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Abstract

This thesis deals with the design and optimization of robust low-order/fixed-structure
controllers. Thereby, two classes are considered, namely integer and fractional order
controllers. Three approaches are proposed to tune the parameters of these controllers.
Moreover, the obtained controllers are validated in simulation as well as in real environ-
ment.

In what concerns fractional order controllers, a method is proposed to optimize the pa-
rameters of PIαDβ and (PID)n controllers. Thereby, robustness specifications have to
be achieved. These are expressed in terms of a desired phase margin, desired crossover
frequency and robust performance in case of static gain variations. For this purpose, the
H∞ norm is used to formulate the control problem. The resulting optimization prob-
lem is solved iteratively using our proposed method. Moreover, a Matlab Toolbox has
been developed dedicated to the controller optimization, namely Fractional Order FOPID
Controller (FOPID)-Toolbox.

The second method is dedicated to the optimization of robust PID controllers. Based on
Model Predictive Control (MPC), the optimization problem is formulated. The resulting
problem is transformed into a matrix inequality problem. Specifically, it is a Bilinear
Matrix Inequality (BMI) problem. Using a proposed method, this problem is transformed
into a Linear Matrix Inequality (LMI), which is solved in the controller parameters using
well known LMI solvers. Simulation examples are presented to show the effectiveness of
this approach.

The third method is concerned with the optimization of linear controllers based on Re-
current Neural Networks (RNN). Using a novel procedure, the control problem can be
formulated as a closed-loop RNN. The plant as well as the controller are structured as a
recurrent network. The weights of the network which represent the plant are set fixed. The
controller network weights are free parameters, which will be updated during the training
stage. Thereby, the goal is to provide the robustness requirements given in terms of the
closed-loop step response. Simulation results are also presented to show the effectiveness
of this approach.

To test the approaches proposed in this work, a test Parallel Hybrid Electrical Vehicle
(PHEV) is considered. Based on measured data, a MIMO model is first identified. Then,
this model is used to compute the robust controller parameters. After testing the two
model-based methods in simulation, the neural network linear controller provides the best
performance. This controller is implemented on the real plant using rapid prototyping
methods. Experimental results show the achieved performance with this controller.
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Kurzfassung

Der Entwurf und die Optimierung robuster Regelung ist eine wichtige Aufgabestellung im
Bereich der Regelungstechnik. Dabei ist das Ziel die Reglerparameter so zu optimieren,
dass der geschlossene Regelkreis bei einer Änderung der Streckenparameter robust ist. In
dieser Arbeit werden drei verschiedene Verfahren zur Regleroptimierung vorgestellt und
untersucht.

Die erste Methode behandelt die Optimierung der fraktionalen PIαDβ und (PID)n Re-
glern. Das Ziel ist die Optimierung der Reglerparameter, sodass die gewünschte Robus-
theit erreicht werden kann. Die vorgegebene Dämpfung des geschlossenen Regelkreises
bleibt bei einer Änderung der Streckenverstärkung konstant. Das Verfahren beruht auf
dem kürzlich entwickelten H∞-Verfahren zur Optimierung von Reglern mit vorgegebener
Struktur. Dieses Verfahren ist inzwischen in der Matlab Toolbox "Robust Control" en-
thalten.

Das zweite Verfahren betrachtet die Optimierung von klassischen PID-Reglern mit Hilfe
von linearen Matrizenungleichungen und modellbasierter prädiktiver Regelung. Auch bei
dieser Methode muss die Robustheit bei einer Variation der Streckenverstärkung erzielt
werden. Zuerst wird das Optimierungsproblem durch das Konzept der Prädiktion for-
muliert. Das resultierende Problem ist nichtkonvex und stellt eine Herausforderung dar.
Durch eine geschickte Transformation der resultierenden nichtlinearen Ungleichungen wird
das Optimierungsproblem in ein konvexes Problem Linear Matrix Inequality (LMI) über-
führt. Anschliessend wird das LMI-Problem mit Hilfe der Yalmip-Toolbox aufgestellt und
mittels der SeDuMi-Toolbox gelöst.

Als drittes Verfahren wird die Optimierung neuronaler Netze betrachtet. Zwei neu-
ronale Netze werden zusammengeführt um die Dynamik des geschlossenen Regelkreises
darzustellen. Ein neuronales Netz beschreibt den gesuchten Regler mit einer vordefinierten
Reglerstruktur. Die Strecke, dessen Verstärkung mit einer Unsichertheit behaftet ist, wird
durch ein zweites Netz abgebildet. Die Gewichtungen dieses Netz sind konstant und stellen
die Streckenparameter dar. Mit Hilfe eines Optimierungsverfahren, das Bestandteil der
Neural Network Matlab Toolbox ist, werden die Reglerparameter so optimiert, dass bei
einer Variation der Streckenverstärkung die Sprungantwort des geschlossenen Regelkreises
keinen Überschwinger aufweist.

Um die Regelgüte der verschiedenen Methoden beurteilen zu können, werden sowohl
Simulation- als auch Versuchsergebnisse präsentiert. Dabei wird das Model des Antrieb-
sstrangs eines Parallelhybridfahrzeugs betrachtet. Basierend auf einer linearen Identifika-
tionsmethode wird die Dynamik der Strecke approximiert. In Simulation zeigen neuronale
Netze die besten Ergebnisse. Die geforderte Robustheit ist erfüllt. Aus diesem Grund wird
der neuronale Netz-Regler mit Hilfe des Prototyping- und Schnittstellenmoduls ES910 der
Firma ETAS am Testfahrzeug implementiert und getestet. Die experimentellen Ergeb-
nisse zeigen, dass die Robustheit auch in der Praxis erhalten bleibt.
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1 Introduction

1.1 State of the Art (PHEV)

Nowadays, many automotive manufacturers are working on the possibility of replacing
the Internal Combustion Engine (ICE) by alternative engines. The strict regulation in
spite of emission reduction and the increasing price of oil has been motivating engineers to
replace this kind of energy. Electrical Machines (EM) offer an alternative to conventional
combustion engines, which produce zero emission. Due to the low kilometer range of
the battery, the complete replacement of the ICE by the EM is not always possible.
Hybrid Electrical Vehicles (HEV) constitute a midterm solution to this problem. The key
idea is to partially replace the ICE instead of a fully replacement. This can be realized
by combining the combustion engine with an electrical machine. The vehicle is driven
electrically and the ICE starts, when necessary.

EMEM TransmissionTransmission

Clutch

ICE

Figure 1.1: Simplified representation of the drivetrain configuration of a PHEV

Figure 1.1 shows a representation of a Parallel Hybrid Electrical Vehicle (PHEV). In this
configuration, the EM and the ICE are both placed on the same shaft. A separation
clutch in between decouples the ICE from the EM. Using this clutch, it is possible to
drive the vehicle pure electrically. In this latter case, the separation clutch is open. The
driver desired torque is provided by the EM. Moreover, in case that this torque is higher
than the maximal torque of the EM, the clutch has to be closed and the ICE has to be
started. In this case, the EM is working as a generator to charge the battery.

Another drive scenario can be achieved by the configuration shown in Figure 1.1 namely,
the boosting. In this case, the separation clutch is closed. The total available torque is the
sum of the EM torque and the ICE torque. Generally, depending on the drive scenario,
it is required to decouple the EM from the ICE by opening the clutch or to couple both
sources of torque by closing the separation clutch.

Due to its direct impact on the driver comfort, this work considers the engagement of
the separation clutch. This has to be achieved without any deterioration of the driver
comfort. Moreover, the angular velocity of the ICE has to be synchronized with the
angular velocity of the EM. This has to occur without causing any oscillation in the
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drivetrain or a noticeable jerk. In the literature, this problem have been extensively
discussed. Mostly, the proposed approaches have been validated only through simulation.
Below, the well known contributions in this field are briefly summarized.

For example, a PHEV called P12 is discussed in (Beck et al. 2005) and (Beck et al. 2007).
This configuration consists of one conventional combustion engine and two electrical ma-
chines. The first EM is placed between the clutch and the ICE. It is used as a starter for
the ICE. The second EM is used to drive the vehicle electrically. The authors propose a
method based on MPC to synchronize the angular velocity of the ICE with the angular
velocity of the EM. The controller is designed to achieve a fast engagement of the clutch
without abuse in the driver comfort. Actually, the authors consider the case that the ICE
already rotates at idle speed. The task of the MPC controller is to bring the velocity
of the ICE from the idle speed up to the actual speed of the EM. Simulation results
are presented to conclude the work. In (Beck et al. 2005), robustness in the presence of
uncertainty in the mass of the vehicle is considered.

The application of an hybrid optimal strategy to control a dry clutch for an Automated
Manual Transmission (AMT) is considered in (Van Der Heijden et al. 2007). Based on a
non-linear friction model of the clutch, the authors design an explicit MPC controller and
a Piecewise Linear Quadratic (PWLQ) controller. Moreover, due to the difficulties related
to the implementation of MPC controllers, the authors use the explicit MPC. It consists
of solving the MPC optimization problem parametrically, which results in a large set of
explicit piecewise affine control laws. Simulation results show that, although the controller
provides a fast engagement of the clutch, the robustness is not achieved. Moreover, the
authors mention that variations in the model and disturbances lead to infeasibility of the
controller. To compare the performance of the explicit MPC, the author design a PWQC.
The related simulation results are more promising.

In (Gasper et al. 2009) and (Gasper et al. 2011), flatness based control is used for the
launch clutch of a PHEV with an AMT. In (Dolcini et al. 2005), an observer-based
controller method is presented to control the clutch engagement in an AMT. Moreover,
the controller is based on solving an optimal problem. Uncertainty in the clutch model
regarding the friction parameter is taking into consideration. Using a Linear Time Varying
(LTV) observer, this parameter is estimated. Simulation results are presented to conclude
this work.

In (Jarczyk et al. 2009), (Alt et al. 2010) and (Alt et al. 2012) a strategy is presented
to synchronize the angular velocity of the ICE with the angular velocity of the EM in a
PHEV. The structure of the strategy is based on a decoupling network and two optimized
controllers. The controller design is based on a linearization of the nonlinear model of
the plant. Feedforward strategies are explored to ameliorate the overall performance.
Nonlinear simulation results are shown to demonstrate the performance and robustness
of the controller. The application of flatness based control is also considered.

In (Amari et al. 2009) and (Amari et al. 2008), the design of a hybrid MPC controller
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for the clutch engagement in an automated manual transmission is presented. Moreover,
experimental results and a comparison with a PI based control are given. The authors
show that the MPC based approach provides a better performance. By means of the
performance with respect to the start-up of the vehicle, the response of the MPC controller
is faster then using a PI controller.

Besides the publications cited above, there exists some patents dedicated to the synchro-
nization problem in PHEV using the separation clutch and to the clutch engagement
in automated manual transmission. Many automobile manufacturers have been work-
ing on solving the synchronization problem from different point of view. In (Schnitzer
et al. 2013), a method to synchronize the angular velocity of the ICE with the angular
velocity of the EM is proposed. First, the separation clutch is partially closed to pull
up the ICE up to a predefined start velocity (about 300 rpm). Then, the clutch is re-
opened again. At this velocity, the ignition can be occurred and the ICE can be started.
This means that the ICE can now provide itself a torque. Taking the actual velocity of
the EM as a target velocity for the ICE, a velocity controller can be used to reach this
velocity fast and without overshoot. When both velocities are approximately equal, the
separation clutch can be closed. In (Motosugi et al. 2007), a PHEV with two clutches is
considered. The first clutch is placed between the ICE and the EM. The second clutch is
placed between the EM the automatic transmission aimed to replace the standard torque
converter. The goal is to use the second clutch to control the transmission of the driving
torque from both energy sources to the wheels. This task is achieved based on a speed
controller of the input and output clutch angular velocities. Internal, a target speed based
on the driver operations and drive conditions is generated. In (Shimabukuro et al. 2003),
the control of start-stop operations in hybrid vehicles is considered. In this case, saving
fuel consumption is achieved when the vehicle is temporary stopped and the engine is not
running. Thus, the electric machine plays the role of a starter. In (Deguchi et al. 2000),
another electric hybrid vehicle structure is discussed. It consists of two electrical ma-
chines, one is directly connected to the ICE and the other EM is placed on the main shaft
separated from the ICE using the clutch. The engagement and disengagement of the
separation clutch allows a pure electrical as well as a hybrid drive. The main advantage
of this configuration is that the first EM can be used to pull the ICE speed up to the EM
speed without any deterioration of the driver comfort as this is achieved with an opened
clutch. When both velocities are equal, the clutch can be closed.

The main difficulty in using the separation clutch in hybrid electrical vehicle is that its
characteristic depends on the operating conditions in terms of temperature and ageing
effects. The dynamic of the clutch is not constant and should be taken in consideration.
In (Eisenwerth et al. 2013), the adaptation of the characteristic of the clutch torque
is considered. Due to the use of a feedforward strategy to synchronize the ICE and EM
velocities using the separation clutch, an exact knowledge of the transmitted clutch torque
is mandatory. In the patent cited above, the authors propose a continuously adaptation
using a so-called phantom start.
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Another realization of the synchronization task is to use the separation clutch to pull
the angular velocity of the ICE up to the actual angular velocity of the EM. This can
be realized by adjusting the position of the clutch such that the ICE velocity approaches
the EM velocity. When both angular velocities are equal, the clutch is completely closed.
Under the assumption that the dynamic of the clutch is well known, the synchronization
of both angular velocities can be performed using a feedforward strategy.

Using the separation clutch to pull up the ICE during the synchronization phase is based
on the knowledge of the torque position characteristic curve. Due to the absence of a
sensor to measure the transmitted torque, this curve has to be permanently adapted.
This fact requires a high application effort. One of the main contribution of this work
is the design of an overall robust control strategy to solve the synchronization task in
PHEVs as well as the experimental validation on a test vehicle. Low and structured
controllers (PID, Lead-Lag, etc.) are used for this task. The main benefit of such
controllers is that the implementation does not require a high computing power. In
(Apkarian and Noll 2006) and (Gahinet and Apkarian 2011), a method is proposed to
optimize this class of controllers. It is based on nonsmooth optimization techniques to
solve the H∞ problem under structural constraints. In (Khatibi et al. 2008), an approach
is presented to design low order controllers. The authors used a finite set of complex
values to represent the system dynamic and then solved the related optimization problem
using convex optimization. Genetic algorithms are used in (Farag and Werner 2006) and
(Popov et al. 2005) to optimize low order controllers.

In the scope of designing a controller for the synchronization task in a PHEV, two novel ap-
proaches to optimize structured controllers are developed in this work. The first method is
based on MPC. The control optimization problem is first formulated and then transformed
into a convex optimization problem. The controller parameters are decision variables and
can be efficiently optimized. Afterwards, the optimization problem is solved offline us-
ing the LMI solver SEDUMI (Sturm 1999) in combination with the modeling Toolbox
YALMIP (Lofberg 2004).

