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Abstract

Tomorrow’s optical Earth observation satellites should be intelligent camera systems.
They should evaluate the content of an acquired satellite image scene automatically
and, in case of an emergency, autonomously change their acquisition mode. Then,
additional shots of the affected area can be made. To do this, large volumes of im-
agery have to be analysed on-board a satellite in a short period of time in which,
due to the limited resources on-board a spacecraft, the power consumption of the
processing unit has to be minimal. Furthermore, all algorithms on-board have to be
executed in a well-defined time span, i.e. they have to be capable of performing in
real-time.

In this PhD thesis a programmable hardware chip, a so called Field Programmable
Gate Array (FPGA) was used to perform the image processing. With this technol-
ogy, the posed requirements can be realised. In the process, the image processing
algorithms are specially customised to run on the chip in an optimal way.

The algorithms developed for anomaly and pattern recognition provide, especially
in case of a flooding event, useful information about the affected region. In a cap-
tured scene, water areas, islands, bridges over water and traffic on a bridge can be
recognised. High-resolution panchromatic Proba-1/ HRC satellite images, as well as
RapidEye imagery from the near-infrared, the blue and the red spectral region were
used as data sources. Additionally, RapidEye image data of the 2011 tsunami disaster
in Japan were included in the analyses.

In the course of this doctoral thesis, methods were developed that are well suited
for implementation on satellites due to their processing speed, real-time capability
and relevance in case of catastrophes. Furthermore, they advance the spectrum of
common on-board image analysis tools and demonstrate that high-level image pro-
cessing is a feasible task even on a small FPGA. The obtained results are promising
and provide a significant contribution to the aspired autonomy of future satellite
missions.





Kurzfassung

Die optischen Erdbeobachtungssatelliten von morgen sollen intelligente Kamerasys-
teme werden. Sie sollen selbstständig den Inhalt einer aufgenommenen Satellitenbild-
szene erfassen und im Krisenfall ihren Aufnahmemodus eigenständig wechseln. So
können zusätzliche Aufnahmen von dem betroffenen Gebiet gemacht werden. Dazu
müssen an Bord eines Satelliten große Mengen an Bilddaten in kurzer Zeit analysiert
werden, wobei aufgrund der begrenzten Ressourcen auf einem Raumfahrzeug der
Stromverbrauch der Prozessierungseinheit so gering wie möglich sein soll. Zusätzlich
sollen die Algorithmen an Bord in einer klar definierten Zeitspanne ablaufen, d.h. sie
sollen echtzeitfähig sein.

In der vorliegenden Dissertation wurde ein programmierbarer Hardwarechip, ein so-
genanntes Field Programmable Gate Array (FPGA), für die Bildprozessierung ver-
wendet. Mit dieser Technologie können die oben genannten Anforderungen umgesetzt
werden. Die Bildverarbeitungsalgorithmen werden dabei speziell angepasst, um op-
timal auf dem Chip zu funktionieren.

Die entwickelten Algorithmen zur Anomalie- und Mustererkennung liefern besonders
im Fall einer Flutkatastrophe nützliche Informationen über die beschädigte Region.
In einer aufgenommen Szene können Wasserflächen, Inseln, Brücken über Wasser und
Straßenverkehr auf einer Brücke erkannt werden. Die Datengrundlage bilden hoch-
aufgelöste panchromatische Proba-1/ HRC Satellitenbilder sowie RapidEye Aufnah-
men aus dem nahen Infrarot, dem blauen und dem roten Spektrum. Es wurden auch
RapidEye Bilddaten der Tsunami Flutkatastrophe von 2011 in Japan in die Analysen
mit einbezogen.

Im Rahmen dieser Doktorarbeit wurden Methoden entwickelt die aufgrund ihrer
Geschwindigkeit, Echtzeitfähigkeit und Relevanz im Katastrophenfall für einen Ein-
satz an Bord von Satelliten bestens geeignet sind. Darüber hinaus erweitern Sie
das Spektrum von bisherigen Bildanalysen an Bord und zeigen, dass auch höhere
Bildverarbeitung auf einem kleinen FPGA möglich ist. Die erzielten Ergebnisse sind
dabei vielversprechend und leisten einen signifikanten Beitrag zur angestrebten Eigen-
ständigkeit von künftigen Satellitenmissionen.
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Chapter 1

Introduction

1.1 Background

It is more than five decades since the first Earth Observation (EO) satellites were
inserted into orbit. The image acquisition chain on-board an EO satellite, however,
follows even nowadays a rather strict concept. The acquisition date is scheduled on
ground and uplinked to the satellite when it comes into view of one of its ground
stations. The satellite executes the tasks according to the timeline. Later, the cap-
tured images are handled according to the ‘store-and-forward’ scheme (Yuhaniz and
Vladimirova, 2009), i.e. the image data are stored in the on-board mass memory and
downlinked to the ground stations afterwards. These steps are executed without re-
gard to the actual image information content. Only when the imagery is analysed on
ground can its true value be identified.
A smarter and more time-efficient approach would be to evaluate the captured satel-
lite image data directly on-board. This would not substitute a detailed analysis on
ground, but would provide some brief initial information. Corrupted or unusable data
could be erased to free valuable memory space (Dawood et al., 2002b). A content re-
lated, selective image compression could be used to manage downlink capacities more
efficiently (Camarero et al., 2010). And, in case of detected changes, the observation
timeline could be rearranged to acquire additional images of the scene (Chien et al.,
2003). The supplementary information would support the work of crisis information
centres, as in the framework of the International Charter Space and Major Disasters.
The charter is an association of 15 space agencies worldwide, to provide a fast and
non-bureaucratic aid in case of natural disasters and serious technical breakdowns.
In such an event, all available satellite image data are gathered and made available
to the involved emergency services and governments (Mittelbach, 2013).
There are past and current satellite missions that demonstrate on-board image pro-
cessing capabilities already. Some of the missions will be reviewed later. But, the
main information extraction or change detection scenarios there covered variations
in the occurrence of water areas, fires and clouds. This information is important
and presents a basis. In this study, however, some more sophisticated patterns and
anomalies were considered, to acquire more useful and desirable information from an
image.
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Figure 1.1: diagram of the described data and information flow.

According to an article about the work of the Crisis Information Center (ZKI) at the
German Aerospace Center (DLR), reasonable information is:

’Which roads and bridges are still passable? How many houses or residential
estates have been damaged? Which parts of a river bank need additional flood
protection? ‘ (Danzeglocke, 2013)

So, in case of a flooding, an island detection method can be used to find rooftops
where people are waiting for rescue. And a bridge over water recognition can provide
information about potential transportation routes. Moreover, moving vehicles are an
anomaly in an otherwise static image. Their detection on a recognised bridge gives
further evidence on the accessibility of the bridge.
Almost 10 years ago, Zhou et al. (2004) wrote about future intelligent Earth obser-
vation satellites: ‘...higher-level intelligent image processing like...change detection,
image interpretation, pattern recognition...will need several generations of develop-
ment. It has been demonstrated that full automation of image analysis and image
interpretation is quite difficult...’. So, in addition to unfolding new image processing
capabilities for future satellite missions, the methods that will be presented in this
thesis shall also demonstrate that high-level image analysis on-board a satellite has
become a feasible task.

A basic structure and processing cycle of such an on-board system is visualised in
figure 1.1. Optical satellite imagery is captured by the Sensor and stored in the Mass
Memory. A copy of the data is routed through to the Image Processing Unit, where
the information content is estimated. The box is highlighted in light green, because
the present work focuses on this specific part. The extracted information, e.g. in form
of a thematic map, is then passed forward to the Planning Unit. With regard to the
status of the satellite, e.g. the available power and memory space, the Planning Unit
could create a new timeline. The newly generated tasks, such as the arrangement
of a second data-take or tagging an image with a higher downlink priority, could be
realised immediately.
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1.2. Real-time and On-board Requirements

In order to afford an instant second data-take, e.g. with a backward-pointing camera
(see the ALOS-3 mission (Suzuki et al., 2012)), the image data have to be evaluated
in a specific (small) time span, i.e. the process has to be real-time. A proper defini-
tion, and the challenges that arise with this requirement, will be discussed in the next
section. On-board a satellite, it means large volumes of data have to be processed
in a very short time, while the power consumption of the processing hardware shall
be minimal. To tackle this discrepancy, the present study follows the approach of
using Field Programmable Gate Arrays (FPGAs) as processing hardware. Thus, the
present work is also a demonstration of the capabilities of FPGAs with regard to
future space applications.

Altogether, the desired satellite’s autonomy with regard to automatic image pro-
cessing, a flexible and situational image acquisition and thus optimised on-board
data handling, supports mission operations as well as crisis information centres, and
greatly raises the benefits of the satellite mission.

1.2 Real-time and On-board Requirements
In the previous section, a proposition was made to evaluate captured satellite image
data directly after the acquisition, thus enabling an immediate second data-take. For
this purpose, image data processing has to be executed in real-time.
In common language, the term real-time processing is often used in the sense of a very
fast performance but, actually, the real-time requirement for a computer program is
something different. According to the definition and examples of Scholz (2005):

’A real-time system is a system that has to establish a correct reaction in a
well defined period of time.‘

So, besides the correctness of the outcome, also the point in time when the result
is available is of considerable interest. A true result too late is also a failure. Re-
garding the consequences of a failure, two different classes of real-time systems are
distinguished, hard real-time systems and soft real-time systems:

• For a hard real-time system, an exact run-time can be determined, i.e. it
is known beforehand at which time the process will terminate and a result is
available. Many security related applications, e.g. the flight control system
of an aeroplane, are liable to a hard real-time criteria. A violation of this
requirement has a serious impact on the whole system.

• In a soft real-time system, a program has to be finished in an averaged period
of time. A violation of certain deadlines is tolerable and does not have grave
effects. An example is a certain frame-rate of a video multi-media system that
cannot be held. The outcome would be a flickering image, that is a tolerable
flaw.

For the aforementioned purpose of an image evaluation between two data takes, a
hard real-time criteria would be appropriate. It has to be known in advance whether
such an analysis in that time span is practical or not. However, the run-time of

3



Chapter 1. Introduction

programs performing high-level image analysis tasks often depends on the actual
image content, so a hard real-time criteria cannot be fulfilled unless a worst case
is assumed that can be met every time. At times, a worst case scenario cannot be
given or processing times are far from being realistic. On the other hand, if the
deadline is not met, it would mean missing a second data-take. An omission of a
second image acquisition would not be a crucial factor for the whole satellite mission,
thus it is tolerable. So the real-time requirement can be relaxed to a soft real-time
requirement, which means that the image processing has to be done within a certain
time-span.
In order to execute a routine in real-time, at least two approaches are practical.
Firstly, a real-time operating system can be used. It can be run, e.g. on a micro-
processor, and ensures the completion of programs in real-time. However, in low
complex systems, they are avoided due to their necessary additional hardware and
no gain in efficiency (Scholz, 2005).
The second approach is a direct implementation of algorithms into hardware. In this
case, no operating system is necessary (Ley et al., 2011), it is a dedicated piece of
hardware for a special purpose. There are at least two potential hardware devices:
Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays
(FPGAs).
ASICs have a lower power consumption, can be smaller and have a higher radiation
tolerance than FPGAs, which are important factors for a space application, but
they can be configured only once. This is a shortcoming for this study, since the
development and testing of algorithms requires an adjustable system, thus an ASIC is
not appropriate here. However, the final hardware realisation might be implemented
as an ASIC as well.
In contrast to ASICs, FPGAs can be reconfigured many times directly by a user.
So, with regard to an extensive testing and restructuring of algorithms during the
development phase, they seem to be the better choice. FPGA power consumption
depends on the application and has to be estimated (Hauck and DeHon, 2007). All
in all, in this thesis FPGAs are employed as real-time capable processing hardware.
To strengthen this course even more, two relevant satellite missions will be presented
below.

1.3 Review of Relevant Satellite Missions
In the last decade, there have been several missions having the scientific goal to
advance autonomous image processing on-board satellites. The EO-1 mission, oper-
ated by the National Aeronautics and Space Administration (NASA), was launched in
November 2000 and performed a broad number of on-board science analyses (Chien
et al., 2003). Among other things, they conducted an automated flood detection
(Ip et al., 2006). The Australian FedSat mission launched in December 2002 with
the task to perform on-board image processing. As a start, they implemented two
standard filter operations on an FPGA (Dawood et al., 2002a). A third example is
the autonomous classification of acquired satellite image data on-board the German
BIRD satellite (Halle et al., 2002).

4



1.3. Review of Relevant Satellite Missions

In the following text, a more recent satellite mission will be presented in detail,
since it has some relevant aspects for the current study carried out in this thesis.
Afterwards, an overview will be given on a proposed future satellite mission, the
ALOS-3 mission.

1.3.1 The X-Sat Mission

Launched in 2011, X-Sat is a micro-satellite mission operated by the Centre for Re-
search in Satellite Technologies (CREST), Singapore. The main payload of the satel-
lite is a multi-spectral camera with spectral bands in the visible and near-infrared
region. It captures images of the Earth at a spatial resolution of 10m.
Besides Earth observation, another mission goal is the analysis of captured image data
directly on-board. Therefore, a so-called Parallel Processing Unit (PPU) was estab-
lished. The core of this processing unit consists of two FPGAs and 20 StrongARM
microprocessors (PNx). A block-diagram is shown in figure 1.2. During operations,
the incoming workload is subdivided to the FPGAs and to the micro-processors.
The FPGAs have to ‘...provide a flexible network topology among the PNs...’ and
take over ‘...additional processing capabilities for real-time tasks’. The coupled micro-
processors perform ‘...an unsupervised ground cover classification to extract thematic
maps...[and an] autonomous detection of haze due to fires’. To achieve this, a paral-
lel alignment of micro-processors is chosen due to the ‘...similarity to contemporary
multi-processor and cluster systems for ground-based computation of remotely sensed
data’. The diagram, as well as the citations, are taken from the report of Bretschnei-
der et al. (2004).
Due to the desired similarity to ground-based processing architectures, the whole set-
up consists of at least 22 hardware devices and has a power consumption of 15−22W
(X-Sat, 2013). In space, however, a smaller set-up would be favourable. For this rea-
son, the study presented in this thesis will also show that high-level image analysis
tasks can be implemented on an FPGA, so that a future image processing unit might
consist of a single FPGA, only.

1.3.2 The ALOS-3 Mission

The Advanced Land Observing Satellite-3 (ALOS-3) is an optical satellite mission
initiated by the Japan Aerospace Exploration Agency (JAXA). It is a successor of
the ALOS mission that ended in 2011, after a power generation anomaly. One of the
main mission goals of ALOS-3 is disaster monitoring of certain areas.
The satellite carries the Panchromatic Remote-sensing Instrument for Stereo Mapping-
2 (PRISM-2). This sensor comprises two telescopes with a Ground Sample Distance
(GSD) of 0.8m at nadir and 1.25m backward looking (at nadir footprint) in order
to acquire detailed images for a precise damage assessment. In addition, due to the
stereoscopic image acquisition capability, Digital Surface Models (DSMs) can be de-
veloped. See figure 1.3.
Up to now, it is neither known whether an on-board image evaluation is intended
for the mission, nor which is the potential image processing hardware in question.

5



Chapter 1. Introduction

Figure 1.2: block-diagram of the Parallel Processing Unit on-board the X-Sat satellite.

Nevertheless, the proposed sensor system suggests two possible scenarios which could
benefit from an on-board image evaluation:

1. The nadir-pointing camera acquires an image that is immediately evaluated by
the on-board image processing unit. If severe changes are discovered, the plan-
ning unit could arrange a second data-take with the backward-looking camera.
In this case the timing constraints are very important.

2. A slightly less exacting scenario could be that at every data-take an image is
collected from each camera. Afterwards, both images are analysed. If no acute
changes occurred, at least one image can be erased from the mass memory to
gain free memory space and save downlink capacities.

These ideas shall underline the practical aspects of an on-board image evaluation.
Similar concepts for small satellites in general were also proposed by McLoughlin
and Bretschneider (2010). So far, the launch of ALOS-3 is scheduled for 2015.

1.4 Scope and Scientific Results of this Thesis
This thesis demonstrates and evaluates new image processing capabilities, algorithms,
as well as hardware implementations, dedicated for an application on future satellite
missions. Reasonable pattern and anomaly detection tasks were selected that enhance
current on-board image evaluation abilities and yield additional useful information.
Several novel algorithms, partly based on already existing methods, were developed
to detect water areas, islands, bridges over water, and moving vehicles in satellite

6



1.4. Scope and Scientific Results of this Thesis

Figure 1.3: view of the image collection concept of PRISM-2 (image credit: JAXA).
The image shows the stereo observation concept for a two-line push-broom strip-map
imaging. The information and the image are taken from ALOS-3 (2013).

imagery. Most of these algorithms refer to high-level image analysis tasks and a
hardware implementation is challenging. So, besides the novelty of the algorithms,
also their implementation in a small FPGA presents a new engineering achievement.

The scientific results of this thesis are summarised as follows.

1. A simplified method to derive a water mask from panchromatic or near-infrared
satellite image data. The algorithm avoids sophisticated calculations, thus it
is well suited for hardware implementation. The obtained results are in good
accordance with a ground truth mask and data from literature.

2. An efficient method to recognise bridges over water. The outcome is a map
with located bridge center points. This approach needs little computational
resources and is very fast. Overall, the accuracy is comparable to literature
data.

3. A method to detect islands in a binary water mask. In principle, it follows a
standard technique called hole/ blob detection, with some optimisations. The
results improve the second bridge recognition and allow a more detailed analysis
of the site.

4. A second bridge recognition method. The procedure is completely different to
the first method and the outcome is a labelling of the whole bridge deck area.
With this, additional analyses of the site are possible.

5. A small time-lag in the data acquisition procedure of RapidEye (RE) satellite
image data permits the detection of moving objects. After a literature review,
it seems that in this study the effect is used for the first time on RE imagery in
order to get velocity information. In combination with the results of the second
bridge recognition method, moving vehicles on a bridge can be detected. Hence,

7



Chapter 1. Introduction

additional information on the accessibility of a bridge can be provided. For this,
a new algorithm was developed.

6. Each of the proposed methods fits into a small FPGA. That means, the algo-
rithms are optimised program code to meet the constraints of computational
time and resource consumption.

The methods and results of the Water Body Extraction and the First Bridge Recog-
nition Method were presented at scientific congresses and are published in Beulig
et al. (2012a) and Beulig et al. (2012b). In addition, a publication in a peer-reviewed
journal is in progress. The Second Bridge Recognition Method was presented at an
international conference and is published in Beulig et al. (2013).

1.5 Structure of this Thesis
The thesis is organised into four chapters. In the present introductory chapter, an
overview and some background aspects about the thesis are given. The remaining
three chapters can be summarised as follows.

Chapter 2: Review of Satellite Imagery and Hardware Set-up

This chapter represents the traditional ‘Material and Methods’ part of the thesis. In
the beginning, the applied satellite imagery is introduced with an overview about
the sensor systems and the presentation of an arranged data set that will be used in
the experiments later on. Then, the processing hardware, the FPGA, is explained in
more detail, so that the reader will be familiar with certain benefits and challenges
that will influence the algorithm design. Finally, the current experimental set-up is
displayed and explained.

Chapter 3: New Algorithms for Image Analysis On-board Satellites

This chapter is the main part of the thesis. The key findings, five different algorithms
for an image analysis on-board satellites, are described and discussed in full detail.
The chapter starts with an overview of the algorithms, then each method is presented
in a separate section. The sections start with an introduction and a literature review,
followed by description of the algorithm. Then, the obtained results are presented.
In the end, each section concludes with a discussion and a summary.

Chapter 4: Findings and Prospects

In the final chapter of this thesis, the conducted work is summarised and the chapter
concludes with an outlook towards future applications and potential areas of research.

Appendix A: Satellite Imagery Details

Additional information, such as the locations, coordinates and dates of acquisition of
the applied satellite imagery, are listed in the appendix. In this study, a total of 60
scenes were analysed.
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Chapter 2

Review of Satellite Imagery and
Hardware Set-up

2.1 Outline

The spatial resolution of satellite imagery has a significant impact on the potential
patterns or anomalies that can be recognised in an image. In principle, the higher the
spatial resolution, the higher the probability that smaller objects can be found and
larger objects appear more precise. However, optical sensor systems with a very high
spatial resolution of 1m or less pose a demanding requirement, especially for very
small satellites, since the sensor set-up is larger and more complex. Many man-made
objects, like bridges over water, are often clearly visible at a spatial resolution of 5m,
already. So, in order to relax the specifications for an optical system, this resolution
was chosen and the respective satellite imagery was employed in the current study.
In chapter 1, the ALOS-3 mission was presented as a potential optical system that
could benefit from an on-board image evaluation. The stereo-imaging system com-
prises two panchromatic (PAN) cameras. With regard to this example system, PAN
imagery is primarily used in this study. In addition, near-infrared (NIR) imagery is
applied as well, since the reflectance values of water are very low in this spectral range
(Liu et al., 2010), so that an enhanced separation between water and non-water areas
is expected. To exploit the aforementioned time-lag in RapidEye imagery, red band
(RED) and blue band (BLUE) RE image data are analysed in this study too. The
colors have no actual meaning. The reason for choosing these bands is that the time
gap is at a maximum between those two bands. The satellite/ sensor systems that
provide these data will be presented in the next section, followed by a presentation
of an arranged set of images that will be used in the experiments.
The favoured processing hardware was already introduced in chapter 1. In section
2.3, FPGAs are presented in more detail. Basic facts are given, a programming lan-
guage is introduced, and some strategies for an optimised FPGA implementation are
considered.
The chapter concludes with a description of the development process. The necessity
of a software pre-development is discussed, an FPGA development board is presented
and the work flow is illustrated, from algorithm coding up to resulting images.
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2.2 Satellite Image Data

2.2.1 Proba-1/ HRC Data
The PRoject for On-Board Autonomy-1 (PROBA-1) is a mini-satellite of the Euro-
pean Space Agency (ESA), launched in 2001. The main purpose is ’...demonstrating
the opportunities and benefits of on-board autonomy.‘ (Bermyn, 2000). So, the overall
ambition is similar to the current work, however, PROBA-1 does not include any
high-level image evaluation. One optical sensor payload on-board PROBA-1 is the
High Resolution Camera (HRC). It captures panchromatic images of the Earth’s sur-
face with a spatial resolution of 5m. Each image has a dimension of 1026 × 1026
pixels, where each pixel is stored as an 8 bit grey scale value, i.e. with a value be-
tween 0 and 255 (PROBA-1, 2013). The main data characteristics are listed in table
2.1.
These satellite image data are the basis for the conducted experiments on PAN im-
agery. After an application for HRC images at ESA, free access to a database was
granted. A set of images depicting bridges over water was selected. At this point,
the author would like to thank ESA for providing the data.

