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Abstract

This thesis deals with the numerical solution of optimization problems in function spaces go-

verned by linear elliptic partial differential equations. Many physical processes for instance in

thermodynamics, elasticity, fluid mechanics or electrical engineering are modeled by partial dif-

ferential equations. The aim of optimal control is to regulate occurring parameters or other

quantities in such a way that the result of the mathematical model is optimal in a certain sense.

In particular, Neumann boundary control problems are investigated meaning that the flux of

the state variable on the boundary of the underlying computational domain can be controlled.

Of particular interest are finite element discretizations for these problems on domains having

polyhedral shape. Since singularities in a vicinity of corners and edges are expected to be contained

in the solution, optimal convergence of the finite element method on quasi-uniform meshes can as

a general rule not be guaranteed. For a better description of the occurring singularities weighted

Sobolev spaces are used in this thesis, and, exploiting corresponding regularity results finite

element error estimates are proved.

Up to now sharp error estimates for the trace of the finite element approximation of the Neumann

problem on polyhedral domains were unknown, and the newly developed estimates in this thesis

allow an improvement of many convergence results for Neumann boundary control problems.

Among others problems with L2(Γ)-regularization are considered and improved estimates for

the numerical approximation using the full discretization, the postprocessing approach and the

variational discretization are derived.

Further, a new energy regularization approach is considered on polygonal domains, where the

convergence rate depends in this case solely on the interior angles at the corners of the domain.

The aim of this thesis is always to investigate which convergence rate can be expected on quasi-

uniform meshes, and to what extend the best-possible convergence rate can be retained with

local mesh refinement, such that methods for the numerical computation of Neumann boundary

control problems can be improved significantly.
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Zusammenfassung

Diese Dissertation behandelt die numerische Lösung von Optimierungsproblemen in Funktio-

nenräumen, welche durch lineare elliptische partielle Differentialgleichungen beschränkt sind.

Viele physikalische Prozesse, zum Beispiel in der Thermodynamik, der Elastizitätstheorie, der

Strömungsmechanik oder der Elektrotechnik, werden durch partielle Differentialgleichungen mo-

delliert. Ziel der optimalen Steuerung ist es auftretende Parameter oder andere Einflussgrößen

zu kontrollieren, so dass die Lösung des mathematischen Modells in einem bestimmten Sinn

optimal wird.

Insbesondere werden Neumann-Randsteuerungsprobleme behandelt, was bedeutet, dass die Än-

derungsrate der Zustandsgröße auf dem Rand des zugrunde liegenden Gebietes kontrolliert wer-

den kann. Von besonderem Interesse werden Finite-Elemente-Diskretisierungen dieser Probleme

auf polyedrisch berandeten Gebieten sein. Da in einer Umgebung von Ecken und Kanten dieser

Gebiete Singularitäten in den Lösungen zu erwarten sind, ist eine optimale Konvergenz der Me-

thode der finiten Elemente auf quasi-uniformen Gittern im Allgemeinen nicht sicher gestellt. Um

diese Singularitäten genauer zu beschreiben werden in dieser Arbeit gewichtete Sobolevräume

verwendet, und unter Ausnutzung entsprechender Regularitätsaussagen Finite-Elemente Fehler-

abschätzungen bewiesen.

Bisher unbekannt waren scharfe Abschätzungen für die Spur der Finite-Elemente-Approximation

des Neumann-Problems auf polyedrisch berandeten Gebieten und die in dieser Arbeit neu ent-

wickelten Abschätzungen erlaubt es viele Konvergenzresultate für Neumann-Randsteuerungs-

probleme zu verbessern. Unter anderem werden Probleme mit L2(Γ)-Regularisierung betrachtet

und verbesserte Abschätzungen für die numerische Approximation mit einer vollen Diskretisie-

rung, dem Postprocessing-Zugang und der variationellen Diskretisierung hergeleitet.

Ferner wird auch ein neuer Zugang mit einer Energieregularisierung auf polygonal berandeten

Gebieten betrachtet, wobei in diesem Fall die Konvergenzrate nur von den Innenwinkeln der

Eckpunkte des Gebietes abhängt.

Das Ziel dieser Arbeit ist es stets zu untersuchen, welche Konvergenzrate auf quasi-uniformen

Gittern erwartet werden kann, und inwiefern die bestmögliche Konvergenzrate durch lokale

Netzverfeinerung wiederhergestellt werden kann, so dass numerische Berechnungsverfahren für

Neumann-Randsteuerungsprobleme signifikant verbessert werden können.
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CHAPTER 1

Introduction

The optimization of partial differential equations is a well-examined field in mathematics and

the first contributions already appeared in the early 70’s, see for instance the fundamental

book of Lions [60] and the references therein. In particular during the last 20 years this topic

has been studied more intensively as recent developments in computer technology allow an

accurate computation of large-scale optimization problems. Optimal control of partial differential

equations has a wide range of applications. Many physical phenomena can be modeled by

boundary value problems and these models can be optimized regarding some control quantity

which may be a parameter, a source term or the shape of the underlying geometry, just to

mention a few possibilities.

An optimal control problem is an optimization problem in a function space setting and we denote

by Uad ⊂ U the set of admissible controls and by Y the state space. The control and state

are related to each other by means of a partial differential equation whose solution operator is

denoted by S : Uad → Y . The kind of problems we are going to investigate in this thesis reads

J(y , u)→ min! subject to y = Su and u ∈ Uad . (1.1)

An application we want to emphasize is the optimal control in solid mechanics. There exist

a couple of models which describe the relation between forces acted onto and the stress and

deformation of a solid figure. The question of interest is, how to adjust the forces in order to

achieve a prescribed deformation. This has been intensively studied in [47] for linear elasticity

models and in [35, 48] for elastoplastic models. A possible control quantity is the force acted on

some part of the boundary. In elasticity this is modeled as a Neumann boundary condition and

hence, optimal control problems of this kind are also called Neumann boundary control problems

that we want to investigate in this thesis. A detailed survey on further applications can be found

in the book [52].

In this thesis we consider especially linear-quadratic optimal control problems having the following
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structure. The target functional consists of a tracking term and a regularization term, namely

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

U , (1.2)

where yd is some given desired state one wants to reach as close as possible, and Ω ⊂ Rn, n ∈
{2, 3}, the computational domain. The second part depending on the regularization parameter

α > 0 is required to ensure well-posedness of these problems. We exclude the case α = 0

because bang-bang controls – controls which attain the values of the control bounds only – are

obtained. For unconstrained problems with Uad = U the optimization problem is not even well-

posed for α = 0. In this thesis we investigate the usual case that U = L2(Γ), and the recently

developed energy regularization approach where U = H−1/2(Γ) for Neumann control problems.

Moreover, we restrict our considerations to the case that the control–to–state mapping S is the

solution operator of the boundary value problem{
−∆y + y = f in Ω,

∂ny = u on Γ,
(1.3)

where ∆ :=
∑n
i=1 ∂

2/∂x2
i is the Laplace operator. Due to technical restrictions problems involv-

ing control constraints are of interest in many applications. Thus, we assume that

u ∈ Uad := {u ∈ U : ua ≤ u ≤ ub a. e. on Γ}, (1.4)

with certain control bounds ua, ub ∈ R satisfying ua < ub. The aim of this thesis is to prove

error estimates on locally refined meshes for the numerical approximation of the optimal control

problem (1.2)–(1.4). Let us give a brief overview of some closely related contributions. The

numerical approximation of distributed control problems has been investigated by Sirch [84]

who derived sharp estimates in L2(Ω) and L∞(Ω) for polygonal domains as well as for three-

dimensional prismatic domains with anisotropic meshes, and by G. Winkler [92] who proved

estimates on general polyhedral domains using an isotropic mesh refinement strategy. In another

thesis by Pfefferer [74] Neumann boundary control problems on polygonal domains are intensively

studied and sharp error estimates with local mesh refinement are proven. The fundamental theory

developed in these three dissertations forms the basis for our investigations.

In the first part of this thesis we will investigate the numerical solution of the state equation (1.3)

using the finite element method. We restrict our considerations to continuous and piecewise

linear finite elements on some triangulation Th of the underlying domain Ω. We will emphasize

the convergence behavior of the discrete solution when Ω has a polygonal or polyhedral boundary

Γ. It is well known [44, 45, 54, 69, 87] that singularities at edges and corners occur which could

result in a reduced convergence rate. For instance in a vicinity of corners of polygonal domains

or edges at polyhedral domains the solution of (1.3) contains terms of the form

rλ cos(λϕ), λ := π/ω,

where (r, ϕ) and (r, ϕ, z) are polar coordinates centered in the corner, or cylinderical coordinates

centered in the edge, respectively. The singular exponent λ = λc = π/ω for corners in 2D or

λ = λe := π/ω for edges in 3D depends solely on the opening angle ω of the corner or edge. At

corners of polyhedral domains the corresponding singular exponents λc depend upon the solution

of an eigenvalue problem for the Laplace-Beltrami operator and can in general not be determined

analytically.
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The regularity of the variational solution of (1.3) depends then solely on the number

λ :=


min

corners c
λc , in 2D,

min
edges e

corners c

{λe , 1/2 + λc}, in 3D, (1.5)

and one can show [45] that y ∈ H1+λ−ε(Ω) for arbitrary ε > 0, provided that f and g are

sufficiently regular. Consequently the finite element approximation yh satisfies the estimate

‖y − yh‖H1(Ω) ≤ chmin{1,λ−ε}|y |Hmin{2,1+λ−ε}(Ω),

on quasi-uniform triangulations, see e. g. [23, 85]. Throughout this thesis c > 0 is a generic

constant which is independent of the mesh size h, the solution y and the input data f and g,

and might have another value at each occurrence.

In order to retain the best possible convergence rate many contributions, e. g. [16, 72, 76],

investigated the finite element method on meshes which are refined locally in the vicinity of

singular edges and corners. Throughout this thesis we will use the assumption that all elements

T ∈ Th satisfy

hT := diam(T ) ∼
{
h1/µ, if rT = 0,

hr1−µ
T , if rT > 0,

where rT denotes the distance to the singular points, and µ ∈ (0, 1] is some refinement parameter

which has to be chosen appropriately. More precisely, upper bounds of this parameter are of

interest which guarantee optimal convergence. To the best of our knowledge there are only

contributions, e. g. [12, 61], that discuss error estimates on a pure isotropically refined mesh for

the Dirichlet problem and certain mixed problems when the computational domain is polyhedral.

The results in these references is that the estimate

‖y − yh‖H1(Ω) + h−1‖y − yh‖L2(Ω) ≤ ch

holds when the refinement condition µ < λ is satisfied. In this thesis also a proof for the

pure Neumann problem (1.3) on a general polyhedral domain is given and the same refinement

criterion was used.

Having the application of boundary control problems in mind these finite element error estimates

in H1(Ω) or L2(Ω) are not sufficient to show also discretization error estimates for the control

problem. As we will see later at a certain point in the convergence proofs we have to insert a

finite element error estimate on the boundary, more precisely in L2(Γ). The obvious strategies of

using a trace theorem or the Aubin-Nitsche method yield in certain cases lower convergence rates

than expected, which is the reason why many contributions about boundary control problems

present suboptimal results. In a recent contribution Apel, Pfefferer and Rösch [9] developed an

advanced strategy which relies basically on a domain decomposition technique already used to

show local maximum norm estimates [80]. Under the assumption µ < 1/4 + λ/2 the estimate

‖y − yh‖L2(Γ) ≤ ch2| ln h|3/2 (1.6)

has been shown for an arbitrary polygonal domain Ω, provided that f ∈ C0,σ(Ω) and g ≡ 0.

The new result in this thesis is an extension of the proof to the three-dimensional case. We will

show that the estimate (1.6) remains true with the definition of the number λ from (1.5) in the
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three-dimensional case. This result has already been published in [10] but in this paper a slightly

stronger refinement criterion at singular corners is used.

The second part of this thesis deals with error estimates for the numerical approximation of

the optimal control problem (1.2)–(1.4). The choice U = L2(Γ) has already been investigated

intensively in the literature. We will solve a discretized version of the optimality system to

obtain an approximate solution (ȳh, ūh), and we are interested in the question how fast do these

solutions converge towards the solution (ȳ , ū) of the continuous problem, i. e. for which numbers

β ∈ R, called the convergence rate, does the estimate

‖ū − ūh‖L2(Γ) ≤ chβ

hold for all h > 0.

There exist a couple of discretization strategies and we will investigate three in detail. For in-

stance the full discretization approach studied by Falk [41] and Gevici [43], who used a piecewise

constant approximation of the control variable and a piecewise linear and continuous approxima-

tion of the state and adjoint state variable. In the latter reference the convergence rate β = 1

has been shown for arbitrary convex polygonal domains. This thesis presents an extension of

this result to non-convex polygonal and polyhedral domains and we will observe that β = 1 is

attained independent of the geometry and local mesh refinement. This is not the case for the

state variable. We also derive estimates of the form

‖ȳ − ȳh‖X ≤ chβ,

in the norm of some certain Banach space X. While in case of X = H1(Ω) the discrete state

converges with rate β = min{1, λ − ε}, ε > 0, which is the same rate like for the approximate

solution of the boundary value problem, and with rate β = 1 on a locally refined mesh satisfying

µ < λ, the convergence rate in case of X = L2(Ω) is only β = min{2, 1/2 + λ} − ε, ε > 0, and

β = 2− ε can be reached with µ < 1/4 + λ/2. The same results were proved by Pfefferer [74]

for polygonal domains and in the present thesis the results are extended to polyhedral domains.

The full discretization using piecewise constant controls is obviously not the best choice, as we

only get the poor convergence rate β = 1. However, we are restricted due to the approximation

order of the discrete control space, but not due to the regularity of the control which is more

regular than H1(Γ). Hence, other approaches which exploit higher regularity of ū are of interest.

One possible approach which has been introduced by Hinze [50] is the variational discretization.

This technique relies on the fact that the necessary optimality condition yields a pointwise

representation of the control in dependence of the adjoint state and it suffices to approximate

only the state variables with piecewise linear elements. The control is not discretized explicitly,

but can be described exactly by the nodal values of the discrete adjoint state and the control

bounds, so it is discretized implicitly. There are many contributions studying error estimates for

polygonal domains, but only a few dealing with polyhedral domains. We want to mention Hinze

and Matthes [51] who proved β = 3/2 for convex polygonal and polyhedral domains on quasi-

uniform meshes, but this rate is too pessimistic. The same rate was proven by Casas and Mateos

[25] for semilinear Neumann boundary control problems on convex polygonal domains only. An

extension to non-convex polygonal domains can be found in an article of Mateos and Rösch [62]

who proved β = min{2, 1 + λ/2, 1/2 + λ} − ε, ε > 0. The results in all these contributions are

suboptimal as there were used suboptimal finite element error estimates in the L2(Γ)-norm. We
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are indeed in the position to improve these results using the estimates proved in this thesis. The

investigations made here are for polyhedral domains only and we prove the sharp error bound

β = min{2, 1/2 + λ} − ε for quasi-uniform meshes and β = 2− ε for refined meshes according

to µ < 1/4 + λ/2. Exactly the same rate has already been proven for polygonal domains by

Apel, Pfefferer and Rösch [9].

A third approach we are going to address is the postprocessing strategy first of all considered by

Meyer and Rösch [67] for distributed control problems. The idea is to compute a fully discrete

solution of the discrete optimality system using a piecewise constant control approximation

again, and to compute another control ũh in a postprocessing step by an evaluation of the

pointwise representation of the optimality condition. The function ũh is as in the variational

approach piecewise linear, but it is not a finite element function. However, one observes that

these functions possess better approximation properties. A first proof for Neumann boundary

control problems can be found in a paper of Mateos and Rösch [62] who proved β = min{2, 1 +

λ/2, 1/2 + λ} − ε for polygonal domains when a quasi-uniform family of triangulations is used.

The improved rate β = min{2, 1/2 + λ} − ε which is sharp has been proved by Pfefferer [74],

and for locally refined meshes the rate β = 2−ε was retained in a contribution of Apel, Pfefferer

and Rösch [9] when the family of triangulations is refined according to µ < 1/4 + λ/2. In the

present thesis the same result is proved also for polyhedral domains.

We moreover investigate another regularization approach that was already suggested in Lion’s

book [60]. His idea was to assume only as much regularity for the control as it is required to

obtain the existence of a corresponding state in H1(Ω). This means for Neumann boundary

control problems that the control is searched in the space U = H−1/2(Γ). To the best of

our knowledge error estimates for this strategy have not been investigated before and we will

discuss sharp estimates for polygonal domains depending on the opening angle at the corner

points. Similar investigations can be found in a contribution of Of, Phan and Steinbach [71]

where discretization error estimates for the closely related Dirichlet control problems in H1/2(Γ)

are developed. With this regularization the optimal control ū is less regular, and exhibits a

similar behavior like the solution of a Dirichlet control problem in L2(Γ) [63], meaning that the

control is drawn down to zero at convex corners and can tend to infinity at reentrant corners.

As a consequence, the solution of the optimization problem possesses less regularity than for

U = L2(Γ) and hence, the approximate solutions converge with a lower rate. An approximation

with piecewise linear state and adjoint state, and a carefully designed control discretization which

has to satisfy the Ladyschenskaya-Babuška-Brezzi stability condition, yields the convergence rate

β = min{3/2, λ} − ε, ε > 0, for the discretization error of the control in the H−1/2(Γ)-norm

and β = min{1, λ− 1/2} − ε, ε > 0, in the L2(Γ)-norm, when there are no control constraints.

In particular, we show that the refinement criterion µ < 2λ/3, which is necessary for all corners

having interior angle larger than 120◦, guarantees the optimal convergence rate β = 3/2 − ε,

ε > 0, in the H−1/2(Γ)-norm. We further investigate problems involving control constraints

where we may exploit higher regularity of the solution. Due to the behavior at reentrant corners

the control can become active in a vicinity of these corners and is hence regular. The error

estimates can be improved if this is the case. It should be noted that the results for the energy

regularization approach have already been published in [14].

This thesis is structured as follows. In Chapter 2 we investigate regularity results for weak

solutions of the boundary value problem (1.3). For sake of completeness we summarize well-

known results in classical Sobolev spaces, but more important for us are results in weighted
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Sobolev spaces which allow a more accurate description of singular parts contained in the so-

lution. Based on these regularity results we derive finite element error estimates in Chapter 3.

Initially, some local estimates for certain projection operators onto piecewise polynomial spaces

are investigated. As a consequence, we are in the position to prove finite element error estimates

in H1(Ω), L2(Ω) and L2(Γ) for polyhedral domains, and an estimate in H1/2(Γ) for polygonal

domains. In this chapter the reader will find all estimates with and without local refinement.

The application to Neumann boundary control problems with L2(Γ)-regularization is considered

in Chapter 4. There, estimates for the three already mentioned discretization strategies are

stated and at the end of this chapter some numerical experiments are presented which confirm

the theoretically predicted convergence behavior. Optimal control problems with the energy reg-

ularization approach are considered in Chapter 5. There, we also apply the new finite element

error estimates to certain discretization strategies for the optimization problems and confirm the

results in numerical experiments. We will distinguish in this chapter among problems without

and with control constraints because better error estimates can be expected when constraints

are present.



CHAPTER 2

Singularities in polygonal and polyhedral domains

The purpose of this section is to collect regularity results for the weak solution of the Neumann

problem
−∆y + y = f in Ω,

∂ny = g on Γ,
(2.1)

when Ω ∈ Rn, n ∈ {2, 3}, is a bounded domain with polygonal or polyhedral boundary Γ.

In Section 2.1 we will introduce several classical function spaces that are frequently used in

the context of partial differential equations. Regularity results in classical Sobolev spaces are

well-known [33, 44, 45], but we will need a more accurate description of the singular parts which

occur in the solution of (2.1) in order to derive sharp finite element error estimates. Hence,

we will discuss the asymptotics of weak solutions of the Neumann problem in Section 2.2.

Based on these investigations one can think about adopted function spaces which allow a better

description of the singularities. In this thesis we will use weighted Sobolev and Hölder spaces

that are discussed in Section 2.3, and used for the numerical analysis in Chapter 3. Besides the

regularity results in these spaces, also embedding theorems and trace spaces are presented.

2.1 Classical function spaces

In this section we introduce some notation used throughout this thesis, and recall basic knowledge

concerning functional analysis that is used frequently later. Moreover, classical regularity results

in Sobolev spaces are presented.

2.1.1 Notation and basic properties

First, some basic definitions are introduced, and we use a similar notation as in the introductory

books of McLean [66], Steinbach [85] and Grossmann et. al. [46].
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Throughout this thesis n ∈ N denotes the spatial dimension of the underlying domain, i. e.

Ω ⊂ Rn, which is assumed to be Lipschitz. Note, that there are also polyhedral domains which

are not Lipschitz, but we exclude these special cases for simplification purpose. By α ∈ Nn0 we

denote a multi-index and by

∂αu

∂xα
(x) :=

∂α1

∂xα1
1

. . .
∂αn

∂xαnn
u(x)

the α-th derivative of u.

The classical function spaces that are used to describe strong solutions of (2.1) are the spaces

of k-times (k ∈ N0) continuously differentiable functions that we denote by Ck(Ω), equipped

with the standard norm

‖u‖Ck(Ω) := max
|α|≤k

sup
x∈Ω

∣∣∣∣ ∂α∂xα u(x)

∣∣∣∣ .
Closely related are the Hölder spaces Ck,γ(Ω), where γ ∈ (0, 1) is the so-called Hölder exponent.

These spaces contain all functions in Ck(Ω) where the Hölder constants

[u]γ,Ω := sup
x,y∈Ω

|u(x)− u(y)|
|x − y |γ

of all k-th derivatives are finite. A norm of Ck,γ(Ω) is defined by

‖u‖Ck,γ(Ω) := ‖u‖Ck(Ω) + max
|α|=k

[
∂α

∂xα
u

]
γ,Ω

.

Let us now weaken the assumptions upon differentiability of solutions of (2.1). Usually one is

interested in weak solutions that we describe by the spaces defined in the following. It is assumed

that the reader is at least familiar with the integral definition in the sense of Lebesgue (see [40,

Chapter 4]). The classical Lebesgue spaces Lp(Ω) for p ∈ [1,∞] are defined as the space of

Lebesgue-measurable functions having finite norm

‖u‖Lp(Ω) :=


(∫

Ω

|u(x)|p dx

)1/p

, for p ∈ [1,∞),

ess sup
x∈Ω

|u(x)|, for p =∞.

It is well-known that Lp(Ω) forms a Banach space. The corresponding dual space is [Lp(Ω)]∗ =

Lq(Ω) where q is the dual exponent given by p−1 + q−1 = 1. Moreover, there holds the Hölder

inequality [1, Lemma 1.14], i. e. for given u ∈ Lp(Ω) and v ∈ [Lp(Ω)]∗ there hold uv ∈ L1(Ω)

as well as the estimate

‖uv‖L1(Ω) ≤ c‖u‖Lp(Ω)‖v‖[Lp(Ω)]∗ . (2.2)

The space L2(Ω) is a Hilbert space equipped with the inner product

(u, v)Ω :=

∫
Ω

u(x)v(x) dx.

Next, we introduce appropriate spaces to describe also weak derivatives of functions on Ω. As

the usual definition of differentiability is too strong for our purposes we introduce the concept
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of weak differentiability. The function u ∈ Lploc(Ω) (this means that u ∈ Lp(B) for all B ⊂⊂ Ω)

possesses an α-th weak derivative (α ∈ Nn0) if there exists some v ∈ Lploc(Ω) satisfying∫
Ω

u(x)
∂α

∂xα
φ(x) dx = (−1)|α|

∫
Ω

v(x)φ(x) dx ∀φ ∈ C∞0 (Ω).

If this is the case we write Dαu = v as the weak derivative is unique. It remains to define

appropriate function spaces. For some given non-negative integer k ∈ N0 and a real number

p ∈ [1,∞] we define the Sobolev spaces

W k,p(Ω) := {v ∈ Lp(Ω): Dαv ∈ Lp(Ω) ∀|α| ≤ k} .

This space is a Banach space and is equipped with the norm and semi-norm

‖u‖W k,p(Ω) :=

∑
|α|≤k

‖Dαu‖p
Lp(Ω)

1/p

, |u|W k,p(Ω) :=

∑
|α|=k

‖Dαu‖p
Lp(Ω)

1/p

, p ∈ [1,∞),

‖u‖W k,∞(Ω) :=
∑
|α|≤k

‖Dαu‖L∞(Ω), |u|W k,∞(Ω) :=
∑
|α|=k

‖Dαu‖L∞(Ω),

It is also possible to define Sobolev spaces W k+γ,p(Ω) of non-integral order with some γ ∈ (0, 1).

To this end, we introduce the functional

[u]p,γ,Ω :=

(∫
Ω

∫
Ω

|u(x)− u(y)|p
|x − y |n+γp

dx dy

)1/p

, (2.3)

which leads to the Sobolev-Slobodetskij norm defined by

‖u‖W k+γ,p(Ω) :=

‖u‖p
W k,p(Ω)

+
∑
|α|=k

[Dαu]pp,γ,Ω

1/p

. (2.4)

This norm induces the space W k+γ,p(Ω).

As this thesis deals with polygonal and polyhedral domains Ω we can assume that a uniform cone

property holds, and consequently the Hilbertian Sobolev spaces W s,2(Ω) are equivalent to the

spaces Hs(Ω) introduced in Definition 5.1 of [93] for all s ∈ R, which can be concluded from

Satz 5.4 in [93].

Let us briefly discuss some further properties of Sobolev and Hölder spaces. The following

embedding results can be found in [1, Section 8].

Lemma 2.1.1 (Embedding theorem). Let Ω be a bounded domain with dim(Ω) = n.

1. Let k1 ∈ N, p ∈ [1,∞), γ ∈ (0, 1) and k2 ∈ N0 such that k1 − n/p ≥ k2 + γ. Then there

holds the continuous embedding

W k1,p(Ω) ↪→ Ck2,γ(Ω).

2. Let k1, k2 ∈ N0 and p1, p2 ∈ [1,∞) such that k1 ≥ k2 and k1 − n/p1 ≥ k2 − n/p2. Then

there holds the continuous embedding

W k1,p1 (Ω) ↪→ W k2,p2 (Ω).
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3. Let k1, k2 ∈ N0 and p1, p2 ∈ [1,∞) such that k1 > k2 and k1 − n/p1 > k2 − n/p2. Then

there holds the compact embedding

W k1,p1 (Ω)
c
↪→ W k2,p2 (Ω).

It is also possible to define Sobolev spaces on submanifolds of Ω, whereas we will merely require

them on the boundary Γ or some boundary edge or face. Since the boundary is not arbitrarily

regular we cannot define Sobolev spaces of arbitrary order on the boundary of Lipschitz domains,

but only of order s ∈ [0, 1]. Analogous to (2.3) and (2.4) we can then define a Sobolev-

Slobodetskij norm on the boundary by replacing Ω by Γ and n by n − 1. This induces the space

Hs(Γ) for some given s ∈ [0, 1]. A definition with order higher than 1 is only possible on the

parts of the boundary which are smooth. Therefore, let {Γ(i)}j∈F denote the set of boundary

edges if n = 2, or boundary faces if n = 3. The definition of the spaces Hs(Γ(i)) is reasonable

for all s ≥ 0 and i ∈ F with the norm (2.4). Indeed, the use of these spaces is sufficient for

finite element error estimates. For functions which are in Hs(Γ(i)) for all i ∈ F , we consequently

write

Hspw (Γ) :=
∏
i∈F

Hs(Γ(i)).

The Sobolev spaces on the boundary introduced above can be used to describe traces of functions

defined on Ω. A well-known result (see e. g. [29]) we will frequently use is

Lemma 2.1.2 (Trace theorem). Let Ω ⊂ Rn, n = 2, 3, be a Lipschitz domain. For a given

function u ∈ Hs(Ω) with s ∈ (1/2, 3/2) the trace u|Γ belongs to Hs−1/2(Γ) and the inequality

‖u‖Hs−1/2(Γ) ≤ c‖u‖Hs(Ω)

holds.

Finally we will define the dual spaces of Hs(Ω) and Hs(Γ). For arbitrary s ∈ R the dual space

of Hs(Ω) is denoted by [Hs(Ω)]∗, and a related norm is the standard operator norm

‖u‖[Hs(Ω)]∗ := sup
v∈Hs (Ω)
v 6≡0

〈u, v〉[Hs(Ω)]∗×Hs(Ω)

‖v‖Hs(Ω)
, (2.5)

where

〈u, v〉[Hs(Ω)]∗×Hs(Ω) :=

∫
Ω

u(x)v(x) dx

is the duality pairing of Hs(Ω) with [Hs(Ω)]∗.

Analogously, the dual space of Hs(Γ) can be defined, but only for s ∈ [0, 1] as the parametrization

of the boundary has restricted regularity. It is known that the dual spaces of Hs(Γ) are [Hs(Γ)]∗ =

H−s(Γ) defined e. g. in [66, page 98]. Throughout this thesis we will abbreviate the commonly

used dual pairings by

〈·, ·〉Ω := 〈·, ·〉[H1(Ω)]∗×H1(Ω) ,

〈·, ·〉Γ := 〈·, ·〉[H1/2(Γ)]∗×H1/2(Γ) .
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2.1.2 Classical regularity results

This section is devoted to classical regularity results for weak solutions of (2.1). The weak

formulation of (2.1) can be derived by multiplying the differential equation with a test function

v ∈ H1(Ω) and applying Green’s first identity. As a consequence we obtain the variational

problem: Find y ∈ H1(Ω) such that∫
Ω

∇y(x) · ∇v(x) dx +

∫
Ω

y(x)v(x) dx =

∫
Ω

f (x)v(x) dx +

∫
Γ

g(x)v(x) dsx ∀v ∈ H1(Ω).

(2.6)

One can write this problem in a more compact form using the bilinear form

a(·, ·) : H1(Ω)×H1(Ω)→ R

defined by

a(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx +

∫
Ω

u(x)v(x) dx,

Then, (2.6) reads

Find y ∈ H1(Ω):

a(y , v) = 〈f , v〉Ω + 〈g, v〉Γ ∀v ∈ H1(Ω). (2.7)

The existence of a unique solution y ∈ H1(Ω) of problem (2.7) is guaranteed by the Lax-Milgram

Theorem when f ∈ [H1(Ω)]∗ and g ∈ H−1/2(Γ). The function y is called weak solution as it

does not necessarily satisfy the differentiability requirements to be a solution of the original

problem (2.1).

In the following Theorem we collect some already known regularity results in the classical Sobolev

spaces introduced in Section 2.1.1. We restrict our considerations to polygonal and polyhedral

domains, whereas the exact definitions are postponed to Section 2.2.

Theorem 2.1.3. Let Ω ⊂ Rn, n ∈ {2, 3}, be a bounded polygonal or polyhedral domain. Assume

that f ∈ L2(Ω) and g ∈ H1/2(Γ). The variational solution y ∈ H1(Ω) of (2.7) satisfies the

following assertions:

a) There exists some t ∈ (0, 1/2] such that

y ∈ H3/2+t(Ω).

b) If Ω is convex, assertion a) holds for some t = 1/2.

Proof. a) The assertion for polygonal domains is proved in Corollary 2.4.4 of [45], see also

Remark 2.4.5 for inhomogeneous boundary data. For polyhedral domains a proof for g ≡ 0 is

also stated in Grisvard’s book [45, Corollary 2.6.7]. For inhomogeneous Neumann conditions

one can find a proof in the book of Dauge [33]. In Corollary 23.5 of this reference it was stated

that some ε > 0 exists such that the family of operators

As := (−∆ + I, ∂n) : H1+s(Ω)→ [H1−s(Ω)]∗ ×H−1/2+s(Γ)

is [0, s]-regular for all 0 < s ≤ 1/2 + ε, s 6= 1/2. According to Definition 20.9 this means that

if there is a function u ∈ H1(Ω) satisfying Au = (f , g) with input data f ∈ [H1−s(Ω)]∗ and
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g ∈ H−1/2+s(Γ), then there holds u ∈ H1+s(Ω). We are in particular interested in this result

for s ∈ (1/2, 1/2 + ε]. With s = t + 1/2 we conclude the assertion.

b) The assertion follows in case of a polygonal domain again from Corollary 2.4.4 in [45]. For

polyhedral domains this result is stated in the book of Maz’ya and Rossmann [65] who proved

regularity results in weighted Sobolev spaces that we discuss in Section 2.3. The assertion

follows from Theorem 8.1.10 in this book when setting p = 2 and all weights to zero, and taking

into account that δ
(k)
+ > 1 and Λj > 2, see also Section 8.3.5 in this book.

2.2 Singularities in polygonal and polyhedral domains

Before we introduce weighted Sobolev spaces we will get a deeper insight into corner and edge

singularities in this section. Once we know the structure of the occurring singularities it is more

intuitive to define these adjusted spaces.

Singularities in 2D

For two-dimensional problems we consider domains Ω ⊂ R2 satisfying the following definition.

Definition 2.2.1. A bounded domain Ω ⊂ R2 is called polygonal, if the boundary Γ consists of

d ∈ N straight edges meeting each other at an angle greater than zero and smaller than 2π.

Moreover, we denote by

• {Γ(j)}j∈C the set of edges, numerated counter-clockwise, where C := {1, . . . , d} is the

corresponding index set,

• {x (j)}j∈C the set of corner points such that x (j) is the intersection of Γ(j) and Γ(j+1)

(Γ(d+1) = Γ(1) by convention).

We associate to each corner x (j), j ∈ C, polar coordinates (rj , ϕj) centered in x (j) such that

ϕj = 0 and ϕj = ωj coincide with the boundary edges intersecting each other in x (j). To simplify

the notation we omit the index j in what follows.

It is already well-known that singularities occur in the vicinity of the corner points. Let us briefly

discuss how the singular parts in the solution can be determined. We basically follow the ideas

from the fundamental contribution of Kondrat’ev [54] and the books of Grisvard [44], Nazarov

and Plamenevsky [69], and Kozlov, Maz’ya and Rossmann [55]. Since the domain Ω coincides

in a neighborhood of a corner x (j) with an infinite angle

K := {(r cosϕ, r sinϕ) ∈ R2 : ϕ ∈ (0, ω), r > 0}, ω ∈ (0, 2π),

we first consider the problem

−∆y = f in K, ∂ny = 0 on ∂K.

In polar coordinates (r, ϕ) the angle K degenerates to a semi-infinite strip in the (r, ϕ)-layer.

Note that we neglected the zero-order term since it is immaterial for the asymptotic behavior

of the solution.
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With a Mellin transformation the angle is transformed into a vertical line in the complex plane,

where the problem is equivalent to a parameter-dependent ordinary differential equation depend-

ing only on the variable ϕ. A solution of this ordinary differential equation can be computed

analytically and after the transformation back to K we get the singular decomposition of the

solution. The Mellin transformation can be performed in two steps, namely

• apply the substitution r = e−t to transform the problem to an infinite strip, and

• apply a partial Fourier-transformation in t to get a one-dimensional parameter-dependent

boundary value problem.

In the following, this technique is applied to our model problem. After change to polar coordi-

nates, the differential equation reads

−
(
∂2y

∂r2
+

1

r

∂y

∂r
+

1

r2

∂2y

∂ϕ2

)
= f .

Now we employ the substitution r = e−t . The chain-rule and the property ∂t/∂r = −r−1 then

imply

−
(
∂2y

∂t2
+
∂2y

∂ϕ2

)
= e−2t f . (2.8)

Fortunately, the mixed terms vanish by this substitution. The second step of the Mellin trans-

formation is a partial Fourier transformation:

ŷ(ξ, ϕ) = F(y)(ξ, ϕ) :=

∫ ∞
−∞

e−iξty(t, ϕ)dt.

Applying this transformation to equation (2.8) leads to

ξ2ŷ(ξ, ϕ)− ∂2

∂ϕ2
ŷ(ξ, ϕ) = F̂ (ξ, ϕ) := F

(
e−2·f (·, ϕ)

)
(ξ, ϕ).

From this we finally obtain the parameter-dependent ordinary differential equation

−ŷ ′′(ϕ) + ξ2ŷ(ϕ) = F̂ (ϕ) ∀ϕ ∈ (0, ω)

ŷ ′(0) = ŷ ′(ω) = 0.
(2.9)

The differential operator U(ξ) = −d2/dϕ2 + ξ2 is often referred to as operator pencil in the

literature. The homogeneous problem (2.9) possesses only trivial solutions, except for some

isolated parameters – the eigenvalues of U. By some computations the solution

ŷH(ξ, ϕ) =

{
ĉk cosh

(
ikπω ϕ

)
, if ξ = ikπω for some k ∈ Z,

0, otherwise,

for the homogeneous problem is obtained, where ĉk ∈ R, k ∈ Z, are arbitrary constants. An

application of the inverse Fourier transform yields

yH(t, ϕ) = F−1(ŷH)(t, ϕ) =
∑
k∈Z

ck cos

(
kπ

ω
ϕ

)
e−

kπ
ω
t ,
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with ck := ĉk/
√

2π, k ∈ Z. Taking into account the substitution r = e−t finally leads to

yH =
∑
k∈Z

ck r
λk cos(λkϕ) (2.10)

with the singular exponent λk = kπ/ω and some constant ck ∈ R. Note that the singularities

corresponding to k < 0 cannot occur since this would be a contradiction to yH ∈ H1(K). The

solution for k = 0 is constant and hence regular.

In order to find a solution of the inhomogeneous problem (2.9), one can use a Green’s function

representation of the solution and can determine the asymptotic behavior using the theorem on

residues. For further details the interested reader is referred to [69, Chapter 5 and 7] and [45,

Chapter 2], where the singular solutions

Smj (rj , ϕj) :=

{
r
λj,m
j cos(λj,mϕj), if λj,m /∈ Z,
r
λj,m
j

(
ln rj cos(λj,mϕj) + ϕj sin(λj,mϕj)

)
, if λj,m ∈ Z,

(2.11)

for j ∈ C and m ∈ N with singular exponents

λj,m = mπ/ωj ,

are derived.

With the technique described above one can finally show the asymptotic behavior of the solution

of (2.1). For a detailed proof of the following result we refer e. g. to [44, Theorem 4.4.4.13],

[45, Section 2.7], [69, Theorem 4.4].

Theorem 2.2.2. Let f ∈ Lq(Ω) and g ∈ W 1−1/q,q(Γ(j)) for all j ∈ C, with some q ∈ (1,∞) be

given. For all j ∈ C denote by

ηj ∈ C∞0 (R+) with ηj(rj) =

{
1, if rj ≤ R1,

0, if rj ≥ R2,

arbitrary cut-off functions with constants R1, R2 ∈ R such that 0 < R1 < R2. Assume that

2− 2/q 6= λj,m ∀j ∈ C, m ∈ N.
Then, some constants cj,m ∈ R, j ∈ C, m ∈ N, and a function yR ∈ W 2,q(Ω) exist, such that

the solution of (2.1) can be decomposed into

y(x) = yR(x) +

d∑
j=1

∑
m∈N

λj,m<2−2/q

cj,m ηj(rj)S
m
j (rj , ϕj). (2.12)

Proof. This assertion can be found in [45, page 82] and [69, Theorem 4.4] where the additional

term c0 + cj,0 ln rj occurs in the solution, which is a consequence of the singularity S0
j (note that

λj,0 = 0 ∈ Z). The constant term c0 is regular and can be transferred into yR. However, for

q > 1 we get by embeddings that f ∈ [H1(Ω)]∗ and g ∈ H−1/2(Γ) and the Lax-Milgram Lemma

yields y ∈ H1(Ω). That the logarithmic term cannot occur follows directly from the fact that

ln rj /∈ H1(Ω) which would be a contradiction.

Actually, the regularity is restricted by the strongest singularities which correspond to the singular

exponents λj := λj,1 for j ∈ C. Hence, we summarize them to a vector

~λ := (λ1, . . . , λd)>.
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Singularities in 3D

In contrast to the two-dimensional case we have to distinguish between singularities occurring

at edges and corners in the three-dimensional case. Let us first introduce some notation.

Definition 2.2.3. An open and bounded domain Ω ⊂ R3 is called polyhedral if its boundary

consists of plane boundary faces, which intersect each other at an angle greater than zero. We

denote by

• {Γ(i)}i∈F , F := {1, . . . , d∗}, the set of boundary faces, by

• {Mk}k∈E , k ∈ E := {1, . . . , d}, the set of edges, and by

• {x (j)}j∈C, j ∈ C := {1, . . . , d ′}, the set of corners.

The singularities occurring in a vicinity of an edge Mk , k ∈ E , have principally the same structure

as corner singularities in 2D. We introduce cylinder coordinates (rk , ϕk , zk) such that the zk -axis

coincides with Mk and ϕk = 0 and ϕk = ωk correspond to the two faces meeting in Mk . It is

known, e.g. from [45, Section 2.5], [78], that the edge singularities have always the structure

Se,mk (rk , ϕk , zk) := G(ψe,mk )(rk , zk)Smk (rk , ϕk),

where Smk are the singular functions from (2.11) obtained already in the two-dimensional case,

with the modification that the edge singular exponent is

λmk = λe,mk := mπ/ωk , m = 1, 2, . . . .

Moreover, ψe,mk ∈ H1+λe,mk (R) is some function, and G is the operator which defines the convo-

lution integral

G(ψ)(rk , zk) :=
rk
π

∫
R

ψ(zk − t)
r2
k + t2

dt.

In the following we denote the singular exponent related to the strongest singularity by λek := λe,1k ,

and summarize all of them to a vector ~λe ∈ Rd .

Let us investigate the structure of the singularities occurring at the corners of the domain Ω.

Similar investigations can be found in [18, 87, 91],[69, Chapter 10 § 2].

We introduce spherical coordinates (ρj , ϕj , θj) centered at the corner x (j), j ∈ C. Without loss

of generality we assume that x (j) = 0, and to simplify the notation we omit the index j . First,

we consider the boundary value problem in an infinite polyhedral cone

K := {~x ∈ R3 : x/|x | ∈ G},

where G is a polygonal domain chosen appropriately such that K and Ω coincide in a vicinity of

the corner x (j). In order to transform the problem in K into a parameter-dependent boundary

value problem we follow basically the steps described on page 13. The differential equation of

the boundary value problem

− ∆y = f in K, ∂ny = 0 on ∂K, (2.13)
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reads in spherical coordinates

−
(
∂2y

∂ρ2
+

2

ρ

∂y

∂ρ
+

1

ρ2 sin θ

∂

∂θ

(
sin θ

∂y

∂θ

)
+

1

ρ2 sin2 θ

∂2y

∂ϕ2

)
= f .

Again, we introduce the substitution ρ = e−t and with the chain rule exploiting ∂t/∂ρ = −ρ−1 =

−et we obtain

−
(
∂2y

∂t2
− ∂y
∂t

+
1

sin θ

∂

∂θ

(
sin θ

∂y

∂θ

)
+

1

sin2 θ

∂2y

∂ϕ2

)
= e−2t f .

In what follows we abbreviate the Laplace-Beltrami operator on the surface G by

∆Gy :=
1

sin θ

∂

∂θ

(
sin θ

∂y

∂θ

)
+

1

sin2 θ

∂2y

∂ϕ2
.

With a partial Fourier transformation

ŷ(ξ, ϕ, θ) = F(y)(ξ, ϕ, θ) :=

∫ ∞
−∞

e−iξty(t, ϕ, θ) dt,

we arrive at the parameter dependent boundary value problem

(iξ + ξ2)ŷ − ∆G ŷ = F̃ := F(e−2t f ) in G,
∂nŷ = 0 on ∂G. (2.14)

This boundary value problem on some subset of the unit sphere can be transformed to a plane

problem. In Figure 2.1 this procedure is illustrated for the “Fichera” corner which denotes the

corner at the intersection of three mutually orthogonal planes. When considering the planar

problem one has to take care of the boundary conditions. For the domain illustrated in Figure

2.1b the original Neumann conditions are present at ΓN only, whereas there are periodic boundary

conditions at ΓP . Moreover, all points on ΓjS, j = 1, 2, correspond to only one single point in

the original domain.

We are interested in the parameters ξ for those the homogeneous problem has a non-trivial

solution. This is the case when ξ̃ := −iξ − ξ2 is an eigenvalue of the problem

− ∆G ŷ = ξ̃ŷ in G, ∂nŷ = 0 on ∂G, (2.15)

compare also [87, Equation (1.12)]. We denote the eigenvalues by λ̃c,i , i ∈ N0, where λ̃c,0 = 0

for the pure Neumann problem. The eigenvalue of interest is the second one because the related

singular function contained in the solution of (2.13) will restrict the regularity. Due to the

substitution ξ̃ := −iξ − ξ2 we set

λ̂c,i := i

(
−1

2
+

√
1

4
+ λ̃c,i

)
. (2.16)

As a consequence, when ξ = λ̂c,i for i ∈ N, the problem (2.14) with F̃ ≡ 0 possesses some non-

trivial solution ŷi(ϕ, θ), the eigenfunction related to λ̂c,i . After an inverse Fourier transformation

we get the solution of the homogeneous equation

yH(t, ϕ, θ) =

∞∑
i=1

cie
iλ̂c,i t ŷi(ϕ, θ), ci ∈ R, i ∈ N,
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(b) The surface G in the (ϕ, θ)-plane

Figure 2.1: The surface G for a “Fichera” corner.

and with the substitution ρ = e−t as well as (2.16) we arrive at the representation

yH(ρ, ϕ, θ) =

∞∑
i=1

ciρ
λc,i ŷi(ϕ, θ) with λc,i := −1

2
+

√
1

4
+ λ̃c,i .

In a similar way it is possible to find a solution of the inhomogeneous problem. However, since

this would exceed the scope of this thesis we refer to [45, Section 2.6], where the singular

functions

Sc,mj (ρj , ϕj , θj) := ρ
λc,mj
j Fmj (ϕ, θ),

with some smooth functions Fmj (·, ·) are derived. The leading corner singular exponents are also

summarized to a vector

~λc :=
(
λc,11 , . . . , λc,1d ′

)>
.

In summary it can be said, therefore, that the corner singularities contained in the solution of

(2.1) depend solely upon the eigenvalues of the problem (2.15). The computation of these

eigenvalues has been discussed intensively in the literature. In special cases it is possible to

compute eigenvalues analytically. We want to mention e. g. Stephan and Whiteman [87] who

derived λ̃c,1j = 40/9 (⇒ λc,1j = 5/3) for the three-dimensional L-shape domain. However, in

general the eigenvalue λc,1j has to be computed approximately. Walden and Kellogg [91] and

Beagles and Whiteman [18] present a discretization of (2.15) using a finite difference method.