The second method uses Neural Network (NN) strucutres to represent the closed-loop
system. After defining the objective function, the closed-loop network is trained to opti-
mize the controller weights. NNs have been mainly presented in the literature to identify
the dynamic of linear and nonlinear plants. Several types of NNs have been proposed,
see (Abbas and Werner 2008) and (Gil et al. 2006a). There exists two kinds of neural
networks, feedback or recurrent and feedforward networks. Recurrent Neural Networks
(RNN) have been successfully used in (Lachhab et al. 2008) to identify nonlinear plants
operating in closed-loop. It is based on building a structured RNN, which represents the
closed-loop system. The controller parameters are fixed known weights and the required
model parameters are the unknown weights of the RNN. This idea is used in this work
to solve the structured controller problem. Unlike in (Lachhab et al. 2008), the plant
model was already identified separately and therefore known. The controller parameters
are the unknown weights which have to be optimized. The overall RNN consists of two
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networks. A network with known weights, which represents the plant. Another network
with unknown weights, which represents the controller. The controller parameters are
adapted during the training of the RNN. The adaption or the optimization of the RNN
weights can be performed using well known algorithms as Steepest-Descent, Newton or
Levenberg-Marquadt algorithms.

1.2 Contributions of the Work

The main objective of this work is to explore new methods and approaches to design robust
low- and structured order controllers. Thereby, integer and fractional order controllers are
considered. Moreover, an application to automotive control problems is presented. Due
to its today importance and the role it plays, electric vehicles constitute an attractive
plant to be studied. Thanks to the corporation with the automotive engineering company
IAV, it was possible to implement and test the controller on a hybrid vehicle. During
the work, four main approaches were developed. The main contributions of this work are
summarized as follows

• Fractional controllers (PID)n and PIαDβ. It deals with the design and op-
timization of robust fractional order controllers based on a frequency domain ap-
proach. Specifically, we propose a systematic method based on the recently devel-
oped nonsmooth techniques (Apkarian and Noll 2006) to optimize the parameters
of the fractional controllers (PID)n and PIαDβ.

In the fractional control community, a very prominent work in the field of robust
control design for uncertain systems with static gain variations is given by the frac-
tional CRONE Toolbox developed by the CRONE Group with the first generation
presented in (Oustaloup et al. 1993). However, the considered controller turns out
to be an approximation of the desired open-loop response divided by the nominal
transfer function of the plant. Its structure is given through a transfer function in
polynomial form with a given order n. The control problem consists in identifying
the coefficients of this function. Contrary to the CRONE Group, the fractional
controller in this work has a fixed structure which consists of (PID)n and PIαDβ.
We are optimizing the classical PID parameters KP , KI and KD and the fractional
orders α, β and n. Robustness requirements are taken into consideration by spec-
ifying a desired open-loop frequency response. This is achieved through a desired
phase margin, desired crossover frequency and a flat phase around the crossover
frequency.

To make the design and tuning of fractional controllers easy, we implemented
the whole algorithm and provided it as a Matlab Fractional Order PID Toolbox
(FOPID). The user specifies to our FOPID-Toolbox the considered uncertain plant,
the desired phase margin and crossover frequency. Afterwards, the optimization
is started and the optimal parameters are computed iteratively. One of the main
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benefits of using our FOPID-Toolbox is that time-delay systems are also considered,
which is achieved through the approximation of a time-delay fractional open-loop
function. Simulations results are presented, which show the effectiveness of our
approach. Moreover, the comparison to other methods show that the controller
computed using our Toolbox outperform all other controllers.

• Optimization of PID controllers based on MPC and LMIs. Here, we con-
sidered the design and optimization of PID controllers using two modern methods,
namely Model Predictive Control (MPC) and Linear Matrix Inequalities (LMIs).

The design of PID controllers has been extensively considered in the literature. For
example, in case that the order of the plant is low and the requirements, which have
to be satisfied are not too severe, heuristic methods can be used. A very prominent
method is the Ziegler and Nichols tuning method. In case that a desired open-loop
or closed-loop response is provided, heuristic methods fail. This is also the case for
constraints on the input, output or states. Modern algorithms are required to solve
such problems.

In the scope of this work, we developed a method to optimize robust PID con-
trollers under specified signal constraints. Our proposed approach is based on MPC
to formulate the related control problem including robustness requirements. Stan-
dard approaches, which deal with MPC problems consists of solving iteratively the
optimization problem at each sampling time. This is a hard constraint imposed on
the hardware as the convergence has to be achieved within the specified sampling
time. For this reason, MPC has been reserved to system with slow dynamics.

Generally, it exists two main approaches to solve MPC. The first approach consists of
solving a simplified version of the optimization problem in real-time, see (Wang and
Boyd 2008). The second approach is based on the implementation of look-up tables
after solving the MPC problem offline, (Bemporad et al. 2002). In this work, the
second method is considered but without the need to use look-up tables. This has
been achieved by approximating the optimal MPC trajectory using a fixed structure
controller, namely PID. The resulting optimization turns out to be nonlinear,
which can not be solved efficiently without further manipulation. For this reason, we
developed a technique to formulate this optimization as a convex problem. Thereby,
linear matrix inequalities are used. Due to the availability of modern solvers, which
can be embedded in Matlab LMIs can be solved efficiently. Combining MPC with
LMIs, we come out with a method to optimize robust PID controllers under input,
output or states constraints. Moreover, our proposed approach is applied on SISO
as well as on MIMO systems.

• Optimization of low order linear controllers based on NN. Here, a novel
approach is presented to optimize linear robust controllers using recurrent neural
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networks. We have shown that these networks are not only a powerful mathematical
tool to solve nonlinear problems but can also be used to formulate practical control
problems.

The main idea of this work is to represent closed-loop control problems as a two
neural networks structure. The first network is dedicated to the plant, which can be
linear as well as nonlinear. The second network represents the controller and can be
structured accordingly. In the literature, this idea was first considered in (Lachhab
et al. 2008). It was successfully applied to identify an unstable plant operating
in closed-loop with a known controller. In this work, we extend this approach to
controller design problems. It means that we are also training a neural network
structure, but this time the plant is known and the controller has to be optimized in
closed-loop satisfying a desired closed-loop response. Moreover, robustness in terms
of static gain variations is considered.

The recurrent network developed in this work have been successfully used to opti-
mize robust controllers for SISO as well as for MIMO systems. In both cases, the
neural network controller achieves the desired performance. Moreover, stability of
the closed-loop system is easy to check as this controller has a linear state-space
representation. In this case, linear stability conditions can be applied.

• Modeling and control of the synchronization task. Here, the application
of MPC and neural network based approaches to design a Single-Input Multiple-
Output robust controller for the synchronization task in a PHEV is considered.

In the automotive industry, it is common to use feedforward strategies to achieve
a desired performance. The main disadvantage of this approach is that changes
in the dynamics of the system are not taken into consideration. This requires a
real-time identification of the varying parameters at each operating point. This is
also associated with a high effort as mostly the considered dynamic is nonlinear.
Here, we show that model based controllers can be successfully applied to solve the
synchronization problem in a PHEV. Moreover, robustness is taking into considera-
tion during the controller design. The benefit of using robust controllers is that the
desired performance is guaranteed within the specified parameter range. Contrary
to feedforward techniques, a real-time identification of the uncertain parameters is
not required.

As it is presented in (Alt et al. 2012) and (Alt et al. 2010), the physical modeling of
this plant results in nonlinear differential equations. Moreover, due to the dynamic
of the separation clutch parameter uncertainty has to be taken into consideration.
This is due to the fact that temperature affects the transmitted torque by the
clutch. In this work, we have proposed a method to handle this issue. It is based on
identifying a MIMO system with static gain variations. The structure used to model
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the dynamic of the synchronization task consists of two inputs, the desired clutch
and EM torques, and two outputs the ICE and EM angular velocities. Thereby, the
clutch is modelled as an uncertain LTI system. Based on this model, a robust PD as
well as a state-space neural network controller are optimized. Simulation results are
presented to compare the performance of these two controllers. Moreover, the neural
network controller is implemented on the hybrid electric test vehicle. Experimental
results are presented at the end of this thesis.
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1.3 Thesis Overview

The present thesis is organized in the following sections:

• Section 2 is dedicated to the design and optimization of fractional order PID con-
trollers. First, the robust control problem is defined. Based on the robustness
specifications, a desired open-loop frequency response is formulated. An approach
is proposed to optimize the parameters of the fractional controllers. At the end of
this section, examples are given to shown the effectiveness of the proposed approach
in terms of satisfaction of the design requirements.

• In Section 3, the problem of optimizing PID controllers with input, output or
states constraints is treated. Based on MPC, the open-loop as well as the closed-
loop problem are formulated. The resulting optimization problem turns out to be a
bilinear matrix inequality, which is very hard to solve. Using our proposed approach,
the BMI problem can be transformed into a set of linear matrix inequalities. Thus,
this problem can be solved efficiently using LMI solvers. At the end of this section,
an example is given to show the effectiveness of our approach.

• Section 4 discusses neural network controllers. A novel network structure is pre-
sented. It is based on representing the closed-loop system with two recurrent neural
networks. One network is used to represent the plant. Another network is used to
express the controller structure. The result is a closed-loop network, which is trained
in the controller parameters. An example is given to show the effectiveness of the
proposed approach. Thereby, a robust controller is considered to ensure robustness
for uncertain plants.

• In Section 5, the platform used to test the controllers is presented. The modeling
of this plant, which is a parallel hybrid electrical vehicle is discussed. Based on
measured real data, a multiple-input multiple-output model is identified and vali-
dated. Based on this MIMO model, the controller methods presented in Section 3
and 4 are applied. At the end this section a comparison between the two methods is
given. Moreover, the implementation of the neural network controller is presented.
Thereby, the task consists of synchronizing the angular velocity of the ICE with the
angular velocity of the EM.

• Section 6 presents the conclusion of this work. Moreover, an outlook to future works
is provided.

The mathematical definitions which are essential for understanding this work are briefly
presented and discussed in Appendix B.
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2 FOPID-H∞-controllers

In this chapter, the development of an overall strategy to optimize the parameters of the
fractional controllers (PID)n and PIαDβ is considered. Moreover, the whole approach is
put into a Fractional Order PID (FOPID) Matlab-Toolbox. The aim is to make the design
and the computation of the fractional controller parameters easy. Our approach is based
on the work (Apkarian and Noll 2006) to solve nonsmooth nonconvex problems. Actually,
this approach as well as the algorithm presented in this section does not necessary guaranty
that the global minimum is reached. For this reason, the gaol of the FOPID-Toolbox is to
give the user the possibility to manually tune the parameters, if necessary. In all presented
examples in this chapter, it was not necessary to further tune the controller parameters
by hand after a minimization step.

2.1 State of the Art (FOPID)

There is no doubt that the PID controller is the most frequently controller type used
in control-loops. As it is mentioned in (Åström and Hägglund 2001), more than 90% of
all the control-loops are PIDs. The design and optimization of this controller is a well
studied and still an active field of research. Generally, there exists two methods to tune
the parameters of PID controllers. The first method is based on heuristic approaches
(Ziegler and Nichols method). The second method is based on modern optimization
approaches such as nonsmooth algorithms, see (Apkarian and Noll 2006), or linear matrix
inequalities, see (Khatibi et al. 2008).

Recently, a novel approach based on intelligent PID controllers has been presented, see
(Fliess et al. 2008). It is a model-free control strategy. This means that a model of the
plant to be controlled is not necessary. The main idea is to approximate the dynamic
of the system locally as a function of the input signal and the nth-order derivative of
the output signal. Moreover, the authors present several examples to show the benefit
of model-free PID controllers. The difficulties related to the computation of the nth-
derivative of the output signal is discussed in (Fliess et al. 2011). The authors present a
method to compute the derivative based on linear parameter identification.

A generalization of the PID controller structure is given by the fractional PIαDβ con-
troller. It was first introduced in (Podlubny 1999). The main advantage of using PIαDβ

controllers is the additional degree of freedom given by the fractional orders α and β.

Due to this fact, the fractional PIαDβ controller, when well optimized, outperforms the
classical PID controller. The fractional orders makes it possible to impose more con-
straints on the control-loop without completely leaving the PID controller framework.
Instead of the three parameters, KP KI and KD for the classical PID controller, the
designer has now two additional parameters, namely α and β.
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The tuning of fractional PIαDβ controllers is discussed in (Monje et al. 2004). An opti-
mization method is presented to tune the parameters of this controller. The authors define
a set of six requirements to be achieved by the fractional controller. This set consists of a
zero steady-state error, phase margin Φm and gain margin Gm specifications, robustness
to static gain variations, robustness to high frequency noise and good output disturbance
rejection. Five of these six requirements can be achieved using the five parameters of the
PIαDβ controller. First, the set of requirements is transformed into a set of nonlinear
equations and then solved numerically using the Matlab optimization function fmincon.
Simulation results are presented to conclude the work. The design of a fractional PDβ

for a class of second order systems is considered in (Li et al. 2010). Another fractional
order controller structure is presented in (Luo and Chen 2009), namely the fractional
controller [PD]β. A comparison between this controller, the fractional controller PDβ

and the classical PD controller using simulation and experimental results is given. The
application of evolutionary search algorithms to tune PIαDβ controllers is discussed in
(Padhee et al. 2011).

Another class of fractional controllers is proposed by (Tenoutit et al. 2011) and (Tenoutit
et al. 2011a), namely (PI)n and (PID)n. The synthesis of these controllers ensuring
robustness to system gain variations is introduced and solved. Time domain constraints
are taken into account using the equality of moments between the closed-loop system and
a reference fractional model. The Lyapunov condition is used to guaranty stability of the
system. Numerical examples are presented to show the performance of these fractional
controllers.

In order to automate the design of fractional robust controllers, a French group called
CRONE develops a computer software dedicated to this task. CRONE is a French
acronym, which means fractional order robust control. The design and optimization
of the controller are performed using the Matlab CRONE Toolbox. There exists three
generations of this Toolbox. The first generation is presented in (Oustaloup et al. 1993).
It is based on the fact that the phase margin variation ∆Φm consists of the phase margin
variation of the plant ∆ΦP and controller ∆ΦC . The idea is to reduce the phase mar-
gin variation ∆Φm through the design of a fractional controller with a constant phase
around the crossover frequency ωc. The second CRONE control generation is introduced
in (Oustaloup et al. 1993). It is based on designing fractional controllers which provide
a constant phase margin Φm around the crossover frequency ωc of the open-loop system.
These requirements are transformed into a desired open-loop transfer function in terms
of a fractional integrator. The control problem is formulated as an optimization problem
which is solved using the simplex algorithm. The third CRONE control generation is
presented in (Lanusse et al. 1993). It generalizes the first and second generations by using
complex fractional orders. A rview about existing fractional order PID-Toolboxes is given
in (Shah and Agashe 2016).

