability of different investigationules Thereby, the parameter values of
the SA optimization process for MS and TS inference systeés@sNIS, SA-TS) are based on
the findings of Reyhani-Masouleh (2008) and remain unaftettteoughout the whole time. In
the following the different investigations consideringg thetup of fuzzy inference systems for
four different forecast time horizons are presented anid dpplication for the three Upper Main
gauges Mainleus (1166 Ky Schwiirbitz (2419 krf), and Kemmern (4244 kfj are discussed.

Objectives of different forecast time horizons.

Within the framework of the HORIX project (Chapter 1) a flooddoast system is developed
which ensures a satisfying and reliable short and medium terecast of both, low and medium
discharge conditions as well as of extreme flood events. eftw, the idea is developed to
perform the forecast for four different time horizons (6, AAd 48 hours, 3 days) to ensure a
continuous forecast. That means that for each time horirenfozzy inference system has to
be trained and validated since only one response can be ewbpel system. The focus of the 3
day forecast (based on daily data) lies on the approprigtesentation of the low and medium
discharge conditions as well as on the reliable forecastespasses considering a predefined
warning level. A trespass of the warning level results indhvéching to the three systems with
hourly time resolution. Therefore, the representation @bdl peaks is less important for the 3
day systems, but essential for the hourly ones. In liteeagveral studies using fuzzy inference
systems for discharge forecast on a daily basis and for thed@la hour time horizons can be
found (Chapter 3). However, since the memory of the catchtdpper Main has no great impact
on the 48 hour forecast and no references can be found iatlirerfor this time horizon, the setup
of fuzzy inference systems considering the 48 h forecasgi®gat challenge. That is one reason
why it is investigated in more detail than the other thredimithe framework of this thesis.

5.2.1 Input variables

In general, the severity of flood events is dependent onmembinations of different environ-
mental factors. For example, extreme convective pretipiiacan cause floods during summer-
time, whereas the combination of snowmelt and additioralhg-lasting precipitation are often
the main causes for winter flood events. Therefore, an iigaggin of different environmental
factors, which are responsible for flood events, has to b@echout in order to find significant
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5 Model development for the Upper Main basin

arguments for the setup of fuzzy inference systems consgiéne corresponding study area.
This has been done in a first step by Bengelstorf (2009), whiactexized the Upper Main basin
and investigated some different environmental factors aity dlata. The result of this recom-
mendations of different environmental factors of integgstfurther investigated as arguments for
the Upper Main basin during the training phase of the fuztgrance systems. Considering the
hourly forecast systems, the selection of the argumentisas®ed on the results of the daily fuzzy
forecast systems and on findings in literature (e.g. See @gemg&haw, 1999; Xiong et al., 2001;
Alvisi et al., 2006; Casper et al., 2007). They are only ingaded during the training phase of
the fuzzy inference systems.

In general, the selection of the different environmentatdes are based on the following three
ideas and additionally on the results of the literatureasde

1. The environmental factors should be available (onlingllaimes. Due to the fact,
that most of the time during high flood events recording oattgauges are out of
order and / or report wrong measurements the environmeattdrf discharge should
not be used as argument, if possible, but has to be investigatit is used as response
(target variable).

2. The environmental factors should be representativehfocatchment area of the con-
sidered gauge. Thus, the arguments should be able to desbdlpast and present
catchment conditions.

3. The environmental factors should be independent of hgdical and hydrodynamic
models. The calculation of environmental factors whichlzased on other environ-
mental factors (e.g. snow storage) does not rely on theagifan of a complex model.

Based on the above mentioned requirements for the fuzzy eapditconsidering the response,
direct forecast of dischargfQ(t + X)) andforecast of discharge chang@aQ(t,t + X), with X

= 3 days; 6, 12, 48 hours) the following environmental fagtare investigated to find suitable
arguments for flood forecasts:

Discharge.

In general, discharg®(t) is one essential environmental factor as it representssib present
conditions within the catchment the best (e.g. droughtsuin low flow). However, most of the
time during flood events recording points at gauges are autdsr, wherefore this environmental
factor should not be used as argument, if possible. The agu@(t) considers the current
discharge at the forecast gauge itself, whei@agt) is the current discharge measured at the
corresponding upstream gauge.

Change of discharge.
The change of discharge within the p&€d(t — X,t) allows conclusions to be drawn about the
change of past to present conditions within the catchmethtsadefined as:

AQ(t—n,t) = Q(t—n) — Q1) (5.2)

Depending on the time resolution of the fuzzy inferenceesysteveral time intervalshave been
investigated as arguments (n = 3, 7, 14, 21 days and n = 6, 1®ur8) and named #sQ(t-3d,t),
A Q(t-7d,t), and so forth.
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Areal precipitation.
As the areal precipitatioR(t) is the driving force of discharge forecasts three diffemtiron-
mental factors have been defined and investigated as ppssguments:

1. areal precipitation of the past:
P(t—i) with i=1,...,12hours (5.2)

2. forecasted areal precipitation:
fP(t+i) with i=123days 1,...,48hours (5.3)

3. forecasted cumulated areal precipitation:

3

cfP((t+n)— (t+m)h,t) = Z eg cfP25—48ht) (5.4)

As no real forecasts of the areal precipitation were avkal&dr this work, actual measurements
of the areal precipitation have been taken as ideal forec&insequently, as soon as real fore-
casts of this environmental factor are available, it is salvie to repeat the training of the fuzzy
inference systems.

Areal antecedent precipitation index.
The areal antecedent precipitation ind&Rl(t) is an indicator of the soil moisture and remaining
infiltration capacity. Based on the areal precipitatRih) and the recession constaritis defined

as
n

API(t) = 3 P(t—i)-¢ (5.5)
|
In this case the recession constant is set to 0.9. Furtherrdepending on the time resolution
of the fuzzy inference system several API time intervalgave been investigated as arguments
(n=3,7, 14, 21 days and n = 6, 12, 18 hours) and named as ARIB&I7d(t), ..., API112h(t),
API118h(t).

Temporal dissymmetry coefficient.

The temporal dissymmetry coefficieS(t) indicates the position of the rainfall peak within a
certain time interval and is defined as (Alvisi et al., 2006):

5 [(—N—“ +n)°.P(t — nAt,t — (n— 1)At)

2
. (5.6)
S P(t—nAt,t— (n— 1)At)

therebyN is the number of time steps with respect to the time intefivalNAt,t] and P(t —
nAt,t — (n— 1)At) is the areal precipitation measured in the time intefivalnAt,t — (n— 1)At].
This environmental factor was only investigated for therhotime resolution.

Circulation pattern.

The circulation patter@P(t) represents the large scale condition of a flood event. Coesdlgu
certain circulation pattern indicate a high potential o€wting flood events. In this work the
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5 Model development for the Upper Main basin

classification of circulation pattern within the Upper Mdiasin on a daily base is taken from
Bliefernicht et al. (2008). Furthermore, it has been onlgstigated for the daily forecast horizon.

Mean areal temperature and time-averaged mean areal tempetare.

Both environmental factors are investigated with respec¢héir potential to indicate seasonal
(winter, summer) as well as icy, snowy or rainy conditionsimy wintertime, in particular.
Thereby, the time-averaged mean areal temperaiir@) is defined based on the mean areal
temperaturd (t) as

mT(t) = %_iT(t—i) (5.7)

and named depending on the considered time intervéds= 3, 7, 14, 21 days and n =6, 12, 18
hours) as mT3d(t), mT7d(t), ..., mT12h(t), mT18h(t).

Areal snow storage and snow discharge.

Due to the fact that the biggest flood events within the careid time period of 1991 - 2004
occurred during wintertime the environmental factors lase@w storagesnowsft) and snow
dischargegsnowt) are investigated. As no measurements of these variablesavailable, they
were calculated using the formulae of the hydrological m¥d&SiM-ETH (Schulla and Jasper,
2002) to ensure comparable inputs. Thereby, the areal stovagesnowstt) is calculated by
considering the snow fractiopsnow

Tr/s+ Tirans— T (1)

Psnow=
2 Tirans

for (TR/S_Ttl‘anS) < T(t) < (TR/S‘l—Ttrans) (58)

-] fraction of snow with respect to the total precipitation.(Q1)

[°C]  areal temperature

[°C]  temperature, at which 50 % of precipitation are falling assthere: 0.5)
[°C]  one half of the temperature-transition range from snowito(fzere: 1.0)

with Psnow
T(t)
Tr/s

Ttrans

The areal snow storagaowstt) is then the sum of that fraction of precipitation which fadls
snow. Furthermore, snowmélt and the resulting snow dischargenowt) is calculated based on
the temperature-index approach and the calibrated pagasradtthe hydrological model WaSiM-
ETH as follows:

At
M —(30‘(-|_('[)_-|-0,m)'z1r (5.9)
with M [mnyAt] melting rate forT (t) > Tom, otherwiseM = 0
Co [mny(°C-d)] temperature dependent melt factor (here: 1.8)
Tom [°C] temperature for the onset of snowmelt (here: -0.5)
At [h] time step

Potential evapotranspiration.
Since potential evapotranspirati@T P(t) plays no role for the hourly forecast of winter flood
events this environmental factor was only investigatedmssaible argument for the daily forecast
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5.2 Fuzzy Modelling

(Bengelstorf, 2009). As in case of snow storage and snowmatieasurements were available
and, therefore, the variable was calculated separat&yR&nman-Monteith as it is implemented
within the hydrological model WaSiM-ETH in order to ensumsmparability.

5.2.2 Fuzzy inference systems for the 3 day forecast

As mentioned before the aim of the 3 day forecast systemgigdHy indication of an occurring
flood event to ensure a well-timed switching to the hourlyet@st systems. Therefore, the fo-
cus of these systems and their training lies on the apprtemepresentation of low and medium
discharge conditions as well as on reliable forecasts spagses considering a predefined warn-
ing level. The forecast of the flood hydrograph above the gfiedd threshold is less important
because this is performed with the hourly forecast systéable 5.11 gives the number of ob-
served trespasses considering warning level 1 (compare %ah) as well as the Upper Main
gauges Kemmern (4244 K Schwiirbitz (2419 k), and Mainleus (1166 kR), separately for
the training (01.01.1984 - 31.12.1994) and validation@211995 - 31.12.2004) period. A further
requirement of the 3 day forecast systems is that they shmmulcser friendly. Thus, simple fuzzy
inference systems have to be developed. Furthermore, agtiyarological and no discharge data
should be considered as arguments, if possible, becauseaitie time recording points at
gauges are out of order and / or report wrong measurementgdugh flood events.

Kemmer Schwirbitz Mainleus

WL1[m3/s] NT |WL1[m?/s] NT |WL1[m3/s] NT
Training 151 31 138 25 55 26
Validation 151 29 138 20 55 26

Table 5.11:Number of observed trespasses (NT) considering the Upper Mairegagmmern (4244
km?), Schwiirbitz (2419 kif), and Mainleus (1166 kR as well as warning level 1 (WL
1, compare Table 4.5; training / validation period, 01.01.1984 - 31.12.199401.1995 -
31.12.2004).

Both fuzzy inference systems, MS and TS, are investigatedh®i3 day forecast because no
reference and generally accepted statements could be foditerature which clarify the ques-
tion whether one system is superior or not. Due to the sysegmirements mentioned above,
the fuzzification of arguments (MS, TS) and response (MSkr$opmed with a pure statistical
method only considering the minimal, maximal and mean \&bfethe corresponding variable
and triangular shapes (Figure 5.12). Furthermore, onlytimeber of rules, which are optimized,
is set in advance and no further restrictions with respeitté@utomatic rule setup applying Sim-
ulated Annealing (SA, Chapter 3.3.2) are defined. Thus, titialisation of the rule system and
its optimization is performed by the SA algorithm itself, @vkas the shape and number of the
predefined membership functions remain unaffected duhnagptimization process.

Performance comparison of MS and TS with respect t@(t+3d).

In a first step a performance comparison of both fuzzy infegesystems is carried out for the

direct 3 day forecast of discharggt + 3d). Based on the findings of Bengelstorf (2009) and
other literature different combinations of daily basediemmvmental factors (Chapter 5.2.1) are
investigated as arguments for both fuzzy inference syst&ome of these argument combina-
tions, including the final one, are presented in the follgvifable 5.12 summarizes the different
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Figure 5.12: Examples for the fuzzification of daily based arguments (left: dischagje; time-averaged
mean areal temperature) considering the 3 day forecast (dashed leianialue, solid:
mean, dashed right: maximal value of the corresponding variable).

argument combinations, in which each argument is fuzzifiealigh three triangular membership
functions as mentioned before (Figure 5.12).

Argument | D3_1| D3 _2| D3 3| D3 4| D3_5
Q(b) X X X X
Qup(t) X X X
API13d(t) X
API7d(t) X
API14d(t) X X X
mT3d(t) X
mT7d(t)
mT14d(t)
P(1)

fP(t+1d)
fP(t+2d)
fP(t+2d)
2 |

X

oo|| X| X| X| X
oo|| X| X| X| X
oo|| X| X| X| X| X
~|| X[ X| X X[ X
o|| X| X| X| X| X

| 8 | 8 [ 7 |

Table 5.12:Combinations of daily based arguments (D3_1 to D3_5) investigated for et 8iday fore-
cast of discharg®(t + 3d) (Q(t): current discharge at the forecast gau@ap(t): current
discharge at the corresponding upstream gauge).

For each argument combination (Table 5.12) fuzzy inferesystéems with 5 to 30 rules (contin-
uously increasing by 1) are trained and validated with nth&mrestrictions in order to find the
best fitted rule system for the 3 day forecast. Except for tgaraents areal antecedent precip-
itation indexAPI and time-averaged mean areal temperatofethe arguments are considered
within both, the IF-part and the linear response functidnthe THEN-part of each rule in case
of the TS systems. The time-averaged mean areal tempeuatcues only within the IF-part of
the TS systems because it is not directly related with thehdige volume. The argumeAPI

is not considered within the THEN-part as the correspondogfficients of the linear response
functions are zero after the SA-TS optimization process:igure 5.13 and 5.14 the linguistical
description of both inference systems, MS and TS, are exathpdjiven for the optimized 5 rule
system, which does not represent the best fitted one. Theuiesnh Figure 5.13 means that inde-
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5.2 Fuzzy Modelling

pendent from the argument inputs mean discharge is alwagsdsted. In combination with the
other rules a divergence can be achieved resulting in tleedst of lower or higher discharges.
Therefore, the plausibility of one rule has always to be wtad in combination with the other
rules. For this, the DOF values are considered in this wohkotigh the linguistical description of
the arguments and hence of the model process, the transparfethe systems is ensured for the
user in both cases. However, the TS inference system isrlsspiarent because the coefficients
of the linear response functions within the THEN-part carb®linguistically interpreted.

IF Q) | &|API4d(0)] & [mT14d(0) &| P() | &|P(t+1d) | & | fP(t+2d) | & | fP(t+3d) THEN Q(t+3d)
IF & & & & & & THEN mean
IF max_ | & & & & & & THEN min
IF & & &| max |&] max |[& & THEN max
IF & &| min_ & max [& & & THEN max
IF mean | & &| mean |& & &| max |& THEN max

Figure 5.13:Linguistical description of the optimized 5 rule MS inference system corisgl@rgument
combination D3_4.

IF Q) | & [APIAd(] & [mT14d()] & | P() | & |fP(t=1d)| & | fP(t+2d)| & | fP(t+3d)

IF
IF
IF
IF
IF

max mean max
min

min

min

mean min
min
min

max

min
min
mean

2o (22 (2o [2o |20
2020202020
BRI E PP
L EI PP
2022 (202020
2020202020

min
max

max
max

mean max

THEN [Q(t+3d) =

al  +a12Q()  +a2*P()+a3* P(t+1d) + ad* fP(t+2d) + a5 fP(t+3d)
THEN 0.03 0.01 -0.03 -0.02 117 -0.33
THEN 0.00 0.12 0.12 021 011 0.58
THEN 0.03 -0.14 0.22 -0.69 0.13 0.44
THEN 0.33 2317 59.71 2.58 0.41 3.81
THEN 0.07 -0.04 0.11 0.18 0.08 1.81

Figure 5.14:Linguistical description of the optimized 5 rule TS inference system corisglargument
combination D3_4.

For the evaluation of the 26 inference systems each, the wltihe objective function of the op-
timization process (least-square method), the correlaozfficient and the well-timed forecasts
of trespasses (CNT, fNT) considering the correspondingnimgrievel 1 are investigated. For the
latter, a three day window frointo t + 3d is analysed in which the trespass should occur other-
wise the forecast fails. For gauge Kemmern Figure 5.15 shiosvdevelopment of the correlation
values for the training and validation sets for the argunsentbinations D3_1 to D3_3 (left), and
D3 _3to D3_5 (right) for both fuzzy inference systems.

In case of MS all 26 rule systems can be set up for each arguroertination considering the
forecast of direct dischard@(t + 3d) at gauge Kemmern. That means that satisfying rule systems
have been optimized so that the rules are able to reprodecgltble discharge range. Thus, all
responses could be simulated with a value unequal zero &l In contrast to this, the TS
inference systems show a sensitive behavior consideritig bwe rule number to be optimized
and the chosen argument combination. It could not be totédiyfied if these sensitivities occur
due to the performed SA-TS optimization setup or if they mféegeneral behavior of TS infer-
ence systems. As indicated through the worse correlatibesanot all responses are simulated
at all time and the correspondigy(t + 3d) values are set to zero. However, in case of argument
combination D3_4 and the 25 rule TS inference system alloresgs have values unequal zero,
and the rules are able to reproduce the whole discharge.range

Table 5.13 summarizes the optimization results considdhie best fitted MS and TS inference

systems for the 3 day forecast (Disse et al., 2009). Theistigal descriptions of the correspond-
ing rules are given in Appendix C. Furthermore, Figure 5.dwshtwo examples for the forecast
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Figure 5.15: Development of the correlation values for the training and validation set$aiidfuzzy
inference systems (top: MS; bottom: TS) considering left the argumentinatiins D3_1
(blue), D3_2 (black), D3_3 (red), and right D3_3 (blue), D3_4dk)aD3 5 (red).

performance of these two fuzzy inference systems for gaegeriern. The crucial factors for the

rating of the different fuzzy inference systems are thea@pction of the hydrograph considering
low and medium discharge conditions as well as the numbedsé find correctly forecasted tres-
passesfNT, cNT) of warning level 1 (see also Table 5.11). Thereby, a falseciasted trespass

is counted if (1) an observed one is missed or (2) a trespéseesasted although none occurs.

FIS Training Validation

r [ cNT|fNT | r |cNT|fNT
MS D3 4 23rules 0.92| 26 9 1091 25 7
TS D3 4 25rules 091 21 | 17 |0.89| 21 | 14

Table 5.13:Evaluation results for the best fitted MS and TS inference systems at ¢aungeern con-
sidering the forecast d(t + 3d) and all investigated argument combinations (r: correlation
coefficient; cNT / fNT: correctly / false well-timed forecasts of trespassbserved NT (train-
ing / validation): 31 /29).