Pester [73] and Leguillon [58] used a finite element discretization instead. The discrete eigen-

value problem can be solved with Rayleigh quotient minimization. In the two latter references

some computations for the “Fichera domain” are presented. For the Dirichlet problem the ex-

ponent λc,1j ≈ 0.44 was computed approximately. However, the eigenvalues depend on the type

of boundary condition. For a pure Neumann boundary we have computed λc,1j ≈ 0.84 with the

software package CoCoS [73]. We also refer to the summary in [31, Section 1].
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2.3 Weighted Sobolev spaces

In this section we introduce weighted Sobolev spaces which allow us to describe the singular

parts contained in the solution of a boundary value problem in a more accurate way. Let us first

outline the basic idea behind these spaces. Imagine y ∈ H1(Ω) is the unique solution of (2.7) in

some non-convex polygonal domain Ω ⊂ R2. Since at least one corner has interior angle larger

than 180◦ the corresponding singular exponent is smaller than one. As a consequence, at least

one second derivative is not square integrable in a ball B with radius R centered at this corner

point. This can be simply checked by computing the integral of the second derivative for r , for

which holds ∫
B∩Ω

r(x)2(λ−2) dx = c

∫ R

0

r2(λ−2)+1 dr = c
r2(λ−1)

2(λ− 1)

∣∣∣R
0

=∞,

since λ − 1 < 0. As a remedy, we introduce the additional weight function r(x)β with some

β ∈ R chosen appropriately, such that rβDαy ∈ L2(Ω) for all |α| = 2. A simple calculation

yields ∫
B∩Ω

r(x)2(λ−2+β) dx = c

∫ R

0

r2(λ−2+β)+1 dr = c
r2(λ+β−1)

2(λ+ β − 1)

∣∣∣R
0
<∞,

which holds under the condition β > 1− λ. In the following we will define function spaces that

contain such kind of weight functions.

2.3.1 Definition and basic properties

We begin with the definition of weighted Sobolev spaces for two-dimensional polygonal domains.

The weights are the distance functions to the corner points that we define by

rj(x) := |x − x (j)|, ∀j ∈ C.

Definition 2.3.1. Let Ω ∈ R2 be a polygonal domain and denote by {Uj}j∈C, an open covering

of Ω such that Uj contains only the corner x (j) but no other ones. For a non-negative integer

` ∈ N0, a real number p ∈ [1,∞] and a vector ~α ∈ Rd the weighted Sobolev space W `,p
~α (Ω) is

defined as the closure of C∞(Ω̄ \ {x (0), . . . , x (d)}) with respect to the norm

‖v‖
W `,p
~α

(Ω)
:=



∑
|α|≤`

∑
j∈C

∫
Uj∩Ω

rj(x)pαj |Dαv(x)|p dx

1/p

, if p ∈ [1,∞),

∑
|α|≤`

max
j∈C

ess sup
x∈Uj∩Ω

rj(x)αj |Dαv(x)|, if p =∞.
(2.17)

A seminorm related to (2.17) is defined by

|v |
W `,p
~α

(Ω)
:=



∑
|α|=`

∑
j∈C

∫
Uj∩Ω

rj(x)pαj |Dαv(x)|p dx

1/p

, if p ∈ [1,∞),

∑
|α|=`

max
j∈C

ess sup
x∈Uj∩Ω

rj(x)αj |Dαv(x)|, if p =∞.
(2.18)
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We will frequently use the norm (2.17) on a subset G ⊂ Ω, and in case of G ⊂ Uj we write

‖ · ‖
W `,p
~α

(G)
= ‖ · ‖

W `,p
αj

(G)
, (2.19)

where the weight function is still the distance to the corner of Ω. The weights related to the

other corners have no influence and can be neglected.

On polyhedral domains both weights for corners and edges are required. The corresponding

weight functions are defined by

ρj(x) := |x − x (j)| ∀j ∈ C, rk(x) := inf
y∈Mk

|x − y | ∀k ∈ E .

Moreover, we define the index set

Xj := {k ∈ E : x (j) is an endpoint of Mk}.

Definition 2.3.2. Let Ω ∈ R3 be a polyhedral domain and denote by {Uj}j∈C an open covering

of Ω such that Uj contains only the corner x (j) but no other ones. For a non-negative integer

` ∈ N0, a real number p ∈ [1,∞] and vectors ~β ∈ Rd ′ , ~δ ∈ Rd the space W `,p
~β,~δ

(Ω) is defined as

the closure of C∞(Ω̄\{x (1), . . . , x (d ′)}) with respect to the norm

‖v‖
W `,p
~β,~δ

(Ω)
:=



∑
|α|≤`

∑
j∈C

∫
Ω∩Uj

ρj(x)p(βj−`+|α|)
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|Dαv(x)|p


1
p

, if p ∈ [1,∞),

∑
|α|≤`

max
j∈C

ess sup
x∈Ω∩Uj

ρj(x)βj−`+|α|
∏
k∈Xj

(
rk
ρj

(x)

)δk
|Dαv(x)|, if p =∞.

(2.20)

Analogous to (2.18) we introduce a corresponding seminorm by

|v |
W `,p
~β,~δ

(Ω)
:=



∑
|α|=`

∑
j∈C

∫
Ω∩Uj

ρj(x)pβj
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|Dαv(x)|p


1
p

, if p ∈ [1,∞),

∑
|α|=`

max
j∈C

ess sup
x∈Ω∩Uj

ρj(x)βj
∏
k∈Xj

(
rk
ρj

(x)

)δk
|Dαv(x)|, if p =∞.

(2.21)

Trace spaces

Let ` ∈ N and p ∈ [1,∞] be arbitrary. For polygonal domains Ω ⊂ R2 the space W
`−1/p,p
~α (Γ(j)),

j ∈ C, is the trace space of W `,p
~α (Ω) and is equipped with the norm

‖u‖
W
`−1/p,p
~α

(Γ(j))
:= inf

{
‖v‖

W `,p
~α

(Ω)
: v ∈ W `,p

~α (Ω) and v |Γ(j) = u
}
. (2.22)
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Analogously we can define a trace space of weighted Sobolev spaces for polyhedral domains

Ω ⊂ R3. By W
`−1/p,p
~β,~δ

(Γ(i)), i ∈ F , we denote the trace space of W `,p
~β,~δ

(Ω) on the boundary face

Γ(i), with the naturally induced norm

‖u‖
W
`−1/p,p
~β,~δ

(Γ(i))
:= inf

{
‖v‖

W `,p
~β,~δ

(Ω)
: v ∈ W `,p

~β,~δ
(Ω) and v |Γ(i) = u

}
.

Moreover we write

u ∈ W `−1/p,p
~α (Γ) :⇐⇒ u ∈ W `−1/p,p

~α (Γ(j)) ∀j ∈ C.

Analogously we define the global trace space W
`−1/p,p
~β,~δ

(Γ).

Embeddings

It remains to collect some auxiliary results about the weighted Sobolev spaces introduced above.

In the following we denote by G either the domain Ω or its boundary Γ. The integer n is the

dimension of G. The next Lemma can also be found in [74, Lemma 2.29].

Lemma 2.3.3. The following embeddings hold:

a) Assume that 1 ≤ p < q ≤ ∞, and that the weight vectors ~α, ~α′ ∈ Rd satisfy the inequality

α′j +
n

q
< αj +

n

p
∀j ∈ C.

Then, for all ` ∈ N0 the continuous embedding

W `,q
~α′ (G) ↪→ W `,p

~α (G)

holds.

b) Let ` ∈ N0 and p ∈ [1,∞]. Assume that the weight vectors ~α, ~α′ ∈ Rd satisfy the

inequality

α′j ≤ 1 + αj , α′j > −
n

p
∀j ∈ C.

Then, the continuous embedding

W `+1,p
~α′ (G) ↪→ W `,p

~α (G)

holds. If α′j < 1− αj for all j ∈ C the embedding is even compact.

A similar result holds for the weighted Sobolev spaces on polyhedral domains introduced in

Definition 2.3.2. Proofs for the results of the following Lemma can be found in [65, Lemma

8.1.1 and Lemma 8.1.2].

Lemma 2.3.4. The following embeddings hold:
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a) Let 1 ≤ q < p ≤ ∞ and ` ∈ N0. Assume that the vectors ~β, ~β′ ∈ Rd ′ and ~δ, ~δ′ ∈ Rd
satisfy

β′j +
n

p
< βj +

n

q
∀j ∈ C,

0 < δ′k +
n − 1

p
< δk +

n − 1

q
∀k ∈ E .

Then, the continuous embedding

W `,p
~β′,~δ′

(G) ↪→ W `,q
~β,~δ

(G)

holds.

b) Let p ∈ [1,∞) and ` ∈ N0 be given. Assume that the vectors ~β, ~β′ ∈ Rd ′ and ~δ, ~δ′ ∈ Rd
satisfy

β′j ≤ 1 + βj ∀j ∈ C,

δ′k ≤ 1 + δk , δk , δ
′
k > −

n − 1

p
∀k ∈ E .

Then, the continuous embedding

W `+1,p
~β′,~δ′

(G) ↪→ W `,p
~β,~δ

(G)

holds. In case of β′j < 1 + βj , j ∈ C, and δ′k < 1 + δk , k ∈ E , the embedding is even

compact.

2.3.2 Regularity Results

We are now in the position to formulate some regularity results for the solution of the variational

problem posed in Section 2.1.2

Find y ∈ H1(Ω):

a(y , v) = 〈f , v〉Ω + 〈g, v〉Γ ∀v ∈ H1(Ω), (2.23)

using the weighted Sobolev spaces introduced in Section 2.3.1.

Polygonal Domains

First, we discuss a regularity result in weighted Sobolev spaces for polygonal domains Ω ⊂ R2.

A proof of the following result using already our notation can be found in [74, Lemma 3.10].

Theorem 2.3.5. Let f ∈ W 0,2
~α (Ω) and g ∈ W 1/2,2

~α (Γ). Then, the solution y of (2.23) belongs

to W 2,2
~α (Ω) if the weight vector ~α ∈ Rd satisfies

1− λj <αj < 1 if 1− λj ≥ 0,

0 ≤αj < 1 if 1− λj < 0,
(2.24)

for all j ∈ C. Furthermore, there holds the a priori estimate

‖y‖W 2,2
~α

(Ω) ≤ c
(
‖f ‖W 0,2

~α
(Ω) + ‖g‖

W
1/2,2
~α

(Γ)

)
.
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For the proof of optimal finite element error estimates on the boundary the regularity in W 2,2
~α (Ω)

is not sufficient. In this case we want to exploit regularity in W 2,∞
~β

(Ω) with an appropriate weight

~β ∈ Rd . The following result is proven in [9].

Theorem 2.3.6. Assume that g ≡ 0 and f ∈ C0,σ(Ω̄) for some σ ∈ (0, 1). Then, the solution

y of (2.23) belongs to W 2,∞
~β

(Ω) with a weight vector ~β ∈ Rd having components satisfying

2− λj < βj < 2 if 2− λj ≥ 0,

0 ≤ βj < 2 if 2− λj < 0,

for all j ∈ C. Furthermore, there holds the a priori estimate

‖y‖W 2,∞
~β

(Ω) ≤ c‖f ‖C0,σ(Ω).

Polyhedral Domains

Regularity results for the solution of problem (2.23) in weighted Sobolev spaces when Ω ⊂ R3

is a polyhedral domain, are proven e. g. in [2, 31, 65, 95]. We will exploit the following result

for finite element error estimates later.

Theorem 2.3.7. Let functions f ∈ W 0,p
~β,~δ

(Ω) and g ∈ W 1−1/p,p
~β,~δ

(Γ) with p ∈ (1,∞) be given.

Assume that the edge and corner weights ~δ ∈ Rd+ and ~β ∈ Rd ′+ satisfy

2− 2/p −min{2, λek} < δk < 2− 2/p ∀k ∈ E ,
2− 3/p −min{1, λcj } < βj < 3− 3/p ∀j ∈ C.

Then, the solution y ∈ H1(Ω) of the variational problem (2.23) satisfies

Dαy ∈ W 1,p
~β,~δ

(Ω) ∀|α| = 1.

Moreover, the a priori estimate∑
|α|=1

‖Dαy‖
W 1,p
~β,~δ

(Ω)
+ ‖y‖Lp(Ω) ≤ c

(
‖f ‖

W 0,p
~β,~δ

(Ω)
+ ‖g‖

W
1−1/p,p
~β,~δ

(Γ)

)
(2.25)

holds.

Proof. The desired assertion is stated in Theorem 8.1.10 of [65] under the additional assumption

that λ = −1 and λ = 0 are the only eigenvalues of the problem

−∆Gj v = λ(λ+ 1)v in Gj ,
∂nv = 0 on ∂Gj ,

that are contained in the strip −1 ≤ Re λ ≤ 0. Note, that this eigenvalue problem is the same

as (2.15) when inserting the definition

λ := −1

2
+

√
1

4
+ ξ̃,
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compare also [56, Equation (2.3.3)]. That this strip indeed contains only the eigenvalues 0 and

−1 in our situation, and, that algebraic and geometric multiplicity are equal, has been discussed

in [56, Section 2.3.1].

It remains to prove the a priori estimate (2.25) which is not directly stated in [65], but in the

following, we outline how this estimate can be concluded. To this end, introduce the space

H :=
{
v ∈ Lp(Ω): Dαv ∈ W 1,p

~β,~δ
∀|α| = 1

}
with the naturally induced norm as stated on the left-hand side of (2.25), and the operator

A :=

(
−∆ + I

∂n

)
: H → W 0,p

~β,~δ
(Ω)×W 1−1/p,p

~β,~δ
(Γ).

It is easy to confirm that the operator A is linear and bounded since the estimates

‖ − ∆u‖
W 0,p
~β,~δ

(Ω)
≤ c |u|

W 2,p
~β,~δ

(Ω)
,

‖u‖
W 0,p
~β,~δ

(Ω)
≤ c‖u‖Lp(Ω),

‖∂nu‖W 1−1/p,p
~β,~δ

(Γ)
≤ c

∑
|α|=1

‖Dαu‖
W 1,p
~β,~δ

(Ω)
,

hold for arbitrary u ∈ H. More precisely, the first estimate follows directly from the norm

definition (2.20), the second one from a trivial embedding taking into account that ~β,~δ ≥ 0,

and the third one from the definition of the trace space on page 19. We also confirm that A
is bijective which is equivalent to the existence and uniqueness of a solution in H and follows

from the first part of this theorem and the Lax-Milgram Lemma. From the bounded inverse

theorem [37, Theorem 3.7] we conclude that the inverse mapping A−1 is also continuous which

is equivalent to (2.25).

The above theorem excludes p = ∞, but we will require this case in order to derive optimal

finite element error estimates in the L2(Γ)-norm. To overcome this issue we apply regularity

results in weighted Hölder spaces.

Theorem 2.3.8. Let a function f ∈ C0,σ(Ω) with some σ ∈ (0, 1) be given and assume that

g ≡ 0. Moreover, assume that the weights ~δ ∈ Rd+ and ~β ∈ Rd ′+ satisfy

2− λek < δk < 2 ∀k ∈ E ,
2− λcj < βj ∀j ∈ C.

Then, the solution y ∈ H1(Ω) of (2.23) satisfies

Dαy ∈ W 1,∞
~β,~δ

(Ω) ∀|α| = 1.

Proof. Let us first introduce the weighted Hölder spaces defined in [65, Section 8.2]. We denote

by Uj,k := {x ∈ Uj ∩ Ω: rk(x) < 3ρj(x)/2}, k ∈ Xj , a covering of Uj . Furthermore, a Hölder

exponent σ ∈ (0, 1), a non-negative integer ` ∈ N0 and some weights ~β ∈ Rd ′ , ~δ ∈ Rd with

δk ≥ 0 (k ∈ E) are given. To each edge we associate the integer mk := [δk − σ] + 1. The
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weighted Hölder space C`,σ~β,~δ
(Ω) denotes the space of ` times continuously differentiable functions

on Ω̃ := Ω \ (
⋃
k∈E Mk) with finite norm

‖u‖C`,σ
~β,~δ

(Ω) :=

d ′∑
j=1

∑
|α|≤`

sup
x∈Uj

ρj(x)βj−`−σ+|α| ∏
k∈Xj

(
rk(x)

ρj(x)

)max{0,δk−`−σ+|α|}
|(Dαu)(x)|

+

d ′∑
j=1

∑
k∈Xj

∑
|α|=`−mk

sup
x,y∈Uj,k

|x−y |<ρj (x)/2

ρj(x)βj−δk
|(Dαu)(x)− (Dαu)(y)|
|x − y |mk+σ−δk (2.26)

+

d ′∑
j=1

∑
|α|=`

sup
x,y∈Uj

|x−y |<ρj (x)/2

ρ
βj
j (x)

∏
k∈Xj

(
rk(x)

ρj(x)

)δk |(Dαu)(x)− (Dαu)(y)|
|y − x |σ .

We introduce weights ~β′ := ~β + σ and ~δ′ := ~δ + σ and observe that the inequalities

‖f ‖C0,σ
~β′,~δ′(Ω) ≤ c‖f ‖C0,σ

~σ,~0
(Ω) ≤ c‖f ‖C0,σ(Ω)

hold, where the first inequality is a consequence of the embedding theorem [65, Lemma 8.2.1]

which holds for arbitrary β′j ≥ σ (j ∈ C) and δ′k ≥ 0 (k ∈ E), and the second one can be

confirmed when inserting βj = σ and δk = 0 in the definition of the norm (2.26).

The assumptions upon ~β and ~δ imply that

2− λek < δ′k − σ < 2 k ∈ E ,
2− λcj < β′j − σ j ∈ C, (2.27)

and with the regularity result from [64, Theorem 5.1 and Remark 5.1] we obtain Dαy ∈ C1,σ
~β′,~δ′

(Ω)

for all |α| = 1. It remains to show that

‖Dαu‖W 1,∞
~β,~δ

(Ω) ≤ c‖Dαu‖C1,σ
~β′,~δ′(Ω) ∀|α| = 1.

It suffices to bound the W 1,∞
~β,~δ

(Ω)-norm by the first row in the norm definition (2.26). Obviously,

when inserting βj = β′j − σ, the corner weights coincide. Inserting δk = δ′k − σ ≥ 0 yields for

the edge weights (
rk
ρj

)δk
=

(
rk
ρj

)δ′k−σ
≤ c

(
rk
ρj

)max{0,δ′k−σ−1+|α|}
,

where we exploited δ′k − σ ≥ max{0, δ′k − σ − 1 + |α|} for all |α| ≤ 1. Consequently, we have

shown (2.27) and the assertion can be concluded.



CHAPTER 3

Finite element error estimates

In this chapter the numerical approximation of the Neumann boundary value problem discussed

in the last chapter using the Finite Element Method is considered. Our aim is to derive sharp

discretization error estimates in dependence of the geometry of the underlying domain Ω.

We will show that the singularities discussed in Section 2.2 have also influence on the convergence

rate of the finite element method. If the singular exponents are smaller than a certain bound we

cannot expect an optimal convergence rate, and our aim is to investigate how the convergence

rate and the singular exponents are then related to each other.

Special emphasis will be put on local mesh refinement which is a well known technique used to

compensate reduced convergence rates. As we know the structure of the occurring singularities

in advance, it is possible to derive a priori mesh refinement conditions in such a way that we can

determine the refinement parameter once we know the singular exponents. This idea is indeed

very old and has been intensively investigated in the literature, e. g. [6, 12, 15, 42, 72, 81]. In

all these contributions error estimates in the H1(Ω)- and L2(Ω)-norm are proved. However,

in the context of boundary control problems finite element error estimates on the boundary Γ

are of interest. The novelties in this chapter are a finite element error estimate in H1/2(Γ) on

polygonal domains, and the extension of the L2(Γ)-estimate proved in [9] for polygonal domains

to polyhedral domains.

This chapter is structured as follows. In Section 3.1 we introduce the finite element approxima-

tion of the solution of (2.23). Error estimates for local projection operators, e. g. interpolation

operators, are a prerequisite that we investigate in Section 3.2. The new results in this thesis are

tailored local estimates which exploit the regularity in weighted Sobolev spaces stated in Section

2.3. The main results are the finite element error estimates that we are able to formulate in

Section 3.3 for quasi-uniform meshes, and in Section 3.4 for locally refined meshes.
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3.1 Discretization of boundary value problems

In order to transform the variational problem (2.23) into a finite-dimensional problem a finite-

dimensional space Vh ⊂ H1(Ω) is introduced which leads to the Galerkin formulation: Find

yh ∈ Vh such that

a(yh, vh) = 〈f , vh〉Ω + 〈g, vh〉Γ ∀vh ∈ Vh. (3.1)

The finite element method belongs to the class of Galerkin methods and has the additional

property that Vh possesses a basis consisting of piecewise polynomial functions having small

support. A prerequisite for the construction of such a basis is a decomposition of the domain Ω

into elements T ∈ Th such that

Ω = int
⋃
T∈Th

T , T1 ∩ T2 = ∅ for all T1, T2 ∈ Th with T1 6= T2.

Throughout this thesis triangular elements for two-dimensional, and tetrahedral elements for

three-dimensional problems are considered. The index h is a mesh parameter denoting the

maximal diameter of all elements in Th. Moreover, it is assumed that the triangulation Th is

feasible, i. e. that the intersection of two different element closures is either empty, a common

vertex, a common edge, or – for tetrahedral meshes – a common face (compare also [23,

Definition 3.3.11]). In other words the presence of hanging nodes will be avoided. The resulting

decomposition Th of Ω is called triangulation or finite element mesh.

For each T ∈ Th we denote the diameter of the smallest ball containing T and the diameter

of largest ball contained in T by hT and ρT , respectively. Throughout this thesis we deal with

shape regular families of triangulations {Th}h>0 only, i. e. some constants h0 > 0 and κ > 0

exist such that
ρT
hT
≥ κ ∀T ∈ Th,

is satisfied for all h ∈ (0, h0].

Further, we define by Nh the set of nodes of Th, and by NT the set of nodes belonging to the

element T ∈ Th. The induced boundary mesh defined by

Eh := {int(T ∩ Γ): T ∈ Th},
forms a conforming triangulation of the boundary Γ consisting of intervals (2D) or triangles

(3D).

In this thesis only continuous and piecewise linear finite elements are considered, i. e. the space

of ansatz and test functions is

Vh :=
{
vh ∈ C(Ω): vh is affine linear on all T ∈ Th

}
. (3.2)

As Vh is finite-dimensional each element in Vh can be represented as a linear combination of basis

functions. Usually, the nodal basis

{ϕn ∈ Vh : ϕn(ñ) = δn,ñ for all ñ, n ∈ Nh}, where δn,ñ :=

{
1, if ñ = n,

0, if ñ 6= n,

is used. The solution of (3.1) can then be written in the form

yh(x) =
∑
n∈Nh

yh(n)ϕn(x),



3.2. ERROR ESTIMATES FOR PROJECTION OPERATORS 27

and due to the linear structure of the problem (3.1) it remains to test the variational formulation

with basis functions only. This leads to the finite element formulation∑
n∈Nh

yh(n)a(ϕn, ϕñ) = 〈f , ϕñ〉Ω + 〈g, ϕñ〉Γ ∀ñ ∈ Nh, (3.3)

which is a linear equation system for the card(Nh) unknown nodal values yh(n).

3.2 Error estimates for projection operators

This section is devoted to error estimates for several projection operators onto spaces of piece-

wise polynomials on Th or Eh, which have a local representation on each element or some patch

of elements. The estimates we prove will exploit the accurate regularity results in weighted

Sobolev spaces.

b x̂
bŷ

bF−1

T
(y)

M̂

x̂1

x̂2

x̂3

T̂
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ĉ
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b
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r(x)
y

(b) Element touching an edge

and a corner

b

b

b
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M

Tr(x)
y
c

(c) Element touching an

edge in a single point

Figure 3.1: The reference element T̂ and the different positions of the original element T .

A well-known idea is to transform the tetrahedron/triangle to a reference element where all

estimates and embeddings depend only on the geometry of this element, but not on Th. In what

follows we investigate the reference transformation in detail. To this end, let T̂ be the standard

reference triangle/tetrahedron having vertices

NT̂ :=

{
{(0, 0)>, (1, 0)>, (0, 1)>}, for n = 2,

{(0, 0, 0)>, (1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>}, for n = 3.

We denote by FT the affine linear transformation from T̂ to a world element T ∈ Th. This

transformation allows us to associate to each function u : T → R another one on the reference

element, namely û : T̂ → R defined by

û(x̂) := u(FT (x̂)).
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From [27, Theorem 15.1] it is known that the estimates

|u|W `,p(T ) ≤ ch−`T |T |1/p|û|W `,p(T̂ ), (3.4)

|û|W `,p(T̂ ) ≤ ch`T |T |−1/p|u|W `,p(T ), (3.5)

hold for all u ∈ W `,p(T ), ` ∈ N0, p ∈ [1,∞].

Next, we introduce weighted Sobolev spaces on a reference setting. The definition is analogous

to W `,p
~α (Ω) or W `,p

~β,~δ
(Ω) with slight modifications of the weight functions. First, we make the

following general assumption.

Assumption 1. Each element T ∈ Th touches at most one corner of Ω. For three-dimensional

problems it is assumed that at most one edge of an element T is contained in an edge of Ω.

This assumption is not too restrictive as elements violating this condition only have to be refined,

e. g. by bisection. However, this assumption is not essential for the results in this thesis, but

it simplifies the notation significantly as it suffices to introduce only one corner and one edge

weight on the reference element.

For planar problems we introduce the space W `,p
α (T̂ ) with ` ∈ N0, p ∈ [1,∞] and α ∈ R, which

is defined analogous to Definition 2.3.1 with the modification that there is only one weight,

namely

r̂(x̂) := |x̂ |.
Note that it is possible to define FT such that FT (0) = x (j) if x (j), j ∈ C, is also a corner of T .

A norm in W `,p
α (T̂ ) is defined by

‖û‖
W `,p
α (T̂ )

:=



∑
|α|≤`

∫
T̂

r̂(x̂)pα|D̂αû(x̂)|pdx̂

1/p

, if p ∈ [1,∞),

∑
|α|≤`

ess sup
x̂∈T̂

r̂(x̂)α|D̂αû(x̂)|, if p =∞.

A seminorm is defined analogous to (2.18) when taking the sum only over all |α| = `.

For three-dimensional problems we need the weight functions

ρ̂(x̂) := |x̂ |, r̂(x̂) := inf
ŷ∈M̂
|x̂ − ŷ |,

where M̂ := {te3 : t ∈ (0, 1)} is the reference edge. If Assumption 1 did not hold, e. g. when

two edges of T were contained in edges of Ω, we would have to introduce two edge weights on

the reference setting. This is in principal possible but we exclude this for simplification purposes.

In order to maintain consistency with the notation we assume that the reference transformation

FT : T̂ → T is defined in such a way that the following properties hold:

• If T has an edge which is contained in an edge Mk , k ∈ E , we assume that FT (M̂) ⊂ Mk .

• If T has a corner which is also a corner x (j), j ∈ C, of Ω, we assume that FT (0) = x (j).

• If T touches an edge Mk , k ∈ E , in a single point, we assume that FT (0) ∈ Mk .
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Analogous to Definition 2.3.2 we define for ` ∈ N0, p ∈ [1,∞] and β, δ ∈ R the space W `,p
β,δ(T̂ )

equipped with the norm

‖û‖
W `,p
β,δ(T̂ )

:=



∑
|α|≤`

∫
T̂

ρ̂(x̂)p(β−`+|α|)
(
r̂

ρ̂
(x̂)

)pδ
|D̂αû(x̂)|pdx̂

1/p

, if p ∈ [1,∞),

∑
|α|≤`

ess sup
x̂∈T̂

ρ̂(x̂)β−`+|α|
(
r̂

ρ̂
(x̂)

)δ
|D̂αû(x̂)|. if p =∞.

Let us briefly discuss the relation between the weights in the reference setting and the original

weights. For two-dimensional problems it is clear that

r(x) ∼ hT r̂(x̂) ∀x ∈ T, (3.6)

when T touches the corner x (j).

For three-dimensional problems we have to distinguish among certain situations. For the case

illustrated in Figure 3.1b that one edge of T is contained in an edge M of Ω, we define the

points

y = arg min
z∈M

|x − z |, ŷ = arg min
ẑ∈M̂

|x̂ − ẑ |.

Note that y and FT (ŷ) are in general different points. For the transformation from T̂ to T we

have to exploit the property

r(x) = |x − y | ∼ hT |x̂ − F−1
T (y)| ∼ hT |x̂ − ŷ | = hT r̂(x̂), (3.7)

where the second equivalence holds due to the assumed shape regularity of Th. Moreover, if T

touches also the corner c := x (j), we observe that

ρ(x) = |x − c | ∼ hT |x̂ − ĉ | = hT ρ̂(x̂), (3.8)

since c = FT (ĉ). The case illustrated in Figure 3.1c where T touches the edge M only in a single

point c is treated slightly different. Due to the assumed shape regularity the angles between the

edge M and the edges of T touching c are bounded from below by a constant independent of

h. Exploiting this fact yields the property

r(x) = |x − y | ∼ |x − c | ∼ hT |x̂ − ĉ | = hT ρ̂(x̂), (3.9)

and the edge weight becomes a corner weight in the reference setting. Note, that we did not

consider weights related to corners and edges that are not touched by T , since these weights

are not needed for our analysis.

The technique we use to derive local estimates is in most cases the same. We introduce some

polynomial w ∈ Pk of degree k ∈ N0 which is preserved by the projection operator, apply stability

properties for this operator and insert results of polynomial approximation theory. In classical

Sobolev spaces the Deny-Lions type arguments (also known as Bramble-Hilbert-Lemma) from

Dupont and Scott [38] are sufficient for our purposes. In weighted Sobolev spaces we will use

the following analogue.

Lemma 3.2.1. Let a positive integer ` ∈ N and some q ∈ (1,∞) be given. There exists some

polynomial p ∈ P`−1(T̂ ) such that the following results hold.
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a) (n = 2). Let some function v ∈ W `,q
~α (T̂ ) with weights ~α ∈ Rd be given such that

− 2/q < αj < 3− 2/q ∀j ∈ C. (3.10)

Then,

‖v − p‖
W `,q
~α

(T̂ )
≤ c |v |

W `,q
~α

(T̂ )
.

b) (n = 3). Let v ∈ W `,q
~β,~δ

(T̂ ) be some function with weights ~β ∈ Rd ′ , ~δ ∈ Rd satisfying

βj < 4− 3/q ∀j ∈ C,
−2/p < δk < 3− 2/q ∀k ∈ E . (3.11)

Then,

‖v − p‖
W `,q
~β,~δ

(T̂ )
≤ c |v |

W `,q
~β,~δ

(T̂ )
.

The constant c depends solely on T̂ .

Proof. The assertion for n = 2 can be found in [74, Lemma 2.30] and [13, Lemma 2.2] where

the latter reference contains a detailed proof, but the assumptions upon the weights are too

restrictive. To show the extension to n = 3 we merely mimic the ideas therein. Actually, it

suffices to show that the norm equivalence

‖u‖
W `,q
~β,~δ

(T̂ )
∼ |u|

W `,q
~β,~δ

(T̂ )
+

∑
|α|≤`−1

∣∣∣∣∫
T̂

Dαu

∣∣∣∣ , (3.12)

holds, and to insert u = v − p with some p ∈ P`−1(T̂ ) such that the second term on the

right-hand side vanishes. The proof of (3.12) presented in [13] can be extended to the case

n = 3 since the key steps are the embeddings

W `,q
~β,~δ

(T̂ )
c
↪→ W `−1,q

~β,~δ
(T̂ ) and W 1,q

~β,~δ
(T̂ ) ↪→ W 1,1

~1,~1
(T̂ ) ↪→ L1(T̂ ). (3.13)

The first embedding is stated in part two of Lemma 2.3.4 and holds under the assumption

−2/q < δk for all k ∈ E . The second embedding in (3.13) is also a consequence of Lemma

2.3.4 and holds under the assumption (3.11).

The local estimates we are going to derive in the remainder of this section will always depend

upon the position of the element T . Therefore, we introduce the quantities

rj,T := inf
x∈T
|x (j) − x |, rT := min

j∈C
rj,T ,

for j ∈ C if Ω is a polygonal domain, and

ρj,T := inf
x∈T
|x (j) − x |, rk,T := inf

x∈T
y∈Mk

, |y − x |, rT := min
k∈E

rk,T ,

for j ∈ C and k ∈ E if Ω is a polyhedral domain. In all subsequent estimates the generic constant

c is independent of these quantities.
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3.2.1 The nodal interpolant Ih

The nodal interpolant maps a given function u to a discrete function in Vh such that the inter-

polant coincides with u in the nodes of Th. Hence, for an arbitrary continuous function we can

define the nodal interpolant by

Ih : C(Ω)→ Vh, [Ihu](x) :=
∑
n∈Nh

u(n)ϕn(x). (3.14)

This operator can also be defined element-wise which makes the derivation of global estimates

easier. The definition (3.14) is equivalent to

[Ihu](x) =
∑
n∈NT

u(n)ϕn(x) if x ∈ T .

It is also possible to define the nodal interpolant on the reference element by

[Îhû](x̂) =
∑
n̂∈NT̂

û(n̂)ϕ̂n̂(x̂) if x̂ ∈ cl T̂ .

As a direct consequence of this definition one can show the following stability property:

Lemma 3.2.2 (Stability of Ih). Let some function u ∈ C(cl T̂ ) be given. Then, the stability

estimate

|Îhû|W k,p(T̂ ) ≤ c‖û‖L∞(T̂ )

holds for arbitrary k ∈ {0, 1}, p ∈ [1,∞].

Proof. With the definition of Îh, the triangle inequality and the Hölder inequality (2.2) we obtain

for arbitrary |α| ≤ 1 that

‖DαÎhû‖pLp(T̂ )
≤
∑
n̂∈NT̂

‖û(n̂)Dαϕn̂‖pLp(T̂ )
≤ ‖û‖p

L∞(T̂ )

∑
n̂∈NT̂

∫
T̂

(Dαϕ̂n̂(x̂))p dx̂ .

Moreover, one observes that∫
T̂

(Dαϕ̂n̂(x̂))p dx̂ ≤ c with c = c(T̂ ),

taking the definition of the basis functions ϕ̂n̂ into account.

Due to the stability in in the maximum norm the nodal interpolant is a suitable choice when

deriving error estimates in L∞(Ω).

Lemma 3.2.3. Let some function u ∈ C(T ) on an element T ∈ Th with T ⊂ Uj for some j ∈ C
be given. Assume that |u|W 2,∞

~β,~δ
(T ) ≤ c , with weights satisfying

0 ≤ βj < 2, 0 ≤ δk < 5/3, ∀k ∈ Xj .
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Then the error estimate

‖u − Ihu‖L∞(T ) ≤ ch2
T |u|W 2,∞

~β,~δ
(T ) ·


ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
, if ρj,T > 0, rk,T > 0 (∀k ∈ Xj),

h−δkT ρ
δk−βj
j,T , if ρj,T > 0, rk,T = 0,

h
−βj
T , if ρj,T = 0,

(3.15)

holds. Furthermore, let κ := max{βj ,maxk∈Xj δk} denote the largest weight. Then the estimate

above simplifies to

‖u − Ihu‖L∞(T ) ≤ ch2
T |u|W 2,∞

~β,~δ
(T ) ·

{
r−κT , if rT > 0,

h−κT , if rT = 0.
(3.16)

Proof. We consider first the case that T is away from the singular points which implies u ∈
W 2,∞(T ). Hence, a standard interpolation error estimate can be applied and introducing the

weights afterwards yields

‖u − Ihu‖L∞(T ) ≤ ch2
T ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
|u|W 2,∞

~β,~δ
(T ). (3.17)

Consider now the case that rT = 0. In this case, standard interpolation error estimates cannot

be applied. We introduce a first-order polynomial w ∈ P1(T ) and apply the transformation

to the reference element, the stability estimate of Lemma 3.2.2, as well as the embedding

W 1,p(T̂ ) ↪→ L∞(T̂ ) for some p > 3, and obtain

‖u − Ihu‖L∞(T ) ≤ ‖û − ŵ‖L∞(T̂ ) + ‖Îh(û − ŵ)‖L∞(T̂ ) ≤ c‖û − ŵ‖W 1,p(T̂ ). (3.18)

First, we consider the case that T touches the edge Mk , k ∈ E , and is away from the corner

point, i. e. ρj,T > 0. We distinguish among the cases whether T touches Mk in an edge

of T (see Figure 3.1b) or in a single point (see Figure 3.1c). In the first case we use the

embedding W 2,p
1,1 (T̂ ) ↪→ W 1,p(T̂ ) from Lemma 2.3.4, the Bramble-Hilbert type argument in

weighted Sobolev spaces presented in Lemma 3.2.1, and the embedding W 0,∞
δk ,δk

(T̂ ) ↪→ W 0,p
1,1 (T̂ )

which holds for δk < 5/3 and the choice p = 3 +ε when ε is chosen sufficiently small, and arrive

at

‖u − Ihu‖L∞(T ) ≤ c‖û − ŵ‖W 2,p
1,1 (T̂ )

≤ c |û|
W 2,p

1,1 (T̂ )
≤ c |û|W 2,∞

δk ,δk
(T̂ ) (3.19)

For the transformation back to the original element T we take (3.7) into account and finally get

‖u − Ihu‖L∞(T ) ≤ ch2−δk
T ρ

δk−βj
j,T |u|W 2,∞

~β,~δ
(T ), (3.20)

where we already inserted the remaining weights in the last step, and used the fact that ρj,T > 0.

If T touches Mk only in a single point we replace in (3.19) the spaces W 2,p
1,1 (T̂ ) by W 2,p

1,0 (T̂ ) and

W 2,∞
δk ,δk

(T̂ ) by W 2,∞
δk ,0

(T̂ ) and use (3.9) instead of (3.7). It is easy to confirm that we arrive at

(3.20) again.

Let now T touch additionally the corner x (j) and let an edge of T be contained in Mk , k ∈ Xj .
The other edges M`, ` ∈ Xj \ {k}, meeting in x (j) can be neglected, as T touches them only
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αj

Figure 3.2: Definition of the cones C
αj
k at a reentrant corner.

in x (j). From (3.8) and (3.9) we conclude for these edges 1 = ρ̂/ρ̂ ∼ r`/ρj . We consider again

(3.18), employ the embedding from Lemma 2.3.4 with βj < 2 and δk < 5/3, and obtain using

(3.7) and (3.8) the estimate

‖û − ŵ‖W 1,p(T̂ ) ≤ c |û|W 2,p
1,1 (T̂ )

≤ c |û|W 2,∞
βj ,δk

(T̂ ) ≤ ch
2−βj
T |u|W 2,∞

~β,~δ
(T ).

In the last step we merely inserted the remaining weights which are bounded on T . If no edge

of T coincides with an edge of Ω we can derive the same estimate when replacing W 2,p
1,1 (T̂ ) and

W 2,∞
βj ,δk

(T̂ ) by W 2,p
1,0 (T̂ ) and W 2,∞

βj ,0
(T̂ ), respectively. The edge weights can be inserted afterwards

where we exploit that rk/ρj , k ∈ Xj is bounded from below by a positive constant within T which

is a consequence of the assumed shape-regularity. After insertion into (3.18) we arrive at

‖u − Ihu‖L∞(T ) ≤ ch2−βj
T |u|W 2,∞

~β,~δ
(T ),

and have proved the estimate (3.15) completely.

Let us now investigate how we can deduce (3.16) from (3.15). For the case rT > 0 we simplify

the factors rk,T and ρj,T appropriately. To this end, we introduce the following definitions. We

denote the interior angle between the edges Mk and M` by αk,` and write αj := 1
4 mink,`∈Xj αk,`

for the quarter of the minimal angle between all edges having an endpoint in x (j). We define

some cones C
αj
k , k ∈ Xj , also illustrated in Figure 3.2, by

C
αj
k := {x ∈ Uj ∩Ω: rk(x)/ρj(x) ≤ sinαj}.

Outside of the cone C
αj
k , the angular distance rk(x)/ρj(x) is then bounded from below by a

constant depending only on the angles between the edges. If T ∩ Cαjk = ∅ for all k ∈ Xj , the

angular distances to all edges are bounded from below by sinαj and we consequently get

ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
≤ cρ−βjj,T ≤ cr−κT ,

provided that δk ≥ 0, k ∈ Xj . In case of T ∩ Cαjk 6= ∅ for some k ∈ Xj we have rT = rk,T .

Since the angular distances to the other edges M`, ` ∈ Xj\{k}, are again bounded from below
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we arrive at

ρ
−βj
j,T

∏
`∈Xj

(
r`,T
ρj,T

)−δ`
≤ cρδk−βjj,T r−δkk,T .

In case of δk ≥ βj we have ρ
δk−βj
j,T ≤ c , otherwise we exploit rk,T ≤ ρj,T and arrive at ρ

δk−βj
j,T r−δkk,T ≤

cr
−βj
T . Hence, for both cases we get

ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
≤ cr−κT . (3.21)

Inserting this into (3.17) yields the desired estimate (3.16) for rT > 0. To obtain the estimate

(3.16) in case of rT = 0 we show that

h−δkT ρ
δk−βj
j,T ≤ ch−κT (3.22)

holds, which follows trivially in case of δk ≥ βj , and otherwise, this is a consequence of ρj,T ≥
chT .

It is also possible to define the nodal interpolant on the boundary Γ based on its triangulation

Eh. The space of continuous and piecewise linear functions on Γ is denoted by

V ∂h := {vh ∈ C(Γ) : vh is affine linear on all E ∈ Eh},

and we investigate the interpolant I∂h defined by

I∂h : C(Γ)→ V ∂h , [I∂h u](x) :=
∑

n∈Nh∩Γ

u(n)ϕn(x) ∀x ∈ Γ. (3.23)

In the following Lemma we derive a local interpolation error estimate for two-dimensional prob-

lems. Consequently, Γ is a one-dimensional manifold in R2.

Lemma 3.2.4. Let Ω ⊂ R2 be a polygonal domain, and let E ∈ Eh be a boundary element such

that E ⊂ Uj ∩ Γ for some j ∈ C. Assume that u ∈ W 2,p
γ (E) with arbitrary p ∈ [2,∞] and

0 ≤ γ <
{

2− 1/p, if ` = 0,

3/2− 1/p, if ` = 1,

For ` ∈ {0, 1} the local estimate

‖u − I∂h u‖H`(E) ≤ ch2−`
E |E|1/2−1/p|u|

W 2,p
γ (E)

{
r−γE , if rE > 0,

h−γE , if rE = 0,

holds, where rE := dist(E, x (j)).

Proof. In case of rE > 0 we may exploit higher regularity, namely u ∈ W 2,p(E). An application

of standard estimates and insertion of the weight afterwards yields

‖u − I∂h u‖H`(E) ≤ ch2−`
E |E|1/2−1/p|u|W 2,p(E) ≤ ch2−`

E |E|1/2−1/pr−γE |u|W 2,p
γ (E)

.
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Otherwise, if rE = 0, we apply the transformation to the reference interval Ê := (0, 1), insert a

first-order polynomial ŵ ∈ P1(Ê), exploit the stability of I∂h in L∞(Ê) (see Lemma 3.2.2), and

the embeddings

W 2,2
δ (Ê) ↪→ W 2,1+ε

1 (Ê) ↪→ W 1,1+ε(Ê) ↪→ L∞(Ê) ↪→ L2(Ê), if ` = 0 with δ = 3/2− ε,
W 2,2
δ (Ê) ↪→ H1(Ê) ↪→ L∞(Ê), if ` = 1 with δ = 1.

Then we arrive at

‖u − I∂h u‖H`(E) ≤ ch−`E |E|1/2
(
‖û − ŵ‖H`(Ê) + ‖û − ŵ‖L∞(Ê)

)
≤ ch−`E |E|1/2‖û − ŵ‖W 2,2

δ (Ê).

With the Deny-Lions-type argument in weighted Sobolev spaces from Lemma 3.2.1, and the

embedding W 0,p
γ (Ê) ↪→ W 0,2

δ (Ê) which holds for γ < δ + 1/2− 1/p, we get

‖û − ŵ‖W 2,2
δ (Ê) ≤ c |û|W 2,p

γ (Ê)
,

and the assertion follows from the transformation back to E exploiting the property (3.6).

3.2.2 The quasi-interpolant Zh

The quasi-interpolant Zh first introduced by Scott and Zhang [82] has two significant advantages

over the nodal interpolant. On the one hand it is applicable for non-smooth functions u ∈
W `,p(Ω) with

` ≥ 1 if p = 1, ` > 1/p if p > 1, (3.24)

and, on the other hand that it possesses better stability properties as we will see in Lemma 3.2.5.

We follow the definition from [82] and associate a set σn ⊂ Ω to each node n ∈ Nh according

to the following rules:

a) If n ∈ Nh is an interior node, then σn := T ∈ Th such that n ∈ NT .

b) If n ∈ Nh is a boundary node, then σn := E ∈ Eh such that n ∈ E and E ⊂ Γ.

Let Πσn : L1(σn) → P1(σn) denote the L2(σn)-projection onto the space of first-order poly-

nomials on σn. Note that this projection is well-defined for functions u ∈ W `,p(Ω) with `, p

satisfying (3.24). The operator Zh is then defined by

Zh : W `,p(Ω)→ Vh, [Zhu](x) :=
∑
n∈Nh

(Πσnu)(n)ϕn(x). (3.25)

In contrast to Ih it is not possible to define Zh locally on a single element T ∈ Th, but on some

patch ST defined by

ST := int
⋃
T ′∈Th
T̄ ′∩T̄ 6=∅

T ′.

For estimates on a reference setting we introduce the patch ST̂ := F−1
T (ST ). Note, that the

patch ST̂ has diameter hST̂ = O(1) and contains a ball of radius ρST̂ = O(1).

The following stability estimate for Zh is proved in [82]:
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Lemma 3.2.5. Let some function u ∈ W `,p(ST ) with ` ∈ N and p ∈ [1,∞] be given satisfying

(3.24). Then, the stability estimate

‖Ẑhû‖W k,q(T̂ ) ≤ c‖û‖W `,p(ST̂ ). (3.26)

holds for all k ∈ N0 and q ∈ [1,∞].

With this stability estimate we can prove an interpolation error estimate based on the technique

we already used in the proof of Lemma 3.2.3.

Lemma 3.2.6. Let T ∈ Th with T ⊂ Uj for some j ∈ C. Assume that the function u ∈ H1(ST )

satisfies |u|
W 2,p
~β,~δ

(ST )
≤ c for some p ∈ (6/5,∞] and weights satisfying

0 ≤ βj < 5/2− 3/p, 0 ≤ δk < 5/3− 2/p, ∀k ∈ Xj .