Despite the publications cited above, the number of contributions related to the field
of fractional controllers and especially fractional PID controllers is still very modest in
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comparison with classical PID controllers. Therefore, there is a need to explore and
develop new tuning and optimization methods. The goal of this work is to develop a
systematic tool to design fractional controllers in the form PIαDβ and (PID)n. The ap-
proach is based on the recently developed nonsmooth optimization techniques (Apkarian
and Noll 2006) to solve the low order H∞ problem. The requirements to be satisfied by
the controller are expressed in terms of a desired open-loop response. The optimization
problem consists of finding a fractional controller PIαDβ or (PID)n which best fits this
desired response.

2.2 Robust Performance Specifications

In this section, the robustness requirements to be achieved by the controller are presented.
These requirements are given in terms of a desired phase margin ϕdm, a desired crossover
frequency ωdc and a flat phase around ωdc . A method is proposed to transform these
specifications into a desired open-loop response. First, an integrator is used to represent all
these requirements. As it will be shown, the integrator fails to satisfy all the requirements,
simultaneously. For this reason, fractional integrators provide a better way to incorporate
all these specifications. Moreover, a method is given to compute the parameters of the
fractional integrator. The resulting transfer function represents the desired open-loop
response. The time response of the related closed-loop transfer function is explored. The
impact of the desired phase margin on the overshoot of the step response is studied.
Additionally, the relation between the overshoot and the phase margin is parametrized.

Before presenting the main results of this section, the class of plants considered is defined.
This is given by the following uncertain linear single-input single-output (SISO) system

G(s) = V · 1

sn + an−1sn−1 + · · ·+ a0︸ ︷︷ ︸
G0(s)

=
Y (s)

U(s)
. (2.1)

The parameter V represents the uncertainty of the system G(s). G0(s) is the nominal
transfer function. Moreover, the range of variations of the parameter V is given by the
upper and lower values Vmin and Vmax, respectively.

2.2.1 Robust Performance Definition

After defining the class of uncertain plants, the requirements to be satisfied by the con-
troller have to be defined. Following the approach in (Monje et al. 2008) and (Chen
et al. 2003), phase margin ϕm and crossover frequency ωc are used to specify the open-
loop performance. Moreover, robustness is taken into consideration by requiring that the
variation of the phase margin ∆ϕm around the crossover frequency ωc to be constant. It
means that the phase plot of the open-loop transfer function around ωc is flat.
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Now consider the closed-loop structure shown in Figure 2.1. G is a SISO system with the
control input U and the measured output Y . The reference is denoted by R. K(s) is a
given LTI controller.

− 
K (s) G (s)

E (s)
R (s)

U (s) Y (s)

Figure 2.1: Classical feedback control structure

The open-loop transfer function from the error E to the output Y is defined as follows

L(s) = K(s)G(s) =
Y (s)

E(s)
. (2.2)

Using the definition of the phase margin ϕm, the crossover frequency ωc and the robustness
objective given by a flat phase around ωc, the following specifications

|L(jωc)|dB = 0 dB, (2.3)

arg(L(jωc)) = −π + ϕm (2.4)

and

d(arg(L(jω))

dω
|ω=ωc = 0 (2.5)

are used to express the robust controller requirements, see (Monje et al. 2008) and (Chen
et al. 2003).

Equation (2.3) represents the definition of the crossover frequency ωc. It is a measure how
fast the closed-loop response of the system is, see (Gahinet and Apkarian 2011). It is also
directly related to the closed-loop bandwidth. Equation (2.4) is the definition of the phase
margin. It is a measure of system instability, see (Skogestad and Postlethwaite 2007, p.
35-36). The requirement (2.5) is directly related to the robustness of the closed-loop
system. In fact, this specification ensures that robustness in case of static gain variations
is achieved.
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The specifications (2.3) to (2.5) have to be transformed into a desired open-loop frequency
response. To achieve this task, one possibility is to use the integrator

Ld(s) =
F

s
. (2.6)

Thereby, the parameter F denotes the integrator gain. Through the appropriate value of
F , the integrator (2.6) satisfies the specifications (2.3) to (2.5). To see this fact, substitute
the desired open-loop function Ld(s) in Equation (2.3) to (2.5). The following relations

|Ld(jωc)|dB =
F

ωc
= 0 dB, → F = ωc, (2.7)

arg(Ld(jωc)) = arg

(
F

jω

)
= arg (−j) ≡ −π + ϕm → ϕm =

π

2
(2.8)

and

d(arg(Ld(jω))

dω
|ω=ωc =

d(arg(−j)
dω

|ω=ωc = 0 (2.9)

are obtained. Selecting F = ωc, all of the three control objectives are covered using the
integrator (2.6). The representation of the open-loop transfer function (2.6) can be used
to formulate the robust control problem. For example, one can define a desired crossover
frequency ωdc . Then, set the integrator gain F to ωdc . Afterwards, find a controller K(s)

such that the resulting open-loop transfer function L(s) = K(s)G(s) is equal to the
desired open-loop function Ld(s). In case that such a controller exists, the robustness
requirements (2.3) to (2.5) are achieved. The obtained controller is said to be robust.

Unfortunately, the use of the integer order integrator (2.6) does not allow to specify
a desired phase margin. Moreover, the phase margin is an outcome of the integrator
structure. It is always equal to 90◦. To take into account any desired phase margin,
other representations are required. In this context, fractional order integrators provide an
additional degree of freedom given by the fractional order. This can be used to represent
any desired phase margin. An introduction to fractional operators including derivatives
and integrals is given in Appendix B.3.

The following transfer function

Ld(s) =
F

sv
(2.10)

is introduced to denote a fractional integrator of order v, which varies from 1 to 2. For
v = 1, the fractional integrator turns out to be the classical integrator (2.6). For v = 2,
the transfer function defines a double integrator. In (Bode 1945), Bode introduced the
function (2.10) which is known as the Bode ideal transfer function, see (Monje et al. 2008).
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Due to the constant phase around the crossover frequency, this function provides an
overshoot free step response in case of static gain variations. This characteristic is known
as the iso-damping property of the time response, see (Monje et al. 2008).

Given now a desired phase margin ϕdm and a desired crossover frequency ωdc , the parameters
F and v of the fractional integrator (2.10) can be computed as follows

|Ld(jωdc )|dB =
F

(ωdc )
v = 0 dB → F =

(
ωdc
)v (2.11)

and

arg
(
Ld
(
jωdc
))

= arg

(
F

(jω)v

)
= −vπ

2
≡ −π + ϕm → v =

2

π
(π − ϕdm). (2.12)

Equation (2.12) shows that the order v depends linearly on the desired phase margin ϕdm.
It can be used to represent the desired phase margin. Using the fractional order v, the
phase margin is not restricted to 90◦ any more.
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Figure 2.2: Bode plot (magnitude and phase) of the fractional integrator
1

sv
for v = 1.0

(dashdot black), v = 1.3 (red) and v = 1.6 (dashed blue) with the related phase margins
90◦, 63◦ and 36◦, respectively

Figure 2.2 shows an example of the bode plot of a desired open-loop response given by

the fractional integrator
1

sv
. Thereby, the fractional order v is considered to take the

values 1.0, 1.3 and 1.6. The phase plot shows that for v = 1.0, the phase margin is equal
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to 90◦. This case corresponds to the frequency response of the classical integrator (2.6)
with F = 1. Increasing the order v leads to a smaller phase margin. The phase margin
corresponding to v = 1.3 is about 63◦ and that to v = 1.6 is about 36◦. The frequency

plot of the fractional integrator
1

sv
have the following characteristic:

• The magnitude plot is a straight line with a slope −v · 20dB

• The phase plot is a horizontal line at −v · 90

Additionally, Figure 2.2 shows that the phase around the desired crossover frequency
ωdc = 1 rad/s is flat. This fact guaranties that robustness will be achieved in case of static
gain variations.

2.2.2 Time Domain Intepretation

To understand the impact of the robustness requirements given in terms of the equa-
tions (2.3) to (2.5) on the closed-loop performance, the time domain performance of the
fractional integrator in case of static gain variations is explored. For this purpose, the
closed-loop structure shown in Figure 2.3 is considered.

− 
Iv

E (s)
R (s) Y (s)

Figure 2.3: Feedback control structure with a fractional open-loop function Iv

The open-loop transfer function from the error signal E to the output Y is given by the

fractional integrator Iv(s) with
F

sv
. Assume that the gain F of the fractional integrator

is uncertain. The value of the fractional order v is fixed and known. The uncertain gain
is written as F = V · F0 with F0 consists the nominal static gain. Moreover, the range in
which this parameter varies is given by the minimal and maximal value Fmin = Vmin · F0

and Fmax = Vmax ·F0, respectively. The parameter V defines the variation to the nominal
gain.
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Now consider the nominal case, the related nominal closed-loop transfer function is given
by

T0(s) =

F0

sv

1 +
F0

sv︸︷︷︸
L0(s)

=
Y (s)

R(s)
, (2.13)

with L0(s) is the nominal open-loop transfer function. This fractional integrator L0(s)

is replaced by its frequency band limited CRONE approximation (Melchior et al. 2002)
given by LA0 (s) and discussed in Appendix B.3 through the equations (B.38) to (B.40).
The approximated nominal closed-loop function is given by

TA0 (s) =

∏N
i=1

1+ s

ω
′
i

1+ s
ωi

1 +
N∏
i=1

1 + s

ω
′
i

1 + s
ωi︸ ︷︷ ︸

LA0 (s)

. (2.14)

Now taking the parameter variation into consideration and replacing the function LA0 (s)

with the parameter dependent open-loop function LA(s) = V ·LA0 (s) leads to the parameter
dependent closed-loop function

TA(s) =
V · LA0 (s)

1 + V · LA0 (s)
. (2.15)

This function can be used to describe the dynamic of the system as a function of the
uncertain parameter V . To show the influence of this parameter, the step response of the
transfer function (2.15) for Vmin = 0.5, V0 = 1 and Vmax = 1.5 is considered. Thereby, the
fractional order v is equal to 1.24 and the nominal gain F0 = 10. Moreover, the magnitude
and the phase of the function LA(s) are also considered.

The results are shown in Figure 2.4. The overshoot for all variations of the parameter V
is about 10 %. It is almost constant. This is due to the constant phase of the fractional
integrator in the whole frequency range. Nevertheless, the rise time of the step response is
varying depending on the static gain F = V ·F0. The Bode plot of the open-loop function
LA(s) shows that the variation of this parameter causes a shifting of the magnitude.
During this shifting, the phase margin does not change.

The example above shows that requiring the phase margin to be flat around the crossover
frequency results in a constant overshoot of the related closed-loop function. Unfortu-
nately, the overshoot depends on the achieved phase margin. In the scope of this work,
the dependency between the desired phase margin and the maximal overshoot is explored.
The goal is to find out what kind of relation exists and if it is possible to parametrize it.
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For this purpose, consider the structure in Figure 2.3. This time, the value of the static
gain is fixed to K0 and the fractional order v is varying. The resulting closed-loop function
is defined as

T0(s, v) =
F0

sv

1 + F0

sv

with 1 ≤ v ≤ 2, (2.16)

which depends on the fractional order v. Using the CRONE approximation (Melchior
et al. 2002), the step response for T0(s, v = 1), T0(s, v = 1.2), T0(s, v = 1.4) and T0(s, v =

1.8) is computed. The results are shown in Figure 2.5.

One can observe that the overshoot of the step response is proportional to the fractional
order. Augmenting the order v increases the overshoot of the system. It is evident that
a relationship between the overshoot of the closed-loop step response and the fractional
order v or the phase margin ϕm exists. In order to get a better insight into the type of
this relationship, the following procedure is considered. Let the phase margin ϕm vary
from 1◦ to 90◦. Then, compute the related fractional order v using the expression (2.12).
Afterwards, substitute the obtained order in the closed-loop transfer function (2.16) and
compute the overshoot emax of the related step response.

The result is shown in Figure 2.6. One can remark that a zero overshoot requires a
90◦ phase margin. This correspond to closed-loop step response based on an open-loop
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Figure 2.5: Step response of the closed-loop function T0(s, v) for the fractional orders
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Figure 2.6: Dependency between the phase margin ϕm and the overshoot emax

function in terms of an integrator. Reducing the phase margin of the system results in a
higher overshoot. In this work, we are interested in the following relationship

ϕm(k) = f(emax(k)) with k = 1, · · · , 90. (2.17)
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This function relates a given maximal overshoot emax(k) to a phase margin ϕm(k) for the
fractional open-loop function (2.10). For the integer order case, the dependency between
the phase margin and the overshoot has been investigated in (Unbehauen 2008). Based
on approximating the closed-loop transfer function through a second order system with
conjugate complex pole pair, the following simple relationship ϕm[◦] + emax[%] ≈ 70 can
be considered, see (Unbehauen 2008, 8.3.22). As a counter part to the integer order case,
we investigate here the fractional closed-loop function (2.16). Parametrizing the function
(2.17) provides a method to compute the desired phase margin depending on a provided
maximal overshoot of the uncertain closed-loop system. For this purpose, a polynomial
representation is considered. Moreover, the order of this function is chosen to be four.
For this reason, this dependency is approximated using the following polynomial form

f(emax(k)) ≈
4∑
i=0

x(i)eimax(k) (2.18)

with x denotes the parameter vector. To compute the parameter vector x, the following
optimization problem

Problem 2.1 :

minimize
x

N∑
k=1

(ϕm(k)−
4∑
i=0

x(i)eimax(k))2 (2.19)

is considered.
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Figure 2.7: Validation of the polynomial approximation, real(blue) and approximated
(dash red)
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The formulation (2.19) defines a quadratic problem. It is solved using the pseudo-inverse
formula, see (Boyd and Vandenberghe 2004, p. 649).

Figure 2.7 shows the results of the polynomial approximation. The optimal parameter
vector xopt provides through the polynomial form

∑4
i=0 xopt(i)e

i
max(k) a good fit of the

function (2.17). The obtained parameter xopt can now be used to provide for each desired
maximal overshoot the corresponding phase margin. Using Equation (2.12) and a given
desired crossover frequency, the corresponding order of the fractional integrator can be
computed.

Remark. The procedure discussed above to provide the desired phase margin depending
on a given overshoot is not general. It is related to the fact that the open-loop transfer
function is a fractional integrator. It means that the achieved performance is depending
whether or not a controller exists that provides the desired open-loop response given by the
fractional integrator.