Considering the MS inference systems the optimized 23 ruéery for D3_4 represents the
best fitted one because less arguments are required in arédahieve results of comparable
guality considering the correlation value (Figure 5.15)a8 as the relation of false and correctly
forecasted trespasses (D3 _1: Training cNT/fNT = 27/9,d&ion cNT/fNT = 26/9 ; D3_2:
27/10, 25/8; D3_3: 27/10, 25/8).
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Figure 5.16: Examples for the performance of the best fitted MS and TS rule systemislenng the 3
day forecast ofQ(t 4+ 3d) at gauge Kemmern (validation period; MS: D3_4, 23 rules; TS:
D3_4, 25 rules).

The performance of the best fitted MS and TS inference systeaisomparable quality, whereas
the well-timed forecasts of trespasses is better perfonmcthe MS inference system. Failures
of the well-time forecast of trespasses occur mostly inasitms, when the discharge oscillates
around the predefined warning level for a certain time pgfftagure 5.16, left). Low and medium
flow conditions are well reproduced, but drawbacks for higitldarges occur which are accept-
able considering the forecast aim (Figure 5.16, right). Cammg the optimization process of
both fuzzy inference systems much more computation timedsired in case of TS because
the coefficients of the linear response functions have todterchined within all optimization
steps. Furthermore, the sensitive behavior of the TS intsrsystems within the chosen SA-TS
optimization setup (number of rules and argument comlonatinakes their optimization more
difficult and more time consuming in comparison to MS infa@systems.

The correlation values (Figure 5.15) show that the enviremia factordischarge at the forecast
gaugeis an essential argument and cannot be neglected in anylofloaty inference systems in
this case. Furthermore, discharge information of the epstrgauge is not as important for the
presented argument combinations and can be neglected, fhieusbove stated requirement for
the 3 day forecast systems cannot be totally fulfilled siheesirgumenturrent discharge at the
forecast gaugrovides too much information of the actual catchment coorgs and has to be
considered. This argument cannot be replaced by othertigaésd arguments.

Performance comparison of MS and TS with respect td\Q(t,t+3d).

The performance comparison of both fuzzy inference systamsidering the direct 3 day fore-
cast of discharg®(t + 3d) shows that the argument discharge is very significant andatdre
neglected within these systems. However, one restrictioriffe 3 day forecast systems is to
ignore this environmental factor as argument if possiblber&fore, the forecast of discharge
changesAQ(t,t + 3d) are investigated. The major difference between both &sEestrategies
is that the forecast of discharge chand€¥t,t + 3d) focuses more on the forecast of dynamic
changes within the catchment, wherefore the argumentaligetshould fade into the background.

As in case of the direct 3 day forecast of discharge diffecentbinations of environmental factors

(Chapter 5.2.1) are investigated. A selection of considargdment combinations including the
final one are given in Table 5.14. The fuzzification of arguta€NIS, TS) and response (MS) is
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performed with the pure statistical method as before (Quéer shapes, Figure 5.12) in order to
ensure comparable results and simple fuzzy inferenceragste

Argument || dD3_1| dD3_2| dD3_3| dD3_4| dD3_5

API3d(1) X

API7d(t) X

API14d(t) X X X
mT3d(t) X

mT7d(t) X

mT14d(t) X X X
P() X X X X X
fP(t+1d) X X X X X
fP(t+2d) X X X X X
fP(t+2d) X X X X X
CP(t) X
snowst(t) X
b3 | 6 | 6 | 6 | 7 | 7

Table 5.14:Combinations of daily based arguments (cases dD3_1 to dD3_5) investigatbd forecast
of discharge changesQ(t,t + 3d).

For each combination both fuzzy inference systems with S0touBes (continuously increasing
by 1) are trained and validated with no further restrictiongrder to find the best fitted system as
in case ofQ(t + 3d). Additionally, all arguments are considered within botie tF-part and the
linear response functions of the THEN-part of each rulegpkof the time-averaged mean areal
temperaturenT. Since it is not directly related to the discharge volume,dlgumeninT occurs
only within the IF-part of the TS inference systems.

In case of TS all 26 rule systems can only be set up for dD3_1D® 8 with the performed
SA-TS optimization setup. In contrast to this, all 26 MS rsystems are successfully optimized
for each argument combination . In Appendix C the develofroéthe correlation values for
the training and validation sets for the presented argugmnbinations considering gauge Kem-
mern are shown. The evaluation of each of the 26 inferendersgss performed as for the direct
3 day discharge forecast. For the rating of the differentyunference systems the correlation
coefficient, the reproduction of low and medium dischargedittons as well as the number of
false and correctly forecasted trespasses are considgiezk with both inference systems neg-
ative forecasted discharges can occur resulting from fafame forecasted discharge changes,
Q(t+3d) = Q(t) + AQ(t,t +3d), their number is further taken into account for the evabrati

Considering the correlation values of argument combinataid3_ 2 to dD3_5 and the MS infer-
ence systems (Figure C.3, C.4) no significant differencesro@ince the number of correctly
and false forecasted trespasses of all optimized MS inderepstems differs by maximal 2, the
number of negative forecasted discharges is the crucitdrféor the determination of the best
fitted MS inference system. Consequently, the 20 rule MS émieg system for argument combi-
nation dD3_3 represents the best fitted one because onlyl18%ifistead of 269 (173) or more
negative discharges are forecasted. For the same reasohedhfitted TS inference system is
chosen. The number of forecasted trespasses differs bymabgi but less negative discharges
are forecasted (124/92 instead of 131/101 or more). Talk Summarizes the optimization re-
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sults of the best fitted MS and TS inference systems. Figuré $hows two examples for the
forecast performance of these two fuzzy inference systemgauge Kemmern.

FIS Training Validation

A | r JcNT|fNT | nd| ra | r [cNT|fNT | nd
MS dD3_3 20rules 0.73|0.88| 24 | 14 | 185|0.75/0.88| 22 | 12 | 113
TS dD3 3 12rules 0.55| 0.86| 22 16 | 124 0.51| 0.84| 20 16 | 92

Table 5.15:Evaluation results for the best fitted MS and TS inference systems cadngidike forecast
of AQ(t 4 3d) at gauge Kemmern and all investigated argument combinations (r: correlation
coefficient; cNT / fNT: correctly / false well-timed forecasts of trespassxd: number of
negative forecasted dischargeiconsidering the forecast aiQ(t,t + 3d), otherwise ofQ(t +
3d) = Q(t) + AQ(t,t + 3d); observed NT: 31/ 29).
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Figure 5.17: Examples for the performance of the best fitted MS and TS rule systemsleong the 3
day forecast o\Q(t,t + 3d) at gauge Kemmern (validation period; MS: dD3_3, 20 rules;
TS: dD3_3 12 rules; top: forecast&Q(t,t + 3d); bottom: resulting forecast @)(t + 3d) =
Q(t) +AQ(t,t +3d)).

The performance of both best fitted fuzzy inference systenowd comparable quality. Further-
more, comparing the well-timed forecasts of trespass df fmyecast strategies, dire@(t + 3d)

and discharge chang&€)(t,t + 3d), the number of failures and correct forecasts are comparabl
(Table 5.13, 5.15) considerirgNT. This can be traced back to the additionQit) to the fore-
casted\Q(t,t +3d) which acts as an autotracking of the forecast model ancsfibrey, attenuates
worse forecasts adiQ(t,t + 3d) most of the time. However, the forecast of trespasses istblig
better as in the case of a persistence forecast, for whiotuttient observed discharge is taken as
the forecast.
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Considering the simulation of low and medium discharge doyts the performance of the
AQ(t,t+3d) forecast is less satisfying than in cas&Xf + 3d). Far too large negative forecasted
changes cause an overall negative and consequently wroacpki of discharge (Figure 5.17,
right). This drawback cannot be attenuated if other argusnare additionally considered to
dD3_3 (compare correlation values Figure C.4). Thus, the fiteed fuzzy inference systems
considering the forecast @&Q(t,t 4+ 3d) are not adequate for a performance within the frame-
work of the forecast system ExpHo-HORIX in this case.

Despite of the discussed drawbacks, much potential ®8liln the forecast of discharge differ-
encesAQ(t,t + 3d) as mostly time-averaged areal environmental factorsjffedzhrough three
membership functions, have been investigated in this wlnkong others, the following aspects
should be considered in the future:

1. Training and validation data can be further divided imining and validation sets
considering only positive and only negative discharge gbkan Then, separate fuzzy
inference systems can be trained for the positive and vegaita samples. Together
with the setup of fuzzy inference systems for negative dataptes, the performance
of a simple storage constant can be investigated as respmrbe description of the
decreasing part of the hydrograph. However, the major ehg8, but also drawback
of this approach is the merging of both separate performizgyf inference systems
and the well-timed forecast of the switching between both.

2. Instead of time-averaged mean areal environmentalrfg&patial distributed environ-
mental factors can be investigated. Thereby, also othdradstof fuzzification should
be considered (compare Chapter 5.2.4). However, this apipreguires more detailed
knowledge about the catchment characteristics (dynamits$ means, that the setup
of fuzzy inference systems is less simple for an unexpee@uoser.

Performance of the optimal setups at the gauges Schwiurbitza Mainleus.

In order to verify the results of the above discussed perdmize comparisons and to investigate
the transferability of the optimal MS and TS inference syseat gauge Kemmern, both fuzzy
inference systems have been trained for two further Uppén Blauges, Schwiirbitz (2419 n
and Mainleus (1166 kf). Thereby, the optimal MS and TS setups for the forecaQ(of- 3d)
(D3_4, 23 rule MS, 25 rule TS) are considered. Since negdiseharges occur for the forecast
of AQ(t,t 4+ 3d) at gauge Kemmern with both fuzzy inference systems, theyareresented
here (see Pakosch et al., 2008a).

The optimization of the fuzzy inference systems is perfa@efor gauge Kemmern. That means
that they are trained and validated with no further resti. Within the TS systems all argu-
ments are considered within the IF-part and the linear mespdunctions of the THEN-part of
each rule, except of the time-averaged mean areal temperaline time-averaged mean areal
temperature occurs only within the IF-part of the TS systefable 5.16 summarizes the evalua-
tion results considering the correlation coefficients amdl-timed forecasts of trespasses.

Both fuzzy inference systems have been successfully setthgeaus on low and medium dis-

charge conditions for the 3 day forecastQ@(t + 3d) at both gauges, Schwirbitz and Mainleus.
That means that all responses are simulated at all times a@thdfiizzy inference systems are
able to reproduce the whole range of discharge with somelsrelkg considering the flood events
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5.2 Fuzzy Modelling

FIS Training Validation

r | cNT|fNT | r |cNT|NT

Schwirbitz MS D3 4 23rules0.92| 19 | 10 | 0.87| 15 | 10
TS D3_4 25rules 0.89| 20 | 13 |0.89| 15 | 11

Mainleus MS D3 4 23rules0.89| 23 9 /089 23 8
TS D3_4 25rules 0.88| 23 | 12 | 0.88| 20 8

Table 5.16:Evaluation results for MS and TS inference systems considering theafirefQ(t + 3d) at
gauges Schwiirbitz (2419 Krand Mainleus (1166 kR r: correlation coefficient; cNT / fNT:
correctly / false well-timed forecasts of trespasses; observed NT2@%t Schwurbitz, 26 /
26 at Mainleus).
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Figure 5.18: Performance comparison of MS and TS systems for the foreca®(tof 3d) at gauges
Schwirbitz (left) and Mainleus (right) considering the flood hydrograph
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Figure 5.19: Performance comparison of MS and TS systems for the foreca®(tof 3d) at gauges
Schwiirbitz (left) and Mainleus (right) considering WL 1.
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5 Model development for the Upper Main basin

(Figure 5.18). Failures of the well-timed forecast of tiesges occur only within acceptable sit-
uations, when the hydrograph oscillates around the preztefivarning level for a certain time
period as in case of gauge Kemmern (Figure 5.19).

Overall, the results of gauges Schwirbitz and Mainleus oortfie results of gauge Kemmern,
which are the following:

1. Itis possible to set up simple MS and TS inference systema 3 day forecast of
dischargeQ(t + 3d) for the three main gauges within the Upper Main basin.

2. No significant performance differences between bothyfuzference systems occur
(Figure 5.18, 5.19). However, the sensitivity behaviorhaf SA-TS optimization pro-
cess has to be pointed out.

Conclusions for the following investigations on a hourly tme resolution.

Due to the discussed drawbacks of the forecast of dischév@egeAQ(t,t + 3d), which arise
mainly from the chosen environmental factors, the forech€tQ(t,t + Xh) on a hourly time
resolution is not further investigated within the framekvot this thesis. However, much potential
still lies in this forecast strategy, as mentioned before.

Both fuzzy inference systems are further investigated ®htturly time resolution because (1) no
general statements about significant performance diff@&nan be made and (2) the sensitivity
behavior of the SA-TS optimization process is not totallgridied. Further investigations for
TS inference systems at gauge Mainleus show, that if thenaggts are normalized with their
corresponding maximum values and fuzzified through mone xmembership functions (1) the
sensitive behavior of the SA-TS optimization process Jassand (2) the forecast performance
considering the discharge chand€3(t,t 4+ 3d) is enhanced (Pakosch et al., 2008b).

5.2.3 Fuzzy inference systems for the 6 and 12 hour forecast

The focus of the 3 day forecast systems lies on the relialilevafi-timed forecast of a predefined
warning level. In contrast to this, the hourly based fuzzigilience systems should ensure a
reliable and satisfying forecast of the flood hydrograpélitdn literature, several studies using
fuzzy inference systems for discharge forecast for a 6 ankoL2 time horizons can be found
(e.g. Alvisi et al., 2006; Gemmar et al., 2006; Casper et @D72. That is not the case considering
a 48 hour forecast horizon. Furthermore, in contrast to thad12 h forecast the memories of
the catchments have no great impact on the 48 h forecast. Quersty, it is a challenge to
find appropriate argument combinations for the 48 h forecHserefore, the essential results of
both fuzzy inference systems for the 6 and 12 hour forecasstaortly presented in this chapter,
whereas those of the 48 hour ones are discussed in moreidetaglfollowing one.

As in case of daily fuzzy inference systems, very user fileadd consequently simple fuzzy in-
ference systems should be developed. Therefore, the fueatin is performed with the pure sta-
tistical method using triangular shapes, as before. FigLg@ exemplarily shows the differences
between the daily and hourly based membership functionseofitgument/response discharge,
which results due to the different time resolutions andesponding accuracies.
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Figure 5.20: Differences between the daily (left) and hourly (right) based membersinigtibns exem-
plarily shown for the argument/response discharge at gauge Kemmeire(keft: minimal
value, solid: mean, dashed right: maximal value of the corresponding kgriab

As the focus lies on the forecast of the flood hydrographfitealy data of observed flood events
are taken into account for the training and validation offtiezy inference systems. Therefore,
time periods, in which predominantly low and medium flow citiods exist, are ignored. A
consideration of these data would profoundly influence thi@ing process as their number is by
far larger than those corresponding to single flood eventahole 30 flood events between 1991
and 2004 are selected, whereat 26 occur during wintertindedaduring the transition period
between wintertime and summertime (hydrological year).

The selection of environmental factors as arguments forditext 6 and 12 hour forecast of
dischargeQ(t + 6h) andQ(t + 12h), is primarily based on findings in literature and the results
of the daily forecast systems. Table 5.17 shows examplas/e$iigated argument combinations
including the final one, which are briefly discussed. Therabgument combinations H6_1 and
H12_ 1 represent a straight forward extension of the 3 dagctmst argument combination D3_4.
H6_2 is based on literature findings, and H12_2 is a stragdrd extension of it.

Argument | H6_1[H6_ 2| H6 3| H12 1| H12 2
Q) X X X X
API12h(D) X X X X X
mT12h(1) X X X X X
P(t-1h) to P(t-6h) X X
P(0) X X X X
cfP(0-6h,1) X

fP(t+1h) to (t+6h) X X X X
fP(t+7h) to (t+12h) X X

3 [ 10 | 16 | 9 || 10 | 22

Table 5.17:Combinations of hourly based arguments investigated for the 6 and 12 dreaaét of dis-
chargeQ(t + 6h) andQ(t + 12h) (Q(t): current discharge at the forecast gauge).

Similar to the 3 day forecast 5 to 40 rules systems (contislyancreased by 1) are trained and
validated for both inference systems and argument combmeatin case of TS inference systems
only the argument®(t), AP112h(t), andmT12h(t) occur within the IF-part of the rule systems.
Within the THEN-part all arguments exceptraff12h(t) are considered.
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5 Model development for the Upper Main basin

Although MS inference systems can be set up for each inastigargument combination of

the 3 day forecast, this is not the case here. Both inferergterag show a certain sensitivity
considering the chosen argument combination. Furtherntbeesensitive behavior of the SA-

TS optimization due to the chosen rule number still existd,i® less grave than for the 3 day
forecast. With the performed SA-MS optimization setup no Mf@rence systems could be set
up in case of H6_2, which is able to simulate all data of thedfleeents. A reason for this is the
huge number of arguments, which are considered within #igg.cln contrast to this, the SA-TS
optimization is successful for H6_2, but fails for H6_1, an@ 3. Due to the huge number of
arguments neither MS nor TS inference systems can be optihviath the corresponding SA

setups for argument combination H12_ 2, but for H12 1.

FIS Training Validation
r | DPH | DPT r | DPH | DPT
X O0|X O X O| X O
MS H6_1 17rule§ 0992 3|4 2,098 3 4|5 2
H12.1 20rules 0969 5{9 209 9 5|9 3
TS H6 2 6rules| 0994 3|4 2,098 5 5|3 3
H12.1 6rules|097|7 5|8 2/096|10 5|10 2

Table 5.18:Evaluation results for the best fitted MS and TS inference systems cangidee forecast of
Q(t +6h) andQ(t + 12h) at gauge Kemmern (4244 Knv: correlation coefficient; DPH [%)]
and DPT [h]: absolute differences of peak heights and timesiean;o: standard deviation).

Table 5.18 summarizes the optimization results of the b#stdfMS and TS inference systems.
For the rating of the single fuzzy inference systems cadiiteiavalues as well as mean absolute
differences of peak heights (DPH) and peak times (DPT) ansidered. The high correlation
values can be traced back to a very good performance of bfetteirce systems considering the
lower discharge range. However, as indicated by the DPHegalbe forecast of the peaks is
slightly worse. Since the discharge is over- and under@séid) no systematic error is apparent.
Figure 5.21 shows two examples for the forecast performahtee best fitted fuzzy inference
systems for gauge Kemmern.
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Figure 5.21: Example of a flood event simulated with the best fitted MS and TS inferentensy$or the
6 (left) and 12 (right) hour forecast at gauge Kemmern (4248)km

Indicated by the degradation of the correlation values idensig MS inference systems (Fig-
ure C.6) the environmental factor discharge cannot be nieglexs argument as in case of the 3
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5.2 Fuzzy Modelling

day forecast. This confirms the findings in literature. Femmhore, no TS inference systems could
be optimized for this argument combination H6_ 3.