Then, for ` ∈ {0, 1}, the interpolation error estimate

|u − Zhu|H`(T ) ≤

ch2−`
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
·


ρ
−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
, if ρj,ST > 0, rk,ST > 0 (∀k ∈ Xj),

h−δkT ρ
δk−βj
j,T , if rk,ST = 0, ρj,ST > 0,

h
−βj
T , if ρj,ST = 0,

(3.27)

holds. Moreover, with κ := max{βj ,maxk∈Xj δk} this estimate simplifies to

|u − Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
·
{
r−κT , if rST > 0,

h−κT , if rST = 0.
(3.28)

Proof. If the patch ST is away from the singular points we have higher regularity, more precisely

u ∈ W 2,p(ST ), and hence, we may apply the interpolation error estimates in classical Sobolev

spaces from [82], and introduce the weights afterwards. This leads to

|u − Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/pρ

−βj
j,T

∏
k∈Xj

(
rk,T
ρj,T

)−δk
|u|

W 2,p
~β,~δ

(ST )
(3.29)

If rST = 0 we introduce a first-order polynomial w ∈ P1(ST ) and obtain with the triangle

inequality

|u − Zhu|H`(T ) ≤ |u − w |H`(T ) + |Zh(u − w)|H`(T ). (3.30)

For the first part of (3.30) the transformation to the reference element and the trivial embedding

H1(T̂ ) ↪→ L2(T̂ ) yield

|u − w |H`(T ) ≤ c |T |1/2h−`T |û − ŵ |H`(T̂ ) ≤ c |T |1/2h−`T ‖û − ŵ‖H1(T̂ ).

For the second part on the right-hand side of (3.30) we apply an inverse inequality, the trans-

formation to the reference element, and the stability of Zh in H1(ST̂ ) (compare Lemma 3.2.5),
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and obtain

|Zh(u − w)|H`(T ) ≤ ch−`T ‖Zh(u − w)‖L2(T )

≤ c |T |1/2h−`T ‖Ẑh(û − ŵ)‖L2(T̂ )

≤ c |T |1/2h−`T ‖û − ŵ‖H1(ST̂ ).

Together with the embedding W 2,6/5(ST̂ ) ↪→ H1(ST̂ ), the estimate (3.30) simplifies to

|u − Zhu|H`(T ) ≤ ch−`T |T |1/2‖û − ŵ‖W 2,6/5(ST̂ ). (3.31)

Now, we employ a Deny-Lions type argument, e. g. the version from Theorem 3.2 in [38] where

the estimate depends only on hST̂ and ρST̂ . After the transformation back to ST we arrive at

|u − Zhu|H`(T ) ≤ ch−`T |T |1/2|û|W 2,6/5(ST̂ ) ≤ ch2−`
T |T |1/2−5/6|u|W 2,6/5(ST ), (3.32)

where |ST | ∼ |T | was exploited in the last step. Henceforth, we have to distinguish among the

cases whether ST touches a corner or only a single edge.

We first consider the case that ST touches the edge Mk for some k ∈ Xj , but is away from the

corners. The Hölder inequality with q := 5p/6 and 1/q + 1/q′ = 1 yields

|u|6/5

W 0,6/5(ST )
=

∫
ST

rk(x)6δk/5|u(x)|6/5rk(x)−6δk/5dx

≤
(∫

ST

rk(x)pδk |u(x)|pdx

)6/(5p)(∫
ST

rk(x)−q
′6δk/5dx

)1/q′

. (3.33)

The second integral can be integrated exactly in cylinderical coordinates (rk , ϕk , zk) around Mk

and is bounded if 2−q′6δk/5 > 0. This condition is equivalent to δk < 5/3−2/p when inserting

the definition of q and q′. As ST is contained in a cylindrical sector around Mk having length

and radius proportional hT there exist constants ci > 0, i ∈ {1, 2, 3}, such that

(∫
ST

rk(x)−q
′6δk/5dx

)5/(6q′)

≤
(∫ c1+c2hT

c1

∫ c3hT

0

r
1−q′6δk/5
k drkdzk

)5/(6q′)

≤ ch−δkT |T |5/6−1/p, (3.34)

where we used 1/q′ = 1 − 6/(5p) and |T | ∼ h3
T in the last step. Inserting (3.33) with (3.34)

into (3.32) leads to

|u − Zhu|H`(T ) ≤ ch2−`−δk
T |T |1/2−1/pρ

δk−βj
j,T |u|

W 2,p
~β,~δ

(ST )
, (3.35)

where we already inserted the remaining weights and exploited that ST is away from the corner.

Let now ST contain also the corner c := x (j). Analogous to (3.33) we derive an embedding into
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an appropriate weighted Sobolev space and obtain using the Hölder inequality with q := 5p/6

|v |6/5

W 0,6/5(ST )
=

∫
ST

ρj(x)6βj/5
∏
k∈Xj

(
rk
ρj

(x)

)6δk/5

|v(x)|6/5ρj(x)−6βj/5
∏
k∈Xj

(
rk
ρj

(x)

)−6δk/5

dx

≤ c

∫
ST

ρj(x)pβj
∏
k∈Xj

(
rk
ρj

(x)

)pδk
|v(x)|pdx

6/(5p)

×

∫
ST

ρj(x)−q
′6βj/5

∏
k∈Xj

(
rk
ρj

(x)

)−q′6δk/5

dx

1/q′

. (3.36)

We introduce spherical coordinates (ρj , ϕk , ϑk), which are centered at c and coincide with the

edge Mk for ϑk = 0. This definition implies that rk/ρj = sin(ϑk). The integrals over ϑk are

bounded by a constant independent of hT under the condition −q′6δk/5 > −2 which is implied

by −2/p < δk < 5/3−2/p for all k ∈ Xj . Hence, a constant c1 > 0 exists such that the second

integral in (3.36) can be simplified to∫
ST

ρj(x)−q
′6βj/5

∏
k∈Xj

(
rk
ρj

(x)

)−q′6δk/5

dx

6/(5q′)

≤ c
(∫ c1hT

0

ρ
2−q′6βj/5
j dρj

)6/(5q′)

≤ ch−βjT |T |5/6−1/p, (3.37)

provided that −q′6βj/5 > −3 which is equivalent to the assumption βj < 5/2 − 3/p. As a

consequence, we get from (3.32) using (3.36) and (3.37) the estimate

|u − Zhu|H`(T ) ≤ ch
2−`−βj
T |T |1/2−1/p|u|

W 2,p
~β,~δ

(ST )
, if ρj,ST = 0,

and have proven (3.27) completely.

The estimate (3.28) follows directly from (3.27) using the arguments from the proof of Lemma

3.2.3. We merely have to apply estimate (3.21) if rST > 0, and (3.22) if rST = 0, respectively.

3.2.3 The L2(Γ)-projection P ∂h

In this section the L2(Γ)-projection onto the finite-dimensional space

Uh := {vh ∈ L∞(Γ) : vh is constant on each E ∈ Eh} (3.38)

is studied. Remember that Eh is a conforming triangulation of the boundary Γ. In this thesis

only the two-dimensional case Ω ⊂ R2 is considered. The L2(Γ)-projection P ∂h defined by

P ∂h : L1(Γ)→ Uh,

∫
Γ

(u − P ∂h u)vh dsx = 0 ∀vh ∈ Uh, (3.39)

has also a local representation given by

[P ∂h v ](x) = |E|−1

∫
E

u(t) dst if x ∈ E,
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and preserves functions in Uh, i. e. vh = P ∂h vh for all vh ∈ Uh. On the reference element Ê we

have accordingly

P̂ ∂h û := |Ê|−1

∫
Ê

û(t̂)dst̂ .

From this definition the following stability estimate directly follows.

Lemma 3.2.7 (Stability of P ∂h ). Let some function û ∈ Lq(Ê) with q ∈ [1,∞] be given. Then

the estimate

‖P̂ ∂h û‖Lp(Ê) ≤ c‖û‖Lq(Ê)

holds for arbitrary p ∈ [1,∞].

As a consequence one can derive the following local estimate:

Lemma 3.2.8. Let E ∈ Eh such that E ⊂ Uj for some j ∈ C, and a function u ∈ W 1,p
δ (E) with

p ∈ [2,∞] and δ ∈ [0, 3/2− 1/p) be given. Then, the estimate

‖u − P ∂h u‖L2(E) ≤ chE |E|1/2−1/p|u|
W 1,p
δ (E)

·
{
r−δE , if rE > 0,

h−δE , if rE = 0,

holds.

Proof. The desired estimate in case of rE > 0 is a direct consequence of the standard estimate

‖u − P ∂h u‖L2(E) ≤ chE |E|1/2−1/p|u|W 1,p(E)

and the property |u|W 1,p(E) ≤ r−δE |u|W 1,p
δ (E)

which follows from Definition 2.3.1.

For elements touching a singular corner we introduce a constant w ∈ P0 and exploit the fact

that P ∂h w = w . With the transformation to the reference element Ê := (0, 1), the stability

estimate from Lemma 3.2.7, the embedding W 1,2
1 (E) ↪→ L2(E) from Lemma 2.3.3, and the

Deny-Lions type argument from Lemma 3.2.1, we get

‖u − P ∂h u‖L2(E) ≤ ‖u − w‖L2(E) + ‖P ∂h (u − w)‖L2(E) ≤ c |E|1/2‖û − ŵ‖L2(Ê)

≤ c |E|1/2‖û − ŵ‖W 1,2
1 (Ê) ≤ c |E|1/2|û|W 1,2

1 (Ê). (3.40)

From the embedding stated in Lemma 2.3.3 we conclude

|û|W 1,2
1 (Ê) ≤ c |û|W 1,p

δ (Ê)
,

which holds for all δ < 3/2 − 1/p. The desired estimate follows after the transformation back

to E taking (3.6) into account.

3.2.4 The midpoint interpolant R∂h

Another projection onto the set Uh defined in (3.38) is the midpoint interpolant sometimes also

called 0-interpolant. We will require this interpolation operator to derive error estimates for the

state variable of Neumann boundary control problems in L2(Ω) on three-dimensional domains

(see Section 4.2.1). Thus, we assume in this section that Ω ⊂ R3 is a polyhedral domain.
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For each boundary element E ∈ Eh we denote the corresponding barycenter by xE and define

the interpolation operator R∂h by

R∂h : C(Γ)→ Uh, [R∂hu]|E := u(xE) E ∈ Eh. (3.41)

The corresponding analogue on the reference triangle Ê is defined by

R̂∂h û = û(xÊ), where xÊ := (1/3, 1/3),

for arbitrary û ∈ C(cl Ê). As this interpolant is based on point evaluations of u (like the nodal

interpolant I∂h considered in Section 3.2.1) we have only stability in L∞(E).

Lemma 3.2.9 (Stability of R∂h). Let some function û ∈ C(cl Ê) be given. Then, the stability

estimate

‖R̂∂h û‖Lp(Ê) ≤ c‖û‖L∞(Ê)

holds for arbitrary p ∈ [1,∞].

From the definition of R∂h we immediately get that R∂h preserves piecewise constant functions,

i. e. R∂hw = w for all w ∈ P0(E). However, due to the choice of the points xE we even get the

relation ∫
E

[R∂hw ](x) dsx =

∫
E

w(x) dsx for all w ∈ P1(E), (3.42)

which allows us to derive error estimates with a rate higher than one provided that the function

we want to approximate is sufficiently regular. We will exploit this fact in the following Lemma.

Lemma 3.2.10. Let Ω ⊂ R3 be a polyhedral domain and Eh a triangulation of its boundary.

Let E ∈ Eh be an arbitrary boundary element with E ⊂ Uj ∩ Γ for some j ∈ C. To each choice

of weight vectors ~β ∈ Rd ′ , ~δ ∈ Rd we associate the number κ := max{βj ,maxk∈Xj δk}. The

following assertions hold:

a) If |u|W 2,2
~β,~δ

(E) ≤ c with ~β ∈ [0, 3/2)d
′

and ~δ ∈ [0, 1)d , then the estimate

∣∣∣∣∫
E

(u(x)− R∂hu) dsx

∣∣∣∣ ≤ ch2
E |E|1/2|u|W 2,2

~β,~δ
(E) ·

{
r−κE , if rE > 0,

h−κE , if rE = 0,
(3.43)

holds.

b) If |u|W 1,∞
~β,~δ

(E) ≤ c with ~β ∈ [0, 1)d
′

and ~δ ∈ [0, 1/2)d , the estimates

‖u − R∂hu‖L∞(E) ≤ chE |u|W 1,∞
~β,~δ

(E) ·


ρ
−βj
j,E

∏
k∈Xj

(
rk,E
ρj,E

)−δk
, if ρj,E > 0, rk,E > 0 ∀k ∈ Xj ,

h−δkE ρ
δk−βj
j,E , if rk,E = 0, ρj,E > 0,

h
−βj
E , if ρj,E = 0,

(3.44)

and in particular

‖u − R∂hu‖L∞(E) ≤ chE |u|W 1,∞
~β,~δ

(E) ·
{
r−κE , if rE > 0,

h−κE , if rE = 0,
(3.45)

hold.
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Proof. a) We apply the transformation to the reference triangle Ê, introduce a first-order polyno-

mial ŵ ∈ P1, apply the stability estimate from Lemma 3.2.9, and the embedding W 2,1+ε(Ê) ↪→
L∞(Ê) which holds for arbitrary ε > 0, and use the Bramble-Hilbert Lemma. Applying the

described technique step-by-step yields∣∣∣∣∫
E

(u(x)− R∂hu) dsx

∣∣∣∣ ≤ c |E||∫
Ê

(
û(x̂)− R̂∂h û)dsx̂

∣∣
≤ c |E|

(∣∣∣∣∫
Ê

(û(x̂)− ŵ(x̂))dsx̂

∣∣∣∣+

∣∣∣∣∫
Ê

R̂∂h(û − ŵ)dsx̂

∣∣∣∣)
≤ c |E|‖û − ŵ‖L∞(Ê) ≤ c |E|‖û − ŵ‖W 2,1+ε(Ê)

≤ c |E||û|W 2,1+ε(Ê). (3.46)

If rE > 0 we use the trivial embedding L2(Ê) ↪→ L1+ε(Ê) (note that we can chose ε ∈ (0, 1)),

apply the transformation back to E and introduce the weights which yields

|û|W 2,1+ε(Ê) ≤ ch2
E |E|−1/2|u|H2(E)

≤ ch2
E |E|−1/2ρ

−βj
j,E

∏
k∈Xj

(
rk,E
ρj,E

)−δk
|u|W 2,2

~β,~δ
(E).

Inserting also the simplification (3.21) yields together with (3.46) the estimate (3.43) in case

of rE > 0.

If rE = 0 we have lower regularity and hence reuse the technique from the proof of Lemma 3.2.3,

in particular the steps (3.19) and (3.20). If one edge of E is contained in the edge Mk and E

is away from the corner we get with the embedding from Lemma 2.3.4, the property (3.7), and

the fact that ρj,E > 0, the estimate

|û|W 2,1+ε(Ê) ≤ c |û|W 2,2
δk ,δk

(Ê) ≤ ch
2−δk
E |E|−1/2ρ

δk−βj
j,E |u|W 2,2

~β,~δ
(E).

If E touches the edge only in a single point we apply (3.9) instead of (3.7) and get

|û|W 2,1+ε(Ê) ≤ c |û|W 2,2
δk ,0

(Ê) ≤ ch
2−δk
E |E|−1/2ρ

δk−βj
j,E |u|W 2,2

~β,~δ
(E).

If E touches additionally the corner x (j) and has an edge contained in Mk , we get with (3.7)

and (3.8)

|û|W 2,1+ε(Ê) ≤ c |û|W 2,2
βj ,δk

(Ê) ≤ ch
2−βj
E |E|−1/2|u|W 2,2

~β,~δ
(E).

If E touches the corner x (j), but the edges Mk , k ∈ Xj , only in x (j), the property (3.8) yields

|û|W 2,1+ε(Ê) ≤ c |û|W 2,2
βj ,0

(Ê) ≤ ch
2−βj
E |E|−1/2|u|W 2,2

~β,~δ
(E).

In all four cases the embeddings hold for 0 ≤ βj < 3/2 and 0 ≤ δk < 1 when we choose ε > 0

sufficiently small. Using also the simplification (3.22) we arrive at

|û|W 2,1+ε(Ê) ≤ |û|W 2,2
~β,~δ

(Ê) ≤ ch2−κ
E |E|−1/2|u|W 2,2

~β,~δ
(E).

Together with (3.46) the estimate (3.43) follows for rE = 0.
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b) To show the estimate in the L∞(E)-norm we use again the transformation to a reference

element, insert a polynomial ŵ ∈ P0, apply the stability estimate from Lemma 3.2.9, the

embedding W 1,2+ε(Ê) ↪→ L∞(Ê) and the Bramble-Hilbert Lemma. Then we arrive at

‖u − R∂hu‖L∞(E) ≤ c‖û − ŵ‖L∞(Ê) ≤ c |û|W 1,2+ε(E). (3.47)

The case rE > 0 is easy since u ∈ W 1,∞(E). After transformation to E and insertion of the

weights we get

|û|W 1,2+ε(Ê) ≤ chE |u|W 1,∞(E) ≤ chEρ
−βj
j,E

∏
k∈Xj

(
rk,E
ρj,E

)−δk
|u|W 1,∞

~β,~δ
(E), (3.48)

If rE = 0 we proceed as in the proof of part a), and derive the estimate

|û|W 1,2+ε(Ê) ≤ chE |u|W 1,∞
~β,~δ

(E)

{
h−δkE ρ

δk−βj
j,E , if rk,E = 0, ρj,E > 0,

h
−βj
E , if ρj,E = 0.

(3.49)

where we have to distinguish among the possible positions of E, and use the embeddings

W 1,∞
δk ,δk

(Ê) ↪→ W 1,2+ε(Ê), W 1,∞
δk ,0

(Ê) ↪→ W 1,2+ε(Ê), W 1,∞
βj ,δk

(Ê) ↪→ W 1,2+ε(Ê) or W 1,∞
βj ,0

(Ê) ↪→
W 1,2+ε(Ê) which hold under our assumptions upon βj and δk , k ∈ Xj , compare also Lemma

2.3.4. Inserting (3.48) and (3.49) into (3.47) leads to the estimate (3.44). From the simplifi-

cation (3.21) we conclude the estimate (3.45).

3.3 Error estimates for quasi-uniform meshes

In this section we summarize some a priori error estimates for the solution yh of (3.3) when the

finite element mesh is not refined locally. Error estimates on locally refined meshes are considered

in Section 3.4. We call a shape regular family of triangulations {Th}h>0 quasi-uniform if some

h0 > 0 exists such that

hT ∼ h ∀T ∈ Th (3.50)

is satisfied for all h ∈ (0, h0].

The convergence rate of the finite-element method on quasi-uniform meshes will depend upon

the corner and edge singularity with the strongest influence. Therefore we define the singular

exponent of the dominating singularity by

λ :=

min
j∈C

λj , for n = 2,

min
j∈C,k∈E

{1/2 + λcj , λ
e
k}, for n = 3.

(3.51)

Note that λ > 1/2 for arbitrary polygonal and polyhedral domains according to Definition 2.2.1

and 2.2.3, respectively.

Theorem 3.3.1. Assume that the family of triangulations {Th}h>0 is quasi-uniform.

• n = 2: Let f ∈ W 0,2
~α (Ω) and g ∈ W 1/2,2

~α (Γ) with a weight vector ~α ∈ Rd defined by

αj := max{0, 1− λj + ε} j ∈ C.
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• n = 3: Let f ∈ W 0,2
~β,~δ

(Ω) and g ∈ W 1/2,2
~β,~δ

(Γ) with weight vectors ~β ∈ Rd ′ and ~δ ∈ Rd
defined by

βj := max{0, 1/2− λcj + ε} j ∈ C,
δk := max{0, 1− λek + ε} k ∈ E .

Then, for ` ∈ {0, 1} the error estimates

‖y − yh‖H`(Ω) ≤ ch(2−`) min{1,λ−ε} ·

|y |W 2,2
~α

(Ω), if n = 2,

|y |W 2,2
~β,~δ

(Ω), if n = 3,

hold for sufficiently small ε > 0.

Proof. The assertion for the two-dimensional case is proved in [74, Corollary 3.39]. Analogously,

we can derive the assertion for the three-dimensional case using the Lemma of Céa and the local

interpolation error estimates from Lemma 3.2.6. This yields

‖y − yh‖2
H1(Ω) ≤ c

∑
T∈Th

‖y − Zhy‖2
H1(T ) ≤ ch2(1−κ)|y |2

W 2,2
~β,~δ

(Ω)
,

under the assumption that ε > 0 chosen sufficiently small such that the βj < 1, j ∈ C, and

δk < 2/3, k ∈ E . Inserting the definition of the weights ~β and ~δ leads to

h1−κ = hmin{1,λ−ε},

from which we conclude the estimate for ` = 1. The estimate in the L2(Ω)-norm follows from

the Aubin-Nitsche method. Therefore, let w ∈ H1(Ω) be the weak solution of the dual problem

−∆w + w = y − yh in Ω, ∂nw = 0 on Γ.

With the Galerkin orthogonality and the estimate already derived in the H1(Ω)-norm we get

‖y − yh‖2
L2(Ω) = (y − yh, y − yh) = a(w, y − yh)

≤ c‖w − Zhw‖H1(Ω)‖y − yh‖H1(Ω)

≤ ch2 min{1,λ−ε}|w |W 2,2
~β,~δ

(Ω)|y |W 2,2
~β,~δ

(Ω). (3.52)

From the regularity result stated in Theorem 2.3.7 and the embedding L2(Ω) ↪→ W 0,2
~β,~δ

(Ω) which

follows from Lemma 2.3.4 as ~β,~δ ≥ 0, we obtain

|w |W 2,2
~β,~δ

(Ω) ≤ c‖y − yh‖W 0,2
~β,~δ

(Ω) ≤ c‖y − yh‖L2(Ω).

Inserting this estimate into (3.52) and dividing by ‖y − yh‖L2(Ω) yields the desired estimate for

` = 0.

Note that the convergence rate one in H1(Ω)-norm and two in L2(Ω)-norm can be expected for

arbitrary convex domains.

Especially in the context of error estimates for boundary control problems finite element error

estimates on the boundary are of interest. As a rule, one expects lower convergence rates than

for the finite element error measured in L2(Ω)-norm, as we will see in the following theorem.
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Theorem 3.3.2. Let f ∈ C0,σ(Ω) and g ≡ 0. Assume that the family of triangulations {Th}h>0

is quasi-uniform.

• n = 2: We define weight vectors ~α, ~β ∈ Rd by

αj := max{0, 1− λj + ε}, βj := max{0, 2− λj + ε} ∀j ∈ C,

and

η := ‖y‖W 2,2
~α

(Ω) + ‖y‖W 2,∞
~β

(Ω).

• n = 3: We define weight vectors ~α, ~β ∈ Rd ′ and ~δ, ~% ∈ Rd by

αj := max{0, 1

2
− λcj + ε}, βj := max{0, 2− λcj + ε} ∀j ∈ C,

δk := max{0, 1− λek + ε}, %k := max{0, 2− λek + ε} ∀k ∈ E ,

and

η :=
∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαy‖W 1,∞
~β,~%

(Ω) + ‖y‖L∞(Ω).

Then, the error estimate

‖y − yh‖L2(Γ) ≤ chmin{2,1/2+λ−ε}| ln h|3/2η

holds, provided that ε > 0 is sufficiently small.

Proof. The proof of this assertion for polygonal domains can be found in [74, Corollary 3.49].

The proof for polyhedral domains is postponed to the end of Section 3.4 as we will first prove

Theorem 3.4.2 where an error estimate in L2(Γ) with local mesh refinement is stated. Once we

have this estimate it requires only several slight modifications of the proof.

In the following theorem we will prove also an estimate in the H1/2(Γ)-norm, but consider only

two-dimensional domains.

Theorem 3.3.3. Let Ω ⊂ R2 be a polygonal domain, and let the assumptions of Theorem 3.3.2

be satisfied. Additionally, introduce the weight vector ~γ ∈ Rd whose components are defined by

γj := max{0, 3/2− λj + ε}.

Then, the estimate

‖y − yh‖H1/2(Γ) ≤ chmin{3/2,λ−ε}| ln h|3/2

(
‖y‖W 2,2

~α
(Ω) + ‖y‖W 2,∞

~β
(Ω) + |y |W 2,2

~γ
(Γ)

)
holds for sufficiently small ε > 0.

Proof. We obtain using the triangle inequality and an inverse inequality the estimate

‖y − yh‖H1/2(Γ) ≤ c
(
‖y − I∂h y‖H1/2(Γ) + h−1/2‖I∂h y − yh‖L2(Γ)

)
≤ c

(
‖y − I∂h y‖H1/2(Γ) + h−1/2‖y − I∂h y‖L2(Γ) + h−1/2‖y − yh‖L2(Γ)

)
. (3.53)
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To handle the terms depending on the interpolation error we exploit the regularity

y ∈ W 2,∞
~β′

(Γ) ↪→ W 2,2
~γ (Γ), where β′j := max{0, 2− λj + ε/2}, j ∈ C, (3.54)

which follows from Theorem 2.3.6 and the embedding of Lemma 2.3.3. From the local estimate

presented in Lemma 3.2.4 we conclude the global estimate

‖y − I∂h y‖H`(Γ) ≤ ch2−`−maxj∈C γj |y |W 2,2
~γ

(Γ) ≤ ch1/2−`+min{3/2,λ−ε}|y |W 2,2
~γ

(Γ), (3.55)

for ` ∈ {0, 1}. Note that we have to choose ε > 0 sufficiently small such that γj < 1, j ∈ C.

With an interpolation argument we conclude the validity of this estimate also for ` = 1/2.

Inserting (3.55) for ` = 0 and ` = 1/2 as well as the estimate from Theorem 3.3.2 into (3.53)

leads to the assertion.

Remark 3.3.4. The best possible convergence rate up to logarithmic factors that we can expect

is two in the L2(Γ)-norm and 3/2 in the H1/2(Γ)-norm. Obviously, in both norms the optimal

rate is attained when λ > 3/2. This holds for polygonal domains when the interior angles of all

corners are less than 120◦. If one or more corners have larger interior angle the use of local mesh

refinement is a possibility to preserve the optimal convergence rates. This will be discussed in

Section 3.4.

3.4 Error estimates for locally refined meshes

The aim of this section is to improve the convergence rates presented in the foregoing section

using local mesh refinement. We make some additional assumptions for the finite element

meshes. The number µ ∈ (0, 1] denotes the refinement parameter and R > 0 the refinement

radius. We assume that some h0 > 0 exists such that the family of triangulations {Th}h>0

satisfies the condition

hT ∼


h1/µ, if rT = 0,

hr1−µ
T , if 0 < rT < R,

h, if rT ≥ R,
∀T ∈ Th, (3.56)

for all h ∈ (0, h0], where rT is the distance to the singular points, i. e.

rT := min
j∈C

inf
x∈T
|x − x (j)|

for two-dimensional polygonal domains, and

rT := min
k∈E

inf
x∈T
y∈Mk

|x − y |

for three-dimensional polyhedral domains. Moreover, we assume throughout this thesis that

µ > 1/3 for three-dimensional problems because otherwise, the relation h ∼ |Nh|−1/3 would not

hold, see also the discussion in [12].

For planar problems it is also possible to introduce a different refinement parameter µj for each

corner x (j), j ∈ C, since the singularities are of local nature. The distance of T to the corner

x (j) is denoted by

rj,T := inf
x∈T
|x − x (j)|,
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(a) Refinement by mesh grading (b) Refinement by bisection

Figure 3.3: Locally refined polygonal domain with R = 0.5 and µ = 0.5.

and the mesh criterion we will use later reads

hT ∼


h1/µj , if rj,T = 0,

hr
1−µj
j,T , if 0 < rj,T < R,

h, if rj,T ≥ R.
(3.57)

For three-dimensional problems the use of different refinement parameters has e. g. been con-

sidered in [61, 4, 12] for pure isotropic refinement and in [5, 6, 24] for anisotropic refinement

towards edges and isotropic refinement towards corners. However, in order to keep the proofs in

this section as simple as possible we do not consider these advanced strategies and use (3.56)

in the three-dimensional case.

3.4.1 Two-dimensional problems

Before we derive error estimates on locally refined meshes let us briefly discuss how meshes

satisfying (3.57) can be generated. The strategy illustrated in Figure 3.3a is called mesh grading

meaning that all vertices within some ball around x (j) with radius R > 0 are moved closer towards

the singular corner. By change of the coordinate system we assume that x (j) = 0. To all nodes

n ∈ Nh with 0 < |n − x (j)| < R we apply the coordinate transformation (xn, yn) → (x∗n , y
∗
n ) by

the formula (
x∗n
y∗n

)
:=
( r
R

)1/µ−1
(
xn
yn

)
, with r :=

√
x2
n + y2

n .

One can show [3, Section 19.2] that the resulting triangulation satisfies (3.57).

Another possibility, which allows also hierarchical meshes, is to use local bisection algorithms.

The mesh illustrated in Figure 3.3b has been generated by the newest-vertex bisection method

described by Bänsch [17]. All cells that either violate the condition (3.57) or are non-conform,
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are refined through the edge opposite to the newest vertex. This procedure is repeated until the

refinement criterion is satisfied.

The error estimates presented in this section are independent of the refinement strategy as we

will merely use the condition (3.57). First, an error estimate in L2(Ω) and H1(Ω) on polygonal

domains is presented whose proof can be found in [8, Lemma 4.1] or [16, Theorem 5.1].

Theorem 3.4.1. Assume that the input data satisfy f ∈ W 0,2
~α (Ω) and g ∈ W 1/2

~α (Γ), and that

the mesh criterion (3.57) holds such that weight vector ~α ∈ Rd+ and refinement parameters

satisfy

1− λj < αj ≤ 1− µj (⇒ µj < λj).

Then, the error estimate

‖y − yh‖H`(Ω) ≤ ch2−`|y |W 2,2
~α

(Ω) ≤ ch2−`
(
‖f ‖W 0,2

~α
(Ω) + ‖g‖

W
1/2,2
~α

(Ω)

)
holds for ` ∈ {0, 1}.

The following error estimate in the L2(Γ)-norm can be found in [74, Theorem 3.48].

Theorem 3.4.2. Let f ∈ C0,σ(Ω) with some σ ∈ (0, 1) and g ≡ 0. Assume that the mesh

condition (3.57) holds, and that the weight vectors ~α, ~β ∈ Rd+ and the refinement parameters

satisfy

1− λj < αj ≤ 1− µj and 2− λj < βj ≤ 5/2− 2µj

for all j ∈ C. Then, the error estimate

‖y − yh‖L2(Γ) ≤ ch2| ln h|3/2

(
‖y‖W 2,2

~α
(Ω) + ‖y‖W 2,∞

~β
(Ω)

)
holds.

Combining this theorem with the regularity results from Section 2.3 leads to the following

implication.

Corollary 3.4.3. Let f ∈ C0,σ(Ω) with some σ ∈ (0, 1). The error estimate

‖y − yh‖L2(Γ) ≤ ch2| ln h|3/2‖f ‖C0,σ(Ω)

holds, if one of the following assumptions are satisfied:

1. The interior angles of all corners of Ω are smaller than 120◦ and the family of triangulations

{Th}h>0 is quasi-uniform (µ = 1).

2. The corners having interior angle larger than 120◦ are refined locally according to

µj <
1

4
+
λj
2

∀j ∈ C.

In the following we will derive a finite element error estimate in the H1/2(Γ)-norm as we already

did in Theorem 3.3.3 for quasi-uniform meshes, but for locally refined meshes we have to use

a slightly different technique. In the proof of Theorem 3.3.3 we applied an inverse inequality in
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step (3.53). This is not possible on refined meshes since a global inverse estimate on non quasi-

uniform meshes would give us the factor h−1
Emin

which would lead to a suboptimal convergence

rate. Moreover we inserted interpolation error estimates in L2(Γ)- and H1/2(Γ)-norm, where

the latter one was shown using an interpolation argument between global estimates in L2(Γ)

and H1(Γ). This technique is also not applicable for refined meshes, because the bounds for the

refinement parameter depend also on the norm in that we want to show an error estimate.

We consider first the required global interpolation error estimates.

Lemma 3.4.4. Let Ω ⊂ R2 be a polygonal domain and Eh a triangulation of its boundary. Let

some function y ∈ W 2,2
~γ (Γ) with ~γ ∈ Rd be given. Assume that the mesh condition (3.57) holds

such that the inequality

0 ≤ γj ≤
3

2
− 3

2
µj , ∀j ∈ C

is satisfied. Then, the interpolation error estimate∑
E∈Eh

h−1
E ‖y − I∂h y‖2

L2(E)

1/2

+ |y − I∂h y |H1/2(Γ) ≤ ch3/2|y |W 2,2
~γ

(Γ)

holds.

Proof. From the local estimates for some E ⊂ Uj derived in Lemma 3.2.4 we obtain

h
−1/2
E ‖y − I∂h y‖L2(E) ≤ c

h
(3/2−γj )/µj |y |W 2,2

γj
(E), if rj,E = 0,

h3/2r
3/2(1−µj )−γj
j,E |y |W 2,2

γj
(E), if rj,E > 0,

provided that γj ∈ [0, 3/2). It is easy to show that the refinement condition γj ≤ 3/2− 3µj/2

leads to the desired estimate.

An error estimate in H1/2(Γ) has been proved by von Petersdorff [89]. From Theorem 3.10 in

this reference we get the estimate

‖y − I∂h y‖H̃1/2(Γj )
≤ ch3/2|y |W 2,2

~γ
(Γj )
, (3.58)

where H̃1/2(Γj) denotes the closure of the space C∞0 (Γj) with respect to the norm ‖ · ‖H1/2(R),

see also [66] for a detailed discussion on this space. To show (3.58) von Petersdorff uses the

assumption µj < 2λj/3 as well as the choice γj = 3(1− µj)/2. However, when tracing through

the proof one easily verifies that the assertion remains true for some choice 0 ≤ γj ≤ 3(1−µj)/2.

To obtain a global estimate we use [89, Lemma 3.2] and obtain

|y − I∂h y |H1/2(Γ) ≤ ‖y − I∂h y‖H̃1/2(Γ) ≤ c
∑
j∈C
‖y − I∂h y‖H̃1/2(Γj )

,

which leads together with (3.58) to the desired estimate.

With these interpolation error estimates we can improve the results of Theorem 3.3.3 and derive

a bound for the refinement parameter such that optimal convergence rate in the H1/2(Γ)-norm

is guaranteed.
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Theorem 3.4.5. Let f ∈ C0,σ(Ω), σ ∈ (0, 1) be given, and assume that g ≡ 0. Moreover,

assume that the family of triangulations is locally refined according to (3.57) with µj > 1/3,

j ∈ C, and that the weight vectors ~α, ~β,~γ ∈ Rd+ satisfy

1− λj < αj ≤ 1− µj ,

2− λj < βj ≤ 2− 3

2
µj ,

3/2− λj < γj ≤
3

2
− 3

2
µj ,

(3.59)

for all j ∈ C. Then, the error estimate

‖y − yh‖H1/2(Γ) ≤ ch3/2| ln h|3/2

(
‖y‖W 2,2

~α
(Ω) + ‖y‖W 2,∞

~β
(Ω) + |y |W 2,2

~γ
(Γ)

)
(3.60)

holds.

Proof. Firstly, one confirms that y possesses the regularity demanded by the right-hand side of

(3.60) which is a consequence of Theorem 2.3.5, Theorem 2.3.6 as well as the argument (3.54).

By introducing the intermediate function I∂h y and applying the triangle inequality we get

|y − yh|H1/2(Γ) ≤ |y − I∂h y |H1/2(Γ) + |I∂h y − yh|H1/2(Γ).

For the second term we apply the inverse estimate from [32, Theorem 4.1] for meshes that are

not quasi-uniform, introduce y as intermediate function and arrive at

|y − yh|H1/2(Γ) ≤ |y − I∂h y |H1/2(Γ) +

∑
E∈Eh

h−1
E

(
‖y − I∂h y‖2

L2(E) + ‖y − yh‖2
L2(E)

)1/2

. (3.61)

The terms depending on the interpolation error y − I∂h y have been discussed in Lemma 3.4.4.

Hence, we get∑
E∈Eh

h−1
E ‖y − I∂h y‖2

L2(E)

1/2

+ |y − I∂h y |H1/2(Γ) ≤ ch3/2|y |W 2,2
~γ

(Γ). (3.62)

It remains to derive an estimate for the finite element error on the right-hand side of (3.61). We

will adopt the technique used in [9], where a finite element error estimate in L2(Γ) is proved, to

our situation. We first consider the error in a vicinity of a corner point x (j), j ∈ C. Therefore,

we introduce the domains

Ωj
R/n

:= {x ∈ Ω: rj(x) < R/n}, Γj
R/n

:= ∂Ωj
R/n
∩ Γ, (3.63)

Ω̃R/n := Ω \
⋃
j∈C

Ωj
R/n

, Γ̃R/n := ∂Ω̃R/n ∩ Γ, (3.64)

where rj(x) := |x − x (j)|. The radius R > 0 is assumed to be sufficiently small such that all

corners have distance larger than 2R from each other, but appropriate scaling arguments allow

us to set R = 1 without loss of generality.
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In what follows we fix an arbitrary corner c := x (j), j ∈ C, and omit the index j to simplify the

notation. In order to derive an error estimate in the vicinity of c we use the idea of Schatz and

Wahlbin [80] and introduce a dyadic decomposition of ΩR, namely

Ωi := {x ∈ Ω: di+1 < rc(x) < di}, rc(x) := |x − c |,

with radii di = 2−i , for i = 0, 1, . . . , I, and dI+1 = 0. The inner-most ring has radius dI = cIh
1/µ

with some cI > 0 independent of h which implies I ∼ | ln h|. Moreover, denote by Γi := ∂Ωi ∩ Γ

the boundary segments, which form in the same way a decomposition of ΓR. We also define the

patches of Ωi by

Ω
(k)
i := int

(
Ω̄max{0,i−k} ∪ . . . ∪ Ω̄i ∪ . . . ∪ Ω̄min{I,i+k}

)
and write Ω′i = Ω

(1)
i , Ω′′i = Ω

(2)
i . For elements T ∈ Th contained in or touching Ωi we observe

hT ∼
{
hd1−µ
i , for i = 0, 1, . . . , I − 1,

dI ∼ hd1−µ
I , for i = I,

which means that Th is quasi-uniform within each Ωi . Using this property and the decomposition

of ΓR/4 we get

∑
E∈Eh
E⊂ΓR/4

h−1
E ‖y − yh‖2

L2(E) ≤ ch−1
I∑
i=2

d
−(1−µ)
i ‖y − yh‖2

L2(Γi )
. (3.65)

Let us consider the term within the sum on the right-hand side of (3.65). For i = 2, . . . , I − 2

we can use the Hölder inequality with |Γi | ∼ di , a trace Theorem and get

d
−(1−µ)
i ‖y − yh‖2

L2(Γi )
≤ cdµi ‖y − yh‖2

L∞(Ωi )
. (3.66)

Now, we can apply the local maximum norm estimate [90, Theorem 10.1] which reads in our

situation

‖y − yh‖L∞(Ωi ) ≤ c
(
| ln h|‖y − Ihy‖L∞(Ω′i )

+ d−1‖y − yh‖L2(Ω′i )

)
, (3.67)

where d := dist(∂Ωi \ Γ, ∂Ω′i \ Γ). Due to our construction of Ωi and its patches one easily

confirms that d ∼ di . Inserting (3.67) into (3.66) yields

d
−(1−µ)
i ‖y − yh‖2

L2(Γi )
≤ c

(
| ln h|2dµi ‖y − Ihy‖2

L∞(Ω′i )
+ dµ−2

i ‖y − yh‖2
L2(Ω′i )

)
. (3.68)

In order to derive a similar estimate in case of i = I − 1, I we use a slightly different technique.

We introduce Ihy as intermediate function, apply the discrete trace theorem

‖vh‖L2(Γi ) ≤ ch−1/(2µ)‖vh‖L2(Ω′i )
≤ cd−1/2

I ‖vh‖L2(Ω′i )

from [9, Lemma 3.11], and using again the Hölder inequality and the trace theorem in L∞ we

obtain

d
−(1−µ)
i ‖y − yh‖2

L2(Γi )
≤ c

(
d
−(1−µ)
i ‖y − I∂h y‖2

L2(Γi )
+ dµ−2

I ‖Ihy − yh‖2
L2(Ω′i )

)
≤ c

(
dµi ‖y − Ihy‖2

L∞(Ω′i )
+ dµ−2

I ‖Ihy − yh‖2
L2(Ω′i )

)
≤ c

(
dµi ‖y − Ihy‖2

L∞(Ω′i )
+ dµ−2

I ‖y − yh‖2
L2(Ω′i )

)
. (3.69)
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Inserting now (3.68) and (3.69) into (3.65) yields

∑
E∈Eh
E⊂ΓR/4

h−1
E ‖y − yh‖2

L2(E) ≤ ch−1

(
| ln h|2

I∑
i=1

dµi ‖y − Ihy‖2
L∞(Ωi )

+ ‖γµ/2−1(y − yh)‖2
L2(ΩR/2)

)
,

(3.70)

where γ(x) := dI + rc(x). Note that di ∼ dI + rc(x) for all x ∈ Ωi , since di ∼ di−1.

Let us discuss the terms depending on the interpolation error. We apply Lemma 3.7 of [9] which

yields together with (3.59) the estimate

d
µ/2
i ‖y − Ihy‖L∞(Ωi ) ≤ c

h
2d

2−3µj/2−βj
i |y |W 2,∞

βj
(Ω′i )
≤ ch2|y |W 2,∞

βj
(Ω′i )

, if i = 1, . . . , I − 2,

h1/2+(2−βj )/µj |y |W 2,∞
βj

(Ω′i )
≤ ch2|y |W 2,∞

βj
(Ω′i )

, if i = I − 1, I,

where we used the property d
µ/2
i ∼ h1/2 to show the latter case. Summing up over all Ωi ,

i = 1, . . . , I ∼ | ln h|, leads to

h−1| ln h|2
I∑
i=1

dµi ‖y − Ihy‖2
L∞(Ωi )

≤ ch3| ln h|3|y |2
W 2,∞
βj

(ΩR)
. (3.71)

An estimate for the weighted finite element error on the right-hand side of (3.70) has been

derived in [74, Lemma 3.61]. In this lemma we have to set τ := 1 − µ/2. The criterion

βj ≤ 3 − τ − 2µj is then equivalent to our assumption (3.59), and the result in our situation

reads

‖γµ/2−1(y − yh)‖L2(ΩR/2) ≤ c
(
h2| ln h|1/2|y |W 2,∞

βj
(ΩR) + ‖y − yh‖L2(ΩR)

)
.

Now, we insert the global error estimate from Theorem 3.4.1 and arrive at

h−1‖γµ/2−1(y − yh)‖2
L2(ΩR/2) ≤ ch3

(
|y |2

W 2,2
~α

(Ω)
+ | ln h||y |2

W 2,∞
~β

(Ω)

)
. (3.72)

It remains to derive an error estimate on elements away from corner points. With the definition

(3.64) we get ∑
E∈Eh

E∩Γ̃R/4 6=∅

h−1
E ‖y − yh‖2

L2(E) ≤ ch−1‖y − yh‖2
L2(Γ̃R/8)

. (3.73)

Using the Hölder inequality, the local maximum norm estimate (3.67) with Ω̃R/8 and Ω̃R/16

instead of Ωi and Ω′i (this yields d = 1/16), standard interpolation error estimates as well as

the global error estimate from Theorem 3.4.1, we arrive at

‖y − yh‖L2(Γ̃R/8) ≤ ‖y − yh‖L∞(Ω̃R/8)

≤ c
(
| ln h|‖y − Ihy‖L∞(Ω̃R/16) + ‖y − yh‖L2(Ω̃R/16)

)
≤ ch2

(
|y |W 2,2

~α
(Ω) + | ln h||y |W 2,∞

~β
(Ω)

)
. (3.74)

Collecting (3.61), (3.62), (3.70), (3.71), (3.72), (3.73) and (3.74) leads to the desired estimate.
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Corollary 3.4.6. Let f ∈ C0,σ(Ω) with some σ ∈ (0, 1) and g ≡ 0. Then, the error estimate

‖y − yh‖H1/2(Γ) ≤ ch3/2| ln h|3/2‖f ‖C0,σ(Ω)

holds, if one of the following assumptions are satisfied:

1. The family of triangulations {Th}h>0 is quasi-uniform (µ = 1) and the interior angles of

all corners of Ω are smaller than 120◦.

2. All corners of Ω having interior angle larger than 120◦ are refined locally according to

(3.57) with refinement parameter

µj < 2λj/3 ∀j ∈ C.

Proof. To conclude the assertion from Theorem 3.4.5 we first show that

y ∈ W 2,∞
~β

(Ω) ∩W 2,2
~α (Ω) ∩W 2,2

~γ (Γ),

where ~α, ~β,~γ ∈ Rd are weight vectors defined by

αj = max{0, 1− λj + ε}, βj = max{0, 2− λj + ε/2}, γj = max{0, 3

2
− λj + ε},

and ε > 0 is assumed to be sufficiently small. The regularity in W 2,∞
~β

(Ω) follows from Theorem

2.3.6. With the embeddings stated in Lemma 2.3.3 we moreover get

W 2,∞
~β

(Ω) ↪→ W 2,2
~α (Ω), W 2,∞

~β
(Ω) ↪→ W 2,∞

~β
(Γ) ↪→ W 2,2

~γ (Γ). (3.75)

It is simple to confirm that the assumption µj < 2λj/3, j ∈ C, and the definitions of ~α, ~β,~γ ∈ Rd
imply the conditions (3.59), and the desired estimate directly follows from Theorem 3.4.5 after

taking the a-priori estimate from Theorem 2.3.6 into account.

Remark 3.4.7. We observe that the optimal convergence rate in the H1(Ω)- and L2(Ω)-norm is

achieved on quasi-uniform meshes when λ > 1, i. e. when all corners have interior angle smaller

than 180◦. This is not the case for the estimates on the boundary in the L2(Γ)- and H1/2(Γ)-

norm as optimal convergence on quasi-uniform meshes is guaranteed only for λ > 3/2 meaning

that the interior angles of all corners are smaller than 120◦. Thus, even for convex domains

local mesh refinement is necessary to retain optimal convergence rates. The upper bounds for

the refinement parameters are illustrated in Figure 3.4.

3.4.2 Three-dimensional problems

We consider now error estimates for three-dimensional problems using the refinement condition

(3.56). Note that we use the same grading towards all corners and edges, and hence, we have

only one refinement parameter, namely µ ∈ (0, 1]. Using different refinement parameters for

different edges and corners is theoretically possible, see e. g. [61] for error estimates in H1(Ω)

and L2(Ω), but the proof of the error estimate on the boundary presented in Theorem 3.4.14

would be too technical.
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Figure 3.4: Illustration of the upper bounds for the refinement parameter µ derived in Theorems

3.4.1, 3.4.2 and 3.4.5.