2.3 Fractional H∞ Controllers

In the previous section, the design requirements were discussed. Frequency as well as
time domain interpretation of these requirements were presented. In this section, the
formulation of the control problem is presented. It is based on the H∞ control procedure.
H∞ control design is one of the well known modern control techniques. The availability
of computer softwares (Sturm 1999) and (Balas et al. 2011) to solve the H∞ problem and
the constantly increasing computing power make H∞ controllers very popular. The H∞
continuous- and discrete-time control problems are discussed in detail in (Gahinet and
Apkarian 1994). Solvability conditions for both cases are presented. Based on the bounded
real lemma and the projection lemma, the H∞ problem is transformed into a LMI. This
optimization problem can then be solved efficiently using existing LMI solvers, see (Labit
et al. 2002) or (Nemirovskii and Gahinet 1994). Moreover, an appraoch to reconstruct
the controller is also given. A huge number af publications consider the application of H∞
controllers. For example, the application of a robust controller for position and tracking
control of a hydraulic system is presented in (Ahmed et al. 2012). Moreover, a comparison
between the H∞ controller, FXLMS algorithm, PPT1 controller and a non-model based
adaptive control is given. In (Werner et al. 2003), the design of a robust H∞ controller
for power system stabilizers is presented. The controller takes into account the plant
parameter variations throught a special representation of the uncertainty.

In this section, the fractional robust control problem is formulated. For this purpose, the
H∞ norm is used to formulate the optimization problem in the frequency domain. More-
over, the loop-shaping technique is briefly discussed. Two fractional robust controllers are
considered, namely PIαDβ and (PID)n. Afterwards, an approach is proposed to solve
the resulting optimization problem in the controller parameters.
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2.3.1 Frequency Domain Representation of the Control Problem

One method to represent the robust control problem is the application of the loop-shaping
techniques. Details about this method are given in (Skogestad and Postlethwaite 2007).
These techniques are also used in (Gahinet and Apkarian 2011) to shape the open-loop
response. However, the authors did not consider the details of this method. In this
brief section, the application of the loop-shaping method to formulate the robust control
problem is discussed.

− 
K (s) G (s)

E (s)
R (s)

U (s) Y (s)

N (s)

D (s)

Figure 2.8: Feedback control structure with one degree-of-freedom controller (Skogestad
and Postlethwaite 2007, p. 12)

Figure 2.8 shows a closed-loop configuration known as one degree-of-freedom control, see
(Skogestad and Postlethwaite 2007). G(s) is a LTI system and consists the plant to
be controlled. K(s) is a dynamic output feedback controller. The input signals to this
structure are the reference R, the noise N and the disturbance D. The output is denoted
by Y .

Now consider the control input defined as

U(s) = K(s)(R(s)− Y (s)−N(s)) (2.20)

and the related control output as

Y (s) = G(s)U(s) +D(s) . (2.21)
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Substituting this in Equation (2.20) leads to the following

Y (s) = (1 +G(s)K(s))−1G(s)K(s)︸ ︷︷ ︸
T (s)

(R(s)−N(s)) + (1 +G(s)K(s))−1︸ ︷︷ ︸
S(s)

D(s) .

(2.22)

The transfer functions S(s) and T (s) are called the sensitivity and complementary sensi-
tivity function. These satisfy the following equality

T (s) + S(s) = 1 (2.23)

or

T (jω) + S(jω) = 1 . (2.24)

which defines a frequency constraint on S and T . Constraining the sensitivity function
will influence the complementary sensitivity and vice versa. One way to overcome this
difficulty is to divide the whole frequency range into low frequency and high frequency
range. This can be achieved through the specification of the crossover frequency ωc. The
following approximations

|L(jω)| � 1 =⇒ S(jω) =
1

1 + L(jω)
≈ L−1(jω) for ω � ωc (2.25)

and

|L(jω)| � 1 =⇒ T (jω) =
L(jω)

1 + L(jω)
≈ L(jω) for ω � ωc (2.26)

can be deduced, see (Skogestad and Postlethwaite 2007, p. 56).

Figure 2.9 shows the magnitude of a given open-loop function in terms of an integrator.
The crossover frequency ωc separates the low-frequency from the high frequency range.
The main advantage of this separation is twofold. First, the sensitivity function S is in
the low-frequency range approximately equal to the inverse of the open-loop function L−1,
see expression (2.25). It means that the frequency shaping of the inverse of sensitivity
S−1 results in shaping the open-loop function in this range. This can be achieved using a
transfer function WS(jω) as follows

|S(jω)| < 1

|WS(jω)| =⇒ 1

|L(jω)| <
1

|WS(jω)| ∀ω (2.27)

or

|L(jω)| > |WS(jω)| ∀ω. (2.28)
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Figure 2.9: Low and high frequency range for the sensitivity magnitude |L|

The function WS is called the sensitivity weighting function. Second, the complementary
sensitivity T is in the high frequency range approximately equal to the open-loop function
L, see expression (2.26). It means that the frequency shaping of the sensitivity T results
in shaping the open-loop function in this range. The shaping of T (jω) can be achieved
using a transfer function WN(jω) as follows

|T (jω)| < 1

|WN(jω)| =⇒ |L(jω)| < 1

|WN(jω)| ∀ω. (2.29)

The function WN is called the complementary sensitivity weighting function. WS(s)

and WN(s) are knonw as weighting transfer function. They can be used to specify the
frequency shape of the sensitivity and the complementary sensitivity functions in the
related frequency range. The inequality (2.28) means that the transfer function WS

consists an lower bound on the open-loop function L = GK in the low frequency range.
Inequality (2.29), on the other hand, provides a upper bound on the function L given by
the weighting transfer function WN .

One possible procedure to shape the open-loop response G(s)K(s) is to choose the transfer
function WS(s) = Ld(s) and the transfer function WN(s) = L−1

d (s). Now replacing this
in inequality (2.28) leads to the following

|S(jω)| > |Ld(jω)| ∀ω (2.30)
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which can be represented using the H∞ norm as

‖S(jω)Ld(jω)‖∞ < 1 . (2.31)

The inequality (2.29) can be then formulated as

|T (jω)| < |Ld(jω)| ∀ω (2.32)

which can be formulated using the H∞ norm as

‖T (jω)L−1
d (jω)‖∞ < 1 . (2.33)

The key idea in the loop-shaping method of the open-loop function L = GK is to combine
the constraints given by the expressions (2.31) and (2.33). Inequality (2.31) is active at
low frequencies. As it is shown here, it enforces the open-loop response |L| to be above
the desired response |Ld|. At high frequencies, the constraint (2.33) is active. It enforces
the response |L| to be below the response |Ld|. Combining both constraints results in
shaping the response |L| to have the desired frequency response Ld.

Remark. Note here that shaping the response |L| is based on the partition of the frequency
range into low and high ranges. It does not provide an information about the shape of |L|
around the crossover frequency. The achieved performance can be checked by computing
L(s).

After discussing the loop-shaping method, the structure used to realize this idea is given
in Figure 2.10. Thereby, NW and N consist the noise and the weighted noise signal. E
and EW are the error and weighted error signal. Now consider the transfer function from
the reference R to the weighted error EW given by

EW (s)

R(s)
= Ld(s)

1

1 +G(s)K(s)
= S(s)Ld(s). (2.34)

It represents the realization of the weighted sensitivity function. The counterpart of the
weighted sensitivity is the weighted control sensitivity. It is given by the transfer function
from the noise signal N to the output Y

Y (s)

N(s)
= −L−1

d (s)
G(s)K(s)

1 +G(s)K(s)
= −L−1

d (s)T (s). (2.35)

The overall optimization problem can be formulated as follows

Problem 2.2 :

minimize
K

γ =
∥∥T(R,N)→(EW ,Y )(K)

∥∥
∞ . (2.36)
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− 
K (s) G (s)

E (s)
R (s)

U (s) Y (s)

Ld (s)

1/Ld (s)
N (s)NW (s)

EW (s)

Figure 2.10: Control structure for the open-loop shaping technique

In case that the H∞ norm γ is less than one, then the open-loop gain |L| = |GK|
approximately matches the desired response |Ld|, (Gahinet and Apkarian 2011). Problem
(2.36) consists of minimizing the H∞ norm γ in the controller K.

2.3.2 Optimization of PIαDβ Controllers

In this section, the loop-shaping method discussed in the previous section is used to formu-
late the fractional control problem. For this purpose, consider the closed-loop structure
shown in Figure 2.11. G(s) is an uncertain transfer function with G(s) = V · G0(s).
Thereby, G0(s) is the nominal function and V is the uncertain parameter. The range in
which the parameter varies is known and given by Vmin and Vmax.

− 
PI®D¯ G (s)

E (s)
R (s)

U (s) Y (s)

Figure 2.11: Feedback control structure with fractional PIαDβ controller
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The fractional order controller PIαDβ is defined as follows

PIαDβ : KP +KI
1

sα
+KDs

β with 1 < α, β < 2. (2.37)

This controller consists a generalization of the classical PID controller and was first
introduced in (Podlubny 1999). The goal is to optimize the parameters KP , KI , KD, α
and β to achieve a desired phase margin φdm, a desired crossover frequency ωdc and a flat
phase around ωdc . Moreover, the discussion in Section 2.2.1 reveals that these requirements
can be achieved by enforcing the nominal open-loop transfer function given by

L0(s) = (KP +KI
1

sα
+KDs

β)G0(s) (2.38)

to provide the response of a fractional order integrator given by

Ld(s) =
K

sv
with K = (ωdc )

v and v = 2− π

2
φdm . (2.39)

Due to the fractional order v, the desired response Ld(s) is approximated using the
CRONE approximation (Melchior et al. 2002) given by

Ld(s) ≈ LAd (s) =
N∏
i=1

1 + s

ω
′
i

1 + s
ωi

. (2.40)

After defining the desired open-loop response Ld, the loop-shaping technique presented in
Section 2.3.1 can be now applied. For this purpose, the structure shown in Figure 2.12 is
used. Before proceeding with the formulation of the optimization problem, this structure
is discussed. For this reason, consider the nominal open-loop transfer function L0(s, α, β)

defined as

L0(s, α, β) = G0(s)

(
KP +KI

1

sα
+KDs

β

)
= G0(s)

[
1

1

sα
sβ
] KP

KI

KD

 . (2.41)

Using the CRONE approximation (Melchior et al. 2002) for the orders α and β, the
approximated nominal open-loop function is given by

L0(s, α, β) ≈ LA0 (s, α, β) = G0(s)
[
1 FI(s, α) FD(s, β)

]︸ ︷︷ ︸
Gp(s,α,β)

 KP

KI

KD


︸ ︷︷ ︸

KS

. (2.42)

The transfer functions FI(s, α) and FD(s, β) denote the CRONE approximation (Melchior
et al. 2002) of the fractional integrator 1

sα
and the fractional derivative sβ, respectively.

Expression (2.42) is used to decompose the fractional PIαDβ controller. Introducing the
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Nw (s)

KS 

Figure 2.12: Open-loop shaping structure for the PIαDβ controller

augmented plant GP (s, α, β) separates the fractional orders α and β given by the functions
FI(s, α) and FD(s, β) from the parameters KP , KI and KD. Moreover, the fractional
orders α and β become now part of the augmented plant GP . This manipulation allows
another view of the control problem.

The system under consideration has now three inputs UP , UI and UD and one output
Y . In this case, the controller structure is given by the static controller KS, see Figure
2.12. It has one input E and three outputs UP , UI and UD. Now assume that the goal
is to find a static output feedback controller KS that enforces the open-loop function
L̃A0 (s, α0, β0) to achieve the desired open-loop response LAd (s). Thereby α0 and β0 are
fixed known values of the fractional orders α and β. For this purpose, let the transfer
function from the inputs (R,N) to the output (EW , Y ) for α = α0 and β = β0 be denoted
by T(r,nw)→(y,ew)(KS, α0, β0). The entries KS, α, β in T(r,nw)→(y,ew)(·, ·, ·) means that the
optimization is in terms of the static controller KS with known fractional order values
α0 and β0. Using the method given in Section 2.3.1 given by the expression (2.36), the
controller optimization problem can be formulated as follows
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Problem 2.3 :

minimize
KS∈Ω

∥∥T(r,n)→(y,ew)(KS, α0, β0)
∥∥
∞︸ ︷︷ ︸

γ(α0,β0)

.
(2.43)

Problem 2.3 consists of minimizing the H∞ norm γ(α0, β0) with respect to the parameters
KP , KI and KD given by the static controller KS. The condition KS ∈ Ω is a structural
constraint on the controller. In our case, this constraint is represented by the set of all
static feedback controllers. Without the restrictionKS ∈ Ω, the full orderH∞ controller is
covered. In this case, KS is a dynamic dynamic with a specified state-space representation.
Problem (2.43) falls into the scope of convex optimization and can be solved efficiently. To
solve this problem, one can first define a state-space realization of the so-called generalized
plant G̃P (s). It consists of the plant GP (s) and the weighting transfer functions LAd (s)

and 1/LAd (s) shown in Figure 2.12. This MIMO transfer function is defined as follows

 EW (s)

Y (s)

E(s)

 =


−LAd (s)GP (s) Ld(s) −1

GP (s) 0 0

−GP (s) 1 − 1

LAd (s)


︸ ︷︷ ︸

G̃P (s)

 U(s)

R(s)

N(s)

 , (2.44)

with the input vector U(s) = [UP (s) UI(s) UD(s)]T . It describes the augmented control
problem. The related time domain state-space representation of the above MIMO system
(2.44) is given as follows

G̃P :


ẋ(t) = A x(t) + B1 w(t) + B2 u(t)

z(t) = CT
1 x(t) + D11 w(t) + D12 u(t)

e(t) = CT
2 x(t) + D21 w(t) + D22 u(t).

(2.45)

x(t) denotes the state vector of all variables describing the dynamic of the generalized
plant. G̃P maps the control input u(t) = [u1(t) u2(t) u3(t)]T and the performance channel
w(t) = [r(t) nw(t)]T to the output z(t) = [ew(t) y(t)]T . The structure of the full-order
controller is given by

KS :

{
ẋK(t) = AK xK(t) + BK e(t)

u(t) = CT
K xK(t) + DK e(t) .

(2.46)

xK(t) denotes the state vector of all variables required to describe the dynamic of the
controller. With the help of the bounded real lemma and the projection lemma (Gahinet
and Apkarian 1994), problem (2.43) can be transformed into a LMI form and then be
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solved efficiently using LMI solvers. The obtained controller is full order: it means that
the size of Ak is equal to the size of A. This controller is well known under H∞-full order
controller or only H∞ controller.