2.2.2 RapidEye Data
RapidEye is a commercial Earth observation system comprising five identical small
satellites. The satellite constellation was launched in 2008 and has an aspired live
time of at least seven years. Each of the satellites is equipped with a 5-band multi-
spectral imager. The spectral bands are RED, GREEN, BLUE, Red Edge and NIR.
In this study, the NIR, RED and BLUE data are used. The data product is Level
3A, i.e. several pre-processing operations, such as sensor corrections, etc., were ap-
plied to the data in advance. For a detailed description, the reader is referred to
RapidEye (2012). The RE imagery was delivered as large images, so called tiles, with
a dimension of 5000 × 5000 pixels, and with a bit depth of 16 bit. The main data
characteristics are listed in table 2.1.
In order to obtain RE data, an application was sent to the RapidEye Science Archive
(RESA). According to the standard contract for educational purposes, 11 scenes
were granted. The author thanks the German Aerospace Center (DLR), RESA and
RapidEye for providing the data.

HRC RE

Spectral bands PAN NIR, RED, BLUE
Spatial resolution 5m 5m

Image size (pixel) 1026 × 1026 5000 × 5000
Bit depth 8 bit 16 bit

Table 2.1: basic specifications of the applied satellite image data.
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2.2.3 Data Set
The list of data specifications presented in table 2.1 reveals significant differences
between HRC and RE imagery with regard to image size and bit depth. In the ex-
periments, however, a consistent data processing flow is desired. So, a uniform image
size was chosen and the bit depth of all images is (reduced to) 8 bits. To gain some
benefits in the later hardware implementation, the size of an image template was set
to 1024×1024 pixels. But, in order to avoid errors while scanning the neighbourhood
of pixels at the image boundary and to visualise the effective regarded image region,
the outer pixels were coloured (in a neutral) white. As a result, the absolute satellite
image size is 900 × 900 pixels. These preparations were carried out with the image
manipulation software GIMP version 2.6.11 (GIMP, 2013).
In the beginning, a few satellite images were selected for the sole purpose of algorithm
development. Later, a data set consisting of 20 HRC and 20 RE scenes was arranged
to carry out a statistical assessment of the pattern recognition algorithms. An addi-
tional 20 RE scenes, that in eight cases depict the same locations as the first RE set,
were selected to test the anomaly detection algorithm. All in all, the selections show
a wide variety of different imaging conditions and scenarios. There are images show-
ing rivers and lakes with bridges of all different sizes. The atmospheric, illumination
and water conditions vary significantly. And the surroundings were rural and urban
areas. Even images from a tsunami disaster were included in the study. The varied
mixture is to test and reflect the robustness of the methods.
All data take locations are depicted in figure 2.1. Some regions are covered by HRC
(green triangles) or RE (red circles) imagery solely, other regions are captured by
both satellite systems (blue squares). A complete list, containing the coordinates
and the acquisition dates of all scenes, is given in the appendix.

2.3 Field Programmable Gate Arrays (FPGAs)

2.3.1 Introduction
The first FPGAs were manufactured in the 1980s. Their introduction was somehow
revolutionary since they combine the high-performance of ASICs, e.g. in matters of
power consumption, with the flexibility of microprocessors (Hauck and DeHon, 2007).
In recent years, an increasing effort was put into porting software image analysis al-
gorithms on to FPGAs. The two main reasons are to enable a real-time system or to
reduce the size and power consumption of the processing unit (Bailey and Johnston,
2010). Both arguments also hold for the pursued real-time image evaluation on-board
satellites. Thus, the choice for an FPGA seems reasonable.
But hardware programming is different from software programming, since the algo-
rithm design is strongly influenced by the employed chip and the connected peripheral
devices (Hauck and DeHon, 2007). So, in the beginning of this section, the struc-
ture of an FPGA and some general aspects will be given. Then, a ’C-like’ hardware
description language, called Handle-C, is presented. This language allows a rapid de-
velopment of hardware configurations without expertise in the underlying hardware
(Alston and Madahar, 2002), a key factor in developing hardware programming in
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Figure 2.1: map illustrating the locations of the HRC scenes (green triangles), the
RE scenes (red circles), and scenes taken by both sensors (blue squares).

general. Finally, the section concludes with a review of common strategies to transfer
software code on to hardware in an optimal way.

2.3.2 Fundamentals
The general internal structure of an arbitrary FPGA consists of an array of Logic
Blocks and Interconnections. These Logic Blocks are the basic elements of an FPGA.
They consist of a Look-Up Table (LUT) and a Flip-Flop (FF). Several Logic Blocks
compose a Slice, in which the number of Logic Blocks varies between different FPGA
types. The larger or more complex an algorithm, the more Slices are necessary, and
the larger a hardware implementation.
The intermediate Routing Structure shuffles signals between different Logic Blocks
and additional units, e.g. Input-Output-Blocks which connect the FPGA to the
’outside world‘. To this end, it is essential that every signal reaches its destination in
one clock cycle. If the path is too long, e.g. due to a complex algorithmic structure,
errors will arise and the whole implementation will not run properly. This is a crucial
difference to a software program. As a result, there is a maximum clock frequency to
every implementation up to which all signal timings can be met. A higher frequency
will result in a malfunction. A diagram of an FPGA structure is shown in figure
2.2. It is a basic illustration for visualisation purposes only especially the routing
architecture is much more sophisticated in an actual FPGA.
The logic and the routing elements are controlled by programming points. Every
logic function or routing choice is controlled by a single memory bit. An FPGA is
configured when all programming points are set. This is done via an upload of a
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Figure 2.2: diagram of a basic FPGA structure. The array of Logic Blocks is con-
nected by a Routing Structure (lines). In addition, there are units, such as RAMs,
Multipliers and Input-Output-Blocks, to take over specific tasks or connect the FPGA
to peripheral devices.

configuration file or bit-stream on to the FPGA whenever the chip is re-powered.
Due to the fact that the configuration pattern can be modified or changed every time
by the user, FPGAs are called Field Programmable.
Besides these basic elements, there are several additional units on modern chips too.
They serve to enhance the flexibility and performance, while handling inefficient tasks
with specified components on the chip. Examples of such extended logical elements
are Multipliers and Random Access Memories (RAMs). A multiplication can be
performed much faster and more economically on a Multiplier than within several
Slices. Due to a highly complex Routing Structure, signals can be rapidly transferred
to the Multiplier, and only the result is then routed to the next Slice. But the number
of Multipliers is limited, so it is advantageous to avoid large multiplications whenever
possible. RAM cells are very small and can hold large volumes of data. They can be
used as Read Only Memory (ROM) when only coefficients have to be read out, or as
a RAM in case of a buffering, for example, but their number is limited too. These
limitations make hardware programming a challenging task.

2.3.3 The Programming Language Handel-C
As mentioned in the previous section, an FPGA is configured by an upload of a
configuration file or bit-stream on to the chip. Traditionally, such a hardware con-
figuration is created with hardware description languages such as VHDL or Verilog.
But these languages operate at a very low level and require a deep understanding
of the employed hardware, so transferring an algorithm to hardware can be a time-
consuming task.
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An approach to simplify the transferring or development of algorithms is taken by
the language Handel-C (Bailey and Johnston, 2010). In Handel-C, an algorithm is
written in a high-level language and the output is a gate level description, a so-called
Electronic Design Interchange Format (EDIF) file. The syntax of the language is that
of conventional C with several extensions, e.g. the par keyword to use parallelism
(Alston and Madahar, 2002).
Handel-C implicitly executes routines sequentially, but to exploit the parallelism of
hardware, the par keyword enables e.g. a parallel assignment of statements, as in
the following example (Bowen, 1999).

par
{

x = 1;
y = 2;

}

Here, both variables are assigned in one clock cycle, whereby the same microprocessor
implementation (without the par) would require two clock cycles. From this it is
obvious, the more program parts are running in parallel, the larger the benefit of a
hardware implementation.
The source code can be written, debugged and simulated in a graphical development
environment, the DK Design Suite. When an algorithm is developed and ’finally
released‘ for hardware implementation, the compiler creates an EDIF file. This EDIF
file is then transferred to an FPGA vendor-specific software to create the final chip
specific ’bit‘ file (configuration file). At this stage, the FPGA can be configured. The
whole work flow will be explained in section 2.4.3.

2.3.4 Strategies for FPGA Implementation
A high-level hardware programming/ descriptive language makes it easier to imple-
ment an algorithm on hardware. Nevertheless, it is useful to follow some principal
considerations in order to achieve a sound hardware implementation. Some rules are
listed in the following text.
Basic calculations, like a multiplication or division, are in general not ideal for a direct
FPGA implementation. Thus, dedicated hardware units were added to modern FP-
GAs to outsource these inefficient operations. However, due to the binary calculus of
computational hardware, a division or multiplication by powers of two can be easily
performed by a bit shift either to the right or left, respectively. So, the programmer
can adjust or pose requirements that take advantage of this effect already at this
stage of the algorithm design. In this study, the specification for a 1024 × 1024 pixel
image size is such a useful requirement. The first pixel index in the xth row can be
selected by adding (x − 1) × 1024 to the first image pixel index. The multiplication
is equivalent to a bit shift of (x − 1) 10 times to the left, which is a hardware friendly
operation.
Another common practice is the use of Look-Up Tables (LUTs) when dealing with
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complex expressions, like square-roots, or multiplications and divisions by arbitrary
numbers. Here, pre-calculated values are stored in an LUT and no actual calculation
has to be performed on the chip. But this might imply some uncertainties due to
rounding errors, and comes at the cost of storage capacities. So, whenever possible,
such demanding operations should be avoided, or at least transformed to less complex
terms (Johnston et al., 2004).
Eleven general algorithm transformation techniques are presented and discussed in
the article of Bailey and Johnston (2010). Some of them will be introduced now be-
cause they have been used in this work. The first method is called loop unrolling. It
means that, the innermost loops are replaced by sequential copies of the operations.
This can significantly reduce the complexity of an algorithm.
At times, also the order of operations has an impact on the complexity and processing
speed. Here, an algorithm rearrangement might result in hardware savings.
In general, any substitution of a demanding operation by a simpler one might enhance
hardware consumption parameters or processing speed. If this involves approxima-
tions, the outcome of the algorithm might differ slightly but may still be acceptable.
So, sometimes a trade-off has to be made. Overall, each algorithm should exploit
available parallelism whenever possible.

2.4 Experimental Set-up

2.4.1 Software Pre-development
Direct implementation of an algorithm presented in literature is a challenging and
often impossible task, even in software. In most cases, exact parameters are missing
or crucial steps are not explained sufficiently. Thus, in the present study, several
approaches were tried out and a lot of testing was accomplished.
In general, designing a hardware implementation is more time-consuming than a
comparable software routine (Hauck and DeHon, 2007), thus the first two algorithms
were developed in software at first. The Interactive Data Language (IDL) was used
to program a first running version of the Water Body Extraction and the First Bridge
Recognition algorithm, both of which will be presented in chapter 3.
During the hardware development process, severe changes had to be made to the
software program code in order to establish a working hardware implementation.
Regardless of some optimisations aspects, a running software code does not imply
a working hardware routine. If arguments, calculations or loop operations, are too
complex and the necessary run-time of signals exceeds a certain limit, then the imple-
mentation does not work properly and produces errors. A more detailed discussion
will be found in the respective algorithm sections in chapter 3. As a result, all further
algorithms were directly designed for an FPGA implementation using Handel-C.

2.4.2 The Nexys-2 Development Board
An FPGA is a processing unit, but it has to be connected to some additional devices
in order to make a proper system. Basic devices, such as a Clock, an External RAM,
and Input/Output ports, as well as extras such as a row of Switches, are assembled
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on the Nexys-2 development board. It is a commercial-off-the-shelf product and not
appropriate for direct application in space. However, it is well suited for the pursued
technology demonstration on ground. The board, in combination with a Personal
Computer (PC), represents the experimental set-up in this study. An image of the
board, as well as indicators to some relevant devices, are shown in figure 2.3.
In the center of the board there is a XILINX Spartan 3E-1200 FPGA. XILINX is
the name of the FPGA manufacturer. The FPGA is connected to a clock on the
right-hand side that oscillates at a frequency of 50MHz. Above the FPGA there is
an external RAM with a capacity of 16MB: the image data will be stored there. Due
to a slow interconnection between the FPGA and the external RAM, the maximum
clock rate of the FPGA has to be reduced to 12.5MHz, that is 1

4 of the original clock
signal. Later, the processing times will be given at this clock rate, but the reader
should keep in mind that higher clock rates are possible. A detailed description of
the board is given in Digilent (2011).
The program flow can be controlled by activating certain Switches on the lower side
of the board. Each Switch initiates a different routine, e.g. to load data from the
PC into the FPGA, to process an image, or to copy the result back to the PC. The
necessary image data are sent via a serial connection from the PC to the FPGA and
back. The mandatory protocols for the data transfer were defined by my colleagues
Kurt Schwenk and Katharina Götz. At this point, the author would like to thank
them both for the preparation of the routines.
The power supply of the board is provided via a USB connection to the PC. The
‘bit’ file, to configure the FPGA, is transferred over the same USB connection. The
generation of a ‘bit’ file from an EDIF file is performed by the ISE Design Suite.
This software is provided by XILINX and allows the creation of configuration files
for XILINX FPGAs. In the creation process, a lot of design-related adjustments
can be made, e.g. particular optimisation strategies can be chosen with regard to
the processing time or the power consumption of the chip. In the current set-up, a
balanced design goal between hardware consumption and processing time was aspired.
A subroutine of the Design Suite, called IMPACT, enables a direct upload of the ‘bit’
file to the connected FPGA. A complete description of the work flow will be given
below.

2.4.3 Work Flow
The realisation of a hardware application involves several intermediate steps. An
overview shall be given now. For clarity, the work flow is split into two parts: at first,
the configuration of an FPGA is described, then the data transfer between FPGA
and PC.

1. Write Handel-C code in the DK Design Suite.

2. Create an EDIF file from the source code.

3. Initiate a project in the ISE Design Suite, by specifying the FPGA and possibly
choosing some optimisation strategies.

4. Load the EDIF file into the ISE Design Suite and create a ‘bit’ file.

16



2.4. Experimental Set-up

Serial port FPGA External  
  RAM

Clock

USB port Switches

Figure 2.3: the Nexys-2 development board. The FPGA image was taken from
Nexys-2 (2013). All relevant devices for the current set-up are named and indicated.

5. Load the ‘bit’ file on to the FPGA via IMPACT.

Now, the FPGA is configured and the image data can be uploaded to the board to
be processed.

1. Set the serial port of the Nexys-2 into ‘hearing mode’ to get data from the PC
into the FPGA.

2. Start the PC program that copies image data to the serial port of the PC, so
that the data are uploaded to the Nexys-2, i.e. stored in the external RAM of
the board.

3. Run the image processing routines.

4. Initiate the PC program that ‘listens’ at the serial port of the PC to fetch data
from the FPGA and to store them on the hard drive.

5. Start the copy procedure at the Nexys-2 to send the results of the image pro-
cessing from the external RAM via the FPGA on to the PC.

This work flow description illustrates the more complex development procedure of
a hardware implementation when compared to coding a software. However, with
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regard to a future space application, a hardware realisation might have several sig-
nificant advantages in the later space-proof verification process. In contrast to the
very extensive procedure for a software assessment, with hardware a lot of potential
malfunctions can be excluded a-prior and operational behaviour can be characterised
more accurately. In the end, this might save time and money.

18



Chapter 3

New Algorithms for Image
Analysis On-board Satellites

3.1 Overview
This chapter contains the main scientific contributions of this thesis, five novel algo-
rithms to detect water areas, islands, bridges over water (two methods) and traffic
on a bridge, in an acquired satellite image. All five routines are primarily developed
for an application on-board a spacecraft and, for the reasons given in chapter 1, they
have to run on an FPGA. So, besides an acceptable accuracy of the detection results,
the following three algorithm design criteria have to be fulfilled:

• robust implementation,

• fast performance,

• autonomous processing.

The hardware implementation has to be robust, without any complex algorithm struc-
tures: the reasons for this were given in the previous chapter. A fast performance
is aspired since large volumes of data have to be processed in a short time. And an
automatic processing is necessary for the intended application in space. These re-
quirements influence the algorithm designs and prevent a simple adoption of existing
methods. Hence, new developments were necessary.
Each algorithm will be presented in a separate section. The first four methods refer
to pattern recognition tasks, and the fifth algorithm is an anomaly detection. With
regard to content, they compose a processing chain from basic water mask generation,
via bridge over water recognition, up to traffic detection on a bridge. The output of
each routine is drawn on a thematic map. On-board a spacecraft, it might be that the
results are only stored as table entries that can be easily interpreted by the planning
unit.
In principle, each algorithm can operate independently, provided that the necessary
input data are available. It is possible to combine the methods in a modular concept
or interchange different algorithms. An illustration of the algorithm composition ap-
plied in this thesis is depicted in figure 3.1. Both processing chains were executed
separately. The processing stream on the left-hand side produces an output after a
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Figure 3.1: flow chart of used algorithm combinations.

short period of time. The resulting thematic map shows water areas and marked
bridge center points. A more detailed thematic map can be obtained by following
the process flow on the right hand side. Besides detected islands, also the whole
bridge deck areas appear in the final thematic map. In case of RE data, a detection
of moving vehicles can additionally be carried out.
This set-up provides a flexible program flow that can be adjusted to the actual needs
of a future satellite mission.
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3.2 Water Body Extraction

3.2.1 Introduction
The first algorithm in this thesis is a method for water body extraction. Every pixel
of an image is labelled either as water or as non-water pixel according to certain spe-
cific rules. The output is a binary water mask. These rules, especially the respective
parameters, are individual for each sensor system and data type. Even though there
are already algorithms related to this topic in literature, none of them analysed or
presented results for panchromatic HRC or NIR data from RE, thus it is not possible
to simply adopt a method to the current case.
Besides the missing parameters, several methods presented in literature use compu-
tationally expensive operations to generate a water mask. For the reasons given in
the previous section, such routines are not appropriate for a direct hardware imple-
mentation. So, a novel approach was required.
The proposed algorithm is, of course, developed on the basis of existing methods,
thus in the beginning of this section a review of relevant literature is given. Then,
the approach is presented in section 3.2.3, followed by a remark on the hardware and
software implementations. The experimental results are presented and the section
concludes with a discussion and a summary.

3.2.2 Literature Survey
The following literature survey shall give a brief overview about published approaches,
and highlight ideas that are also used in this thesis.
Luo et al. (2007) presented a bridge detection method for IKONOS satellite imagery.
The necessary water body extraction was performed with a Gauss Markov Random
Field Support Vector Machine (GMRF-SVM). To implement and train an SVM is an
extensive task and out of scope of this study. In section 3.2.5, there will be a direct
comparison between results from their publication and our results.
The approaches of Chen (2008) and Liu et al. (2010) collect sample pixels of water and
non-water regions in an image and adjust their classification procedure accordingly.
The sampling of pixels is done manually by a human operator, hence the methods
are not appropriate for an autonomous application in space.
Han et al. (2007) presented a self-adapted method that finds a threshold to separate
water and non-water pixels automatically by an analysis of the image histogram.
A clear, two-cluster shape in the histogram permits differentiation between darker
water pixels and brighter non-water pixels. In the present study, preliminary tests
on different satellite images were carried out, but the assumption of a two-cluster
shape in the histograms could not be confirmed. Hence, the method does not seem
practical.
Other approaches derive thresholds for water separation automatically from an image
histogram as in Gu et al. (2011), or use a fuzzy threshold segmentation as in Fu et al.
(2009). But these procedures involve many multiplications, divisions and square-root
operations, thus they are computationally demanding and not appropriate for the
aspired hardware implementation.
The review concludes with the publication of Trias-Sanz and Loménie (2003). They
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use many parameters, such as the mean value, entropy, energy, variance, skewness
and kurtosis of the image histogram, in order to distinguish eight different land-cover
types. The computation of all these values is demanding and also does not seem to
be advantageous for a hardware solution.
In conclusion, there are different approaches in literature to extract water areas from
PAN or NIR satellite imagery. Multiple basic ideas are reasonable and are adopted in
the current work as well. For example, the principle structure of the current approach
is very similar to the one presented in Luo et al. (2007). The SVM part is, among
other things, replaced by two ‘simple’ thresholds. Due to this, the procedure is more
convenient for a hardware implementation. The new approach is presented below.

3.2.3 A Practical Approach
As already mentioned above, the principle structure of this new approach is similar
to the one presented in Luo et al. (2007). The work flow consists of three parts: A
pre-processing part to smooth the input image in the beginning, a main part to find
the water pixels in the input data and a post-processing part to smooth the resulting
water mask. The water pixel extraction process used in this thesis is less complex
than the originally proposed one, in order to allow its use on an FPGA. Additionally,
an extra post-processing process is introduced to enhance the accuracy of the result.
A diagram of the work flow is illustrated in figure 3.2. The steps are described as
follows.

Pre-processing

There is always noise in image data. The sources can be certain atmospheric con-
ditions or noise directly in the sensor system. So, in general, it is advantageous to
reduce the noise in the image data prior to some image analyses. The simplest way
to do this is to apply a linear filter, such as a mean filter (Richards, 2012). This
filter, with a 3 × 3 window, can be implemented on hardware easily and processes
image data very fast. In case of very noisy data, the filter can be run several times
to obtain the desired result. So it seems appropriate for the current purpose, and is
applied in this thesis.