Performance of the optimal setups at the gauges Schwiirbitza Mainleus.

For the verification of the above presented results theustexability performance is investigated
considering the two other Upper Main main gauges Mainle@sgknt) and Schwiirbitz (2419
km?). The optimization of the MS and TS inference systems arfopaed as for gauge Kem-
mern. All arguments are described through three membefghgtions (statistical method). The
optimizations are carried out without any further restoics. Table 5.19 summarizes the evalua-
tion results of the best fitted MS and TS inference systemsidering the forecast dd(t + 6h)
andQ(t 4+ 12h) at both gauges. Examples for the performance of the comelspy best fitted
inference systems are shown in Figure C.7 and C.8.

FIS Training Validation
r | DPH | DPT r | DPH DPT
X O|X O X Oo|X O
Mainleus MS H6 1 15rules097| 4 3|5 2(095/10 7|5 2
H12 1 16rules 09715 7|3 5|091|18 10| 9 3
TS H6_2 7rules| 098 6 5|5 2[09%|10 9|5 2
H12 1 6rules| 09613 9|7 4[092|17 11| 9 2
Schwirbitz MS H6_1 21rules098| 5 4|5 2098/ 4 4|5 2
H12 1 24rules 096|114 8|8 409413 8| 8 4
TS H6 2 6rules|098| 6 5|5 2|09|10 6|5 2
H12 1 6rules|096|13 9|8 309217 11|10 2

Table 5.19:Evaluation results for the best fitted MS and TS inference systems cangidke forecast
of Q(t + 6h) andQ(t + 12h) at gauges Mainleus (1166 Kinand Schwiirbitz (2419 kfn r:
correlation coefficient; DPH [%] and DPT [h]: absolute differencepeask heights and times;
X: mean;o: standard deviation).

As for gauge Kemmern, no MS inference system can be trairreafdoament combinations H6_2
and H12_2, as well as no TS inference system for H6_1, H6_@Hdr2_ 2 considering gauge
Schwirbitz and Mainleus. Thus, the sensitive behavior df bazzy inference systems consider-
ing the argument combinations and the number of argumesgpectively, is confirmed. Further-
more, the same sensitivity of the SA-TS optimization preasscurs as for gauge Kemmern, and
for the optimization of the 3 day forecast systems.

The high correlation values can be traced back to a very geoidimance of both inference
systems considering the lower discharge range as for gaegertern. However, the forecast of
the peaks is also slightly worse. Since the discharge is @vet underestimated, no systematic
error within both fuzzy inference systems is apparent.

Overall, the results of gauges Schwirbitz and Mainleusyéhniose of gauge Kemmern. The
forecast performance of the best fitted MS and TS inferensgs)s are of comparable quality
as for gauge Kemmern. No significant differences betweesetiiference systems occur. These
results also confirm the findings in literature.

Conclusions for the further investigation of the 48 h forecat.
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5 Model development for the Upper Main basin

As in case of the 3 day forecast satisfying and reliable teswith respect to the 6 and 12 h

forecast are achieved with both fuzzy inference systemsaMETS, which confirm the findings

in literature. Since the performances of both fuzzy infeeegystems are of comparable quality
considering the high discharge range, they are both funirestigated for the 48 h forecast.

One advantage of the MS is its much more simpler and fastap siie to the fact that less
arguments have to be considered. However, looking at therlovgcharge range smoother hy-
drographs are forecasted in case of TS due to the linearmssganctions. Considering the
forecasted peak heights better results are achieved vati $hin some cases. This can be also
traced back to the behavior of the linear response functibmthis case MS inference systems
are slightly more conservative due to the definition of trepomse as membership functions.

5.2.4 Fuzzy inference systems for the 48 hour forecast

Since the application performances of both fuzzy infereystems are of comparable quality for
the 6 and 12 h discharge forecast, both are also investifatéke 48 h forecast. However, one
general problem is the limitation of arguments as it becappagent before. That means, among
others, that the number of the argument forecasted areappiegion has to be manageable in
order to ensure a reasonable optimization of the rule syst€herefore, the straight forward
proceeding of the 6 and 12 h forecast cannot be applied smbewarly input of the forecasted
areal precipitation cannot be performed with the corredpanSA optimization setups.

In the following, the development steps for the setup of yuzderence systems for the 48 h
forecast are exemplarily discussed for gauge Kemmern (&8#3 since further investigations
presented in Chapter 5.3 and 5.4 are also related to this geugferecast time horizon. Further-
more, the transferability and performance of the optimah4#tup is discussed considering the
other two gauges Schwiirbitz (2419 ®nand Mainleus (1166 kA).

Development of a fuzzification and optimization strategy.

Due to their definitions fuzzy inference systems own manyekegof freedom which have to be
adjusted for modelling purposes. In a first step furtherification and optimization strategies are
investigated beside the simplest one, which has been petbfor the other forecast time hori-
zons before. Thereby, the aim is to find an optimization sgpatwith which comparable fuzzy

inference systems can be trained without investigatingr@micenumber of rules for each argu-
ment combination in order to keep computation times lowsT&idone for both fuzzy inference

systems, MS and TS, whereas for MS the following four optatian setups are compared:

MS_3MF:

This optimization setup corresponds to the setups perfdrimethe 3 day, 6 and 12
hour forecast. The fuzzification of the arguments and theaese is done with a pure
statistical method (triangular shape; Figure 5.22 lefQrtlirermore, only the number
of rules is continuously increasing by 1 from 5 to 50 and awiattic training of the
whole rule systems using SA is applied. The initialisatibthe whole rule system and
its optimization is performed by the SA algorithm itself,evkas the shape and number
of the predefined membership functions remain unaffectethgluhe optimization
process.
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5.2 Fuzzy Modelling

MS_6MF:

Except of the fuzzification method this setup correspondbeosame restrictions as
MS_3MF. In this case the fuzzification is a combination of Htatistical and the
equally-partitioning method as it is similarly performegl Bhrestha et al. (2007).
Thereby, the arguments and the response are describedhhsoumembership func-
tion in a whole, considering the minimal, maximal and medoesand further three
symmetric membership functions equally spaced betweemthegnal and maximal
values (triangular shape; Figure 5.22 right).

MS_3MF_fR:

Except for one restriction considering the optimizatioagass this setup corresponds
to MS_3MF. The arguments and the response are fuzzifiedghrtbwee membership
functions (pure statistical method). However, the respsid therefore the member-
ship functions applied within the THEN-part are defined inatte by the user and
remain unaffected during the optimization process. Onlyaialisation of the IF-part
(considering the arguments) and its optimization is penft by the SA algorithm,
whereas the THEN-part stays untouched. The shape and nwhbee predefined
membership functions of the arguments also remain unaffieets before.

MS_6MF_fR:

This setup is a combination of MS_6MF and MS_3MF_fR. The amguts and the
response are described through six membership functiang tlee combination of
the statistical and equally-partitioning method (MS_6MR)rthermore, the responses
are set in advance by the user and remain unaffected durngpiimization process
(MS_3MF_fR).

HQ)

0 100 260 360 460 560 660 760 0 100 2’(‘)0 360 ‘4(‘JO 560 660 760
QWM QWM
Figure 5.22: Fuzzification of the argument/response discharge performing the ptistiséhmethod (left)
and the combination of the statistical (solid lines, right) and equally-partitionindpode
(dashed lines, right).

For the investigation of the four different MS optimizatisetups two different combinations of
arguments are examined (Table 5.20). These argument catidna consider the results of the
daily and the 6 and 12 h forecast systems. Furthermore, 4% foference systems (5 to 50 rules,
continuously increasing by 1) are trained for each arguroemtbination and each optimization
setup. Figure 5.23 shows the development of the objectietiton least-squaregLS) and the
corresponding correlation values of the training and \adiah sets for the four different setups
considering argument combination H48_1. The same is preden Figure 5.24 for argument
combination H48_2.
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Argument || H48 1| H48 2

Q)

Qup(t)
API12h(®
mT12h()
API21d(t)
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Table 5.20: Argument combinations considered for the investigation of the four MS optilizaetups
MS_3MF, MS_6MF, MS_3MF_fR, and MS_6MF_fR.
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Figure 5.23: Development of the objective function least-squate® @nd the corresponding correlation
values of the training and validation sets considering the four MS optimizatiopséor
H48 1.
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Figure 5.24: Development of the objective function least-squate® @nd the corresponding correlation
values of the training and validation sets considering the four MS optimizatiopséor
H48_2.
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5.2 Fuzzy Modelling

Considering the LS values of both argument combinations H48d H48 2, all curves show
a similar shape. Furthermore, better LS values are gepearaliieved with optimization setup
MS_6MF. However, the points where overfitting occurs catweadetermined by only considering
the LS values. The overfittings of the fuzzy inference systame recognisable by the stagnation
of the correlation curves corresponding to the validatiets.sThereby, an overfitting is reached as
soon as the gap between the correlation values of the tgaamd validation set becomes larger.
That means, that no improvements can be achieved by a furtbeyase of the rule number
considering the validation set. In this case, the overfjttiocurs for the different optimization
setups and argument combinations as soon as the correlatites of the validation set starts to
oscillate around 0.90 and the gap between the correlatioesaf the training and validation sets
are still small.

In the following, fuzzy inference systems consisting of @l@s are considered for the comparison
of the different argument combinations and MS optimizasetups because these systems are
around the point where overfitting occurs. Figure 5.25 shinvptimization results of the four
MS setups for two out of the ten highest flood events §H®IQ,p) simulated with the 20 rules
fuzzy inference systems (case H48_1). It exemplarily gointt that considering the ten highest
flood events the peak heights are underestimated. Howeawverhas to keep in mind that these
fuzzy inference systems do not always reflect the best opgithiuzzy inference system for all
investigated cases due to the restriction of 20 rules.
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Figure 5.25: Examples for two out of the ten highest flood events simulated with with fougrdifit MS
optimization setup considering 20 rules (left: training; right: validation; ca@ H).

Table 5.21 summarizes the mean absolute differences of Ipeigkts (DPH) and peak times
(DPT) considering the ideal and simulated forecast for &l &ptimization setups and the two
argument combinations, H48 1 and H48 2. The table shoasnthsignificant differences be-
tween the DPT values of the investigated argument combimaticcurs except for case MS_6MF_fR
H48 1. Comparing the DPH values, it becomes apparent thagetiermance of the two opti-
mization setups MS_3MF_fR and MS_6MF_fR is worse than tladdbe others. Considering

the two setups MS_3MF and MS_6MF no significant differenags/ben the DPH values of the
corresponding training and validation sets occur excepti® validation set of H48_2.

Since the aim is to find an optimization strategy with whicmparable fuzzy inference systems
can be trained without investigating a certain number adstibr each argument combination the
following restrictions are defined for the further investigns of the MS inference system based
on the results presented above:

87



5 Model development for the Upper Main basin

MS setup DPH DPT DPHio | DPTig
X O| X O|X 0| X ©

MS_3MF H48 1/ 18 17|11 10|11 10|14 9
23 21112 9|16 9|15 8

H48 2118 12|11 11|13 9|15 8

30 20|11 9|18 11|11 12

MS_6MF H48 116 14| 9 11]10 5] 8 9
23 16|11 9|17 9|12 9

H48 2|22 12|12 10,16 8 |14 7

21 17/15 8|22 9|12 8

MS 3MF fR H48 1/ 29 24|13 12|13 6 |15 11
29 2310 9|18 8|12 10

H48 2125 20|12 12|16 8 |15 8

32 23| 8 922 14| 8 10

MS 6MF fR H48 1/ 21 11|15 12|22 8 |23 9
19 14|14 12|26 4|20 10

H48 2123 14111 11129 8| 9 7

23 13|16 9|27 9|17 5

Table 5.21:Evaluation results of the 20 rule MS inference systems considering the S BKS_3MF,
MS_6MF, MS_3MF _fR, and MS_6MF_fR H48 1 as well as the argumeminations
H48 1 and H48 2 (gauge Kemmern; DPH [%] and DPT [h]: absoluterdiifees of peak
heights and timesjo: considering the ten highest flood eventsmean;o: standard devia-

tion; first training, second validation).
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Figure 5.26: Examples for two out of the ten highest flood events simulated with the reshk MS_6MF
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optimization setup considering 20 rules (left: training; right: validation).
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5.2 Fuzzy Modelling

1. The argument combination H48_1 is set as the referenesfoathe following inves-
tigations because the corresponding values of the obgefttivctions (LS, correlation,
DPH, DPT) are slightly better for this case than for H48 2rtlkermore, the visual
comparison of single simulated flood events (e.g. Figuré)xa@nfirms that decision.

2. Considering further optimizations of fuzzy inferenceteyss the MS optimization
setup MS_6MF is performed because of the same reasons asdnotargument
combination H48_1. That means, that the arguments and gpemee are fuzzified
through six membership functions (Figure 5.22 right) andesirictions for the SA
optimization are defined.

3. In order to keep the number of optimizations manageable fomazy inference sys-
tems consisting of 20 rules are trained in the following stigations. It is assumed
that those systems are around the point where overfittingre@ven if the number of
arguments changes significantly. However, it has to be ediotit that these optimized
fuzzy inference systems do not always reflect the best fijtstgss for the correspond-
ing argument combination and fuzzification under invesidgebut performs nearly as
good.

Until now only the development of a fuzzification and optiatinn strategy for the MS fuzzy
inference system is presented. However, the conclusioth®oMS system cannot be directly
applied for the TS inference system because of the diffetefmition of the responses applying
linear functions instead of membership functions. Furtigre, the results of the 6 and 12 hour
forecasts show that different argument combinations atel mumbers have to be considered
in order to find a satisfying TS inference system. Thereftire,following optimization setups
together with five different argument combinations (TabR2% are investigated for TS:

TS_3MF:

The fuzzification of the arguments is done with a pure stasistnethod (triangular
shape; Figure 5.22 left). Furthermore, all arguments whrehbased on precipitation
and / or discharge are considered within both, the IF-patthea linear response func-
tions of the THEN-part of each rule. Other arguments as aweraged mean areal
temperature occur only within the IF-part of the TS infe@sgstems.

TS_6MF:

Except for the fuzzification method this setup correspordthé same restrictions
as TS_3MF. In this case the fuzzification is a combinationhef statistical and the
equally-partitioning method as it is also performed for MSIF and MS_6MF_fR
(triangular shape; Figure 5.22 right).

TS_3MF_P:

Except for one restriction considering the IF-part of the ilmf@rence systems this
setup corresponds to TS_3MF. The arguments are fuzzifiedghrthree membership
functions (pure statistical method). However, the argusienthe forecasted (cumu-
lated) areal precipitation are only considered within th¢EN-part of each rule, not
within the IF-part. Arguments which are not related to ppéeation and discharge are
only applied within the IF-part. All other arguments arefpened within the IF- and
THEN-part of each rule.
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5 Model development for the Upper Main basin

TS_6MF_P:

This setup is a combination of TS_6MF and TS_3MF_P. The aeyusmare described
through six membership functions using the combinatiomefstatistical and equally-
partitioning method (TS_6MF). The consideration of argateewithin the IF- and
THEN-part is identical to setup TS_3MF_P.

Argument [ H48_1] H48_2TS| H48_3TS| H48_4TS| H48 5TS
Q(b) X X X X X
Qup(t) X X X

API12h(t) X X X X X
mT12h(t) X X X X X
cfP(0-24h,t) X X

cfP(0-12h,t) X X X
cfP(13-24h,t) X X X
cfP(25-48h,t) X

cfP(25-36h,t) X X X X
cfP(37-42h,t) X X X
cfP(43-48h,t) X

cfP(37-48h,t) X
fP(t+43h) to fP(t+48h X X

3 | 6 | 8 \ 14 | 13| 7

Table 5.22: Argument combinations considered for the investigation of four diffefé&bptimization se-
tups TS _3MF, TS_6MF, TS _3MF_P, and TS_6MF_P (H48_1: onlyragnt combination
which is also investigated for the MS setups).

‘ 5 rules I 6 rules 7 rules 8 rules 9rules M 10 rules M 11 rules ‘
T =TT T T T T T T T T
| |_|_|J | | |J_| IJ 1 IJ‘_[
T 7T T 7T T T 7T
1 L w 1 m IJ | | m
1 2 3 4 1 2 3 4 1 2 3 4 2 3 4 1 2 3 4

H48 1 H48_2TS H48_3TS H48 4TS H48 5TS
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Figure 5.27: Correlation values of the seven TS inference systems (5 to 11 rulesxtfaireach argument
combination H48_X (X: 1, 2TS, 3TS, 4TS, 5TS) and optimization setup (1:3MF; 2:
TS_6MF; 3: TS_3MF_P; 4: TS_6MF_P; top: training; bottom: validation).
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5.2 Fuzzy Modelling

Based on the results of the 6 and 12 hour forecast, seven Tiemete systems (5 to 11 rules,
continuously increasing by 1) are trained and validateceémrh argument combination and op-
timization setup. The initialisation of the whole rule sstand its optimization are performed
by the SA algorithm itself, whereas the shape and numbereoptadefined membership func-
tions remain unaffected during the optimization procedse fiesulting correlation values of the
training and validation phase are shown in Figure 5.27.

Figure 5.27 shows that in many cases no TS inference systebeaaptimized with the performed
SA-TS setup (no bars) and that partly large differencesideriag the increasing rule number of
one setup and argument combination occur (compare H48 rly.i®case of setup TS_3MF_P
rule systems can be trained and validated for each arguroerttination, but not always for all
considered rules (compare H48 2TS). However, it has to lphasized that not all responses can
be simulated for those fuzzy inference systems optimizékd We_3MF_P although the correla-
tion values indicate satisfying optimization results im&cases. Only for argument combination
H48_3TS together with the TS setups TS_3MF_P (5, 6, 7, 9, 10ules) and TS_6MF_P (5, 7,
9, 10, 11 rules) all responses can be satisfyingly simulated

Based on the results shown in Figure 5.27 no point where auegfitccurs can be determined. In
particular, considering H48 1 TS _3MF_P it seems that wiilrdner increase of rules the point
where overfitting occurs can be detected. Therefore, fukdduzzy inference systems (12 to
25 rules, continuously increasing by 1) are trained andla#tid for case H48 1 TS _3MF_P. The
same is done for case H48 3TS TS_3MF_P, since the best patiam results are achieved with
this combination. Figure 5.28 shows the resulting develamnof the objective function of the
SA optimization [S) and the corresponding correlation values for both cases.

EH48 1 TS 3MF P
Il H48_3TS TS _3MF_P

0.9r

o
©
T

o
3

correlation

0.6

5 10 15 20 25 5 6 7 8 9 10 11 12 13 14
number of rules number of rules

Figure 5.28: Development of the objective function least-squates [eft) and the corresponding correla-
tion values (right) considering H48_1 TS_3MF_P and H48_3TS TS_IMleft bar of one
color: training, right bar: validation).