As explained in (Apkarian and Noll 2006), requesting KS to have a specified order and
structure given by the set Ω changes the whole situation. Problem 2.43 can not be
converted into the LMI form or any other convex form. To solve this problem, other
methods are required. The authors in (Apkarian and Noll 2006) have proposed a new
nonsmooth optimization technique to solve the H∞ problem under structural constraints.

Example 2.1

To better understand the concept of structured H∞ controller, a PID controller for
a SISO-system is considered. The computation is based on the technique proposed in
(Apkarian and Noll 2006), which is implemented in the Matlab function Hinfstruct. For
this purpose, consider now the following uncertain plant

G(s) = V · 1

s(Ts+ 1)︸ ︷︷ ︸
G0(s)

with T = 0.4 and V ∈ [0.5 1.5] (2.47)

taken from (Luo and Chen 2009). Assume that a desired phase margin φdm = 70◦ and a
desired crossover frequency ωdc = 10 rad/s are provided. Moreover, the controller should
be robust in the presence of static gain variations. Due to the integral action of the
plant, it is not necessary that the controller also has an integral action. For this reason,
the optimization problem consists of finding a PD controller, which provides the desired
requirements. Using now the expression (2.39), the desired open-loop response is

Ld(s) =
16.68

s1.22
≈

N∏
i=1

1 + s

ω
′
i

1 + s
ωi︸ ︷︷ ︸

LAd (s)

(2.48)

with LAd is the fractional order approximation using the CRONE method (Melchior
et al. 2002). The order N of this approximation is very high in case that the approx-
imation should be valid in the whole frequency range. In case that this range is finite
[1e−4 1e4] rad/s, the order N is set to be at least equal to the number of decades. To get
an accurate approximation, the order N of the approximation (2.48) is set to 10. More-
over, we replace the ideal derivative D in the PD controller with the filtered derivative
Df to make it realizable. Now, the problem is to compute a robust PDf controller for
the uncertain plant given by (2.47), which provides the desired response (2.48).

After defining the control requirements, the optimization problem has to be set. It consists
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Figure 2.13: Step response with PDf controller (left), desired and actual open-loop
response (right)

of solving the problem (2.43) for α0 = 0 and β0 = 1. Figure 2.13 shows the step response
with the obtained PDf controller

PDf : K(s) = 48.9︸︷︷︸
KP

+ 4.43︸︷︷︸
KD

· s

0.00376︸ ︷︷ ︸
τf

s+ 1
(2.49)

for the nominal, minimal and maximal case. It is clear that the overshoot is not constant
for all values of the uncertain parameter V . Moreover, the Bode diagram of the desired
response Ld and the achieved open-loop response L with the obtained PDf controller is
also shown. The controller fails to provide a satisfactory solution. The requirements given
through the desired open-loop response (2.48) are not achieved. The PDf controller does
not satisfy the specifications.

To improve the performance of the PDf controller, we consider the optimization of the
fractional orders α and β. They are used as an additional degree of freedom to further op-
timize the H∞ norm in the optimization problem (2.43). Formally speaking, the following
optimization problem

Problem 2.4 :

minimize
KS ,α,β

∥∥T(r,nw)→(y,ew)(KS, α, β)
∥∥
∞ (2.50)

is considered. It consists of minimizing the H∞ norm in terms of the static feedback
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controller KS and the fractional orders α and β. Problem 2.4 can not be solved directly
using the technique in (Apkarian and Noll 2006). In this work, a method is presented
to optimize the optimization parameters α, β and KS. It is based the Steepest Descent
method.

One method to solve the optimization problem (2.50) is to grid the α-β parameters space
and then pick-up the optimal pair (αOpt, βOpt) with the lowest H∞ norm γ(αOpt, βOpt).
One can proceed as follows:

Algorithm 2.1 :

1. Define a resolution step ∆k in α and β.

2. Grid the parameter space α-β using αk = 1 + k∆k and βk = 1 + k∆k

with k = 1, 2, · · ·N and 0 < αk, βk < 2.

3. Solve for each pair (αk, βk) the following optimization problem

γk(αk, βk) = minimize
KSk∈Ω

∥∥T(r,nw)→(y,ew)(KSk , αk, βk)
∥∥
∞︸ ︷︷ ︸

γ(αk,βk)

(2.51)

and save γk(αk, βk).

4. Pick-up the pair (αOpt, βOpt) and the related controller KSk with the smallest
H∞ norm γk(αOpt, βOpt).

The main disadvantage of the gridding based method is the resolution step ∆k. One has
first to solve the optimization problem (2.43) for all pairs (αk, βk) and pick-up the optimal
solution. For example, a step ∆k = 0.01 for α and β would leads to a parameter space
200× 200. This requires 40000 function evaluations of the H∞ norm. At each evaluation,
the optimization problem has to be solved. A better way to find the optimal solution is to
optimize over the fractional orders. For this reason, consider now the following problem

Problem 2.5 :

minimize
α,β

(
minimize

KS

∥∥T(r,nw)→(y,ew)(KS, α, β)
∥∥
∞

)
︸ ︷︷ ︸

γ(α,β)

,
(2.52)

which consists of two optimization problems. The first problem is to optimize the con-
troller KS for a given pair αk and βk. The second problem consists in further minimizing
the H∞ norm by optimizing over the fractional orders. The approach can be summarized
as follows
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Algorithm 2.2 :

1. Initialize α0 and β0

2. Compute the gradient dk with respect to αk and βk

3. If ‖dk‖2 smaller then a value t STOP, else update αk and βk and go back to
step (2).

To update αk and βk in step (3), we used the Steepest-Descent algorithm with fixed step.
The computation of the gradient of the H∞ norm in problem (2.52) with respect to α and
β was performed numerically. The values ofKP , KI andKD are computed by substituting
the obtained values of αk and βk in problem (2.51).

Remark. The optimization problem (2.52) is nonconvex, due to the nonlinear dependence
of the transfer function T(r,nw)→(y,ew)(·) on the parameters α, β and KS, and nonsmooth
due to the use of the H∞ norm as a cost function. Basically, such problems are very hard
to solve. The nonsmooth character of the problem is treated using nonsmooth techniques
provided by (Apkarian and Noll 2006). In what concerns the nonconvexity, the authors
proposed to restart the algorithms from different start values. Moreover, we provide using
our Matlab Toolbox the possibility to further tune the controller parameters by hand after
a minimization step, if necessary. In all the examples provided later, it was not necessary
to tune the obtained controller further.

2.3.3 Optimization of (PID)n Controllers

In the previous section, the optimization of robust PIαDβ controllers was presented. To
evaluate the performance of this controller, the design of another fractional controller is
considered, namely (PID)n. This kind of controller was presented in (Tenoutit et al. 2011)
and (Tenoutit et al. 2011a). Contrary to these works, the fractional order n in this work
is considered as a free parameter. It can be used to get an additional degree of freedom in
optimizing the controller. The requirements to be fulfilled by the controller are the same
used for the PIαDβ controller.

Figure 2.14 shows the closed-loop structure with the fractional order controller (PID)n.
G(s) = V ·G0(s) consists the uncertain transfer function. The fractional controller under
consideration is given by

(PID)n :
1

sn

(
KP +KI

1

s
+KDs

)
≈ 1

sn

KP +KI
1

s
+KD

s

τs+ 1︸ ︷︷ ︸
Df

 . (2.53)

The strict derivative s is replaced by a filtered derivative part Df for practicability. As it
is the case for the PIαDβ controller, we are interested into designing a robust controller
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− 
(PID)n G (s)

E (s)
R (s)

U (s) Y (s)

Figure 2.14: Feedback control structure with (PID)n controller

for the uncertain plant G. The goal is to optimize the parameters KP , KI , KD and
n to achieve a desired phase margin φdm, a desired crossover frequency ωdc and a flat
phase around ωdc . As it is the case for the PIαDβ controller, these requirements are
expressed in terms of a desired open-loop response Ld(s) using the expression (2.39) or
its approximation LAd (s) using the expression (2.40).

A given controller (PIDf )
n is said to be robust if the open-loop function

L0(s) = G0(s)
1

sn

(
KP +KI

1

s
+KD

s

τs+ 1

)
︸ ︷︷ ︸

K(s)

(2.54)

provides approximately the response given by the fractional integrator (2.40).

Unlike in the PIαDβ controller case, another structure to formulate the control problem
is considered, namely Model Following Control (MFC), see (Gahinet and Apkarian 2011).
It is based on defining a desired reference model instead of a desired open-loop response.
For this reason, the structure shown in Figure 2.15 is considered.
The transfer function Td(s) provides the desired closed-loop response. It is computed as
follows

Td(s) =
F
sv

1 +
F

sv︸︷︷︸
Ld(s)

=
1

1
F
sv + 1

≈

TAd (s)︷ ︸︸ ︷
1

1
F

(∏N
i=1

1+ s

ω
′
i

1+ s
ωi

)
+ 1

. (2.55)

TAd (s) consists the approximated desired closed-loop response. The control problem can
now be formulated. It consists of finding a controller that provides the response of the
reference model given by the function (2.55). This can be achieved by minimizing the
error EW between the output Y and the output of the reference model Yd using the H∞
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− 
K (s) G0 (s)

E (s)R (s) U (s) Y (s)
ns

1
UK (s)

Td (s)
− 

EW (s)

GP (s)

Yd (s)

Figure 2.15: Model Following Control structure with (PID)n controller

norm.

Assume now that the fractional order n is set to a constant value nk. Let the transfer
Gp(nk, s) be defined as follows

GP (s, nk) = H(s, nk)G0(s) (2.56)

with H(s, nk) is the CRONE approximation (Melchior et al. 2002) of the fractional in-
tegrator 1

snk
. The function GP (s, nk) is an augmented plant, which is used to make the

understanding of the optimization problem easier. As it is the case in Section 2.3.2,
the H∞ norm is used to formulate the optimization problem. For this purpose, define the
transfer function from the reference R to the error EW as TR→EW (s, nk). The optimization
problem is given as follows

Problem 2.6 :

γ(nk) = minimize
K

‖TR→EW (K,nk)‖∞ . (2.57)

γ(nk) is the H∞ norm for a fixed order nk. This problem consists of optimizing a PIDf

controller for the augmented plant (2.56) with a fixed order nk. Moreover, minimizing
the H∞ norm γ(nk) enforces the closed-loop system to achieve the desired response given
by TAd (s). Setting now the order nk to zero applies the computation of a PIDf controller
for the original plant G0(s). Solving this problem falls into the scope of application of the
Matlab function Hinfstruct given by (Apkarian and Noll 2006).

The performance of the controller can be improved by letting the fractional order in
Problem 2.6 be an additionally optimization parameter. Instead of solving Problem 2.6,
the following problem
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Problem 2.7 :

minimize
n

(
minimize

K
‖TR→EW (K,n)‖∞

)
︸ ︷︷ ︸

γ(n)

(2.58)

is considered. Problem 2.7 can be solved using the same approach presented in the
previous section, which can be summarized as follows

Algorithm 2.3 :

1. Initialize n by n0

2. Compute the gradient dk with respect to n

3. If ‖dk‖2 smaller then a value t STOP, else update nk and go back to step (2).

To update the fractional order nk in step (3), the steepest descent algorithm with fixed
step is used. The computation of the gradient of the H∞ norm γ(n) into the optimization
Problem 2.7 with respect to n was performed numerically. The values of KP , KI and KD

are computed by substituting the obtained values of nk into the optimization problem
(2.58).

Remark. As in the PIαDβ controller case, Problem 2.7 is nonconvex and nonsmooth.
The solution obtained through the proposed optimization does not necessary consist the
global minimum. For this purpose, the possibility to further tune the obtained controller if
necessary is given through the FOPID-Toolbox. The examples shown in the next section
did not require to use this feature. All the obtained controller did satisfy the robustness
requirements imposed by the desired open-loop response.

2.4 FOPID-Toolbox

In this section, the fractional order FOPID-Toolbox developed in this work is presented.
It is dedicated to the design of fractional robust controllers in the form PIαDβ or (PID)n

for uncertain plants. It consists a Matlab Graphical User Interface (GUI) in which the
user provides the plant to be controlled and the requirements to be achieved. The two
approaches presented in Section 2.3.2 and 2.3.3 are implemented. The related optimization
problems are internally set and solved iteratively. The achieved performance is plotted in
term of the step response and the Bode diagram.

To be able to use the FOPID-Toolbox, the Matlab Robust Control Toolbox is required,
see (Balas et al. 2011). Moreover, we are considering the controller optimization for the
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following class of plant

G(s) = V · 1

sn + an−1sn−1 + · · ·+ a0︸ ︷︷ ︸
G0(s)

e−sTd (2.59)

with G0(s) is a stable plant without any zeros. Td is a given time-delay. Related to the
optimization of fractional controllers using a Matlab-Toolbox, the CRONE Group has
been active working on this area. The first contribution is given by the first generation
of the CRONE-Toolbox, see (Oustaloup et al. 1993). In this case, the controller is given
by the form K(s) = C0s

n with n is a real number. It provides the constant phase nπ
2

around its crossover frequency. The second generation is based on defining the desired
open-loop response as a fractional integrator Ld(s) =

(
ωdC
s

)n
. The controller is obtained

as K(s) = Ld(s)
G0(s)

, see (Oustaloup et al. 1993). The use of complex orders is provided in
(Lanusse et al. 1993). In all these contributions, the optimization of fractional controller
was achieved indirectly. It means that the author does not optimize the controller but
rather provides the design of a fractional optimal open-loop response. The controller is
obtained by approximating the function K(s) = Ld(s)

G0(s)
using optimization techniques as

simplex.

The main advantage of using our FOPID-Toolbox is that we are considering the opti-
mization of the given fractional controller structures

(PID)n :
1

sn

(
KP +KI

1

s
+KDs

)
and PIαDβ : KP +KI

1

sα
+KDs

β (2.60)

in the parameters KP , KI , KD, α, β and n, directly. The optimization problems (2.58)
and (2.52) are set in terms of these parameters. This is not the case for the CRONE-
Toolbox. Moreover, the optimal values of these parameter have to provide a fractional
controller that achieves the required performance given by a desired open-loop response
Ld(s) =

(
ωdc
s

)v
, see Equation (2.10) . The comparison of the obtained performance to

that of a classical PID controller is easily obtained through setting n to zero or α and β
to one.