Water body extraction

A review of current literature revealed several approaches to extract water pixels from
PAN or NIR satellite imagery. Although the applied methods differ, the basic idea is
more or less the same: an analysis of the brightness (and texture) characteristics of
each image pixel. In the PAN and NIR spectrum, water pixels are in general darker
than their surrounding non-water pixels, and especially inland waters have a very
smooth surface (Chen, 2008) or (Fu et al., 2009). By estimating the adequate thresh-
olds, e.g. from the image histogram, both classes can be distinguished sufficiently.
But as already mentioned, the estimation procedures proposed in literature are not
practical for hardware implementation.
In order to simplify the procedure, the parameter estimation process is replaced by
two constant thresholds. Both values are chosen very high, so that it is more likely
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Figure 3.2: flow chart of the water body extraction algorithm.

to falsely classify a pixel as water than to miss a real water pixel, but in a way that
the number of falsely classified water pixels is kept as low as possible. As a result,
the final water masks often depict more water areas than there are visible in the
original satellite images. But the implementation of this method on an FPGA chip is
straightforward and a binary water mask is generated within a short period of time.
A post-processing step is applied afterwards, to reduce the number of falsely classified
water areas.

Post-processing

A post-processing step is executed in Luo et al. (2007) to remove small water regions
caused by false positive classifications. The step involves several erosion operations
applied to the water areas in an image. The same technique is applied in the present
study. However, an erosion of all water bodies in an image results in the removal of
smaller areas while, at the same time, also the size of larger water areas is reduced.
To compensate this effect, the same number of dilations is applied to the water bodies
after the erosion procedure. A so-called opening is performed. The reverse operation,
first a dilation and then an erosion, is called closing. Here, as a result of the opening,
the remaining water areas increase in size again.
Please notice that small water areas are not necessarily false classifications. So, in
the erosion step also real water areas like small rivers will vanish. Hence, this step
is a trade-off between a reduction of falsely classified water areas and an improper
water mask. The accuracy will be evaluated in section 3.2.5.

Additional post-processing

The mean filter, applied in the pre-processing step, is not an edge-preserving filter
(Richards, 2012). This means, each water pixel close to the water edge in the original
image becomes smeared with adjacent non-water pixels during the filter process. In
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the end, these blurred water pixels are brighter and more uneven, and hence they
are classified as non-water pixels. As a result, the water areas appear smaller and
bridges appear broader in the water mask than they are in the original image. To
overcome this drawback, it is possible to perform the dilation of water areas in the
post-processing step, for example, two times more often than the erosion: the water
areas in the water mask become larger and coincide better with the actual visible
water areas in the original data. This might lead to an enhanced bridge recognition
and so both adjustments (with/without an additional post-processing) are evaluated.

3.2.4 Software and Hardware Implementation
The present algorithm was first implemented with software. The program code was
written in the high-level software programming language IDL (see section 2.4.1) and
the program was executed on an Intel(R) Core(TM)2Duo T9600 CPU, with two
kernels operating at 2.80GHz.
After initial tests showed satisfactory results, a hardware implementation was realised
too. The principle structure of both implementations is similar since the proposed
method relies on the use of basic image processing techniques, asmean filter or erosion
and dilation, in order to keep the complexity of the algorithm as low as reasonably
possible. So, a working hardware implementation was established in a short period
of time.

Run-length coding

The result of the actual water extraction process (prior to post-processing) is a binary
water mask. In a bit representation, this mask consists of zeros and ones, and the
whole bit-stream of the image is composed of sequences of zeros and ones. A sequence
of a certain bit is called run.
A widespread technique in image processing is a transformation of such a binary
image into a so-called run-length encoded representation. Due to the fact that the
alternating sequence of zeros and ones is known, it can be more efficient to only
declare the first bit and then the length of each sequence, than to store the original
image representation. It is a loss-less compression technique, i.e. the encoded and
then decoded image is identical with the original one, but the required memory space
might be smaller in the encoded state. For images with large runs, this method can
provide significant memory savings. Short runs, however, do not yield any advantages
(Müller et al., 2005). Additionally, morphological operations, such as erosion and
dilation (Breuel, 2008), or connected component labelling, can be performed on the
encoded images as well (Appiah et al., 2008).
In the present study, however, no run-length encoding of the binary water masks was
performed mainly for the following reason: the generated water masks are primarily
the basis for the later bridge recognition procedures. The bridge recognition methods
operate with an image representation of these masks, since the spatial arrangement
of the water areas is of importance. This means that if a water mask would be
run-length encoded, a decoding would be inevitable, before the bridge recognition
can be executed. Water mask encoding and decoding does not seem beneficial, and
morphological operations can be performed very efficiently, also on the original image
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representation using a pipeline structured algorithm on the FPGA. Anyway, the
compression technique might be an option, if only an economical storage of water
masks is desired.

Comparison

In the field of hardware engineering, it is common to perform a direct comparison
between a hardware and software implementation, e.g. with regard to the processing
time for an image. However, in this study, this does not seem appropriate for the
following two reasons: at first, the software implementation was not optimised. Much
more effort was put into the hardware version, so the comparison is not balanced.
Secondly, it is outside the scope of this study that a CPU, like the one used in a laptop
computer, will soon fly on a satellite mission. For one thing, the energy consumption
is far too high. In contrast, the applied Spartan 3E FPGA has a size and power
consumption that is affordable on-board current satellites. So, even if the outcome
of the comparison would favour the use of a such a powerful CPU, it is not an option
for the aspired space application. Nevertheless, it can be stated that the processing
time for the software version was within a few seconds.

3.2.5 Experimental Results
In the course of this study, several tests were carried out to verify and characterise
the proposed water body extraction. The obtained results are presented below.

Example image

The principle outcome of the proposed method is a binary water mask. In the present
thesis, the water pixels are coloured blue for visualisation purposes only.
Figure 3.3 (a) shows a small part of a scene showing the Ohio river in the city of
Cincinnati (USA). For the details of the data take, see appendix A, table A.2, entry
RE 2. All further references to the appendix of this thesis are abbreviated by giving
the table number and entry name, e.g. in this case, A.2, RE 2. The image is a
NIR satellite image taken by RE. It is enhanced in brightness and contrast for better
visibility. The scene represents rather good imaging conditions, since there is a strong
contrast between the water and non-water areas.
The mean filter was applied to the image data first. Preliminary tests showed good
results, with one filter iteration for RE scenes and three iterations for HRC scenes.
The thresholds for brightness and surface roughness were set to 20 and 1 for RE
imagery, and 150 and 2 for HRC image data, respectively. The final erosion and
dilation steps were executed three times on both image types.
The resulting water mask for image 3.3 (a) is depicted in figure 3.3 (b). In the water
mask, the river course as well as all four larger bridges, indicated by the gaps between
the river segments, are reproduced properly. Some smaller water areas appear on the
upper side of the river, too. Not all of them are real water segments, but they are
dark and homogeneous, thus classified as water.
The lower part of the small river on the right-hand side is not represented in the
water mask at all. This is due to the erosion step in which smaller water bodies are
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(a)

(b)

Figure 3.3: (a) an enhanced NIR image of the Ohio river in the city of Cincinnati,
USA. ©DLR/RapidEye (b) The resulting water mask.
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(a) (b) (c)

Figure 3.4: (a) a section of figure 3.3. (b) The section combined with the water mask,
without additional post-processing (c) The section combined with the water mask,
with additional post-processing.

erased from the map. A statistical evaluation was carried out and is presented in
subsection accuracy assessment.

Additional post-processing

An additional post-processing step was presented in the description of this algorithm.
The idea is to compensate the blurring effect of the mean filter and to enhance the
accuracy of the water mask by performing additional dilation steps at the end of the
water mask generation.
For better visibility, a section of figure 3.3 (a) is displayed in figure 3.4 (a). In figure
3.4 (b) this scene is combined with the result of the water body extraction without
extra post-processing. It can be seen that the blue water (mask) areas are smaller
than the dark water areas in the original image.
To compensate this drawback, the final dilation was performed two times more often
than the erosion, i.e. five times. The result of the water body extraction with
additional post-processing is presented in figure 3.4 (c). From the image, it can be
seen that all water bodies became larger and the blue river segments from the water
mask coincide better with the dark river segments of the original image. But the
falsely classified water areas became larger as well.
So, the additional post-processing step is reasonable and yields a better compliance of
true water areas in the water mask and the respective areas in the satellite imagery.
But it also increases the size of falsely classified regions. A statistical evaluation was
carried out and is presented in subsection accuracy assessment.

Comparison of HRC and RE imagery

The satellite imagery used in the study of this thesis was presented at the beginning
of chapter 2. The data set comprises PAN data from the HRC sensor and NIR data
from the RE satellites. The use of NIR data was motivated by an assumed increased
separability of water and non-water pixels in NIR satellite imagery. This assumption
was based on the fact that water has lower reflectance values in the NIR spectral
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region than in the visible (PAN) spectrum (Liu et al., 2010). In this subsection, the
influence of the input data on the water body extraction shall be appraised.
To gain a proper comparison between HRC and RE data, almost the same scene was
selected from the data set and is depicted in figures 3.5 (a) and (b). The images show
the Han river in the city of Seoul (KOR). Details of the data-takes can be obtained
in appendix A.1, HRC 6 and A.2, RE 15. From the images, it can be seen that the
contrast between water and non-water pixels is much stronger in the NIR image (fig.
3.5 (b)) than in the PAN image (fig. 3.5 (a)), as expected.
The respective water masks are displayed in figures 3.5 (c) and (d). The river course
is visible in both masks, although the classification is not perfect. In figure 3.5 (c),
a lot of additional smaller water bodies appear around the river, and the island on
the upper right side of the image is partially marked as water. In contrast, almost
no false classifications appear in figure 3.5 (d). But the water extraction failed in
some parts of the river due to bright spots in the water. In the end, it seems that the
actual appearance of water has a greater impact on the extraction than the applied
sensor data. An accuracy assessment is presented below.

Accuracy assessment

Three individual examples were presented in the previous subsections: in this sub-
section, the statistical evaluation of the whole data set is given.
The procedure for the conducted accuracy assessment is adopted from Yuhaniz and
Vladimirova (2009) and Liu et al. (2010). A so-called ground truth was generated
manually by a human operator. The ground truth is water masks derived from satel-
lite imagery by visual inspection. They shall represent a rough-and-fast labelling of
all water bodies in an image. No pixel-precise analysis is demanded.
Both maps, the ground truth and the automatically generated water mask, were
semi-transparently put on top of each other by the software GIMP. Discrepancies be-
came clearly visible due to a different colouring. Additionally, in order to get a more
accurate view of the results, the obtained error was distinguished into two different
classes. According to Richards (2012) there is the error of omission and the error
of commission. The first one represents here water pixels that are not detected by
the algorithm. The second error describes water pixels in the generated water mask
that are non-water pixels in the ground truth. The errors shall give an indication of
whether the water body extraction under- or overestimates the actual water areas.
At first, there is an accuracy assessment of the water masks derived by the method
without additional post-processing. The results are displayed in table 3.1. An over-
all accuracy of 79 − 86% was achieved. As already mentioned, it is expected that
water areas appear smaller in the water masks than they are in the original satellite
images. This effect is reflected in the relatively high (14 − 21%) error of omission.
The error of commission is 8 − 10%. So, around one tenth of all water pixels in a
water mask are too many. Overall, the performance of this method is similar for both
sensor systems.
The results obtained by the method with additional post-processing step are pre-
sented in table 3.2. As expected, the extracted water areas coincide better with the
ground truth, so the overall accuracy increased to 85 − 92%. In contrast, the error of
omission falls to 8 − 15%. Due to the enlargement of all water areas, also the falsely
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(a) (b)

(c) (d)

Figure 3.5: a scene of the Han river in the city of Seoul, KOR. (a) A panchro-
matic image taken by the HRC. ©ESA (b) An enhanced NIR image taken by RE.
©DLR/RapidEye The respective water masks are depicted in figures (c) and (d).
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Data Commission error [%] Omission error [%] Overall accuracy [%]
HRC 9.5 14.4 85.6
RE 8.7 20.9 79.1

Table 3.1: accuracy of water body extraction without extra post-processing

Data Commission error [%] Omission error [%] Overall accuracy [%]
HRC 13.6 8.9 91.1
RE 12.8 14.6 85.4

Table 3.2: accuracy of water body extraction with extra post-processing

classified ones were expanded and hence the error of commission rised to 12 − 14%.
Again, the method works similarly for both data types. A discussion on the results
can be found in section 3.2.6.

Comparison with literature data

A statistical evaluation of the accuracy of a method strongly depends on the applied
satellite image data. So it is not quite balanced to judge the performance of a method
only by comparing the statistics. For this reason, a direct comparison was also per-
formed with results from literature. The comparison is not absolutely accurate since
different satellite imagery was used. However, an analogy of two methods can be
appraised by visual inspection.
As was already mentioned in section 3.2.2, a comparison with the method of Luo
et al. (2007) was conducted. For this purpose, satellite imagery of an identical lo-
cation taken by the HRC, the RE satellites and the IKONOS satellite was selected.
Please note that the spatial resolution of the IKONOS image is 1m. However, besides
the differences in spatial resolution and sensor characteristics, it seems a reasonable
evaluation of the quality of the method proposed in this study against a more sophis-
ticated approach from literature.
In figures 3.6 (a), (c) and (e), an almost identical part of the city of Taipei (TPE) is
depicted. For details on the data takes, see appendix A.1, HRC 5 and A.2, RE 3. All
three images show the courses of the Danshui and the Jilong rivers. Several bridges
of different size cross the rivers. The resulting water masks are displayed in figures
3.6 (b), (d) and (f). Since the water areas were coloured black in the literature, here
all water segments are coloured black too. The water masks presented in figure 3.6
(b) and (d) were generated by the method proposed in this thesis. The water mask
depicted in figure 3.6 (f) was derived from the IKONOS satellite image (fig. 3.6 (e))
using a GMRF-SVM. The IKONOS scene, as well as the respective water mask, were
taken with permission from Luo et al. (2007).
Obviously, the IKONOS scene has the strongest contrast between water and non-
water areas and the outcome is a well-classified water mask. However, the water
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masks derived from our own experiments depict the river courses as well. In the end,
it is difficult to say whether the differences in the classification results arise due to
the applied method or the imagery. A discussion will follow in section 3.2.6.

Case study of a natural hazard: the 2011 tsunami in Japan

The methods provided in this thesis shall, among other things, support the work of
crisis information centres. So, in order to assess the performance of the developed
water body extraction under real disaster conditions, satellite image data from the
2011 tsunami in Japan was analysed.
On 11th March 2011, an earthquake off the north-east coast of Japan caused a
tsunami that struck the coast of Japan with a widespread flooding. In some ar-
eas, the maximum wave height was about 19.5m, and it reached 4.5 − 5km inland
(Mori et al., 2011) and (Goto et al., 2011).
RapidEye imagery captured on 19th March 2011, 8 days after the tsunami, is used
in the study of this thesis and one of these images is presented in figure 3.7 (a). The
image shows the river mouth of the Natori river and a part of the coastal region.
Details of the data take can be obtained from A.2, RE 17. Brightness and contrast
of this NIR image are again enhanced for better visibility.
A water mask was derived from this image and is presented in figure 3.7 (b). Besides
the river and the coastal waters, a lot of land areas are classified as water because
their appearance is homogeneous and dark too. This is probably due to the still wet
ground caused by the flooding. So, the additional water areas are not necessarily false
classifications. The area is affected by a flooding event and the water mask reflects
this. The result is discussed in section 3.2.6.

Hardware configurations

The experimental set-up was presented in chapter 2. At this point, some algorithm-
specific details of the hardware implementation shall be revealed. The realisation of
water body extraction in the hardware used needs 2842 slices, that is approx. 32% of
the chip’s total number of slices. No BlockRAM is needed and the power consumption
is specified in the ISE design suite at approx. 0.5W . The maximum clock frequency
up to which an algorithm can be operated on an FPGA is limited by the signal
run-times of the implementation. For water body extraction, a maximum clock rate
of 98MHz was estimated by the ISE design suite. This frequency is obtained for a
balanced design goal and might be increased by a timing optimised design goal. But,
timing optimisation might eventually lead to a higher resource consumption.
In the current state, with a clock rate of 12.5MHz, a water mask is derived from a
1024 × 1024 pixel image in 6 − 8s. The times vary with the size and number of water
segments in an image. If additional post-processing is performed, the processing time
increases to 14−18s. This non-linear rise in time is due to the non-linear enlargement
of the water segments. However, considering an around eight times higher maximum
clock frequency, the processing time will decrease accordingly. So the times represent
just a basic indication.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: comparison with data taken from literature. Displayed is a part of the
city of Taipei, TPE. (a) The PAN image taken by HRC. ©ESA (c) The enhanced
NIR image from RE. ©DLR/RapidEye (e) The PAN image acquired by the IKONOS
satellite taken out of the article by Luo et al. (2007). Figures (b), (d) and (f) depict
the respective water masks.
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(a) (b)

Figure 3.7: (a) an enhanced NIR image of the river mouth of the Natori river in
Japan taken by RapidEye. ©DLR/RapidEye (b) The derived water mask.

Slices 2842 (32%)
BlockRAM 0

Max. Clock Frequency 98MHz

Power 0.5W

Table 3.3: Nexys-2 implementation parameters

3.2.6 Discussion and Summary
The water body extraction proposed in this thesis is a simplified approach based on
existing ideas for water classification in satellite imagery. The quest is for a method
that is well suited for an FPGA implementation, while providing acceptable results
in a short time.
Under good imaging conditions, i.e. a sharp contrast between dark water pixels and
bright non-water pixels, satisfactory results can be obtained. Overestimations of
water areas arise due to additional dark and homogeneous areas, such as forests or
shadows of houses. Bright and turbid waters lead to a false classification of water
pixels as non-water pixels. These issues have been addressed in Liu et al. (2010), Gao
et al. (2011) or Gu et al. (2011) before, but no solution was presented there, so these
situations remain a challenge.
The fact that water areas appear smaller in the water masks than they are in the
original satellite image is compensated by applying additional post-processing. The
outcome yields the desired result, but the processing time of an image increases
significantly. Additionally, the small increase in the overall accuracy involves a rise in
the error of commission at the same time. However, it might be the case that a water
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mask with additional post-processing will lead to an enhanced bridge recognition.
Thus, both bridge recognition methods will be tested on these water masks as well.
The introduced comparison with literature data is not perfectly balanced, since the
IKONOS data has a five times higher spatial resolution and a much stronger contrast
between water and non-water pixels than the used satellite images from the HRC
and RE. But the water masks generated with the method presented in this thesis
reflect the river courses sufficiently and give an impression of the water areas in that
scene. So, even under more demanding imaging conditions, it is possible to achieve
reasonable results with the proposed method.
The water mask obtained from the tsunami disaster satellite image looks disturbing
at first, since there is a large number of additional water bodies visible. However,
these areas are not necessarily false classifications but probably still wet regions after
the flooding. A change detection procedure would pay attention to these areas, and
a first survey of the affected areas could be provided.
In conclusion, the processing time of only a few seconds for a 1024×1024 pixel image
and an overall accuracy of more than 79% is certainly appropriate for the current
objective.

Summary

In this section, a simplified water body extraction process is presented. The method
can derive a binary water mask from PAN or NIR satellite image data and is im-
plemented on an FPGA. The image data are processed in a few seconds, and under
normal imaging conditions all major water bodies are reflected reliably in the mask.
Even under difficult illumination and water conditions in an image, sufficient results
can be obtained. Thus, the generated water masks are the basis for all further algo-
rithms in this thesis.
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3.3 First Bridge Recognition Approach

3.3.1 Preface
An automatically derived water mask provides, in case of a flooding, a first survey of
the affected areas. Yet, besides a knowledge on the extent of a flood, there is also an
interest in the accessible infrastructure, such as roads or bridges (Mittelbach, 2013)
and (Danzeglocke, 2013). From the perspective of a satellite, bridges over water are
adjacent to water areas, thus an analysis of water masks might provide information
about potential transportation routes. So, to advance the capabilities of an on-board
image analysis further, a novel method to locate bridges over water in satellite im-
agery is presented in this section.
The proposed method is implemented in an FPGA. So in addition, it is a demon-
stration that also high-level image analysis tasks can be realised directly in hardware
and no parallel microprocessor set-up is necessarily required.
In the section below, a review of existing methods for bridge detection will be given.
Then, the new algorithm will be presented, as well as its implementations in software
and hardware. After that, the results are displayed. The section concludes with a
discussion and a summary.

3.3.2 Literature Review
The autonomous detection of bridges over water is a rather particular topic in the
field of remote sensing. Nevertheless, there has been a slight increase in the number
of publications over the last few years. A selection of existing methods for panchro-
matic satellite imagery is given in this section.
The article of Loménie et al. (2003) aims for a detection of all kinds of bridges. This
includes bridges over water as well as bridges over roads and railways. At first, they
conduct an advanced terrain classification and separate eight different land cover
types. Then they search the classified image for parallel segments, the sides of a
bridge. Their assumption is that the two sides of a bridge have almost the same
length and orientation in an image. This sounds reasonable, however, own initial
tests produced a lot of false positives and showed that this is a rather challenging
approach. Additionally, the computation of angles is not a hardware-friendly task,
and the comparison of different orientations is not unique. The detection rate given
in literature of less than 42% is not promising either, hence this method does not
seem suitable for the current purpose.
The approach of Luo et al. (2007) does seem relevant to the present study. They
reduce the appearance of a bridge to a single line, perform a validation, and get as a
result the medial axis of a bridge. Unfortunately, the method requires a knowledge of
the width of each bridge in an image. This is not practical on-board a spacecraft, so
the method cannot be applied here. The same drawback holds for the method pre-
sented in Fu et al. (2009). However, some intermediate steps look similar to stages
of the method presented in this thesis.
The bridge detection technique presented in Gu et al. (2011) evaluates, among other
things, the orientation of potential bridge deck areas and adjacent water segments in
order to verify a bridge. Several multiplication, division and square-root operations

35



Chapter 3. Algorithms for Image Evaluation

in the algorithm, however, prevent a fast hardware realisation.
In conclusion, there exist different approaches to locate bridges over water in satel-
lite imagery. The direct neighbourhood of a bridge to two (larger) water segments,
in combination with a search for parallel lines, is an often applied strategy in sev-
eral publications on bridge recognition. This principle idea is also adopted to the
method presented in this thesis. The main goal of this novel development, however,
is to establish a simplified algorithm that is suitable for direct implementation into
hardware. The new approach is presented below.