As indicated by the development of the LS values no TS infegesystem can be trained for a rule
number higher than 14 in both cases (no bars). Thereforenpmivement of the fuzzy rule sys-
tems can be achieved with a further increase of rules. Hayegeall responses can be simulated
with the remaining fuzzy inference systems although thestation values indicate satisfying op-
timization results. Thereby, the number of false simulatponses responds very sensitive to
changes considering the rule number. In this case, it issatie to train TS inference systems
in the range of at least 8 to 11 rules performing the TS_3MmdPSA-TS optimization setup,
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5 Model development for the Upper Main basin

if different argument combinations are investigated far 48 hour forecast in order to achieve
a satisfying base for comparisons. However, this comegyalth very high computation and
evaluation times which make the performance of the TS fuafgrénce systems less attractive
for further investigations within this work.

Since the aim is to find an optimization strategy with whicimparable fuzzy inference sys-
tems can be trained without investigating certain rule nemslfor each argument combination
no general restrictions as in case of the MS inference systembe defined for TS inference
systems. The main reason for this is the high sensitivitthefdhosen SA-TS setup to changes
considering the number of rules and argument combinatiochwiequires the investigation of
a range of rules and consequently very high computationstimi@at means that the number of
rules should be continuously increasing by 1 until no rulgtemym could be optimized (compare
Figure 5.28). Consequently, the investigation of differargument combinations is difficult to
perform. For this reason the performance of the TS inferayséem and SA-TS system, re-
spectively, is rejected for further investigations wittive framework of this thesis, although the
application performance of the TS (H48 3TS TS_3MF_P, Gijuded the MS (H48 1 MS_6MF,
20 rules) systems are of comparable quality (Figure 5.28leTa.23).

ideal forecast | ideal forecast
——48_1 MS_6MF ——48_1 MS_6MF
700 — 48_3TS TS_3MF_P f 5001 —48_3TS TS_3MF_P

4001

300

Q(t+48h) [m %s]

N

o

(=]
T

100

14/012/02 26/12/02 08/01/03 09%2/02 14/02/02

Figure 5.29: Examples for two out of the ten highest flood events (left: training; righlid&ton) simu-
lated with the reference case of the MS optimization setup (H48_1 MS_6Mfil&$) and
the best fitted TS inference system (H48_3TS TS_3MF_P, 6 rules).

FIS r | DPH DPT DPHyo | DPT10

X O|X Oo|X oOo|X o

MS_6MF H48 1 20rules 09616 14| 9 11|10 9
09123 16|11 9 |17 12 9

9
TS_3MF H48 3TS 6rules| 09714 12/11 13| 8 6|9 8
09030 16|14 10|20 4|20 10

(93]
(0¢]

Table 5.23:Evaluation results of the MS reference case (H48 1 MS_6MF, 20 raihek)he best fitted TS
inference system (H48_3TS TS_3MF_P, 6 rules) considering the 48hdst (gauge Kem-
mern; DPH [%] and DPT [h]: absolute differences of peak heights andstipgeconsidering
the ten highest flood events; mean;o: standard deviation; first training, second validation).
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5.2 Fuzzy Modelling

Investigation of different argument combinations performing the MS inference system
MS_6MF, 20 rules.

As presented before, the chosen SA-TS optimization setoptigeally suitable for a comprehen-
sive investigation of different argument combinationghvitthe framework of this thesis because
of its sensitivity considering changes of rule number agdiarent combinations. Therefore, only
MS inference systems are performed for further investgatof different argument combinations
in order to (1) improve the direct 48 hour discharge fore€ist+ 48h) and (2) to investigate the
influence of the argume@y(t). Thereby, the MS inference system H48_1 MS_6MF (20 rules)
is set as the reference case for the evaluation of the fdriecpovement. Table 5.24 summarizes
some of the investigated argument combinations includiegeference case H48 1.

Argument H48
12|3]4]5|6]7]8]9]|10]11]12|13]14]|15]16]17

Q1) XIX[XIX[X[X[X[X|X|X|X|X|X[|X]|X]|X]|X

Qup(t) XXX XXX

API12h(t) XIX[XIXIX[X[X[X|X|X|X|X[|X[|X]|X]|X]|X

mT12h(t) XIX[XIXIX[X[X[X|X|X|X[|X[|X[X]|X]|X]|X

API121d(t) X X X[ X[ X | X[ X|X|X|X

snowst(t) X X

cfP(0-24ht) | X | X [ X [ X [ X [ X || X [ X [ X | X | X | X | X | X

cfP(0-12h,t) X | X | X

cfP(13-24h,t) X | X | X

cfP(25-48h,t)[| X || X | X X | XX

cfP(25-42h,t) X X X

cfP(25-36h,t) X | X X | X X[ X | X |X

cfP(37-42h,t) X X X X | X

cfP(43-48h,t) X X X X X

cfP(37-48h,t) X X X

fP(t+43h) to X | X X

fP(t+48h)

> \\6\\7\7\7\7\8\\5\6\6\7\7\8\12\14\8\9\14

Table 5.24: Argument combinations investigated for an improvement of the 48 h forpeafsirming the
MS inference system MS_6MF, 20 rules.

For each argument combination a 20 rule MS inference systémained and validated performing
the MS_6MF optimization setup in order to ensure companaselts. The correlation, NS, DPH
and DPT values are shown in Figure 5.30. In case of H48_7 hisgonses within the low and
medium discharge range can be simulated with the optimiz8dn¥érence system, which is why
the results of the 19 rule MS inference system are given inr€i§.30 (marked with *) instead.

The partly large differences between the objective fumctialues of the training and valida-

tion phase can be mainly traced back to the restrictionsebttimization setup MS_6MF 20

rules. For some cases an overfitting of the fuzzy inferenstesys considering the training data
set already occurs. Therefore, the focus of the performanogarison of different argument
combinations lies on the objective function values of thkdesion data set and on the visual
comparison of the simulated hydrographs.
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Figure 5.30: Correlation, NS, DPH and DPT values for each investigated argumenticatiom H48 1
to H48 17 performing the MS_6MF (20 rules) optimization setup (last twosidening the
ten highest flood events, otherwise all 30 flood events; blue: trainidg;vaidation; *: 19
rules).
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5.2 Fuzzy Modelling

Figure 5.31: Examples for two out of the ten highest flood events simulated with the arguoentina-
tions H48 1 to H48 6 (MS_6MF 20 rules; left: training; right: validation).

?/,

!

/8

N YN

14/012/02 26/12/02 08/01/03

Y

‘\{,‘"".

f “n’4
\|
\
(K
|

Figure 5.32: Examples for two out of the ten highest flood events simulated with the arguwoetina-
tions H48_1 and H48 7 to 9 (MS_6MF 20 rules; in case of H48_7: 19;rldés training;
right: validation).
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Figure 5.33: Examples for two out of the ten highest flood events simulated with the arguwoetina-
tions H48 8 and H48_10to 17 (MS_6MF 20 rules; left: training; right: vailictg.
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5 Model development for the Upper Main basin

Comparing the results of the argument combinations H48_14® B no significant differences
occur except for the DPT values considering the 10 highestifevents. Furthermore, the per-
formance of the fuzzy inference systems are of comparalaitguNo significant improvements
of the 48 hour forecast can be achieved by considering (13rtnementsAPI121d(t) (H48_2) or
snows(t) (H48_3) or (2) a finer temporal discretized forecast of thmalated areal precipitation
(H48_3 to 6) in this case. The visual evaluation of the sinedeydrographs confirms these
results (Figure 5.31). The fluctuations of the hydrograpimfone to another time step occur due
to the fact that the simulated time steps are independemt éach other.

The significant difference between H48_1 to 3 and H48_7 tothas the argument (1) is
ignored. Consequently, a general degradation of the forg@eafrmance occurs for all flood
events. Comparing the 10 highest flood events the performaiitdd8_ 1 and H48 7 is of com-
parable quality. However, DPH values of up to 131% occur fealéer single flood events in case
of H48 7.

Considering the results of all flood events, the general diegi@n of the forecast systems can
be slightly attenuated by performing argum&iti21d(t) (H48_8), whereas the consideration of
argumentsnowstt) has no influence (Figure 5.32). Therefore, argument cortibm#&l48_8 is
investigated in more detail by considering finer temporatdtized forecasts of the cumulated
areal precipitation (H48 10 to 17). However, no significemprovement of the forecast sys-
tem H48_8 is achieved by applying finer temporal discretimedcasts of the cumulated areal
precipitation (Figure 5.30, 5.33).

Summarizing the results presented above, the MS setup MB H48_1 is still one of the best
fitted systems for the simulation of the whole range of floodnés. Therefore, it is further
considered as the reference case. However, MS inferentanmsy®f comparable quality can be
optimized considering the argument combinations H48_2 fbherefore, these systems are also
further considered within Chapter 5.3 beside H48 1. Funtloee, it has been proven that the
information content of the argume@,(t) is essential for the 48 hour forecast with MS fuzzy
inference systems in this case. A disregard of this argumesnits in a general degradation of
the forecast quality of the MS inference systems as in casdeafaily forecast. Finally, a general
improvement of the MS forecast systems considering all fexaohts and the performance of finer
temporal discretized forecasts of the cumulated arealptatton cannot be proven in this case.
Even considering only the 10 highest flood events, no sigmfieanprovement with respect to
DPH and DPT can be detected except for DPH of case H48_10.

Performance of the ideal 48 h setup at gauges Schwirbitz and Nideus.

In order to verify the results of the 48 hour forecast at gakigemmern, the transferability of the
optimal MS inference system MS_6MF H48 1 is investigatatsatering the gauge Schwirbitz
(2419 kn?). Since no single gauge within the main Upper Main river isaled more than 30
km upstream of gauge Mainleus (1166 Ynthe MS setup MS_6MF H48_1 cannot be verified
at this gauge. In fact two gauges within the tributaries Whitd Red Main (Unterzettlitz and
Kddnitz, Figure 5.1) are located upstream. However, thesges are situated very closely to
gauge Mainleus. A forecast system considering these twgegawould not make much sense.
Therefore, the current discharges at these gauges are mgileced as arguments for the MS
inference system and argument combination H48_7 (TabW) ts2verified for gauge Mainleus
instead.
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5.2 Fuzzy Modelling

Considering gauge Schwurbitz it turns out that argument coation H48 1 has to be slightly
modified (H48_1m) in order to ensure a satisfying 48 hourdase performance. Thereby, the
argument#API12h(t) andmT12h(t) of the original setup have to be replaced with the arguments
API6h(t) and mT6h(t). Reasons for this are the reduced catchment size and chaatggd c
ment characteristic. Furthermore, the assumption thatisiygag forecast performance can be
achieved with a 20 rule system is no longer adequate. In #se 87 rules are needed. Among
others this can be traced back to the fact that the flood ewentsnore diverse (shape, dura-
tion) considering gauge Schwiirbitz than in case of gaugerf@m. However, with the modified
setup a MS inference system can be trained, which is of cabfmguality as in case of gauge
Kemmern (Table 5.25, Figure 5.34 left).
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Figure 5.34: Examples for the 48 hour forecast at gauges Schwiirbitz (24 29l&ft) and Mainleus (1166

km?, right).
FIS r | DPH | DPT | DPHy | DPTio
X 0| X O|X 0O0|X 0O
Schwirbitz H48 1m 37rules0.93|20 18| 9 7 |15 12|14 4
09016 15/ 8 5|10 9|5 5
Mainleus H48 7 36rules0.92| 24 15/ 8 9|23 13|7 5
0.85/26 19|10 10,26 17|7 10

Table 5.25:Evaluation results for the best fitted MS_6MF inference systems congideem8 h forecast
at the gauges Schwiirbitz (2419 ®Knand Mainleus (1166 kfyr: correlation coefficient; DPH
[%] and DPT [h]: absolute differences of peak heights and timgs;considering the ten
highest flood eventx: mean;o: standard deviation; first training, second validation).

Because of missing information given by argum@g(t) the performance of the forecast system
Mainleus (MS_6MF, H48_7) is degraded in comparison to theifi&ence systems Schwirbitz
and Kemmern (Table 5.25, Figure 5.34 right). In particulamger errors occur considering the
forecast of peak heights. Even if the argument combinatoesslightly modified, as in case of
gauge Schwdrbitz, or a finer temporal resolution of the fasésd mean areal precipitation are
considered, no improvements can be achieved in this case.imturn confirms the results of
the investigations at gauge Kemmern. Furthermore, moses itudve to be optimized in case of
gauge Mainleus (H48_7) in order to ensure a optimizationlte$ comparable quality to gauge
Kemmern (H48_7).

In contrast to the investigation results of the 3 day, 6 antddir forecasts appropriate argument
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5 Model development for the Upper Main basin

combinations for gauge Kemmern cannot be directly transfieto other gauges considering the
48 hour forecast. However, they can be considered as a baghkicdm 48 hour forecast systems
of other gauges can be adapted to current catchment chasticse Thereby, the temporally
modification of arguments (e.@\PI16h(t) instead ofAPI12h(t)) as well as the modification of the
number of rules should be taken into account.

In order to reduce the performance degradation, if upstréiaoharge informations are missing
(compare gauge Mainleus), a more detailed investigatioaldibe carried out considering spatial
distributed instead of mean areal environmental factoissdet al. (2009) presented one possible
approach for the consideration of spatial distributednmiation. However, their approach results
in much more complex forecast systems than those presentieid work because the forecast at
single gauges is based on a forecast chain. Considering tlesqthy of the developed warning
system ExpHo-HORIX (Chapter 6) this approach is not adequodkés case due to its complexity.
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5.3 Mamdani inference system and Tukey depth function

5.3 Mamdani inference system and Tukey depth
function

With the help of Tukey depth (Chapter 3.4) current argumentimns of flood events can be
characterized as ordinary or unusual. Thereby, seldomragticonditions own very small depth
values as they are interpreted as outliers, whereas commes avn high depth values. Fur-
thermore, low Tukey depth values correspond not necegsargeldom conditions considering
the target variabl&®(t + 48n). Nevertheless, Tukey depth function is investigated asssipte
source of information considering MS inference system$ienftamework of this thesis. First,
it is considered as an additional argument within the MSrariee systems in order to improve
their 48 hour forecast ability, in particular, the forecasthe ten highest flood events. Second,
the general extrapolation behavior of MS inference sysisnmsestigated based on Tukey depth.
As mentioned in Chapter 5.2.4 these investigations are afppned for the 48 hour forecast at
gauge Kemmern (4244 inand presented in the following.

5.3.1 Tukey depth of different argument combinations

Considering the 48 h forecast time horizon MS inference systef comparable quality can
be set up with the argument combinations H48_1 to H48 6 €éTald4, Chapter 5.2.4) at gauge
Kemmern. Although case H48 1 is set as the reference casathiér five argument combinations
are also investigated in conjunction with Tukey depth ag t@responding depth values differ
from each other due to the combination of different arguserior the determination of the
different depth values the ideal forecasted 48 hour digghargauge Kemmern, which is eugal to
the measured one, is considered as the target variable.eptie vhlues themselves are calculated
based on the corresponding argument values for the diffargnment combinations separately.
Thereby, the data of all 30 flood events are considered as at@esgét and no differentiation
between a training and validation set is made.

Figure 5.35 shows exemplarily the target varia®l¢ -+ 48h) plotted via the Tukey depth values
considering the argument combinations H48_1 or H48_2. Camghoth plots, almost no differ-
ences with respect to the general shape of the scatterplot@gnisable. However, it is apparent
that not only extreme discharges at gauge Kemmern corredgpom depth value of nearly zero,
but also ordinary smaller ones. This fact occurs due to thi#i-aitnensional investigation of the
argument combination. Therefore, unusual (extreme) eveart be detected not necessarily for
the target variabl€(t + 48h) but for one argument of the argument combination under tives
gation. This is exemplarily shown in Figure 5.36 for case HU80n the left side, the argument
Qup(t) is plotted via the target variabl@(t 4+ 48h), whereas on the right the arguméRI12nh(t)

is plotted via the target variable. The color of the markemesents the corresponding depth val-
ues (log-scaled). Although the multi-dimensional behawioTukey depth is extremely reduced
within such projections it can been recognised that extréiseharges at gauge Kemmern are not
inevitably related to extreme discharges at its upstreangg&chwurbitz (left plot), but to an
extreme situation considering the other argun#gPkL2h(t) (right plot).
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Figure 5.35: Target variableQ(t + 48h) plotted via log-scaled Tukey depth values considering the argu-
ment combinations H48 1 (left) or H48_2 (right; marker color representsdiresponding
log-scaled depth values).
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Figure 5.36: Qup(t) (left) andAPI12nh(t) (right) plotted via the target variab{@(t + 48n) considering case
H48_1 (marker color represents the corresponding log-scaled delpisy.

5.3.2 Investigation of Tukey depth as an argument

In order to improve the 48 hour MS forecast systems of argtic@nbinations H48 1 to H48_6
(Chapter 5.2.4), in particular, considering the ten higlflestd events, Tukey depth values are
taken into account as an additional source of informatiogrely, the assumption is investigated
if the performance of the argumentuikey deptltauses a shift within the rule system so that less
rules are considered for the description of ordinary argungenditions and more for unusual
ones. Since a classification of argument conditions (orgioaunusual) can be performed based
on depth values a fuzzification using only two membershigtions seems more adequate than
that of the before developed strategy MS_6MF (Chapter 5.7Hgrefore, two different fuzzifi-
cation strategies considering Tukey depth are investigataddition to MS_6MF in a first step.
Furthermore, in order to keep the number of optimizationsagaable and based on the previ-
ously shown results (Chapter 5.2.4), it is assumed that M&ente systems consisting of 20
rules are still around the point where overfitting occurgrei the fuzzification strategy of one
single argument changes. The different optimization etjigs can be summarized as follows:
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5.3 Mamdani inference system and Tukey depth function

MS_T1:

This optimization setup corresponds to the optimal onegperéd for the setup of
48 hour MS forecast systems (MS_6MF, Chapter 5.2.4). Theffaation of all ar-
guments, includingrukey depthis a combination of the statistical and the equally-
partitioning method (triangular shape; Figure 5.37 top).

MS_T2:

Except for the fuzzification method considering the argumietkey depththis setup
corresponds to the same restrictions as MS_T1. In this cagethe argumentukey
depthis fuzzified through two instead of six membership functibased on the visual
interpretation of projections as shown in Figure 5.35 a@®5Since high discharges
consideringQ(t + 48h) own depth values of 0 to around 50 and not significant higher
depth values, two membership functions are defined in oodepresent this boundary.
Thereby, one is defined as (0,10,5@)hich corresponds to high discharges, whereas
the other completes the whole range of depth values (trlanghape; Figure 5.37 bot-
tom left). The fuzzification of the other arguments and thepomse is still performed
with the combination of the statistical and the equallytiianing method.