For an arbitrary initial triangulation T 0
h one can for instance use the refinement strategy described

by Bey [21] to generate a sequence of meshes {T kh }Kk=0 such that T Kh satisfies the refinement

condition (3.56). Bey’s algorithm is applicable for an arbitrary marking strategy, but we will

mark elements violating (3.56). In the k-th loop of this algorithm all marked tetrahedra T ∈ T kh
are refined regularly, meaning that a new node is inserted at the midpoint of each edge of T ,

and T is decomposed into eight smaller tetrahedra. Note that the octahedron which is bounded

by the six new nodes is decomposed into four tetrahedra, whereas three different choices are

possible depending on which diagonal is chosen, and there exist strategies which avoid that

subsequent meshes degenerate. To generate a conforming closure neighboring elements have to

be refined appropriately. Each unrefined element which has at least one edge which is marked

for refinement is also refined according to the following rules:

1. If one or two edges are marked, the element is refined by single or double bisection.

2. If three edges on the same face are marked, this face is refined regularly into four triangles

and each of them forms the base surface of a new tetrahedron having its apex in the vertex

opposite to the refined face.

3. If neither of the two rules can be applied the element is also refined regularly.

This strategy is repeated until no hanging nodes exist. The resulting triangulation is denoted by

T k+1
h . If there are still elements violating the refinement condition (3.56) the procedure described

above is repeated for k = k+ 1. If an element which has been generated by rule 1 or 2 is marked

for refinement the refinement is revoked and the parent element is also refined regularly. This

prevents that the elements degenerate. We will use this strategy in the numerical experiments in

Section 4.3. There exist also other refinement strategies, for instance the newest-edge bisection

algorithm from [17].

Let us now discuss finite element error estimates on meshes which are refined according to

(3.56). We are again interested in upper bounds for the refinement parameter µ and begin with

an improved finite element error estimate in the domain.

Theorem 3.4.8. Let Ω ⊂ R3 be a polyhedral domain. The family of triangulations {Th}h>0 is

assumed to satisfy the condition (3.56). Moreover, let the mesh refinement parameter µ and
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the weights ~α ∈ Rd ′+ and ~δ ∈ Rd+ fulfill the inequalities

1/2− λcj < αj ≤ 1− µ, ∀j ∈ C,
1− λek < δk ≤ 1− µ, ∀k ∈ E .

(3.76)

Then, for arbitrary input data f ∈ W 0,2

~α,~δ
(Ω), g ∈ W 1/2,2

~α,~δ
(Γ) the a priori error estimate

‖y − yh‖H`(Ω) ≤ ch2−`|y |W 2,2

~α,~δ
(Ω) ≤ ch2−`

(
‖f ‖W 0,2

~α,~δ
(Ω) + ‖g‖

W
1/2,2

~α,~δ
(Γ)

)
(3.77)

holds for ` ∈ {0, 1}.

Proof. As a consequence of Céa’s Lemma and the decomposition of the domain Ω we obtain

‖y − yh‖2
H1(Ω) ≤

∑
T∈Th

‖y − Zhy‖2
H1(T ). (3.78)

It remains to apply the interpolation error estimates from Lemma 3.2.6 and to adjust the re-

finement parameter such that the desired convergence rate is achieved. The largest weight is

denoted by κ := maxj∈C,k∈E{αj , δk}. In case of rST = 0 we have hT = h1/µ and with µ ≤ 1−κ
we get

‖y − Zhy‖H1(T ) ≤ ch(1−κ)/µ|y |W 2,2

~α,~δ
(ST ) ≤ ch|y |W 2,2

~α,~δ
(ST ).

Otherwise, if rST > 0, the mesh condition yields hT = hr1−µ
T and consequently

‖y − Zhy‖H1(T ) ≤ chr1−µ−κ
T |y |W 2,2

~α,~δ
(ST ) ≤ ch|y |W 2,2

~α,~δ
(ST ).

Inserting these local estimates into (3.78) leads to

‖y − yh‖H1(Ω) ≤ ch|y |W 2,2

~α,~δ
(Ω) ≤ ch

(
‖f ‖W 0,2

~α,~δ
(Ω) + ‖g‖

W
1/2,2

~α,~δ
(Ω)

)
. (3.79)

Here, we also applied the regularity result of Theorem 2.3.7 whose conditions are satisfied under

our assumptions upon ~α and ~δ. To show the estimate for ` = 0 we can repeat the arguments

used in the proof of Theorem 3.3.1.

If we assume slightly better regularity of the input data in classical Sobolev spaces we get by the

embeddings from Lemma 2.3.4 the following simplified version of Theorem 3.4.8. Recall that

the singular exponent belonging to the strongest singularity is

λ := min
j∈C
k∈E

{1/2 + λcj , λ
e
k}, (3.80)

and the bound for the refinement parameter from (3.76) depends solely on this number.

Corollary 3.4.9. Let functions f ∈ L2(Ω) and g ∈ H1/2(Γ) be given. The error estimate

‖y − yh‖H`(Ω) ≤ ch2−`
(
‖f ‖L2(Ω) + ‖g‖H1/2(Γ)

)
holds, provided that one of the following assumptions holds:
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Γ̂R

Γ̂0

Figure 3.5: Decomposition of the boundary into Γ̂R and Γ̂0.

1. The family of triangulations {Th}h>0 is quasi-uniform (i.e. µ = 1) and the singular expo-

nents satisfy λ > 1.

2. The family of triangulations {Th}h>0 is refined according to (3.56) with refinement pa-

rameter

µ < λ.

In the remainder of this section, the finite element error on the boundary Γ is investigated. The

initial step of the convergence proof is an appropriate decomposition of Γ. In order to extract

those parts of the domain which are under influence of singularities we define the sets

ΩR := {x : 0 < r(x) < R} ∩Ω, ΓR := ∂ΩR ∩ Γ,

Ω̂R := {x : 0 < r(x) < R/2} ∩Ω, Γ̂R := ∂Ω̂R ∩ Γ,
(3.81)

illustrated in Figure 3.5. Remember that r(·) := mink∈E rk(·) stands for the minimum distance

to the singular points. The boundary part which is not influenced by singularities is denoted

by Γ̂0 := Γ\Γ̂R. Without loss of generality we will set R = 1 in the following, because as the

circumstances require the domain Ω has to be rescaled appropriately.

For technical reasons we introduce a decomposition of the domain ΩR as follows. Let di := 2−i ,
i = 0, . . . , I and let cI > 0 be a constant independent of h such that dI = cI h

1/µ holds. This

implies the property I ∼ | ln h|. The constant cI will be specified at the end of the proof of

Theorem 3.4.13, where a kick-back argument is applied. In some steps of our proof, when the

constant is immaterial, we will hide it in the generic constant c . As illustrated in Figure 3.6 we

introduce the dyadic decomposition

ΩR = int

I⋃
i=0

Ωi with Ωi :=

{
{x ∈ ΩR : di+1 < r(x) < di}, for i = 0, 1, . . . , I − 1,

{x ∈ ΩR : 0 < r(x) < dI}, for i = I.

A decomposition of the boundary part ΓR is then given by

Γi := ∂Ωi ∩ Γ, i = 0, . . . , I. (3.82)
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Ω1
.
.
.

ΩI

Figure 3.6: Dyadic decomposition of ΩR along an edge.

αk,ℓ/2

di

di

2di
Adi

·

Γ
c

i

Γ
e

i

(a) Definition of Ωe
i and Ωc

i

e
Γ
e
i ,j

Ω
e
i ,j

Ω
e
i ,j
′

Γi+1

Γi

Γi−1

di

di ,j

(b) Definition of Ωe
i ,j and its patch

Figure 3.7: Illustration of the domains Ωc
i and Ωe

i ,j .

Note that the elements contained in Ωi or intersecting Ωi satisfy

hT ∼
{
hd1−µ
i , for i = 0, 1, . . . , I − 1,

h1/µ, for i = I.

We will further need the patches of Ωi with its adjacent sets defined by

Ω
(m)
i := int

(
Ω̄max{0,i−m} ∪ . . . ∪ Ω̄i ∪ . . . ∪ Ω̄min{I,i+m}

)
, m ∈ N,

and write Ω′i := Ω
(1)
i , Ω′′i := Ω

(2)
i . In order to separate the parts of Ωi where only edge

singularities and where both corner and edge singularities are present we introduce a further

decomposition of Ωi . Let (xk , yk , zk), k ∈ E , denote Cartesian coordinate systems having origin

in some corner c = x (j), j ∈ C with k ∈ Xj , such that the zk -axes coincide with the edges Mk .

Moreover, define αjmin := mink,`∈Xj αk,` where αk,` is the angle between the edges Mk and M`,
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and introduce the set

Ωc
i :=

⋃
k∈Xj
{x ∈ Ωi : zk(x) ∈ (0, (2 + A) di)} , Γci := ∂Ωc

i ∩ Γ,

with

A := 2 min
j∈C

cot
αjmin

2
∼ 1.

This set is illustrated in Figure 3.7a). It is easy to confirm that |Γci | ∼ d2
i . The remaining parts

of Γi are away from the singular corners and are defined as follows. We fix an edge e := Mk

having length Le and endpoints x (j), x (j ′), introduce the interval

Ze := ((2 + A) di , Le − (2 + A) di) ,

and define the sets

Ωe
i := {x ∈ Ωi : zk(x) ∈ Ze} , Γei := ∂Ωe

i ∩ Γ.

We observe that the boundary part Γi is covered completely by the sets defined above, i. e.

Γi = int

⋃
j∈C

Γx
(j)

i ∪
⋃
k∈M

ΓMk

i

 (3.83)

It remains to define appropriate patches

Ω
c,(m)
i :=

⋃
k∈Xj

{
x ∈ Ω

(m)
i : zk(x) ∈ (0, (2 +m − A)di)

}
,

Ω
e,(m)
i :=

{
x ∈ Ω

(m)
i : zk(x) ∈ ((2−m + A)di , Le − (2−m + A)di)

}
,

for m ∈ {1, 2}. We write in the following

Ω
c,(1)
i = Ωc

i
′, Ω

c,(2)
i = Ωc

i
′′, Ω

e,(1)
i = Ωe

i
′, Ω

e,(2)
i = Ωe

i
′′.

The essential property that we exploit in the proof of Lemma 3.4.12 is, that

dist
(
∂Ωe

i
′ \ Γ, ∂Ωe

i \ Γ
)
∼ di , dist

(
∂Ωc

i
′ \ Γ, ∂Ωc

i \ Γ
)
∼ di .

We moreover require a dyadic decomposition of Ωe
i and its patches Ω

e,(m)
i in order to carve out

the influence of the corner singularity. For j = 0, . . . , i and m ∈ {0, 1, 2} we define

Ω
e,+,(m)
i ,j :=

{
x ∈ Ω

e,(m)
i : zk(x) ∈ ((1 + A+ 2j −m)di , (1 + A+ 2j+1 +m)di)

}
,

Ω
e,−,(m)
i ,j :=

{
x ∈ Ω

e,(m)
i : zk(x) ∈ (Le − (1 + A+ 2j+1 +m)di , Le − (1 + A+ 2j −m)di)

}
,

Ω̃
e,(m)
i :=

{
x ∈ Ω

e,(m)
i : zk(x) ∈ ((1 + A+ 2i+1 −m)di , Le − (1 + A+ 2i+1 −m)di)

}
,

(3.84)

and we observe that

Ω
e,(m)
i =

i⋃
j=0

Ω
e,±,(m)
i ,j ∪ Ω̃

e,(m)
i .
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As usual, the boundary parts are denoted by

Γe,±i ,j := ∂Ωe,±
i ,j ∩ Γ, Γ̃ei := ∂Ω̃e

i ∩ Γ.

One easily confirms that the properties

|Ωe,±,(m)
i ,j | ∼ d2

i di ,j , |Ω̃e,(m)
i | ∼ d2

i ,

|Γe,±,(m)
i ,j | ∼ didi ,j , |Γ̃e,(m)

i | ∼ di ,
(3.85)

hold for i = 0, . . . , I and j = 0, . . . , i , with

di ,j := 2jdi = 2j−i ≤ 1.

The first step of the proof is to derive some interpolation error estimates on the subdomains Ωe
i

and Ωc
i . We will require estimates in the H`-norm (` = 0, 1) as well as in the L∞-norm.

Lemma 3.4.10. Let some function u ∈ H1(Ω
(m+1)
i ) with m ∈ {0, 1} be given and assume that

Dαu ∈ W 1,p

~α,~δ
(Ω

(m+1)
i ) for all |α| = 1. Assume that p ∈ [2,∞] and that the weights satisfy

0 ≤ αj < 5/2− 3/p, j ∈ C,
0 ≤ δk < 5/3− 2/p, k ∈ E .

Let e := Mk , k ∈ E , and c := x (j), j ∈ C, be an arbitrary edge and corner, respectively. Moreover,

define the numbers κj := max{αj ,maxk∈Xj δk}, α̃k := max{αj , αj ′} where j 6= j ′ are the corner

indices such that k ∈ Xj ∩Xj ′ , sk := 1/2− 1/p + δk − α̃k , and Θ` := (7/2− `− 3/p)(1− µ).

a) For i = 0, . . . , I − 2 there hold the estimates

|u − Zhu|H`(Ω
c,(m)
i )

≤ ch2−`d (2−`)(1−µ)+3/2−3/p−κj
i |u|

W 2,p

~α,~δ
(Ω

c,(m+1)
i )

,

|u − Zhu|H`(Ω
e,(m)
i )

≤ ch2−`d (2−`)(1−µ)+1−2/p−δk+[sk ]−
i |u|

W 2,p

~α,~δ
(Ω

e,(m+1)
i )

.

b) For i = I − 1, I there hold the estimates

|u − Zhu|H`(Ω
c,(m)
i )

≤ cc [Θ`−κj ]++3/2−3/p
I h(7/2−3/p−`−κj )/µ|u|

W 2,p

~α,~δ
(Ω

c,(m+1)
i )

,

|u − Zhu|H`(Ω
e,(m)
i )

≤ cc [Θ`−δk ]++1−2/p
I h(3−2/p−`−δk+[sk ]−)/µ|u|

W 2,p

~α,~δ
(Ω

e,(m+1)
i )

.

Proof. Without loss of generality we prove the assertion for m = 0. The same arguments can

be applied in case of m = 1 either. We begin with the estimate on Ωc
i . To prove the assertion

we merely apply the discrete Hölder inequality

|u − Zhu|2H`(Ωc
i ) ≤

 ∑
T∩Ωc

i 6=∅
1

1−2/p ∑
T∩Ωc

i 6=∅
|u − Zhu|pH`(T )

2/p

, (3.86)

and insert the local estimates from Lemma 3.2.6 as well as an estimate for the number of

elements intersecting Ωc
i .
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For the case i = 0, . . . , I − 2, the number of elements contained in Ωc
i is of order

∑
T∩Ωc

i 6=∅
1 ≤ c max

T∩Ωc
i 6=∅

|Ωc
i |
|T | ≤ c max

T∩Ωc
i 6=∅

d3
i

|T | . (3.87)

For all T ∩Ωc
i 6= ∅ we obtain with Lemma 3.2.6 and the properties hT ∼ hr1−µ

T and rT ∼ di the

estimate

|u − Zhu|H`(T ) ≤ ch2−`
T |T |1/2−1/pd

−κj
i |u|

W 2,p

~α,~δ
(ST )

. (3.88)

Inserting this together with (3.87) into (3.86) leads to

|u − Zhu|2H`(Ωc
i ) ≤ ch2(2−`)d

2((2−`)(1−µ)+3(1/2−1/p)−κj)
i |u|2

W 2,p

~α,~δ
(Ωc

i
′)
. (3.89)

Extracting the root yields the desired estimate on Ωc
i for i = 0, . . . , I − 2.

In order to derive the estimate on Ωe
i we can basically use the same technique. Certainly, we

have to decompose the domain Ωe
i into subsets defined in (3.84). For all elements intersecting

Ωe,±
i ,j or Ω̃e

i we get from Lemma 3.2.6 the local estimates

|u − Zhu|H`(T ) ≤ ch2−`d (2−`)(1−µ)−δk
i dδk−α̃ki ,j |T |1/2−1/p|u|

W 2,p

~α,~δ
(ST )

, if T ∩Ωe,±
i ,j 6= ∅,

|u − Zhu|H`(T ) ≤ ch2−`d (2−`)(1−µ)−δk
i |T |1/2−1/p|u|

W 2,p

~α,~δ
(ST )

, if T ∩ Ω̃e
i 6= ∅.

(3.90)

The number of elements which intersect Ωe,±
i ,j and Ω̃e

i is of order

∑
T∩Ωe,±

i ,j 6=∅
1 ≤ c max

T∩Ωe,±
i ,j

d2
i di ,j

|T | and
∑

T∩Ω̃e
i 6=∅

1 ≤ c max
T∩Ω̃e

i

d2
i

|T | ,

respectively, compare also (3.87). From the Hölder inequality (3.86) we then obtain

|u−Zhu|H`(Ωe
i ) ≤ ch2−`d (2−`)(1−µ)+1−2/p−δk

i

 i∑
j=0

d
(1/2−1/p+δk−α̃k)p′

i ,j

1/p′

|u|
W 2,p

~α,~δ
(Ωe

i
′), (3.91)

where p−1 + p′−1 = 1. The limit value of the geometric series yields

i∑
j=0

d skp
′

i ,j = d skp
′

i

i∑
j=0

2jskp
′ ≤ cd skp′i (2(i+1)skp

′ − 1) ≤ c(2skp
′

+ d skp
′

i ) ≤ cd [sk ]−p′

i , (3.92)

and we conclude from (3.91) the desired estimate on Ωe
i for i = 0, . . . , I − 2.

Let us now consider the case i = I − 1, I. We start with an estimate on Ωc
i , where c = x (j) for

some j ∈ C. Taking di ∼ dI = cIh
1/µ into account, the number of elements can be estimated

by ∑
T∩Ωc

i 6=∅
1 ≤ cd3

i |Tmin|−1 ≤ cc3
I h

3/µ|Tmin|−1, (3.93)

where |Tmin| ∼ h3/µ. Due to the mesh condition we have to distinguish between the cases

whether the patch ST touches the singular points or not. If rST > 0 the estimate (3.88) can be
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applied again. Using the mesh condition hT ∼ hd1−µ
i ≤ c1−µ

I h1/µ, the property h1/µ ≤ rT ≤
di ∼ cIh1/µ as well as

|T | ≤ ch3d
3(1−µ)
I ≤ cc3(1−µ)

I h3/µ ≤ cc3(1−µ)
I |Tmin|, (3.94)

we obtain

|u − Zhu|H`(T ) ≤ cc
[Θ`−κj ]+

I h(2−`−κj )/µ|Tmin|1/2−1/p|u|
W 2,p

~α,~δ
(ST )

. (3.95)

From Lemma 3.2.6 we directly conclude that the same estimate holds also for rST = 0 even

without the factor c
[Θ`−κj ]+

I . Next, we apply the Hölder inequality (3.86) together with (3.93)

and obtain

|u − Zhu|H`(Ωc
i ) ≤ cc

[Θ`−κj ]++3/2−3/p
I h(7/2−`−3/p−κj )/µ|u|

W 2,p

~α,~δ
(Ω′i )

. (3.96)

With a similar technique we can show an estimate on Ωe,±
i ,j for i = I − 1, I and j = 0, . . . , i . For

all T ∩Ωe,±
i ,j with rST > 0 we conclude from (3.90) using the properties (3.94) and di ∼ cIh1/µ

the estimate

|u − Zhu|H`(T ) ≤ cc [Θ`−δk ]+

I h(2−`−δk)/µ|Tmin|1/2−1/pdδk−α̃ki ,j |u|
W 2,p

~α,~δ
(ST )

.

One easily confirms that this estimate holds also in case of rST = 0 when taking Lemma 3.2.6

into account. The number of elements which intersect Ωe,±
i ,j is of order∑

T∩Ωe
i ,j 6=∅

1 ≤ cd2
i di ,j |Tmin|−1 ≤ c2

I h
2/µdi ,j |Tmin|−1.

Consequently, we get using the local estimates and the Hölder inequality (3.86)

|u−Zhu|H`(Ωe,±
i ,j ) ≤ cc

[Θ`−δk ]++1−2/p
I h(3−2/p−`−δk)/µd

1/2−1/p+δk−α̃k
i ,j

 ∑
T∩Ωe,±

i ,j 6=∅
|u|p

W 2,p

~α,~δ
(ST )


1/p

.

Summing up over all Ωe,±
i ,j for j = 0, . . . , i yields i∑

j=0

|u − Zhu|2H`(Ωe,±
i ,j )

1/2

≤ cc [Θ`−δk ]++1−2/p
I h(3−2/p−`−δk)/µ

 i∑
j=0

d skp
′

i ,j

1/p′

|u|
W 2,p

~α,~δ
(Ω′i )

≤ cc [Θ`−δk ]++1−2/p
I h(3−2/p−`−δk+[sk ]−)/µ|u|

W 2,p

~α,~δ
(Ω′i )

, (3.97)

where we used the estimate (3.92) and the fact that c
[sk ]−
I ≤ 1 in the last step.

For all T ∩ Ω̃e
i 6= ∅ there holds ρj,ST ∼ 1 and as the number of these elements is of order∑

T∩Ω̃e
i 6=∅

1 ≤ cd2
i |Tmin|−1 ≤ c2

I h
2/µ|Tmin|−1,

we get

|u − Zhu|H`(Ω̃e
i ) ≤ cc

[Θ`−δk ]++1−2/p
I h(3−2/p−`−δk)/µ|u|

W 2,p

~α,~δ
(Ωe

i
′). (3.98)

Finally, from the decomposition (3.84) and the estimates (3.97) and (3.98) we conclude the

estimate on Ωe
i for i = I − 1, I.
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Lemma 3.4.11. Let some function u ∈ L∞(Ω
(m+1)
i ), m ∈ {0, 1}, be given and assume that

Dαu ∈ W 1,∞
~β,~%

(Ω
(m+1)
i ) for all |α| = 1, and u ≡ 0 on Ω \ΩR. Moreover, assume that the weight

vectors ~β ∈ Rd ′ and ~% ∈ Rd satisfy

0 ≤ βj < 2, j ∈ C,
0 ≤ %k < 5/3, k ∈ E .

Define κj = max{βj ,maxk∈Xj %k}, β̃k := max{βj : j ∈ C such that k ∈ Xj} and Θ := 2(1− µ).

Then, for all corners c := x (j), j ∈ C, and edges e := Mk , k ∈ E , the following estimates hold:

a) For i = 0, 1, . . . , I − 2−m there hold the estimates

‖u − Ihu‖L∞(Ω
c,(m)
i )

≤ ch2d
2(1−µ)−κj
i |u|

W 2,∞
~β,~%

(Ω
c,(m+1)
i )

,

‖u − Ihu‖L∞(Ω
e,±,(m)
i ,j )

≤ ch2d
2(1−µ)−%k
i d%k−β̃ki ,j |u|

W 2,∞
~β,~%

(Ω
e,±,(m+1)
i ,j )

,

‖u − Ihu‖L∞(Ω̃
e,(m)
i )

≤ ch2d
2(1−µ)−%k
i |u|

W 2,∞
~β,~%

(Ω̃
e,(m+1)
i )

.

b) For i = I − 1−m, . . . , I there hold the estimates

‖u − Ihu‖L∞(Ω
c,(m)
i )

≤ c [Θ−κj ]+

I h(2−κj )/µ|u|
W 2,∞
~β,~%

(Ω
c,(m+1)
i )

,

‖u − Ihu‖L∞(Ω
e,±,(m)
i ,j )

≤ c [Θ−%k ]+

I h(2−%k)/µd%k−β̃ki ,j |u|
W 2,∞
~β,~%

(Ω
e,±,(m+1)
i ,j )

,

‖u − Ihu‖L∞(Ω̃
e,(m)
i )

≤ c [Θ−%k ]+

I h(2−%k)/µ|u|
W 2,∞
~β,~%

(Ω̃
e,(m+1)
i )

.

Proof. We prove the assertion merely for m = 0 since the extension to m = 1 is simple. Let

T ∗ ∩Ωc
i 6= ∅ be the element where the maximum of |u(x)− Ihu(x)| within Ωc

i is attained. We

first investigate the case i = 0, . . . , I − 2. It suffices to insert the local estimate from Lemma

3.2.3 which leads to

‖u − Ihu‖L∞(Ωc
i ) ≤ ‖u − Ihu‖L∞(T ∗) ≤ ch2d

2(1−µ)−κj
i |u|W 2,∞

~β,~%
(Ωc

i
′),

where we exploited the mesh criterion hT ∼ hr1−µ
T as well as the property rT ∼ di in the last

step.

To obtain the desired estimates for i = I − 1, I we distinguish the cases that T ∗ touches the

singular points or not. If rT ∗ = 0 we get from Lemma 3.2.3 and hT ∼ h1/µ the estimate

‖u − Ihu‖L∞(T ∗) ≤ ch(2−κj )/µ|u|W 2,∞
~β,~%

(T ∗). (3.99)

Otherwise, if rT ∗ > 0, we use dI = cIh
1/µ to obtain hT ∗ ≤ hd1−µ

I = c1−µ
I h1/µ and d

−κj
I =

c
−κj
I h−κj/µ, and from Lemma 3.2.3 we conclude that

‖u − Ihu‖L∞(T ∗) ≤ ch2
T ∗d

−κj
i |u|W 2,∞

~β,~%
(T ∗) ≤ cc

2(1−µ)−κj
I h(2−κj )/µ|u|W 2,∞

~β,~%
(T ∗). (3.100)

The estimates (3.99) and (3.100) with T ∗ ⊂ Ωc
i
′ imply the assertion for the domains Ωc

i .
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Figure 3.8: Illustration of the sets introduced in (3.109).

Next, we show the estimate on Ωe,±
i ,j in case of i = 0, . . . , I − 2. Let x (j1) and x (j2), j1, j2 ∈ C,

denote the endpoints of the edge e. We apply Lemma 3.2.3 and exploit that

rk,T ∗ ∼ di if T ∗ ∩Ωe,±
i ,j 6= ∅,

ρj1,T ∗ ∼ di ,j if T ∗ ∩Ωe,+
i ,j 6= ∅,

ρj2,T ∗ ∼ di ,j if T ∗ ∩Ωe,−
i ,j 6= ∅.

(3.101)

This leads to the local estimate

‖u − Ihu‖L∞(T ∗) ≤ ch2d
2(1−µ)−%k
i d%k−β̃ki ,j |u|W 2,∞

~β,~%
(T ∗) (3.102)

from which we conclude the assertion for i = 0, . . . , I − 2. For i = I − 1, I we distinguish

among the cases rT ∗ > 0 and rT ∗ = 0. To show an estimate for rT ∗ > 0 we insert the property

di ∼ cIh
1/µ into (3.102). In case of rT ∗ = 0 we insert (3.101) into the local estimate from

Lemma 3.2.3. In both cases we then obtain

‖u − Ihu‖L∞(T ∗) ≤ cc [Θ−%k ]+

I h(2−%k)/µd
%k−βj
i ,j |u|W 2,∞

~β,~%
(T ∗),

which yields the assertion as T ∗ ⊂ Ωe,±
i ,j
′. The estimates on Ω̃e

i follow from the same strategy

exploiting that ρj,T ∗ ∼ 1 for all T ∩ Ω̃e
i 6= ∅.

The next step is to show an initial error estimate on a single boundary strip Γi . Afterwards we

will combine the following result to a global estimate in Theorem 3.4.13.

Lemma 3.4.12. Let y ∈ H1(ΩR) ∩ L∞(ΩR) and denote by yh its Ritz projection, i. e.∫
ΩR

(∇(y − yh)(x) · ∇vh(x) + (y − yh)(x)vh(x)) dx = 0 ∀vh ∈ Vh.

Then, for arbitrary i ∈ {1, . . . , I} the local estimates

‖y − yh‖L2(Γci ) ≤ c
(
di | ln h|‖y − Ihy‖L∞(Ωc

i
′) + d

−1/2
i ‖y − yh‖L2(Ω′i )

)
, (3.103)

‖y − yh‖L2(Γei ) ≤ c
(

i∑
j=0

d
1/2
i d

1/2
i ,j | ln h|‖y − Ihy‖L∞(Ωe,±

i ,j
′)

+ d
1/2
i | ln h|‖y − Ihy‖L∞(Ω̃e

i
′) + d

−1/2
i ‖y − yh‖L2(Ω′i )

)
, (3.104)

hold for all corners c := x (j), j ∈ C, and edges e := Mk , k ∈ E .
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Proof. To obtain the desired estimate on Γci we apply the Hölder inequality with |Γci | ∼ d2
i , and

a trace theorem which leads to

‖y − yh‖L2(Γci ) ≤ di‖y − yh‖L∞(Γci ) ≤ di‖y − yh‖L∞(Ωc
i ) (3.105)

Now we can apply the local maximum norm estimate from Theorem 10.1 and Example 10.1 in

[90], which reads in our situation

‖y − yh‖L∞(Ωc
i ) ≤ c

(
| ln h|‖y − Ihy‖L∞(Ωc

i
′) + d−3/2‖y − yh‖L2(Ω′i )

)
, (3.106)

with d := dist(∂Ωc
i
′ \ Γ, ∂Ωc

i \ Γ). Due to our construction we find that d ∼ di . Inserting

(3.106) into (3.105) yields (3.103) for i = 1, . . . , I − 2.

To show the estimate on Γei we cannot apply this technique directly as the measure of Γei is only

of order di . We would then obtain a worse estimate. One can apply a coordinate transformation

with the aim that the edge e coincides with the z-axis, and that z = 0 and z = L correspond

to the endpoints of e. We introduce a further decomposition, namely

Ω
e,+,(m)
i ,j,k :=

{
x ∈ Ω

e,+,(m)
i ,j : z(x) ∈

(
(1 + A+ 2j + k −m)di ,

(2 + A+ 2j + k +m)di
)}
,

Ω
e,−,(m)
i ,j,k :=

{
x ∈ Ω

e,−,(m)
i ,j : z(x) ∈

(
L− (2 + A+ 2j + k +m)di ,

L− (1 + A+ 2j + k −m)di
)}
,

(3.107)

for k = 0, . . . , 2j − 1 and m ∈ {0, 1}. To shorten the notation we write

Ωe,±
i ,j,k := Ω

e,±,(0)
i ,j,k and Ωe,±

i ,j,k
′ := Ω

e,±,(1)
i ,j,k .

The sets {Ωe,±,(m)
i ,j,k }2j−1

k=0 form a decomposition of Ω
e,±,(m)
i ,j . Analogously we introduce a decom-

position of Ω̃
e,(m)
i , namely

Ω̃
e,(m)
i ,k :=

{
x ∈ Ω̃

e,(m)
i : z(x) ∈

(
(1 + A+ 2i+1 + k −m)di ,

(2 + A+ 2i+1 + k +m)di
)} (3.108)

for k = 0, . . . , K with some K ∼ d−1
i and m ∈ {0, 1}. Again, we denote the boundary parts by

Γe,±i ,j,k := ∂Ωe,±
i ,j,k ∩ Γ, Γ̃ei ,k := ∂Ω̃e

i ,k ∩ Γ, (3.109)

which are illustrated in Figure 3.8, and confirm the desired properties

|Γe,±i ,j,k | ∼ d2
i , |Γ̃ei ,k | ∼ d2

i . (3.110)

Due to this construction we moreover have the properties

dist(∂Ωe,±
i ,j,k
′ \ Γ, ∂Ωe,±

i ,j,k \ Γ) ∼ di and dist(∂Ω̃e
i ,k
′ \ Γ, ∂Ω̃e

i ,k \ Γ) ∼ di , (3.111)
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which play a role in the local maximum norm estimate (3.106). Exploiting the decompositions

(3.107) and (3.108), the Hölder inequality with (3.110) and a trace theorem leads to

‖y − yh‖2
L2(Γei ) =

i∑
j=0

2j−1∑
k=0

‖y − yh‖2
L2(Γe,±i ,j,k)

+

K∑
k=0

‖y − yh‖2
L2(Γ̃ei ,k)

≤ cd2
i

(
i∑
j=0

2j−1∑
k=0

‖y − yh‖2
L∞(Ωe,±

i ,j,k)
+

K∑
k=0

‖y − yh‖2
L∞(Ω̃e

i ,k)

)

Several applications of the local maximum norm estimate (3.106) with the properties (3.111)

yields

‖y − yh‖2
L2(Γei ) ≤ cd2

i

(
i∑
j=0

2j−1∑
k=0

(
| ln h|2‖y − Ihy‖2

L∞(Ωe,±
i ,j,k
′) + d−3

i ‖y − yh‖2
L2(Ωe,±

i ,j,k
′)

)

+

K∑
k=0

(
| ln h|2‖y − Ihy‖2

L∞(Ω̃e
i ,k
′) + d−3

i ‖y − yh‖2
L2(Ω̃e

i ,k
′)

))

≤ c
(

i∑
j=0

didi ,j | ln h|2‖y − Ihy‖2
L∞(Ωe,±

i ,j
′)

+ di | ln h|2‖y − Ihy‖2
L∞(Ω̃e

i
′) + d−1

i ‖y − yh‖2
L2(Ω′i )

)
.

In the last step we exploited that K ∼ d−1
i and that di2

j = di ,j . Extracting the root yields

estimate (3.104).

It remains to show the desired estimates also for i = I − 1, I which cannot be shown with the

same technique, since the local maximum norm estimate (3.106) is not applicable if Ωc
i
′ and

Ωe
i
′ contain the singular points. Therefore, we insert Ihy as intermediate function and apply the

triangle inequality which leads to

‖y − yh‖L2(Γci ) ≤ c
(
‖y − Ihy‖L2(Γci ) + ‖Ihy − yh‖L2(Γci )

)
. (3.112)

Next, we apply the Hölder inequality with |Γci | ∼ d2
i , and a trace theorem to get

‖y − Ihy‖L2(Γci ) ≤ cdi‖y − Ihy‖L∞(Ωc
i ). (3.113)

For the second part of (3.112) we exploit that Ihy − yh is a function from a finite-dimensional

space. On an arbitrary boundary element E ∈ Eh and its corresponding tetrahedron T ∈ Th
we obtain using a trace theorem on a reference setting as well as norm equivalences in finite-

dimensional spaces

‖Ihy − yh‖L2(E) ≤ ch−1/2
T ‖Ihy − yh‖L2(T ). (3.114)

Consequently, due to h−1
T ≤ h−1/µ ∼ cId−1

i for all T ∩Ωc
i
′ 6= ∅, as well as |Ωc

i | ∼ d3
i , we get

‖Ihy − yh‖L2(Γci ) ≤ d−1/2
i ‖Ihy − yh‖L2(Ωc

i
′) ≤ c

(
di‖y − Ihy‖L∞(Ωc

i
′) + d

−1/2
i ‖y − yh‖L2(Ωc

i
′)

)
.



3.4. ERROR ESTIMATES FOR LOCALLY REFINED MESHES 65

The constant cI is neglected as it is not needed for this term. This estimate together with

(3.113) and (3.112) yields (3.103) for i = I − 1, I.

On Ωe
i we use again the decomposition (3.84), the triangle inequality, and the Hölder inequality

with (3.85) to arrive at

‖y − yh‖2
L2(Γei ) ≤

i∑
j=0

(
‖y − Ihy‖2

L2(Γe,±i ,j )
+ ‖Ihy − yh‖2

L2(Γe,±i ,j )

)
+ ‖y − Ihy‖2

L2(Γ̃ei )
+ ‖Ihy − yh‖2

L2(Γ̃ei )

≤
i∑
j=0

(
didi ,j‖y − Ihy‖2

L∞(Ωe,±
i ,j
′) + ‖Ihy − yh‖2

L2(Γe,±i ,j )

)
+ di‖y − Ihy‖2

L∞(Ω̃e
i
′) + ‖Ihy − yh‖2

L2(Γ̃ei )
. (3.115)

From (3.114) and |Ωe,±
i ,j
′| ∼ d2

i di ,j we obtain

‖Ihy − yh‖L2(Γe,±i ,j ) ≤ d
−1/2
i ‖Ihy − yh‖L2(Ωe,±

i ,j
′)

≤ d1/2
i d

1/2
i ,j ‖y − Ihy‖L∞(Ωe,±

i ,j
′) + d

−1/2
i ‖y − yh‖L2(Ωe,±

i ,j
′),

and with the same arguments using |Ω̃e
i
′| ∼ d2

i

‖Ihy − yh‖L2(Γ̃ei ) ≤ d
1/2
i ‖y − Ihy‖L∞(Ω̃e

i
′) + d

−1/2
i ‖y − yh‖L2(Ω̃e

i
′).

From these estimates and (3.115) we finally conclude (3.104) in case of i = I − 1, I.

The next step of the proof is to derive a finite element error estimate on the boundary part Γ̂R
defined in (3.81) which is under influence of corner and edge singularities. Therefore, we localize

the solution y with a smooth cut-off function ω ∈ C∞(Ω) satisfying

ω|Ω̂R
≡ 1 and suppω ⊂ ΩR, (3.116)

and define ỹ := ωy . For our proof we introduce the Ritz projection of ỹ as follows. Let

Vh(ΩR) := {vh ∈ Vh : vh ≡ 0 in Ω \ΩR}

denote the space of ansatz functions vanishing outside of ΩR. The function ỹh ∈ Vh is the

unique solution of

a(ỹ − ỹh, vh) = 0, for all vh ∈ Vh(ΩR). (3.117)

An error estimate for this Ritz projection is considered in the following theorem:

Theorem 3.4.13. Let ỹ ∈ H1(ΩR) such that Dαỹ ∈ W 1,2

~α,~δ
(ΩR) ∩W 1,∞

~β,~%
(ΩR) for |α| = 1 be

given. Assume that the weight vectors ~α ∈ [0, 1)d
′
, ~β ∈ [0, 2), ~δ ∈ [0, 2/3)d , ~% ∈ [0, 5/3)d , and

the refinement parameter µ satisfy the inequalities

αj ≤ 1− µ, βj ≤ 3− 2µ, ∀j ∈ C

δk ≤ 1− µ, %k ≤
5

2
− 2µ, ∀k ∈ E .

(3.118)
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Then, the estimate

‖ỹ − ỹh‖L2(Γ̂R) ≤ ch2| ln h|3/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
holds.

Proof. We consider the decomposition of the boundary Γ̂R into the segments Γi := ∂Ωi ∩ Γ

introduced in (3.82). Taking the two estimates from Lemma 3.4.12 as well as the decomposition

(3.83) into account yields

‖ỹ − ỹh‖2
L2(Γi )

≤ c
( ∑

e:=Mk
k∈E

| ln h|2
 i∑
j=0

didi ,j‖ỹ − Ihỹ‖2
L∞(Ωe,±

i ,j
′) + di‖ỹ − Ihỹ‖2

L∞(Ω̃e
i
′)


+
∑
c:=x(j)

j∈C

| ln h|2d2
i ‖ỹ − Ihỹ‖2

L∞(Ωc
i
′) + d−1

i ‖ỹ − ỹh‖2
L2(Ω′i )

)
(3.119)

for all i = 1, . . . , I. Inserting the local estimates from Lemma 3.4.11 yields for i = 1, . . . , I − 3

∑
e:=Mk
k∈E

 i∑
j=0

didi ,j‖ỹ − Ihỹ‖2
L∞(Ωe,±

i ,j
′) + di‖ỹ − Ihỹ‖2

L∞(Ω̃e
i
′)

+
∑
c:=x(j)

j∈C

d2
i ‖ỹ − Ihỹ‖2

L∞(Ωc
i
′)

≤ ch4

( ∑
e:=Mk
k∈E

d
2(5/2−2µ−%k)
i

 i∑
j=0

d
2(1/2+%k−β̃k)
i ,j |ỹ |2

W 2,∞
~β,~%

(Ωe,±
i ,j
′′) + |ỹ |2

W 2,∞
~β,~%

(Ω̃e
i
′′)


+
∑
c:=x(j)

j∈C

d
2(3−2µ−κj )
i |ỹ |2

W 2,∞
~β,~%

(Ωc
i
′′)

)
≤ ch4|ỹ |2

W 2,∞
~β,~%

(Ω′′i )
, (3.120)

where we used the refinement condition (3.118) as well as (3.92) in the last step. In case of

i = I − 2, . . . , I we obtain with Lemma 3.4.11

∑
e:=Mk
k∈E

 i∑
j=0

didi ,j‖ỹ − Ihỹ‖2
L∞(Ωe,±

i ,j
′) + di‖ỹ − Ihỹ‖2

L∞(Ω̃e
i
′)

+
∑
c:=x(j)

j∈C

d2
i ‖ỹ − Ihỹ‖2

L∞(Ωc
i
′)

≤ c

∑
e:=Mk
k∈E

h2(5/2−%k+[1/2+%k−β̃k ]−)/µ|ỹ |2
W 2,∞
~β,~%

(Ωe
i
′′) +

∑
c:=x(j)

j∈C

h2(3−κj )/µ|ỹ |2
W 2,∞
~β,~%

(Ωc
i
′′)


≤ ch4|ỹ |W 2,∞

~β,~%
(Ω′′i ). (3.121)

Inserting the estimates (3.120) and (3.121) into (3.119) and summing up over all Γi for i =

1, . . . , I yields with I ∼ | ln h| the estimate

‖ỹ − ỹh‖2
L2(Γ̂R)

≤ c
(
| ln h|3h4|ỹ |2

W 2,∞
~β,~%

(ΩR)
+ ‖γ−1/2(ỹ − ỹh)‖2

L2(ΩR)

)
, (3.122)
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where γ(x) := dI + r(x). Note, that there holds γ(x) ≥ di = 2di−1 if x ∈ Ωi .

In the remainder of the proof we will discuss the second term on the right-hand side of (3.122)

which requires an estimate for a weighted L2(ΩR) error. Therefore, we adopt the technique

that was applied in the proof of Lemma 6.2 in [81] where a duality argument was used. First

we decompose the error into

‖γ−1/2(ỹ − ỹh)‖L2(ΩR) ≤ ‖γ−1/2(ỹ − ỹh)‖L2(ΩR\(Ω0∪Ω1)) + ‖γ−1/2(ỹ − ỹh)‖L2(Ω0∪Ω1). (3.123)

On the outermost rings Ω0 ∪ Ω1 we exploit that γ ∼ 1 and can directly use the global finite

element error estimate from Theorem 3.4.8. As a consequence we get

‖γ−1/2(ỹ − ỹh)‖L2(Ω0∪Ω1) ≤ c‖ỹ − ỹh‖L2(ΩR) ≤ ch2|ỹ |W 2,2

~α,~δ
(ΩR). (3.124)

For an error estimate on Ω̃R := ΩR\(Ω0 ∪Ω1) we apply the representation

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) = sup
g∈C∞

0
(Ω̃R)

‖g‖L2(Ω̃R)=1

(γ−1/2(ỹ − ỹh), g) (3.125)

and consider the auxiliary problem

− ∆w + w = γ−1/2g in ΩR, ∂nw = 0 on ∂ΩR. (3.126)

From the weak formulation of (3.126) we can deduce

(γ−1/2(ỹ − ỹh), g) = (ỹ − ỹh, γ−1/2g) = a(ỹ − ỹh, w). (3.127)

We introduce a further cut-off function η ∈ C∞0 (ΩR) such that

η ≡ 1 on Ω̃R, and supp η ⊂ Ω̂R,

and we make use of the decomposition w = w1 + w2 with w1 := ηw and w2 := (1− η)w . The

definition of w1 implies that Zhw1 ∈ Vh(ΩR) which allows us to apply the Galerkin orthogonality

(3.117). This yields

a(ỹ − ỹh, w1) = a(ỹ − ỹh, w1 − Zhw1)

≤ c
I∑
i=0

( ∑
c:=x(j)

j∈C

‖ỹ − ỹh‖H1(Ωc
i )‖w1 − Zhw1‖H1(Ωc

i )

+
∑
e:=Mk
k∈E

‖ỹ − ỹh‖H1(Ωe
i )‖w1 − Zhw1‖H1(Ωe

i )

)
. (3.128)

First, we insert the local finite element error estimate from Corollary 9.1 in [90], which reads in

our situation

‖ỹ − ỹh‖H1(Ωc
i ) ≤ c

(
|ỹ − Zhỹ |H1(Ωc

i
′) + d−1

i ‖ỹ − Zhỹ‖L2(Ωc
i
′) + d−1

i ‖ỹ − ỹh‖L2(Ωc
i
′)

)
. (3.129)

The estimate remains true when replacing c by e.
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In order to derive estimates for the terms on the right-hand side of (3.128) we consider the

cases i = 3, . . . , I − 3 and i = I − 2, . . . , I such as i = 0, 1, 2 separately.

In case of i = 3, . . . , I − 3, we obtain with the local estimates from Lemma 3.4.10 and (3.129)

‖ỹ − ỹh‖H1(Ωc
i ) ≤ c

(
hd

5/2−µ−κj
i |ỹ |W 2,∞

~β,~%
(Ω′′i ) + d−1

i ‖ỹ − ỹh‖L2(Ω′i )

)
,

‖w1 − Zhw1‖H1(Ωc
i ) ≤ chd1/2−µ

i |w |W 2,2
~1/2,~1/2

(Ω′i )
,

where we also exploited hd−µi ≤ hd−µI = c−µI ≤ 1 to simplify the interpolation error estimate in

L2(Ωc
i ). Moreover, we used the property

|w1|W 2,2
~1/2,~1/2

(Ω′i )
≤ |w |W 2,2

~1/2,~1/2
(Ω′i )

,

which holds since η ≡ 1 on Ω̃R, and assumed that w possesses the regularity demanded be the

right-hand side for arbitrary polyhedra, which we will confirm later.

Combining both estimates yields for i = 3, . . . , I − 3

‖ỹ − ỹh‖H1(Ωc
i )‖w1 − Zhw1‖H1(Ωc

i )

≤ c
(
h2d

3−2µ−κj
i |ỹ |W 2,∞

~β,~%
(Ω′′i ) + hd

−1/2−µ
i ‖ỹ − ỹh‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

≤ c
(
h2|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c−µI ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

. (3.130)

The last step is a consequence of the assumption upon µ and the definition of the domains Ωi ,

more precisely we exploited d−µi ≤ d−µI ≤ c−µI h−1.