3.3.3 A Novel Method
The first bridge recognition method presented in this thesis was developed with the
ambition to locate as fast as possible all bridges over water in a captured satellite
image. The main difference to existing methods is the simple algorithm structure
that enables direct implementation into a small FPGA. The input data is a binary
water mask, thus the procedure is independent of the actual sensor data.
The idea behind this approach is a successive reduction of relevant pixels in the water
mask, until only the center points of the located bridges remain. This yields a very
fast algorithm performance and provides the answer, whether a bridge was found or
not. A visualisation of all the processing steps is given in fig. 3.8. Each stage is listed
on the left-hand side. The corresponding (intermediate) results, obtained from a real
bridge image, are displayed on the right-hand side. Active pixels are coloured black,
and the dots in the lower three images are enlarged for a better visualisation. In
conformance with the later thematic maps, the final bridge center point is coloured
light green. A description of the algorithm is as follows:

1. To reduce the required memory space and to minimize the computational effort,
only the water rim is particularly labelled and examined in the next steps.

2. All directly adjacent water rim pixels are clustered to segments. Each segment
is allocated a unique label. Additionally, the size of each segment is determined.
If it is below a certain threshold, the water rim is erased and the segment is
neglected from further consideration.

3. The image is scanned for regions which presumably form a bridge. All pixels of
one water rim segment are marked which have one or more pixels from another
water rim segment within a predefined vicinity. If a bridge is clearly broken,
then both water segments will melt together, forming one water segment in the
water mask, and no bridge will be recognised. In case of a proper bridge, the
result is a pair of more or less U-shaped water rim segments on either side of the
bridge. This looks similar to the result published in Fu et al. (2009). However,
in the present work, the mentioned ‘vicinity’ is a fixed value that is independent
of any bridge size. So, in contrast to literature, no a-priori knowledge of the
bridge or river width is necessary.

4. To reduce the number of relevant pixels further, only the end-points of the
U-shaped segments are labelled. These four points frame the bridge and the
goal is to extract the center of them. However, because up to this step the
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algorithm does not ‘know’ that these four points belong together, some ancillary
intermediate steps are necessary.

5. There are two end-points, on one side of a bridge, that have the same segment
number. They are selected and their center point, the so-called support point, is
calculated. This linear interpolation prohibits the recognition of curved bridges,
at least, but it is the simplest way to implement the method. Then, these
support points are marked on both sides of a bridge.

6. A predefined surrounding area around each support point is scanned for the
appearance of another support point. If another one is found, the center point
of both points is derived and marked. This is the final center point of the
bridge.

The algorithm was implemented in software and hardware and a comparison of both
realisations is given below.

3.3.4 Comparison of the Software and Hardware Realisation
As for the water body extraction, also the first bridge recognition was programmed in
software at first in order to validate the algorithm’s performance. Since the proposed
method implies several strong simplifications compared to existing methods, initial
tests should ensure that the novel approach yields proper results as well. Yet, there
are disparities between the software and the hardware versions, and a comment on
both implementations is given in the following text.
Again, it shall be noted that the usual comparison between the software and hardware
implementation is omitted in this study. The reasons for this were already given in
section 3.2.4. Especially the stages of optimisation differ significantly between the
two implementations. The processing time of the software version, however, is also
in the range of several seconds.

Reduction to the water rim

The procedure is straightforward: all water pixels in the water mask are checked for
a direct connection to a non-water pixel. If a water pixel is adjacent to a non-water
pixel, this water pixel is assigned as a water rim pixel. The step was executed in
the software version after the water segment labelling. However, for the hardware
implementation, it is crucial to perform it in the beginning, since the reduction of
relevant pixels drastically reduces the amount of necessary memory space in the
labelling process.

Labelling the water rim segments

As was mentioned in the literature review, a bridge is in general between two different
water segments. So, each water segment gets its own label, i.e. a number, to distin-
guish it. The applied labelling technique is called region growing and was employed
on an FPGA in the article of Pedrino et al. (2010). During the label process, extra
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Figure 3.8: flow chart of the first bridge recognition algorithm.
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memory space is needed to store some intermediate values. In the current imple-
mentation, the FPGA-internal BlockRAM is used. The required amount of memory
space has to be defined in advance, so the usual segment size has to be estimated
beforehand. If large segments are anticipated, a lot of allocated memory space is
required. At the same time, the size of each segment is determined. If a water rim
segment is shorter than 150 pixels (value determined empirically), it is not considered
in the process any more.

Identification of adjacent water rim pixels

In order to find the water rim pixels of another water rim segment, a squared ‘ring’
template in a distance of 20 pixels for RE images and 31 pixels for HRC images
around each currently regarded water rim pixel is searched for another water rim
pixel from a different segment. A diagram of the template is illustrated in figure
3.9 (a). If at least one pixel is found, the current water rim pixel is assigned as a
potential bridge pixel. The ‘radius’ of 20 pixels is derived from the statement that the
widest bridge on earth is the Blue Bridge in St. Petersburg (RUS) with a width of
97.3m (Blue-Bridge, 2013). Every bridge is assumed to be smaller than 100m, thus
the distance between two sides of a bridge, in the applied data here with a spatial
resolution of 5m, is less than 20 pixels. The different radii between the template
for RE and HRC imagery result from test experience. In general, the gaps between
two water segments, indicating a bridge, are larger in the HRC imagery, thus to
compensate this effect the search radius is enlarged.

Location of the end points of a U-segment and the support points

Adjacent potential bridge pixels are clustered to segments and the cluster size is
checked. If a cluster is smaller than 50 pixels, the segment is discarded. This step is
necessary to reduce false positives, but it is a challenge for the detection of smaller
bridges too.
A significant difference between the software and the hardware version comes with the
determination of the support points. In general, there is one support point on each
side of a bridge and they are particularly labelled. The calculation of a support point,
i.e. the computation of the center of a segment, involves the summation of and the
division by the number of potential bridge pixels of one segment. Generally, this is an
unknown number of pixels and the calculations are not recommended for hardware
implementation. Thus, this algorithm part was changed in the hardware version and
only the two outer pixels of each segment are considered. The two points constitute
a fix number in the calculations and a division by two can be executed easily by a
bit-shift operation. Finally, their center point (support point) is determined. But
these simplifications make the algorithm also vulnerable since the recognition now
strongly depends on the location of these end points.

The final bridge center point

The determination of the final bridge center point is done in the same way as the
adjacent water rim pixels were found. Around every support point, a template area
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Figure 3.9: visualisation of the applied scan pattern. (a) The ‘ring’ template (black
line) around the current pixel (black dot). (b) The semi-square area template on the
left-hand side of the current pixel in the center.

of 41 × 81 pixels for RE images and 63 × 125 pixels for HRC images is searched for
another support point. The size of the areas is derived from the following considera-
tion: an assumption is made that there is a bridge with a width (not length!) of only
one pixel. In this case, both support points have a distance between each other of
around twice the search radius for adjacent water rim pixels. That means, that each
support point has to scan an area to the extent of twice this search radius. Since the
water rim pixel search radii differ for HRC and RE imagery, also the search radii for
two adjacent support points differ accordingly. An illustration of the template can
be seen in figure 3.9 (b). The entire area is scanned since the distance between two
points is unknown. In addition, each template is only half of a squared area, it is
somewhat the ‘backward view’ to each support point. This reduces the size of the
regarded area and ensures that each pixel pair is only marked once. In the present
study, the two quadrants on the left-hand side of the central pixel are chosen. Of
course, it is also possible to chose the two quadrants above the central pixel to achieve
the same result. After screening, the center point of each pair of support points is
calculated. A last check is carried out to validate that the determined center point
is a non-water pixel, then it is marked.

In conclusion, all aforementioned processing steps depend on the image content or the
extracted image information of previous steps, thus only less strict real-time criteria
can be fulfilled. The comparison also highlights several implementation strategies
that were recommended for transferring software code on to hardware (see section
2.3.4). In some cases, necessary simplifications or optimisations were challenging,
thus all further algorithms in this thesis were realised directly in Handel-C. The over-
all results of the software and hardware implementation are similar, so no detailed
analyses were performed on the effects of some differences. An approach to overcome
some limitations of this procedure in general is given with the Second Bridge Recog-
nition method in section 3.5. The obtained results are presented in the section below.
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3.3.5 Survey Results
Example image

The example image is the same scene as for the water body extraction in section
3.2, it shows a part of the Ohio river in the city of Cincinnati (USA). Figure 3.10
(a) is the enhanced NIR satellite image combined with the results of the first bridge
recognition. Located bridge center points are illustrated as green dots. From that
image it can be seen that all four major bridges were identified. Only the small bridge
in the lower right corner was not recognised. To obtain an explanation for the failed
detection, the water mask, that is the basis for the image analysis, is presented in
figure 3.10 (b) as well. Also this image is combined with the bridge detection results.
In the water mask, the lower part of the small river is missing, thus even for a human
interpreter it is impossible to recognise any bridge there. So the failed recognition
originates from an improper water mask and not from the present method. The
additional false positive water areas caused no problems since they are too small.

Statistical assessment

A statistical assessment of the first bridge recognition method was carried out on 40
satellite images. In total, 178 bridges were visible in the images. In the conducted
experiments, it turned out that the length of a bridge has a significant impact on
its recognition. So at first, three bridge classes were defined relative to their lengths
l. There are Short Bridges, with a length of 13 pixels or less. At the given spatial
resolution of 5m, this corresponds to a length of 65m. Medium Bridges, with a length
larger than 13 and less than or equal to 40 pixels, here 200m. And there are Long
Bridges, with a length of more than 40 pixels. In the definition used in this study,
only that part of a bridge which spans the river is considered a ‘bridge’. Hence, the
length of a bridge could only be determined by manual measurement. A template was
put on top of the original satellite image and, by visual inspection, the assignment
of each bridge to one of these three classes was performed. A listing of the classes is
given in table 3.4.

Short Bridges l ≤ 13
Medium Bridges 13 < l ≤ 40
Long Bridges 40 < l

Table 3.4: defined bridge classes (in pixels)

The classification of bridges provides a more accurate view of the obtained results.
Not every recognition error is a shortcoming of the method. ‘Short bridges’ cannot
be detected if the associated rivers were erased in the erosion step of the water mask
generation. This is not a failure of the bridge recognition, and thus shall be consid-
ered separately. On the other hand, very long bridges are in general clearly visible
in an image, thus they have to be detected by any method. So they are grouped in
the class of ‘long bridges’ in this study. All remaining bridges that have a length in
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(a)

(b)

Figure 3.10: (a) an enhanced NIR scene of the city of Cincinnati (USA) combined
with the result of the first bridge recognition. Located bridges are marked by a green
dot. The five visible bridges are numbered. (b) The result of the first bridge detection
(green dots) put on top of the corresponding water mask. Please note that the bridge
center points are coloured in different shades of green in figure (a) and (b) (and on
all further related images) for visualisation purposes only.

42



3.3. First Bridge Recognition Approach

Data Medium Bridges Long Bridges False Positives
visible found visible found

HRC 24 11 42 33 33 (8 images)
RE 21 7 60 47 38 (4 images)

Total 45 18 102 80 71 (12 images)

Table 3.5: number of visible and recognised bridges from water masks without
additional post-processing.

Data Medium Bridges Long Bridges False Positives
visible found visible found

HRC 24 13 42 32 38 (11 images)
RE 21 8 60 46 37 (6 images)

Total 45 21 102 78 75 (17 images)

Table 3.6: number of visible and recognised bridges from water maskswith additional
post-processing.

between these two classes are grouped into the class of ‘medium bridges’.
Such an in-depth analysis is carried out here for the first time. None of these con-
siderations were made in literature, so a direct comparison between literature results
an our results should be made with care.
The water mask upon which bridge recognition is performed has a significant impact
on the detection result. In general, the more accurate the water mask, the higher
the probability that a bridge is found and that false positives are suppressed. So, all
water masks without and with additional post-processing are analysed.
At first, the results obtained from the water masks without extra post-processing
are presented in table 3.5. For the reasons given above, the 31 ‘short bridges’ are not
listed in the table. The detection rate of ‘medium bridges’ is about 40% and ‘long
bridges’ were recognised with a rate of around 78%.
The results obtained with water masks with additional post-processing are displayed
in table 3.6. Here, ‘medium bridges’ were detected with a rate of 46% and ‘long
bridges’ with an average rate of 76%. So, a small influence of the different water
masks can be observed. The effect is opposite for ‘medium’ and ‘long bridges’, so no
general improvement can be determined. The underlying satellite image data seem
to have no significant impact.
Yet, the large number of false positives is noticeable. The histogram illustration,
displayed in figure 3.11, shall provide a better insight. It can be seen that the false
positives occur in 12 (17) of 40 images, and in most cases there are less than 10 in
one image. A considerable deviation appears in image 17 of the RE data set. In this
image, a maximum of 28 false positives showed up.
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(a)

(b)

(c)

(d)

Figure 3.11: distribution of false positives in the first bridge recognition for each
evaluated image. The HRC data set and a water mask without extra post-processing
(a) and with extra post-processing (b). The RE data set and a water mask without
extra post-processing (c) and with extra post-processing (d).
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(a) (b)

Figure 3.12: the first special case. (a) The PAN image combined with the result of
the first bridge recognition. The detected bridge is marked by a green dot. (b) The
result of the first bridge recognition (the green dot) put on top of the corresponding
water mask. Large water segments are framed by a black rim.

But this image, as well as image number 18, is a scene from the tsunami disaster re-
gion in Japan that was already mentioned in section 3.2.5. There, a lot of additional
water areas appeared and thus a lot of ‘additional bridges’ are found in between
these water bodies. The image will be analysed separately in section 3.3.5. In the
histogram, the slight influence of the different water masks is visible too. The addi-
tional post-processing, illustrated by the red histograms, reduces the number of false
positives in some images, while at the same time their number increases in other
images. A thorough discussion will be given in section 3.3.6. Four special cases that
reflect individual situations at certain bridges are presented below.

Special case 1: small river segments

The first special case describes the situation that a river is broad enough to be
represented in the final water mask, but a segment of the river is too small to be
considered as a valid water segment. In figure 3.12 (a), a part of the city of Moscow
(RUS) is displayed. For details of the data-take, see appendix A.1, HRC 3. Three
bridges are visible and there is a strong contrast between water and non-water areas.
The corresponding water mask is presented in figure 3.12 (b) and depicts the river
course well. Nevertheless, only one bridge is marked by a green dot. An explanation
can be given by the water mask. Three of the water segments are framed by a black
rim, i.e. their size is above the threshold, thus they are considered in the bridge
recognition process. The water segment without a black rim is too small, so it is
‘invisible’ for the remaining bridge detection steps. Hence, the two bridges on each
side of this water segment cannot be detected. So, the size threshold is a problem,
especially for ‘medium bridges’, but it is a useful filter to prevent false positives.

Special case 2: a bridge to an island

Another special case is a bridge leading to an island. In figure 3.13 (a), a part of
the New York harbour area is given. It shows Ellis island, which is connected to the
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(a) (b)

Figure 3.13: the second special case. (a) The original PAN image. (b) The related
water mask. The large water segment is framed by a black rim. Since it is one big
water segment, no bridge is detected.

mainland by a bridge. For details of the data-take, see appendix A.1, HRC 17. The
bridge is not marked by a green dot and the reason lies in the labelling of the water
rim. On both sides of the bridge, the water rim has the same label (number) since
it is one continuous line. According to the definition, a bridge normally lies between
two different water segments. Thus the processing stops at this point. Again, this is
a precautionary measure to exclude false positives.

Special case 3: a curved bridge

Now and then it happens that a bridge has a curved shape, as depicted in figure 3.14
(a). Details of the data-take can be obtained from A.2, RE 13. Although the proposed
method is in principle independent of the shape of a bridge, some simplifications
within the algorithm prevent the detection of convoluted structures. In detail, it is
the mentioned linear interpolation of the end points of each U-shaped segment on
each side of a bridge. In figure 3.14 (b) the related water mask is depicted. The black
lines illustrate the potential bridge segments. The support points on each side of the
potential bridge segments are displayed as well (black dots). Due to the curvature,
both points lie on one side of the bridge, hence there is no bridge in between these
two points, so the bridge is not detected at all. To enable the detection of curved
bridges as well, the Second Bridge Recognition method will be introduced in section
3.5.

Special case 4: a ship below a bridge

A rather exceptional case is the situation when a ship is cruising under a bridge right
at the moment the satellite image is acquired. Nevertheless, it occurred a few times
in the data set, hence it shall be noted here.
In figure 3.15 (a), an enhanced NIR image of the city of Cologne (GER) is displayed.
For details on the data-take, see appendix A.2, RE 4. Both visible bridges were found
by the algorithm, and are denoted by green dots. The upper bridge is marked by one
green dot, as expected, whereas the lower bridge is marked by three green dots. For
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(a) (b)

Figure 3.14: the third special case. (a) The enhanced NIR image. (b) The corre-
sponding water mask. The black lines outline the potential bridge region. Due to the
curvature, both support points (black dots) lie on one side of the bridge. Thus the
bridge is not detected.

a better visualisation, the RGB composite image of that scene is depicted in figure
3.15 (b). From that, it can be seen that there is a ship below the lower bridge that is
barely visible in the RGB image and almost invisible in the NIR image. Nevertheless,
the corresponding water mask, displayed in figure 3.15 (c), represents the ship as an
unusual cavity on the lower side of this bridge. The support points on each side of
the bridge are depicted as well. Since there are three points now within a certain
vicinity, the final center point of each pair of points is composed. And because all
three final center points are non-water pixels, they are accepted in the recognition
process as valid bridge center points. Thus this bridge is represented by three center
points. The outcome is correct, and reflects that there is an intact bridge with an
unusual bridge shape. A discussion will follow in section 3.3.6.

Comment on broken bridges

The aim of the present method is to provide information on accessible bridges. Broken
bridges require special treatment and probably a-priori knowledge on their existence.
Nevertheless, a comment shall be given on them, too.
As already mentioned in the description of the algorithm in section 3.3.3, a clearly
broken bridge would result in a combination of adjacent water segments, thus no
bridge can be recognised. The indirect information, that there is no accessible bridge,
is true. However, it might be the case that the broken part of the bridge is only very
small, so that the ‘river’ between the bridge sections is very thin. In this case, the
erosion step in the water mask generation would simply erase this small ‘river’ and
‘repair’ the shape of the bridge, more or less. This is visualised in the simulated
water masks in figure 3.16 (a) - (c). The normal case is depicted in figure (a), where
the bridge is clearly indicated by the gap between the two water segments. Then,
a simulated broken bridge is displayed in figure 3.16 (b). After the opening of the
water segments, the water mask looks as in figure 3.16 (c). In this case, the bridge
would be identified by this method, even though it is actually broken. Satellite image
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(a) (b) (c)

Figure 3.15: the fourth special case. (a) The enhanced NIR image combined with the
result of the first bridge detection (green dots). (b) The respective RGB composite
image of the scene. (c) The associated water mask combined with the results (green
dots). To explain the three green dots on the lower bridge, the support points (black
dots) are depicted as well.

data containing such a situation were not available for the current study, therefore
this case could not be evaluated properly.
Again, it should be pointed out that the intention of this approach is a fast and brief
survey of an acquired scene. For a more detailed analysis, other methods, e.g. the
Second Bridge Recognition method, should be considered.

Case study of a natural hazard: the 2011 tsunami in Japan

To evaluate the performance of the algorithm on a real disaster scenario, satellite
image data from the 2011 tsunami in Japan were evaluated. In figure 3.17 (a), the
same part of Japan’s coastline is shown as in the water body extraction section. This
time it is combined with the result of the first bridge recognition. Located bridges
are marked by green dots. As can be seen, a lot of markers appear over the entire
image, though most of them are false positives. The large number of additional water
areas that are not necessarily false classifications, since this is a region after flooding,
arouse these false positives. The water mask in figure 3.17 (b) illustrates that in the
spaces between these water bodies, numerous regions are categorised as bridges.
The two ‘long bridges’ (no. 1 and 2), in the center of the image, are recognised by
the proposed method. The two ‘short bridges’ (no. 3 and 4) are not detected for
the given reasons. And the ‘medium bridge’ (no. 5) remains undetected, because the
water segment on the lower side is too small. A discussion follows in section 3.3.6.

Hardware resources

The hardware use of the first bridge recognition method is comparable with that of
the water body extraction. Around 31% of the available Slices on the Spartan-3E
FPGA are utilised. Additionally, three BlockRAM cells are in use. In the current
experimental set-up, the algorithm runs at 12.5MHz, thus processing one 1024×1024
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(a) (b) (c)

Figure 3.16: a simulated broken bridge scenario. (a) A water mask under normal
circumstances. (b) A water mask containing a broken bridge. (c) The appearance of
the broken bridge after the erosion and dilation step.

Slices 2724 (31%)
BlockRAM 3 (10%)

Max. Clock Frequency 77MHz

Power 0.8W

Table 3.7: Nexys-2 implementation parameters

pixel image takes approx. 2s. The maximum clock frequency at which the algorithm
still operates, is estimated by the ISE design suite to be 77MHz. This is a six times
higher processing speed. With this clock rate, results can be obtained in less than
a second. The power consumption is again below 1W . The details of the Nexys-2
implementation are listed in table 3.7. A discussion regarding the results as well as
the implementation is given below.