MS_T3:

In this setup a further fuzzification of the argum@énkey depths performed. Consid-
ering the definition of Tukey depth, outliers are generalbrked by a depth value of
zero. Therefore, the fuzzification of the arguménkey depttas shown in Figure 5.37
(bottom right) is investigated. With this fuzzification aeal boundary instead of a
smooth transition as in case of MS_T2 is defined. Note thattdueunding errors
occurring within the depth algorithm the boundary is notlssttiveen 0 and 1 accord-
ing to the mentioned definition of outliers, but between 1 an@he other arguments
and the response are again fuzzified with the combinatiomefstatistical and the
equally-partitioning method.

For the investigation of the different fuzzification apprbas a 20 rule MS inference system is
optimized for each argument combination H48 1 to H48 6tHewmore, an automatic training
of the whole rule systems using SA is performed without anyhir restrictions. The initial-
isation of the whole rule system and its optimization is perfed by the SA algorithm itself,
whereas the shape and number of the predefined membersbiphgsremain unaffected during
the optimization process.

For the investigated setups the corresponding correlamohNS values considering all 30 flood
events as well as the resulting DPH and DPT values consglerily the ten highest flood events
are shown in Figure 5.38. For comparison, the results ofdhesponding MS_6MF 20 rule MS

inference systems without considering Tukey depth aretiaddily given in both figures. In the

case of H48 4 MS_T2 and MS_T3 not all responses of the vaidaet can be simulated with
the corresponding optimized 20 rule MS inference systeniwis why the results of the 19 rule
MS inference systems are shown in Figure 5.38 instead.

The partly large differences considering the objectivectiom values of the training and valida-
tion phase can mainly be traced back to the general restricfi 20 rules. That means, that for
some cases an overfitting of the MS inference systems cairgidibe training data set already
occurs.
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Figure 5.37: Fuzzifications of the argumefiukey depttconsidering optimization setups MS_T1 (top),
MS_T2 (bottom left), and MS_T3 (bottom right).

Comparing the correlation and NS values of the differentification setups MS_6MF, MS_T1,
MS_T2,and MS_T3 for case H48 1 no significant differenceseadetected. The visual evalua-
tion of the flood hydrographs confirms this result (Figure}.Furthermore, these MS inference
systems represent all 30 as well as the ten highest floodswéobmparable quality and more
satisfying than the other ones. No significant improvemémeference case MS_6MF H48 1
can be achieved by any other argument combination and MS W5t T3 setup.

However, considering only the ten highest flood events theification strategy MS_T3 of H48_1
reproduces the flood peak slightly better than H48 1 MS_@M#Ehas some drawbacks with the
satisfying simulation of smaller flood events. This can bedd back to the restriction of 20 rules.
In the case of H48_1 MS_6MF 8 of 20 rules are set up by the SAigdhgo for the description of
high discharges, whereas 12 rules define the conditions all $éhrules) and medium (3 rules)
discharges. In contrast to this, only 6 and 4 rules are opéichfor the simulation of small and
middle discharges in case of H48 1 MS_T3 as the correspgggument conditions are marked
as ordinary through the argument Tukey depth. For the uhasuaditions 10 rules are optimized,
and consequently improvements considering the simulafitime highest discharges are achieved
with the described shift within the optimized rule system.

Although, no general improvement of the 48 hour forecastigflthrge considering all 30 flood

events could be achieved with the setups MS_T1, MS_T2, andTidSa further investigation
with another fuzzification strategy is reasonable. Sineeafgument®(t) and Qup(t) have a
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5.3 Mamdani inference system and Tukey depth function
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Figure 5.38: Correlation and NS values considering all 30 flood events as well as DEHDRT values
considering the ten highest flood events for each investigated arguorabtration H48 1
to H48_6 performing the optimization setups MS_6MF, MS_T1, MS_T2, and \3ST:
training; V: validation).
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Figure 5.39: Examples for two out of the ten highest flood events simulated with the argwombination
H48 1 and the different optimization setups MS_6MF, MS_T1, MS_T2, aBd ™8 (left:
training; right: validation).
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5 Model development for the Upper Main basin

great impact on the forecast quality of the MS inferenceesyst these two arguments are addi-
tionally considered within an extended fuzzification siggt Thereby, further two membership
functions are defined based on Tukey depth scatterplotsir@gig.35, 5.36). Considering ar-
gumentQ(t) the membership functionse¢;400,500} and (300,400¢)t, considering argument
Qup(t) the membership functions;300,400} and (300,400¢)T are added (Figure 5.40 solid
lines). Since the argumefi(t) and the respong®(t + 48h) are the same environmental factor,
the modification considering the extended fuzzificatiordedbr both. The new fuzzifications of
Q(t) andQup(t) are investigated together with the argumeéuakey deptlin the following setups:

MS_T4:

Except for the fuzzification of the argumer@gp(t) andQ(t), this optimization setup
corresponds to optimization setup MS_T1: Tukey depth igified through six (Fig-
ure 5.37 top)Q(t) andQup(t) are fuzzified through eight (Figure 5.40) instead of six
(Figure 5.22 right) membership functions. All other argumseare still defined by six
membership functions (Figure 5.22 right).

MS_T5:

This optimization setup is a combination of MS_T2 and MS_Tdkey depth is de-
fined by two (Figure 5.37 bottom left(t) andQup(t) by eight (Figure 5.40), and all
other by six membership functions (Figure 5.22 right).

MS_TG6:

Except for the fuzzification of the argument Tukey depth thisimization setup is
identical to MS_T5. Tukey depth is fuzzified as in case MS_{i&(membership
functions, Figure 5.37 bottom right).
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Figure 5.40: Extended fuzzification of the argument / respo@&g) (left) and argumen@Qyp(t) (right) for
the investigations of the optimization setups MS_T4, MS_T5, and MS_T®6.

For the investigation of the different extended fuzzifioatstrategies a 20 rule MS inference sys-
tem is optimized for each argument combination H48_1 to H48ithout any further restrictions
as for MS_T1 to MS_T3. Figure 5.41 presents the correspgnzbrrelation and NS values con-
sidering all 30 flood events as well as the resulting DPH andl iztues considering only the ten
highest flood events. For comparison, the results of theespanding MS_6MF 20 rule systems
are also given in the figures. Except for H48_3 MS_T6, satigf20 rule MS inference systems
are optimized and all responses of the training and vabidagets can be simulated. For H48 3
MS_T6 the results of the 19 rule MS inference system are sliostead.
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5.3 Mamdani inference system and Tukey depth function
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Figure 5.41:Correlation and NS values considering all 30 flood events as well as DEHDRT values
considering the ten highest flood events for each investigated arguorabtration H48 1
to H48_6 performing the optimization setups MS_6MF, MS_T4, MS_T5, and M8ST:
training; V: validation).

As before, the partly large differences considering thectiopn function values of the training
and validation phase can be traced back to the fact that ire s@ses an overfitting of the MS
inference systems already occurs.

Considering the correlation and NS values (Figure 5.41) goifstant differences and therefore,
no general improvements of the 48 hour forecast can be éeteonsidering all 30 flood events.
However, an improvement with respect to the 48 hour foremfasie flood peak heights of the ten
highest flood events is achieved with the fuzzification sggtMS_T5 (Figure 5.41). Performing
this fuzzification strategy the DPH values considering thidation phase of all argument com-
binations except of H48 3 are reduced to below 15 % and evémrae cases (H48 1, H48 2,
H48_5) to below 10 %. This improvement again can be trace# tma shift within the cor-
responding rule system based on the exented fuzzificatrategy. But in comparison to the
fuzzification strategies presented before, this improvernemes along with the degradation of
the DPT values in case of H48 1 to H48_4. Furthermore, the {ddJes considering the ten
highest flood events show a certain variability, which is wigystatement about which fuzzi-
fication strategy is superior with respect to the forecasiityuof the peak times can be made.
Nevertheless, considering the visual evaluation and thk peights of the ten highest flood events
(Figure 5.42) an extended investigation of the fuzzificastrategy MS_T5 is reasonable.
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Figure 5.42: Examples for two out of the ten highest flood events simulated with the arguambination
H48 1 and the different optimization setups MS_6MF, MS_T4, MS_T5,M8dT6 (left:
training; right: validation).

Until now, different fuzzifications of the argumeniiskey depthQ(t) andQup(t) have been inves-
tigated for an improvement of the 48 hour forecast of disgbawhereas the optimization setup is
kept as it is performed for MS_6MF: the optimization of a 2@mMS inference system is always
performed without any further restrictions. Within a lastestigation step, these optimization
restrictions are slightly modified by expert knowledge.

Since a certain structure can be recognized within the gtiojgs as shown in Figure 5.35 and 5.36
the rule parts considering the argumenigey deptlandQup(t) as well as the respon&it +48h)

of three rules are defined in advance and remain untouchethdbe SA optimization procedure.
However, it is possible that different membership funcsiohother arguments are added to these
partly fixed rules during the SA-MS optimization processislik reasonable because low depth
values do not only indicate seldom conditions considef@qg(t) and Q(t), but also for other
arguments which are taken into account for the calculatiaghecorrespondingukey depthin

this case the three partly fixed rules are defined as:

IF Qup(t) (300,4000)r AND Tukey (<0,10,50y THEN Q(t+48) (300,4000)r
IF Qup(t) (-0,300,400) AND Tukey (,10,50y THEN Q(t+48) (300,408%)t
IF Qup(t) (-0,300,400) AND Tukey (10,500)r THEN Q(t+48) (<0, 400,500}

These predefined, partly fixed rules are investigated tegetth the fuzzification strategy MS_T5
in the following setups:

MS_T7:

Since until now, 20 rule MS inference systems are optimipethe different argument
combinations H48_1to H48_6, only 17 rules are now completetomatically trained
so that the rule number of the whole rule system remains anhst comparison to the
previous setups. The initialisation of 17 rules and theitimjzation together with

the three partly fixed rules are performed without any furtiestrictions by the SA
algorithm automatically.
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5.3 Mamdani inference system and Tukey depth function

MS_T8:

Except of the number of rules this optimization setup cqoesls to MS_T7. In this
case a 23 rule MS inference system is trained. 20 rules apenatitally optimized in
addition to the three predefined, partly fixed rules in ordedetep the number of fully
automatically optimized rules constant in comparison &gtevious setups.
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Figure 5.43:Correlation and NS values considering all 30 flood events as well as DEBHDRT values
considering the ten highest flood events for each investigated arguorabtration H48 1
to H48_6 performing the optimization setups MS_6MF, MS_T5, MS_T7, and \8ST:
training; V: validation).

For comparison, the resulting correlation and NS valuesidening all 30 flood events are given
in Figure 5.43 for the optimization setups MS_T7 and MS_ Ti@sodering the different argument
combinations H48 1 to H48_6 together with those of MS_6M#& BIS_T5. Furthermore, the
corresponding DPH and DPT values considering the ten hidloesl events are shown in this
figure. For H48 6 MS_T8 not all responses of the validatidrcae be simulated with the op-
timized 23 rule MS inference system. Therefore, the redaitshe 22 rule system are given in
Figure 5.43 instead.

The partly large differences considering the objectivectiom values of the training and valida-

107



5 Model development for the Upper Main basin

tion phase are due to the fact that in some cases an overtftthg MS inference systems already
exists. Furthermore, no significant differences within ¢berelation and NS values considering
all 30 flood events can be detected. Therefore, no generabirement of the 48 hour forecast
considering all 30 flood events could be achieved with thesehaptimization setups MS_T7
and MS_T8.

Considering the ten highest flood events no improvementsregpect to the 48 hour forecast of
the peak heights occur by performing MS_T7 and MS_T8 (Figu48). The visual evaluation

of the flood hydrographs confirms this result (Figure 5.44he DPT values considering the
ten highest flood events also show a certain variability. réfoge, no statement about which
fuzzification strategy is superior with respect to the fastoquality of the peak times can be
made.
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Figure 5.44: Examples for two out of the ten highest flood events simulated with the arguwarmbination
H48 1 and the different optimization setups MS_6MF, MS_T5, MS_T7,M8dT8 (left:
training; right: validation).

Summary and further discussion.

The aim of the investigation of Tukey depth as an additionglisment focused on the possible
improvement of the MS inference systems for the 48 hour digghforecast. Considering all 30
flood events, no general and significant improvements cawclie\eed with one of the discussed
optimization setups MS_T1 to MS_T8 and argument combinattié48 1 to H48_6. Therefore,
reference setup H48 1 MS_6MF (Chapter 5.2.4) is still ondeftest fitted MS inference sys-
tem for 48 hour forecast of the whole range of considered fla@hts. Furthermore, it is most
attractive as its performance is manageable for an unexqped user.

Considering only the peak heights of the ten highest floodtewerertain improvement can be
achieved with the optimization setup MS_T5. A reason fa ihithat through the argumehikey
depthcommon argument conditions are marked as ordinary, whyrigss are trained for those
conditions. Consequently, a shift within the corresponduig systems occurs. Within these
rule systems more rules consider the description of higisehdrges compared to MS_6MF (11
instead of 8). Nevertheless, this improvement comes alatigosrtain degradations considering
the peak times (Figure 5.41) and the simulations of smabtedfevents (Figure D.1). In general,
it is recommended to perform the H48 1 MS_6MF MS inferencedesy at gauge Kemmern
since its forecast performance considering the whole rafhfleod events is one of the best and
simplest one in this case.
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5.3 Mamdani inference system and Tukey depth function

Nevertheless, it is promising to perform Tukey depth as drcator and additional tool for the
guantifications of the forecast quality in combination witie performed MS forecast system.
The idea behind is that based on the current conditions aguirent values Tukey depth is
calculated. Then based on the determined Tukey depth th@mipg conditions are classified
as ordinary or unusual and conclusions for the forecastitguzlan MS inference system can
be probably drawn. In this context, it has to be investigatechore detail, if in general better
forecast qualities correspond to higher Tukey depth valasghey indicate ordinary argument
conditions, and suboptimal qualities to low depth valuessdglaon these results it is further
interesting to study if any general conclusions and recontaons considering a switching
between the MS inference systems H48 1 MS_6MF and MS_Th&#8 hour forecast can
be drawn. However, one has to keep in mind that the above stisduresults are based on the
restrictions of a 20 rule MS inference system and do not adwagresent the best optimized one
in all cases. Therefore, the performance ability of the e fuzzification and optimization
strategies have to be checked in conjunction with the pregbos/estigation.

5.3.3 Investigation of the extrapolation behavior of Mamdani
inference systems

Due to its structure and the general definition of argumentsrasponse as membership func-
tions the extrapolation behavior of MS inference systenisriged. However, due to ongoing
discussions among others with respect to climate changktharresulting increase of extreme
events (droughts, floods) forecast systems which own aicegkdrapolation ability are in de-
mand. Therefore, the general extrapolation behavior of M&rénce systems is investigated
based on the previous results. Thereby, the need for eXatagpoconsidering MS inference sys-
tems within the Upper Main basin (gauge Kemmern) is studasktt on Tukey depth values.

The general question whether MS inference systems witkrJiper Main basin (gauge Kem-
mern) require a certain extrapolation behavior or not iestigated first. To answer this question
Tukey depth values are considered, and a cumulative cumetmae based on these values is
calculated. Thereby, seldom argument conditions with lideptues of O or 1 are counted by
one, ordinary conditions with higher depth values by zerep&nding on the number of un-
usual and ordinary conditions two general shapes of the taiivel curves can be distinguished
(Figure 5.45). If the cumulative curve continuously in@es over time, then it can be assumed
that the MS inference systems still have to face unusuahaegt conditions in the future (Fig-
ure 5.45, dashed line). In contrast to this, if the cumudaturve flattens it can be assumed that
the probability of unusual argument conditions becomedlsmia the future (Figure 5.45, solid
line). For the latter case the extrapolation behavior of adlforecast system is less important
than for the first case.

Figure 5.46 shows the development of the cumulative curasgd on Tukey depth values for
argument combination H48_1 calculated on hourly data densig (1) the time period from

01.01.1992 to 31.12.2004 and (2) only the 30 highest flooditsveSince Tukey depth values
depend on the chosen arguments further plots are exempjarén for argument combinations
H48 2 and H48 3 in Appendix D.

In case of the 30 flood events the shape of the cumulative sww@esponds to a step function
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Figure 5.45: Generalization of two possible shapes of the cumulative curve basedken dapth values.
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Figure 5.46: Cumulative curves based on Tukey depth values calculated on hourlgaagalering the
time period from 01.01.1992 to 31.12.2004 (left) and only the 30 highest &wenits (right)
for the argument combinations H48 1.

because of lacking data between single flood events. Furtirer although 30 flood events are
considered only 17 steps can be clearly distinguished Isedd) for some smaller events almost
all data are marked as ordinary and (2) some floods occuretyshne after another. Therefore,

they cannot be differentiated in these diagrams.

In all figures a continuous increase of the cumulative sunr twee is apparent and it can be
assumed that the MS inference systems still have to faceuahasgument conditions in future
within the Upper Main basin (gauge Kemmern). A reason farighthe limited database including
a small number of flood events (30 greater WL 1; only 5 greater )L Gonsequently, an
adequate forecast system for the Upper Main basin will reqaiicertain extrapolation ability.
Therefore, the extrapolation behavior of MS inferenceaystpresented before is investigated in
the following.

The investigation of the extrapolation behavior is basecheasured data of the 30 flood events.
However, these data are split into a training and validasenconsidering warning level 3 at
gauge Kemmern (570 %fs, Table 4.5) instead of single flood events. The trainingnstudes all
discharges which are below this warning level and the reimgiones belong to the validation set.
Based on the training set MS inference systems are optimizeth&ir extrapolation behavior is
investigated based on the validation set.
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5.3 Mamdani inference system and Tukey depth function

Considering the Tukey depth data of the training and valaasiets are not mixed together but
analysed separately. The depth values of the training setadculated with respect to the target
variableQ(t + 48h) as before, but without considering the data of the valigesiet. Since the
data of the validation set virtually represent up to now wwkn extreme discharges, their Tukey
depth values are calculated with respect to the data of éinang set.

Based on the results of Chapter 5.2.4 and 5.3.2 the MS infer®rstem setups MS_6MF and
MS_T5 are considered together with argument combinatio& H4or the investigation of the

extrapolation ability. However, because the setups MS nd/MS_T8 have shown a certain sen-
sitivity with respect to the performed number of rules, thage also considered in the following.

The optimization restriction of 20 rule MS inference sysseseems not necessarily adequate any
longer because the point where overfitting occurs is not,dbest essential for this investigation.
Therefore, 46 inference systems (5 to 50 rules, continyansteasing by 1) are optimized con-
sidering MS_6MF and MS_T5 for H48 1. Since MS_T7 and MS_ EBidentical except for the
number of optimized rules and represent a modified setup of MSboth are summarized to
and named as MS_T5m in the following. As in case of MS_6MF ar®l Wb 46 MS inference
systems are optimized for setup MS_T5m.