In case of i = I − 2, . . . , I we obtain

‖ỹ − ỹh‖H1(Ωc
i ) ≤ c

(
h(5/2−κj )/µ|ỹ |W 2,∞

~β,~%
(Ω′′i ) + d−1

i ‖ỹ − ỹh‖L2(Ω′i )

)
,

‖w1 − Zhw1‖H1(Ωc
i ) ≤ ccmax{0,1/2−µ}

I h1/(2µ)|w |W 2,2
~1/2,~1/2

(Ω′i )
,

where we exploited again that η ≡ 1 on Ω̃R. Combining both estimates leads to

‖ỹ − ỹh‖H1(Ωc
i )‖w1 − Zhw1‖H1(Ωc

i )

≤ c
(
h(3−κj )/µ|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c

max{0,1/2−µ}
I h1/(2µ)d−1

I ‖ỹ − ỹh‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

≤ c
(
h2|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

. (3.131)

The last step follows from the assumption upon µ and the fact that dI = cIh
1/µ. For i = 0, 1, 2

we insert the global finite element error estimate from Theorem 3.4.8 and the interpolation error

estimate from Lemma 3.4.10, where the factors d0, d1 and d2 are of order one and can thus be

neglected. We then obtain

‖ỹ − ỹh‖H1(Ωc
1
′)‖w1 − Zhw1‖H1(Ωc

1
′) ≤ ch2|ỹ |W 2,2

~α,~δ
(ΩR)|w1|W 2,2

~1/2,~1/2
(Ω′′1)

≤ ch2|ỹ |W 2,2

~α,~δ
(ΩR)

(
|w |W 2,2

~1/2,~1/2
(ΩR) + ‖w‖H1(ΩR)

)
. (3.132)
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In the last step the Leibniz rule was applied using the fact that ‖Dαη‖L∞(ΩR) ≤ c and that the

weights are of order one within Ω′′1.

We can repeat the same strategy to show the appropriate estimates on Ωe
i , and apply Lemma

3.4.10 with sk = 1/2 + %k − β̃k , as well as (3.129) with c replaced by e. Moreover, we have to

exploit the refinement condition

2µ ≤ 5/2− %k + [sk ]− =

{
5/2− %k , if sk ≥ 0,

3− β̃k , if sk < 0,

which follows from (3.118). Consequently, we arrive at

‖ỹ − ỹh‖H1(Ωe
i )‖w1 − Zhw1‖H1(Ωe

i )

≤ c
(
h2|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i )

)
|w |W 2,2

1/2,1/2
(Ω′i )

, (3.133)

for i = 3, . . . , I. Finally, we easily confirm that the estimate (3.132) remains true when replacing

c by e, and we have covered also the cases i = 0, 1, 2.

We may now insert the estimates (3.130), (3.131), (3.132) and (3.133) into (3.128) which

leads to

a(ỹ − ỹh, w1)

≤ c
I∑
i=3

(
h2|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

+ ch2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)(
|w |W 2,2

~1/2,~1/2
(ΩR) + ‖w‖H1(ΩR)

)
≤ c

(
h2| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
×
(
|w |W 2,2

~1/2,~1/2
(ΩR) + ‖w‖H1(ΩR)

)
. (3.134)

Next, we show that w possesses the regularity demanded by the right-hand side, which follows

from Theorem 2.3.7 and the Lax-Milgram Lemma once we have shown that

γ−1/2g ∈ W 0,2
~1/2,~1/2

(ΩR) ∩ [H1(ΩR)]∗. (3.135)

To this end we have to find a relation between the weight function γ(·) and the weights hidden

in the norm of the weighted Sobolev spaces. For some fixed x ∈ Uj define k̄ ∈ Xj such that

rk̄(x) = r(x). The angular distance to the edges Mk with k ∈ Xj \ {k̄} is bounded from below,

i.e. rk/ρj ≥ c , compare also Figure 3.2 on page 33. Consequently, we obtain

γ−1(x) ≤ r(x)−1 = rk̄(x)−1 = ρj(x)−1

(
rk̄
ρj

(x)

)−1

≤ cρj(x)−1
∏
k∈Xj

(
rk
ρj

(x)

)−1

, (3.136)
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and directly conclude

‖γ−1/2g‖W 0,2
~1/2,~1/2

(ΩR) ≤ c‖g‖L2(ΩR) ≤ c. (3.137)

To show the boundedness in [H1(ΩR)]∗ we use the operator norm representation, the Cauchy-

Schwarz inequality, as well as the boundedness of g in L2(ΩR), and arrive at

‖γ−1/2g‖[H1(ΩR)]∗ = sup
ϕ∈H1(ΩR)

(g, γ−1/2ϕ)ΩR

‖ϕ‖H1(ΩR)

≤ c sup
ϕ∈H1(ΩR)

‖γ−1/2ϕ‖L2(ΩR)

‖ϕ‖H1(ΩR)

. (3.138)

Taking again (3.136) into account leads to

‖γ−1/2ϕ‖L2(ΩR) ≤ c‖ϕ‖W 0,2

−~1/2,−~1/2
(ΩR) ≤ c‖ϕ‖H1(ΩR), (3.139)

where the embedding used in the second step is a consequence of Lemma 2.3.4 and the fact

that the spaces W 1,2
~0,~0

(ΩR) and H1(ΩR) are equivalent. Inserting (3.139) into (3.138) and taking

also (3.137) into account yields (3.135), and consequently

|w |W 2,2
~1/2,~1/2

(ΩR) + ‖w‖H1(ΩR) ≤ c. (3.140)

The estimate (3.134) then becomes

a(ỹ − ỹh, w1)

≤ c
(
h2| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
+ c

max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
.

(3.141)

It remains to derive a similar estimate with w2 instead of w1. Therefore, we exploit that w2 ≡ 0

on Ω̃R, and ∂nw2 ≡ 0 on ∂ΩR. Partial integration yields

a(ỹ − ỹh, w2) = (ỹ − ỹh,−∆w2)ΩR
+ (ỹ − ỹh, w2)ΩR

+ (ỹ − ỹh, ∂nw2)∂ΩR

≤ ‖ỹ − ỹh‖L2(ΩR)‖w2‖H2(ΩR\Ω̃R). (3.142)

We exploit the property ‖Dαη‖L∞(ΩR) ≤ c for all |α| ≤ 2 and the fact that ΩR \ Ω̃R has positive

distance to the singular points, and arrive at

‖w2‖H2(ΩR\Ω̃R) ≤ c‖w‖H2(ΩR\Ω̃R) ≤ c
(
‖w‖H1(ΩR) + |w |W 2,2

~1/2,~1/2
(ΩR)

)
≤ c.

The last estimate is another application of (3.140). Moreover, we insert the global estimate

from Theorem 3.4.8 into (3.142) and get

a(ỹ − ỹh, w2) ≤ ch2|ỹ |W 2,2

~α,~δ
(ΩR). (3.143)

Inserting now (3.143) and (3.141) into (3.127) yields together with (3.125)

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) ≤ c
(
h2| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)

+ c
max{−1/2,−µ}
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
. (3.144)
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We fix the generic constant c and choose cI sufficiently large such that

cc
max{−1/2,−µ}
I ≤ 1/2.

This allows us to apply a kick-back argument and we consequently arrive at

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) ≤ ch2| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
.

Finally, we insert this estimate together with (3.124) into (3.123), insert the resulting estimate

into (3.122), and arrive at the assertion.

Now we are able to prove the main result of this section.

Theorem 3.4.14. Let y denote the solution of the variational problem (2.23) and yh its finite

element approximation (3.3), with input data satisfying f ∈ C0,σ(Ω) for some σ ∈ (0, 1), and

g ≡ 0. Assume that {Th}h>0 is a family of locally refined triangulations according to condition

(3.56). Moreover, let be given weights ~α, ~β ∈ Rd ′+ and ~δ, ~% ∈ Rd+ satisfying

1

2
− λcj < αj ≤ 1− µ, 2− λcj < βj ≤ 3− 2µ, ∀j ∈ C,

1− λek < δk ≤ 1− µ, 2− λek < %k ≤
5

2
− 2µ, ∀k ∈ E .

(3.145)

Then, some c > 0 exists such that

‖y − yh‖L2(Γ) ≤ ch2| ln h|3/2

∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαy‖W 1,∞
~β,~%

(Ω) + ‖y‖L∞(Ω)

 .
(3.146)

Proof. For technical reasons we introduce further subsets

Ω̆R := int

I⋃
i=2

Ωi , Ω̃R := int

I⋃
i=3

Ωi , Γ̆R := ∂Ω̆R ∩ Γ, Γ̃R := ∂Ω̃R ∩ Γ.

Note that we have the relation Ω̃R ⊂ Ω̆R ⊂ Ω̂R ⊂ ΩR ⊂ Ω. Let ω be the cut-off function

defined in (3.116). In order to apply Theorem 3.4.13 we insert the intermediate function ỹh and

exploit that ỹ := ωy coincides with y in Ω̂R. This leads to

‖y − yh‖L2(Γ̆R) = ‖ỹ − ỹh‖L2(Γ̂R) + ‖ỹh − yh‖L2(Γ̆R). (3.147)

For the first part we may now apply the result of Theorem 3.4.13 and obtain

‖ỹ − ỹh‖L2(Γ̂R) ≤ ch2| ln h|3/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
. (3.148)

Note that it is possible to construct a cut-off function ω satisfying (3.116) and ‖Dαω‖L∞(ΩR) ≤
2|α| ≤ c for arbitrary α ∈ N3

0. Using the Leibniz rule we then get

|ỹ |W 2,2

~α,~δ
(ΩR) = |ωy |W 2,2

~α,~δ
(ΩR) ≤ c

(
|y |W 2,2

~α,~δ
(ΩR) + ‖y‖W 1,2(Ω\Ω̂R)

)

≤ c

∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) + ‖y‖L2(Ω)

 , (3.149)
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and analogously

|ỹ |W 2,∞
~β,~%

(ΩR) ≤ c

∑
|α|=1

‖Dαy‖W 1,∞
~β,~%

(Ω) + ‖y‖L∞(Ω)

 . (3.150)

Let us discuss the second part of (3.147). The function ỹh − yh is discrete harmonic on Ω̂R.

Hence, the discrete Caccioppoli estimate from Lemma 3.3 in [36] yields

‖ỹh − yh‖H1(Ω̆R) ≤ cd‖ỹh − yh‖L2(Ω̂R), d := dist(∂Ω̂\Γ, ∂Ω̆\Γ), (3.151)

and with our construction we have d = 1/4. With a trace theorem and (3.151) we then obtain

‖ỹh − yh‖L2(Γ̆R) ≤ c‖ỹh − yh‖H1(Ω̆R) ≤ c‖ỹh − yh‖L2(Ω̂R)

≤ c
(
‖ỹ − ỹh‖L2(ΩR) + ‖y − yh‖L2(Ω)

)
,

where the last step holds due to y = ỹ on Ω̂R. An application of Theorem 3.4.8 yields

‖ỹh − yh‖L2(Γ̆R) ≤ ch2

∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) + ‖y‖L2(Ω)

 , (3.152)

where we also applied the estimate (3.149). Consequently we get from (3.147) the estimate

‖y − yh‖L2(Γ̆R) ≤ ch2| ln h|3/2

∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαy‖W 1,∞
~β,~%

(Ω) + ‖y‖L∞(Ω)

 .
(3.153)

Let us consider the error on the remaining part Γ\Γ̆R where we have no influence of the singu-

larities. One can directly apply the trace theorem in the L∞-norm which yields

‖y − yh‖L2(Γ\Γ̆R) ≤ c‖y − yh‖L∞(Γ\Γ̆R) ≤ c‖y − yh‖L∞(Ω\Ω̆R). (3.154)

With the local maximum norm estimate (3.106) exploiting that dist(∂Ω̃R \ Γ, ∂Ω̆R \ Γ) ∼ c , we

arrive at

‖y − yh‖L∞(Ω\Ω̆R) ≤ c
(
| ln h|‖y − Ihy‖L∞(Ω\Ω̃R) + ‖y − yh‖L2(Ω\Ω̃R)

)
. (3.155)

Denote by T ∗ the element where the maximum of |y(x) − Ihy(x)| within Ω \ Ω̃R is acquired.

An application of a standard interpolation error estimate in L∞(T ∗) implies

‖y − Ihy‖L∞(Ω\Ω̃R) ≤ ‖y − Ihy‖L∞(T ∗) ≤ ch2|y |W 2,∞(T ∗)

and we may insert the weights which are bounded from below by a positive constant within Ω\Ω̃R.

For the second term on the right-hand side of (3.155) we insert again the global estimate from

Theorem 3.4.8. From (3.155) and (3.154) we hence conclude

‖y − yh‖L2(Γ\Γ̃R) ≤ ch2

(
|y |W 2,2

~α,~δ
(ΩR) + |y |W 2,∞

~β,~%
(Ω)

)
,

and together with (3.153) the desired estimate (3.146) follows.
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With some modifications of the proof we can now also show the error estimate on quasi-uniform

meshes presented in Theorem 3.3.2.

Proof of Theorem 3.3.2. Before we discuss the modifications required in the proofs of Theorems

3.4.13 and 3.4.14 we show some essential properties we will frequently use.

For all i = 0, . . . , I − 1 we get with the properties h ≤ dI < di ≤ 1 for all k ∈ E the estimate

h2d
1/2−%k
i ≤ hmin{2,5/2−%k} = hmin{2,1/2+λek−ε}, (3.156)

when considering the cases %k ≤ 1/2 and %k > 1/2 separately, and inserting the definition

%k := min{0, 2− λek + ε}. Analogously we can show for i = I − 1, I that

h5/2−%k ≤ hmin{2,1/2+λek−ε}. (3.157)

To obtain the estimates in a vicinity of a corner x (j), j ∈ C, for i = 0, . . . , I − 1, we moreover

require the property

h2d
1−βj
i ≤ hmin{2,3−βj} ≤ chmin{2,1+λcj −ε}, (3.158)

where we distinguished among the cases βj ≤ 1 and βj > 1, and inserted the definition βj :=

max{0, 2− λcj + ε}. For i = I − 1, I we will use instead

h3−βj ≤ hmin{2,1+λcj −ε}. (3.159)

Inserting these properties into (3.120) and (3.121) yields together with (3.119) the estimate

‖ỹ − ỹh‖2
L2(Γi )

≤ c
(
| ln h|2h2 min{2,1/2+λ−ε}|ỹ |2

W 2,∞
~β,~%

(Ω′i )
+ d−1

i ‖(ỹ − ỹh)‖2
L2(Ω′i )

)
, (3.160)

where we used that

min{2, 1/2 + λ− ε} = min{2, 1 + min
j∈C

λcj − ε, 1/2 + min
k∈E

λek − ε}.

Summation over all i = 1, . . . , I leads to

‖ỹ − ỹh‖2
L2(Γ̂R)

≤ c
(
| ln h|3h2 min{2,1/2+λ−ε}|ỹ |2

W 2,∞
~β,~%

(ΩR)
+ ‖γ−1/2(ỹ − ỹh)‖2

L2(ΩR)

)
, (3.161)

with γ(x) := dI + r(x).

It remains to discuss the weighted finite element error in L2(ΩR) on the right-hand side of

(3.161). On the outermost rings we get with the global estimate from Theorem 3.3.1

‖γ−1/2(ỹ − ỹh)‖L2(Ω0∪Ω1) ≤ c‖ỹ − ỹh‖L2(ΩR) ≤ chmin{2,2λ−ε}|ỹ |W 2,2

~α,~δ
(ΩR). (3.162)

On the remaining part we proceed as in the steps (3.125)–(3.128). Setting µ = 1 in the

estimates (3.130), (3.131) and (3.132) yields with the properties (3.156)–(3.159)

‖ỹ − ỹh‖H1(Ωc
i )‖w1 − Zhw1‖H1(Ωc

i )

≤ c
(
hmin{2,1/2+λ−ε}|ỹ |W 2,∞

~β,~%
(Ω′′i ) + c

−1/2
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω′i )

)
|w |W 2,2

~1/2,~1/2
(Ω′i )

(3.163)



74 CHAPTER 3. FINITE ELEMENT ERROR ESTIMATES

for i = 0, . . . , I, where we used also the property di ≥ dI = cIh
1/µ. One easily confirms that

this estimate holds true when replacing c by e which follows from the same technique. Inserting

estimate (3.163) into (3.128) then yields together with (3.140)

a(ỹ − ỹh, w1)

≤ c
(
hmin{2,1/2+λ−ε}| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
+ c

−1/2
I ‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R)

)
.

(3.164)

To show an estimate with w2 instead of w1 we insert the global estimate from Theorem 3.3.1

into (3.142) which yields

a(ỹ − ỹh, w2) ≤ chmin{2,2λ−ε}|ỹ |W 2,2

~α,~δ
(ΩR). (3.165)

The estimates and (3.164) and (3.165) yield together with (3.125) and (3.127)

‖γ−1/2(ỹ − ỹh)‖L2(Ω̃R) ≤ chmin{2,1/2+λ−ε}| ln h|1/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
, (3.166)

where we already applied a kick-back argument as at the end of the proof of Theorem 3.4.13.

The proof of Theorem (3.4.14) can be almost repeated. From (3.161) and (3.166) we get

instead of (3.148) the estimate

‖ỹ − ỹh‖L2(Γ̂R) ≤ chmin{2,1/2+λ−ε}| ln h|3/2

(
|ỹ |W 2,2

~α,~δ
(ΩR) + |ỹ |W 2,∞

~β,~%
(ΩR)

)
. (3.167)

Moreover, instead of the estimates (3.152) and (3.155) we get

‖ỹh − yh‖L2(Γ̆R) ≤ chmin{2,2λ−ε}

∑
|α|=1

‖Dαy‖W 1,2

~α,~δ
(Ω) + ‖y‖L2(Ω)

 , (3.168)

‖y − yh‖L2(Γ\Γ̃R) ≤ chmin{2,2λ−ε}
(
|y |W 2,2

~α,~δ
(ΩR) + |y |W 2,∞

~β,~%
(Ω)

)
, (3.169)

if the global estimate in L2(Ω) for quasi-uniform meshes from Theorem 3.3.1 is applied. From

(3.147), (3.167), (3.168) and (3.169) we finally conclude the assertion of Theorem 3.3.2.

Looking carefully at the assumption (3.145), we observe that the refinement parameter depends

solely on the number λ defined in (3.80). From this we conclude the following simplified version

of Theorem 3.4.14.

Corollary 3.4.15. Assume that f ∈ C0,σ(Ω) for arbitrary σ ∈ (0, 1), and g ≡ 0. The error

estimate

‖y − yh‖L2(Γ) ≤ c | ln h|3/2h2

holds, if one of the following assumptions is satisfied:

1. The family of triangulations {Th}h>0 is quasi-uniform (i. e. µ = 1), and there holds

λ > 3/2.
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2. The family of triangulations {Th}h>0 is refined according to (3.56) with parameter

1

3
< µ <

1

4
+
λ

2
.

Here, the constant c > 0 depends also on f .

Remark 3.4.16. One observes that the refinement condition necessary for an optimal conver-

gence rate in L2(Γ)-norm is a different one than for an optimal rate in the H1(Ω)- or L2(Ω)-norm

(see Corollary 3.4.9). Due to λ > 1/2 there holds 1/4 + λ/2 < λ. Thus, the mesh grading

condition required for optimal error estimates on the boundary from Corollary 3.4.15 implies the

condition required for the estimates in the domain from Corollary 3.4.9.
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CHAPTER 4

Neumann boundary control problems in L2(Γ)

The aim of this chapter is to discuss and prove error estimates for the numerical approximation

of the Neumann boundary control problem

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Γ) → min! (4.1)

subject to {
−∆y + y = f in Ω,

∂ny = u on Γ,
(4.2)

u ∈ Uad := {u ∈ L2(Γ) : ua ≤ u ≤ ub a. e. on Γ}. (4.3)

Initially, we demand that f ∈ [H1(Ω)]∗ and yd ∈ L2(Ω), but we will require higher regularity of

the input data for the error estimates derived in this chapter. The control bounds ua and ub are

assumed to be constant, and that ua < ub.

Roughly speaking, the aim is to find a Neumann datum – the control – u ∈ L2(Γ) such that

the corresponding solution of the state equation y ∈ H1(Ω) is as close as possible to the given

desired state yd . The additional regularization term is in many applications modeled as control

cost which results in a penalization of high control values. The regularization parameter α > 0

can be chosen arbitrarily.

As almost all estimates we derive here have already been proved for polygonal domains we con-

sider in this chapter only polyhedral domains Ω ⊂ R3. In Section 4.1 we will discuss existence

of a solution of (4.1)–(4.3), derive necessary optimality conditions and prove regularity results

of its solution. These optimality conditions are discretized in order to compute an approximate

solution and we will discuss three possible discretization approaches and error estimates in Sec-

tion 4.2. At the end of this chapter in Section 4.3 we will also confirm the predicted convergence

rates in numerical experiments.
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4.1 Analysis of the optimal control problem

Before we investigate the numerical solution of the optimization problem (4.1)–(4.3) we discuss

the continuous problem in detail. The statements about existence of solutions and optimality

conditions can be also found in the text books [52, 88].

Analysis of the state equation

The weak formulation of the state equation (4.2) reads

a(y , v) = 〈f , v〉Ω + (u, v)Γ ∀v ∈ H1(Ω), (4.4)

as already derived in Section 2.1.2. Note, that u ∈ L2(Γ) allows us to use the inner product

in L2(Γ) on the right-hand side. As this equation is linear we can decompose its solution into

y = yf + yu such that yf , yu ∈ H1(Ω) solve

a(yf , v) = 〈f , v〉Ω ∀v ∈ H1(Ω), (4.5)

a(yu, v) = (u, v)Γ ∀v ∈ H1(Ω). (4.6)

The solution yf ∈ H1(Ω) of (4.5) does not depend on the control, but only on the input datum

f , and is hence not a quantity which has to be optimized. Hence, by a slight abuse of our

definitions we will say that yu is the state corresponding to the control u. The solution operator

of (4.6) also being referred to as control-to-state mapping is denoted by

S : L2(Γ)→ L2(Ω), u 7→ Su := yu.

The substitution y = yf +Su allows us to eliminate the state variable in (4.1). As a consequence,

(4.1)–(4.3) is equivalent to the optimization problem with reduced target functional

j(u) :=
1

2
‖Su + yf − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Γ) → min! s. t. u ∈ Uad , (4.7)

which depends only on the control u.

Existence of solutions and optimality conditions

In order to solve problem (4.7) we derive necessary optimality conditions. In the present case

we have a quadratic target functional which is Fréchet differentiable. This directly implies the

first-order optimality condition presented in the following Theorem.

Theorem 4.1.1. The function ū ∈ Uad is the unique solution of (4.7) if and only if it satisfies

the variational inequality

(Sū + yf − yd , S(u − ū)) + α(ū, u − ū)Γ ≥ 0 ∀u ∈ Uad . (4.8)

Proof. The unique solubility is proven in [88, Section 2.5.3] and the first-order optimality con-

dition in [88, Theorem 2.22].
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To avoid the presence of the control-to-state mapping in the optimality condition (4.8) the

adjoint state p ∈ H1(Ω) is introduced which is defined as the solution of the adjoint equation

a(v , p) = (yu + yf − yd , v) ∀v ∈ H1(Ω). (4.9)

As a consequence we obtain an optimality system consisting of two coupled partial differential

equations and a variational inequality.

Theorem 4.1.2. The function ū ∈ Uad solves problem (4.7), if and only if a related state

ȳu ∈ H1(Ω) and a related adjoint state p̄ ∈ H1(Ω) exist such that (ȳu, ū, p̄) fulfills the system
a(ȳu, v) = (ū, v)Γ ∀v ∈ H1(Ω),

a(v , p̄) = (ȳu + yf − yd , v) ∀v ∈ H1(Ω),

(p̄ + αū, u − ū)Γ ≥ 0 ∀u ∈ Uad .
(4.10)

Moreover, the variational inequality is equivalent to the projection formula

ū = Πad

(
− 1

α
p̄|Γ
)
, (4.11)

where Πad : L2(Γ)→ Uad is the L2(Γ)-projection onto Uad which possesses the pointwise repre-

sentation

[Πadv ](x) := max{ua,min{ub, v(x)}}.

Proof. This result follows from the substitution ȳ = yf + Sū as well as the equations (4.4) and

(4.9). The first term in (4.8) is then simplified to

(ȳu + yf − yd , S(u − ū)) = a(S(u − ū), p̄) = (p̄, u − ū)Γ .

The equivalence of the variational inequality and the projection formula is proved e. g. in [52,

Corollary 1.2].

Let us now introduce the solution operator of the adjoint equation P : L2(Ω) → H1(Ω). In

the following we write p = P (yu + yf − yd) if p solves (4.9). It is well-known that the adjoint

operator of the control–to–state mapping can be expressed by S∗ := τ ◦ P : L2(Ω) → L2(Γ),

where τ : H1(Ω) → L2(Γ) is the trace operator onto Γ. Hence, the gradient of the target

functional can be represented by means of

∇j(u) = S∗(Su + yf − yd) + αu.

In the following we denote the active and inactive sets by

A+ := {x ∈ Γ: ū(x) = ub}, A− := {x ∈ Γ: ū(x) = ua}, I := Γ \ (A+ ∪ A−),

and write A± := A+ ∪ A−. A pointwise discussion of the variational inequality in (4.10) leads

to

∇j(u)


= 0, a.e. on I,
≤ 0, a.e. on A+,

≥ 0, a.e. on A−,
(4.12)

compare also the technique applied in [52, Lemma 1.12].
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Regularity

Before discussing discretization error estimates we investigate the regularity of the solution of

the optimal control problem (4.1)–(4.3). In Lemma 4.1.3 we will prove a regularity result in

classical Sobolev spaces. More accurate results in weighted Sobolev spaces are summarized in

Theorem 4.1.4.

Lemma 4.1.3. Assume that the input data satisfy f , yd ∈ L2(Ω), and denote by λ := minj∈C λj
the smallest singular exponent. Let s0 ∈ (3/2, 1 + λ) and σ ∈ (0,min{1/2, λ − 1/2}). Then,

the solution (ȳu, ū, p̄) of the optimality system (4.10) and yf from (4.5) possess the regularity

ȳu, yf , p̄ ∈ Hs(Ω) ∩ C0,σ(Ω),

ū ∈ H1(Γ),

for arbitrary s ≤ min{2, s0}.

Proof. From Theorem 4.1.1 we know that a unique solution ū ∈ L2(Γ) exists and hence ȳu ∈
H1(Ω). The assumption f ∈ L2(Ω) implies yf ∈ Hs(Ω) which is proved e. g. in [45, Corollary

2.6.7] or [33, Corollary 23.5], and in the same way yf + ȳu − yd ∈ L2(Ω) implies p̄ ∈ Hs(Ω).

From the trace theorem we get that p̄|Γ ∈ H1(Γ) as s0 > 3/2. Due to the projection formula

(4.11) this regularity is transferred to ū. In particular, we have ū ∈ H1/2(Γ). This implies

ȳu ∈ Hs(Ω) which is also proved in the references mentioned above. The Hölder-continuity is a

consequence of the embedding Hs(Ω) ↪→ C0,σ(Ω) stated in Lemma 2.1.1.

In order to outline the regularity of the optimal control more accurately we introduce the following

definitions. For some triangulation Th of Ω, and its corresponding boundary triangulation Eh we

define the sets

K1 = cl∪
(
{E ∈ Eh : E ∩ A± 6= ∅ and E ∩ I 6= ∅}

)
, K2 := Γ \ K1.

On K1 the control ū is switching from the active to the inactive region, and can have a kink.

Consequently, there holds ū /∈ H2(K1). As a remedy one can use regularity results in W 1,∞(K1)

instead. In the following theorem more accurate regularity results in weighted Sobolev spaces

are proven. These results are important for the discretization error estimates proved in Section

4.2.

Theorem 4.1.4. Assume that the input data satisfy f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some

σ ∈ (0, 1). Let ε > 0 be a sufficiently small real number, and let ~α, ~β,~γ ∈ Rd ′ and ~δ, ~%, ~τ ∈ Rd
be weight vectors defined by

αj := max{0, 1

2
− λcj + ε}, δk := max{0, 1− λek + ε},

βj := max{0, 2− λcj + ε}, %k := max{0, 2− λek + ε},

γj := max{0, 1− λcj + ε}, τk := max{0, 3

2
− λek + ε},
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for all j ∈ C and k ∈ E . Then, the solution (ȳu, ū, p̄) of the optimality system (4.10) and the

solution yf of (4.5) satisfy

Dαȳu, D
αyf ∈ W 1,2

~α,~δ
(Ω),

Dαp̄ ∈ W 1,2

~α,~δ
(Ω) ∩W 1,∞

~β,~%
(Ω) ∩W 1,2

~γ,~τ (Γ),

Dαū ∈ W 0,∞
~γ,~δ

(K1) ∩W 1,2
~γ,~τ (K2),

for all |α| = 1.

Proof. From Theorem 2.3.7 and Theorem 2.3.8 we directly conclude with Lemma 4.1.3

Dαȳu, D
αyf ∈ W 1,2

~α,~δ
(Ω), Dαp̄ ∈ W 1,2

~α,~δ
(Ω) ∩W 1,∞

~β,~%
(Ω), ∀|α| = 1.

A trace theorem and the embeddings from Lemma 2.3.4 imply

Dαp̄ ∈ W 1,∞
~β,~%

(Γ) ↪→ W 1,2
~γ,~τ (Γ) ∩W 0,∞

~γ,~δ
(Γ).

Note, that in order to get the validity of the embeddings one has to take into account that ε > 0

can be chosen arbitrarily but small. Due to (4.12) we moreover have

ū =


−α−1p̄, on I,
ua, on A−,
ub, on A+,

Consequently, the control ū inherits the regularity of the adjoint state p̄ and the control bounds

ua and ub.

4.2 Discretization error estimates

There exist a couple of discretization approaches for the optimal control problem (4.1)–(4.3)

that we will discuss in detail now. An overview of related contributions has already been given in

Chapter 1, and we are now in the position to improve these results for polyhedral domains when

taking into account the accurate regularity results from Chapter 2 and the sharp finite element

error estimates from Chapter 3.

4.2.1 Full discretization

A possible approach for the discretization of the optimal control problem (4.1)–(4.3) is, to

approximate the state and adjoint state variable with piecewise linear and continuous finite

elements, and the control with piecewise constant functions. More precisely, we search

yf ,h, yu,h, ph ∈ Vh :=
{
vh ∈ C(Ω): vh is affine linear on all T ∈ Th

}
,

uh ∈ Uh,ad := {uh ∈ L∞(Γ) : uh is constant on all E ∈ Eh} ∩ Uad , (4.13)

where Th is a conforming triangulation of Ω and Eh the induced boundary mesh, i. e. each E ∈ Eh
is also a face (if n = 3) or edge (if n = 2) of some T ∈ Th.
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The discrete form of the optimality system (4.10) then reads

Find yu,h, ph ∈ Vh and uh ∈ Uh:
a(yu,h, vh) = (uh, vh)Γ ∀vh ∈ Vh,
a(vh, ph) = (yu,h + yf ,h − yd , vh) ∀vh ∈ Vh,

(αuh + ph, wh − uh)Γ ≥ 0 ∀wh ∈ Uh,ad ,
(4.14)

where the function yf ,h ∈ Vh can be computed in advance from

a(yf ,h, vh) = (f , vh) ∀vh ∈ Vh.

We introduce the discrete versions of the operators S, S∗ and P , defined by

Sh : L2(Γ)→ Vh ↪→ L2(Ω), wh = Shu :⇐⇒ a(wh, vh) = (u, vh)Γ ∀vh ∈ Vh,
Ph : L2(Ω)→ Vh ↪→ H1(Ω), wh = Phy :⇐⇒ a(vh, wh) = (y , vh) ∀vh ∈ Vh,

and

S∗h := τ ◦ Ph : L2(Ω)→ V ∂h := {wh ∈ C(Γ) : wh = vh|Γ for some vh ∈ Vh} ↪→ L2(Γ).

That S∗h is indeed the adjoint operator to Sh becomes clear by

(S∗hv , w)Γ = (Phv , w)Γ = a(Shw, Phv) = (v , Shw) ∀v ∈ L2(Ω), w ∈ L2(Γ). (4.15)

Analogous to the continuous case one can show that the system (4.14) possesses a unique

solution (ȳu,h, ūh, p̄h) ∈ Vh × Uh,ad × Vh, and, that (ȳu,h, ūh) is also the unique solution of the

related discretized optimal control problem

min
(yu,h,uh)∈Vh×Uh,ad

1

2
‖yu,h + yf ,h − yd‖2

L2(Ω) +
α

2
‖uh‖2

L2(Γ)

subject to

a(yu,h, vh) = (uh, vh)Γ ∀vh ∈ Vh.
Recall that the optimal continuous and discrete state variable can be decomposed by means of

ȳ = ȳu + yf , ȳh = ȳu,h + yf ,h.

We will derive an a priori error estimate for the discrete solution (ȳh, ūh) in the next theorem.

The proof is similar to the one in [26], but we can improve the results using the sharp error

estimates on the boundary from Theorem 3.3.2 and Theorem 3.4.14.

Theorem 4.2.1. Assume that the input data satisfy f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some

σ ∈ (0, 1). Then, the error estimates
√
α‖ū − ūh‖L2(Γ) ≤ chη (4.16)

and

‖ȳ − ȳh‖H1(Ω) + ‖p̄ − p̄h‖H1(Ω) ≤ c
{
hmin{1,λ−ε}η, if µ = 1,

hη, if µ < λ,

hold, where

η := ‖f ‖L2(Ω) + ‖ū‖H1(Γ) + |ȳ |W 2,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,∞
~β,~%

(Ω) + ‖p̄‖L∞(Ω),

with the weight vectors defined in Theorem 4.1.4 and sufficiently small ε > 0.
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Proof. As the error estimate for the control cannot be improved with mesh refinement, we

prove the stated estimate on quasi-uniform meshes only. Testing the optimality condition of

the continuous problem (4.10) with the discrete solution, and the optimality condition of the

discrete problem (4.14) with the L2(Γ)-projection P ∂h ū of the continuous solution onto Uh,ad
yields

(αū + p̄, ūh − ū)Γ ≥ 0,(
αūh + p̄h, P

∂
h ū − ū + ū − ūh

)
Γ
≥ 0.

Summing up both inequalities implies

−α‖ū − ūh‖2
L2(Γ) + (p̄ − p̄h, ūh − ū)Γ + (αūh + p̄h, P

∂
h ū − ū)Γ ≥ 0.

Reordering this inequality and exploiting that (ūh, P
∂
h ū − ū)Γ = 0 yields

α‖ū − ūh‖2
L2(Γ) ≤ (p̄ − p̄h, ūh − ū)Γ + (p̄h, P

∂
h ū − ū)Γ. (4.17)

In the following the two terms on the right-hand side are discussed separately. For the first term

we insert the representations

p̄|Γ = S∗(Sū + yf − yd) and p̄h|Γ = S∗h(Shūh + yf ,h − yd), (4.18)

introduce several intermediate functions, apply the Cauchy-Schwarz inequality, exploit the bound-

edness of S∗h as operator from L2(Ω) to L2(Γ), and get

(p̄ − p̄h, ūh − ū)Γ

= (S∗(Sū + yf − yd)− S∗h(Shūh + yf ,h − yd), ūh − ū)Γ

= ((S∗ − S∗h)(Sū + yf − yd) + S∗h(S − Sh)ū + S∗h(yf − yf ,h) + S∗hSh(ū − ūh), ūh − ū)Γ

≤ c
(
‖(S∗ − S∗h)(ȳ − yd)‖L2(Γ) + ‖(S − Sh)ū‖L2(Ω) + ‖yf − yf ,h‖L2(Ω)

)
‖ū − ūh‖L2(Γ), (4.19)

where we exploited in the last step that

(S∗hSh(ū − ūh), ūh − ū)Γ = −‖Sh(ū − ūh)‖2
L2(Ω) ≤ 0.

Inserting the already known error estimates for elliptic problems from Theorem 3.3.1 and The-

orem 3.3.2 into (4.19) and applying Young’s inequality yields

(p̄ − p̄h, ūh − ū)Γ ≤ c
(
hmin{2,1/2+λ−ε}| ln h|3/2η

)2
+
α

3
‖ū − ūh‖2

L2(Γ). (4.20)

For the second part on the right-hand side of (4.17) we take into account the error orthogonality

of the L2(Γ)-projection P ∂h , apply the Cauchy-Schwarz and the Young inequality with arbitrary

ν > 0, and get

(p̄h, P
∂
h ū − ū)Γ = (p̄h − p̄, P ∂h ū − ū)Γ + (p̄ − P ∂h p̄, P ∂h ū − ū)Γ

≤ c
(
‖p̄ − p̄h‖L2(Γ)h‖ū‖H1(Γ) + h2‖p̄‖H1(Γ)‖ū‖H1(Γ)

)
≤ ν‖p̄ − p̄h‖2

L2(Γ) + ch2
(
‖ū‖H1(Γ) + ‖p̄‖H1(Γ)

)2
. (4.21)
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Moreover we can derive an estimate for the adjoint state using the representation from (4.18)

which implies after insertion of several intermediate functions

p̄|Γ − p̄h|Γ = (S∗ − S∗h)(ȳu + yf − yd) + S∗h(S − Sh)ū + S∗h(yf − yf ,h) + S∗hSh(ū − ūh).

Then we obtain using the triangle inequality and error estimates for elliptic problems from The-

orem 3.3.1 and Theorem 3.3.2

‖p̄ − p̄h‖L2(Γ) ≤ c
(
‖(S∗ − S∗h)(ȳu + yf − yd)‖L2(Γ) + ‖(S − Sh)ū‖L2(Ω)

+ ‖yf − yf ,h‖L2(Ω) + ‖ū − ūh‖L2(Γ)

)
≤ c

(
hmin{2,1/2+λ−ε}| ln h|3/2η + ‖ū − ūh‖L2(Γ)

)
. (4.22)

Inserting (4.22) into (4.21) and choosing ν = α/3c leads to

(p̄h, P
∂
h ū − ū)Γ ≤ c

(
hmin{2,1/2+λ−ε}| ln h|3/2η + h‖p̄‖H1(Γ) + h‖ū‖H1(Γ)

)2
+
α

3
‖ū − ūh‖2

L2(Γ).

(4.23)

Now we insert (4.20) and (4.23) into (4.17), apply a kick-back argument to the terms α/3‖ū−
ūh‖2

L2(Γ)
, extract the root, and obtain

√
α‖ū − ūh‖L2(Γ) ≤ chη,

where we exploited that 1/2 + λ − ε > 1 for arbitrary polyhedral domains, when ε > 0 is

sufficiently small.

The error estimate for the state follows from the triangle inequality

‖ȳ − ȳh‖H1(Ω) ≤ ‖(S − Sh)ū‖H1(Ω) + ‖Sh(ū − ūh)‖H1(Ω) + ‖yf − yf ,h‖H1(Ω), (4.24)

the error estimates from Theorem 3.3.1 if µ = 1 or Theorem 3.4.8 if µ < λ, the boundedness

of Sh as operator from L2(Γ) to H1(Ω) and the already shown estimate (4.16). In the same

way we get an estimate for the adjoint state when writing p̄ = P (ȳ − yd) and p̄h = Ph(ȳh− yd).

With the triangle inequality this leads to

‖p̄ − p̄h‖H1(Ω) ≤ c
(
‖(P − Ph)(ȳ − yd)‖H1(Ω) + ‖Ph(ȳ − ȳh)‖H1(Ω)

)
≤ c

(
‖(P − Ph)(ȳ − yd)‖H1(Ω) + ‖ȳ − ȳh‖H1(Ω)

)
, (4.25)

where we exploited the stability of Ph as operator from H1(Ω) to H1(Ω). Inserting the finite

element error estimates from Theorem 3.3.1 in case of µ = 1 and Theorem 3.4.8 if µ < λ, as

well as the estimate already derived for the state variable yields the assertion.

Estimates for the state in L2(Ω)

In the remainder of this section we derive an error estimate for the state variable in the L2(Ω)-

norm. While estimates for the state variables in H1(Ω) are very easy to show (compare (4.24)

and (4.25)), estimates in weaker norms require advanced techniques. The basic strategy we will

use is not new. A proof for distributed control problems can be found in [67] and an extension

to Neumann control problems in [62]. Improved error estimates using weighted Sobolev spaces
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are presented in [9] for two-dimensional polygonal domains and in the following, we will show

how these results can be extended to polyhedral domains.

Let R∂h : L∞(Γ) → Uh denote the midpoint interpolant defined in Section 3.2.4. Using the

triangle inequality we obtain an estimate for the state by

‖ȳu − ȳu,h‖L2(Ω) ≤ ‖(S − Sh)ū‖L2(Ω) + ‖Sh(ū − R∂h ū)‖L2(Ω) + ‖Sh(R∂h ū − ūh)‖L2(Ω). (4.26)

For the first term we only have to insert the finite-element error estimates from Theorem 3.3.1

for quasi-uniform meshes or Theorem 3.4.8 for locally refined meshes. In the following lemmata

we discuss the two other terms on the right-hand side of (4.26).

For technical reasons we require an assumption upon the active set.

Assumption 2. The set g := A± ∩ I consists of a finite number of curves having finite length.

From this assumption one could also conclude the assumption Mateos and Rösch used in [62].

They demanded that | ∪ {E ∈ K1}| ≤ ch. This is not sufficient for our purposes when g goes

through some locally refined region. However, what we apply in Lemma 4.2.2 is some local

version of this assumption. More precisely, we will benefit again from the decomposition of

the boundary {Γi}Ii=0 already introduced in (3.82) that we used to show a finite element error

estimate in L2(Γ).

For the second term in (4.26) one can exploit that the operator Sh realizes a smoothing of the

interpolation error ū −R∂h ū and it is possible to show convergence with a rate higher than one.

Lemma 4.2.2. Assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1), and let

Assumption 2 be satisfied.

a) If µ = 1, there holds the estimate

‖Sh(ū − R∂h ū)‖L2(Ω) ≤ chsη, (4.27)

with s = min{2, 1/2 + λ− ε},

b) and if the refinement parameter satisfies µ < 1
4 + λ

2 , there holds

‖Sh(ū − R∂h ū)‖L2(Ω) ≤ ch2| ln h|η, (4.28)

where

η := |ū|H1(Γ) + |ū|W 2,2
~γ,~τ

(K2) + |ū|W 1,∞
~γ,~δ

(K1)

with the weight vectors defined in Theorem 4.1.4 and ε > 0 chosen sufficiently small.

Proof. We will first prove the estimate (4.28) and mention at the end of the proof where

modifications are necessary to show also (4.27). Let vh := S∗hSh(ū − R∂h ū) ∈ V ∂h . This allows

us to write

‖Sh(ū − R∂h ū)‖2
L2(Ω) = (ū − R∂h ū, vh)Γ = (ū − P ∂h ū, vh)Γ + (P ∂h ū − R∂h ū, vh)Γ, (4.29)
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where P ∂h denotes the L2(Γ)-projection onto Uh as already defined in Section 3.2.3. With

orthogonality properties of P ∂h and standard estimates we get

(ū − P ∂h ū, vh)Γ = (ū − P ∂h ū, vh − P ∂h vh)Γ ≤ ch2|ū|H1(Γ)|v̄h|H1(Γ)

≤ ch2|ū|H1(Γ)‖Sh(ū − R∂h ū)‖L2(Ω). (4.30)

For the second term in (4.29) we distinguish between boundary elements E ⊂ K1 and E ⊂ K2.

On K2 the solution possesses the regularity Dαū ∈ W 1,2
~γ,~τ (K2) for all |α| = 1, as stated in

Theorem 4.1.4, where the largest weight is defined by

κ := max
j∈C,k∈E

{γj , τk} = max
j∈C,k∈E

{0, 1− λcj + ε, 3/2− λek + ε} = max{0, 3/2− λ+ ε}.

Using the element-wise definition of the L2(Γ)-projection and the fact that R∂h ū is constant on

each element we get

‖P ∂h ū − R∂h ū‖2
L2(K2) =

∑
E⊂K2

∫
E

(
|E|−1

∫
E

ū(y) dsy − R∂h ū
)2

dsx

=
∑
E⊂K2

|E|−1

(∫
E

(ū(y)− R∂h ū) dsy

)2

. (4.31)

Now the local estimates from Lemma 3.2.10 can be inserted. In case of rE > 0 we get from

(3.43) using the mesh condition hE ∼ hr1−µ
E

|E|−1

(∫
E

(ū(y)− R∂h ū) dsy

)2

≤ c
(
h2r

2(1−µ)−κ
E |ū|W 2,2

~γ,~τ
(E)

)2
, (4.32)

and in case of rE = 0 we get with hE = h1/µ

|E|−1

(∫
E

(ū(y)− R∂h ū) dsy

)2

≤ c
(
h(2−κ)/µ|ū|W 2,2

~γ,~τ
(E)

)2
. (4.33)

Moreover, the assumption µ < 1/4 + λ/2 implies µ ≤ 1− κ/2, since

1− κ/2 = 1− 1

2
max{0, 3/2− λ+ ε} = min{1, 1/4 + λ/2− ε} ≥ µ, (4.34)

where the last step is valid when ε is chosen sufficiently small. Hence (4.32) and (4.33) become

|E|−1

(∫
E

(ū(y)− R∂h ū) dsy

)2

≤ c
(
h2|ū|W 2,2

~γ,~τ
(E)

)2
(4.35)

for arbitrary E ∈ Eh, E ⊂ K2. Inserting this into (4.31) yields

‖P ∂h ū − R∂h ū‖L2(K2) ≤ ch2|ū|W 2,2
~γ,~τ

(K2).

With the Cauchy-Schwarz inequality and the stability estimate ‖vh‖L2(Γ) ≤ ‖Sh(ū−R∂h ū)‖L2(Ω)

we thus arrive at

(P ∂h ū − R∂h ū, vh)L2(K2) ≤ ch2|ū|W 2,2
~γ,~τ

(K2)‖Sh(ū − R∂h ū)‖L2(Ω). (4.36)
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On the set K1 the solution satisfies only Dαū ∈ W 0,∞
~γ,~δ

(K1) for all |α| = 1. We denote the

largest weight by

κ∞ := max
j∈C,k∈E

{γj , δk} = max
j∈C,k∈E

{0, 1− λcj + ε, 1− λek + ε}. (4.37)

Exploiting the definition of P ∂h yields the estimate

(P ∂h ū − R∂h ū, vh)L2(K1) =
∑
E⊂K1

∫
E

(P ∂h ū − R∂h ū)vh(x) dsx

≤ ‖vh‖L∞(Γ)

∑
E⊂K1

∫
E

∣∣∣∣|E|−1

∫
E

ū(y) dsy − R∂h ū
∣∣∣∣ dsx

≤ ‖vh‖L∞(Γ)

∑
E⊂K1

∣∣∣∣∫
E

(
ū(y)− R∂h ū

)
dsy

∣∣∣∣
≤ ‖vh‖L∞(Γ)

∑
E⊂K1

‖ū − R∂h ū‖L∞(E)|E|. (4.38)

To obtain a sharp error estimate, we recall the decomposition of the boundary already used in

Section 3.4, namely

ΓR/n := {x ∈ Γ: r(x) < R/n}, Γ̃R/n := Γ \ ΓR/n,

with sufficiently small R > 0 that we set without loss of generality equal to one, and use the

dyadic decomposition

Γi :=

{
{x ∈ Γ: di+1 < r(x) < di}, for i = 0, . . . , I − 1,

{x ∈ Γ: 0 < r(x) < dI}, for i = I,
with di = 2−i . (4.39)

The inner-most domain has radius dI = cIh
1/µ with some cI > 1 independent of h, and hence,

I ∼ | ln h|. The patch with the neighboring sets is denoted by

Γ′i := int
(

Γmax{0,i−1} ∪ Γi ∪ Γmin{I,i+1}
)
.