3.3.6 Discussion and Summary
In this section of the thesis, a novel method is presented that automatically recognises
bridges over water in satellite images. The main difference of this approach to already
existing ones is the optimised algorithm structure that enables implementation on a
small FPGA.
The preliminary software program was written in IDL to assess the performance of the
proposed method. This program was modified and optimised in the hardware version
to meet the constraints of the used FPGA. Mathematically sophisticated operations
and complex loop procedures were omitted or substituted by low level operations.
In the end, the outcome of both implementations is comparable, but the algorithm
structure differs in several parts. In conclusion, all further algorithms that will be
presented in the remaining sections are written directly in Handel-C.
A binary water mask is the sole basis for the bridge recognition method and, in princi-

49



Chapter 3. Algorithms for Image Evaluation

(a) (b)

Figure 3.17: (a) the enhanced NIR image combined with the result of the first bridge
recognition (green dots). The five visible bridges are numbered. (b) The correspond-
ing water mask combined with the result of the first bridge recognition.

ple, the more accurate the water mask, the better the results of the bridge detection.
In the current water masks, this implies that it is impossible to find ‘short bridges’
since the associated rivers are erased in the water mask generation procedure. A
possibility to overcome this drawback could be the use of satellite imagery with a
higher spatial resolution e.g. as the IKONOS imagery used in Luo et al. (2007).
There, small rivers are represented by a larger number of pixels, and the assumption
is that the erosion procedure may be adjusted more precisely to preserve the true
water bodies while still excluding false positives.
The statistical evaluation revealed a recognition rate for ‘long bridges’ between 76%
and 78%. Compared to statistical assessments in literature with detection rates of
80.95% in Zhang and Sun (2011) or 89.61% in Chen (2008) this seems a quite good
result, especially keeping in mind the less complex structure of the algorithm and the
possibility to implement it on an FPGA. The lower detection rate of ‘medium bridges’
might be related to the fact that the employed water masks are not very precise at
the water area boundaries. A misclassification in these regions, however, results in
an inexact representation of the bridges in the water masks. In combination with the
size filter for bridge segments, this effect is stronger for shorter bridges than for longer
ones, hence it is more difficult to recognise ‘medium bridges’ properly. Again, it shall
be noticed that the classification of bridges relating to their length is performed here
for the first time, so that comparison with literature data must be done with care
(see section 3.3.5).
The additional post-processing step in the water mask generation was implemented
to enhance the accuracy of the water masks. However, the statistical evaluation of
the first bridge recognition results did not reveal any significant increase in the de-
tection rate when using these water masks. Regarding the clearly longer processing
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times in the water mask generation step, it does not seem advantageous to perform
additional post-processing.
Four special cases were considered separately. They show situations that happen now
and then in real satellite imagery and characterise the performance of the proposed
algorithm in more detail. Some cases, e.g. the curved bridge, provide arguments for
the development of the Second Bridge Recognition method, because it would be nice
to detect these bridges as well. Other situations, like the ship under the bridge, show
that the method is capable of detecting even small discrepancies from the normal
state.
The results of the bridge recognition obtained from the tsunami disaster satellite im-
age show a lot of markers and, at first glance, most of them seem to be false positives.
However, besides the information that there are two (intact) bridges that span the
river, the thematic map also provides a first useful survey on the infrastructure in the
whole area. As already mentioned, it might be the case that these additional water
areas are indeed water areas at that time, and the location of ‘bridges’ between these
water zones provides information on potential transportation routes through this af-
fected area. In combination with a road map, this might be valuable information.
In conclusion, processing one 1024 × 1024 pixel image in around 2s, and a minimum
detection rate of 76%, make the method well acceptable for the current purpose.

Summary

The first bridge recognition method requires a binary water mask as sole input data
and is implemented on a small FPGA. No a-priori knowledge on the location of a
bridge is needed, so even shortly constructed pontoon bridges can be detected. All in
all, the method provides a fast survey of bridges over water in a captured scene. The
robust implementation, as well as the fast and autonomous image processing, make
this approach a reasonable tool for implementation on future spacecraft.
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3.4 Island Detection

3.4.1 Purpose
The idea of image evaluation on-board satellites is especially reasonable and useful
in situations were rapid changes occur on the Earth’s surface and large areas are af-
fected. As already mentioned, one such event is flooding, and prompt information on
the extent of the disaster and the situation of buildings and infrastructure is desired.
Additional relevant information pose potential places where refugees might wait for
rescue, e.g. on rooftops of houses.
In this thesis, the term island refers to all non-water areas that are completely sur-
rounded by water. In case of flooding, this description also holds for rooftops. So,
in this section of the thesis, a method will be presented that extracts all islands in a
captured satellite image and provides the desired information.
Some background knowledge, the algorithm and its hardware implementation are pre-
sented in the following two sections. Then, the results are visualised and a conclusion
is given.

3.4.2 Background
The use of the term ‘island’ originates from the fact that remote sensing images of the
Earth’s surface are the primarily input data in this study, thus an area completely
surrounded by water is called an ‘island’. However, it means that the nature of an
‘island’ is not limited to natural islands like rocks or sandy beaches, but also implies
artificial islands, such as rooftops or ships. Furthermore, a natural island that is
connected to the mainland via a bridge will not be regarded as an island here. The
reason is that the proposed method takes a binary water mask as input and from
that such an island is just an extended part of the mainland (see e.g. Ellis Island in
figure 3.13).
So, in a binary water mask, islands are holes or spots in the water segments. The
filling of holes or spots in a binary image is a well-known task in image processing. Yet,
in contrast to the standard procedure to erase these holes, here they are particularly
labelled.
The principle work flow of the algorithm is depicted in figure 3.18. Besides the original
binary water mask, a second auxiliary memory space is allocated that has the same
dimension as the water mask. A binary segmentation is performed on that auxiliary
image, i.e. all non-water pixels that are connected to the image boundary are assigned
the value 1, and the remaining pixels are labelled with the value 0. After the entire
image is processed, both images (the original and the auxiliary) are compared. All
non-water pixels in the water mask assigned with the value 0 in the auxiliary image
are labelled as islands. Using this approach, all islands in a water mask can be found
quickly.

3.4.3 Hardware Implementation
As mentioned above, the detection of spots in a binary image has been addressed in
literature before. An implementation of this technique in an FPGA is presented in
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Figure 3.18: flow chart of the island detection algorithm.

Pedrino et al. (2010). The approach used in this thesis is similar, although there are
some differences in the hardware realisation.
Both methods require the original binary image and a secondary image of the same
dimension. Then, the connection of all background pixels (here: non-water pixels) to
the image boundary is analysed. Background pixels with no connection are labelled
as islands. During the initialisation of the process, the literature approach marks the
entire image rim of the auxiliary image, whereas the present approach only marks
the first pixel therein as a starting point. This is a valid procedure, since every
background pixel connected to the image boundary is automatically connected to
the ‘first pixel’ due to the white (background) rim around each satellite image. The
whole image is then scanned according to the eight different scan-line paths depicted
in figure 3.19. A description of the routine can be given as follows:

1. Initialise the whole auxiliary image with the value 0.

2. Set the first pixel in the auxiliary image to 1.

3. Choose a scan-line path (choose the starting point and the direction)

4. Pick every pixel that is labelled ‘background’ in the original image and that has
the value 0 in the auxiliary image.

5. Take the two previous pixels of the current pixel (the precursor in the same line
and the pixel in the line above/below) in the auxiliary image and check if at
least one of them has the value 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.19: illustration of the eight scan-line paths.

6. If the test is positive, then assign the value 1 also to the current pixel in the
auxiliary image. If not, the pixel value remains 0.

7. When all image pixels are processed, go back to point 2, choose the next scan-
line path and repeat the procedure until all eight scan-line paths are processed.

In applying this technique, every background pixel connected to the image bound-
ary is excluded, and only the island pixels remain particularly labelled. A result is
presented in the section below.

3.4.4 Results
Example image

In this section, a new example image is chosen to represent the results of this method.
In figure 3.20 (a), a part of the river Rhine near the city of Düsseldorf (GER) is
displayed. For details on the data-take, see appendix A.3, RE 26. The image shows
a bridge that crosses the river in the center of the scene, and some ships cruising the
river. Again, this NIR image was enhanced in brightness and contrast for visualisation
purposes only.
The result of the ‘island detection’ is shown in figure 3.20 (b). Water areas are blue
and located islands are orange. It can be seen that two ships (no. 2 and 5) are labelled
as islands. According to the current definition of an island, the result is correct. A
further two ships (no. 1 and 4) are represented in the water mask as well, but they
are not labelled as islands since they have a (small) connection to the background
(white region). And five ships (no. 3 and 6-9) are very close to the river boundaries,
so they only appear as ragged shapes on the riversides.
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(a)

(b)

Figure 3.20: example image for island detection. (a) An enhanced NIR image of a
scene near the city of Düsseldorf (GER) ©DLR/RapidEye. The ships are numbered.
(b) The derived thematic map. Water areas are blue, islands are orange.
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Overall, in the used data set, the complete labelling of all islands was achieved with
the proposed technique. A statistical evaluation is omitted since no false classifica-
tions occurred.

Hardware characteristics

The ‘island detection’ is the first algorithm that was directly developed and imple-
mented in Handel-C. The realisation was straightforward, as described in section
3.4.3. The required hardware and some parameters describing the FPGA implemen-
tation are listed in table 3.8. The used logic adds up to 13% of the Spartan-3E’s
total capacity, and no BlockRAM is needed. The ISE design suite determines the
maximum clock frequency for this algorithm to be 87MHz. In the current set-up,
with a clock rate of 12.5MHz, processing one 1024 × 1024 pixel image takes around
4s. The power consumption is again well below 1W .

Slices 1191 (13%)
BlockRAM 0

Max. Clock Frequency 87MHz

Power 0.2W

Table 3.8: Nexys-2 implementation parameters

3.4.5 Conclusion
The ‘island detection’ presented in this section of the thesis is capable of very quickly
finding all islands in a binary water mask. The method is again implemented in a
small FPGA. The information on islands in a certain area can provide knowledge
on potential human whereabouts in case of flooding. In combination with a detailed
analysis of the islands, it is also possible to locate ships or offshore wind parks. Due
to the chess pattern-like appearance of offshore wind farms, they can be recognised
and might provide an additional orientation point in an image. Finally, it should
be mentioned that the particular labelling of islands is advantageous for the Second
Bridge Recognition method, since it increases the detection rate significantly. All
in all, the ‘island detection’ is a useful tool for future on-board image evaluation
capabilities.
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3.5 Second Bridge Recognition Approach

3.5.1 Preliminaries
The first bridge recognition method presented in this thesis provides information
on the location of bridges over water in a captured satellite image. The extracted
positions, the center points of detected bridges, are illustrated as large green dots
in the corresponding thematic map. A single point, however, does not contain any
information on the structure of a bridge, nor does it enable a detailed analysis of
the site to be performed. With regard to the aforementioned situation of a broken
bridge, such an in-depth examination would be helpful to verify the accessibility of
a bridge. In addition, the recognition of curvilinear bridges is a desired ability for a
new technique too. This is the reason why a second bridge recognition method was
developed that labels the whole bridge deck area.
The second approach differs significantly from the first bridge recognition method,
yet it is also designed for an implementation on hardware. Since the results look
similar to the outcomes of already existing methods described in literature, a short
review will be given in the next section. Then, the new algorithm is presented, as
well as its implementation on an FPGA. Afterwards, the findings are visualised. A
discussion, a comparison with the first method and a summary, conclude this section.

3.5.2 Survey of Articles
The conducted literature survey revealed three articles that are relevant for the sec-
ond bridge recognition method in this thesis, since all methods have a very similar
outcome: a labelled bridge deck area. In the following, each of the literature ap-
proaches is presented.
The article of Gu et al. (2011) starts with an extraction of a binary water mask
from aerial images. After all major water bodies are found, adjacent water segments
separated by a bridge are aligned again. Potential bridge regions are recognised by a
comparison of the original water mask and the new one. Finally, a verification step
is performed on the bridge area. This verification is performed under the assumption
that a bridge is a ‘narrow and rectangular structure with big ratio of length to width’.
A rectangular shape, however, prohibits the detection of curved bridges. Yet, this
is a desired qualification of the second bridge detection method. Furthermore, a big
ratio of length to width implies that it is very likely to exclude smaller bridges from
detection, since they only have a small length to width ratio. So, this approach does
not seem an improvement, hence it is not applied in the study of this thesis.
In Abraham and Sasikumar (2012), a water mask is derived from multi-spectral
satellite images using a fuzzy threshold segmentation. A water area size filter is then
applied to exclude small false positive water regions, so that only the river course
remains in an image. In the resulting water mask, a bridge region is found by the
assumption that there is a gap between two water segments no greater than 10% of
the image width. The principle idea of closing a gap between two adjacent water
segments is also used in the current approach, though redefined.
A further technique to label the deck area of a bridge is presented in Gedik et al.
(2012). The authors use very high-resolution panchromatic and multi-spectral satel-
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lite imagery from IKONOS and GEOEYE to automatically locate bridges over water.
At first, all water bodies are extracted and examined whether they are part of a river
or a canal. The associated segments are assumed to be thin, long and continuous
structures. Then, distinctive points at the edges of each water segment are located.
The four points framing a bridge are connected by straight lines and the inner area
is labelled, thus the bridge deck is found. To prevent false positives, two verification
strategies were presented. The first one uses the orientation of each detected bridge
segment. If the orientation of a potential bridge segment is higher than 70◦ with
regard to the adjacent water segments, it is assumed to be a real bridge, otherwise
it is discarded. The second method uses an automatically derived road map (see
Karaman et al. (2012)). Only potential bridge segments that are also marked in the
road mask are verified bridge segments. The limitation to thin rivers, however, would
exclude the detection of many bridges, e.g. the Golden Gate Bridge in San Francisco,
since this bridge is between two large water regions. Yet, the strategy of a stepwise
detection and verification process seems reasonable and is also applied in the study
of this thesis.
In conclusion, the methods presented in literature have certain shortcomings, so they
cannot be fully adopted for the given purpose. However, some practical ideas will be
used here as well. The new approach is presented in the section below.

3.5.3 An Advanced Method
The second bridge recognition method is based upon a thematic map where all ma-
jor water bodies and islands are depicted. Thus, the method is, like the first one,
independent of the original satellite image data. The algorithm consists of two parts:
firstly, potential bridge deck areas are located and, secondly, true bridge areas are
verified. The final result, the verified bridge deck areas, are drawn as green segments
on a thematic map.

Potential bridge deck areas

The location of potential bridge deck areas is achieved in two steps through applying
morphological operations on the thematic map. In principle, it is a closing of the
water areas. An illustration is given in figures 3.21 (a)-(c). In figure 3.21 (a), a small
section of a thematic map is displayed. The white passage between the two blue
water segments represents a bridge, while the concavity in the right water segment is
a ship on the river that was unfortunately connected to the main land in the erosion
step of the water mask generation. The procedure is as follows:

1. The extension of water areas. To achieve this, the water rim of every water
body is labelled and the size of each water rim segment is determined. Small
segments are again excluded from further processing. Then, the water rim
segments of the remaining water segments are extended by a certain number of
pixels, so that all water areas are enlarged. The area between the original water
rim and the new water rim is particularly labelled (in figure 3.21 the pixels are
coloured red). As can be seen from figure 3.21 (b), the bridge area as well as
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(a) (b) (c)

Figure 3.21: main steps of the potential bridge deck area detection. (a) A section of
a water mask. (b) The water mask with extended water areas coloured red. (c) The
resulting thematic map with extracted potential bridge deck areas coloured red.

the concavity are completely filled by red pixels. If islands were not excluded
beforehand, they would also be filled with red pixels to the extent of the new
water rim, i.e. islands with a diameter of less than twice the ‘extent’ would be
completely filled, whereas larger islands would still have a non-water area in
their center.

2. The reduction of water areas. At first, the outer rim of each enlarged water
body is labelled. Then, the water rims are reduced by the same number of
pixels as in the extension step, and the red pixels in between are erased. In an
ideal case, e.g. a spherical water area, the outcome of these two steps applied
to the water area would be the original water area again. In a situation like
the one depicted in figure 3.21 (b), however, several pixels on the bridge and
in the concavity have a larger distance to the outer rim than the ‘extension’
was, so they remain red. The result is illustrated in figure 3.21 (c). Larger
islands would also have a new water rim at the boundary to the inner non-water
pixels, and all red pixels in the vicinity of this water rim would be erased. Now
and then, a larger island is near a bridge and some red pixels on the bridge
would be erased too. This is a drawback to bridge recognition. To avoid this,
islands are marked prior to the second bridge detection and excluded from the
morphological operations.

In the example image in figure 3.21 (c), the whole bridge deck area is labelled, but
also the concavity that is obviously not a bridge. To distinguish between a real bridge
and a false one, an additional processing step is performed afterwards.

Bridge verification

The previous processing step is performed ‘blindly’ on the whole thematic map. Be-
sides real bridges, a lot of unwanted areas are declared as potential bridge areas. So,
the next part of the algorithm should drastically reduce the number of false bridge
areas, although it will increase the processing time.
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The procedure is similar to the proposed technique for ’island detection‘ in section
3.4. Unfortunately, one pass has to be performed before and one after the bridge
deck area detection, so it is not possible to combine them and reduce the number of
passes. The procedure is illustrated by the three images in figures 3.22 (a)-(c) and
the algorithm works as follows.

1. An auxiliary memory space is allocated that has the same dimension as the
thematic map. It is completely blank except for some black lines that represent
all (blue) water pixels in image 3.21 (c) that have a direct contact to at least
one red pixel. These black lines are slightly enlarged in figure 3.22 (a) for
visualisation purposes only. Initially, all ‘blank’ pixels are labelled with the
number zero.

2. Each of the four corner pixels of an image is a white background pixel due to
the white rim around the satellite image. Beginning in the upper left corner of
the image, the label of the first pixel is raised by one. Then, the labelling goes
line by line from the top to the bottom of the image, indicated by the yellow
arrow in figure 3.22 (b). All white pixels receive the higher label number if they
have the higher label number in their direct 4-neighbourhood (top, bottom,
left, right).

3. The process is repeated in the backward direction, from the bottom to the top
of the image. The label number of the first pixel (in the lower right corner) is
raised by one and all other white pixels receive the higher label number if they
fulfil the neighbourhood requirement.

4. In the process, the black lines act as barriers, so coming from below, the back-
ward labelling process cannot reach the pixels inside the concavity, thus these
pixels remain with the lower label number. Here, this is indicated by the yellow
pixels in figure 3.22 (c).

5. In order to analyse bridges and concavities with different orientations in an
image, the image is in principle rotated 3 times by 90 degree and scanned from
the left to the right and vice versa after each rotation. For sound hardware
implementation, the rotation and the screening of the image is ‘realised’ by
changing the starting point and direction of the scan-line path according to
figure 3.19.

6. After the 2nd and the 4th forward and backward screening of the image (in
this case the highest label number is 4 or 8 respectively), the auxiliary image is
compared with the (intermediate) thematic map in figure 3.21 (c). All potential
bridge pixels with the label number 4 or 8 in the auxiliary image are verified
bridge deck areas and labelled green in the resulting thematic map (see figure
3.22 (d)). False bridge areas remain red.

The sequence of the scan-line paths and the additional check after the 2nd forward
and backward screening over the entire image is customised, so that also bridges that
are diagonal in an image can be detected and verified as true bridges. In applying
this technique, the majority of false bridge deck areas, that often appear as cavities
at the water’s edge, can be distinguished from real bridges.
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(a) (b) (c) (d)

Figure 3.22: illustration of the bridge verification process. (a) A secondary memory
space with delimiting black lines. (b) Visualisation of the ’yellow‘ labelling of the
image. (c) The outcome of the procedure with remaining yellow pixels in the cavity.
(d) The final result of the whole bridge detection algorithm. The verified bridge is
labelled green, whereas the false bridge area stays red.

3.5.4 Remark on the Hardware Realisation

The second bridge recognition method was realised in an FPGA according to the
description in the section above. In the experiments, however, it turned out that the
choice of the template for the morphological operations has a significant influence on
the final results. Thus, two common types of templates will be discussed below.
The maximum width of any bridge in the world was already discussed in section
3.3.4 and is always smaller than 100m. Taking the given spatial resolution of 5m,
this corresponds to a maximum width of 20 pixels. This gap between two adjacent
water segments has to be influenced by the morphological operations. So each water
segment has to be enlarged by 10 pixels, and then reduced by the same number, to
obtain the desired result. However, it turned out in the conducted experiments that
an extension of 16 pixels yields more stable results. The template for the closing
procedure can be chosen arbitrarily. Two common shapes, a quadratic structuring
element and a circular structuring element, are examined in the following text, since
their form has an impact on the recognition result.
At the beginning of the experiments, a quadratic structuring element of 32 x 32 pix-
els was used. So each currently regarded water rim pixel could influence at least 16
pixels in each direction. In figure 3.23 (a) a section of a thematic map is depicted.
Two water rim pixels are marked by a cross and their respective template area is
illustrated by the dotted squares. The black lines represent, albeit not absolutely,
the final outer water rim after the water body extension. When it comes to the water
body reduction step, each pixel of the outer rim is analysed. Two of these pixels
are denoted by a cross in figure 3.23 (b), and their corresponding template area is
again illustrated by a dotted square. Since the river is slightly diagonal in the image,
the templates on both sides of the bridge have a different impact on the number of
erased pixels on the bridge. So the final outcome, presented in figure 3.23 (c), shows
an irregular recognition of the bridge deck area. This effect grows with an increasing
skewness of the river.
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(a) (b) (c)

Figure 3.23: illustration of a quadratic structuring element for the morphological
operations. (a) The dilation of the water areas. (b) The erosion of the water areas.
(c) The final thematic map with an uneven bridge deck area coloured green.

To overcome this disadvantage, a symmetric circular structuring element was chosen
with a radius of 16 pixels, disregarding some discretisation inaccuracies. The shape
was ‘stored’ in a static ROM array composed of entries with 0s and 1s, resulting in
a large circle of 1s. As before, a quadratic structuring element of pixels around each
currently regarded pixel was chosen. This time, additional matching with the circu-
lar structuring element was performed, in order to ensure that the currently selected
(template) pixel is within the circle. In figures 3.24 (a)-(c), the same steps are shown
as in figures 3.23 (a)-(c), this time with a circular structuring element. The final
result, depicted in figure 3.24 (c), is a consistent recognition of the bridge deck area
on both sides of the bridge. But, please note, as can be seen from figure 3.24 (b), the
circular structuring element reaches several pixels on the bridge area and erases the
pixels there. This happens due to the fact that at the bridge gap, the templates from
both sides of the bridge do not overlap completely at the outer rim. So, the extended
water rim at the bridge gap has a small dent and is less than 16 pixels away from
the bridge head. Thus, in the reduction process, the template is closer to the water
areas at the gap and removes several bridge pixels: this is an issue. Yet, especially for
’medium bridges‘, the uniform detection has a positive influence on their recognition
rate, so the circular structuring element was finally used in the experiments.

3.5.5 Experimental Results
Example image

At the beginning of this section, an example image shall illustrate the principle out-
come of the second bridge recognition method. The same image as in section 3.4 is
chosen and depicted in figure 3.25 (a). It is a NIR image of an area near the city of
Düsseldorf (GER). Brightness and contrast of the image were enhanced for visuali-
sation purposes only. Additionally, the result of the second bridge detection method
is superimposed on the image. The identified bridge deck area is illustrated by the
green segment. The coloured segment is broader than the actual visible bridge in the
original image, since the bridge region appears broader in the water mask (see fig.
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(a) (b) (c)

Figure 3.24: illustration of a circular structuring element for the morphological op-
erations. (a) The dilation of the water areas. (b) The erosion of the water areas. (c)
The final thematic map with a symmetric bridge deck area coloured green.