Considering the fuzzification of the arguments and the respathe definitions of the different
membership functions are kept as in the investigationsrbefbhat means, that the membership
functions are not defined based on the new training set, bthh@mvhole database of 30 flood
events. Therefore, a certain extrapolation ability basethe membership functions is ensured.
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Figure 5.47: Development of the objective function least-squate® @nd the corresponding correlation
values of the training and validation sets considering the optimization setupsWfS(blue),
MS_T5 (black), and MS_T5m (red) for H48_1.

Figure 5.47 presents the development of the objective imd&tS and the corresponding corre-
lation values of the training and validation sets for theeéhconsidered optimization setups. All
LS curves show a similar shape and a continuous improvenfiémeé &1S inference systems with
increasing rule numbers. However, the correlation valdidéiseovalidation set do not confirm this
result. No clear development (improvement or degradai®apparent, but a certain sensitivity
with respect to the performed number of rules. Furthermuesatisfying optimization of at least
one MS inference system is achieved based on the correlatloas. Figure 5.48 and the figures
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in Appendix D confirm these result.
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Figure 5.48: Training (left) and validation (right) results considering the extrapolatidgraber of MS in-
ference systems H48 1 MS_T5 20 rules (top) and 40 rules (bottom; f&sization result;
marker color represents the corresponding log-scaled depth values).

However, looking in more detail at the data behind Figur&pDBt4, and D.5, it turns out that ex-
treme discharges with low depth values generally belongeartcreasing part of the hydrograph
and are more often better forecasted than those with higiindajpues which refer to the decreas-
ing part of the hydrograph. Furthermore, high (extremeglthsges considering the increasing
part of the hydrograph are more often better forecasted sathp MS_T5 than with the other
two. This fact verifies the result of Chapter 5.3.2, that with performance of Tukey depth as
argument extreme discharges (ten highest flood events)etter fiorecasted than with the other
setups. Therefore, it is assumed that a slight improvemietiteoextrapolation behavior can be
achieved with the performance of MS_T5 and a further spiitof the database. Thereby, only
discharges of the increasing part of the hydrograph shagilcbinsidered within the training and
validation sets. Nevertheless, all results demonstradithited extrapolation behavior of MS
inference systems which can be traced back to the genezpies of the Mamdani approach.

The results of this investigation show (1) the need for aaterxtrapolation ability of MS infer-
ence systems within the Upper Main basin (gauge Kemmerd)(3rthe limits of the performed
MS inference systems with respect to this requirement. Wi¢hgeneration of a new database
which includes unobserved, but possible (extreme) evénsproblem can be overcome and is
investigated in the following chapter.
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5.4 Performance comparison

5.4.1 Mamdani inference systems of observed and generated
database

As shown in Chapter 5.3.3 a MS forecast system within the Upfaen basin (gauge Kemmern)
requires a certain extrapolation ability. However, theragxblation behavior of MS inference
systems is limited. To overcome this problem the applicatiba generated database including
unobserved, but possible (extreme) flood events is inasiibin the following.

In this work the new database is generated by performing ydeological model WaSiM-ETH.
As presented in Chapter 5.1.3 (also Appendix B) 3500 possibted fevents are simulated,
whereby 2100 scenarios represent winter and 1400 summerdi@mts. Since the highest flood
events occur during wintertime within the Upper Main bagia training of the MS inference
systems is performed based on (1) only generated winter #gedts (in the following labeled
as w), (2) only generated summer flood events (s), and (3)ealéigated data (a). Thereby, it
can be investigated, whether MS inference systems, traingaire generated wintertime events,
perform a better forecast of the 30 observed winterly floaehev (Chapter 4) than those, trained
on the whole database. All three database are equally spiittiaining and validation sets so
that the amount of flood events considering the correspgrualiecipitation frequency is equal in
both.

For the fuzzification of the arguments observed and gereddta are considered. This is nec-
essary because the optimized MS inference systems, whictraaned and validated based on
only generated data, are further verified considering tiseed flood events. Figure 5.49 shows
exemplarily the defined membership functions for argumesionse dischard@(t) applied for
this investigation (left), and for the previous ones (r)ghwith the new fuzzification less mem-
bership functions describe the range of observed data af godhigher discharges occurs.
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Figure 5.49: Fuzzification of the argument/response dischd@pge for the generated (left) and historical
database (right).

Considering the results of Chapter 5.2.4 and Chapter 5.3.2&Hedr forecast should be per-
formed with one of both MS inference systems, MS_6MF or MS_tb6§ether with argument
combination H48 1 (Table 5.24) within the Upper Main baglauge Kemmern). Therefore,
both setups are considered for this investigation anddcdafor the generated database. Over-
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5 Model development for the Upper Main basin

all six different setups are investigated: H48 1s, H48 H¥8 1a together with MS_6MF and
MS_T5. Since the new database (H48_1a) includes around28 tinore data than the historical
one, the assumption that the point where overfitting ocaussaound 20 rules is not longer ade-
guate. Thus, 36 MS inference systems (5 to 40 rules, conislyancreasing by 1) are optimized
for each setup and database.

For the rating of the optimized MS inference systems caiimavalues as well as mean absolute
differences of peak heights (DPH) and times (DPT) of (1) elks, (2) 100, and (3) 50 highest
peaks are considered. The development of these quantiiegven in Appendix E. A further
rating criterion is the general ability to simulate all dafathe historical database. Table 5.26
summarizes the evaluation results for the best fitted MSenfee system for each investigated
setup.

FIS r |DPH | DPT | DPHoo | DPTi00 | DPHso | DPTgg
X O|X O| X O|X 0| X 0O0|x O

MS 6MF H48 1s 25rules095(22 204 6|13 10({4 4 |16 8|4 4
09521 16/5 514 8|5 4 |19 10|5 4

H48 1w 23rules 09417 18|9 7|18 9|5 4 |22 9|6 4

09|17 16,9 9|18 10/6 5 |23 9|6 5

H48 1a 37rules 09426 21|13 6|16 9 (4 4 |19 94 5

094|124 2004 7|16 104 5 |20 18/4 5

MS_T5 H48 1s 28rules095/21 206 5|14 8|5 5 |19 8|5 5
095|21 2006 5|16 8|6 5 |23 9|6 5

H48 1w 34rules 09517 18|7 8|16 9|5 4 |18 8|6 4

09517 18/8 8|16 9|7 4 |19 9|7 4

H48 1a 23rules 09321 174 4|15 10(5 5 |19 9|5 5

093|221 17/4 4|17 9|5 5 |21 10,5 5

Table 5.26:Evaluation results of the best fitted MS_6MF and MS_T5 (H48_1s, w, ajente systems for
the 48 hour forecast (r: correlation coefficient; DPH [%] and DPT #jsolute differences of
peak heights and timeggo / 50: considering the 100 / 50 highest peaksmean;o: standard
deviation; first training, second validation).

Comparing the correlation, DPH and DPT values, no signifipemtormance degradation be-
tween the training and validation set occurs. Furthermibie performance of the different best
fitted MS inference systems is of comparable quality. Thdiegon of the MS_T5 setup does
not necessarily result in a better simulation of the higpesk as it was the case in Chapter 5.3.2.
A reason for this is the regular shape of almost all generayeldographs with a very steep in-
creasing part (Figure 5.50). Therefore, a certain vaitgbif the data is missing considering
gauge Kemmern. Long drawn-out hydrographs, as they alaar @gthin the Upper Main basin,
are rare within the generated database. In terms of Tukey dieig means that many conditions
are marked as ordinary and as an argument, Tukey depth fadd¢ké background within the rule
systems. Examples of generated hydrographs and the pariceof the best fitted MS inference
systems are shown in Figure 5.50 for the validation set.

The transferability of the best fitted MS inference systesnested with the observed database.

Thereby, all 30 observed winterly flood events are consilehe Table 5.27 the resulting cor-
relation, DPH and DPT values are given. For comparison thelteefrom Chapter 5.2.4 and
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Figure 5.50: Examples for the performance of the inference systems MS_6MF and $S$148 1s /
H48 1l1a (summer events, left) and H48 1w/ H48 1la (winter events, dghsidering gen-
erated hydrographs of the validation set.

FIS r DPH DPT DPH;o | DPTig
X O| X O|X 0| X ©

MS 6MF H48 1s 25rules0.76| 100 68|12 16|67 38| 4 6
H48 1w 23ruleg 0.88| 22 15|16 12|26 15|11 5

H48 1a 37rules 0.76| 59 56|12 13|15 11| 6 7

MS_T5 H48 1s 28rules0.81| 63 66|12 12/30 25/ 8 7
H48 1w 34ruleg 0.77| 38 42|18 16|26 13|18 8

H48 1a 23rules 0.69| 43 52| 7 13|35 46| 5 6

MS 6MF H48 1  20rules096| 16 14| 9 11,10 5|8 9
091 23 16|11 9 (17 9|12 9

MS T5 H48 1  20rules0.96| 22 20| 8 10,10 7|6 7
091| 25 16|16 12| 9 9 |15 13

Table 5.27:Evaluation results for MS_6MF and MS_T5 (H48_1s, w, a; H48 1) exfee systems con-
sidering the simulation of 30 observed winterly flood events (r: correlat@fficient; DPH
[%] and DPT [h]: absolute differences of peak heights and timgsonsidering the ten high-
est flood eventsx: mean;og: standard deviation; last two MS setups: first training, second
validation).
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Figure 5.51: Examples for the simulation of historical flood events performing MS_6MF MSd T5
(H48_1s, w, a) inference systems.

Chapter 5.3.2 for training and validation are also listedhimithe table. Furthermore, Figure 5.51
shows two examples for the performance of these MS infergystems considering a high and a
small flood event.

The performance degradation of the MS_6MF and MS_T5 (H48wls®) inference systems
considering the 30 observed winterly flood events is sigamific None of the optimized systems
is able to simulate the observed hydrographs in a satisfyiang However, if only the peaks
of the highest flood events are considered both MS systeaisgtt on the winter and overall
database, are able to reproduce these peaks in a satisfgyng@Rigure 5.51, top, right). This
circumstance can be traced back to the properties of thergfedeand observed database as
well as the limited extrapolation behavior of MS inferengstems. Considering the generated
database the highest observed flood events (approxinté@ly) belong to the smallest ones and
is very rarely presented. Therefore, their influence onrdieinhg of the MS inference systems is
less significant and less rules are optimized for this diggheaange with the performed SA-MS
setup. That is the reason why the performance of the optd4®8 inference systems degrades
considering the simulation of observed flood events of smealirn periods.

Nevertheless, the MS inference systems only based on tleewvalobsand generated database, re-
spectively, complement each other. Therefore, the pedoom of these MS inference systems en-
sures a continuous forecast of flood events consideringraaties, usual and extreme. Thereby,
in case of ordinary flood events MS inference systems, whiekrained on the observed database,
should be performed for the 48 h forecast. However, as sotimeas MS inference systems in-
dicate an upcoming extreme flood event, the MS inferenceegystwhich are trained on the
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5.4 Performance comparison

generated database, should be additionally taken intauatéor the forecast.

In order to improve the forecast property of the presentedidfi§ence systems (H48_1s, w,a)
considering the simulation of observed flood event the geadrdatabase should be extended. As
described in Chapter 5.1.3, the generated precipitationtewae implemented within three spe-
cific time windows and two different preconditions. Therefahe trained MS inference systems
are less flexible if significant differences within the inmitthe systems occur (limited extrap-
olation behavior). However, a random implementation ofedént precipitation events within
the observed time series would increases the variabilitge@fjenerated flood events considering
shape, occurrence, and duration. Therefore, its is asstimetbr MS inference systems based
on a more variable generated database the performance fafréoast of observed flood events
will be improved.

As presented in Chapter 5.1.3, the generated precipitaiem® of one frequency differ in both,
time and space. However, only mean areal environmentalrfaare considered as arguments in
this work. Consequently, less information is provided toMte inference systems. Therefore, it
is assumed that a spatial distributed consideration ofnaegiis could improve the forecast ability
once more. First results presented by Disse et al. (2009iroothis assumption.

5.4.2 Mamdani inference systems and WaSiM-ETH

The 48 hour forecast performances of the classical rainfalbff model WaSiM-ETH (Chap-
ter 5.1) and the Mamdani inference systems are compareckifollowing at gauge Kemmern
considering observed flood events. Since the Mamdani inéergystems, which are trained on
the generated database (Chapter 5.4.1), fail for the olépad events, only the MS_6MF and
MS_T5 inference systems together with H48 1 (Chapter 522342) are taken into account for
the comparison.

Considering the 48 hour forecast with WaSiM-ETH the hydrpgraimulated for the calibration
and validation period is shifted forward by 48 hour. Thisesgible, because no real precipitation
forecasts are available for both modelling approachesfathirunoff model, fuzzy inference sys-
tem) and the observed data are taken as ideal forecastdindsds. Therefore, the comparability
of both modelling approaches is ensured. However, due tsimgsnput data for the hydrological
modelling with WaSiM-ETH only simulations from end of 1991 liegin of 2002 are considered.

Since no long time periods, but single flood events are simdlwith the MS inference systems
the comparison of the model performance considering theod8 forecast is investigated based
on 23 single flood events. Furthermore, as the calibratioaiding and validation time periods
are not identical, the overall performance is comparedsicening the correlation coefficient and
the mean absolute differences of peak heights DPH and tink8s (Dable 5.28). Figure 5.52
shows two examples for the 48 hour forecast of flood eventsWaSiM-ETH and MS inference
systems.

The performance of the different modelling approaches oafiparable quality considering the

goodness of fit values and the visual evaluations. Howedwehydrograph simulated by WaSiM-
ETH is smoother than that of the MS inference systems, inquéat, within the lower discharge
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5 Model development for the Upper Main basin

FIS r DPH DPT DPH;o | DPTyg

X O|X O| X Oo|X O
MS_6MF H48 1 20rule$0.94] 19 15| 9 10|13 8|8 7
MS T5 H48 1 20rules0.93|17 15|10 11(10 8|6 5
WaSiM-ETH 091|19 20|12 10, 9 7|8 5

Table 5.28:Evaluation results for MS_6MF and MS_T5 (H48_1) inference systemge#isas WaSiM-
ETH considering the simulation of 23 observed flood events (r: correlatefficient; DPH
[%] and DPT [h]: absolute differences of peak heights and timgs;considering the ten
highest flood events: mean;o: standard deviation).
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Figure 5.52: Examples for the simulation of observed flood events performing WaSiM;BM$ 6MF
and MS_T5 inference systems (H48_1).

range. Considering WaSiM-ETH each simulation step is base¢deprevious one, which results
in a smooth hydrograph. In contrast to this, the simulatee tsteps are independent form each
other with the chosen MS setups. Therefore, larger fluainatof the hydrograph from one to
another time step can occur.

The robustness of both modelling approaches is furthestigeged for the performance compar-
ison. Thereby, 100 turning band realisation of the measpredpitation are taken into account
for WaSiM-ETH (Chapter 4.2). These realisations do not difieerms of temporal, but spatial
distribution. Figure 5.53 shows the resulting simulatedrbgraphs. Considering the highest
peak in the figure discharges are simulated within the rargeden 541 and 718#s (observed
peak: 653 r/s).

Since only mean areal environmental factors are performgdnithe MS inference systems, no
spatial sensitivity can occur as for WaSiM-ETH. Therefdhes chosen setups of MS inference
systems are more robust considering the spatial varialiiten if the forecasted cumulated areal
precipitation is increased and decreased by 30 % of thesqoneling standard deviation the MS
inference systems respond less sensitive consideringghest peaks than WaSiM-ETH in case
of turning band simulations (Figure 5.54) in this case. Caeréng setup MS_6MF H48 1 the
highest peaks within the shown figure range between 563 ahd®8, in case of MS_T5 H48_1
between 638 and 6433s. Due to the interaction of single rules within the MS iefece sys-
tems and the defined membership functions an increase arebdef the forecasted cumulated
areal precipitation has no great impact on the MS inferemtpud considering the shown flood
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Figure 5.53: Turning band simulations with WaSiM-ETH.
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Figure 5.54: Fuzzy simulations considering a 30 % of the standard deviation increasedeaneased
forecasted cumulated areal precipitaion (left: MS_6MF; right: MS_THh:bd48 1).

FIS r DPH DPT DPHg | DPT1go
X O| X O] X X
MS 6MF H48 1 20rules | 0.94| 19 15| 9 10|13
+30%0 | 0.94| 22 18|10 10| 12
-30%0 | 0.93|18 12|14 12|16
MS T5 H48 1 20rules| 0.93| 17 15|10 11|10
+30%0 [ 09225 26|13 14| 9

-30%0 | 09323 26|12 13| 8

o O 0| | 00| oof| Q
H
ol ©
|_\
|_\

Table 5.29:Goodness of fit values for MS_6MF and MS_T5 (H48 1) considenirzgyf simulations with
a 30 % of the standard deviation increased and decreased forecastathtied mean areal
precipitation (r: correlation coefficient; DPH [%] and DPT [h]: absoluifedences of peak
heights and times;o: considering the ten highest flood eventsmean;o: standard devia-
tion).
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5 Model development for the Upper Main basin

event. The same holds for the other flood events. Table 5&8epts the overall performence
of the two MS inference systems considering the changeditomsland all 23 flood events. In

addition to the shown results, it should be investigatedhaivamount of forecasted cumulated
areal precipitation the MS inference systems own their so®ss. In this context, it should be
discussed to which amount of forecasted cumulated areeipttiagion a robustness of the MS
inference system is reasonable and adequate.

The performance comparison between the classical ramnfatff model WaSiM-ETH and the
Mamdani inference systems considering the 48 h forecasbod fevents can be summarized as
follows:

1.

120

The performance of both modelling approaches is of coatparquality considering
the 48 h forecast at gauge Kemmern.

In contrast to the hydrological model the presented Mé&rarice systems are less time
consuming and always applicable because no tracking of thadehhas to be per-
formed between single flood events. However, the hydrogsaphlated by WaSiM-
ETH is much more smoother than those of the MS inference mgséad corresponds
more to the notion of a user.

The developed MS inference systems are more robust th&IMAETH considering
the spatial distribution of precipitation in this case. Asen for this is the definition
of arguments as mean areal environmental factors. In addibi this, a certain uncer-
tainty of the input data can be attenuated through the fezti@in of the crisp input.
However, this robustness of the performed MS inferenceesysican be a drawback
e.g. considering alpine catchments. Furthermore, thestabss of the MS inference
systems with respect to the amount of forecasted cumula&ad precipitation is not
totally clear and requires further investigations.

Since mean areal arguments are performed as inputs theopessing for the MS

inference systems are less time consuming than for WaSiM-i&This case, because
all WaSIiM-ETH inputs have a spatial resolution of 1000 m x@0@. Furthermore,

less meteorological information has to be considered fediveloped MS inference
systems.