2.4.1 Application to a Second Order System

To show the simplicity of using the proposed approach to optimize fractional controllers,
the obtained PDβ controller in our work (Svaricek and Lachhab 2016) for the second order
plant presented in (Luo and Chen 2009) is given in this section. The plant is defined as
follows

G(s) = V · 1

s(Ts+ 1)︸ ︷︷ ︸
G0(s)

with V ∈ [0.8 1.2]. (2.61)
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Thereby, G0(s) is the nominal plant. The time constant T is equal to 0.4s. The require-
ments to be achieved by the controller are given by the desired phase margin φdm = 70◦,
the desired crossover frequency ωdc = 10 rad/s robustness in case of varations of the gain
V . These specifications are transformed using the expression (2.39) into the following
desired open-loop function

Ld(s) =
16.68

s1.22
. (2.62)

The goal is to find a PDβ controller

PDβ(s) = KP +KDs
β. (2.63)

The parameters KP , KD and β are optimized such that the frequency response of the
nominal open-loop function L0(s) = G0(s)PDβ(s) approximately fits the desired response
given by the function 2.62. Using the CRONE method, Ld(s) is approximated with the
order N = 8 in the frequency range given by ωmin = 0.05 rad/s and ωmax = 4000 rad/s.
For the fractional part sβ in 2.63, a CRONE approximation with N = 4, ωmax = 0.1 rad/s

and ωmax = 1000 rad/s is used.
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Figure 2.16: Step response with PDβ controller, for V = 0.8 (dashed black), V = 1.0
(red) and V = 1.2 (dashdot blue)

The optimized controller parameters are KP = 21.69, KD = 4.8 and β = 0.9535. The
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CRONE approximation leads to the following controller

K(s) =
0, 0000751s5 + 4, 914s4 + 602, 4s3 + ...

0, 00000346s5 + 0, 005s4 + 1, 807s3 + ...

...+ 9092s2 + 34750s+ 24840

...+ 142, 8s2 + 1313s+ 1118
. (2.64)

The controller order is five as the CRONE approximation was extended with a low-pass
transfer function with the time constant T1 = 0.0025s. The step response with the
controller (2.64) is shown in Figure 2.16. The overshoot for all variations of the static
gain V = 0.8, V = 1.0 and V = 1.2 is approximately constant.

Consider now the frequency response of nominal open-loop function L0(s) = G0(s)K(s)

and the desired response Ld(s) shown in Figure 2.17. The phase around the crossover
frequency 10 rad/s is approximately constant. This leads to a constant overshoot in case
of variations of the static gain.
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Figure 2.17: Comparison desired Ld and nominal L0 open-loop response

In case that the parameter variation is ± 20%, the required performance is achieved.
Even if this variation is ± 50%, the robustness is also guaranteed, see Figure 2.18. In
(Li et al. 2010) and (Luo and Chen 2009), the results of a PDβ controller with KP =
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13.68, KD = 5.1 and β = 0.844 are given. The presented figures show approximately an
overshoot around 7%. Due to the low KP value, the step response shows a larger rise
time and settling time.

The fractional order β = 0.9535 of the obtained PDβ controller using our approach is
not significantly far away from one, such that the proposed method for β = 1 provides
a classical PD controller with KP = 17.94 and KD = 3.84, which provides the required
performance.
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Figure 2.18: Step response with PDβ controller, for V = 0.5 (dashed black), V = 1.0
(red) and V = 1.5 (dashdot blue)

2.4.2 Application to a Time Delay System

The second example is a second order time delay system. In (Tenoutit et al. 2011a) and
(Tenoutit et al. 2012), the authors consider the design of a robust controller for such
systems to ensure a constant overshoot in case of static gain variations. The performance
of this controller will be here compared to the results in (Svaricek and Lachhab 2016),
obtained using our proposed method.

The plant under consideration is given by

G(s) = V · 1

(1 + s)(1 + 2s)
e−sTd with V ∈ [0.5 2]. (2.65)

The delay constant Td is equal to 0.2s. The desired crossover frequency is ωdc = 0.5 rad/s.
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The robustness in case of variations of the parameter V in the range [0.5 2] is taken
into consideration through the flat phase around ωdc . In what the desired phase margin
concerns, the authors in (Tenoutit et al. 2011a) provide a desired maximal overshoot,
instead. It is 24% for all variations of the gain V . Using the dependency explored in
Section 2.2.2, the overshoot is transformed using

φdm =
4∑
i=0

x(i)Ψi
v(k) ≈ 51◦ (2.66)

into a desired phase margin. Now, the desired open-loop response can be computed using
φdm and the expression (2.39). The obtained desired response is given by

Ld(s) =
0.37

s1.43
. (2.67)

Due to the fact that the controller can not compensate the delay part of the plant (2.65),
a new desired open-loop response is replaced by

L̃d(s) =
0.37

s1.43
e−sTd (2.68)

The fractional order 1.43 is approximated using the CRONE method with N = 7, ωmin =

0.001 rad/s and ωmax = 7.5 rad/s. These parameters have to be chosen such that the
desired open-loop response is approximately constant around the crossover frequency,
despite the time delay given by Td. Through appropriate values for N , ωmin and ωmax,
the falling phase of the time delay part can be compensated by the CRONE approximation
resulting increase of the phase.

The optimized controller parameters areKP = 1.13, KI = 0.64, KD = 0.41 and n = 0.469.
Based on the CRONE approximation, the controller transfer function is

K(s) =
0, 4195s5 + 1, 703s4 + 2, 226s3 + ...

0, 00754s5 + 1, 511s4 + 0, 5995s3 + ...

...+ 1, 004s2 + 0, 08s+ 0, 0005

...+ 0, 01626s2 + 0, 00003s
(2.69)

Therby, the parameters N = 3, ωmin = 0, 001 rad/s and ωmax = 2.5 are used. The
controller order is five, which is due to filtering the ideal derivative by a first-order system
with the time constant T1 = 0.05s.

The open-loop response with the optimized controller (2.69) and the desired response
(2.68) are shown in Figure 2.19. The phase of the function L0(s) drop off earlier than
the phase of L̃d(s). This is due to the fact that the controller order is kept small by
chosen the CRONE approximation order N = 3. Nevertheless, the controller achieves the
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Figure 2.19: Comparison desired Ld and nominal L0 open-loop response

desired performance. The step response for V = 0.5, V = 1.0 and V = 2.0 shows that the
overshoot is almost constant, 23, 2%, 23, 7% and 23, 7% respectively.
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Figure 2.20: Step response with (PID)n controller, for V = 0.5 (dashed black), V = 1.0
(red) and V = 2.0 (dashdot blue)
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This achieved performance is compared with the results obtained in (Tenoutit et al. 2011a)
and (Tenoutit et al. 2012). The summary is given by Table 3.1. It shows imprecively that
the controller (2.69) achieves a much better robust performance in comparison to the
controller in (Tenoutit et al. 2011a).

Table 2.1: Overshoots in (%)
V 0.5 1 2

(Svaricek and Lachhab 2016) (PIDf )
n 23.2% 23.7% 23.7%

(Tenoutit et al. 2011a) (PIDf )
n 22% 24% 29.5%

As in (Tenoutit et al. 2011a), the proposed method also does not provide any classical PID
controller which achieves the required robust performance. The obtained performance
with the parameters KP = 0, 3849, KI = 1, 452, KD = 0, 0425 and T1 = 0, 05 s is 5, 3%

for V = 0, 5, 23, 9% for V = 1, 0 and 49, 3% for V = 2.0

2.5 Summary

In this chapter, the design and optimization of robust fractional order controllers have
been discussed. In Section 2.1, an introduction to this chapter is given. Then in Section
2.2, the robustness requirements have been introduced. Moreover, frequency as well as
time domain interpretations have been discussed. Afterwards, the dependency between
the phase margin and the overshoot based on a fractional open-loop integrator have been
explored. A method was proposed to parametrize this dependency. The formulation of
the control problem is presented in Section 2.3. Thereby, two approaches has been used,
namely shaping the open-loop response for the PIαDβ controller and shaping the closed-
loop response for the (PID)n controller. The optimization of the controller parameters
have been achieved using the Steepest Descent method. In Section 2.4, a Matlab Tooolbox
(FOPID) has been presented dedicated to the computation of the controller parameters.
Examples shows that the obtained controllers using the proposed method achieve the
required performance. Moreover, a comparison to the fractional controllers presented in
the literature reveals that our FOPID-(PID)n outperforms the other controllers.
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3 Optimization of PID Controllers using MPC and LMI

3.1 State of the Art (MPC)

In Section 2, the design and optimization of the fractional controllers (PID)n and PIαDβ

were considered. It is an extension of the recently developed method (Apkarian and
Noll 2006) applied now on fractional controllers. Regarding PID controllers, there exists
a huge number of tuning and optimization methods dedicated to this class of controllers.
Depending on the plant to be controlled and the control requirements, the control designer
has to choose the appropriate method. For example, in case that the order of the plant is
low and the requirements, which has to be satisfied are not too severe, heuristic methods
can be used. A very prominent method is the Ziegler and Nichols tuning method. For the
case that the requirements are severe and have to be strictly satisfied, modern optimization
algorithms are necessary, see (Khatibi et al. 2008). In (Sadeghpour et al. 2012), a Toolbox
to design robust PID controllers is presented. It is based on the frequency response of
the system and convex optimization. The design and optimization of H2 and H∞ fixed-
structure controllers (gains, PIDs, etc) is presented in (Apkarian et al. 2014). The
authors present a method based on nonsmooth optimization techniques to optimize the
parameters of these controllers. Simulation results are presented.

The goal of this chapter is to explore the possibility of using modern methods to optimize
PID controllers. To achieve this task, a novel method dedicated to the optimization
of the parameters of this controllers is presented. Moreover, robustness requirements in
case of static gain variations are considered. This is taken into consideration through
the specification of a desired closed-loop response. Specifically, discrete-time closed-loop
response is considered. The control problem formulation is performed using model pre-
dictive control. The resulting optimization problem is nonconvex and can not be directly
solved. A new method is proposed to transform this problem into a set of linear matrix
inequalities. The resulting LMI optimization problem can be solved efficiently using any
LMI solver. The controller parameters are decision variables of the optimization problem
which are now optimized instead of tuned, in contrast to classical PID tuning methods.

The main idea of this work is to optimize the parameters of classical PID controllers
based on MPC appraoch and LMIs. The goal is not to provide a new solution to robust
MPC problems. There exists a high number of papers and contributions which propose
several appraoches to solve robust MPC using LMIs. A very prominent paper in this field
is (Kothare et al. 1996), which describes in details the application of LMIs to solve MPC
problems. An approach is proposed to compute a MPC controller for uncertain and time
varying plant taking into consideration input and output constrains. The method is based
on defining the controller to be a state-feedback, which is computed at each sampling time
by solving a LMI problem. In our work, we are not solving LMIs online and the controller
which is considered is a PID controller.

Additionally to the work (Kothare et al. 1996), it exists many other contribution re-
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lated to robust MPC controller. In (Fukushima and Bitmead 2003), the authors present
an approach for uncertain systems with bounded disturbance to optimize MPC control.
Simulation results are presented with a sampling time 0.1 sec. In (Mayne et al. 2006),
a method is presented based on luenberger state estimator and a feedback control for
syytems with uncertain states and bounded disturbance. A simple double integrator is
used as an example to show the performance of the method.

MPC is a powerful method to design controllers imposed to input, output or states con-
traints. MPC is well known to be a receding horizing method. The optimization problem
is solved at each iteration, but only the first input value is applied to the plant. The
optimization problem consists of minimizing a constrained objective. Two types of con-
straints are considered, namely soft and hard contraints. Hard constraints have to be
strictly satisfied. Soft constraints on the other hand are only partially satisfied. The first
type of constraints is characterized with equalities, inequalities or both. The second type
is incorporated into the cost function using a penality term.

In case of hard constraints, there exists no closed form for the solution. Iterative and
modern algorithms are required to solve the constrained optimization problem. For in-
stance, Sequential Quadratic Programmig (SQP) or Interior Point Methods (IPM) can
be used. The main obstacle in applying iterative algorithms is the computational power
required to solve the problem in real-time. Due to this difficulty, MPC has been reserved
to plants with slow dynamic. Many authors are working on methods to make MPC more
practical.

In (Shah and Engell 2011), the authors propose a method to tune the parameters of the
MPC optimization problem. Examples are shown with a sampling time of Ts = 1s and
Ts = 10s. In (Kapernick and Graichen 2014), a model predictive control software named
GRAMPC is presented. It deals with the computation of the optimal control strategy for
nonlinear systems. To test the practical aspect of this software, simulation results based
on dSPACE are provided. In (Witt et al. 2007), the concept of approximate predictive
control is used to design a controller for a 3-DOF Helicopter. The control method is based
on a linearization of a neural network model of the plant and a generalized predictive
control. In (Wang and Boyd 2010), an approach is proposed to render the MPC with
hard constraints practical to plants with fast dynamic. The idea is based on exploring
the structure of the optimization problem. Specifically, an efficient computation of the
Newton step is proposed. The authors propose another simplification, which consists in
fixing the maximal number of the Newton iterations.

As it is mentioned in (Bemporad 2006), the contributions related to solving the MPC
problem can be classified into two methods, namely online (real-time) and offline ap-
proaches. For the first case, the idea is to solve the MPC related Quadratic Problem
(QP) in real-time. This is possible for slow process with a sufficient high computing
power. Moreover, by exploiting the problem structure an approximated solution can be
computed for fast processes. In case that a real-time implementation of MPC is not pos-
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sible, the second approach can be considered. It is based on solving the optimization
problem offline. Afterwards, the optimal solution is implemented with the help of look-
up tables. A prominent work in this field is the multi-parametric method proposed by
(Bemporad et al. 2002). It consists of solving the MPC problem by considering the states
vector as an additional parameter. The real-time implementation consists of evaluating a
look-up table.

The proposed approach in this section belongs to the second class. We are solving the
MPC problem using a LMI formulation of the optimization problem, offline. Moreover, the
real-time implementation is not based on look-up tables. Instead, we are approximating
the optimal solution using a fixed-structure controller, namely PID. Our motivation
is to generate the obtained optimal input trajectory using this controller. In real-time,
the PID controller provides this trajectory. In this section, the developed method is
presented in details.

3.2 Control Performance Specifications

In this section, the performance specifications considered in this chapter are presented.
These are given in terms of a desired closed-loop step response. Before going further with
these specifications, we want to recall the definition of the plant considered. In order to
remind the reader, this class of plants is defined as follows

G(s) = V ·G0(s) (3.1)

with G0(s) denotes the nominal plant and V represents the uncertain parameter in
[Vmin Vmax], respectively. Unlike in Section 2, we are here interested in designing a robust
controller K that provides a step response without any overshoot. This has to be guar-
anteed for all variations of the static gain V . Moreover, the resulting crossover frequency
of the nominal open-loop transfer function L0(s) = K(s)G0(s) is approximately equal to
a desired frequency ωdc . Formally, these requirements are as follows

|K(jωdc )G0(jωdc )︸ ︷︷ ︸
L0(jωdc )

|dB = 0 and max
t=0→∞

y(t, V ) = 1, (3.2)

with L0(jω) is the nominal open-loop transfer function and y(t, V ) consists the unit step
response of the closed-loop transfer function, which depends on the parameter V .