3.25 (b)). Furthermore, the bridge heads have a clearly visible rounded shape, a result
of the chosen circular structuring element. From the corresponding thematic map, it
can be seen that several false bridge deck areas (red segments) were suppressed using
the proposed technique.
In conclusion, recognised bridges appear broader and shorter than they are in the
original satellite image, yet the labelling of the whole bridge deck area works suffi-
ciently and enables a detailed analysis of the site.

Statistical assessment

The statistical evaluation of the applied data set was carried out in the same way
as for the first bridge recognition, i.e. all bridges were classified into three groups
relating to their length. So there are ’short bridges‘ that have a length of 13 pixels or
less, ’medium bridges‘ with a length of more than 13, and less or equal to 40 pixels,
and there are ’long bridges‘ that have a length of more than 40 pixels. Furthermore,
all water masks without and with additional post-processing were analysed, since
the different water masks might have now an impact on the detection result.
The results obtained from the water masks without extra post-processing are dis-
played in table 3.9. ’Short bridges‘ are again not listed in the table, since they cannot
be detected at all. The reasons were given in section 3.3.5. ‘Medium bridges’ were
found with a rate of around 22%, and ’long bridges‘ were identified with a rate of
around 85%. For the water masks with additional post-processing, the following
results were obtained. ’Medium bridges‘ were recognised with a rate of around 37%
and ’long bridges‘ were found with a rate of around 88%.
So, a small but significant influence of the diverse post-processing procedures can be
observed in the water masks’ generation. The additional post-processing increases
the number of detected bridges, while at the same time the number of false detections
rises, too. So, this equalises in a way the enhanced results obtained with the extra
post-processing. The number of false positives, i.e. verified bridge areas that are not
real bridges in the original satellite images, is very high too. A detailed analysis can
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(a)

(b)

Figure 3.25: (a) an enhanced NIR image of an area near the city of Düsseldorf (GER).
The located bridge deck area is coloured green. (b) The corresponding thematic map.
Water pixels are coloured blue, islands are orange, false positives are red and the
verified bridge is green.
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Data Medium Bridges Long Bridges False Positives
visible found visible found

HRC 24 7 42 34 32 (11 images)
RE 21 3 60 53 32 (7 images)

Total 45 10 102 87 64 (18 images)

Table 3.9: number of visible and recognised bridges from water masks without
additional post-processing.

Data Medium Bridges Long Bridges False Positives
visible found visible found

HRC 24 11 42 37 34 (10 images)
RE 21 6 60 53 43 (8 images)

Total 45 17 102 90 77 (18 images)

Table 3.10: number of visible and recognised bridges from water masks with addi-
tional post-processing.

be obtained from the histograms in figure 3.26. In most cases, there are less than
ten false positives in an image. A significant cluster of false positives can again be
observed in image RE 17. But, as already mentioned in section 3.3.5, this image
shows the tsunami disaster area in Japan. The scene will be presented in detail in
section 3.5.5. An explicit effect of the different original satellite image data on the
results cannot be observed. A thorough discussion on the results, as well as a com-
parison with the results of the first bridge recognition method, will be given in section
3.5.6. In the following paragraphs, the four special cases presented in section 3.3.5
are considered again.

Special case 1: small river segments

The situation of a small river segment is examined first. In figure 3.27 (a), a small
part of a PAN image shows an area in the city of Moscow (RUS). The result of the
second bridge detection method is laid on top. Only one bridge is recognised by
the algorithm, illustrated by the green segment on the upper bridge. The respective
thematic map is presented in figure 3.27 (b). All larger water bodies are framed there
by a black rim. The water segment without such a rim is too small and thus not
considered in the bridge detection process, so the two adjacent bridges, above and
below that segment, cannot be found.
Another problem can be seen on the recognised bridge. There, the circular structuring
element erases a significant part of the bridge heads. In the current situation of a
’medium bridge‘, this means that only a fraction of the bridge deck area in the center
of the bridge is detected and labelled as a bridge. An additional size filter of the
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(a)

(b)

(c)

(d)

Figure 3.26: distribution of false positives in the second bridge recognition for each
evaluated image. The HRC data set and a water mask without extra post-processing
(a) and with extra post-processing (b). The RE data set and a water mask without
extra post-processing (c) and with extra post processing (d).
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(a) (b)

Figure 3.27: the first special case. (a) A PAN image of the city of Moscow (RUS),
combined with the result of the 2nd bridge recognition method. The green segment
illustrates the located bridge deck. (b) The corresponding thematic map. Large water
segments are framed by a black rim.

bridge deck area reduces the detection rate of smaller ’medium bridges‘. All in all,
these filter operations are a challenge, especially for ’medium bridges‘, however, they
proved to be useful in reducing the number of false positives.

Special case 2: a bridge to an island

The second special case is a bridge leading to a natural island. Figure 3.28 (a) shows
Ellis island in the New York harbour area. The image is combined with the result
of the second bridge recognition method. The bridge was detected by the algorithm
and is labelled as a green segment. The corresponding water mask is presented in
figure 3.28 (b). Please note that Ellis island has a diameter of more than twice the
dimension of the water region extension (16 pixels), so after closing the water regions,
the island is a non-water area again. If the island would be smaller, with a radius
of less than 16 pixels, it would be completely filled in the water extension process,
but the extended water would not be removed in the reduction step, since the new
water rim is only on the mainland and cannot reach into the island. As a result,
the bridge and the small island would be regarded as a cavity and excluded. In the
present situation, however, the island is large enough, so that the bridge between the
island and the mainland is detected.
Additionally, in contrast to the first bridge recognition method, this time no check is
performed on whether the bridge lies between two different water segments or not,
so the bridge deck area is accepted as valid bridge. The situation demonstrates the
trade-off that has to be made at some point between suppression of false positives
and detection of special bridge structures.

Special case 3: a curved bridge

Curved bridges represent a minority, yet it is desirable to include their detection in
a bridge recognition method as well. In figure 3.29 (a), the enhanced NIR image
of a coastal area near the city of New York (USA) is displayed. The result of the
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(a) (b)

Figure 3.28: the second special case. (a) A PAN image of Ellis Island in the New York
harbour area (USA), with a labelled bridge deck area in green. (b) The corresponding
thematic map. Water areas are blue, islands are orange, false bridge deck areas are
red and the verified bridge is green.

second bridge recognition is overlaid on the satellite image and the located bridge
is indicated by the green segment. From the scene, it can be seen that the present
approach is capable of detecting curved bridges. Theoretical considerations, however,
revealed that the degree of curvature and the orientation of the bridge in an image
might have an impact on its recognition. Due to the fact that, in the data set used
in the study of this thesis, all curved bridges were found, a detailed analysis was
omitted. A discussion will be given in section 3.5.6.

Special case 4: a ship below a bridge

The particular situation that a satellite image is taken at the moment a ship is cruising
under a bridge shall be reviewed too. Again, the NIR image and the corresponding
RGB image of a part of the city of Cologne (GER) are depicted in figures 3.30 (a)
and (b). The result of the bridge recognition is superimposed on the NIR image.
Both recognised bridges are indicated correctly by the green segments, although the
ship under the lower bridge is corrupting the bridge’s shape in the water mask (see
fig. 3.30 (c)). Here, the bridge verification step identifies the ship as a cavity in the
water segment, and so this part is excluded from the remaining bridge deck area. The
reliable representation of a bridge deck area is a significant advantage of the second
bridge detection method.

Case study of a natural hazard: the 2011 tsunami in Japan

The performance of the second bridge recognition method shall be appraised under
real disaster conditions as well. The same scene is analysed as in section 3.3.5: an
area around the river mouth of the Natori river. In figure 3.31 (a), the enhanced
NIR image is displayed, combined with the result of the second bridge recognition
method. The green segments illustrate located bridge deck areas. Due to the fact
that this is a region after flooding, many additional water areas appear in the water
mask (see fig. 3.31 (b)), and between these water regions a lot of ‘additional bridges’
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(a) (b)

Figure 3.29: the third special case. (a) An enhanced NIR image of an area near the
city of New York (USA). The located bridge deck area is labelled green. (b) The
corresponding thematic map. Water areas are blue, islands are orange, false bridge
areas are red and the verified bridge deck area is green.

were found by the algorithm. The two ’long bridges‘ (no. 1 and 2) spanning the
river have been detected. The bridges no. 3, 4 and 5 remained undetected due to
the erased (or too small) adjacent water bodies. The outcome will be discussed in
section 3.5.6.

Hardware resources

The hardware requirement of the current implementation is around one third of the
available Slices on the Spartan-3E FPGA. Additionally, two BlockRAM cells are
occupied. The estimated maximum clock frequency is 43MHz. In the current set-
up with a clock rate of 12.5MHz, a 1024 × 1024 pixel image is processed in about
14s. So, the processing time is significantly longer than in the first bridge recognition
method. The power consumption is clearly below 1W . All details are listed in table
3.11 and a discussion will be given in the next section.

Slices 3097 (35%)
BlockRAM 2 (7%)

Max. Clock Frequency 43MHz

Power 0.2W

Table 3.11: Nexys-2 implementation parameters
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(a) (b) (c)

Figure 3.30: the fourth special case. (a) An enhanced NIR image of the city of
Cologne (GER) combined with the result of the bridge detection. (b) An RGB
composite image of the same scene. (c) The associated thematic map. Water bodies
are blue, islands are orange, false bridge deck areas are red, and verified bridges are
green.

3.5.6 Discussion, Comparison and Summary
Discussion

The second bridge recognition method was developed to overcome shortcomings with
the first bridge recognition method and to enable a detailed analysis of a bridge. The
method differs significantly from the first and the outcome is a thematic map where
each located bridge deck area is marked.
In contrast to the first method, the algorithm was implemented directly into hard-
ware. No preparatory software version was established. In retrospect, the algorithm
development and implementation functioned well.
The input data are thematic maps depicting all larger water bodies and islands. No
a-priori knowledge of a scene is necessary. The output for a 1024 × 1024 pixel image
is obtained in around 14s, whereby the processing times vary with the number and
size of the water and bridge segments.
The statistical assessment revealed a detection rate between 85% and 88% for ’long
bridges‘. In comparison with literature data of 80.95% in Zhang and Sun (2011) and
89.61% in Chen (2008), this is a thoroughly satisfactory result. Please note that
the evaluated bridges in the literature and their size/ appearance in an image are
unknown, so this comparison is made with reservation. ’Medium bridges‘ were recog-
nised with a far lower detection rate of 22% to 37%. The main reasons are size filters
for the water segments as well as for the verified bridge segments, and the erasure
of bridge pixels at the bridge heads due to the circular structuring element. Fur-
ther analyses showed that variations in the template size or additional morphological
operations do not have an advantageous influence, so a detailed consideration of the
applied morphological operations is advisable. The additional post-processing step in
the water mask generation yields slightly better detection results, but it also increases
the number of false positives. Overall, water masks with extra post-processing do not
seem advantageous.
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(a) (b)

Figure 3.31: (a) an enhanced NIR image of the river mouth of the Natori river
combined with the result of the bridge recognition (green segments). The five visible
bridges are numbered. (b) The corresponding thematic map. Water bodies are blue,
islands are orange, false bridge deck areas are red, and verified bridges are green.

The special cases considered showed some characteristics of the algorithm in more
detail. Still, small river segments pose a challenge, and it is impossible to detect ad-
jacent bridges if the river segment is not regarded as a true water segment. Instead
of a size filter, another characteristic of water should be used to separate true water
areas from false ones. The assumption that a bridge is between two different water
segments was not used in the current version of the second bridge detection algo-
rithm, thus the bridge to Ellis island was found. This check could be implemented
as an additional processing step. As a result, the bridge to Ellis island would not be
accepted as a valid bridge any more, but false positives would vanish, too. The third
special case showed that curved bridges can be found with the proposed method. In
theory, however, the same bridge might not be found if it is slightly rotated so that
it forms a U-shaped segment directly in one of the main directions (top, bottom, left,
right). Then, it might be the case that the bridge verification process prohibits its
detection. A detailed analysis of this situation would involve a lot of additional work
and since all curved bridges in the current data set were found, the analyses were
omitted at this point. With the fourth special case, it can be shown that by using
the second bridge recognition method it is possible to distinguish between the real
bridge structure and a ship beneath. This is an advantage since such a situation does
not alter the recognition result and enables a separate analysis of the bridge and the
ship.
The case study of the tsunami disaster region in Japan revealed a similar result as
with the first method. Besides the two detected (true) ’long bridges‘, a lot of addi-
tional bridges were marked in the thematic map. As already mentioned, they appear
in the spaces between the extra water regions caused by the flooding. Their shape is
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often akin to the appearance of true bridges, so they were not excluded in the bridge
verification process. However, with the second bridge detection method, a detailed
analysis of the recognised bridge deck areas is possible, so a subsequent test might
exclude these as well. On the other hand, as already mentioned in section 3.3.6, these
additional bridges represent potential transportation routes through the affected area
so they might be useful as well. One technique to get additional information about a
bridge and determine its accessibility more reliably will be presented in section 3.6.
In conclusion, the second bridge recognition method needs significantly more process-
ing time, but it fulfils the posed requirements: the detection of curved bridges and
the possibility to evaluate detected bridges in detail. All in all, the method differs
from the first one but is not necessarily superior. Both methods are summarised in
short.

Comparison of the first and the second bridge recognition method

The object of both methods developed in the course of this thesis was to locate and
label bridges over water in a captured satellite image, yet the outcomes differ clearly.
The first method labels a located bridge with a single dot at the center point of the
bridge, whereas the second method marks the whole bridge deck area. According to
this, the processing time for a 1024 × 1024 pixel image is 2s with the first method
and 14s with the second. The hardware requirement, i.e. the number of used Slices
and BlockRAM, is almost identical in both realisations, but the maximum clock
frequency differs significantly. The first algorithm can be run at a maximum clock
rate of 77MHz, the second at only 43MHz at most. So, the already faster routine
of the first method can be operated much faster in addition. However, the power
consumption of the second method is only 1

4 of the necessary power for the first
implementation.
In conclusion, if it is sufficient to know whether there are bridges located in a certain
area or not, then the first method can provide this knowledge in a very short period
of time. If additional information about the site is desired, then the second method
has to be used. So, the preference for one method or the other depends on the actual
mission goal and the (processing time) requirements.

Summary

The second bridge recognition method was developed to improve the detection results
of the first method, and to enable an examination of located bridges. As for the first
method, it is implemented on a small FPGA chip and processes an image in a few
seconds. No supplementary information on a scene is necessary. In addition, the
outcomes might provide a basis for further investigations of an image. All in all,
the presented method would seem to be a reasonable tool for integration on a future
satellite mission.
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3.6 Moving Vehicle Detection

3.6.1 Introduction
The final method presented in this thesis is a contribution to anomaly detection. An
anomaly, in general, is an irregularity or deviation from an (expected) normal case.
In satellite imagery, an anomaly is the appearance of an object at different positions
in one colour image.
The outcome of the second bridge recognition method, the labelled bridge deck areas,
can be used to examine in detail located bridges. In the analysis, moving vehicles can
be found on a bridge, since they appear as coloured streaks in a colour image. The
detection of moving vehicles is an indicator for a good condition of the bridge, because
road traffic will only appear on an intact bridge. With this information, a reliable
conclusion could be made as to whether a bridge is accessible or not. Of course,
the converse argument, if no traffic is detected then the bridge is not accessible,
does not apply. Nevertheless, any ancillary knowledge is welcome that gives further
information on the situation on ground. In order to identify moving objects in a single
satellite image, the already mentioned time-lag in the RE data collection procedure
is used.
In the section below, this effect is explained followed by a literature survey. Then,
a new approach is presented to detect moving vehicles, together with its hardware
implementation. At the end, the findings and a conclusion are given.

3.6.2 Time-Lag in RapidEye Image Collection
A small time-lag in the data acquisition of different sensor units is a known charac-
teristic of Very High Resolution (VHR) sensors e.g. on-board the QuickBird satellite
(Pesaresi et al., 2008). Several publications use this effect to estimate moving objects
in a single satellite image. A short review will be given in section 3.6.3.
A similar time-lag also occurs in the data collection procedure of RE imagery. Due to
the internal set-up of the sensor, each spectral band is collected by a separate CCD
array, and there is a time difference in imaging the same point on the ground between
each band. The maximum time-lag is around three seconds between the blue and
the red band. The data products of Level 1B and Level 3A are co-registered using a
Digital Elevation Model (DEM) to correlate all bands to the red-edge band (reference
band). A final alignment is performed using an auto-correlation approach between
the bands (RapidEye, 2012). The outcome of this procedure is a matching of all
bands, so that static objects have the same location in each band. Moving objects,
however, still have a different position in each band after the matching process. This
can be observed for clouds, aeroplanes and vehicles as well.

’Bright vehicles moving on the ground will also look like coloured streaks due
to the image time differences.‘ (RapidEye, 2012)

This effect will be used in the study of this thesis to detect moving vehicles on a
bridge. However, a remark shall be given on two things: firstly, due to the spatial
resolution of 5m, only larger vehicles such as trucks or vans might be visible as bright
spots on a road or bridge. Secondly, besides the size of an object also the colour has a
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(a) (b)

Figure 3.32: visualisation of the time-lag in RE imagery (a) The blue band of a scene.
The green arrow points to a moving object (bright spot). (b) The red band of the
same scene. The green arrow is still at the same position as in (a), but not the object.

significant impact on its recognition. White vehicles are visible as bright spots in both
spectral bands, whereas otherwise-coloured cars might be well visible in one spectral
band but not detectable in the other band at all. A blue van, for example, will appear
as a bright spot in the blue band but not in the red. This spectral dependence is a
problem to be solved.
In figure 3.32, a bridge near the city of Düsseldorf is displayed. Therein, a bright spot
is visible on the road in the blue and red band (fig. 3.32 (a) and (b) resp.). A green
arrow points to the location of the object in the blue band and is still at the same
position in the red band. It can be seen that the bright spot is at a different position
in the red band. The displacement and the direction (leftward on the upper side of
the bridge) are in accordance with regular traffic in Germany. The green spectral
band is left out, since two bands are sufficient to detect moving objects and the time
gap is at its peak between BLUE and RED. If the green band would be included, a
bright dot would be visible between the bright dots of the red and the blue band, since
the data take of the green band is in-between the two. In a colour composite image
(RGB), the result would be a coloured streak from blue via green to red. Taking the
deduction above and the reasonable appearance of the anomalies, it is assumed that
the bright spots in the individual bands represent a moving vehicle. The detection
of moving vehicles on a bridge will be used to provide additional information on the
accessibility of a bridge.

3.6.3 Literature
VHR sensor data are often applied in vehicle detection studies due to their very
high spatial resolution of 1m (IKONOS) or better (QuickBird, WorldView-2) (Larsen
et al., 2009). In addition, five articles use time-lag to estimate the velocity and
direction of identified vehicles. They are reviewed below.
In Pesaresi et al. (2008), QuickBird imagery is used to detect moving targets from
a single optical satellite image. The optical system on-board the QuickBird satellite
consists of two sensors, a panchromatic sensor (PAN) with a spatial resolution of
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0.6m, and a multi-spectral sensor (MS) with a spatial resolution of 2.4m. The time-
lag between the data-takes is approximately 0.2s. The vehicles were found in both
bands and a velocity was estimated using the distance between the two points and the
known time difference. A similar approach was presented in Xiong and Zhang (2008).
However, in both studies, the target vehicles were extracted manually from the images
and this is not an appropriate procedure for an automated on-board application.
Satellite imagery from QuickBird was also used in the studies of Leitloff et al. (2010)
and Liu et al. (2011). Both approaches automatically detect vehicles in the PAN
image and extract a small region as a template. The corresponding vehicle in the
MS image is found by a correlation of the template with the MS image in Liu et al.
(2011), and by comparison of gradient directions in both images, in Leitloff et al.
(2010). Both matching techniques are computationally expensive and therefore not
considered as an appropriate choice for an FPGA implementation.
An article from Salehi et al. (2012) proposed an automatic extraction of moving
vehicles from single WorldView-2 imagery. The introduced approach consists of three
steps: (a) an automatic road extraction, (b) a moving vehicle detection using a
Principle Component Analysis (PCA) based change detection and (c) an estimation
of the target’s velocity. Here in this study, the road extraction can be simplified by
using the result of the second bridge recognition method, and the velocity estimation
is out of scope due to the relatively coarse spatial resolution of the RE data. The
PCA is an advanced image processing technique that is too complex for a brief image
evaluation task, so it is omitted here too.
So far, no application of RE data has been found in literature addressing this topic.
The reasons might be the coarser spatial resolution and the spectral dependence.
Nevertheless, in this thesis an approach is pursued to use this effect for the current
purpose and it will be introduced in the section below.

3.6.4 A New Approach

The review of current literature revealed a keen interest in the detection of moving
vehicles and the estimation of their velocities and their directions. So far, satellite
image data from VHR sensors was applied in such studies. The aim of the present
work is, however, just to provide information on whether there are moving vehicles on
a bridge or not. No accurate detection and description of single objects is necessary.
Thus, it is assumed that the mentioned time-lag in the data collection procedure
of RE imagery might provide sufficient information. A conservative approach was
chosen, so that it is more likely to miss traffic than to falsely locate moving objects.
All in all, it is just ancillary knowledge that might support the decision whether a
bridge is still accessible or not.
The principle procedure of this basic approach is depicted in figure 3.33. The main
processing steps are listed on the left-hand side. The intermediate results are il-
lustrated on the right-hand side. Please note that the small images represent ap-
proximations of the corresponding steps. The final thematic map is not an exact
representation of the result that is obtained from the depicted satellite images in the
first row, it is just a visualisation of the key points.
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Figure 3.33: flow chart of the moving vehicle detection algorithm.
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A description of the procedure can be given as follows:

1. Examine the bridge deck areas in the blue and red spectral band. They are se-
lected via a bridge template, the result of the second bridge recognition method.

2. Search each area for bright pixels that potentially represent vehicles. Since the
spatial resolution of the imagery is 5m, only larger vehicles such as trucks or
vans will be spotted. Furthermore, white vehicles are more likely to be detected,
since they are clearly visible in both spectral bands.