Within the set Γi , i = 0, . . . , I, all elements E have diameter hE ∼ hd1−µ
i . Assumption 2 then

implies that ∑
E⊂K1
E∩Γ̃R 6=∅

1 ≤ ch−1,
∑
E⊂K1
E∩Γi 6=∅

1 ≤ ch−1d
−(1−µ)
i , (4.40)

for all i = 0, . . . , I.

With the decomposition (4.39) we obtain

∑
E⊂K1

E∩ΓR/2 6=∅

‖ū − R∂h ū‖L∞(E)|E| ≤
I∑
i=1

∑
E⊂K1
E∩Γi 6=∅

‖ū − R∂h ū‖L∞(E)|E|. (4.41)

From Lemma 3.2.10 we conclude the local estimate

‖ū − R∂h ū‖L∞(E)|E| ≤ ch3d
3(1−µ)−κ∞
i |ū|W 1,∞

~γ,~δ
(E) ∀E ⊂ K1, E ∩ Γi 6= ∅, (4.42)
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for all i = 1, . . . , I, where we used the properties hE ∼ hd1−µ
i , |E| ∼ h2

E , and in particular if

rE = 0

h3−κ∞
E = h3+(3−3µ−κ∞)/µ ≤ ch3d

3(1−µ)−κ∞
I .

Inserting (4.40) and (4.42) into (4.41) yields

∑
E⊂K1

E∩ΓR/2 6=∅

‖ū − R∂h ū‖L∞(E)|E| ≤ ch2
I∑
i=1

d
2(1−µ)−κ∞
i |ū|W 1,∞

~γ,~δ
(Γ′i∩K1). (4.43)

Next, we observe that the condition µ ≤ 1 − κ∞/2 holds. Taking (4.37) and the assumption

upon µ into account yields

1− κ∞
2

= 1− 1

2
max

j∈C,k∈E
{0, 1− λek + ε, 1− λcj + ε} ≥ min{1, 1/4 + λ/2− ε} ≥ µ.

As a consequence, (4.43) leads together with I ∼ | ln h| to∑
E⊂K1

E∩ΓR/2 6=∅

‖ū − R∂h ū‖L∞(E)|E| ≤ ch2| ln h||ū|W 1,∞
~γ,~δ

(K1). (4.44)

The extension to elements contained in or intersecting Γ̃R/2 is easy as rE ∼ c and hE ∼ h.

Exploiting also (4.40) yields∑
E⊂K1

E∩Γ̃R/2 6=∅

‖ū − R∂h ū‖L∞(E)|E| ≤ ch|ū|W 1,∞
~γ,~δ

(K1)

∑
E⊂K1

E∩Γ̃R/2 6=∅

|E| ≤ ch2|ū|W 1,∞
~γ,~δ

(K1). (4.45)

Consequently, we deduce from (4.44) and (4.45) that∑
E⊂K1

‖ū − R∂h ū‖L∞(E)|E| ≤ ch2| ln h||ū|W 1,∞
~γ,~δ

(K1). (4.46)

Inserting (4.46) into (4.38) yields together with the stability estimate ‖S∗hv‖L∞(Γ) ≤ ‖v‖L2(Ω)

(P ∂h ū − R∂h ū, vh)L2(K1) ≤ ch2| ln h||u|W 1,∞
~γ,~δ

(K1)‖Sh(ū − R∂h ū)‖L2(Ω). (4.47)

Together with (4.36), (4.30) and (4.29) we arrive at the desired estimate (4.28).

To show the estimate (4.27) without mesh refinement, only a few modifications of the proof

are necessary. First, note that (4.30) remains valid with µ = 1. Moreover, instead of (4.32)

and (4.33), we obtain

|E|−1

(∫
E

(ū(y)− R∂h ū) dsy

)2

≤ c
(
hs1 |ū|W 2,2

~γ,~τ
(E)

)2
,

with

s1 := min{2, 1/2 + λ− ε}.
As a consequence we get

(P ∂h ū − R∂h ū, vh)L2(K2) ≤ chs1 |ū|W 2,2
~γ,~τ

(K2)‖Sh(ū − R∂h ū)‖L2(Ω). (4.48)
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The convergence rate for the estimate on K1 is also reduced and the proof is even simpler.

We do not need the dyadic decomposition (4.39) as the mesh is globally quasi-uniform and

hence, Assumption 2 implies |K1| ≤ ch. As a consequence, we get with the local estimate from

Lemma 3.2.10 and µ = 1∑
E⊂K1

‖ū − R∂h ū‖L∞(E)|E| ≤ ch1−κ∞ |ū|W 1,∞
~γ,~δ

(K1)

∑
E⊂K1

|E| ≤ chs2 |ū|W 1,∞
~γ,~δ

(K1),

where

s2 := 2− κ∞ = min
j∈C,k∈E

{2, 1 + λcj − ε, 1 + λek − ε}.

Inserting this into (4.38) leads to

(P ∂h ū − R∂h ū, vh)L2(K1) ≤ chs2 |ū|W 1,∞
~γ,~δ

(K1)‖Sh(ū − R∂h ū)‖L2(Ω). (4.49)

Inserting the estimates (4.30), (4.48) and (4.49) into (4.29) yields the estimate (4.27) taking

into account that s := s1 ≤ s2.

It remains to derive an estimate for the third term on the right-hand side of (4.26), and we

exploit a principle which is called supercloseness in the literature. This principle relies on the

fact that the interpolant of the continuous solution ū is closer to the discrete solution ūh than

ū itself.

Lemma 4.2.3. Assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1), and let

Assumption 2 be satisfied.

a) If µ = 1 there holds the estimate

‖Sh(R∂h ū − ūh)‖L2(Ω) ≤ chs | ln h|3/2η, (4.50)

with s := min{2, 1/2 + λ− ε},

b) and if µ < 1
4 + λ

2 , there holds

‖Sh(R∂h ū − ūh)‖L2(Ω) ≤ ch2| ln h|3/2η, (4.51)

where

η := ‖f ‖L2(Ω) + |ū|H1(Γ) + |ū|W 2,2
~γ,~τ

(K2) + |ū|W 1,∞
~γ,~δ

(K1) + |ȳu|W 2,2

~α,~δ
(Ω)

+ |p̄|W 2,2
~γ,~τ

(E) +
∑
|α|=1

‖Dαp̄‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,∞
~β,~%

(Ω) + ‖p̄‖L∞(Ω)

with the weight vectors defined in Theorem 4.1.4 and ε > 0 chosen sufficiently small.

Proof. We show the error estimate (4.51) and discuss at the end of this proof at which point the

convergence rate is reduced for quasi-uniform meshes. Firstly, one confirms that the variational

inequality in (4.10) holds also pointwise and hence

(αR∂h ū + R∂h p̄, ūh − R∂h ū)Γ ≥ 0,
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where we used ūh as test function. Secondly, if we test the discrete variational inequality (4.14)

with R∂h ū we get

(αūh + p̄h, R
∂
h ū − ūh)Γ ≥ 0.

Summing up both inequalities yields

α‖ūh − R∂h ū‖2
L2(Γ) ≤ (R∂h p̄ − p̄h, ūh − R∂h ū)Γ.

Once we have shown an estimate for the right-hand side the assertion follows as Sh is bounded in

the sense that ‖Shv‖L2(Ω) ≤ ‖v‖L2(Γ) for all v ∈ L2(Γ). Introducing the intermediate functions

p̄ and S∗h(ShR
∂
h ū − yd) leads to

α‖ūh − R∂h ū‖2
L2(Γ) ≤ (R∂h p̄ − p̄, ūh − R∂h ū)Γ

+ (p̄ − S∗h(ShR
∂
h ū + yf ,h − yd), ūh − R∂h ū)Γ

+ (S∗h(ShR
∂
h ū + yf ,h − yd)− p̄h, ūh − R∂h ū)Γ, (4.52)

and it remains to discuss the three terms on the right-hand side. Up to here, the proof coincides

with the proof of [62, Proposition 4.5].

Taking into account the decomposition Eh of Γ and exploiting that ūh and R∂h ū are constant on

each boundary element E ∈ Eh leads to

(R∂h p̄ − p̄, ūh − R∂h ū)Γ =
∑
E∈Eh

∫
E

(R∂h p̄ − p̄(x))(ūh − R∂h ū) dsx

=
∑
E∈Eh

(ūh − R∂h ū)|E
∫
E

(R∂h p̄ − p̄(x)) dsx . (4.53)

For the adjoint state we know from Theorem 4.1.4 that Dαp̄ ∈ W 1,2
~γ,~τ (Γ) for all |α| = 1. We

define the number

κ := max
j∈C,k∈E

{γj , τk} = max
j∈C,k∈E

{0, 1− λcj + ε,
3

2
− λek + ε} = max{0, 3/2− λ+ ε},

and insert the local estimate (3.43) from Lemma 3.2.10 to arrive at∫
E

(R∂h p̄ − p̄(x)) dsx ≤ c |E|1/2|p̄|W 2,2
~γ,~τ

(E)

{
h2r

2(1−µ)−κ
E , if rE > 0,

h(2−κ)/µ, if rE = 0.
(4.54)

Inserting the assumption µ ≤ 1− κ/2 which follows analogous to (4.34) from µ < 1/4 + λ/2,

yields ∫
E

(R∂h p̄ − p̄(x)) dsx ≤ ch2|E|1/2|p̄|W 2,2
~γ,~τ

(E) ∀E ∈ Eh.

The estimate (4.53) then becomes

(R∂h p̄ − p̄, ūh − R∂h ū)Γ ≤ c
∑
E∈Eh

∣∣(ūh − R∂h ū)|E
∣∣ h2|E|1/2|p̄|W 2,2

~γ,~τ
(E)

≤ c
∑
E∈Eh

h2|p̄|W 2,2
~γ,~τ

(E)‖ūh − R∂h ū‖L2(E)

≤ ch2|p̄|W 2,2
~γ,~τ

(Γ)‖ūh − R∂h ū‖L2(Γ). (4.55)
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For the second term in (4.52) we insert the representation p̄|Γ = S∗(Sū + yf − yd) and with

appropriate intermediate functions we get

‖p̄ − S∗h(ShR
∂
h ū + yf ,h − yd)‖L2(Γ) = ‖(S∗ − S∗h)(ȳ − yd)‖L2(Γ) + ‖S∗h(S − Sh)ū‖L2(Γ)

+ ‖S∗h(yf − yf ,h)‖L2(Γ) + ‖S∗hSh(ū − R∂h ū)‖L2(Γ)

≤ ch2| ln h|3/2η.

In the last step we inserted the finite element error estimate from Theorem 3.4.14 for the first

term, the stability of S∗h as operator from L2(Ω) to L2(Γ) and the estimate of Theorem 3.4.8

for the second and third term, and the result of Lemma 4.2.2 for the fourth term. With an

application of the Cauchy-Schwarz inequality we then obtain

(p̄ − S∗h(ShR
∂
h ū + yf ,h − yd), ūh − R∂h ū)Γ ≤ ch2| ln h|3/2η‖ūh − R∂h ū‖L2(Γ). (4.56)

For the third term in (4.52) we insert the representation of the discrete adjoint state, namely

p̄h|Γ = S∗h(Shūh + yf ,h − yd), and observe that it is non-positive by

(S∗h(ShR
∂
h ū + yf ,h − yd)− p̄h, ūh − R∂h ū)Γ = (Sh(R∂h ū − ūh), Sh(ūh − R∂h ū)) ≤ 0,

and hence, we can neglect this term. From the estimates (4.52), (4.55) and (4.56) we conclude

the estimate (4.51) for locally refined meshes.

The estimate (4.50) can be shown with the following modifications. From (4.54) we get in case

of µ = 1 the local estimate∫
E

(R∂h p̄ − p̄(x)) dsx ≤ chs |E|1/2|p̄|W 2,2
~γ,~τ

(E) ∀E ∈ Eh,

and hence, analogous to (4.55) we deduce

(R∂h p̄ − p̄, ūh − R∂h ū)Γ ≤ chs |p̄|W 2,2
~γ,~τ

(Γ)‖ūh − R∂h ū‖L2(Γ). (4.57)

Instead of (4.56) we get with the error estimates for elliptic problems on quasi-uniform meshes

from Theorem 3.3.1 and Theorem 3.3.2 the estimate

(p̄ − S∗h(ShR
∂
h ū + yf ,h − yd), ūh − R∂h ū)Γ ≤ chs | ln h|3/2η‖ūh − R∂h ū‖L2(Γ). (4.58)

Inserting (4.57) and (4.58) into (4.52) yields the estimate (4.50) when exploiting the a-priori

estimate

‖Shv‖L2(Ω) ≤ c‖v‖L2(Γ) ∀v ∈ L2(Γ). (4.59)

With the two lemmata above we can conclude an estimate for the state and adjoint state in the

L2(Ω)- and L2(Γ)-norm, respectively.

Theorem 4.2.4. Let Assumption 2 be satisfied, and assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω)

with some σ ∈ (0, 1).

a) If µ = 1 there holds the estimate

‖ȳ − ȳh‖L2(Ω) + ‖p̄ − p̄h‖L2(Γ) ≤ chmin{2,1/2+λ−ε}| ln h|3/2η, (4.60)
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b) and if µ < 1
4 + λ

2 there holds

‖ȳ − ȳh‖L2(Ω) + ‖p̄ − p̄h‖L2(Γ) ≤ ch2| ln h|3/2η, (4.61)

where

η := ‖f ‖L2(Ω) + |ū|H1(Γ) + |ū|W 2,2
~γ,~τ

(K2) + |ū|W 1,∞
~γ,~δ

(K1) + |ȳu|W 2,2

~α,~δ
(Ω)

+ |p̄|W 2,2
~γ,~τ

(Γ) +
∑
|α|=1

‖Dαp̄‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,∞
~β,~%

(Ω) + ‖p̄‖L∞(Ω),

with the weight vectors defined in Theorem 4.1.4 and ε > 0 chosen sufficiently small.

Proof. The estimates for the state variable follow from the decomposition

‖ȳ − ȳh‖L2(Ω) ≤ ‖ȳu − ȳu,h‖L2(Ω) + ‖yf − yf ,h‖L2(Γ),

the further decomposition (4.26), Theorem 3.3.1 for µ = 1 or Theorem 3.4.8 for µ < 1/4 +

λ/2 < λ, and the Lemmata 4.2.2 and 4.2.3.

From the representations p̄|Γ = S∗(ȳ − yd) and p̄h|Γ = S∗h(ȳh − yd), as well as the triangle

inequality we get an estimate for the adjoint state

‖p̄ − p̄h‖L2(Γ) ≤ ‖(S∗ − S∗h)(ȳ − ȳd)‖L2(Γ) + ‖S∗h(ȳ − ȳh)‖L2(Γ).

It remains to insert the error estimate on the boundary from Theorem 3.3.2 for µ = 1 or

Theorem 3.4.14 for µ < 1/4 + λ/2, the stability of S∗h from L2(Ω) to L2(Γ), and the estimate

already derived for the state.

4.2.2 Variational discretization

Another possibility to discretize the optimal control problem (4.1)–(4.3) is the variational ap-

proach first introduced by Hinze in [50] and extended to Neumann control in [51]. In contrast

to the choice in (4.13) we do not discretize the control and search the triple

(ȳu,h, ūh, p̄h) ∈ Vh × Uad × Vh

as the solution of the optimality system

a(yu,h, vh)− (uh, vh)Γ = 0 ∀vh ∈ Vh,
a(vh, ph)− (yu,h, vh) = (yf ,h − yd , vh) ∀vh ∈ Vh, (4.62)

(αuh + ph, u − uh)Γ ≥ 0 ∀u ∈ Uad .

The variational inequality is equivalent to the projection formula

ūh = Πad

(
− 1

α
p̄h|Γ

)
and hence, ūh is piecewise linear, but it is not a finite-element function from V ∂h . However,

we have an implicit discretization of the control by means of the discrete adjoint state and the
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control bounds. According to [50] this finite-dimensional system forms a necessary and sufficient

optimality condition of the infinite-dimensional optimization problem

min
u∈Uad

1

2
‖Shu + yf ,h − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Γ),

where only the control-to-state operator S was replaced by the corresponding finite-element

solution operator, but the control remains continuous.

In what follows we show how the convergence rates are improved using this approach. The basic

idea of the proof for the following theorem has first been presented in [50], but we repeat it in

order to outline the similarity to the proof of Theorem 4.2.1. Moreover, we are in the position to

improve the results in [51] due to the sharp finite-element error estimates derived in Chapter 3.

Theorem 4.2.5. Assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1).

a) If µ = 1, the error estimates

√
α‖ū − ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) + ‖p̄ − p̄h‖L2(Ω) ≤ chmin{2,1/2+λ−ε}| ln h|3/2η,

‖ȳ − ȳh‖H1(Ω) + ‖p̄ − p̄h‖H1(Ω) ≤ chmin{1,λ−ε}η,

b) and if µ < 1
4 + λ

2 , the estimates

√
α‖ū − ūh‖L2(Γ) + ‖ȳ − ȳh‖L2(Ω) + ‖p̄ − p̄h‖L2(Ω) ≤ ch2| ln h|3/2η,

‖ȳ − ȳh‖H1(Ω) + ‖p̄ − p̄h‖H1(Ω) ≤ chη,

hold, where

η := ‖f ‖L2(Ω) + |ȳu|W 2,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,∞
~β,~%

(Ω) + ‖p̄‖L∞(Ω),

with the weight vectors defined in Theorem 4.1.4 and ε > 0 chosen sufficiently small.

Proof. Testing the variational inequality from the system (4.10) with the solution ūh of the

discretized problem, and the variational inequality from (4.62) with the continuous solution ū

leads to

(αū + p̄, ūh − ū)Γ ≥ 0,

(αūh + p̄h, ū − ūh)Γ ≥ 0.

This is possible, since ū is also feasible for the discretized problem. Summing up both inequalities

leads to

α‖ū − ūh‖2
L2(Γ) ≤ (p̄ − p̄h, ūh − ū)Γ.

We have already derived an estimate for this term in the proof of Theorem 4.2.1. Recall estimate

(4.19), which yields

√
α‖ū − ūh‖L2(Γ) ≤ c

(
‖(S∗ − S∗h)(ȳ − yd)‖L2(Γ) + ‖(S − Sh)ū‖L2(Ω) + ‖yf − yf ,h‖L2(Ω)

)
.

(4.63)
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Inserting the finite element error estimates from Theorem 3.3.1 and Theorem 3.3.2 leads to

√
α‖ū − ūh‖L2(Γ) ≤ chmin{2,1/2+λ−ε}| ln h|3/2η.

To obtain the estimates for the state we consider the estimate (4.24), exploit the stability of Sh
as operator from L2(Γ) to H1(Ω), insert the finite element error estimate from Theorem 3.3.1

as well as the estimate derived for the control, and get

‖ȳ − ȳh‖H1(Ω) ≤ c
(
‖(S − Sh)ū‖H1(Ω) + ‖yf − yf ,h‖H1(Ω) + ‖ū − ūh‖L2(Γ)

)
(4.64)

≤ c
(
hmin{1,λ−ε} + hmin{2,1/2+λ}−ε

)
η,

and since min{1, λ} < min{2, 1/2 +λ} we arrive at the desired estimate. To obtain an estimate

in the L2(Ω)-norm we apply the same technique and can improve the estimate using

‖(S − Sh)ū‖L2(Ω) + ‖yf − yf ,h‖L2(Ω) ≤ chmin{2,2λ−ε}η.

The convergence rate is now dominated by min{2, 1/2 + λ− ε}.
The error estimates for the adjoint state follow in a similar way from (4.25), the estimates for

elliptic problems from Theorem 3.3.1 and the estimate already derived for the state variable.

From this we conclude

‖p̄ − p̄h‖H1(Ω) ≤ c
(
‖(P − Ph)(ȳ − yd)‖H1(Ω) + ‖ȳ − ȳh‖H1(Ω)

)
≤ chmin{1,λ−ε}η. (4.65)

To obtain an estimate in L2(Ω) we replace the H1(Ω)-norm by the L2(Ω)-norm, and with

‖(P − Ph)(ȳ − yd)‖L2(Ω) ≤ chmin{2,2λ−ε}η,

which follows from Theorem 3.3.1, and the estimate derived for the state in L2(Ω), we conclude

the estimate for the adjoint state in L2(Ω).

Deriving the error estimates when local mesh refinement is used, is easy. The arguments of the

proof can be widely repeated, and we only have to insert the error estimates for elliptic problems

on refined meshes from Theorems 3.4.8 and 3.4.14 into (4.63), (4.64) and (4.65).

4.2.3 Postprocessing approach

Another approach which also exploits the higher regularity of the control variable is the post-

processing approach which was first considered by Meyer and Rösch in [67] and extended to

Neumann control problems in [62]. The idea is to compute a fully discrete solution of the sys-

tem (4.14) and to get an improved control by means of the projection formula (4.11), more

precisely

ũh := Πad

(
− 1

α
p̄h|Γ

)
.

The function ũh is finite-dimensional and feasible, but not an element of the discrete control

space Uh,ad .

Our aim is to show that ũh converges to ū with a higher rate than ūh.

Theorem 4.2.6. Assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1) and let

Assumption 2 be satisfied.
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a) If µ = 1 there holds

‖ū − ũh‖L2(Γ) ≤ chmin{2,1/2+λ−ε}| ln h|3/2η,

b) and if µ < 1
4 + λ

2 there holds

‖ū − ũh‖L2(Γ) ≤ ch2| ln h|3/2η,

where

η := ‖f ‖L2(Ω) + |ū|H1(Γ) + |ū|W 2,2
~γ,~τ

(K2) + |ū|W 1,∞
~α,~δ

(K1) + |ȳu|W 2,2

~α,~δ
(Ω)

+ |p̄|W 2,2
~γ,~τ

(Γ) +
∑
|α|=1

‖Dαp̄‖W 1,2

~α,~δ
(Ω) +

∑
|α|=1

‖Dαp̄‖W 1,∞
~β,~%

(Ω) + ‖p̄‖L∞(Ω),

with the weight vectors defined in Theorem 4.1.4 and ε > 0 chosen sufficiently small.

Proof. Inserting the projection formula (4.11) and exploiting the non-expansivity of the projec-

tion operator Πad onto the convex set Uad , see e. g. [96, Proposition 46.5], leads to

‖ū − ũh‖L2(Γ) = ‖Πad
(
− 1

α
p̄

)
− Πad

(
− 1

α
p̄h

)
‖L2(Γ) ≤ cα−1‖p̄ − p̄h‖L2(Γ).

The assertion then directly follows from the error estimate for the adjoint state derived in

Theorem 4.2.4.

4.3 Numerical experiments

In order to confirm the results proven in this chapter we consider a slightly modified problem

which allows us to construct an analytic solution. The difficulty is to find a solution which

possesses the regularity stated in Theorem 4.1.4 and which satisfies the Neumann boundary

conditions of state and adjoint equation. As a remedy, we follow the construction used already

in [62]. In this paper functions g1, g2 ∈ L2(Γ) were introduced and the optimization problem

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Γ) +

∫
Γ

y(x)g2(x) dsx → min!

subject to

−∆y + y = f in Ω, ∂ny = u + g1 on Γ,

u ∈ Uad :=
{
u ∈ L2(Γ) : ua ≤ u ≤ ub a. e. on Γ

}
,

was considered. The corresponding first-order optimality system reads

−∆y + y = f −∆p + p = y − yd in Ω,

∂ny = u + g1 ∂np = g2 on Γ,

u = Πad

(
− 1

α
p|Γ
)
.

The optimal state ȳ and adjoint state p̄ can be chosen arbitrarily, and the input data f , yd , g1, g2

as well as the optimal control ū can be calculated by means of the optimality system.
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Figure 4.1: The optimal control ū of the problem in Example 4.3.2.

Remark 4.3.1. In the experiments the primal dual active set strategy was used to compute a so-

lution of the discretized problem. This algorithm has been discussed in [49], [88, Section 2.12.4].

An extensive description of implementation details can be also found in [83]. Some further re-

marks regarding the implementation using the variational discretization approach can be found

in [50]. To compute a solution of the unconstrained problems a CG or GMRES method was

applied to the reduced form of the discretized optimality condition. The linear equation sys-

tems coming from the finite element formulation of state and adjoint equation were solved with

the direct solver MUMPS and the computed Cholesky factorization was reused as all equation

systems involve only the system matrix corresponding to −∆ + I.

Example 4.3.2. The computational domain is the three-dimensional L-shaped domain Ω :=

(−1, 1)2 \ [0, 1]2 × (0, 1). We introduce cylindrical coordinates (r, ϕ, z) around the x3-axis such

that ϕ = 0 and ϕ = 3π/2 coincide with the two faces which intersect each other in the singular

edge. The optimal state and adjoint state are chosen as

ȳ(r, ϕ, z) = p̄(r, ϕ, z) := rλ cos(λϕ),

and by some calculations the input data and the optimal control, which is illustrated in Figure 4.1,

are obtained. In this example only the upper control bound u ≤ 1.5 is considered. Moreover,

the regularization parameter α = 1 has been chosen. It is important that the solution we

construct contains the same singularities one would expect for general problems. This is in our

example indeed the case with λ = 2/3. However, we neglected the corner singularities since a

construction of an exact solution would be very difficult on the one hand, and on the other hand

it is known that the corner singularities are mild in comparison to the edge singularities in the

L-shaped domain [87].

For a decreasing sequence of mesh parameters {hk}k∈N we computed the corresponding se-

quence of discrete solutions {(uk , yk , pk)}k∈N with the full discretization approach discussed in
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h # DOF # DOF BD ‖ū − ūh‖L2(Γ) ‖ȳ − ȳh‖H1(Ω) ‖ȳ − ȳh‖L2(Ω)

1/20 26901 11200 0.023972 (1.00) 0.066934 (0.66) 0.002004 (1.39)

1/30 87451 25200 0.015964 (1.00) 0.05130 (0.66) 0.001147 (1.38)

1/40 203401 44800 0.011964 (1.00) 0.042456 (0.66) 0.000773 (1.37)

1/50 392751 70000 0.009565 (1.00) 0.036652 (0.66) 0.000570 (1.37)

1/60 673501 100800 0.007967 (1.00) 0.032498 (0.66) 0.000444 (1.37)

1/70 1063651 137200 0.006825 (1.00) 0.029353 (0.66) 0.000360 (1.36)

1/80 1581201 179200 0.005969 (1.00) 0.026874 (0.66) 0.000300 (1.37)

1/90 2244151 226800 0.005304 (1.00) 0.024860 (0.66) 0.000256 (1.35)

Table 4.1: Numerical experiments using the full discretization approach on quasi-uniform meshes.

The numbers in parenthesis indicate the corresponding experimental convergence rate.

Section 4.2.1, and determined the experimental convergence rate by the well-known formula

eoc(‖ek‖) :=
log
(
‖ek‖
‖ek−1‖

)
log
(
hk
hk−1

) , k ≥ 2.

The measured error and corresponding convergence rate on a family of quasi-uniform meshes is

presented in Table 4.1. The results confirm the convergence rate from Theorem 4.2.1 predicted

for the control in L2(Γ) and the state in H1(Ω). However, we observe a better convergence

rate than predicted for the state in L2(Ω), for that we have proven the rate 1/2 + λ = 7/6 in

Theorem 4.2.4, but obviously we obtain the rate 2λ = 4/3. Indeed, it is easy to confirm that

the estimate for the state in L2(Ω) is not even sharp as we applied suboptimal a-priori estimates

in the proofs of Lemmata 4.2.2 and 4.2.3, more precisely in the steps (4.30), (4.36), (4.47) and

(4.59). Similar results were obtained in computations on the two-dimensional L-shaped domain

in [74, Table 4.4].

In this example the quite large regularization parameter α = 1 has been used which is an unusual

choice in applications. However, when computing this experiment with smaller regularization

parameters one would observe a much better convergence rate for the state. This is a conse-

quence of the fact that the control is scaled according to α−1 and has large values. In order to

illustrate this recall the estimate

‖ȳ − ȳh‖H1(Ω) ≤ ‖(S − Sh)ū‖H1(Ω) + ‖ū − ūh‖L2(Γ) + ‖yf − yf ,h‖H1(Ω) (4.66)

from (4.24). For small α the second term is, for the mesh parameters we chose, the dominating

one and converges with rate one. Thus, it would require computations on much finer grids to

observe the desired convergence rate for the state as well.

Let us now check whether the results derived in Section 4.2.3 for the postprocessing approach

are sharp. We have proven that the sequence of functions ũk := Πad(−α−1pk) possesses better

convergence properties and converges with the best-possible rate under the refinement condition

µ <
1

4
+
λ

2
=

7

12
.
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(a) µ = 1 (b) µ = 0.5

Figure 4.2: Local refinement of a very coarse grid.
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Figure 4.3: Error ‖ū − ũh‖L2(Γ), solid lines: measured error; dotted lines: expected behavior.

To confirm that this criterion is sharp we computed the solution of our model problem on

quasi-uniform meshes (µ = 1), on slightly refined meshes (µ = 0.7777), on meshes which

guarantee optimal convergence of the finite element error in L2(Ω)-norm but not in L2(Γ)-norm

(µ = 0.6666), and on meshes satisfying the assumption µ < 1/4 + λ/2 which is required in

Theorem 4.2.6 (µ = 0.5). In this experiment the regular refinement strategy from [21] already

described in Section 3.4.2 was used. The resulting mesh from this technique with refinement

parameter µ = 0.5 and R = 0.2 is illustrated in Figure 4.2.

Figure 4.3 confirms that the measured error coincides with the theoretically predicted behavior

which is illustrated by the dotted lines. The results widely coincide with experiments for two-

dimensional problems in [9].



CHAPTER 5

Neumann boundary control problems in H−1/2(Γ)

In this chapter we consider the energy regularization approach that was already used in the

book of Lions [60]. Similar investigations for Dirichlet control problems have been presented in

[70, 71]. The motivation of this approach is to demand merely as much regularity for the control

as it is needed to guarantee that the corresponding state variable is in H1(Ω). This means, that

we search the solution of a Neumann control problem in the space H−1/2(Γ). The problem we

are going to investigate reads

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

H−1/2(Γ)
→ min! (5.1)

subject to {
−∆y + y = f in Ω,

∂ny = u on Γ,
(5.2)

u ∈ Uad :=
{
u ∈ H−1/2(Γ) : ua ≤ u ≤ ub

}
. (5.3)

Initially, we demand that f ∈ [H1(Ω)]∗ and yd ∈ L2(Ω), but will assume higher regularity later

in order to derive our error estimates. For simplification we assume that the control bounds are

constant, i. e. ua, ub ∈ R with ua < ub. The regularization parameter α > 0 can be chosen

arbitrarily.

For the analysis of the optimal control problem discussed in Section 5.1 one can widely reuse

the techniques applied in case of L2(Γ)-regularization in Chapter 4. The fundamental difference

regarding the analysis in relation to the L2(Γ)-regularization is that the regularization term

appears in a negative norm which we replace by an equivalent quadratic functional involving an

inverse Steklov-Poincaré operator. This representation allows us to derive an optimality system

which has the structure of a Signorini problem. In Section 5.2 we investigate a finite element

approximation of the optimality condition and observe that an additional stability condition

for the discrete control and state spaces is required to get unique solubility of the discretized

problem as well. For simplification purposes we thus consider only two-dimensional domains
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Ω ∈ R2 having polygonal boundary. The first main result in this chapter is the error estimates for

unconstrained problems that are sharp as we will see in the numerical experiments in Section 5.4.

We moreover observe that the control exhibits a similar behavior like the optimal control of a

Dirichlet control problem with L2(Γ)-regularization, meaning that as a general rule, the control

is drawn to zero at convex corners and tends to infinity at reentrant corners. This motivates

to consider problems involving control-constraints where the control is automatically active in a

vicinity of reentrant corners, and is hence regular. Thus, as a second main result improved error

estimates are derived in Section 5.3.

5.1 Analysis of the optimal control problem

In this section we discuss the continuous optimal control problem (5.1)–(5.3) in detail, inves-

tigate a possible realization of the regularization functional, and derive optimality conditions.

Note that feasible controls are not necessarily functions and this is the reason why the control

constraints (5.3) in the space H−1/2(Γ) are defined by duality, more precisely we say that the

relation ua ≤ u ≤ ub holds if and only if{
〈u − ub, v〉Γ ≤ 0

〈u − ua, v〉Γ ≥ 0
∀v ∈ H1/2(Γ) with v ≥ 0 a. e. on Γ.

Analysis of the state equation

As the state equation (5.2) is linear it is possible to decompose its solution according to y =

yu + yf where yu and yf satisfy the equations

−∆yu + yu = 0 −∆yf + yf = f in Ω,

∂nyu = u ∂nyf = 0 on Γ.
(5.4)

We consider the weak formulations of these equations using the bilinear form

a(y , v) =

∫
Ω

(∇y(x) · ∇v(x) + y(x)v(x)) dx

corresponding to the operator −∆ + I, which read

a(yu, v) = 〈u, v〉Γ ∀v ∈ H1(Ω), (5.5)

a(yf , v) = 〈f , v〉Ω ∀v ∈ H1(Ω). (5.6)

Moreover, we define the control-to-state mapping by

S : H−1/2(Γ)→ L2(Ω), u 7→ Su := yu.

With the Lax-Milgram Theorem we easily verify that the images of S belong even to H1(Ω),

and that S is bounded in the sense ‖Su‖H1(Ω) ≤ c‖u‖H−1/2(Γ).
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Optimality conditions

The first question which arises is, how the regularization term can be realized. Therefore, the

inverse Steklov-Poincaré operator defined by

N : H−1/2(Γ)→ H1/2(Γ), u 7→ Nu := yu|Γ (5.7)

is taken into account. Using this operator we obtain several equivalent formulations for a norm

in H−1/2(Γ) by

‖yu‖2
H1(Ω) =

∫
Ω

∇yu(x) · ∇yu(x) dx +

∫
Ω

yu(x)2 dx

=

∫
Γ

u(x) yu(x) dsx = 〈u,Nu〉Γ =: |||u|||2
H−1/2(Γ)

. (5.8)

One can show that this definition of the H−1/2(Γ)-norm is equivalent to the definition we used

in (2.5). From the Lax-Milgram Lemma we immediately get

|||u|||H−1/2(Γ) = ‖yu‖H1(Ω) ≤ c‖u‖H−1/2(Γ),

and from the definition (2.5) as well as the harmonic extension B : H1/2(Γ) → H1(Ω) which is

known to be continuous, i. e. ‖Bv‖H1(Ω) ≤ c‖v‖H1/2(Γ) for all v ∈ H1/2(Γ), we get

‖u‖H−1/2(Γ) = sup
v∈H1/2(Γ)

v 6≡0

〈u, v〉Γ
‖v‖H1/2(Γ)

= sup
v∈H1/2(Γ)

v 6≡0

a(yu, Bv)

‖v‖H1/2(Γ)

≤ c‖yu‖H1(Ω) = c |||u|||H−1/2(Γ),

where c is the norm of the extension operator. In the following we will not distinguish between

the two equivalent definitions of norms in H−1/2(Γ) and will use ‖ · ‖H−1/2(Γ) only.

Taking the norm representation (5.8) and the substitution y = Su+ yf into account leads to an

equivalent formulation of the optimal control problem (5.1)–(5.3) in the reduced form, namely

min
u∈Uad

j(u) :=
1

2
‖Su + yf − yd‖2

L2(Ω) +
α

2
〈u,Nu〉Γ . (5.9)

In order to derive optimality conditions, we discuss the differentiability properties of the regular-

ization term.

Lemma 5.1.1. The operator N : H−1/2(Γ) → H1/2(Γ) is linear, continuous and self-adjoint.

Moreover, the functional

R : H−1/2(Γ)→ R, R(u) :=
1

2
〈u,Nu〉Γ

is Fréchet differentiable with derivative[
R′(u)

]
h = 〈h,Nu〉Γ for all h ∈ H−1/2(Γ).

Proof. The linearity and continuity follow from the structure of the underlying boundary value

problem. In order to show the self-adjointness we introduce functions y1, y2 ∈ H1(Ω) which

solve in the weak sense

−∆y1 + y1 = 0 −∆y2 + y2 = 0 in Ω,

∂ny1 = u1 ∂ny2 = u2 on Γ,
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with arbitrary u1, u2 ∈ H−1/2(Γ). Exploiting the weak formulations of both boundary value

problems leads to

〈u1,Nu2〉Γ = 〈u1, y2|Γ〉Γ = a(y1, y2) = a(y2, y1) = 〈u2, y1|Γ〉Γ = 〈u2,Nu1〉Γ .

The properties of N then imply the differentiability of R which is a consequence of

R(u + v) = R(u) + 〈v ,Nu〉+
1

2
〈v ,N v〉Γ

and the norm definition (5.8) which yields 〈v ,N v〉Γ ∼ ‖v‖2
H−1/2(Γ)

.

From this lemma we deduce that the target functional of problem (5.9) is Fréchet-differentiable

and with standard techniques we can derive the necessary optimality condition〈
u − ū, j ′(ū)

〉
Γ

= (Sū + yf − yd , S(u − ū)) + α 〈u − ū,N ū〉Γ ≥ 0 ∀u ∈ Uad . (5.10)

Let us summarize the linear and constant part of the optimality condition by introducing the

operator Tα : H−1/2(Γ)→ H1/2(Γ) and the element g ∈ H1/2(Γ) defined by

Tα := S∗S + αN , g := S∗(yf − yd). (5.11)

Here, S∗ : L2(Ω)→ H1/2(Γ) is the operator defined by S∗v := [Pv ]|Γ where P : L2(Ω)→ H1(Ω)

is the solution operator of the adjoint equation, i. e.

w = Pv :⇐⇒ a(z, w) = (v , z) ∀z ∈ H1(Ω).

That S∗ is the adjoint operator of S can be confirmed by

(Su, v) = a(Su, P v) = 〈u, P v〉Γ = 〈u, S∗v〉Γ ∀u ∈ H−1/2(Γ), v ∈ L2(Ω). (5.12)

Using the definition of Tα and g the optimality condition can be written in a compact form as

Find ū ∈ Uad : 〈u − ū, Tαū〉Γ ≥ 〈u − ū, g〉Γ ∀u ∈ Uad . (5.13)

The operator Tα possesses the following properties:

Lemma 5.1.2. The bilinear form defined by 〈·, Tα·〉Γ : H−1/2(Γ)×H−1/2(Γ)→ R is continuous

and H−1/2(Γ)-elliptic, i. e. some constants M,γ > 0 exist such that

〈u, Tαv〉Γ ≤ M‖u‖H−1/2(Γ)‖v‖H−1/2(Γ),

〈u, Tαu〉Γ ≥ γ‖u‖2
H−1/2(Γ)

hold for all u, v ∈ H−1/2(Γ).

Proof. The continuity follows directly from the definition of Tα, the continuity of N and S, and

the norm equivalence ‖Sv‖H1(Ω) ∼ ‖v‖H−1/2(Γ) stated in (5.8). This implies

〈u, Tαv〉Γ = (Su, Sv) + α 〈u,N v〉Γ
≤ c

(
‖Su‖H1(Ω)‖Sv‖H1(Ω) + ‖u‖H−1/2(Γ)‖v‖H−1/2(Γ)

)
≤ c‖u‖H−1/2(Γ)‖v‖H−1/2(Γ).
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To show the H−1/2(Γ)-ellipticity we express the H−1/2(Γ)-norm by the representation (5.8)

which leads to

〈u, Tαu〉Γ = (Su, Su) + α 〈u,Nu〉Γ
= ‖yu‖2

L2(Ω) + α‖u‖2
H−1/2(Γ)

≥ α‖u‖2
H−1/2(Γ)

.

Corollary 5.1.3. The variational inequality (5.13) possesses a unique solution ū ∈ H−1/2(Γ).

Proof. The assertion follows directly from Lemma 5.1.2 and a standard theorem on existence

and uniqueness of a solution for variational inequalities, e. g. from [96, Proposition 54.1].

In order to find a representation of the optimality condition (5.10) which does not involve the

operators S and S∗ explicitly, we introduce the adjoint state p := P (Su + yf − yd) ∈ H1(Ω).

Due to the representation p|Γ = S∗(y − yd) the optimality condition (5.10) can be written in

the following form.

Theorem 5.1.4. The tuple (ȳ , ū) ∈ H1(Ω)× Uad solves the problem (5.1)–(5.3), if and only if

some p̄ ∈ H1(Ω) exists with
a(ȳu, v)− 〈ū, v〉Γ = 0 ∀v ∈ H1(Ω),

a(v , p̄)− (ȳu, v) = (yf − yd , v) ∀v ∈ H1(Ω),

〈u − ū, αȳu + p̄〉Γ ≥ 0 ∀u ∈ Uad .
(5.14)

Note, that we already used the decomposition ȳ = ȳu + yf and N ū = ȳu|Γ.

5.2 Error estimates for the unconstrained problem

In this section we neglect the control constraints and set Uad := H−1/2(Γ). This simplifies the

proof of error estimates significantly. Estimates with additional control constraints are considered

in Section 5.3.

As the variational inequality in the optimality system (5.14) becomes a variational problem when

no constraints are present we conclude that

ȳu(x) = − 1

α
p̄(x) for a. a. x ∈ Γ.

Consequently, there exists some y0 ∈ H1
0(Ω) such that the state can be decomposed into

ȳu(x) = y0(x)− 1

α
p̄(x) for a. a. x ∈ Ω. (5.15)

Inserting this decomposition into the state equation (5.4) then yields the differential equation

−∆y0 + y0 =
1

α
(−∆p̄ + p̄) =

1

α
(ȳu + yf − yd) in Ω,

y0 = 0 on Γ.
(5.16)
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Regularity of the solution

Before we are in the position to derive error estimates for the numerical approximation of the

optimality system (5.14) we collect some regularity results of its solution. In the following lemma

we use results in classical Sobolev spaces.

Lemma 5.2.1. Let f ∈ Lq(Ω), yd ∈ Lmax{2,q}(Ω) for some q satisfying

q ∈
{

[1, 2/(2− λ)), if λ < 2,

[1,∞), otherwise,
(5.17)

and

2− 2/q 6= λj,m := mπ/ωj ∀j ∈ C, m ∈ N. (5.18)

Then, the solution of the optimality system (5.14) possesses the regularity

ū ∈ W 1−1/q,q(Γ(j)), ∀j ∈ C, ȳu, yf ∈ W 2,q(Ω), p̄ ∈ W 2,q(Ω).

Proof. From Theorem 5.1.3 it is known that a unique optimal control ū ∈ H−1/2(Γ) exists.

Then, the Lax-Milgram lemma guarantees the existence of a unique state ȳ ∈ H1(Ω) and hence

ȳ ∈ Lq(Ω) for arbitrary q ∈ [1,∞). Under the assumption that q satisfies (5.17) and (5.18)

Theorem 2.2.2 implies p̄ ∈ W 2,q(Ω). With the decomposition (5.15) this regularity is transferred

to the state variable ȳu, as standard results imply y0 ∈ W 2,q(Ω), because the right-hand side of

(5.16) belongs to Lq(Ω). Moreover, yf ∈ W 2,q(Ω) follows in case of f ∈ Lq(Ω) and we thus

have ȳ = ȳu +yf ∈ W 2,q(Ω). With a standard trace theorem we obtain that ū ∈ W 1−1/q,q(Γ(j))

for all j ∈ C.

In the numerical experiments we observe that the control exhibits a similar behavior like the

optimal control of a Dirichlet control problem with L2(Γ)-regularization (see e. g. [63, 71]).

More precisely, the control is drawn down to zero at convex corners and tends to ∞ or −∞ at

concave corners. In the following we will study this behavior in detail. Let (r, ϕ) denote polar

coordinates centered at some corner x (j) and let B be a neighborhood of x (j) containing no

other corners. Since p̄ is the solution of a Neumann problem it admits a decomposition as in

Theorem 2.2.2, namely

p̄(x) = pR(x) + crλ cos(λϕ), for x ∈ B, λ =
π

ωj
,

with a regular part pR in H2(B). Note that we omitted the cut-off function η as introduced

in (2.12) which is possible due to local considerations. Further singular terms with exponents

λk := kπ/ωj for k ≥ 2 are neglected since the corresponding singular functions belong to H2(B).

Due to the homogeneous Neumann conditions we have

0 = ∂np̄ = ∂npR ± cλrλ−1 sin(λϕ). (5.19)

Since sin(λϕ) = 0 for ϕ = 0 and ϕ = ωj we have ∂npR = 0. As the auxiliary function y0

introduced in (5.16) is the solution of a Dirichlet problem it can be decomposed into a regular

part y0,R ∈ W 2,q(B) with q ∈ (2, (1−λ)−1) if λ < 1 or q ∈ (2,∞) if λ ≥ 1, and a singular part

y0(x) = y0,R(x) + crλ sin(λϕ), x ∈ B.
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Exploiting this decomposition and ū = ∂nȳu = ∂ny0 we obtain by some calculations

ū|ϕ=0 = ∂ny0,R − cλ rλ−1 cos(0),

ū|ϕ=ωj = ∂ny0,R + cλ rλ−1 cos(π),

and consequently,

ū(x) = ∂ny0,R(x)− cλrλ−1, x ∈ ∂B ∩ Γ. (5.20)

As we are able to choose q > 2 the regular part of the state is differentiable due to the

embedding y0,R ∈ W 2,q ↪→ C1(B), and hence, the normal derivative is piecewise continuous,

i. e. ∂ny0,R ∈ C(Γ(j) ∩ B) for j ∈ C. Due to y0,R ≡ 0 on Γ the tangential derivatives on the

boundary vanish and since the normal vector in a corner can be represented as linear combination

of the tangential vectors, this implies that

lim
r→0

∂ny0,R(r, ϕ) = 0 for ϕ ∈ {0, ωj}.

However, the term λrλ−1 in (5.20) could either grow unboundedly or could tend to zero, which

depends on λ. If x (j) is a reentrant corner we have λ < 1 and in case of a convex corner λ > 1.