In Section 2.2, integrators fail to represent the robustness specifications (2.3) to (2.5).
This was due to the specification of a desired phase margin ϕdm different from 90◦. In
this section, the application of integrators to formulate the robustness specifications given
by the equations (3.2) seems to be convenient. To make this clear, consider the closed-
loop system shown in Figure 3.1. Thereby, R, E and Y denote the reference, error
and output signals, respectively. Assume that the nominal open-loop transfer function
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− 

E (s)
R (s) Y (s)

K (s) G (s)

Figure 3.1: Feedback control structure

L0(s) = G0(s)K(s) provides the desired response given by the integrator

Ld(s) =
ωdc
s
. (3.3)

Thereby, ωdc denotes the desired crossover frequency. The nominal closed-loop transfer
function is given by

T0(s) =
L0(s)

1 + L0(s)
. (3.4)

Assume that the nominal response L0(s) is equal to the desired response Ld(s). In this
case, the following

T0(s) =
ωdc

s+ ωdc
=

1
1

ωdc︸︷︷︸
τ

s+ 1
(3.5)

is obtained. The transfer function T0(s) has a low-pass character with the time constant
1
ωdc
. In this case, the overshoot of the step response is zero. It is clear that requiring the

open-loop function L0(s) to have the response provided by the integrator (3.3) results in
a closed-loop system with the time constant τ and no overshoot. As it is mentioned here,
the goal is not only to provide this performance for the nominal case, but for all values
of the uncertain parameter V .

Now consider the parameter dependent open-loop function L(s) = V ·K(s)G0(s), which
describes the open-loop response in case of parameter variations. Due to the assumption
above, we can write this function as follows

L(s) = V · Ld(s) = V · ω
d
c

s
. (3.6)
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In this case, the open-loop function turns out to be a parameter dependent integrator.
Computing the closed-loop transfer function using the function (3.6) leads to

T (s) =
V · Ld(s)

1 + V · Ld(s)
=

V · ωd
s+ V · ωd

=
1

1
V ·ωdc

s+ 1
. (3.7)

The transfer function (3.7) describes the response of the closed-loop systen in case of
parameter variations. T (s) defines a parameter dependent low-pass function. Its time
constant is given by τV = 1

V ·ωc . In case that the parameter V varies, this results in a
different bandwidth V · ωdc of the closed-loop function. The overshoot in case of a step
response will be zero for all variations. The required robustness is achieved thanks to the
use of the integrator (3.3).

Example 3.1

For a better understanding of the integral formulation of the robustness requirements,
consider the following open-loop function

L(s) = V · K
s

with K = 1 rad/s and V ∈ [0.5 1.5] . (3.8)

The closed-loop function depending on the uncertain parameter V is given by

T (s) =
1

1
V ·K · s+ 1

. (3.9)

The minimal and maximal time constant of this function are given by τmin = 1
Vmax·K

and τmax = 1
Vmin·K . Moreover, the response of the closed-loop system is bounded in the

frequency domain by

Tmin = T (s, V = Vmin) =
1

τmax · s+ 1
(3.10)

and

Tmax = T (s, V = Vmax) =
1

τmin · s+ 1
. (3.11)

The parameter variations cause a shift of the bandwidth ωb of the low-pass transfer func-
tion, see Figure 3.2. In the nominal case, it is ωb = ω0. In the uncertain case, it is
ωb = V · ω0. Figure 3.2 shows also the step response for Vmin, V0 and Vmax. In all cases
the overshoot is zero. The required robustness is achieved.

Remark. The definition of the desired closed-loop response is given in the continuous
time domain. The proposed approach in this chapter is a discrete-time method. For this
reason, a discretization of the transfer function (3.5) is performed.
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Figure 3.2: Step response (right) and Bode magnitude (left) of the transfer function
T (s) for V = 0.5, V = 1.0 and V = 1.5

3.3 Formulation of the Control Problem

In this section, the formulation of the PID control problem is presented. It is based
on Model Predictive Control (MPC). First, the open-loop MPC optimization problem
is briefly discussed. Moreover, a LMI solution to this problem is presented. Then, the
closed-loop MPC problem is discussed. The related optimization problem is given in
terms of the control input and controller parameters. The resulting optimization consists
in solving a set of Bilinear Matrix Inequalities (BMI). This type of inequalities is well
known to be nonconvex and is hard to solve. This fact is discussed at the end of this
section.

3.3.1 Formulation of the Open-Loop LMI Problem

MPC is a receding horizing strategy. The related constrained optimization problem is
solved at each sampling time. The first entry of the control sequence is applied to the
system and the procedure is repeated again. This work considers the controller design
for SISO as well as for MIMO systems subject to input and output constraints. The
controller structure is predefined, namely PIDf . As the MPC approach is a discrete-time
method, the discrete-time version of the PIDf controller is considered here.
For a better understanding of the MPC main idea, a discrete-time model of the electronic
throttle given by the expression (B.48) in Appendix B is used. Thereby, the nominal case
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r y
MPC G0 

Figure 3.3: MPC closed-loop structure

with V = 1 is considered. It is given by the following state-space realization

G0 :

{
x(k + 1) = A x(k) + bu(k)

y(k) = cT0 x(k)
(3.12)

with A ∈ R2×2, b ∈ R2×1 and cT0 ∈ R1×2. The signals x(k), u(k) and y(k) are the
discrete-time state vector, input and output, respectively. The general uncertain case is
covered by introducing the uncertain output vector cT = V · cT0 .
The related MPC closed-loop structure is presented in Figure 3.3. The signal r(k) consti-
tutes the reference or desired trajectory. Based on the current and the predicted values
of the output y(k), the MPC strategy computes the optimal input sequence with respect
to a predefined cost function J(u). Figure 3.4 shows a time sequence of the output signal

y(k) 

k + 1 

r(k) 

k + 1 + N 

t

𝑇
 

J(u) 

Figure 3.4: Prediction horizing N of MPC with reference trajectory r(k) and output
y(k)

y(k) and its reference r(k). At the sampling time k+1, the optimal control sequence with
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respect to J(u) is computed. For example, the mean square root of the error r(k)− y(k)

can be used to define the cost function. It is worth to mention here that the computation
of the optimal input is based on predicted values beginning from the sampling time k+ 1

until k + 1 + N . The number N of discrete-time steps into the future is known as the
prediction horizon. Mostly, the value of N is chosen between 5 and 15 depending on the
order of the plant and the dynamic of the reference signal r(k).

To formulate the MPC optimization problem, a forward model of the state-space system
(3.12) is needed. Following the formulation (Maciejowski 2002, p. 54-55), the plant output
at successive time instant k is given by

y(k) = cT0 x(k)

y(k + 1) = cT0 A x(k) + cT0 b u(k)

y(k + 2) = cT0 A2 x(k) + cT0 Ab u(k) + cT0 b u(k + 1)

...
...

y(k − 1 +N) = cT0 AN−1 x(k) + cT0 AN−2b u(k) + · · ·
· · ·+ cT0 b u(k +N − 2). (3.13)

Now introducing the input and output vectors

u =


u(k)

u(k + 1)
...

u(k − 1 +N)

 and y =


y(k)

y(k + 1)
...

y(k − 1 +N)

 ,
the expression (3.13) can be written as

y = Ω u + Ψ, (3.14)

with

Ω =


0 0 0 · · · 0

cT0 b 0 0 · · · 0

cT0 Ab cT0 b 0 · · · 0
...

...
...

...
...

cT0 AN−2b cT0 AN−1b · · · cT0 b 0

 and Ψ =


cT0

cT0 A

cT0 A2

...
cT0 AN−1

x(k). (3.15)

The goal is to solve the following optimization problem

minimize
u

‖yd − y‖2
2 (3.16)
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with yd denotes the desired response in vector notation, which is equal to the reference
yd = r.

Problem (3.16) consists of minimizing the square of the 2-norm of the error vector e =

yd − y. The optimization parameter is the input vector u. This optimization represents
an unconstrained least square problem. The solution to this problem has a closed form.
To solve this problem consider the equivalent formulation

minimize
u

(yd − y)T (yd − y). (3.17)

After substituting Equation (3.14) in the minimization problem (3.17), the following

minimize
u

f(u) = yTd yd − 2yTd Ωu− 2yTd Ψ + (Ωu + Ψ)T (Ωu + Ψ) (3.18)

is obtained. The optimal vector uopt can be computed by setting the derivative of the
function f(u) with respect to u to zero. The optimal solution is as follows

uopt = (ΩTΩ)−1ΩT (yd −Ψ). (3.19)

The optimal value is given by the first entry uopt(k) of the optimal vector uopt.

One of the main advantages of the MPC approach is the capability of constraints handling.
It means that one can impose constraints on the input, output or states. For this purpose,
the general constrained MPC problem

minimize
u∈Ũ,y∈Ỹ

‖yd − y‖2
2 (3.20)

is considered. The sets Ũ and Ỹ describe constraints on the input and output vectors,
which are given as following

Ũ := {u ∈ RN ,Euu ≤ fu} (3.21)

and

Ỹ := {y ∈ RN ,Eyy ≤ fy}. (3.22)

Here Eu and Ey are predefined matrices describing the structure of the constraints. The
vectors fu and fy represent the related upper and lower bounds.

Before presenting the main result, problem (3.20) is replaced with the following equivalent
problem
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Problem 3.1 :

minimize
u∈Ũ,y∈Ỹ

γ

subject to ‖yd − y‖2
2 < γ

(3.23)

with the slack variable γ. To solve the above problem, we apply the Schur complement
given by the expressions (B.7) and (B.8) in Appendix B. For this purpose, the constraint
in Problem 3.1 is rewritten as follows

−(yd − y)T (−IN) (yd − y) + (−γ) < 0. (3.24)

Applying the Schur complement on (3.24) leads to the following LMI[ −γ (yd − y)T

(yd − y) −IN

]
< 0 (3.25)

or [ −γ (yd −Ωu)T

(yd −Ωu) −IN

]
< 0 (3.26)

by substituting Ωu for y, since we assume that x(0) = 0. IN represents the identity
matrix of dimension N .

Putting now all constraints together, the MPC optimization problem can be summarized
as follows

Problem 3.2 :

minimize
u

γ

subject to
[ −γ (yd −Ωu)T

(yd −Ωu) −IN

]
< 0,

Euu ≤ fu, Ey(Ωu) ≤ fy.

(3.27)

The LMI optimization problem (3.27) provides the optimal input vector uopt at time k.
Only the first component of this vector is applied to the system. In the next step, the
whole procedure is repeated again.

3.3.2 Optimal Input Trajectory for the Electronic Throttle

To solve the LMI problem (3.27), the modeling and optimization Toolbox YALMIP
(Lofberg 2004) in combination with the SeDuMi solver (Labit et al. 2002) are used. At
this point, it is worth to mention that we are solving an optimization problem numeri-
cally. This means that the optimization problem should be well conditioned. The optimal
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solution denoted by uopt should be numerically robust and not exceed an upper bound.
To achieve this goal, the following LMI[−σ (u)T

(u) −IN

]
< 0 (3.28)

is added to the set of LMIs (3.27). Then, the objective γ + σ is minimized instead of
minimizing γ. The LMI (3.28) can be deduced from the following condition

‖u‖2
2 = uTu < σ, (3.29)

by applying the Schur complement.

For a better understanding of the LMI-Problem 3.2, the computation of an optimal input
trajectory for the electronic throttle based on the nominal discrete-time model (3.12) is
considered. The problem under consideration consists of computing the optimal input,
which brings the output of the electronic throttle from 0◦ to 10◦ under input constraints.
Thereby, the maximal value of the input u is given by Umax. Three cases are considered,
namely Umax = 1, Umax = 2 and Umax = 4. For this purpose, the following problem
definition

yd =



0

10

10

10
...

10


, fu = Umax



1

1

1

1
...
1


and Eu =



1 0 0 0 · · · 0

−1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 −1 0 0 · · · 0
...

...
...

... · · · ...
0 0 0 0 · · · −1


is introduced. The vector yd ∈ R201×1 denotes the desired response given in terms of a
step. The vector fu ∈ R402×1 and the matrix Eu ∈ R402×201 describes the input constraint.
The matrix Ω ∈ R201×201 is given by the expression (3.15).

After defining the problem matrices yd, fu, Eu and Ω, the optimization is set. Now using
the LMI solver (Labit et al. 2002), the optimization problem (3.27) is solved. Figure 3.5
shows time plots of the obtained optimal input uopt(k) and the related optimal output
yopt(k) for all three cases.

The constraint imposed by Umax on the input trajectory is satisfied. The optimal input
sequence uopt(k) is below Umax. Moreover, applying the optimal input trajectory results
in the output trajectory shown on the left hand side of Figure 3.5. The rise time of the
optimal trajectory depends on the maximal input value Umax. Note at this point that the
optimal input sequence uopt(k) is applied as a feedforward signal. This corresponds to an
open-loop structure. The closed-loop problem is considered in the next section.

In some cases, it is desired to constrain, additionally to the input or output signal, the
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Figure 3.5: Optimal output trajectory (left) and optimal input trajectory (right) for
Umax = 2 (dashed black), Umax = 4 (red) and Umax = 8 (dashdot blue)

related first or second order derivative or both. This can be achieved by considering the
definition of the discrete-time derivative. This is given by y(k)−y(k−1) for the first order
derivative δy(k). For the second order derivative δ2y, its discrete-time implementation is
given by y(k) − 2y(k − 1) + y(k − 2). The sampling time is omitted for simplicity. Now
assume that the discrete-time difference δy(k) is constrained by a given lower and upper
bound, ∆ymin and ∆ymax, respectively. This can be written as follows

∆ymin ≤ (y(k + 1)− y(k)) ≤ ∆ymax (3.30)

or

(y(k + 1)− y(k)) ≤ ∆ymax

(y(k)− y(k + 1)) ≤ −∆ymin. (3.31)



56 3 Optimization of PID Controllers using MPC and LMI

Now using the following matrices

Ey =



−1 1 0 0 0 · · · 0

1 −1 0 0 0 · · · 0

0 0 −1 1 0 · · · 0

0 0 1 −1 0 · · · 0
...

...
...

...
... · · · ...