3. Label all bright spots that occur uniquely in one band. If a bright pixel appears
at the same position in the blue and the red band, it is assumed to be a static
object, and is thus discarded from further considerations.

4. Reduce the number of false positives and draw the final outcome on a thematic
map.

The big blue dots in the small image at the bottom of figure 3.33 represent located
moving objects, and the chessboard pattern on the bridge area indicates that a hu-
man operator found some moving vehicles on that bridge too. The exact hardware
realisation is described below.

3.6.5 Hardware Routine
The proposed algorithm uses RE satellite imagery of the blue and the red band, as
well as the corresponding thematic map as input data. In order to keep the hardware
procedure similar to the previous implementations, an extract from the blue band,
the red band and the thematic map is selected to form a composite image, with
almost the same size (1024 × 1020 pixels) as the former input images. As a result,
each small scene depicts the same location, has a dimension of 1024 × 300 pixels,
and is framed by a white rim of 20 pixels at the bottom and the top to separate the
images. The traffic detection procedure is as follows:

1. Set all pixels in the blue and red band to background pixels (white) that are
not bridge deck pixels (green) in the thematic map.

2. Find all bright pixels in the blue and the red band that have a higher value
than the mean of the eight adjacent pixels. The difference must be greater than
4.

3. Remove all bright pixels that have the same location in the blue and in the red
band to exclude static bright spots.

4. Remove single bright pixels (since they are likely to be false positives).

5. Review an area of 61 × 61 pixels in the red band that has a bright pixel at its
center in the blue band. If at least one bright pixel is detected in the red band,
label the pixels in both bands as a ’verified anomaly‘.

79



Chapter 3. Algorithms for Image Evaluation

6. Remove all single bright spots.

The value for the difference in brightness was determined empirically. The search
area of 61 × 61 pixels was derived from the assumption that trucks and vans do not
drive faster than 180Km

h
that is, at the given spatial resolution of 5m and a time-lag

of ∼ 3s, a distance of 30 pixels in one direction. The results obtained from an analysis
of real satellite image data are presented in the following section.

3.6.6 Experimental Results
Example image

Figure 3.34 (a) is an RGB composite image of a scene near the city of Leverkusen
(GER). For details on the data-take, see appendix A.3, RE 24. A motorway bridge
crosses the river Rhine and several bright dots on the bridge and on the continuative
motorway indicate a lot of traffic. The same bright spots are visible in the blue and
red band images (fig. 3.34 (b) and (c), respectively). A closer look reveals a different
position of the numerable dots in the blue and red band images due to the mentioned
time-lag in image collection. The corresponding thematic map is illustrated in figure
3.34 (d). A chessboard pattern on the bridge deck area now indicates the traffic
discovered by a human operator. In the current version of the algorithm, it is not
possible to tell exactly which two anomalies (one in the blue and one in the red band)
belong to the same vehicle on ground, but this is of minor relevance here, since only
information as to whether there is traffic or not is desired. The big blue dots display
the result of the moving vehicle detection, and highlight the located objects.

Statistical evaluation

A statistical evaluation was carried out on 20 RE scenes. For details on the data-
takes, see appendix A.3, RE 21-40. In the images, a total of 35 bridges is visible. On
27 bridges, no moving objects were observed, while on eight bridges several moving
vehicles were spotted by a human operator. The statistical outcome is displayed in
table 3.12. Moving objects were detected on four of the eight bridges with traffic.
The reason for the misclassification in four cases is the faint visibility of the bright
spots. The human observer was able to extract even slightly brighter points on a noisy
bridge, whereas the algorithm suppressed such small signals to avoid false detections.
Besides two false classifications, bridges without traffic were identified correctly, which
reflects the conservative approach. The false detections arose in one case on a very
shiny bridge, and in a second case due to a small moving boat near the bridge. In
the first case, no traffic was detected by the human observer due to a high reflectance
of the bridge’s surface. So even if the algorithm worked correctly, it could not be
verified, thus the result was declared as a false detection. In the second situation, a
boat was in the vicinity of a bridge, thus this non-water area was merged with the
bridge area. The detection of a moving object on the bridge (area) was therefore
correct, but because it was a boat and not road traffic, the outcome was anyway a
false detection. Overall, 29 of 35 bridges were evaluated correctly.
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(a)

(b)

(c)

(d)

Figure 3.34: a scene near the city of Leverkusen (GER). (a) An RGB composite im-
age. (b) The blue band image. (c) The red band image. (d) The thematic map. The
chessboard pattern on the bridge indicates moving objects found by a human opera-
tor. The blue dots illustrate moving vehicles detected by the proposed algorithm.
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Bridges Bridges
Recognition with traffic without traffic
Correct 4 25
Wrong 4 2
Total 8 27

Table 3.12: the number of bridges with and without traffic and their recognition
by the proposed method.

Slices 1475 (17%)
BlockRAM 0

Max. Clock Frequency 112MHz

Power 0.2W

Table 3.13: Nexys-2 implementation parameters

Hardware characteristics

The hardware requirement of this implementation is very small. Only 17% of the
available Slices are used, and no BlockRAM is needed. The maximum clock frequency
is estimated by the ISE design suite to be more than 100MHz. So an image evaluation
of a 1024 × 340 pixel scene, that takes less than two seconds in the current set-up
with 12.5MHz, can be performed in a fraction of a second with a much higher clock
rate. The power consumption is again far below 1W . Table 3.13 lists the main
characteristics of the implementation.

3.6.7 Conclusion
In order to provide additional information about the accessibility of a bridge, a novel
approach has been proposed. Under the assumption that moving vehicles on a bridge
suggest that a bridge is still in good condition, a time-lag in the data collection of
RE imagery was used to identify moving objects. Such an effect was noticed on VHR
imagery before and several publications employed this effect for moving target detec-
tion, but so far it was never used on RE image data.
For FPGA implementation, multiple low-level image processing operations were com-
bined to recognise moving traffic on a bridge. The final hardware realisation is small
and performs an image analysis of a 1024 × 340 pixel scene in less than two seconds.
The run time depends on the image content, but the processing time averaged at 2s,
so a relaxed real-time criteria is fulfilled.
A statistical evaluation revealed a traffic recognition rate of 50%, whereby eight
bridges with traffic do not really represent a statistical measure, but moving vehicles
were hard to find in the data set. Several moving vehicles were not detected, mainly
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due to their very weak appearance. Overall, the algorithm pursued a conservative
approach to avoid false positives. The classification was correct in around 83% of all
bridges (with and without traffic).
The work presented in this study is a technology demonstration on ground and Level
3A data were used. So pre-processing, e.g. co-registration of the bands, was already
performed. In case of an application on-board a satellite, these pre-processing steps
have to be taken into account. But, they might already be conducted in data pre-
processing inside modern sensor systems.
All in all, the proposed method is an additional tool for image evaluation on-board
satellites. Further similar applications might include the detection of moving ships,
aeroplanes, or other moving objects of interest.
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Chapter 4

Findings and Prospects

4.1 Findings

This final chapter of the present PhD thesis summarises the key findings of the con-
ducted work and provides an outlook towards future areas of research.
The idea of this thesis is to support mission operations on future satellite missions.
The image acquisition procedure in space shall become more flexible and adjusted to
the content of the currently acquired optical satellite imagery. Therefore, captured
scenes shall be evaluated directly on-board a spacecraft, and a brief overview of the
information content shall be provided (to the on-board planning unit). In the event
of severe changes on ground, this might enable a prompt re-scheduling of the timeline
and initialisation of appropriate actions, e.g. a second data-take of the affected area.
Due to the autonomy of the satellite, the currently necessary direct interaction of
the ground segment can be reduced or omitted. Further benefits would be a faster
supply of the data to terrestrial data centres and additional valuable information on
a certain region.
In the course of this doctoral thesis, five different algorithms were designed to extract
useful information from optical satellite imagery. The level of obtained knowledge
spans from a primal classification of water bodies up to a detection of moving objects
on a recognised bridge. Considering the real-time requirements and power constraints
on-board a satellite, Field Programmable Gate Arrays (FPGAs) were chosen as a rea-
sonable processing unit. Hence, all algorithms were specially tailored for an FPGA
implementation. A résumé of the thesis can be given as follows:

The thesis starts in Chapter 1 with a proposal for on-board image evaluation. Rea-
sons were given to explain the additional work of image processing in space compared
to a terrestrial implementation. But also the benefits were highlighted: an adjusted
image acquisition and a faster response in case of an emergency. Practical scenarios
were visualised with regard to current or near-future satellite missions. In order to
cope with some real-time requirements and the constraints on-board a spacecraft,
Field Programmable Gate Arrays (FPGAs) were introduced as an adequate process-
ing unit. The chapter concludes with a listing of the scientific contributions and the
structure of this thesis.
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At the beginning of Chapter 2, the satellite imagery used in the study of this
thesis was presented. Panchromatic satellite image data from the HRC on-board the
satellite Proba-1 was chosen with regard to the future ALOS-3 satellite mission, to
demonstrate the applicability of the proposed methods to this kind of imagery. And
satellite imagery from the RapidEye (RE) satellites was used to show the direct util-
ity of the developed methods, since RE satellite image data are a part of the German
contribution in case the International Charter Space and Major Disasters is invoked.
Both data types have a spatial resolution of 5m. A set of 20 HRC and 40 RE scenes
was selected, including a real disaster situation, the 2011 tsunami in Japan. The
data-take locations are distributed all over the world to ensure a variety of different
scenarios. Finally, the performance of the algorithms was evaluated on this data set.
A reason for using an FPGA as a real-time image processing unit on-board satellites
was already given in chapter 1. In chapter 2, some basic knowledge on this technology
was provided and the challenges that come along with hardware programming were
discussed. A high-level hardware description language, called Handel-C, was brought
forward that suits the need for a rapid development of hardware algorithms. The
whole experimental set-up was illustrated, with the employed Nexys-2 development
board and its connection to a PC. The chapter concludes with a description of the
overall experimental work flow.

In Chapter 3, the main part of this thesis, five different FPGA-based image pro-
cessing algorithms were presented. At the beginning, an overview was given on the
potential combinations of the algorithms. Due to the fact that each algorithm works
independently of the other, and provided that the necessary input data are available,
the algorithms can be arranged in a modular concept. So the output and the overall
processing time can be adjusted to the satellite mission goal or requirements.
At first, a water body extraction was presented. With the proposed method, all
major water bodies can be recognised in a PAN or NIR satellite image. The result is
drawn after 6 − 8s (without extra post-processing) onto a binary water mask.
A statistical assessment was conducted by comparing the automatically generated
water masks with manually derived ones. The overall agreement was about 80% as
a minimum. A comparison with data from literature was established by analysing
a similar scene of the city of Taipei (TPE). The results are comparable, albeit not
definite, yet all larger water areas were represented in the water masks. An anal-
ysis of the tsunami disaster site was performed as well, to verify the performance
of the proposed method under real disaster conditions. Besides the expected water
regions, many additional water bodies were found due to the flooding in that area.
So, the proposed method reflected the flooding in the corresponding water mask. The
hardware implementation is characterised by the use of 32% of the available Slices
on a Spartan-3E FPGA, a maximum clock rate of around 100MHz, and a power
consumption of 0.5W .
In conclusion, the water body extraction gives a first, fast, and rough evaluation of
the distribution of water areas in a scene. It was the basis for all further algorithms
in this thesis.
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The first bridge recognition algorithm can find bridges over water in a satellite
image. The routine screens a binary water mask and labels all located bridges by a
dot at the bridge center point. A result can be obtained after 2s in a 1024 × 1024
pixel image and the output is drawn on to a thematic map.
A statistical assessment revealed a recognition rate of around 76 − 78% for ’long
bridges‘. Four special cases were considered separately. They showed, among other
things, that small river segments pose a difficulty for the detection rate, and that
curved bridges cannot be found with the proposed method. Furthermore, an analysis
of the tsunami disaster region in Japan was performed. To the best of our knowledge,
this is the first time that a bridge recognition method was evaluated on real disas-
ter images. The outcome showed the reliable detection of ’long bridges‘ and might
provide knowledge on potential transportation routes through an affected area. The
transfer of the pre-developed software code into working hardware was challenging
and the code had to be verified significantly. In the end, the hardware implementation
needs around 31% of the available Slices on the Spartan-3E FPGA, has a maximum
clock rate of 77MHz, and a power consumption of 0.8W .
The proposed method is independent of (potentially outdated) map data and can
provide up-to-date information, e.g. on recently constructed pontoon bridges, in an
area. It is a very fast and completely autonomous bridge recognition method.

The island detection algorithm was intended to find rooftops in case of a flooding,
since these spots might pose a shelter for people waiting for help. In the current
study, the term ’island‘ refers to all non-water areas that are completely surrounded
by water in a water mask. This includes natural islands, as well as artificial islands,
such as rooftops or ships.
The applied technique is similar to a proposed method from literature that was also
implemented on an FPGA. Yet some modifications were made in the present algo-
rithm to optimise the procedure. In the conducted experiments, all islands were found
and the average processing time for a 1024 × 1024 pixel image is approx. 4s. The
hardware implementation needs 13% of the available Slices of the Spartan-3E FPGA,
the maximum clock rate is 87MHz, and the power consumption is only 0.2W .
Besides the detection of rooftops, an a-priori masking of all islands in a water mask
raises the detection rate for a second bridge recognition algorithm. And a detailed
analysis of the islands might present a novel field of research (see section ’prospects‘
below).

The second bridge recognition method was developed to enhance the detection
results of the first method, and to provide the possibility for a detailed analysis of
the site. A completely different approach was chosen and the outcome is a labelling
of the complete bridge deck area of located bridges.
A statistical evaluation showed a detection rate of 85 − 88% for ’long bridges‘. The
same four special cases that were considered in the first bridge recognition, were
regarded again. Still, small river segments pose a challenge to bridge detection, how-
ever, in contrast to the first method, the present one is able to detect curved bridges
and yields robust results in case a ship is cruising under a bridge in an image. The
analysis of the tsunami disaster site in Japan showed, as in the first method, a reli-
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able detection of ’long bridges‘. The algorithm was directly written in Handle-C, no
(preliminary) software version was developed, and the FPGA implementation func-
tioned well. The processing time for a 1024 × 1024 pixel image is around 14s. The
hardware realisation uses about 35% of the available Slices on the Spartan-3E FPGA,
the maximum clock rate is 43MHz, and the power consumption is 0.2W .
As with the first method, also the second bridge recognition method does not require
any additional information on the scene, and it operates completely autonomously.

In this thesis, a small time-lag in the data acquisition procedure of RE imagery
was used to perform moving vehicle detection on recognised bridges. The small
time gap in the data-takes allows the detection of moving vans or trucks. The con-
clusion is that if moving traffic is found on a bridge, this bridge is still accessible. To
the best of our knowledge, it is the first time that this effect of RE satellite imagery
was used for a detection of moving objects.
A statistical evaluation produced a correct evaluation (in cases with and without
traffic on a bridge) in about 83%. The processing of a 1024 × 300 pixel scene is
performed in around 2s, and the hardware implementation is characterised by the
use of 17% of the available Slices on the Spartan-3E FPGA, a maximum clock rate
of 112MHz, and a power consumption of 0.2W .
This is supplementary information, providing more precise knowledge on the condi-
tion of a bridge. Yet, in addition, it is a demonstration that also satellite imagery
with a relatively coarse spatial resolution of 5m can provide such useful information.

Please note that in the current experimental set-up the FPGA was operated at a
clock rate of 12.5MHz. The given processing times and power consumption speci-
fications refer to this clock rate. If higher clock rates, e.g. maximum possible clock
rates are used, the processing times will decrease but the power consumption might
increase.

In summary, the five methods presented in the course of this thesis represent novel
image analysis capabilities. The algorithms operate completely autonomously and
process an image in a few seconds. Furthermore, they are implemented in a small
FPGA, which enables real-time performance and affords a power consumption of less
than 1W . All in all, the developed methods would seem to be reasonable tools for
on-board application on future Earth observation satellites.

4.2 Prospects
In this PhD thesis, five novel methods for image evaluation on-board future satellite
missions were presented and their field of application was described. An outlook on
potential future research activities, based on the proposed methods, shall complete
the study of this thesis.

A first step could be the employment of satellite imagery with a spatial resolution
of 1m or better. The satellite imagery used, with a spatial resolution of 5m, is ade-
quate for the proposed methods, however, it can be observed, e.g. with regard to the
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ALOS-3 mission, that future optical systems will provide PAN imagery in a very high
spatial resolution. This might be beneficial for object recognition tasks but might
also include some challenges. In order to show that the current methods are also
applicable to VHR satellite imagery, a demonstration using these data would make
sense.

Furthermore, it would be reasonable to include more useful algorithms in an image
analysis and represent the results on the thematic map too. An automatic road
extraction would be beneficial to present potential transportation routes, and would
suit a combination with the presented bridge recognition algorithms. In addition, a
detection of urban areas would increase the information content of a thematic map
and could potentially guide a second data-take to regions where it is more likely to
find people waiting for help.

Another prospect might be the detection of moving ships. Since, ’Ship detection
from remote sensing imagery is a crucial application for maritime security...‘ (Cor-
bane et al., 2010), several publications have addressed this topic already. In Zhu et al.
(2010) and Corbane et al. (2010), methods for ship detection in 5m panchromatic
SPOT-5 imagery were presented, and in Saur et al. (2011), the green band of RE
imagery was used to detect ships in general.
A novelty would be the separate detection of moving ships. This information would
provide supplementary knowledge on the situation at sea. For that purpose, the la-
belled ‘islands’, the results of island detection, can be examined in detail to detect
signs of the ‘time-lag effect’ in RE imagery. If a ship is moving, then a small part at
the front side (in the direction of motion) is visible at a specific position in the red
band, while there is water at this exact position in the blue band. The rear part of
a ship is at a specific position in the blue band, while there is water at this position
in the red band. Additionally, the water appears white due to the foaming at the
back side of a ship. The result is an exposure of a bright red spot at the front side of
a ship and a light blue spot at the back side of a ship in an RGB composite image.
Thus, moving ships can be distinguished from non-moving ones, where the coloured
spots do not occur.

Finally, the scope shall be widened a little to another potential field of application.
In this thesis, the developed algorithms were primarily dedicated to an evaluation of
optical satellite images. However, in principle, it is possible to adopt them to optical
aerial imagery as well. The outcome is still a thematic map of the captured scene,
including landmarks, such as bridges over water, off-shore wind parks, or particularly
shaped islands. Such a map might be used in a terrain aided navigation system
for airborne vehicles. Recognised features could be compared with known features
from previous data-takes and thereby the position of a vehicle could be determined
(Kim and Sukkarieh, 2004).
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Appendix A

Satellite Imagery Details

The following pages list the locations, coordinates and dates of acquisition for the
evaluated satellite image scenes. The first table shows details of the PROBA-1/ HRC
data, the second and third table list details of the RapidEye image data.

91



Appendix A. Satellite Imagery Details

Image ID Geogr. Location Center coordinates Date of acquisition
(approx.)

HRC 1 London, GBR 51◦31’N 0◦08’W 2005-11-07
HRC 2 Rostock, GER 54◦11’N 12◦08’E 2005-10-07
HRC 3 Moscow, RUS 55◦45’N 37◦34’E 2005-08-26
HRC 4 Canberra, AUS 35◦18’S 149◦08’E 2007-06-23
HRC 5 Taipei, TPE 25◦05’N 121◦31’E 2004-02-26
HRC 6 Seoul, KOR 37◦32’N 126◦55’E 2004-10-27
HRC 7 Montreal, CAN 45◦25’N 73◦38’W 2006-11-01
HRC 8 Istanbul, TUR 41◦02’N 28◦59’E 2008-05-08
HRC 9 Moscow, RUS 55◦42’N 37◦39’E 2010-10-07
HRC 10 Viedma, ARG 40◦48’S 62◦59’W 2010-06-24
HRC 11 Tres-Marias, BRA 18◦12’S 45◦14’W 2010-07-16
HRC 12 Cincinnati, USA 39◦06’N 84◦31’W 2010-09-09
HRC 13 Shanghai, CHN 31◦16’N 121◦33’E 2010-09-21
HRC 14 Moscow, RUS 55◦43’N 37◦39’E 2010-10-07
HRC 15 Shenyang, CHN 41◦45’N 123◦28’E 2010-12-11
HRC 16 Copenhagen, DEN 55◦41’N 12◦35’E 2003-03-31
HRC 17 New York, USA 40◦42’N 74◦03’W 2006-08-01
HRC 18 San Francisco, USA 37◦49’N 122◦29’W 2004-05-02
HRC 19 Sydney, AUS 33◦51’S 151◦13’E 2002-11-04
HRC 20 Helsinki, FIN 60◦10’N 24◦54’E 2011-06-29

Table A.1: details of the evaluated PROBA-1/ HRC data

92



Image ID Geogr. Location Center coordinates Date of acquisition
(approx.)

RE 1 Cincinnati, USA 39◦06’N 84◦29’W 2011-06-30
RE 2 Cincinnati, USA 39◦06’N 84◦32’W 2011-06-30
RE 3 Taipei, TPE 25◦05’N 121◦31’E 2010-09-03
RE 4 Cologne, GER 50◦56’N 6◦59’E 2011-05-25
RE 5 Düsseldorf, GER 51◦13’N 6◦45’E 2011-05-30
RE 6 Bonn, GER 50◦45’N 7◦07’E 2011-05-25
RE 7 Quebec, CAN 46◦53’N 71◦09’W 2010-06-21
RE 8 Quebec, CAN 46◦45’N 71◦17’W 2010-08-19
RE 9 Bordeaux, FRA 44◦58’N 0◦28’W 2011-05-25
RE 10 Bordeaux, FRA 44◦49’N 0◦33’W 2011-05-25
RE 11 New York, USA 40◦43’N 74◦00’W 2010-09-14
RE 12 New York, USA 40◦46’N 73◦56’W 2010-09-14
RE 13 New York, USA 40◦48’N 73◦49’W 2010-09-14
RE 14 Canberra, AUS 35◦18’S 149◦08’E 2010-02-20
RE 15 Seoul, KOR 37◦32’N 126◦55’E 2010-06-23
RE 16 Magdeburg, GER 52◦08’N 11◦39’E 2010-06-24
RE 17 Sendai, JPN 38◦11’N 140◦57’E 2011-03-19
RE 18 Iwanuma, JPN 38◦05’N 140◦53’E 2011-03-19
RE 19 Istanbul, TUR 41◦03’N 29◦02’E 2009-06-03
RE 20 Istanbul, TUR 41◦02’N 28◦57’E 2009-08-22

Table A.2: details of the evaluated RapidEye data for pattern recognition
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Appendix A. Satellite Imagery Details

Image ID Geogr. Location Center coordinates Date of acquisition
(approx.)