6 Expert System for flood forecasts

One goal of the multidisciplinary project HORIX has been tegalopment of a very fast and ro-
bust forecast system for extreme flood events which is aletalguantify uncertainties (Chap-
ter 1). Here, the notion of extreme floods includes the alreduberved flood events and, in
addition, extremes which have not occurred yet but may foigbaccur in the future due to pre-
cipitation and catchment properties. For this purpose bseved data base has to be extended
by simulated data as presented in Chapter 5.1.3. Howevsretik@rgement of data introduces
additional uncertainties beside those of the measured ddta model uncertainties occur due
to the model structures and the corresponding assumptiotiee chosen hydrological model
and have to be considered. Therefore, one important feafutee new forecast system is the
guantification of uncertainties coming from (1) precipaatpredictions and (2) model structure
separately and as an overall uncertainty. In addition, #ve forecast system should be easy to
handle and flexible with respect to modifications at indiadgauges. As shown in Chapter 5.2
fuzzy inference systems can be satisfactorily trained @wdlforecasts at individual gauges of a
river basin for each forecast time horizon separately. Tinedins that the amount of necessary
fuzzy inference systems increases linearly with the nurabeonsidered gauges of a river basin
and forecast time step. This results in an unmanageablerdgrabiwzzy inference systems for an
(operational) application. In order to overcome this peotand to provide the user a manageable
and fast forecast system including the quantification okutainties the prografxpertensystem
Hochwasser HORIX (ExpHo-HORIX; Pakosch, 2008; Pakosch et al., 2008a; Disak,&1009)
was developed within the framework of this thesis.

In the following first a brief overview of the properties oktlforecast system ExpHo-HORIX is
given and second an example of a program setup for the Upperbaain is described.

6.1 Principle concept of the forecast system
ExpHo-HORIX

The two most important properties of the forecast systemnHoxHORIX are (1) the ability to
account for uncertainties and (2) to provide the user a nealag, transparent and fast fore-
cast system which ensures an easy integration into anrexistivironment. Here, two kinds of
uncertainties are distinguished: (1) uncertainties cgnfiiam precipitation predictions and (2)
uncertainties which arise due to model structure if the Bake for the fuzzy inference systems
is extended by hydrological simulations. Within the HORDOject both kinds of uncertain-
ties were investigated in detail by two HORIX project parfmdliefernicht (2010, precipitation
uncertainties) and Grundmann (2009, model uncertainties)
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6 Expert System for flood forecasts

Consideration of precipitation uncertainties. Adequate areal precipitation prediction is an im-
portant issue in flood forecasting. Unfortunately, sucldmt@ns have a high uncertainty con-
cerning intensity and location especially during extrenoed| events which forces high uncer-
tainties regarding discharge forecasts. Bliefernicht.&08) developed a precipitation forecast
system for areal precipitation whose results can be peddras input. For a daily forecast the
analogue method is applied, whereas for the hourly predidioth the analogue and the turning
bands method are performed. During a flood event this ptetipn forecast system provides
a certain amount of different precipitation ensembles amharios. The resulting uncertainties
concerning the corresponding forecasted discharge digtistly quantified by default using the
ExpHo-HORIX program (e.g. mean forecasted disch&ygke

Consideration of model uncertainties. First it has to be emphasized that model uncertainties
only have to be taken into account if the database for thaitrgiand validation of the sin-
gle fuzzy inference systems is extended by hydrologicalktions. Grundmann (2009) shows
that model uncertainties can be investigated for indiMidiaaiges within an existing hydrologi-
cal model by using th&huffled Complex Evolution Metropo(SCEM) algorithm. He found a
functional relation between the mean forecasted dischewgeerning precipitatio®, and the
corresponding confidence intervals with respect to modeénainties (Equation 6.1). On this
basis he defined an overall forecast uncertainty (Equatidhiecluding both precipitation and
model uncertainties:

Qm,qzdmizcrit 'Sm:Q_piZcrit : (aQ—B> (6.1)
Qo,q = Qp,q+ Qmg— (50 = Qp,q+Qmqg— Q_p (6.2)

with  Q [m?/g mean forecasted discharge

p concerning precipitation

m concerning hydrological modelling

o] concerning overall uncertainty

q guantile of the corresponding confidence interval

Zerit guantile of the standard normal distribution
[m3/g  standard deviation

S
a,b gauge specific parameters (results from SCEM)

The two basic assumptions for these relations are (1) teaticertainty is normally distributed
and (2) that the mean forecasted discharge is equal fora# timcertaintieQp, = Qm = Qo. The
results of this study is implemented within the developeddast system ExpHo-HORIX and can
be activated for each gauge as soon as the required restiitsiofestigation (Grundmann, 2009)
are available.

Required preprocessing.The preprocessing step consists of the training and validaf fuzzy
inference systems for individual gauges of a river basiretarh forecast time horizon separately
(Chapter 5.2). If only observed data are used this preprmgesscludes, beside the classical
steps of modelling (data preparations, training/calibrgtvalidation), the investigation of ap-
propriate input variables (arguments). Thereby, the nurobarguments can differ in individ-
ual fuzzy inference systems due to catchment charactariatid chosen forecast time horizons.
Further, for each gauge and time resolution one of both fizierence systems, Mamdani or
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Takagi-Sugeno, can be chosen for integration in the proggapHo-HORIX. The training of
these fuzzy inference systems can be performed by applimgimulated Annealing method
(Chapter 3.3.2). If the database is enlarged through hygicdbsimulations like in the HORIX
project the data preparation step includes additiona#ygtneration of possible extreme precip-
itation events (Bliefernicht et al., 2008), the calibratigalidation and performance of a hydro-
logical model (Chapter 5.1), as well as an uncertainty amagmcerning the hydrological model
(Grundmann, 2009). The preprocessing of further individaaiges can be performed in parallel
to an already existing ExpHo-HORIX setup for a river basin tiuthe fact that individual fuzzy
inference systems are trained separately and bundlednwitteiprogram frame ExpHo-HORIX
afterwards. This is one main advantage in comparison teickashydrological models and the
PAI-OFF system (Cullmann, 2006).

Processing the program ExpHo-HORIX. After the preprocessing step all trained fuzzy infer-
ence systems are joined within the framework of ExpHo-HOR&}e&hding on their time resolu-
tion (daily, hourly). Figure 6.1 shows the general (opersi) scheme and Table 6.1 summarizes
the general properties of the program ExpHo-HORIX.

daily flood forecast: hourly flood forecast:
for 1 fo m gauges: for 1 o n gauges:
for 1 to p time horizons: for 1 to q time horizons:
yes
daily input of 1 to k scenarios —> one forc:,\cast ——> hourly input of 1 to | scenarios
‘ above warning level? ‘
FIS daily resolution P | FIS hourly resolution
A 4 ) ne no > > 4
= o YeS[ measurements at all gauges = o
G ¢ ; 2 [ <
below warning levels?
t t+Xd t  t+Xh

Figure 6.1: General scheme of the fuzzy rule based forecast system Expestimsiochwasser (ExpHo-
HORIX).

During normal flow conditions the discharge fored@ét+ At) is performed on a daily resolution
(Figure 6.1 left). With the help of the rating curves of theiuidual gauges the corresponding
water levelW(t + At) is calculated. This is necessary due to the fact that mostrasinative
decisions concerning the management of flood events arel lnmséorecasted water levels. If
the forecasted water level exceeds the corresponding foredevarning level threshold at least
at one gauge the forecast system switches to the finer, hmstfution and performs another
forecast. As soon as measured water levels at all gaugdsefall the predefined warning levels
the ExpHo-HORIX system switches back to daily resolutione Tker also has the possibility to
chose the forecast time resolution manually. Thus, it is pisssible to perform a daily forecast
during a flood event and an hourly forecast during normal flomditions.

In order to account for the uncertainties coming from thee¢asted precipitation fields a sta-
tistical analysis is performed for each gauge of the comsdiéorecast time horizon and time
resolution. For this, the discharge is forecasted sepgrfmeeach precipitation field (compare
Figure 6.1 input of scenarios). Afterwards a statisticallgsis is performed based on those fore-
casted discharges and different quantiles as well as the feeacasted discharge are given to
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6 Expert System for flood forecasts

The fuzzy based forecast system ExpHo-HORIX

- is independent of the system software and can be performéatal
and high performance computers.

- requires only one main configuration file in which all ne@egsnfor-
mation about the single fuzzy inference systems and thedenagion
of uncertainties are defined.

- can handle both fuzzy inference systems, Mamdani and Takag
Sugeno. Single fuzzy inference systems can be additiomalbye-
mented into, changed within or removed from a running ExpHo-
HORIX setup without affecting other fuzzy inference systems

- can perform discharge forecasts for at least 99 differeniggs for
both temporal resolutions, daily and hourly.

- can manage up to 24 single fuzzy inference systems comgethe
forecast time horizons for each gauge and temporal resalutiaily or
hourly.

- can process 3500 predicted precipitation scenarios fdr 8me res-
olution, gauge and forecast time horizon within a short cotaon
time.

- statistically quantifies uncertainties due to predicteztipitation sce-
narios by default.

- can quantify uncertainties due to model structures if ltesof the
SCEM analysis (Grundmann, 2009) are available.

- calculates the corresponding water lewdl& + At) of the forecasted
discharges with the help of the rating curves of the indigldyauges.

Table 6.1: General properties of the fuzzy based forecast system ExpHOEKIOR

the user for each gauge separately (compare Figure 6.1 dragthms). If necessary and avail-
able the uncertainty bands coming from the hydrological @vade calculated based on the mean
forecasted discharge as additional information.

All input and output files of the developed forecast systempHo«HORIX are ASCII standard
files. This ensures an easy integration into an alreadyiegishvironment. If no environment ex-
ists the MapServer could be used for the visualization ofdhecasted discharges and if available
of corresponding inundation areas (Disse et al., 2009).
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6.2 Setup for the Upper Main basin

6.2 Setup for the Upper Main basin

Based on the results of Chapter 5.2, 5.3, and 5.4.1 one ExpHeEKI®ystem is set up for the
three main gauges of the Upper Main basin (Figure 4.2): Ma® (1166 krf), Schwiirbitz (2419
km?), and Kemmern (4244 kfi. In this system only Mamdani inference systems are consitle
for the four forecast time horizons 3 days, 6, 12, and 48 hdtwsthermore, all fuzzy inference
systems for the 3 day flood forecast are trained and validzaedd on historical measured data
and the same MS setup (Chapter 5.2.2). This is also the casdl foizzy inference systems
of the hourly flood forecast (Chapter 5.2.3, 5.2.4). Theefonly precipitation uncertainties are
statistically quantified by default. No model uncertaigtis well as no overall uncertainty are sta-
tistically quantified in this system, since no MS inferengstem based on the generated database
is implemented. However, if these MS inference systemsheilimplemented, model uncertain-
ties as well as an overall uncertainty can be quantified asethdts of the SCEM analysis are
available (Grundmann and Schmitz, 2008, Table 6.2).

gauge | a b
Kemmern| 0.0909 0.6927

Schirbitz | 0.0947 0.6937
Mainleus | 0.0729 0.6963

Table 6.2: Parametera andb of the SCEM analyse (Grundmann and Schmitz, 2008) for the three main
gauges Kemmern (4244 K Schwiirbitz (2419 krf), and Mainleus (1166 k&),

Since no real precipitation forecasts were available withe framework of this thesis the num-
ber of precipitation scenarios is set to 30. Based on thos@@gdsts the uncertainty due to
precipitation inputs is quantified through the mean disgeanf all inputsQp, the minimalQmin
and maximalQmax forecasted discharge and the corresponding 2.5, 5, 95, abd® quantiles

On 25, On,s: Q95 @andQy 975.

Finally, it is planned to verify the performance of the ExpHORIX system in real applica-
tions by the Bavarian administration (Bayerischer Hochwassdhrichtendienst). An example
of a configuration file (ExpHo.config) for such an applicatisrshown below (Pakosch, 2008).
However, this configuration file has to be adapted to theiegignvironment in case of real ap-
plications.

ExpHo.config

1 (windows platform)

c:\UMain\ (working directory)
c:\UMain\gaugescurrentdischarge.tXfile including measured discharges)
2 (# gauges, daily forecast)

30 (# precipitation inputs)

Kemmern(1st gauge name, daily forecast)

151.0(warning levelm?/s])
c:\UMain\KemmernW_Q_relation.tx{file including W-Q-relation)
0 (no SCEM uncertainty)

1 (# forecast time horizons)

3 (forecast horizon 3 days)
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6 Expert System for flood forecasts

c:\UMain\Kemmern 3d_forecastMS.config(FIS configuration file 3 day forecast)
1 (Mamdani inference system)

1 (direct forecast of discharge)

1.0(no normalisation of data)

Schwirbitz(2nd gauge name, daily forecast)

138.0(warning level[m®/s))

c:\UMain\SchwuerbitxW_Q_relation.tx{(file including W-Q-relation)

0 (no SCEM uncertainty)

1 (# forecast time horizons)

3 (forecast horizon 3 days)
c:\UMain\Schwuerbitz3d_forecastMS.config(FIS config. file 3 day forecast)
1 (Mamdani inference system)

1 (direct forecast of discharge)

1.0(no normalisation of data)

1 (# gauges, hourly forecast)

30 (# precipitation inputs)

Kemmern(gauge name, hourly forecast)

151.0(warning level[m®/g))

c:\UMain\KemmernW_Q_relation.tx{file including W-Q-relation)

0 (no SCEM uncertainty)

3 (# forecast time horizons)

6 (forecast horizon 6 hours)

c:\UMain\Kemmern 6h_forecastMS.config(FIS config. file 6 hour forecast)
1 (Mamdani inference system)

1 (direct forecast of discharge)

1.0(no normalisation of data)

12 (forecast horizon 12 hours)

c:\UMain\Kemmern 12h_forecasMS.config(FIS config. file 12 hour forecast)
1 (Mamdani inference system)

1 (direct forecast of discharge)

1.0(no normalisation of data)

48 (forecast horizon 48 hours)

c:\UMain\Kemmern 48h_forecasfMS.config(FIS config. file 48 hour forecast)
1 (Mamdani inference system)

1 (direct forecast of discharge)

1.0(no normalisation of data)

Figure 6.2: Example of the ExpHo-HORIX main configuration file (comments are given witterparen-
theses).
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7 Summary and Outlook

People worldwide have to face flood events. In order to saeelgand, more important, lives
timely and reliable flood forecast systems are required.dBvelopment of such a flood warning
system based on fuzzy inference systems considering extfleod events within meso-scale
catchments and with return periods of 100 years and more isithin objective of this work. For
the setup of this flood forecast system three main researe$tigus, posed in the introduction,
are investigated and revisited in the following.

Can unobserved extreme flood events with return periods of IMyears or higher be
simulated by classical rainfall-runoff models? In particular, is it possible to reduce the
calibration time of those rainfall-runoff models by perfor ming optimization algorithm?

Records of (extreme) flood events, which cause high damageseldom, but essential for a
successful setup of a timely and reliable flood warning syste particular, considering extreme
flood events 1Q-100). Since only 30 flood events are hourly recorded within theéfdMain
basin between 1991 and 2004 and the highest one corresppad®turn period of around 20
years the extension of the database is absolutely necessary

Within the HORIX project the database is extended by simuhstiof possible flood events. For
this purpose, the hydrological model WaSiM-ETH is perfodmidowever, before the simulations
can be carried out, the hydrological model itself has to Bibreded and validated. Depending
on the experience of the user this process can be very timgioong. Furthermore, if the trial-

and-error method is applied the reproducibility of the fessis not always ensured. Therefore,
the performance of the Shuffled Complex Evolution optim@atlgorithm (SCE) is investigated
in this work. For this, both source codes of WaSiM-ETH and S&Ecaupled.

In a first step the General Sensitivity Analysis (GSA) afteadden (2000) is carried out for the
investigation of the parameter behavior of the WaSiM-ETHlei@and the corresponding param-
eter space. For this investigation three subcatchmenlsdiferent catchment sizes and charac-
teristics are chosen. Furthermore, response surfacegh(Si895) based on 5000 Monte Carlo
simulations are taken into account for the evaluation aw®rsig different objective functions.
Based on the results the WaSiM-ETH parameir@inage densitys indicated as a very sensitive
parameter independent of the considered objective fumciidierefore, it has a great impact on
the model results. Considering the two parameteesssion constant for direct runadindinter-
flowthe investigation verifies their behavior as they are defiBadh parameters have no impact
on the discharge volume (not sensitive), but on the shapeeofitodeled hydrograph (high sen-
sitive). However, for the three model parametersession constant for hydraulic conductivity,
recession constant for baseflpandscaling factor for baseflowo statements about their behav-
ior and impact on the model can be drawn based on the GSAse€idinsidering one objective
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7 Summary and Outlook

function their sensitivities range over all three defineals#erity classes. Furthermore, the GSA
results contradict the visual interpretations of the resposurface in some cases. In particular,
for these three model parameters a higher dimensionaltsétgsanalysis should be carried out,
but also for the other three, as the dimension of the invasdyparameter space is extremely
reduced with the applied projections of the GSA and respsaodgace approach. Since no clear
statements about the parameter sensitivities of all paeamean be derived it is not advisable to
reduce the parameter space for the SCE optimization algarith

Beside the definition of the parameter space for the WaSiM-pakhmeters the definition of
the six SCE parameters has a great impact on the optimizagidarmmance. Therefore, a spe-
cial SCE-WaSiM-ETH setup and optimization strategy is depedl for the Upper Main basin.
Thereby, the focus of the calibration lies primarily on thaod representation of flood events,
and secondly on the correct simulation of the entire flow spet Since WaSiM-ETH requires a
long initial phase of about 2 years in case of the Upper Masiride optimization process is per-
formed in an iterative way. Model grids considering solil store, etc. are generated in advance
to keep simulation times additionally low. However, a tirag bf further 2 months is chosen be-
fore the objective function is calculated to reduce tramsiscillation effects. The optimization is
then performed considering the initial model grids. Theult@sg parameters are compared with
the initial one. If the parameter values used for the modaé&lisation differ significantly, new
initial model grids are generated considering the resudlthe SCE optimization. Afterwards
a new optimization process is started considering the néwlimodel grids. These steps are
repeated until no significant differences between the par@nvalues occur. The performance
of this strategy and the adjusted SCE setup is compared véttiegfault and recommended SCE
setup considering the three subcatchments which are ats@iHor the GSA analysis. With the
special SCE-WaSiM-ETH setup optimization results of corapbe quality are found. Further-
more, the optimization results are satisfying and readen&towever, the adjusted optimization
process itself requires much less computation times andpoaer in comparison to the default
and recommended SCE setups and the classical calibratioagzoConsidering the calibration
of all subcatchments within the Upper Main basin the perémoe of the adjusted optimization
process verifies the results. However, only for three smakad catchments the optimization
results considering flood events are not adequate whicheamdinly traced back to the general
WaSiM-ETH model setup for the Upper Main basin.