Consequently, there holds

lim
r→0

ū(r, ϕ)→
{

0, if ωj < π,

±∞, if ωj > π,
for ϕ ∈ {0, ωj}.

Note that in case of ωj > π the control tends either to +∞ on both legs, or to −∞, but the

case that it tends to +∞ on the one leg and to −∞ on the other one can never occur.

Let us collect some regularity results in weighted Sobolev spaces.

Theorem 5.2.2. Let f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1). Moreover, denote by

ε > 0 a sufficiently small real number, and let ~α, ~β,~γ ∈ Rd be weight vectors defined by

αj := max{0, 1− λj + ε},
βj := max{0, 2− λj + ε},
γj := max{0, 3/2− λj + ε},

for all j ∈ C. Then, the solution (ȳu, ū, p̄) of (5.14) with Uad = H−1/2(Γ) and yf from (5.6)

satisfy

ȳu, p̄ ∈ W 2,2
~α (Ω) ∩W 2,∞

~β
(Ω) ∩W 2,2

~γ (Γ),

yf ∈ W 2,2
~α (Ω),

ū ∈ W 1,2
~γ (Γ).

Proof. Due ȳ , yd ∈ L2(Ω) Theorem 2.3.5 implies that the adjoint state belongs to W 2,2
~α (Ω) as

~α satisfies its assumptions by construction. The W 2,∞
~β

(Ω)-regularity of p̄ follows from Theo-

rem 2.3.6 and Lemma 5.2.1 using the fact that ȳ ∈ W 2,q(Ω) ↪→ C0,σ′(Ω̄) which holds for some

σ′ ∈ (0, 1/2) as q ∈ (4/3, 2/(2− λ)) 6= ∅.
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The regularity of p̄ can be transferred to ȳu with similar arguments used already in the proof of

Lemma 5.2.1. We may apply the regularity results from [54] and [11, Theorem 2.2] and obtain

y0 ∈ V 2,2
~α (Ω) ∩ V 2,∞

~β
(Ω),

where

V 2,q
~δ

(Ω) :=

v ∈ D(Ω):
∑
|α|≤2

‖r δj−2+|α|Dαv‖Lq(Ω) <∞

 .
However, as 2− |α| ≥ 0, there holds the embedding

V 2,q
~δ

(Ω) ↪→ W 2,q
~δ

(Ω), ∀q ∈ [1,∞], ~δ ∈ Rd ,

and taking the decomposition (5.15) into account implies

ȳu ∈ W 2,2
~α (Ω) ∩W 2,∞

~β
(Ω).

Moreover, the assumption f ∈ L2(Ω) and Theorem 2.3.5 imply the desired regularity of yf .

Furthermore, we have ∇ȳu ∈
(
W 1,∞
~β

(Ω)
)2

and thus ū ∈ W 1,∞
~β

(Γ). Finally, from the embedding

stated in Lemma 2.3.3 we conclude

ȳu, p̄ ∈ W 2,∞
~β

(Ω) ↪→ W 2,2
~γ (Γ), ū ∈ W 1,∞

~β
(Γ) ↪→ W 1,2

~γ (Γ).

Note that ε > 0 can be chosen arbitrarily but sufficiently small, which is required to get the

validity of the embeddings.

Discretization and general convergence results

In the following we construct a conforming finite element discretization of the optimality system

(5.14) from Theorem 5.1.4. Let us introduce some notation. A family of admissible and quasi-

uniform finite element triangulations Th with mesh size h > 0 is considered. We approximate

the state and adjoint state variable with continuous and piecewise linear functions, i. e. we seek

yh and ph in the finite-dimensional subspace

Vh :=
{
vh ∈ C(Ω̄) : vh is affine linear on all T ∈ Th

}
(5.21)

with dim(Vh) = NΩ. We further seek an approximation of the control uh in the finite-dimensional

space Uh ⊂ H−1/2(Γ) with dim(Uh) = NΓ. Since multiple choices of Uh are possible, we want to

keep the analysis here as general as possible and investigate certain choices later in detail. The

discretized optimality system of Theorem 5.1.4 reads now
a(yu,h, vh)− 〈uh, vh〉Γ = 0 ∀vh ∈ Vh,
a(vh, ph)− (yu,h, vh) = (yf ,h − yd , vh) ∀vh ∈ Vh,
〈wh, αyu,h + ph〉Γ = 0 ∀wh ∈ Uh,

(5.22)

where yf ,h can be computed in advance from

a(yf ,h, vh) = 〈f , vh〉Ω ∀vh ∈ Vh.



5.2. ERROR ESTIMATES FOR THE UNCONSTRAINED PROBLEM 107

Solving the system (5.22) leads to the approximate solution (ȳu,h, ūh, p̄h) and we obtain the

discrete state variable from

ȳh := ȳu,h + yf ,h.

Existence and uniqueness of a discrete solution is discussed later as additional assumptions upon

the choice of Uh are necessary.

We introduce the finite-element solution operators Sh and Ph, defined by

Sh : H−1/2(Γ)→ Vh ↪→ L2(Ω), yh = Shu :⇐⇒ a(yh, vh) = 〈u, vh〉Γ ∀vh ∈ Vh,
Ph : L2(Ω)→ Vh ↪→ H1(Ω), ph = Phy :⇐⇒ a(vh, ph) = (y , vh) ∀vh ∈ Vh.

The adjoint operator to Sh possesses the representation S∗hy := [Phy ]|Γ which follows from the

arguments used in (5.12). The discrete Steklov-Poincaré operator can be written in terms of

Nhu = [Shu]|Γ. Similarly to (5.10) we may write the system (5.22) in the compact form

0 = 〈wh, Tαh uh + gh〉Γ ∀wh ∈ Uh (5.23)

with

Tαh := S∗hSh + αNh and gh := S∗h(yf ,h − yd).

The operator Tαh is an approximation of the operator Tα defined in (5.11). As the properties

of Tα presented in Lemma 5.1.2 cannot be directly transferred to Tαh we require an additional

assumption.

Assumption 3. The spaces Uh and Vh satisfy the Ladyshenskaya-Babuška-Brezzi condition, i. e.

some c > 0 exists such that

‖uh‖H−1/2(Γ) ≤ c sup
vh∈Vh

〈uh, vh〉Γ
‖vh‖H1(Ω)

for all uh ∈ Uh.

This is a natural assumption for mixed finite element discretizations. As a consequence the

discrete counterpart to Lemma 5.1.2 follows:

Lemma 5.2.3. Let Assumption 3 be satisfied. Then, the bilinear form
〈
·, Tαh ·

〉
Γ

: H−1/2(Γ) ×
H−1/2(Γ)→ R is continuous and Uh-elliptic.

Proof. The continuity can be proven in analogy to Lemma 5.1.2 since the stability properties of

S and S∗ also hold for their discrete versions. In order to show the Uh-ellipticity we take into

account Assumption 3 which leads to

‖uh‖H−1/2(Γ) ≤ c sup
vh∈Vh

〈uh, vh〉Γ
‖vh‖H1(Ω)

= c sup
vh∈Vh

a(Shuh, vh)

‖vh‖H1(Ω)

≤ c‖Shuh‖H1(Ω).

The definitions of Sh and Nh then imply

‖uh‖2
H−1/2(Γ)

≤ c‖Shuh‖2
H1(Ω) ≤ ca(Shuh, Shuh) = c 〈uh,Nhuh〉Γ ≤ c 〈uh, Tαh uh〉Γ .

The last step follows from

〈uh, S∗hShuh〉Γ = (Shuh, Shuh) ≥ 0.
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Theorem 5.2.4. Let Assumption 3 be satisfied. Then, the discrete optimality system (5.22)

possesses a unique solution (ȳu,h, ūh, p̄h) ∈ Vh × Uh × Vh, and the tuple (ȳu,h, ūh) is the unique

solution of the problem

Jh(yu,h, uh) :=
1

2
‖yu,h + yf ,h − yd‖2

L2(Ω) +
α

2
〈uh,Nhuh〉 → min! (5.24)

subject to (yu,h, uh) ∈ Vh × Uh and

a(yu,h, vh) = 〈uh, vh〉Γ ∀vh ∈ Vh. (5.25)

Proof. The existence of a unique optimal control ūh follows from the Lax-Milgram Lemma and

the properties of Tαh stated in Lemma 5.2.3. The corresponding state ȳu,h := Shūh and adjoint

state p̄h = Ph(ȳu,h + yf ,h − yd) are also unique since Sh and Ph are well-defined. Showing that

(5.22) forms an optimality system for the optimization problem (5.24)–(5.25) is easy since the

arguments we used to derive the continuous optimality system (5.14) can be repeated.

In the next theorem we derive a general error estimate for the solution of the discrete optimality

system (5.14).

Theorem 5.2.5. Let the Assumption 3 be satisfied. For the solutions ū ∈ H−1/2(Γ) and ūh ∈ Uh
of (5.10) and (5.23), respectively, the error estimate

‖ū − ūh‖H−1/2(Γ) ≤ c
(
‖(S − Sh)ū‖L2(Ω) + ‖(S∗ − S∗h)(ȳ − yd)‖H1/2(Γ)

+α‖(N −Nh)ū‖H1/2(Γ) + ‖yf − yf ,h‖L2(Ω) + inf
χ∈Uh

‖ū − χ‖H−1/2(Γ)

)
(5.26)

holds.

Proof. We introduce the auxiliary function ũh ∈ Uh as the unique solution of

〈vh, Tαũh + g〉Γ = 0 ∀vh ∈ Uh. (5.27)

Due to Uh ⊂ H−1/2(Γ) we get with (5.13) the orthogonality equation

〈vh, Tα(ū − ũh)〉Γ = 0 ∀vh ∈ Uh. (5.28)

As a consequence of the H−1/2(Γ)-ellipticity and boundedness of 〈·, Tα·〉Γ (see Lemma 5.1.2)

and equation (5.28), the Céa-Lemma leads to

‖ū − ũh‖H−1/2(Γ) ≤ c inf
χ∈Uh

‖ū − χ‖H−1/2(Γ). (5.29)

Next, an estimate for wh := ũh − ūh is derived. We may now apply the Uh-ellipticity of Tαh as

well as (5.23), (5.27) and (5.13) which leads to

‖wh‖2
H−1/2(Γ)

≤ 〈wh, Tαh (ũh − ūh)〉Γ = 〈wh, Tαh ũh + gh〉Γ
= 〈wh, (Tαh − Tα) ũh − g + gh〉Γ
= 〈wh, (Tαh − Tα) (ũh − ū)〉Γ + 〈wh, (Tαh − Tα) ū − g + gh〉Γ . (5.30)



5.2. ERROR ESTIMATES FOR THE UNCONSTRAINED PROBLEM 109

The boundedness of Tα and Tαh together with (5.29) imply

〈wh, (Tαh − Tα) (ũh − ū)〉Γ ≤ c ‖wh‖H−1/2(Γ) inf
χ∈Uh

‖ū − χ‖H−1/2(Γ). (5.31)

Exploiting the definition of Tα and Tαh yields for the second term in (5.30)

〈wh, (Tαh − Tα) ū + g − gh〉Γ
= 〈wh, S∗h(Sh − S)ū + (S∗h − S∗)Sū + α(Nh −N )ū + (S∗h − S∗)(yf − yd) + S∗h(yf ,h − yf )〉Γ
≤c‖wh‖H−1/2(Γ)

(
‖S∗h(Sh − S)ū‖H1/2(Γ) + ‖(S∗h − S∗)(ȳ − yd)‖H1/2(Γ)

+ α‖(Nh −N )ū‖H1/2(Γ) + ‖S∗h(yf ,h − yf )‖H1/2(Γ)

)
. (5.32)

Note, that the operator S∗h is bounded from L2(Ω) to H1/2(Γ), and thus

‖S∗h(Sh − S)ū‖H1/2(Γ) + ‖S∗h(yf ,h − yf )‖H1/2(Γ)

≤ c
(
‖(Sh − S)ū‖L2(Ω) + ‖yf ,h − yf ‖L2(Ω)

)
. (5.33)

Inserting the estimates (5.31), (5.32) and (5.33) into (5.30) and dividing by ‖wh‖H−1/2(Γ) yields

‖wh‖H−1/2(Γ) ≤ c
(
‖(S − Sh)ū‖L2(Ω) + ‖(S∗ − S∗h)(ȳ − yd)‖H1/2(Γ)

+α‖(N −Nh)ū‖H1/2(Γ) + inf
χ∈Uh

‖ū − χ‖H−1/2(Γ) + ‖yf − yf ,h‖L2(Ω)

)
.

This estimate, as well as (5.29), and the triangle inequality

‖ū − ūh‖H−1/2(Γ) ≤ ‖ū − ũh‖H−1/2(Γ) + ‖ũh − ūh‖H−1/2(Γ)

imply the assertion.

Actually we have already derived estimates for almost all terms on the right-hand side in Chapter

3 as these terms depend only on the finite element error of the state and adjoint equation. Only

the last term on the right-hand side of (5.26) has to be treated. Note that this is the only term

which depends upon the choice of the discrete control space Uh.

Approximation and error estimates for the control variable

We can now construct some finite-dimensional spaces for the control which satisfy Assumption 3.

This is mandatory because otherwise, no unique solution of the variational problem (5.23) exists.

The choice of approximating the control with piecewise constant functions on the boundary mesh

Eh of Th is known to be not inf-sup stable, and as a consequence, numerically computed solutions

exhibit oscillations. An overview over possible pairs Vh and Uh which satisfy Assumption 3 can

e.g. be found in [94, Section 1.2]. In the following we discuss three possible choices in detail.

First, we consider an approximation by piecewise constant functions, which is indeed possible

but on another boundary mesh EH having maximal element diameter H > 0. More precisely, we

set Uh = U0
h defined by

U0
h := {vh ∈ L∞(Γ) : vh|E ∈ P0 ∀E ∈ EH}.

However, further assumptions are necessary to obtain the validity of Assumption 3. Our analysis

covers the following two choices:
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b b b b b b

x0 x1 x2 x3 xni−1 xni

ψ1 ψ2 ψni/2

(a) Piecewise constant on a coarse mesh

b b b b b b

x0 x1 x2 x3 xni−1 xni

ψ1 ψ2 ψ3 ψni−1

(b) Piecewise constant on the dual mesh

b b b b b b

x0 x1 x2 x3 xni−1 xni

ψ1 ψ2 ψ3 ψni−1

(c) Piecewise linear and constant at corners

Figure 5.1: Possible choices for the discretization of the control.

a) The boundary mesh EH is assumed to be coarser than the boundary mesh of Th, i. e. there

holds H/h ≥ γ with some sufficiently large γ > 0. A proof of Assumption 3 for this choice

can be found in [85, Section 11.3]. Certainly, it is not known how large γ has to be, but in

the numerical experiments we observed, that γ = 2 is sufficient in our case. This setting

occurs for instance when we refine a given initial mesh k − 1 times globally to obtain EH,

and refine uniformly once more to obtain Th (see Figure 5.1a).

b) We can also choose EH as the dual mesh of the boundary mesh induced by Th. Therefore,

assume that the boundary edge Γ(i), i ∈ C, coincides with the x-axis and that the ni + 1,

ni ∈ N, boundary nodes of Th on Γ(i) are numerated such that

x (i) = x0 < x1 < . . . < xni = x (i+1).

Then, the elements of the dual mesh {Ek}ni−1
k=1 lying on Γ(i) are defined by

Ek := conv

{
1

2
(xk−1 + xk),

1

2
(xk + xk+1)

}
, for k = 2, . . . , ni − 2,

E1 := conv

{
x0,

1

2
(x1 + x2)

}
, Eni−1 := conv

{
1

2
(xni−2 + xni−1), xni

}
,

which is also illustrated in Figure 5.1b. A proof of Assumption 3 for this choice can be

found in [94, Section 1.2]. Due to H ∼ h we do not distinguish between h and H in the

following.

We prove a best-approximation property of these spaces in order to get an estimate for the last

term in (5.26).

Lemma 5.2.6. Let some function u ∈ W 1,2
~γ (Γ) be given, where ~γ is defined as in Theorem 5.2.2,

and denote by P ∂h : L2(Γ) → U0
h the L2(Γ)-projection onto the space U0

h . Then, the error

estimate

‖u − P ∂h u‖H−s(Γ) ≤ chmin{1,λ−1/2−ε}+s |u|W 1,2
~γ

(Γ)

holds for s ∈ {0, 1/2} and sufficiently small ε > 0.
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Proof. With the definition of negative norms by duality and the standard estimate

‖ϕ− P ∂h ϕ‖L2(Γ) ≤ ch1/2‖ϕ‖H1/2(Γ)

we obtain

‖u − P ∂h u‖H−1/2(Γ) = c sup
ϕ∈H1/2(Γ)

〈
u − P ∂h u, ϕ

〉
Γ
/‖ϕ‖H1/2(Γ)

= c sup
ϕ∈H1/2(Γ)

(u − P ∂h u, ϕ− P ∂h ϕ)/‖ϕ‖H1/2(Γ)

≤ ch1/2 ‖u − P ∂h u‖L2(Γ). (5.34)

Note, that the global projection coincides with the local projection on each boundary element

E ∈ Eh and it remains to insert the local estimates from Lemma 3.2.8. For all E ∈ Eh with

rE = 0 we get the estimate

‖u − P ∂h u‖L2(E) ≤ ch1−γj |u|W 1,2
γj

(E), for E ⊂ Uj .

In case of rE > 0 we arrive at the same estimate exploiting r
−γj
E ≤ ch−γj which follows from

γj ≥ 0. Summation over all E ∈ Eh yields

‖u − P ∂h u‖L2(Γ) ≤ ch1−maxj γj |u|W 1,2
~γ

(Γ).

Inserting now the definition of ~γ yields the assertion for s = 0, and together with (5.34) we

conclude the assertion for s = 1/2.

Another possibility is to approximate the control with specific piecewise linear functions which

are continuous on each boundary edge Γ(i), i ∈ C. We denote by Eh the boundary mesh induced

by Th. Hence, the boundary edge Γ(i) is decomposed into boundary elements

Ek := conv{xk−1, xk} ∈ Eh, k = 1, . . . , ni ,

where

x (i) = x0 < x1 < . . . < xni = x (i+1)

are again the boundary nodes on Γ(i) for some i ∈ C. We introduce the spaces

U1
h(Γ(i)) := {vh ∈ C(Γ(i)) : vh|Ek ∈ P1, k = 2, . . . , ni − 1, and vh|E1

, vh|Eni ∈ P0},

for all i ∈ C, and define the discrete control space by

U1
h := {vh ∈ L∞(Γ) : vh|Γ(i) ∈ U1

h(Γ(i)) for all i ∈ C}. (5.35)

Note, that we allow discontinuities at corner points, and demand that the slope of functions

in U1
h is zero on edges touching a corner. This property is necessary to ensure the stability

condition in Assumption 3. A proof can be found in [19], we refer also to [75]. In the following

{ψj : j = 1, . . . , ni − 1} is the nodal basis of U1
h(Γ(i)), i ∈ C, i. e.

ψj(xk) = δj,k ∀j, k = 1, . . . , ni − 1,

which is illustrated in Figure 5.1c.

We can show a best-approximation property of U1
h similar to the one from Lemma 5.2.6.
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Lemma 5.2.7. Let some u ∈ W 1,2
~γ (Γ) be given with ~γ defined as in Theorem 5.2.2, and denote

by P ∂h : L2(Γ)→ U1
h the L2(Γ)-projection onto the space U1

h . Then, the error estimate

‖u − P ∂h u‖H−s(Γ) ≤ chmin{1,λ−1/2−ε}+s |u|W 1,2
~γ

(Γ)

holds for s ∈ {0, 1/2} and sufficiently small ε > 0.

Proof. Analogous to the proof of Lemma 5.2.6 we can show that

‖u − P ∂h u‖H−1/2(Γ) ≤ c sup
ϕ∈H1/2(Γ)

‖u − P ∂h u‖L2(Γ)‖ϕ− P ∂h ϕ‖L2(Γ)/‖ϕ‖H1/2(Γ). (5.36)

Since P ∂h is the best-approximation in L2(Γ) we replace P ∂h by an appropriate local interpolation

operator onto U1
h(Γ(i)), i ∈ C. Therefore, we introduce the operator C∂h : L1(Γ(i)) → U1

h(Γ(i))

defined by

[C∂hu](x) :=

ni−1∑
k=1

[Πσk v ](xk)ψk(x), σk := Ek or Ek+1, ∀x ∈ Γ(i),

where Πσk denotes the L2-projection onto the constant functions on σk . This quasi-interpolation

operator is similar to the operator introduced by Clément [28] and has the advantage that the

stability property

‖C∂hu‖L2(Ek) ≤ c‖u‖L2(SEk ), with SEk := int(Ek ∪ σk−1 ∪ σk), (5.37)

holds for all k = 1, . . . , ni , which would not hold for the usual Lagrange interpolation operator.

For arbitrary p ∈ P0(SEk ) we have the property p = C∂hp. Using the triangle inequality and

(5.37) we get

‖ϕ− C∂hu‖L2(Ek) ≤ c‖ϕ− p‖L2(SEk ) ≤ chs |ϕ|Hs(SEk ), s ∈ (0, 1], (5.38)

for all k = 1, . . . , ni , where the last step follows from Theorem 4.2 (for s = 1) and Proposition

6.1 (for s ∈ (0, 1)) in [38]. An estimate in weighted Sobolev spaces can be deduced from (3.40)

and we get

‖u − C∂hu‖L2(Ek) ≤ c‖u − p‖L2(SEk ) ≤ ch1−γj |u|W 1,2
γj

(SEk ). (5.39)

From (5.38) for s = 1/2 and (5.39) we conclude for all i ∈ C the global estimates

‖u − C∂hu‖L2(Γ(i)) ≤ ch1−maxj∈C γj |u|W 1,2
~γ

(Γ(i)),

‖ϕ− C∂hϕ‖L2(Γ(i)) ≤ ch1/2|ϕ|H1/2(Γ(i)),

where the first estimate yields the assertion for s = 0 after summation over all i ∈ C together

with the definition of ~γ. The assertion for s = −1/2 follows after insertion into (5.36).
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Error estimates for the optimal control problem on quasi-uniform meshes

Now we are in the position to formulate a convergence result for the discrete solution of the

optimal control problem. Inserting the finite element error estimates from Section 3.3 and the

estimate for the L2(Γ)-projection from Lemma 5.2.6 in case of a piecewise constant control

approximation, or Lemma 5.2.7 in case of continuous and piecewise linear controls, into the

estimate of Theorem 5.2.5 yields an error estimate for the control approximation in theH−1/2(Γ)-

norm. It is also possible to prove a convergence result in other norms as well as for the state

variable.

Theorem 5.2.8. Let {Th}h>0 be a family of quasi-uniform meshes. Assume that the input data

satisfy f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1). Let (ȳ , ū, p̄) ∈ L2(Ω)×H−1/2(Γ)×
L2(Ω) and (ȳh, ūh, p̄h) ∈ Vh × Ukh × Vh, k = 0, 1, denote the solutions of (5.14) and (5.22),

respectively. Then, the a priori error estimates

‖ū − ūh‖H−1/2(Γ) + h1/2‖ū − ūh‖L2(Γ) ≤ chmin{3/2,λ−ε}| ln h|3/2η, (5.40)

‖ȳ − ȳh‖H1(Ω) ≤ c max{h, hλ−ε| ln h|3/2}η, (5.41)

hold, where

η := |ū|W 1,2
~γ

(Γ) + |ȳu|W 2,2
~γ

(Γ) + ‖ȳu‖W 2,2
~α

(Ω) + ‖ȳu‖W 2,∞
~β

(Ω) + ‖yf ‖W 2,2
~α

(Ω)

+ |p̄|W 2,2
~γ

(Γ) + ‖p̄‖W 2,2
~α

(Ω) + ‖p̄‖W 2,∞
~β

(Ω),

with the weight vectors ~α, ~β,~γ ∈ Rd defined in Theorem 5.2.2 and ε > 0 chosen sufficiently

small.

Proof. To obtain the desired estimate for the control in H−1/2(Γ) we insert the estimates for

the best-approximation in Ukh from Lemma 5.2.6 if k = 0, or Lemma 5.2.7 if k = 1, as well

as the finite-element error estimates from Theorems 3.3.1 and 3.3.3, into the estimate from

Theorem 5.2.5. The regularity which is necessary for these estimates has been discussed in

Theorem 5.2.2.

Next, we show the error estimate in L2(Γ). We will need the inverse estimate

‖wh‖L2(Γ(i)) ≤ ch−1/2‖wh‖H−1/2(Γ(i)) ∀wh ∈ Ukh , k = 0, 1, i ∈ C (5.42)

which is e.g. proven in [85, Lemma 10.10] for k = 0, but the arguments used in the proof can be

repeated also for k = 1. We introduce the L2(Γ)-projection onto Ukh as intermediate function,

apply the triangle inequality and the inverse estimate (5.42), and get

‖ū − ūh‖L2(Γ) ≤ ‖ū − P ∂h ū‖L2(Γ) + ‖P ∂h ū − ūh‖L2(Γ)

≤ c
(
‖ū − P ∂h ū‖L2(Γ) + h−1/2

(
‖ū − P ∂h ū‖H−1/2(Γ) + ‖ū − ūh‖H−1/2(Γ)

))
.

(5.43)

Furthermore, we apply Lemma 5.2.6 (for piecewise constant controls) or Lemma 5.2.7 (for

piecewise linear controls that are continuous on each Γ(i)) which leads to

‖ū − P ∂h ū‖L2(Γ) + h−1/2‖ū − P ∂h ū‖H−1/2(Γ) ≤ chmin{1,λ−1/2−ε}|ū|W 1,2
~γ

(Γ). (5.44)
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Inserting now (5.44) together with (5.40) into (5.43) implies the estimate for the controls in

L2(Γ).

The error estimate for the state variable follows from the triangle inequality

‖ȳ − ȳh‖H1(Ω) = ‖Sū − Shūh‖H1(Ω) + ‖yf − yf ,h‖H1(Ω)

≤ c
(
‖(S − Sh)ū‖H1(Ω) + ‖Sh(ū − ūh)‖H1(Ω)

)
+ ‖yf − yf ,h‖H1(Ω)

≤ c
(
hmin{1,λ−ε}

(
‖ȳu‖W 2,2

~α
(Ω) + ‖yf ‖W 2,2

~α
(Ω)

)
+ hmin{3/2,λ−ε}| ln h|3/2η

)
,

(5.45)

where we inserted the finite element error estimate stated in Theorem 3.3.1 for the first and

third term, and the boundedness of Sh as operator from H−1/2(Γ) to H1(Ω) as well as the

estimate derived already for the control for the second term.

Remark 5.2.9. As already observed for optimal control problems in L2(Γ) discussed in Chapter 4,

we have also in this case an optimal convergence rate for the controls provided that λj ≥ 3/2

for all j ∈ C. This is the case when the interior angles of all corner points in the domain are less

than 120◦. If one angle is larger than 120◦ we have to apply local mesh refinement to restore

the optimal convergence rate.

Error estimates for the optimal control problem on refined meshes

In the following we will derive improved error estimates taking local mesh refinement into account.

The investigations are based again on Theorem 5.2.5. The terms on the right-hand side of

(5.26) depending on the finite element error of a single boundary value problem have already

been discussed in Section 3.4. Hence, we merely have to show a best-approximation property

of the discrete control space.

Throughout this section we prove the results only for the space U0
h . The proof of the following

lemma cannot be directly extended to discrete control space U1
h introduced on page 111 as

the related L2(Γ)-projection is not defined locally. Using the locally defined Clément interpolant

instead as we did in the proof of Lemma 5.2.7 would also lead to a suboptimal result because the

interpolation error does not provide the orthogonality property which is required to show optimal

estimates in negative norms. As a remedy, one could use the Carstensen interpolant which

provides the advantages both operators. Corresponding interpolation error estimates in negative

norms on quasi-uniform meshes have been proven in the Appendix of [7], and an extension to

refined meshes is possible. However, this is not considered in the present thesis and we merely

discuss the choice Uh = U0
h .

Lemma 5.2.10. Let u ∈ W 1,2
~γ (Γ) with the weight vector ~γ ∈ Rd defined in Theorem 5.2.2,

and denote by P ∂h : L2(Γ) → U0
h the L2(Γ)-projection onto the space U0

h . Assume that the

mesh criterion (3.57) holds with refinement parameters µj ≤ 1− 2γj/3 for all j ∈ C. Then, the

estimate

‖u − P ∂h u‖H−1/2(Γ) ≤ ch3/2|u|W 1,2
~γ

(Γ)

holds.
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Proof. To obtain a global estimate we exploit the definition of ‖ ·‖H−1/2(Γ) and the orthogonality

property of the L2(Γ)-projection P ∂h , which leads to

‖u − P ∂h u‖H−1/2(Γ) = sup
ϕ∈H1/2(Γ)

〈
u − P ∂h u, ϕ

〉
Γ

‖ϕ‖H1/2(Γ)

≤ c sup
ϕ∈H1/2(Γ)

〈
u − P ∂h u, ϕ− P ∂h ϕ

〉
Γ

‖ϕ‖H1/2(Γ)

≤ c sup
ϕ∈H1/2(Γ)

‖ϕ‖−1
H1/2(Γ)

∑
E∈Eh

‖u − P ∂h u‖L2(E)‖ϕ− P ∂h ϕ‖L2(E). (5.46)

It remains to insert local error estimates. We take the standard estimate

‖ϕ− P ∂h ϕ‖L2(E) ≤ ch1/2
E |ϕ|H1/2(E)

from [85, Theorem 10.1] and the local estimates in weighted spaces from Lemma 3.2.8 into

account. In case of rE > 0 we get

‖u − P ∂h u‖L2(E)‖ϕ− P ∂h ϕ‖L2(E) ≤ ch3/2
E r

−γj
E |u|W 1,2

γj
(E)|ϕ|H1/2(E), ∀E ⊂ Uj ∩ Γ,

and using the mesh property hE ∼ hr1−µj
E as well as the assumed condition µj ≤ 1− 2γj/3 we

obtain

h
3/2
E r

−γj
E ≤ ch3/2r

3/2(1−µj )−γj
E ≤ ch3/2.

In case of rE = 0 we use instead the estimate

‖u − P ∂h u‖L2(E)‖ϕ− P ∂h ϕ‖L2(E) ≤ ch
3/2−γj
E |u|W 1,2

γj
(E)|ϕ|H1/2(E), ∀E ⊂ Uj ∩ Γ,

whereas we can show

h
3/2−γj
E ≤ ch(3/2−γj )/µj ≤ ch3/2

exploiting hE ∼ h1/µj and the property µj ≤ 1 − 2γj/3 again. Inserting these local estimates

into (5.46) yields together with the discrete Hölder inequality

‖u − P ∂h u‖H−1/2(Γ) ≤ ch3/2 sup
ϕ∈H1/2(Γ)

‖ϕ‖−1
H1/2(Γ)

∑
E∈Eh

|u|W 1,2
~γ

(E)|ϕ|H1/2(E)

≤ ch3/2 sup
ϕ∈H1/2(Γ)

‖ϕ‖−1
H1/2(Γ)

∑
E∈Eh

|u|2
W 1,2
~γ

(E)

1/2

·

∑
E∈Eh

|ϕ|2
H1/2(E)

1/2

≤ ch3/2|u|W 1,2
~γ

(Γ).

As a consequence we obtain an error estimate for the solution of the discrete optimality system

(5.22).

Theorem 5.2.11. Let {Th}h>0 be a family of triangulations that are refined locally according to

(3.57) with refinement parameters satisfying

µj < 2λj/3 ∀j ∈ C.
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Assume that the input data satisfy f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with some σ ∈ (0, 1). Then,

the solution ū of (5.13) with Uad = H−1/2(Γ), and ūh ∈ U0
h of (5.23) satisfy the estimate

‖ū − ūh‖H−1/2(Γ) ≤ ch3/2| ln h|3/2η, (5.47)

where

η := |ū|W 1,2
γ (Γ) + ‖f ‖L2(Ω) + |ȳu|W 2,2

~γ
(Γ) + ‖ȳu‖W 2,2

~α
(Ω) + ‖ȳu‖W 2,∞

~β
(Ω)

+ |p̄|W 2,2
~γ

(Γ) + ‖p̄‖W 2,2
~α

(Ω) + ‖p̄‖W 2,∞
~β

(Ω),

with weights ~α, ~β, ~γ ∈ Rd as defined in Theorem 5.2.2 and ε > 0 chosen sufficiently small.

Proof. It suffices to estimate the terms on the right-hand side of (5.26) separately. We apply

Theorem 3.4.5 and exploit the regularity of ȳu and p̄ stated in Theorem 5.2.2 which leads to

‖(S∗ − S∗h)(ȳ − yd)‖H1/2(Γ) + α‖(N −Nh)ū‖H1/2(Γ) ≤ ch3/2| ln h|3/2η

One easily confirms that the assumption µj < 2λj/3 together with the definition of ~α, ~β,~γ imply

the assumptions of Theorem 3.4.5.

The error terms in L2(Ω) of (5.26) can be estimated using Theorem 3.4.1 and the refinement

condition µj < 2λj/3 which obviously implies µj < λj . Hence, we obtain

‖(S − Sh)ū‖L2(Ω) + ‖yf − yf ,h‖L2(Ω) ≤ ch2
(
‖ȳu‖W 2,2

~α
(Ω) + ‖yf ‖W 2,2

~α
(Ω)

)
.

For the last term in (5.26) we insert the result of Lemma 5.2.10 and arrive at the assertion.

Note that the refinement condition µj < 2λj/3, j ∈ C, guarantees only optimal convergence for

the control in the H−1/2(Γ)-norm, but not in L2(Γ). As we observed in numerical experiments

this would require a much stronger refinement condition. However, deriving such a condition

requires advanced techniques and will not be investigated in this thesis.

5.3 Error estimates for the constrained problem

Let us now investigate how the results of the foregoing sections change in case of additional

control constraints. We consider the model problem (5.1)–(5.3) when control constraints are

present. An optimality system has been presented in Theorem 5.1.4 which is equivalent to the

variational inequality

〈u − ū, Tαū + g〉Γ ≥ 0 ∀u ∈ Uad . (5.48)

Apparently, we can expect better regularity for the optimal control. For unconstrained problems

we had e. g. limx→x(j) u = ±∞ for concave corners x (j). This is certainly not possible when

control constraints are present. Instead, the control is in general active in a vicinity of reentrant

corners and is hence regular which allows us to improve error estimates.
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In what follows we abbreviate by Ĉ and Č the index sets of concave and convex corners, respec-

tively. As the error estimates we derive in this section depend on the singular exponent of the

largest convex angle we introduce the quantity

λ̌ := min
j∈Č

λj .

The active and inactive sets are denoted by

A+ := {x ∈ Γ: (Tαu + g)(x) < 0} ,
A− := {x ∈ Γ: (Tαu + g)(x) > 0} , I := Γ\(A+ ∪ A−).

(5.49)

Obviously, we cannot define active and inactive sets via the solution ū as it is not measurable,

but via the Lagrange multiplier which is in H1/2(Γ). First of all we need a structural assumption

upon the active set which is in most cases satisfied.

Assumption 4. Assume that the control bounds are strictly active in the vicinity of all reentrant

corners x (j), j ∈ Ĉ, i. e. there exist some constants R, τ > 0 such that

|(Tαū + g)(x)| > τ for a. a. x ∈ Γ ∩ BR(x (j)).

Moreover, the number of transition points x
(j)
T , j ∈ T := {1, . . . , dT }, between active and

inactive set is finite, and transition points can only occur in the interior of a boundary edge Γ(i),

i ∈ C.

For technical reasons we introduce balls around each corner or transition point, namely

Ωj
R := {x ∈ Ω: |x − x (j)| < R} j ∈ C, (5.50)

Ω̃k
R := {x ∈ Ω: |x − x (k)

T | < R} k ∈ T , (5.51)

Ωreg
R := Ω \

⋃
j∈C

Ωj
R ∪

⋃
k∈T

Ω̃k
R

 , (5.52)

and assume that R > 0 is chosen sufficiently small such that Ωj
2R contains only the corner x (j)

and Ω̃k
2R only the transition point x

(k)
T , but no other corners or transition points. The outer

boundaries are denoted by

ΓjR := ∂Ωj
R ∩ Γ, Γ̃kR := ∂Ω̃k

R ∩ Γ, ΓregR := ∂Ωreg
R ∩ Γ

for j ∈ C and k ∈ T .

Before deriving error estimates we will investigate in the following that the regularity is better in

comparison to the unconstrained case as the control cannot tend to infinity at reentrant corners

when control constraints are present. However, we also have to show that singularities occurring

in the vicinity of the transition points are comparatively weak such that the convergence rate

is not affected by these points. We show in the next Lemma that ū will be indeed active on

A± and that the leading singularity at the transition points vanishes. The proof of the following

Lemma is motivated by a similar observation for Dirichlet control problems in H1/2(Γ) [71].
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Lemma 5.3.1. Let Assumption 4 be satisfied and assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω)

with some σ ∈ (0, 1). Then, the solution of (5.14) satisfies

yf , ȳu, p̄ ∈ Hmin{2,1+λ−ε}(Ω),

ū ∈ L2(Γ),

for arbitrary ε > 0. Moreover, there holds ū = ua a. e. on A− and ū = ub a. e. on A+.

Proof. The stated regularity of yf follows directly from Theorem 2.2.2. Without loss of gener-

ality we assume that only upper control bounds are present, i. e. ua = −∞. We abbreviate the

Lagrange multiplier by

ξ := Tαū + g = αȳ |Γ + p̄|Γ ∈ H1/2(Γ).

Note that due to the definition (5.49) there holds ξ = 0 a. e. on I and ξ < 0 a. e. on A+. The

variational inequality (5.48) tested with u = ub yields 〈ub − ū, ξ〉Γ ≥ 0. In contrast to this the

control constraints and the fact that ξ ≤ 0 a. e. on Γ lead to 〈ū − ub, ξ〉Γ ≥ 0. This results in

the complementarity condition

ū ≤ ub in H−1/2(Γ), ξ ≤ 0, a. e. on Γ, 〈ū − ub, ξ〉Γ = 0. (5.53)

Taking into account that ξ = 0 on I and ξ ≤ 0 on A+ leads to a boundary value problem with

Signorini conditions on A+, namely
−∆ȳu + ȳu = 0 in Ω,

ȳu = −α−1p̄ on I,
ȳu ≤ −α−1p̄, ∂nȳu ≤ ub, (ȳu + α−1p̄)(∂nȳu − ub) = 0 on A+.

(5.54)

In the following we will use the decomposition

ȳu = ȳ0 − α−1p̄, (5.55)

with some function ȳ0 solving a problem with homogeneous Dirichlet conditions on I, namely
−∆ȳ0 + ȳ0 = α−1(ȳ − yd) in Ω,

ȳ0 = 0 on I,
ȳ0 ≤ 0, ∂nȳ0 ≤ ub, ȳ0(∂nȳ0 − ub) = 0 on A+.

(5.56)

With appropriate embeddings we one can show that ȳ − yd ∈ Lp(Ω) for arbitrary p ∈ [1,∞) as

ȳ ∈ H1(Ω) and yd ∈ C0,σ(Ω). The solution ȳ0 can hence be decomposed into a regular part

yR ∈ W 2,p(Ω) and some singular parts that restrict the regularity in the vicinity of corners x (j),

j ∈ C, and transition points x
(k)
T , k ∈ T . Away from these points we have higher regularity

ȳ0 ∈ W 2,p(Ωreg
R/2

) which is stated e. g. in [45, Theorem 2.1.4], see also Section 2.7 in this

reference.

In the vicinity of corners x (j), j ∈ C, the leading singularities have the form

rλj cos(λjϕ) and rλj sin(λjϕ), λj :=
π

ωj
,
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where (r, ϕ) are polar coordinates centered in x (j) such that ϕ = 0 and ϕ = ωj coincide with

the edges Γ(j) and Γ(j+1). The second singular functions belong to W 2,p(Ωj
R) when we choose

p ∈ [1, (1− λj)−1) if λj < 1, p ∈ [1,∞) if λj > 1.

If ΓjR belongs to the Dirichlet boundary I this can be deduced from [45, Theorem 2.4.3], and

otherwise, if Signorini boundary conditions are present, the singular solutions are stated in [68].

Taking into account the regularity of the singular functions which can be computed analytically,

and, that the choice p = 2 is possible for arbitrary corners we obtain ȳ0 ∈ Hmin{2,1+λj−ε}(Ωj
R)

for all j ∈ C and ε > 0.

Finally, we investigate the regularity in the vicinity of the transition points x
(k)
T , k ∈ T . Let

(r, ϕ) denote polar coordinates centered at x
(k)
T , and without loss of generality let ϕ = 0 belong

to I and ϕ = π to A+. From Theorem 2.4.3 in [45] it is known that the solution ȳ0 admits the

decomposition

ȳ0(r, ϕ) = yR(r, ϕ) + Brλ sin(λϕ)

with a certain coefficient B ∈ R. Due to Assumption 4 transition points can only occur in the

interior of a boundary edge, and hence, the exponent of the leading singularity is λ = 1/2. The

regularity of yR is restricted by the singularity corresponding to the exponent 3/2 and hence,

yR ∈ W 2,p(Ω̃k
R) for arbitrary p ∈ [1, 4). We demonstrate in the following that the singular part

must vanish as it fails to satisfy the Signorini boundary conditions. The normal derivative of ȳ0

on the boundary part I can be computed using the chain rule and we obtain the representation

∂nȳ0(r, 0) = ∂nyR(r, 0)− Bλrλ−1.

As the solution has to fulfill the control constraints ū = ∂nȳ0 ≤ ub there must hold B ≥ 0 as

rλ−1 (λ = 1/2) grows unboundedly towards infinity for r → 0. Moreover, we have for ϕ = π

the inequality

ȳ0(r, π) = yR(r, π) + Brλ
!
≤ 0.

With the choice p ∈ (2, 4) we get from the trace theorem [44, Theorem 1.5.1.2] (note that the

boundary part Γ̃kR is smooth) and the Sobolev embedding theorem

yR, p̄ ∈ W 2,p(Ω̃k
R) ↪→ W 2−1/p,p(Γ̃kR) ↪→ C1(Γ̃kR). (5.57)

Thus, we can perform a Taylor expansion of yR(r, π) +α−1p(r, π) in the point r = 0 with some

intermediate point s ∈ [0, r ]. Exploiting the fact that yR(0, π) = −α−1p(0, π) leads to

yR(r, π) + α−1p̄(r, π) + Brλ ≤ 0

⇐⇒ yR(0, π) + α−1p̄(0, π) + r∂r
(
yR + α−1p̄

)
(s, π) + Brλ ≤ 0

⇐⇒ ∂r
(
yR + α−1p̄

)
(s, π) + Brλ−1 ≤ 0.

The term ∂r
(
yR + α−1p̄

)
(s, π) is bounded as yR and p̄ are regular, see (5.57), and thus the

inequality can hold in case of B ≤ 0 only. We already stated the condition B ≥ 0 and conse-

quently, the boundary conditions of problem (5.56) can only be satisfied in case of B = 0. The

singular part corresponding to λ = 1/2 hence vanishes and thus

B̃r3/2 sin

(
3

2
ϕ

)
, B̃ ∈ R,
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is in general the leading singularity and belongs to H2(Ω̃k
R).

We have shown that p̄, ȳ0 ∈ Hmin{2,1+λ−ε}(Ω) and conclude that ȳu = ȳ0 − α−1p̄ also belongs

to this space. A trace theorem finally implies ū ∈ L2(Γ).

As ū is a measurable function we can express the complementarity condition (5.53) by means

of the inner product in L2(Γ) and find from

0 = (ū − ub, ξ)Γ = (ū − ub, ξ)A+

that ū = ub a. e. on A+ as ξ < 0 on A+.

We are now in the position to formulate more accurate regularity results in weighted Sobolev

spaces. As singularities can also occur in the vicinity of the transition points x
(k)
T , k ∈ T , we

additionally introduce the weighted Sobolev spaces W `,q
β (Ω̃k

R) with ` ∈ N0, q ∈ [1,∞] and

β ∈ R, defined as the set of functions with finite norm

‖v‖
W `,q
β (Ω̃k

R)
:=



∑
|α|≤`

∫
Ω̃k
R

ρk(x)qβ|Dαv(x)|q dx

1/q

, if q ∈ [1,∞),∑
|α|≤`

ess sup
x∈Ω̃k

R

ρk(x)β|Dαv(x)|, if q =∞,
(5.58)

where ρk(x) := |x − x (k)
T |. The trace space W

`−1/q,q
β (Γ̃kR) is defined in analogy to (2.22). In

order to simplify the notation we use the globally defined spaces W `,q
~α,κ(Ω) for ` ∈ N0, q ∈ [1,∞],

~α ∈ Rd , κ ∈ R, equipped with the norm

‖v‖
W `,q
~α,κ

(Ω)
:=

∑
j∈C
‖v‖q

W `,q
αj

(Ωj
R)

+
∑
k∈T
‖v‖q

W `,q
κ (Ω̃k

R)
+ ‖v‖q

W `,q(Ωreg
R/2

)

1/q

if q <∞, and otherwise

‖v‖W `,∞
~α,κ

(Ω) := max

{
max
j∈C
‖v‖

W `,∞
αj

(Ωj
R)
,max
k∈T
‖v‖W `,∞

κ (Ω̃k
R), ‖v‖W `,∞(Ωreg

R/2
)

}
.

In the usual way the trace spaces W
`−1/q,q
~α,κ (Γ) can be defined.

Lemma 5.3.2. Let Assumption 4 be satisfied. Assume that f ∈ L2(Ω) and yd ∈ C0,σ(Ω) with

some σ ∈ (0, 1). The weight vectors ~α, ~β,~γ ∈ Rd are defined as in Theorem 5.2.2. Moreover,

δ > 0 is an arbitrary number and ~̃γ ∈ Rd is defined by

γ̃j =

{
0, if j ∈ Ĉ,
γj , if j ∈ Č.

Then, the solutions (ȳu, ū, p̄) of (5.14) and yf of (5.6) satisfy

yf ∈ W 2,2
~α (Ω),

p̄ ∈ W 2,2
~α (Ω) ∩W 2,∞

~β
(Ω) ∩W 2,2

~γ (Γ),

ȳu ∈ W 2,2
~α (Ω) ∩W 2,∞

~β,1/2
(Ω) ∩W 2,2

~γ,δ (Γ),

ū ∈ W 1,2
~̃γ,δ

(Γ).
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Proof. The regularity of yf follows directly from Theorem 2.3.5. The stated regularity of p̄

follows from Theorems 2.3.5 and 2.3.6 as well as the embedding

W 2,∞
~β

(Ω) ↪→ W 2,∞
~β

(Γ) ↪→ W 2,2
~γ (Γ) (5.59)

stated in Lemma 2.3.3. Note that Theorem 2.3.6 requires Hölder continuity of the state variable

which follows from Lemma 5.3.1 and the embedding

ȳu, yf ∈ Hmin{2,1+λ−ε}(Ω) ↪→ C0,σ(Ω), σ ∈ (0,min{1, λ− ε}).