RE 21 Cincinnati, USA 39◦03’30”N 84◦25’00”W 2011-06-30
RE 22 Cincinnati, USA 39◦05’40”N 84◦31’20”W 2011-06-30
RE 23 Taipei, TPE 25◦05’00”N 121◦29’20”E 2010-09-03
RE 24 Leverkusen, GER 51◦02’10”N 6◦58’50”E 2011-05-25
RE 25 Cologne, GER 50◦53’50”N 6◦60’20”E 2011-05-25
RE 26 Düsseldorf, GER 51◦11’10”N 6◦46’30”E 2011-05-30
RE 27 Montreal, CAN 45◦28’20”N 73◦31’30”W 2011-06-15
RE 28 Bordeaux, FRA 44◦57’20”N 0◦27’50”W 2011-05-25
RE 29 New York, USA 40◦36’20”N 74◦02’20”W 2010-09-14
RE 30 New York, USA 40◦42’40”N 73◦59’30”W 2010-09-14
RE 31 New York, USA 40◦34’20”N 73◦53’50”W 2010-09-14
RE 32 New York, USA 40◦38’30”N 74◦07’50”W 2010-09-14
RE 33 New York, USA 40◦51’10”N 73◦56’50”W 2010-09-14
RE 34 New York, USA 40◦47’00”N 73◦53’20”W 2010-09-14
RE 35 New York, USA 40◦48’40”N 73◦49’00”W 2010-09-14
RE 36 New York, USA 40◦48’00”N 73◦48’40”W 2010-09-14
RE 37 Düsseldorf, GER 51◦14’50”N 6◦45’40”E 2011-05-30
RE 38 Düsseldorf, GER 51◦13’40”N 6◦45’40”E 2011-05-30
RE 39 Düsseldorf, GER 51◦12’10”N 6◦44’20”E 2011-05-30
RE 40 Taipei, TPE 25◦07’20”N 121◦28’30”E 2010-09-03

Table A.3: details of the evaluated RapidEye data for anomaly detection

94



List of Figures

1.1 diagram of the described data and information flow. . . . . . . . . . . 2
1.2 block-diagram of the PPU on-board of X-Sat . . . . . . . . . . . . . . 6
1.3 view of the image collection concept of PRISM-2 . . . . . . . . . . . . 7

2.1 locations of the applied satellite imagery . . . . . . . . . . . . . . . . 12
2.2 diagram of a basic FPGA structure . . . . . . . . . . . . . . . . . . . 13
2.3 the Nexys-2 development board . . . . . . . . . . . . . . . . . . . . . 17

3.1 flow chart of used algorithm combinations. . . . . . . . . . . . . . . . 20
3.2 flow chart of the water body extraction algorithm. . . . . . . . . . . . 23
3.3 example image for water body extraction . . . . . . . . . . . . . . . . 26
3.4 example for additional post-processing . . . . . . . . . . . . . . . . . 27
3.5 comparison of HRC and RE imagery . . . . . . . . . . . . . . . . . . 29
3.6 comparison with data taken from literature . . . . . . . . . . . . . . . 32
3.7 water body extraction in Japan . . . . . . . . . . . . . . . . . . . . . 33
3.8 flow chart of the first bridge recognition algorithm. . . . . . . . . . . 38
3.9 visualisation of the scan templates . . . . . . . . . . . . . . . . . . . . 40
3.10 example image for the first bridge recognition . . . . . . . . . . . . . 42
3.11 visualisation of false positives in the first bridge recognition . . . . . . 44
3.12 first bridge recognition - special case 1 . . . . . . . . . . . . . . . . . 45
3.13 first bridge recognition - special case 2 . . . . . . . . . . . . . . . . . 46
3.14 first bridge recognition - special case 3 . . . . . . . . . . . . . . . . . 47
3.15 first bridge recognition - special case 4 . . . . . . . . . . . . . . . . . 48
3.16 simulated broken bridge . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.17 first bridge recognition in Japan . . . . . . . . . . . . . . . . . . . . . 50
3.18 flow chart of the island detection algorithm. . . . . . . . . . . . . . . 54
3.19 illustration of the eight scan-line paths. . . . . . . . . . . . . . . . . . 55
3.20 example image for island detection . . . . . . . . . . . . . . . . . . . 56
3.21 main steps of the potential bridge deck area detection . . . . . . . . . 61
3.22 illustration of the bridge verification . . . . . . . . . . . . . . . . . . . 63
3.23 illustration of a quadratic structuring element . . . . . . . . . . . . . 64
3.24 illustration of a circular structuring element . . . . . . . . . . . . . . 65
3.25 example image for the second bridge recognition . . . . . . . . . . . . 66
3.26 visualisation of false positives in the second bridge recognition . . . . 68
3.27 second bridge recognition - special case 1 . . . . . . . . . . . . . . . . 69
3.28 second bridge recognition - special case 2 . . . . . . . . . . . . . . . . 70
3.29 second bridge recognition - special case 3 . . . . . . . . . . . . . . . . 71

95



List of Figures

3.30 second bridge recognition - special case 4 . . . . . . . . . . . . . . . . 72
3.31 second bridge recognition in Japan . . . . . . . . . . . . . . . . . . . 73
3.32 visualisation of the time-lag in RE imagery . . . . . . . . . . . . . . . 76
3.33 flow chart of the moving vehicle detection algorithm. . . . . . . . . . 78
3.34 example image for the moving vehicle detection . . . . . . . . . . . . 81

96



List of Tables

2.1 HRC and RE satellite image data specifications . . . . . . . . . . . . 10

3.1 accuracy of water body extraction without extra post-processing . . . 30
3.2 accuracy of water body extraction with extra post-processing . . . . . 30
3.3 water body extraction: Nexys-2 implementation parameters . . . . . 33
3.4 bridge classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 first bridge recognition results without extra post-processing . . . . . 43
3.6 first bridge recognition results with extra post-processing . . . . . . . 43
3.7 first bridge recognition: Nexys-2 implementation parameters . . . . . 49
3.8 island detection: Nexys-2 implementation parameters . . . . . . . . . 57
3.9 second bridge recognition results without extra post-processing . . . . 67
3.10 second bridge recognition results with extra post-processing . . . . . 67
3.11 second bridge recognition: Nexys-2 implementation parameters . . . . 71
3.12 moving vehicle detection results . . . . . . . . . . . . . . . . . . . . . 82
3.13 moving vehicle detection: Nexys-2 implementation parameters . . . . 82

97



List of Tables

98



List of Abbreviations

ALOS-3 Advanced Land Observing Satellite - 3
ASIC Application Specific Integrated Circuit
BIRD Bispectral InfraRed Detection
BLUE Blue band
CREST Centre for REsearch in Satellite Technologies
DLR German Aerospace Center
DSM Digital Surface Model
EDIF Electronic Design Interchange Format
EO Earth Observation
ESA European Space Agency
FF Flip-Flop
FPGA Field Programmable Gate Array
GIMP GNU Image Manipulation Program
GMRF Gauss Markov Random Field
GREEN Green band
GSD Ground Sample Distance
HRC High Resolution Camera
IDL Interactive Data Language
JAXA Japan Aerospace Exploration Agency
LUT Look-Up Table
MS Multi-Spectral
NASA National Aeronautics and Space Administration
NIR Near Infra-Red
PAN Panchromatic
PC Personal Computer
PCA Principle Component Analysis
PPU Parallel Processing Unit
PRISM-2 Panchromatic Remote-sensing Instrument for Stereo Mapping-2
PROBA-1 PRoject for On-Board Autonomy-1
RAM Random Access Memory
RE RapidEye
RED Red band
RESA RapidEye Science Archive
RGB Red, Green, Blue
ROM Read Only Memory
SVM Support Vector Machine

99



List of Abbreviations

100



Bibliography

Abraham, L. and Sasikumar, M. (2012). A fuzzy based automatic bridge detection
technique for satellite images. In Venugopal, K. and Patnaik, L., editors, Wire-
less Networks and Computational Intelligence, volume 292 of Communications in
Computer and Information Science, pages 213–219. Springer Berlin Heidelberg.

ALOS-3 (2013). The ALOS-3 mission. See www.eoportal.org.

Alston, I. and Madahar, B. (2002). From C to netlists: hardware engineering for
software engineers? Electronics & Communication Engineering Journal, 14(4):165–
173.

Appiah, K., Hunter, A., Dickinson, P., and Owens, J. (2008). A run-length based
connected component algorithm for FPGA implementation. In ICECE Technology,
2008. FPT 2008. International Conference on, pages 177–184. IEEE.

Bailey, D. G. and Johnston, C. T. (2010). Algorithm transformation for FPGA
implementation. In Electronic Design, Test and Application, 2010. DELTA’10.
Fifth IEEE International Symposium on, pages 77–81. IEEE.

Bermyn, J. (2000). Proba-project for on-board autonomy. Air & Space Europe,
2(1):70–76.

Beulig, S., Schönermark, M., and Huber, F. (2013). An FPGA implemented bridge
over water recognition for an image evaluation on-board of satellites. In SPIE
Optical Engineering+ Applications, pages 88710I–88710I. International Society for
Optics and Photonics.

Beulig, S., von Schönermark, M., and Huber, F. (2012a). A FPGA-based automatic
bridge over water recognition in high-resolution satellite images. In SPIE Remote
Sensing, pages 853713–853713. International Society for Optics and Photonics.

Beulig, S., von Schönermark, M., and Huber, F. (2012b). Mustererkennung in
Echtzeit anhand hochaufgelöster multispektraler Satellitenbilder. In RapidEye Sci-
ence Archive (RESA) - Vom Algorithmus zum Produkt.

Blue-Bridge (2013). The Blue Bridge in St. Petersburg. See
https://en.wikipedia.org/wiki/Blue_Bridge_(Saint_Petersburg).

Bowen, M. (1999). Handel-C Language Reference Manual. Embedded Solutions Ltd,
Version 2.1.

101



BIBLIOGRAPHY

Bretschneider, T., Ramesh, B., Gupta, V., and McLoughlin, I. (2004). Low-cost
space-borne processing on a reconfigurable parallel architecture. In Proceedings of
the International Conference on Engineering of Reconfigurable Systems and Algo-
rithms, pages 93–99.

Breuel, T. (2008). Binary Morphology and Related Operations on Run-Length Rep-
resentations. In VISAPP, pages 159–166.

Camarero, R., Thiebaut, C., Dejean, P., and Speciel, A. (2010). CNES studies for
on-board implementation via HLS tools of a cloud-detection module for selective
compression. In SPIE Optical Engineering+ Applications, pages 781004–781004.
International Society for Optics and Photonics.

Chen, A. (2008). Novel approach for recognizing bridges over water in large remote
sensing images. In Computational Intelligence and Design, 2008. ISCID’08. Inter-
national Symposium on, volume 2, pages 47–51. IEEE.

Chien, S., Sherwood, R., Tran, D., Castano, R., Cichy, B., Davies, A., Rabideau, G.,
Tang, N., Burl, M., Mandl, D., et al. (2003). Autonomous science on the EO-1
mission.

Corbane, C., Najman, L., Pecoul, E., Demagistri, L., and Petit, M. (2010). A com-
plete processing chain for ship detection using optical satellite imagery. Interna-
tional Journal of Remote Sensing, 31(22):5837–5854.

Danzeglocke, J. (2013). Flutkatastrophe. DLR Newsletter Countdown, 22:16–19.

Dawood, A., Visser, S., and Williams, J. (2002a). Reconfigurable FPGAs for real
time image processing in space. In Digital Signal Processing, 2002. DSP 2002.
2002 14th International Conference on, volume 2, pages 845–848. IEEE.

Dawood, A., Williams, J., and Visser, S. (2002b). On-board satellite image com-
pression using reconfigurable FPGAs. In Field-Programmable Technology, 2002.
(FPT). Proceedings. 2002 IEEE International Conference on, pages 306 – 310.

Digilent (2011). Digilent Nexys-2 Board Reference Manual. Digilent, Inc.

Fu, Y., Xing, K., Huang, Y., and Xiao, Y. (2009). Recognition of bridge over water
in high-resolution remote sensing images. In Computer Science and Information
Engineering, 2009 WRI World Congress on, volume 2, pages 621–625. IEEE.

Gao, F., Hu, L., and He, Z. (2011). Bridge extraction based on on constrained
delaunay triangulation for panchromatic image. In Geoscience and Remote Sensing
Symposium (IGARSS), 2011 IEEE International, pages 1429 –1432.

Gedik, E., Cinar, U., Karaman, E., Yardimci, Y., Halici, U., and Pakin, K. (2012). A
new robust method for bridge detection from high resolution electro-optic satellite
images. Proc of the 4th GEOBIA, 298.

GIMP (2013). The GNU Image Manipulation Program. See www.gimp.org.

102



BIBLIOGRAPHY

Goto, K., Chague-Goff, C., Fujino, S., Goff, J., Jaffe, B., Nishimura, Y., Richmond,
B., Sugawara, D., Szczucinski, W., Tappin, D., Witter, R., and Yulianto, E. (2011).
New insights of tsunami hazard from the 2011 tohoku-oki event. Marine Geology,
290:46 – 50.

Gu, D., Zhu, C., Shen, H., Hu, J., and Chang, H. (2011). Automatic bridge extrac-
tion for optical images. In Image and Graphics (ICIG), 2011 Sixth International
Conference on, pages 446–451. IEEE.

Halle, W., Brie, K., Schlicker, M., Skrbek, W., and Venus, H. (2002). Autonomous
onboard classification experiment for the satellite BIRD. International archives of
photogrammetry, remote sensing and spatial information sciences, 34(1):63–68.

Han, Y., Zheng, H., Cao, Q., and Wang, Y. (2007). An effective method for bridge
detection from satellite imagery. In Industrial Electronics and Applications, 2007.
ICIEA 2007. 2nd IEEE Conference on, pages 2753–2757. IEEE.

Hauck, S. and DeHon, A. (2007). Reconfigurable Computing: The Theory and Practice
of FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

Ip, F., Dohm, J., Baker, V., Doggett, T., Davies, A., Castano, R., Chien, S., Cichy,
B., Greeley, R., Sherwood, R., et al. (2006). Flood detection and monitoring
with the autonomous sciencecraft experiment onboard EO-1. Remote Sensing of
Environment, 101(4):463–481.

Johnston, C., Gribbon, K., and Bailey, D. (2004). Implementing image processing
algorithms on FPGAs. In Proceedings of the Eleventh Electronics New Zealand
Conference, ENZCon’04, pages 118–123.

Karaman, E., Çinar, U., Gedik, E., Yardimci, Y., and Halici, U. (2012). Automatic
road network extraction from multispectral satellite images. In Signal Processing
and Communications Applications Conference (SIU), 2012 20th, pages 1–4. IEEE.

Kim, J. and Sukkarieh, S. (2004). Autonomous airborne navigation in unknown
terrain environments. Aerospace and Electronic Systems, IEEE Transactions on,
40(3):1031–1045.

Larsen, S., Koren, H., and Solberg, R. (2009). Traffic monitoring using very high
resolution satellite imagery. Photogrammetric Engineering & Remote Sensing,
75(7):859–869.

Leitloff, J., Hinz, S., and Stilla, U. (2010). Vehicle detection in very high resolution
satellite images of city areas. IEEE Transactions on geoscience and remote sensing,
48(7):2795–2806.

Ley, W., Wittmann, K., and Hallmann, W. (2011). Handbuch der Raumfahrttechnik.
Carl Hanser Verlag München.

103



BIBLIOGRAPHY

Liu, J., Currit, N., and Meng, X. (2010). Extraction of water bodies from remotely
sensed images. In Intelligent Signal Processing and Communication Systems (IS-
PACS), 2010 International Symposium on, pages 1–4. IEEE.

Liu, W., Yamazaki, F., and Vu, T. (2011). Automated vehicle extraction and speed
determination from quickbird satellite images. IEEE Journal of selected topics in
applied earth observations and remote sensing, 4(1):75–82.

Loménie, N., Barbeau, J., and Trias-Sanz, R. (2003). Integrating textural and geo-
metric information for an automatic bridge detection system. In Geoscience and
Remote Sensing Symposium, 2003. IGARSS’03. Proceedings. 2003 IEEE Interna-
tional, volume 6, pages 3952–3954. IEEE.

Luo, J., Ming, D., Liu, W., Shen, Z., Wang, M., and Sheng, H. (2007). Extraction
of bridges over water from ikonos panchromatic data. International Journal of
Remote Sensing, 28(16):3633–3648.

McLoughlin, I. V. and Bretschneider, T. R. (2010). Reliability through redundant
parallelism for micro-satellite computing. ACM Transactions on Embedded Com-
puting Systems (TECS), 9(3):26.

Mittelbach, E. (2013). Satellitenbilder für den Notfall. DLR Magazin, 137:11–15.

Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011). Survey of 2011
tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters,
38(7).

Müller, T., Käser, H., Gübeli, R., and Klaus, R. (2005). Technische Informatik 1.
vdf Hochschulverlag.

Nexys-2 (2013). The Nexys-2 development board. See www.digilentinc.com.

Pedrino, E., Saito, J., Senger, H., Roda, V., and Marinho, M. (2010). An fpga-based
region-growing architecture for binary images. 17th International Conference on
Systems, Signals and Image Processing.

Pesaresi, M., Gutjahr, K., and Pagot, E. (2008). Estimating the velocity and direction
of moving targets using a single optical vhr satellite sensor image. International
Journal of Remote Sensing, 29(4):1221–1228.

PROBA-1 (2013). The PROBA-1 mission. See www.eoportal.org.

RapidEye (2012). Satellite Imagery Product Specifications. RapidEye AG, Germany.
Version 3.3.

Richards, J. (2012). Remote Sensing Digital Image Analysis: An Introduction.
Springer.

Salehi, B., Zhang, Y., and Zhong, M. (2012). Automatic moving vehicles information
extraction from single-pass worldview-2 imagery. IEEE Journal of selected topics
in applied earth observations and remote sensing, 5(1):135–145.

104



BIBLIOGRAPHY

Saur, G., Estable, S., Zielinski, K., Knabe, S., Teutsch, M., and Gabel, M. (2011). De-
tection and classification of man-made offshore objects in TerraSAR-X and Rapid-
Eye imagery: Selected results of the DeMarine-DEKO project. In OCEANS, 2011
IEEE-Spain, pages 1–10. IEEE.

Scholz, P. (2005). Softwareentwicklung eingebetteter Systeme: Grundlagen, Model-
lierung, Qualitätssicherung. Springer.

Suzuki, S., Kankaku, Y., Imai, H., and Osawa, Y. (2012). Overview of ALOS-2 and
ALOS-3. In SPIE Asia-Pacific Remote Sensing, pages 852811–852811. Interna-
tional Society for Optics and Photonics.

Trias-Sanz, R. and Loménie, N. (2003). Automatic bridge detection in high-resolution
satellite images. Computer Vision Systems, pages 172–181.

X-Sat (2013). The X-Sat mission. See www.eoportal.org.

Xiong, Z. and Zhang, Y. (2008). An initial study on vehicle information extrac-
tion from single pass quickbird satellite imagery. Photogrammetric Engineering &
Remote Sensing, 74(11):1401–1411.

Yuhaniz, S. and Vladimirova, T. (2009). An onboard automatic change detection sys-
tem for disaster monitoring. International Journal of Remote Sensing, 30(23):6121–
6139.

Zhang, J. and Sun, G. (2011). Recognition of bridge over water in remote sensing
image using discrete hopfield neural network. In Transportation, Mechanical, and
Electrical Engineering (TMEE), 2011 International Conference on, pages 439 –442.

Zhou, G., Baysal, O., Kaye, J., Habib, S., and Wang, C. (2004). Concept design
of future intelligent earth observing satellites. International Journal of Remote
Sensing, 25(14):2667–2685.

Zhu, C., Zhou, H., Wang, R., and Guo, J. (2010). A novel hierarchical method of
ship detection from spaceborne optical image based on shape and texture features.
Geoscience and Remote Sensing, IEEE Transactions on, 48(9):3446–3456.

105



BIBLIOGRAPHY

106



Acknowledgements

During the last 4.5 years I had the great opportunity to realise my PhD thesis at the
German Aerospace Center (DLR), Oberpfaffenhofen. I am grateful for the support
and advice of numerous people, who have made this thesis become reality. In partic-
ular, I would like to thank:

At first, Prof. Dr.-Ing. Felix Huber for giving me the opportunity to become a PhD
candidate at DLR. I was able to work on this thesis in an inspiring and fascinating
environment. He provided a motivating atmosphere and supervised my research of-
fering valuable feedback and advice.

Then, Prof. Dr.-Ing. Helmut Mayer for being the second reviewer of my thesis and
his support of my work with valuable feedback, comments and advice. Furthermore,
I would like to thank Prof. Dr. Christian Kähler for the organisation and the conduct
of the defence of my thesis.

Then, my supervisor Dr. Maria von Schönermark for giving my ideas room, so that
I could investigate and realise a lot of own thoughts and concepts in my work.

Then, Prof. Dr.-Ing. Roger Förstner and his group at Bundeswehr University Mu-
nich for the pleasant and motivating seminars and the lively exchange of ideas.

Furthermore, I would like to thank the DLR_Graduate_Program for offering a va-
riety of superb seminars and the possibility to exchange experience with other PhD
students at different DLR sites/ institutes.

I also want to thank the RB-RFT group for the pleasant environment. Additional
thanks to Dr.-Ing. Toralf Boge, Heike Benninghoff and Florian Rems for the wel-
coming atmosphere. And thanks to Florian Paul for his help and the stimulating
discussions.

Moreover, I want to thank my colleagues Katharina Götz, Kurt Schwenk and Matthias
Eder. You enriched my work with fruitful discussions and new ideas and I am grateful
to have worked with you.

Last but not least, I would like to thank my friend Dr.-Ing. Andreas Fieselmann, my
girlfriend Ina Kutscher and of course my family for their great patience, support and
encouragement throughout all these years.

Thank you!

Sebastian Beulig