For the simulation of extreme flood eventd@-190) extreme precipitation events considering
seven different frequencies (Bliefernicht et al., 2008)taken as model inputs. Considering each
season, wintertime and summertime, 100 realisations aitahle for each return period. In this
work, two initial WaSiM-ETH model grids considering dry amet conditions are generated for
both seasons separately. Since most of the high flood everitflaenced by snowmelt within the
Upper Main basin, a third initial condition ensuring a cari@mount of snow is generated for the
winter season. For the evaluation of the simulated extremoe #vents peak heights are compared
to those estimated with classical statistics, althougiedatiso contain certain uncertainties, in
particular, considering higher frequencies (Pakosch4208evertheless, the comparison shows
that (realistic) extreme flood events with return periodd@® years or more can be simulated
with the generated precipitation fields and calibrated dipdyical model WaSiM-ETH.

Can fuzzy inference systems ensure a reliable and continuedlood forecast for different
forecast time horizons? How simple and user-friendly are tlese systems?
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A reliable and continuous flood forecast warning system adade both, low and medium dis-
charge conditions as well as (extreme) flood events. Thexgiothis thesis the idea is developed
to perform the forecast for different time horizons (3 d&§,s12, and 48 hours) which have their
focus on different discharge conditions, but together enaucontinuous forecast. Thereby, the
focus of the 3 day forecast lies on the appropriate repragentof low and medium discharge
conditions as well as on reliable forecasts of trespassesdering a predefined threshold (warn-
ing level). A trespass of the warning level results in switghto the 6, 12, and 48 hour forecast
systems. Therefore, the forecast of the flood hydrograf its less important for the 3 day
forecast systems, but essential for the other three. Thay funference systems are trained and
validated for the three main gauges Kemmern (4244)k8chwiirbitz (2419 kif), and Mainleus
(1166 kn?).

Since no reference and generally accepted statements loedtdind in literature which clarify
the question whether one fuzzy inference system, MamdaS8i @1 Takagi-Sugeno (TS), is su-
perior, the performance of both is investigated considgalth forecast horizons and gauges in
this work. Furthermore, since single response fuzzy imesesystems are considered, one Mam-
dani or Takagi-Sugeno inference system has to be trainedaitthted for each time horizon.
Thereby, the training of the fuzzy inference systems isiedmut with the Simulated Annealing
(SA) optimization algorithm without any further restrimtis. The SA-MS / SA-TS setup is taken
from a previous study (Reyhani-Masouleh, 2008).

In contrast to the 3 day, 6 and 12 hour forecast time horiznoggeference could be found in
literature considering the 48 hour forecast. Furthermsiree the "'memories” of the catchments
have no great impact on the 48 hour forecast the setup of fimtegence systems for this time
horizon is a challenge. Therefore, it is investigated in endetail then the others within the
framework of this thesis.

For the 3 day forecast the performance comparison is castiedonsidering the direct forecast of
dischargeQ(t + 3d) and the forecast of discharge changé€Xt,t + 3d). For these investigations
all daily observed data (1984 - 2004) are taken into accdantontrast to this the database for
the 6, 12, and 48 hour forecast includes only hourly obseded of the 30 highest flood events
(1991 - 2004). Due to the results of the daily based foreaagttbe direct forecast of discharges
Q(t +6h), Q(t + 12h) andQ(t 4 48n) is investigated.

In case of the 3 day, 6 and 12 hour forecast the selection oh@gts is based on a previous
study (Bengelstorf, 2009) and further findings in literatu8ence simple and user-friendly fuzzy
inference systems have to be ensured the fuzzification crtiiements is performed with a pure
statistical approach. Thereby, only the minimal, maxiraall mean values of the corresponding
argument are considered. In order to find the best fitted fudeyence system a series of rule
systems is trained and validated for each fuzzy inferenstery(MS, TS), argument combination
and forecast time horizon. The performance comparisonrigedaout for the gauge Kemmern.
The transferability of the best fitted fuzzy inference systdor gauge Kemmern is investigated
considering the gauges Schwirbitz and Mainleus.

Comparing the daily forecast f(t + 3d) andAQ(t,t + 3d) and considering the well-timed fore-
cast of trespasses, failures of the MS and TS fuzzy infergystems mostly occur if the discharge
oscillates around the predefined warning level for a cettaia period. However, the forecast of
low and medium discharge conditions as well as the welldifiogecast of trespasses is less sat-
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isfying for the forecast oAQ(t,t + 3d). In this case far too large forecasted discharge changes
cause too often the forecast of negative discharges. Comgjdihe forecast of)(t +3d) no
negative discharges are forecasted.

The results of all three forecast time horizons (3 day, 6 &lddurs) show that the argumenntr-
rent observed discharge at the forecast gaage not be neglected in this work, since it contains
too much information about the current catchment condstidGturthermore, the SA-TS optimiza-
tion setup shows a certain sensitivity considering the remalb rules to be optimized and the
chosen argument combination. Although the SA-MS optinrasetup is also sensitive to a
certain degree with respect to the chosen argument comdnnatcase of the 6 and 12 hour fore-
cast, the MS optimization process can generally be easrérrpeed than the TS optimization.
The reasons for these sensitivities could not be totallgfid in this work. Nevertheless, no sig-
nificant performance differences between the two best fittezly inference systems considering
the discharge forecast are recognizable. The forecasts aoenparable quality. Considering the
transferability of the best fitted MS / TS inference systehesresults of the gauges Schwirbitz
and Mainleus verify those of gauge Kemmern: It is possibleebup simple and user-friendly
MS and TS inference systems considering the forecast timedms 3 days, 6 and 12 hours and
the main gauges within the Upper Main river.

For the 48 hour forecast time horizon a fuzzification androj#ation strategy is developed in
a first step for gauge Kemmern to ensure simple and usedfyidarecast systems as well as
low computation times. Thereby, the performance of botlzyunference systems are investi-
gated considering the direct forecast of dischaf@g@st 48h). As fuzzification methods the pure
statistical approach as well as the combination of thes$izai and equally-partitioning method
are compared. Furthermore, the optimization with no furtkstriction and in case of MS with
predefined, fixed responses are investigated. ConsidegntSisystems different argument com-
binations of the linear response functions are analysedthiéanvestigations a series of rule sys-
tems are trained and validated for each case. The resultstblad for the MS inference system
a reasonable fuzzification and optimization strategy caadoeed with which comparable fuzzy
inference systems can be trained without investigatingtaicenumber of rules. Therefore, low
computation times are ensured. Furthermore, the fuzadicapplying the combination of the
statistical and equally-partitioning method leads gelheta better results. Thus, it is performed
throughout all investigations considering the 48 hourdasg. Due to the already mentioned sen-
sitivities of the TS inference system no general optim@astrategy can be developed. Further
investigations performing this fuzzy inference system ragglected. Nevertheless, the perfor-
mance of the best fitted MS and TS inference systems for gaegeni€rn are of comparable
quality and ensure a satisfying 48 hour forecasp(f+ 48h).

Further investigations considering the 48 hour forecash WS inference systems show that
equally good forecast performance can be achieved comgyddifferent argument combinations.
However, in order to ensure user-friendly forecast systet@snference systems considering the
simplest argument combination should be performed. Furtbee, it is proven that the infor-
mation content of the argumentsirrent observed discharge at the forecast gaagd current
observed discharge at the upstream gaage essential for the 48 hour forecast within the Up-
per Main basin. The results also show that no general impnew of the forecast performance
of discharge is achieved if finer temporal discretized fastg of the argumemumulated areal
precipitationare considered.
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Although some modifications are required for the gauges 8dbitz and Mainleus the transfer-
ability of the results considering the best fitted MS infe®gystem of gauge Kemmern is veri-
fied: Itis possible to set up simple and user-friendly MS a8dnfference systems considering the
forecast time horizons 48 hours at the main gauges withituggger Main river. Considering the
optimization setup these systems only differ in the pergrfuzzification methods from those
of the three other forecast time horizons.

Further investigations show that an improvement of the ldgesl 48 hour forecast systems con-
sidering the ten highest flood peaks is achieved by perfaymirkey depth as argument. Further-
more, the limited extrapolation behavior of MS inferencsteyns is demonstrated and discussed
in conjunction with Tukey depth. Therefore, the developef Mference systems have to be
trained on a generated database in order to ensure the 48dnecast of extreme flood events
with a return period of 100 years and higher. Considering theetated database the developed
MS inference systems can be trained and validated withoptfather restrictions in a satis-
fying way and of comparable quality. However, the perforoenf these systems considering
the observed flood events is less satisfying. Only the obsgpeaks of the highest flood events
can be reproduced with those MS inference systems. Thisrstance can be traced back to
the properties of the generated and observed databaseeahnhited extrapolation behavior of
MS inference systems. The highest observed flood eventdzippately HQp) belongs to the
smallest ones within the generated database and is vely mesented. Nevertheless, the MS
inference systems which are trained only on the observedyandrated database, respectively,
complement each other. Therefore, the performance of thsénference systems ensures a
continuous forecast of flood events considering both rangeesl and extreme.

The comparison of the classical rainfall-runoff model WdStTH and the developed MS fore-
cast systems shows that flood forecasts of comparable yuoathtbe performed with both mod-
elling approaches. However, the MS inference systems are rabust considering both, the spa-
tial distribution and the estimated amount of forecastegipitation. Furthermore, these forecast
systems are less time consuming and always applicable somttacking of the model has to be
performed between single flood events. Therefore, reliabtecontinuous forecasts are ensured
with a simpler model setup.

Can a user-friendly and flexible warning system based on fuzzinference systems be
developed which considers precipitation and model unceriaties?

In this thesis the warning system ExpHo-HORIRxpertensystem Hochwasser - HORIXde-
veloped. The two most important properties of this warniygiesm are its abilities (1) to account
for uncertainties, and (2) to provide the user with a manklge&ransparent and fast forecast sys-
tem, which ensures an easy integration into an existing@mvient. Two kinds of uncertainties
are distinguished: precipitation forecast and model uaggres. The quantification of precipi-
tation uncertainties is performed by default and based erfidtecast of precipitation ensembles.
In contrast to this model uncertainties can only be quaditifi€l) fuzzy inference systems which
are trained on a generated database are implemented are$@&krof the SCEM analysis after
Grundmann (2009) are available for the rainfall-runoff mlogith which the database has been
generated. The warning system is very flexible since single/MS inference systems can be
additionally implemented into, changed within or remowveshf a running ExpHo-HORIX setup
without affecting other fuzzy inference systems. Furthenenit is very user-friendly as only

131



7 Summary and Outlook

one main configuration file is required in which all necessafgrmation about the single fuzzy
inference systems and the consideration of uncertainteedegfined.

Outlook

Within this thesis three main research questions consigéhie development of a fuzzy rule based
expert system for flood forecasts are investigated and arswElowever, based on the presented
results and developed methods new research objectives aris

With common sensitivity analysis the high dimensional pater space under investigation is
often tremendously reduced to one or two dimensions. Tasrebne new objective could be the
investigation of a multi-dimensional sensitivity anal/iased on Tukey depth. Since Bardossy
and Singh (2008) considered Tukey depth to find robust pasmectors for a hydrological
model the approach to apply this data depth for a multi-dsraral sensitivity analysis is reason-
able.

Considering the calibration of rainfall-runoff models ar tSCE optimization algorithm the
transferability of the developed iterative optimizatidnagegy has to be verified. Thereby, the
performance should be investigated for several catchnognisg different catchment properties.

Since most of the time recording points at gauges are ouidair@nd / or report wrong measure-
ments during high flood events the argumenigrent observed discharge at the forecast gauge
andcurrent observed discharge at the upstream gaaigeuncertain and error-prone. Therefore,
other approaches and argument combinations should beigatesl in which these arguments
are not included. Thereby, the idEaecast of discharge changsbkould be picked up again and
investigated in more detail than it is done in this work. Rarmore, the performance of spatial
distributed arguments instead of mean areal ones seemssprgnDisse et al. (2009) presented
one possible approach for the consideration of spatiafilbiged information. However, their
presented approach results in much more complex forecst&rsyg than those presented in this
work because the forecast at single gauges are based orcadiceain.

Based on the presented results it seems promising to perfakeyTdepth as an indicator and
additional tool for the quantification of the forecast qtyabf fuzzy inference systems. Thereby,
it has to be investigated in more detail if in general betbeecast qualities correspond to higher
Tukey depth values (ordinary conditions) and suboptimalitjas to low depth values (unusual
conditions).

Since the sensitivity behavior of the SA-TS optimizatioogass is not totally clarified further
investigations should be carried out, in particular, cdesng the performance of Tukey depth
as an argument as well as the generated database. In caatthetMS inference systems TS
systems own a certain extrapolation behavior due to theitiefirof linear response functions. In
this context it would be of interest to investigate whetlherperformance of TS inference systems
trained on the existing generated database is of compayahlity to the one of the MS inference
systems if the 48 hour forecast of observed flood events isidered.

Finally, as soon as real precipitation forecasts are @aildhe training of all best fitted fuzzy
inference systems should be repeated and their perfornciiec&ed.
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A Fuzzy arithmetic

A Fuzzy arithmetic

For a better understanding the four defined arithmetic apeséor fuzzy numbers (Chapter 3.1.2)
are applied on two fuzzy numbefsandB in the following. Thereby, leA andB be two fuzzy
numbers described through their triangular membershigtioms pa(x) and pg(x) (compare
Equation 3.13 and Figure 3.1b):

0 ifx<2 0 If x<2
X2 ifxe[2,6] x—2 ifxe[23]
X) = (2,6,8)1 =4 4 ’ X) = (2,3,4)1 = ’
IJA() ( » 9 )T 8%)( IfXE[G,S] IJB() ( » )T 4_x |fX€[3,4]
0 ifx>8 0 ifx>4

Before Equation 3.19 to Equation 3.22 can be appkgd(a), xa2(a), xg1(a), andxg2(a)
(Equation 3.13) have to be determined. Considering fuzzylbrau one get

a)—2 8—Xaz2(a
:% — Xp1(0) =4a+2 and az%() — Xa2(a) =8-2a,

for fuzzy numbeB

a=xg1(0)—2 — xg1(a)=0+2 and a=4—xg2(0) — Xg2(0) =4—a0.

Now, Equation 3.19 to Equation 3.22 can be calculated as:

A(+)B =[4a+2)+(a+2), (8-2a)+(4—a)] =[50+4, 12— 3a]

A(-)B =[(4a+2)—(4—a), (8—2a)—(a+2)] =I[5a-2,6—30q]

A()B  =[(4a+2)-(a+2), (8—2a)-(4—a)] = |[(4a%+ 100 +4), (2a%— 160 +32)]
A(/)B  =I[(4a+2)/(4—a), (8—2a)/(a+2)]

Finally following membership functions are obtained forZy addition, subtraction, multiplica-
tion, and division:

—A(+)B

0 ifx<4
o —(ao1z; |5 Txe9 : |
I"A(+)B — "9 T— 12:;)( |fXE[9,12] :
0 if x>12

16 20 24 28 32
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:2(—)8
0 ifx< -2
X+2 ;
< if xe[-2,3 g
B0 =(-236T=144 ’ :
0 ifx>6
é lé >(1‘6 20 2‘4 28 3‘2
0 ifx<4

VXS if x (4,18
UA(.)B(X) =(18,14,14) r = 8—\/‘&7 [ ]
By

u(x)

0.5f

if xe9,32
0 if x>32
S
-A
1r ' — B
—A()B
0 if x<05 !
4x—2 :
if xe[0.5,2] 2
Pa(X) = (2,152 r= < &5 . % o)
X+2X if xe [27 4]
0 ifx>4

8 12 16 20 24 28 32

Only the addition and subtraction of two triangular fuzzymhers result in one triangular fuzzy
number again, whereas for the multiplication and divisiétfuzzy numbers are obtained. Fur-
ther, the following fundamental differences between a@tand fuzzy arithmetic exist:

classical arithmetic (A/B)-B=A (A-B)+B=A (1)
fuzzy arithmetic  (A(/)B)(-)B#A (A(—)B)(+)B#A (.2)
This can be shown considering the given example above arsliffports ofA andB:

(A(/)B)()B = (054 ()[24 = [L16 # [28 = A
A+H)B)(-)B = 412 (-)[24 = [0,10 # [28 = A
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Figure B.1: Simulated minimum, maximum, and mean peak with corresponding standard deuwgtfon (
each considered return period of precipitation in summer (top) and wintedignidottom)
under wet (left), dry (right), and snowy (bottom) precondition at gakeymmern (4244 krf).
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C Fuzzy Modelling

IF oM | &lAPNM4d(| & [mT14d] &) P | &[Pit+1d) [ & [ P(t+2d) | &| P (t+3d) THEN Q(t+3d)
IF &| max [&| mean |& &| mean |&| mean |&| min THEN min
IF min | & &| max |[& & & & THEN min
IF min [ &| mean |& & & & & THEN min
IF min & &| mean |&| mean |& & & THEN min
IF min | & & & & & min |& THEN min
IF &| mean |&| max |& & & & THEN min
IF &| mean [& & max | & min |& & THEN min
IF &| mean [&| min |& &| min |&| mean |&| mean THEN min
IF & & & & &[ min |& THEN mean
IF mean | & & & &| min [&| mean |& THEN mean
IF &| mean |& & &| mean |&| mean |& THEN mean
IF mean | &| trocken | &| mean [&| min | &| mean |&| mean [&[| mean THEN mean
IF & &| mean |&| mean |&| mean |&| mean |&| mean THEN mean
IF mean [&| mean |&| mean [&| min |&| mean |&| mean [&| mean THEN mean
IF mean [&| mean |&| min |& & & &| min THEN mean
IF mean | & &| mean |&| mean |&| mean |&| max |& THEN mean
IF &| mean [&| max |& & & max |[& THEN mean
IF &| max |& &| max |& &| mean |[&| mean THEN mean
IF max |&| mean |[& & & & & THEN max
IF max | & & & &| max |& & THEN max
IF mean | & & & &| max |& &| max THEN rmax
IF max | & & &| max |[& & & THEN max
IF &| mean |&]| min & & &| max |& THEN max

Figure C.1: Linguistical description of the best fitted MS inference system considéhimglirect 3 day
forecast of discharg®(t +3d): D3_4, 23 rules.
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D Mamdani inference system and Tukey depth
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D Mamdani inference system and Tukey depth
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Appendix

E Mamdani inference systems of observed and
generated database

0.951
0.9F
c c
2 2
8 N =
IS S
S 0.85[] 8
——H48_1sT ——H48_1s T
—w—H48_1s V ——H48_1s V
0.8 —+—H48_1w T ] 0.8 ——H48_1w T ]
—»—H48_1w V —»—H48_1w V
——H48_1aT ——H48_1aT
—+—H48_laV —+—H48_laV
5 10 15 20 25 30 35 40 5 10 15 20 25 30
number of rules number of rules

Figure E.1: Development of the correlation values for MS_6MF and MS_T5 (H48wls) inference
systems (T: training, V: validation).
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Figure E.3: Development of the DPT values for MS_6MF and MS_T5 (H48_1s, w,feyémce systems
(top: all peak; centre / bottom: highest 100 / 50 peaks; T: training, Ndaton).
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