To transfer the shown regularity of p̄ to ȳu we use again the decomposition (5.55), and show

only regularity results for the auxiliary function ȳ0 solving the mixed problem
−∆y0 + y0 = α−1(ȳ − yd) in Ω,

y0 = 0 on I,
∂ny0 = ua on A−,
∂ny0 = ub on A+.

(5.60)

Note that this boundary value problem follows from (5.56) taking into account that ∂ny0 = ū

on A± and ū = ua on A− as well as ū = ub on A+ which is stated in Lemma 5.3.1.

Taking into account that ȳ − yd ∈ C0,σ(Ω) and ua, ub ∈ C1,σ(Γ) we get from [44, Theorem

6.4.2.5] that the solution of (5.60) can be decomposed in a vicinity of the corner x (j), j ∈ C,

into

ȳ0(r, ϕ) = yR(r, ϕ) +
∑
m∈N

λj,m<2+σ

cmr
λj,mΦ(λj,mϕ),

with a regular part yR ∈ C2,σ(Ω), certain constants cm ∈ R, and Φ(·) = sin(·) if x (j) belongs to

the Dirichlet boundary I, and Φ(·) = cos(·) if x (j) belongs to the Neumann boundary A±.

The regular part belongs trivially to W 2,∞(Ωj
R) and the regularity of ȳ0 is restricted only by the

first singularity corresponding to the singular exponent λj,1 := π/ωj . By a direct calculation and

the embeddings (5.59) one easily confirms that

ȳ0 ∈ W 2,2
αj

(Ωj
R) ∩W 2,∞

βj
(Ωj

R) ∩W 2,2
γj

(ΓjR) ∀j ∈ C. (5.61)

Let us investigate the regularity of the state ȳ0 in the vicinity of transition points x
(k)
T , k ∈ T .

By a slight abuse of notation (r, ϕ) are now polar coordinates centered in x
(k)
T such that ϕ = 0

corresponds with that part of the edge belonging to I and ϕ = π with the part belonging to

A+. From the already shown regularity of p̄ we conclude p̄ ∈ W 2,∞(Ω̃k
R) for all k ∈ T as the

domains Ω̃k
R exclude the corner points due to Assumption 4. In the vicinity of the transition

point x
(k)
T the solution of (5.60) possesses the decomposition

ȳ0(r, ϕ) = yR + c1r
3/2 sin(3ϕ/2) + c2r

5/2 sin(5ϕ/2), c1, c2 ∈ R, (5.62)

with a regular part yR ∈ C2,σ(Ω). Note that the singularities belonging to the exponents

7/2, 9/2, . . . are regular enough and belong also to yR. By a direct calculation we can show

again that

ȳ0 ∈ H2(Ω̃k
R) ∩W 2,∞

1/2
(Ω̃k

R) ∩W 2,2
δ (Γ̃kR) ∀k ∈ T . (5.63)
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The regularity results (5.61), (5.63) and the fact that the singularities are of local nature lead

to the desired result for ȳu taking also the regularity of p̄ and (5.55) into account. The stated

regularity of ū follows from embedding and trace theorems. In the vicinity of concave corners

we obtain even higher regularity. Due to Assumption 4 and Lemma 5.3.1 we have ū ≡ ua or

ū ≡ ub in the vicinity of concave corners, and hence ū ∈ H1(Ωj
R) for j ∈ Ĉ. Furthermore, by

means of (5.62) the control variable can be decomposed in the vicinity of the transition points

x
(k)
T , k ∈ T , into

ū = uR + uS, with uR := ∂n(yR + r5/2 sin(5ϕ/2)) ∈ H1(Γ), uS :=

{
c1r

1/2, on I,
0, on A+.

A simple calculation moreover yields uS ∈ W 1,2
δ (Γ̃kR) for arbitrary δ > 0 which leads to the

desired regularity result for ū.

Analogous to the unconstrained case we discretize the optimality condition (5.48) and search a

solution in the discrete spaces Vh and Uh. In this section we restrict our considerations to the

case that Uh = U0
h introduced on page 109. The choice of piecewise linear controls Uh = U1

h

considered on page 111 is in principal possible, but the proof of Lemma 5.3.4 cannot be extended

to this choice.

The discretized optimality system reads:

Find ūh ∈ Uh,ad := Uh ∩ Uad and ȳu,h, p̄h ∈ Vh such that

a(ȳu,h, vh)− 〈ūh, vh〉Γ = 0 ∀vh ∈ Vh,
a(p̄h, vh)− (ȳu,h, vh) = (yf ,h − yd , vh) ∀vh ∈ Vh, (5.64)

〈wh − ūh, αȳu,h + p̄h〉Γ ≥ 0 ∀wh ∈ Uh,ad ,

where yf ,h ∈ Vh can be computed from the equation

a(yf ,h, vh) = 〈f , vh〉Ω ∀vh ∈ Vh

in advance. This system can be rewritten in a rather compact form as

〈uh − ūh, Tαh ūh + g〉Γ ≥ for all uh ∈ Uh,ad . (5.65)

Analogous to the proof of Theorem 5.2.5 we introduce the auxiliary function ũh ∈ Uh,ad which

solves

〈uh − ũh, Tαũh + g〉Γ ≥ 0 for all uh ∈ Uh,ad . (5.66)

Note that we only approximate the ansatz and test space, but not the operator Tα. We begin

with an initial estimate for the discrete approximation of the control.

Lemma 5.3.3. Let Γ0 ⊇ {x ∈ Γ: ũh(x) 6= ūh(x)}. Then the estimate

‖ū − ūh‖H−1/2(Γ) ≤ c
(
‖(S − Sh)ū‖L2(Ω) + ‖(S∗ − S∗h)(y − yd)‖H1/2(Γ0)

+ α‖(N −Nh)ū‖H1/2(Γ0) + ‖yf − yf ,h‖L2(Ω) + ‖ū − ũh‖H−1/2(Γ)

)
(5.67)

holds.
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Proof. The arguments applied in the proof of Theorem 5.2.5 widely coincide with the control-

constrained case and we just outline the differences. We apply again the triangle inequality and

get

‖ū − ūh‖H−1/2(Γ) ≤ ‖ū − ũh‖H−1/2(Γ) + ‖ũh − ūh‖H−1/2(Γ), (5.68)

where ũh is the solution of (5.66). One easily confirms that (5.30) with wh := ũh − ūh also

holds in the control-constrained case when we replace all “=” by “≤”. This yields

‖wh‖2
H−1/2(Γ)

≤ 〈wh, (Tαh − Tα) (ũh − ū)〉Γ + 〈wh, (Tαh − Tα) ū − g + gh〉Γ . (5.69)

The estimate (5.31) remains the same and we have

〈wh, (Tαh − Tα)(ũh − ū)〉Γ ≤ c‖wh‖H−1/2(Γ)‖ū − ũh‖H−1/2(Γ). (5.70)

Moreover, (5.32) becomes

〈wh, (Tαh − Tα) ū + g − gh〉Γ
≤ c‖wh‖H−1/2(Γ)

(
‖S∗h(Sh − S)ū‖H1/2(Γ0) + ‖(S∗h − S∗)(y − yd)‖H1/2(Γ0)

+ ‖S∗h(yf − yf ,h)‖H1/2(Γ0) + α‖(Nh −N )ū‖H1/2(Γ0)

)
. (5.71)

Dividing by ‖wh‖H−1/2(Γ) and exploiting stability properties of S∗h yields the assertion.

Deriving error estimates for the term ‖ū − ũh‖H−1/2(Γ) requires more effort in the control-

constrained case than in the unconstrained case where we merely applied the Céa-Lemma (5.29)

and inserted the best-approximation properties from Lemma 5.2.6.

Lemma 5.3.4. Let Assumption 4 be satisfied and assume that ū ∈ W 1,2
~̃γ,ε′

(Γ) with ~̃γ ∈ Rd defined

in Lemma 5.3.2 and ε′ ∈ (0, 1). Then the error estimate

‖ū − ũh‖H−1/2(Γ) ≤ chmin{3/2,λ̌}−ε|ū|W 1,2
~̃γ,ε′(Γ),

holds for sufficiently small 0 < ε′ < ε.

Proof. The results of Lemma 5.1.2 allow us to apply the Céa-type lemma from [46, Lemma 7.16]

which reads

α

2
‖ū − ũh‖2

H−1/2(Γ)
≤ inf
v∈Uad

〈v − ũh, Tαū + g〉Γ

+ inf
vh∈Uh,ad

{
〈vh − ū, Tαū + g〉Γ + c‖ū − vh‖2

H−1/2(Γ)

}
.

In the present situation the first term on the right-hand side vanishes for the choice v := ũh,

which is possible since ũh ∈ Uad . The second term vanishes if we choose

vh ∈ Ũh,ad :=
{
ūh ∈ Uh,ad : ūh = ua on A−, ūh = ub on A+

}
,

since vh − ū ≡ 0 on A± and Tαū + g ≡ 0 on I. We consequently get

‖ū − ũh‖H−1/2(Γ) ≤ c inf
vh∈Ũh,ad

‖ū − vh‖H−1/2(Γ). (5.72)
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We insert the L2(Γ)-projection onto Uh as intermediate function and obtain

‖ū − vh‖H−1/2(Γ) ≤ ‖ū − P ∂h ū‖H−1/2(Γ) + ‖P ∂h ū − vh‖H−1/2(Γ). (5.73)

The first term also occurs for unconstrained problems and an estimate is given in Lemma 5.2.6.

However, we can exploit that the term ū − P ∂h ū vanishes in a neighborhood of concave corners

and obtain the improved estimate

‖ū − P ∂h ū‖H−1/2(Γ) ≤ chmin{3/2−ε′,λ̌−ε}|ū|W 1,2
~γ,ε′(Γ), (5.74)

when exploiting the regularity stated in Theorem 5.3.2 . To derive an estimate for the second

term in (5.73) we use the modified L2(Γ)-projection

vh|E =


[P ∂h ū]|E , if E ⊂ I,
ua, if E ∩ A− 6= ∅,
ub, if E ∩ A+ 6= ∅.

(5.75)

The idea of using such a modification has already been used in [86] for the nodal interpolant and

in [57] for the midpoint interpolant. Note that vh ∈ Ũh,ad by construction, and that P ∂h ū − vh
vanishes on all elements

E /∈ Kh := {E ∈ Eh : E ∩ A± 6= ∅ ∧ E ∩ I 6= ∅}.

Due to Assumption 4 the set Kh contains a finite number of elements, independent of h.

Exploiting the orthogonality property of the projection P ∂h we get

‖P ∂h ū − vh‖H−1/2(Γ) = sup
‖ϕ‖

H1/2(Γ)
=1

∑
E∈Kh

(P ∂h ū − vh, ϕ)E

= sup
‖ϕ‖

H1/2(Γ)
=1

∑
E∈Kh

(P ∂h (ū − vh), P ∂h ϕ)E

≤ sup
‖ϕ‖

H1/2(Γ)
=1

∑
E∈Kh

‖ū − vh‖L2(E)‖P ∂h ϕ‖L2(E). (5.76)

Note that each E ∈ Kh is contained in some Γ̃kR, k ∈ T , and hence, we can exploit the W 1,2
ε′ (Γ̃kR)-

regularity stated in Lemma 5.3.2. As vh coincides with ū at the endpoint of E which belongs to

A± we get with the Poincaré-Friedrichs inequality

‖ū − vh‖L2(E) ≤ ch1−ε′ |ū|W 1,2
ε′ (E), for E ∈ Kh,

for arbitrary ε ∈ (0, 1), where we exploited the regularity of ū stated in Lemma 5.3.2. For

the second term on the right-hand side of (5.76) we apply the Hölder inequality and stability

properties of the projection P ∂h and get for arbitrary q ∈ [2,∞)

‖P ∂h ϕ‖L2(E) ≤ ch1/2−1/q‖ϕ‖Lq(E).
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Hence, (5.76) becomes

‖P ∂h ū − vh‖H−1/2(Γ)

≤ c sup
‖ϕ‖

H1/2(Γ)
=1
h3/2−ε′−1/q

∑
E∈Kh

|ū|W 1,2
ε′ (E)‖ϕ‖Lq(E)

≤ c sup
‖ϕ‖

H1/2(Γ)
=1
h3/2−ε′−1/q

∑
E∈Kh

|ū|2
W 1,2
ε′ (E)

1/2∑
E∈Kh

1

1/2−1/q

‖ϕ‖Lq(Γ)

≤ ch3/2−ε∑
k∈T
|ū|W 1,2

ε′ (Γ̃kR),

where we exploited that the number of elements in Kh is independent of h, the embedding

‖ϕ‖Lq(Γ) ≤ c‖ϕ‖H1/2(Γ) = c,

and we chose q sufficiently large such that ε = 1/q+ε′. Inserting this together with (5.74) into

(5.73) completes the proof.

The control ū is in general active in the vicinity of concave corners. In the following lemma

we show that this property is transferred also to the discrete solution ūh, and hence we get

ū− ūh ≡ 0 near these corners. This is the key idea for the improved error estimates that we will

show in Theorem 5.3.6.

Lemma 5.3.5. Let Assumption 4 be satisfied. Then, some constants h0 > 0 and R > 0 exist

such that

ūh(x) = ub or ūh(x) = ua for all x ∈ ΓjR, j ∈ Ĉ,
provided that h ≤ h0.

Proof. Without loss of generality we show the assertion for the case that the upper bound is

strictly active, i.e. Tαū + g < −τ within ΓjR. The key step is to show pointwise convergence of

Tαh ūh + gh towards Tαū + g, i. e.

‖(Tαū + g)− (Tαh ūh + gh)‖L∞(Γ)
h→0−→ 0, (5.77)

which then implies Tαh ūh +gh < 0 within ΓjR when h ≤ h0. By element-wise consideration of the

discrete optimality condition (5.48) we conclude that ūh = ub and have shown the assertion.

From the definition (5.11) of Tα and g as well as their discrete analogues (5.24) we get

‖(Tαū + g)− (Tαh ūh + gh)‖L∞(Γ) = ‖α(ȳu − ȳu,h) + (p̄ − p̄h)‖L∞(Γ).

Let us first derive a pointwise estimate for the state variable. With the triangle inequality and a

trace theorem we get

‖ȳu − ȳu,h‖L∞(Γ) ≤ ‖ȳu − Shū‖L∞(Ω) + ‖Sh(ū − ūh)‖L∞(Ω). (5.78)

The first term tends to zero as h → 0 due to the pointwise convergence of the finite element

method, see e. g. [74, Lemma 3.41]. For the second term, we get with the stability of Sh from
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L2(Γ) to L∞(Ω), the triangle inequality, and the inverse inequality from [85, Lemma 10.10] the

estimate

‖Sh(ū − ūh)‖L∞(Ω) ≤ c‖ū − ūh‖L2(Γ)

≤ c‖ū − P ∂h ū‖L2(Γ) + h−1/2
(
‖ū − P ∂h ū‖H−1/2(Γ) + ‖ū − ūh‖H−1/2(Γ)

)
. (5.79)

With the estimates for the L2(Γ)-projection of Lemma 5.2.6 we immediately get

‖ū − P ∂h ū‖L2(Γ) + h−1/2‖ū − P ∂h ū‖H−1/2(Γ) → 0. (5.80)

Moreover from the estimate of Lemma 5.3.3 for Γ0 = Γ and the error estimates from Theorems

3.3.1, 3.3.3 and Lemma 5.3.4 which yield a rate higher than h1/2 on arbitrary domains, we get

h−1/2‖ū − ūh‖H−1/2(Γ) ≤ ch−1/2
(
‖(S − Sh)ū‖L2(Ω) + ‖(S∗ − S∗h)(ȳ − yd)‖H1/2(Γ)

+ α‖(N −Nh)ū‖H1/2(Γ) + ‖yf − yf ,h‖L2(Ω) + ‖ū − ũh‖H−1/2(Γ)

)
→ 0. (5.81)

Consequently, we get with (5.78), (5.79), (5.80) and (5.81) the pointwise convergence of the

state, i. e.

‖ȳu − ȳu,h‖L∞(Γ) → 0 as h → 0. (5.82)

It remains to show pointwise convergence of the discrete adjoint state. We use the represen-

tations p̄|Γ = S∗(ȳu + yf − yd) and p̄h|Γ = S∗h(ȳu,h + yf ,h − yd), introduce several intermediate

functions and get the equivalent formulation

p̄|Γ − p̄h|Γ = S∗(Sū + yf − yd)− S∗h(Shūh + yf ,h − yd)

= (S∗ − S∗h)(Sū + yf − yd) + S∗h(S − Sh)ū

+ S∗hSh(ū − ūh) + S∗h(yf − yf ,h). (5.83)

One easily confirms that

‖(S∗ − S∗h)(Sū + yf − yd)‖L∞(Γ) ≤ ‖(P ∗ − P ∗h )(Sū + yf − yd)‖L∞(Ω) → 0,

‖S∗h(S − Sh)ū‖L∞(Γ) ≤ ‖(S − Sh)ū‖L2(Ω) → 0,

‖S∗hSh(ū − ūh)‖L∞(Γ) ≤ ‖Sh(ū − ūh)‖L∞(Ω) → 0,

‖S∗h(yf − yf ,h)‖L∞(Γ) ≤ ‖yf − yf ,h‖L2(Ω) → 0,

as h → 0, where we exploited that the finite element method converges in the L∞(Ω)- and

L2(Ω)-norm to show the first, second and fourth relation. The third relation has been discussed

already in (5.79). Together with the reformulation (5.83) and the triangle inequality we arrive

at

‖p̄ − p̄h‖L∞(Γ) → 0 as h → 0.

Together with (5.82) the desired property (5.77) follows.

We are now in the position to improve the error estimates from Theorem 5.2.8 exploiting the

fact that ū − ūh ≡ 0 in the vicinity of concave corners.
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Theorem 5.3.6. Let ū ∈ Uad and ūh ∈ Uh,ad be the solutions of (5.48) and (5.65), respectively.

Let Assumption 4 be satisfied and assume that the input data satisfy f ∈ L2(Ω) and yd ∈
C0,σ(Ω) with some σ ∈ (0, 1). Then, the error estimates

‖ū − ūh‖H−1/2(Γ) + h1/2‖ū − ūh‖L2(Γ) ≤ chmin{3/2,λ̌,2λ−1/2}−ε| ln h|3/2η,

‖ȳ − ȳh‖H1(Ω) ≤ c max{h, hλ−ε| ln h|3/2}η

hold for sufficiently small 0 < ε′ < ε, where

η := |ū|W 1,2
~̃γ,ε′(Γ) + ‖f ‖L2(Ω) + ‖ȳu‖W 2,2

~α
(Ω) + ‖ȳu‖W 2,∞

~β,1/2
(Ω) + |ȳu|W 2,2

~γ
(Γ)

+ ‖p̄‖W 2,2
~α

(Ω) + ‖p̄‖W 2,∞
~β

(Ω) + |p̄|W 2,2
~γ

(Γ),

with the weight vectors ~α, ~β,~γ ∈ Rd from Theorem 5.2.2, and ~̃γ ∈ Rd from Lemma 5.3.2.

Proof. Consider again the domains introduced in (5.50). Due to Assumption 4 and Lemma 5.3.5

there exists some R > 0 such that ūh(x) = ū(x) ∈ {ua, ub} for all x ∈ ΓjR and j ∈ Ĉ. Since

ũh behaves like the best-approximation of ū (see (5.72)), we also get ũh(x) ∈ {ua, ub} for all

x ∈ ΓjR, j ∈ Ĉ. In the following we write

Ω0
R := Ω \

⋃
j∈Ĉ

Ωj
R

 , Γ0
R := ∂Ω0

R ∩ Γ.

By construction the term ũh − ūh vanishes on Γ \ Γ0
R and the assumptions of Lemma 5.3.3 are

satisfied. In order to show the estimate in the H−1/2(Γ)-norm we have to discuss the five terms

on the right-hand side of the estimate in Lemma 5.3.3.

First, we get from Theorem 3.3.1 that

‖(S − Sh)ū‖L2(Ω) + ‖yf − yf ,h‖L2(Ω) ≤ chmin{2,2λ−ε}
(
‖ȳu‖W 2,2

~α
(Ω) + ‖f ‖L2(Ω)

)
. (5.84)

For the second term on the right-hand side of (5.67) we write p̄|Γ := S∗(ȳ − yd) and ph|Γ :=

S∗h(ȳ − yd) and an inverse inequality yields

‖p̄ − ph‖H1/2(Γ0
R) ≤ ‖p̄ − I∂h p̄‖H1/2(Γ0

R) + h−1/2
(
‖p̄ − I∂h p̄‖L2(Γ0

R) + ‖p̄ − ph‖L2(Γ0
R)

)
. (5.85)

The terms depending on the interpolation error have been discussed in Lemma 3.2.4 and with

γj = max{0, 3/2− λj + ε} for j ∈ C we get

‖p̄ − Ihp̄‖H1/2(Γ0
R) + h−1/2‖p̄ − Ihp̄‖L2(Γ0

R) ≤ chmin{3/2,λ̌−ε}‖p̄‖W 2,2
~γ

(Γ). (5.86)

We also exploited that Γ0
R excludes neighborhoods of concave corners. For the finite-element

error on the boundary we exploit Corollary 3.65 in [74] which states that if p̄ ∈ W 2,∞
βj

(Ωj
2R) with

βj = max{1/2, 2− λj + ε}, the error estimate

‖p̄ − ph‖
L2(ΓjR)

≤ c
(
hmin{2,1/2+λj−ε}| ln h|3/2|p̄|

W 2,∞
βj

(Ωj
2R)

+ ‖p̄ − ph‖
L2(Ωj

2R)

)
(5.87)
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holds for all j ∈ Č. In [74, Equation (3.130)] an estimate on the regular part of the boundary

Ω̂0
R := Ω \

⋃
j∈C

Ωj
R

 , Γ̂0
R := ∂Ω̂0

R ∩ Γ,

is proved which reads in our situation

‖p̄ − ph‖L2(Γ̂0
R) ≤ c

(
h2| ln h||p̄|W 2,∞(Ω̂0

R/2
) + ‖p̄ − ph‖L2(Ω)

)
. (5.88)

Furthermore, we use the finite element error estimate in L2(Ω) from Theorem 3.3.1 to get

‖p̄ − ph‖L2(Ω) ≤ chmin{2,2λ−ε} (‖ȳ‖L2(Ω) + ‖yd‖L2(Ω)

)
. (5.89)

Combining the estimates (5.87), (5.88) and inserting (5.89) leads to

‖p̄ − ph‖L2(Γ0) ≤

∑
j∈Č
‖p̄ − ph‖2

L2(ΓjR)
+ ‖p̄ − ph‖2

L2(Γ̂0
R)

1/2

≤ chmin{2,1/2+λ̌−ε,2λ−ε}| ln h|3/2

(
‖p̄‖W 2,2

~α
(Ω) + ‖p̄‖W 2,∞

~β
(Ω)

)
. (5.90)

Inserting now (5.86) and (5.90) into (5.85) leads to the estimate

‖p̄ − ph‖H1/2(Γ0) ≤ chmin{3/2,λ̌−ε,2λ−1/2−ε}| ln h|3/2

(
‖p̄‖W 2,2

~α
(Ω) + ‖p̄‖W 2,∞

~β
(Ω) + |p̄|W 2,2

~γ
(Γ)

)
.

(5.91)

It remains to derive an estimate for the third term on the right-hand side of (5.67). Additional

singularities occur now in a neighborhood of the transition points. The optimal state possesses

the regularity ȳu ∈ W 2,∞(Ωreg
R ), and according to Lemma 5.3.2 in the vicinity of corner and

transition points only

ȳu ∈ W 2,∞
1/2

(Ω̃k
2R), k ∈ T , ȳu ∈ W 2,∞

βj
(Ωj

2R), j ∈ C,

with βj = max{1/2, 2 − λj + ε}. Thus, the estimates (5.87) and (5.88) can be applied again

and we obtain for ȳu |Γ = N ū and yhu |Γ = Nhū the estimate

‖ȳu − yhu ‖2
L2(Γ0) =

∑
j∈Č
‖ȳu − yhu ‖2

L2(ΓjR)
+
∑
k∈T
‖ȳu − yhu ‖2

L2(Γ̃kR)
+ ‖ȳu − yhu ‖2

L2(ΓregR )

≤ c
(
h2 min{2,1/2+λ̌−ε}| ln h|3

∑
j∈Č
|ȳu|2W 2,∞

βj
(Ωj

2R)
+ h4| ln h|3

∑
k∈T
|ȳu|2W 2,∞

1/2
(Ω̃k

2R)

+ h4| ln h|2|ȳu|2W 2,∞(Ωreg
R/2

) + ‖ȳu − yhu ‖2
L2(Ω)

)
≤ ch2 min{2,1/2+λ̌−ε,2λ−ε}| ln h|3/2

(
‖ȳu‖2

W 2,2
~α

(Ω)
+ ‖ȳu‖2

W 2,∞
~β,1/2

(Ω)

)
. (5.92)

In analogy to (5.86) we also get

‖ȳu − Ihȳu‖H1/2(Γ0) + h−1/2‖ȳu − Ihȳu‖L2(Γ0) ≤ chmin{3/2,λ̌−ε}‖ȳu‖W 2,2
~γ

(Γ)
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and with an argument like (5.85) this implies

‖ȳu − yhu ‖H1/2(Γ0)

≤ chmin{3/2,λ̌−ε,2λ−1/2−ε}| ln h|3/2

(
‖ȳu‖W 2,2

~α
(Ω) + ‖ȳu‖W 2,∞

~β,1/2
(Ω) + ‖ȳu‖W 2,2

~γ
(Γ)

)
. (5.93)

The estimates (5.84), (5.91) and (5.93) together with Lemma 5.3.4 and Lemma 5.3.3 yield the

desired estimate in the H−1/2(Γ)-norm. The estimate for the control in L2(Γ) and for the state

in H1(Ω) follow with the same arguments like in the proof of Theorem 5.2.8.

5.4 Numerical experiments

In this section we want to confirm the theoretically predicted results with numerical experiments.

Therefore, we constructed a benchmark problem on the family of domains

Ωω := (−1, 1)2\ {(r cosϕ, r sinϕ) : r ≥ 0, ϕ ∈ [0, 2π − ω]} for ω ∈
[π

2
, 2π

)
.

By construction ω is always the largest interior angle of Ωω if ω ≥ π/2. We want to compute

the solution of the optimal control problem

J(y , u) :=
1

2
‖y − yd‖2

L2(Ω) +
α

2
〈u,Nu〉Γ → min! (5.94)

subject to {
−∆y + y = f in Ω,

∂ny = u on Γ,
(5.95)

u ∈ Uad := {v ∈ H−1/2(Γ) : ua ≤ v ≤ ub}, (5.96)

using the discretization discussed in Section 5.2 for unconstrained problems (i. e. ua = −∞ and

ub =∞), and Section 5.3 for problems involving control constraints.

Let us briefly discuss how the discrete problem (5.24) can be solved efficiently. We may represent

the unknown functions by means of a linear combination of basis functions. Therefore, introduce

the bases

Vh = span {ϕi}NΩ
i=1 , Uh = span

{
ψj
}NΓ

j=1
,

which allow us to define the isomorphisms

~u ↔ uh, ~yu ↔ yu,h, ~p ↔ ph.

Let now A denote the standard finite element stiffness matrix related to the operator −∆ + I,

M the mass matrix and M̃ := (mi j) ∈ RNΩ×NΓ a transformation matrix, having entries

mi j :=

∫
Γ

ϕi(x)ψj(x) dsx , i ∈ {1, . . . , NΩ}, j ∈ {1, . . . , NΓ}.

As a consequence the optimality system (5.22) reads in matrix-vector notation 0 A M̃

A −M 0

M̃> αM̃> 0

 ~p

~yu
−~u

 =

0
~f

0

 . (5.97)
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The vector ~f corresponds to the right-hand side of the adjoint equation and its components

are defined by fi =
∫

Ω(yf ,h − yd)ϕi . Note, that the system (5.97) can be transformed into

a symmetric one by adding α times the first row to the second one. Instead of solving the

discretized optimality system (5.97) directly, we computed the solution of the Schur complement

system. The resulting linear equation reads(
M̃>A−1MA−1M̃ + αM̃>A−1M̃

)
~u = M̃>A−1M̃~f . (5.98)

As it is very inefficient to compute the system matrix explicitly, we solve (5.98) with an iterative

solver – in our experiments we used the GMRES method. In each iteration we have to solve

two linear equation systems governed by the system matrix A. Since the system matrix will not

change during the computation, one can compute a Cholesky factorization of A in advance. The

solution of the linear system Ax = b is then obtained by forward-backward substitution which

is comparatively cheap. To compute the Cholesky factorization we used the solvers UMFPACK

or MUMPS. The latter one runs even parallel using MPI (Message Passing Interface) which

shortens the runtime on a high-performance machine significantly.

In order to compute the error norms we computed a reference solution on a much finer grid

having mesh parameter h = 2−10 for the convex domains Ωπ/2 and Ω3π/4, and h = 2−9 for

the non-convex domains Ω5π/4, Ω3π/2 and Ω7π/4. To improve the accuracy of the reference

solution on the non-convex domains we refined the mesh also locally in the vicinity of the

reentrant corner according to the refinement condition (3.57). In the present experiments the

parameters µ = 0.5 and R = 0.2 were used. As refinement strategy the newest vertex bisection

algorithm from [17] was applied. This strategy generates hierarchical meshes which allow us

to prolongate the solution from a coarse grid to a finer one. We denote by y refh the reference

solution and by yh some arbitrary finite element function prolongated to the reference mesh.

The corresponding vectors containing the nodal values are denoted by ~yref and ~y , respectively.

Then, the H1(Ω)-norm of the difference between both functions can be computed by means of

‖yh − y refh ‖H1(Ω) =

√
(~y − ~y ref )>A(~y − ~y ref ),

where A denotes the finite element system matrix on the fine mesh. If the matrix A is replaced

by the mass matrix Mbd ∈ RNΓ×NΓ having entries mi j =
∫

Γ ψiψj we get a representation of the

L2(Γ)-norm for discrete functions on the boundary in Uh.

Example 5.4.1. In the first experiment we compute the problem (5.94)–(5.96) without control

constraints, i. e. Uad = H−1/2(Γ). We choose the input data

f ≡ 1, α = 0.1, yd(x1, x2) = x1 + x2.

As described in Section 5.2 we discretize state and adjoint state with piecewise linear finite

elements. For the control we used either piecewise constant functions on the dual mesh (see

Figure 5.1b) or piecewise linear functions which are continuous on each boundary edge (see

Figure 5.1c). The optimal state and control are illustrated in Figure 5.2. For comparison the

solution of the model problem using L2(Γ)-regularization instead was also computed.

Theoretically, we would expect that the error estimates

‖ȳ − ȳh‖H1(Ω) ≤ c max{h, hλ−ε| ln h|3/2},
‖ū − ūh‖L2(Ω) ≤ chmin{1,λ−1/2−ε}| ln h|3/2,



5.4. NUMERICAL EXPERIMENTS 131

(a) H−1/2(Γ)-regularization (b) L2(Γ)-regularization

Figure 5.2: Optimal state (solid surface) and optimal control (boundary line) of the model

problem (5.94)–(5.96) for energy and L2(Γ)-regularization.

hold, as we have proven in Theorem 5.2.8. The singular exponent is defined by λ = π/ω where

ω is the largest interior angle of the corner points of Ω. We summarized the measured error

norms and the corresponding experimental convergence rates in Table 5.1 for piecewise constant

controls on the dual mesh and in Table 5.2 for piecewise linear controls. The computed rates

are always slightly better then the theoretically predicted rates which is a consequence of the

strategy we used to compute the error norms. However, on very fine grids we observe that

theory and numerics almost coincide which confirms the quasi-optimality of the results proven

in Theorem 5.2.8.

Example 5.4.2. In a second example additional control constraints are taken into account. We

bound the control by means of

u ∈ Uad := {v ∈ H−1/2(Γ) : − 2.0 ≤ v}.

For the remaining input data we choose

yd(x1, x2) := x2
1 + x2

2 , α = 10−2, f ≡ 1.

A lower control bound is sufficient to achieve that the control is active in the vicinity of the

reentrant corner, compare also the behavior of the optimal control of the unconstrained problem

in Figure 5.2. In Figure 5.3 the optimal state and control of the constrained problem are plotted

and we observe that the control is active and hence constant near the reentrant corner. From

our theory we would expect that the error estimates

‖ū − ūh‖L2(Γ) ≤ chmin{1,λ̌−1/2−ε,2λ−1−ε}| ln h|3/2η,

‖ȳ − ȳh‖H1(Ω) ≤ c max{h, hλ−ε| ln h|3/2}η,

hold. For our family of domains Ωω with ω ∈ {5π/4, 3π/2, 7π/4} the convergence rate for the

control is dominated by 2λ − 1 since the largest convex angle is always π/2 and hence λ̌ = 2.
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h # DOF #DOF BD ‖ȳ − ȳh‖H1(Ω) (EOC) ‖ū − ūh‖L2(Γ) (EOC)

Ωπ/2 – largest angle 90◦ Expected: 1.00 1.00

2−4 545 60 2.42e-02 (1.03) 7.53e-02 (0.85)

2−5 2113 124 1.16e-02 (1.06) 3.70e-02 (1.03)

2−6 8321 252 5.65e-03 (1.04) 1.69e-02 (1.13)

2−7 33025 508 2.77e-03 (1.03) 7.42e-03 (1.19)

2−8 131585 1020 1.34e-03 (1.04) 3.26e-03 (1.19)

2−9 525313 2044 6.00e-04 (1.16) 1.56e-03 (1.06)

Ω3π/4 – largest angle 135◦ Expected 1.00 0.80

2−4 817 92 2.53e-02 (1.01) 7.97e-02 (0.80)

2−5 3169 188 1.24e-02 (1.03) 4.32e-02 (0.88)

2−6 12481 380 6.12e-03 (1.02) 2.32e-02 (0.90)

2−7 49537 764 3.03e-03 (1.02) 1.26e-02 (0.88)

2−8 197377 1532 1.47e-03 (1.04) 7.15e-03 (0.82)

2−9 787969 3068 6.60e-04 (1.16) 4.48e-03 (0.67)

Ω5π/4 – largest angle 225◦ Expected 0.80 0.30

2−4 1345 123 5.14e-02 (0.93) 1.08e-01 (0.78)

2−5 5249 251 2.74e-02 (0.91) 7.14e-02 (0.60)

2−6 20737 507 1.48e-02 (0.89) 5.29e-02 (0.43)

2−7 82433 1019 8.05e-03 (0.88) 4.15e-02 (0.35)

2−8 328705 2043 4.41e-03 (0.87) 3.31e-02 (0.33)

2−9 1312769 4091 2.39e-03 (0.88) 2.65e-02 (0.32)

Ω3π/2 – largest angle 270◦ Expected 0.67 0.17

2−4 1601 122 9.44e-02 (0.78) 2.45e-01 (0.44)

2−5 6273 250 5.64e-02 (0.74) 2.00e-01 (0.29)

2−6 24833 506 3.43e-02 (0.72) 1.72e-01 (0.22)

2−7 98817 1018 2.11e-02 (0.70) 1.50e-01 (0.20)

2−8 394241 2042 1.30e-02 (0.70) 1.31e-01 (0.21)

2−9 1574910 4090 8.15e-03 (0.88) 1.11e-01 (0.22)

Ω7π/4 – largest angle 315◦ Expected 0.57 0.08

2−4 1873 154 1.26e-01 (0.66) 5.82e-01 (0.17)

2−5 7329 314 8.21e-02 (0.62) 5.33e-01 (0.13)

2−6 28993 634 5.41e-02 (0.60) 4.92e-01 (0.12)

2−7 115329 1274 3.60e-02 (0.59) 4.54e-01 (0.12)

2−8 460033 2554 2.40e-02 (0.59) 4.16e-01 (0.12)

2−9 1837569 5114 1.61e-02 (0.59) 3.80e-01 (0.13)

Table 5.1: Numerical results for the unconstrained problem, piecewise constant controls.
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h # DOF #DOF BD ‖ȳ − ȳh‖H1(Ω) (EOC) ‖ū − ūh‖L2(Γ) (EOC)

Ωπ/2 – largest angle 90◦ Expected: 1.00 1.00

2−4 545 60 2.37e-02 (1.02) 8.31e-02 (0.85)

2−5 2113 124 1.15e-02 (1.04) 4.07e-02 (1.03)

2−6 8321 252 5.61e-03 (1.03) 1.85e-02 (1.14)

2−7 33025 508 2.76e-03 (1.02) 8.06e-03 (1.20)

2−8 131585 1020 1.34e-03 (1.04) 3.41e-03 (1.24)

2−9 525313 2044 5.99e-04 (1.16) 1.45e-03 (1.23)

Ω3π/4 – largest angle 135◦ Expected 1.00 0.80

2−4 817 92 2.49e-02 (1.01) 9.27e-02 (0.81)

2−5 3169 188 1.23e-02 (1.02) 5.00e-02 (0.89)

2−6 12481 380 6.09e-03 (1.01) 2.65e-02 (0.91)

2−7 49537 764 3.02e-03 (1.01) 1.42e-02 (0.90)

2−8 197377 1532 1.47e-03 (1.04) 7.73e-03 (0.88)

2−9 787969 3068 6.59e-04 (1.16) 4.34e-03 (0.83)

Ω5π/4 – largest angle 225◦ Expected 0.80 0.30

2−4 1345 123 5.11e-02 (0.92) 1.18e-01 (0.79)

2−5 5249 251 2.73e-02 (0.91) 7.71e-02 (0.62)

2−6 20737 507 1.48e-02 (0.89) 5.66e-02 (0.45)

2−7 82433 1019 8.04e-03 (0.88) 4.42e-02 (0.36)

2−8 328705 2043 4.40e-03 (0.87) 3.52e-02 (0.33)

2−9 1312769 4091 2.38e-03 (0.88) 2.82e-02 (0.32)

Ω3π/2 – largest angle 270◦ Expected 0.67 0.17

2−4 1601 122 9.39e-02 (0.77) 2.54e-01 (0.46)

2−5 6273 250 5.62e-02 (0.74) 2.05e-01 (0.30)

2−6 24833 506 3.42e-02 (0.71) 1.76e-01 (0.23)

2−7 98817 1018 2.10e-02 (0.70) 1.53e-01 (0.20)

2−8 394241 2042 1.30e-02 (0.69) 1.32e-01 (0.20)

2−9 1574910 4090 8.13e-03 (0.69) 1.14e-01 (0.21)

Ω7π/4 – largest angle 315◦ Expected 0.57 0.08

2−4 1873 154 1.26e-01 (0.65) 5.99e-01 (0.18)

2−5 7329 314 8.19e-02 (0.62) 5.48e-01 (0.13)

2−6 28993 634 5.40e-02 (0.60) 5.06e-01 (0.12)

2−7 115329 1274 3.59e-02 (0.59) 4.67e-01 (0.12)

2−8 460033 2554 2.40e-02 (0.58) 4.29e-01 (0.12)

2−9 1837569 5114 1.60e-02 (0.58) 3.92e-01 (0.13)

Table 5.2: Numerical results for the unconstrained problem, piecewise linear controls.
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Figure 5.3: Optimal state (solid surface) and optimal control (boundary line) of the problem

from Example 5.4.1 with control constraints.

The numerically determined convergence rates are summarized in Table 5.3, and we observe

that the proven error estimates are not sharp. Both, the convergence rate for the discrete state

and the discrete control are approximately one, but the proven result from Theorem 5.3.6 is too

pessimistic.
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h # DOF #DOF BD ‖ȳ − ȳh‖H1(Ω) (EOC) ‖ū − ūh‖L2(Γ) (EOC)

Ω5π/4 – largest angle 225◦ Expected 0.80 0.60

2−3 353 59 1.83e-01 (0.87) 4.34e-01 (0.37)

2−4 1345 123 9.67e-02 (0.92) 2.99e-01 (0.54)

2−5 5249 251 4.80e-02 (1.01) 1.66e-01 (0.85)

2−6 20737 507 2.35e-02 (1.03) 8.30e-02 (1.00)

2−7 82433 1019 1.15e-02 (1.03) 3.88e-02 (1.10)

2−8 328705 2043 5.58e-03 (1.05) 1.79e-02 (1.12)

2−9 1312769 4091 2.49e-03 (1.17) 8.52e-02 (1.07)

Ω3π/2 – largest angle 270◦ Expected 0.67 0.33

2−3 417 58 2.12e-01 (0.83) 4.73e-01 (0.33)

2−4 1601 122 1.13e-01 (0.91) 3.31e-01 (0.51)

2−5 6273 250 5.64e-02 (1.00) 1.91e-01 (0.79)

2−6 24833 506 2.77e-02 (1.03) 9.77e-02 (0.97)

2−7 98817 1018 1.36e-02 (1.03) 4.55e-02 (1.10)

2−8 394241 2042 6.57e-03 (1.05) 2.08e-02 (1.13)

2−9 1574913 4090 2.93e-03 (1.16) 1.03e-02 (1.02)

Ω7π/4 – largest angle 315◦ Expected 0.57 0.14

2−3 489 74 2.38e-01 (0.83) 5.38e-01 (0.35)

2−4 1873 154 1.25e-01 (0.92) 3.61e-01 (0.57)

2−5 7329 314 6.29e-02 (1.00) 2.02e-01 (0.84)

2−6 28993 634 3.11e-02 (1.02) 1.01e-01 (1.01)

2−7 115329 1274 1.54e-02 (1.02) 4.69e-02 (1.10)

2−8 460033 2554 7.48e-03 (1.04) 2.17e-02 (1.11)

2−9 1837569 5114 3.35e-03 (1.16) 1.08e-02 (1.01)

Table 5.3: Numerical results for the control-constrained problem from Example 5.4.2.
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Figure 5.4: Theoretically predicted convergence rates from Theorems 5.2.8 and 5.3.6 compared

to the numerically computed rates obtained in Examples 5.4.1 and 5.4.2 in dependence of the

largest angle ω of the domain Ω.
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CHAPTER 6

Outlook

The main results of this thesis are error estimates for the numerical approximation of both the

Neumann boundary value problem for the Yukawa equation, and Neumann boundary control

problems on domains having corners and edges. We have shown that the singularities that occur

reduce the convergence rate for the control approximation of the optimal control problems when

the corresponding singular exponents are smaller than 3/2. This is for instance the case when

the interior angle at an edge is larger than 120◦. Moreover, we have observed that, as a remedy,

local mesh refinement can be applied and we derived bounds for the refinement parameter such

that optimal convergence is guaranteed.

The results obtained for three-dimensional problems are proven for the case that each edge

and corner is refined according to the same refinement parameter, i. e. we refined at each

singular point as strong as it is actually necessary for the singularity with the strongest influence.

Some edges and corners would be over-refined although it is not required. The reason why we

discussed only the very simple refinement criterion (3.56) is that the proof of the finite element

error on the boundary presented in Section 3.4 cannot be extended to more complex refinement

strategies without substantial modifications. An isotropic refinement strategy which allows to

use a different refinement parameter for each edge and corner is presented in [61] where error

estimates in H1(Ω) and L2(Ω) are proven. The local estimates derived Section 3.2 remain valid

for this strategy, but the proof of the error estimate in L2(Γ) requires major modifications. A

rather advanced strategy exploiting higher regularity of the derivative in the direction parallel

to singular edges is anisotropic mesh refinement. A construction of such meshes is presented

in [6] where error estimates in H1(Ω) are presented. Estimates in L2(Ω) using this strategy

are discussed in [5]. An extension of the results presented in this thesis seems to be more

complicated as some techniques we used to prove Theorem 3.4.14 are not valid when the family

of meshes is not locally quasi-uniform. In particular the local maximum norm estimate (3.106)

is an open problem for anisotropic meshes, but recently developed techniques which are used to

prove maximum norm estimates for parabolic partial differential equations from [59] could solve

this issue.
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In Chapter 5 we investigated the energy regularization approach for Neumann control problems

and restricted our considerations to two-dimensional polygonal domains. Possible extensions

of the results obtained in the present thesis are optimal error estimates for control-constrained

problems. In the numerical experiments we have observed a higher convergence rate than pre-

dicted in Theorem 5.3.6. When tracing through its proof we easily confirm that suboptimal

estimates were used in the steps (5.90) and (5.92). More precisely, instead of a local estimate

for the finite element error in L2(Ωreg
R ) we used a global estimate in L2(Ω) which is bounded by

h2λ−ε. To the best of our knowledge it is not possible to derive an improved error estimate in

L2(Ω0) on some subset Ω0 ⊂ Ω, see also the inverse estimate in [39, Theorem 2.3].

Another open problem is the numerical analysis of the energy regularization approach for Neu-

mann boundary control problems on three-dimensional polyhedral domains. Possible choices for

the discrete control space which satisfy Assumption 3 are presented in [20, 22, 53]. The general

approach we used to prove estimates on polygonal domains can be applied also for polyhedral

domains when carefully outlining the influence of edge and corner singularities as we have done

for Neumann control problems in L2(Γ). Moreover, it remains to derive error estimates for the

best-approximation of the discrete control space using the framework in weighted Sobolev spaces

developed in the present thesis.

In this thesis we considered only the case that the Laplace operator is the principal part of

the state equation. However, the techniques developed in this thesis are also applicable to

other types of partial differential equations where the structure of the singularities is known in

advance. Investigations on the asymptotic behavior of solutions already exist for problems of

linear elasticity where the Lamé operator is the leading differential operator, see e. g. [77, 79].

The singular solutions in a vicinity of edges and corners are moreover known for the Stokes

problem [34] and the Maxwell equations [30]. For all these problems finite element error estimates

on the boundary have not been proved so far, but this is required in order to derive sharp error

estimates for the approximate solution of Neumann control problems involving these models.

Another interesting observation is that the refinement conditions we derived can be satisfied

for arbitrary singularities as λ > 1/2 for the Yukawa equation with pure Neumann conditions.

However, in the presence of jumping coefficients or mixed boundary conditions there might also

occur singularities with smaller exponents λ > 1/4. In the worst case the criterion µ < 1/4+λ/2

would then yield µ = 3/8 which is a contradiction to the general assumption µ > 1/3 we used

for the refinement of three-dimensional domains. Then, an optimal convergence with respect

to the number of degrees of freedom cannot be achieved. Investigating this behavior in detail

could also be subject of further research.
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Hölder, 8

Lebesgue, 8

Sobolev, 9

trace, 10

weighted Hölder, 23
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