0 0 0 0 0 · · · −1


and fy =



∆ymax
−∆ymin

∆ymax
−∆ymin

...
−∆ymin


,

the inequalities (3.31) can be transformed into the form (3.22) with fy ∈ R600×1 and
Ey ∈ R600×301. After building the constraint matrices, the optimization problem (3.27) is
solved. Three cases are considered, namely ∆ymax = 0.10, ∆ymax = 0.12 and ∆ymax =

0.14.
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Figure 3.6: Optimal output trajectory (left) and optimal input trajectory (right) for
∆ymax = 0.10, ∆ymax = 0.12 and ∆ymax = 0.14

The results are given by Figure 3.6. It shows that the constraint on the first order
difference δy(k) is achieved. The optimal output trajectory is also presented. The rise
time depends on the maximal value ∆ymax. Whether constraining the input or the output,
the set of LMIs (3.27) is very convenient to be used. In all cases, the optimal input
subject to the imposed constraints is achieved. Moreover, the lists of constraints that
can be used or can be encountered using the formulation proposed here is very general.



3.3 Formulation of the Control Problem 57

Additionally to constraining the velocity, one can constrain the acceleration, jerk or other
linear constraints.

3.3.3 Formulation of the Closed-Loop BMI Problem

The optimization problem (3.27) represents the open-loop MPC problem. It means that
the optimal input trajectory uopt(k) is directly applied to the plant. Its dynamic possibil-
ities are much more reduced than in the case, where the parameters of a controller can be
also adjusted. This latter case is the object of this section by considering the closed-loop
MPC problem. In this case, the optimal input uopt(k) is generated through a LTI dynamic
discrete-time controller K. The optimization problem (3.27) is extended to include the
controller parameters. In the case of PIDf controllers, these are given by KP , KI and
KD.

− 

E (z)R (z) Y (z)
K (z) G0 (z)

Td (z)

U (z)

Yd (z) ET (z)

Figure 3.7: Discrete-time model following control structure with reference model Td(z),
controller K(z) and nominal plant G0(z)

Figure 3.7 shows the considered closed-loop structure used to optimize the controller.
Thereby, R, E, U , Y , Yd and ET are the reference, output error, control input, plant
output , desired output and the error between the desired output and the plant output,
respectively.

Td(z) is the discrete-time reference model, which generates the desired response. Based
on the discussion in Section 3.2, this model is defined using a given sampling time Ts as
follows

Td(z) =
1− e−Tsωdc
z − e−Tsωdc (3.32)

through the discretization of the continuous-time transfer function given by the expression
(3.5). For this task, Zero Order Hold (ZOH) method is used, see (Unbehauen 2007, p.
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121). Now consider a given state-space realization of the system Td(z) as follows

Td :

{
xd(k + 1) = ad xd(k) + bd r(k)

yd(k) = cd xd(k).
(3.33)

The output of this reference model at successive time instant k is given by

yd(k) = cd xd(k)

yd(k + 1) = cdad xd(k) + cdbd r(k)

yd(k + 2) = cda
2
d xd(k) + cdadbd r(k) + cdbd r(k + 1)

...
...

yd(k − 1 +N) = cda
N−1
d x(k) + cda

N−2
d bd r(k) + · · ·

· · ·+ cdbd r(k +N − 2). (3.34)

The vector representation of the desired response is given by


yd(k)

yd(k + 1)
...

yd(k − 1 +N)


︸ ︷︷ ︸

yd

=


0 0 0 · · · 0

cdbd 0 0 · · · 0

cdadbd cdbd 0 · · · 0
...

...
...

... 0

cda
N−2
d bd cda

N−1
d bd · · · cdbd 0


︸ ︷︷ ︸

Ωd


r(k)

r(k + 1)
...

r(k − 1 +N)


︸ ︷︷ ︸

r

for a zero initial condition xd(0) = 0. Ωd and r denote the transition matrix and the
reference in vector notation. Substituting Ωdr for the desired response yd, the previous
optimization problem (3.27) can be replaced by the following problem

Problem 3.3 :

minimize
u

γ

subject to
[ −γ (Ωdr−Ωu)T

(Ωdr−Ωu) −IN

]
< 0,

Euu ≤ fu, Ey(Ωu) ≤ fy.

(3.35)

Now the main idea of this section is presented. Instead of seeking the optimal input
uopt(k) that provides the desired response yd, the goal is to find a controller K(z) which
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generates uopt(k). Specifically, a discrete-time PID controller given by

K(z) = KP +KI
1

1− z−1︸ ︷︷ ︸
FI(z)

+KD 1− z−1︸ ︷︷ ︸
FD(z)

(3.36)

is considered for this task. The transfer functions FI(z) and FD(z) are the discrete-
time integrator and ideal differentiation, see (Unbehauen 2007, p. 127). For simplicity,
the sampling time is omitted. Considering Figure 3.7, the output of the controller is as
follows

U(z) = KPE(z)︸ ︷︷ ︸
UP (z)

+KI

(
1

1− z−1

)
E(z)︸ ︷︷ ︸

UI(z)

+KD

(
1− z−1

)
E(z)︸ ︷︷ ︸

UD(z)

(3.37)

where UP , UI and UD denote the output P , I and D-component of the PID controller.
Using the sampling step k, we get the following update-formula

u(k + 1) = KP e(k + 1) +KIuI(k + 1) +KD(e(k + 1)− e(k)) (3.38)

with uI(k + 1) = (e(k + 1) + uI(k)). The expression above is linear in the error e(k) and
can be formulated in vector notation. This can be achieved as follows

u = KP e +KIΩI e +KDΩD e (3.39)

with the error vector

e =


e(k)

e(k + 1)
...

e(k − 1 +N)

 .
The matrices ΩD and ΩI consist the derivative and integral operators in matrix form.
These are defined as follows

e(k)

e(k + 1)− e(k)

e(k + 2)− e(k − 1)
...

e(k − 1 +N)− e(k − 2 +N)


︸ ︷︷ ︸

eD

=


1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
...

... 0

0 0 · · · −1 1


︸ ︷︷ ︸

ΩD


e(k)

e(k + 1)
...

e(k − 1 +N)


︸ ︷︷ ︸

e

(3.40)
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and


e(k)

e(k) + e(k + 1)
...∑N−1

k=0 e(k)


︸ ︷︷ ︸

eI

=


1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

... 0

1 1 · · · 1 1


︸ ︷︷ ︸

ΩI


e(k)

e(k + 1)
...

e(k − 1 +N)


︸ ︷︷ ︸

e

(3.41)

with eD and eI consist the discrete-time derivative and integral of the error vector e where
we assume that e(k − 1) = 0. Now replacing e by (r − y) on the right hand side of the
expression (3.39) results in the following equality

u = KP (r− y) +KIΩI (r− y) +KDΩD (r− y) (3.42)

or substituting Ωu for y

u = KP (r−Ωu) +KIΩI (r−Ωu) +KDΩD (r−Ωu) (3.43)

for the control input vector u.

To this point, the formulation of the control problem related to the optimization of PID
controllers is presented. It consists of solving the LMI problem (3.27) subject to the
constraint given by Equation (3.43). It means that the input vector u is constrained to
be the output of the discrete-time PID controller. It is nonlinear since the parameters
to be optimized, KP , KI and KD are multiplied by the input vector u, which is also an
optimization parameter. Due to this fact, this problem is very hard to solve. In the next
section, a method is proposed to overcome this difficulty.

3.4 Optimization of PID Controllers

In this section, the optimization of discrete-time PID controllers is presented. A method
is given to approximately formulate the nonlinear linear constraint (3.43) in terms of linear
matrix inequalities. The resulting optimizing problem is expressed as a set of LMIs in the
controller parameters KP , KI and KD. The obtained controller can be then implemented
to generate the optimal input sequence uopt(k). A simulation example is used to show
the effectiveness of this approach. Moreover, the performance of the optimized controller
is compared to the performance of a robust PID controller with Nonsmooth method
(Apkarian and Noll 2006) implemented in the Matlab function Hinfstruct. The pros and
cons of our method are discussed at the end of this section.

Before presenting the main result of this section, the overall optimization problem is
recalled. It consists of the following set of LMIs
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Problem 3.4 :

minimize
u

γ

subject to
[ −γ (yd −Ωu)T

(yd −Ωu) −IN

]
< 0,

Euu ≤ fu, Ey(Ωu) ≤ fy.

(3.44)

together with the equality constraint

u = KP (r−Ωu) +KIΩI (r−Ωu) +KDΩD (r−Ωu) . (3.45)

This equality is a hard nonlinear constraint. It requires that the plant input u, left hand
side of the equality (3.45), is equal to the controller output defined by the right hand side
of this equality. The idea of this work is to replace the equality (3.45) with an inequality
constraint in the form

‖u−KP (r−Ωu) +KIΩI(r−Ωu) +KDΩD(r−Ωu)‖2
2 < σ. (3.46)

This is a soft version of the equality constraint. Minimizing σ will result in a controller
that approximately generates the input signal instead of exactly. Nevertheless, inequality
(3.46) is still not an LMI. The goal is to get rid of the multiplication between the param-
eters KP , KI and KD and the input vector u. To obtain the required LMI form, assume
that the optimization problem (3.44) is feasible. Moreover, assume that the value of γ
is nearly zero or at least very small. In this case, the optimal input vector uopt satisfies
Ωuopt = y ≈ yd. It means that the plant output y approximately fits the desired response
yd. With the help of this assumption, inequality (3.46) can be formulated as follows

‖u−KP (r− yd) +KIΩI(r− yd) +KDΩD(r− yd)‖2
2 < σ. (3.47)

The term Ωu is now replaced with the desired response yd, which is a fixed known
vector. This gets rid of the multiplication between the input vector u and the controller
parameters in Equation (3.46). It can be used to replace the nonlinear constraint (3.46).
To this point, the main approach is now presented. For this reason, consider inequality
(3.47). This can be formulated as

(u− ũ)T (u− ũ) < σ (3.48)

with

ũ = KP (r− yd) +KIΩI(r− yd) +KDΩD(r− yd). (3.49)
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Applying the Schur complement on (3.48) leads to[ −σ (u− ũ)T

(u− ũ) −IN

]
< 0, (3.50)

which is a LMI in the input vector u and in the controller parameters KP , KI and
KD. Putting all together, the overall optimization problem is defined by the following
formulation

Problem 3.5 :

minimize
u,KP ,KI ,KD

γ + σ

subject to
[ −γ (yd −Ωu)T

(yd −Ωu) −IN

]
< 0,

[ −σ (u− ũ)T

(u− ũ) −IN

]
< 0,

Euu ≤ fu, Ey(Ωu) ≤ fy.

(3.51)

It represents an approach to approximate MPC for LTI systems and at the same time a
method to optimize the parameters of PID controllers satisfying input and output con-
straints.

Remark. The existence of a PID controller using the proposed method is dependent on
the feasibility of Problem 3.5. As the resulting optimal input is generated through the
discrete-time PID controller, classical linear stability theorems can be used to check the
stability, see for example (Unbehauen 2008)[p. 140], of the resulting closed-loop system.
In the scope of this work, SISO- as well MIMO-LTI stable systems have been considered.

To show the effectiveness of the LMI formulation (3.51), we consider the optimization of a
robust controller for the electronic throttle based on the discrete-time model (3.12). The
parameter V ranges in the interval [0.5 1.5].

The dynamic of the electronic throttle contains an integrator. For this reason, the follow-
ing PDf controller given by

K(z) = KP +KDFd(z) (3.52)

is considered. Fd(z) consists the discrete-time filtered derivative. The goal it to optimize
the parameters KP and KD such that the robustness requirements defined in Section 3.2
are satisfied. The goal is to bring the output of the throttle from 0◦ up to 10◦ without
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any overshoot for all variations of the parameter V . These are given in terms of the
desired bandwidth ωdc = 40 rad/s. The desired output response yd is given through the
step response of the reference discrete-time function Td(z) discussed in Section 3.2 based
on ωdc . Additionally to the robust performance given by the desired trajectory yd, the
plant input is constrained by a maximal value Umax = 5. The constraint for the input in
problem (3.51) is Euu ≤ fu(Umax = 5). The output constraint given by Ey(Ωu) ≤ fy is
not used due to the fact that the plant output y has to track the desired trajectory yd.

Now the optimization problem can be formulated. For this purpose, substitute the desired
response yd in Problem 3.5. Moreover, due to the structure of the PDf controller the
control input (3.49) is given by

ũ = KP (r− yd) +KDΩD(r− yd)f . (3.53)

Thereby, r consists of a step command from 0◦ to 10◦ in vector notation. The operator
(r − yd)f denotes the filtered error in vector notation. After defining the optimization
problem, the SeDuMi solver in combination with the modeling language YALMIP is used
to compute the optimal controller parameters KP and KD.
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Figure 3.8: Closed-loop step response (left) and bode magnitude of the desired (yellow
dashed) and achieved closed-loop response for V = 0.8 (dashed red), V = 1.0 (black) and
V = 1.2 (dashdot blue)
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Figure 3.8 shows the step and the frequency response of the closed-loop system with the
obtained discrete-time controller

K(z) =
0.5127z − 0.4955

z − 0.8187
(3.54)

with the sampling time 1 ms. For all values of the uncertain parameter V , the step re-
sponse does not show any overshoot. This is due the fact that a parameter variation causes
a shift of the closed-loop bandwidth. On the other hand, the amplitude at low frequencies
is for all values of V one. The robustness requirements are in this case achieved. The
controller PDf provides the required performance in the presence of parameter variations.

Additionaly to the robust performance, the controller output should fullfil the constraint
given by the maximal input value Umax = 5. Figure 3.9 shows the MPC open-loop
optimized input trajectory and the input signal generated by the PD controller. It is
clear that both trajectory satisfy the input constraint (smaller than 5). Moreover, the
generated inputs for V = 0.8, V = 1.0 and V = 1.2 are also within the specified range.
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Figure 3.9: Controller output and optimized MPC open-loop plant input (left), Con-
troller output for V = 0.8 (dashed red), V = 1.0 (black) and V = 1.2 (dashdot blue)

The above example shows that the PD controller which is optimized using our method
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fullfil the specified robust performance in case of static gain variation. Moreover, the
input constraint imposed on the controller output is also satisfied. To further investigate
the application of this controller, a comparison to existing method to compute robust
PD controllers is given. A well known appraoch that can be used is the H∞ based PD
controller, see (Gahinet and Apkarian 2011). One has to mention here that this method
does not consider any type of hard constraints on the plant input.

For the same plant model and using the same robust requirement given in terms of the
desired bandwidth ωdc = 40 rad/s, an H∞-PD controller is computed using the Matlab
function Hinfstruct.

The step response with the obtained controller

K(z) =
0.638z − 0.617

z − 0.8187
(3.55)

are shown in Figure 3.10. At first sight, one can say that the required robust perfor-
mance is approximately achieved, except a small deterioration in the step response for
V = 1.2. Considering the bode magnitude response for the nominal case, the achieved
nominal bandwidth is ω0

c = 66 rad/s which is higher than the achieved bandwidth with
PD controller using our method 50 rad/s.
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Additionally to the required robust performance, the H∞ controller has to generate an
input signal within the maximal value given by Umax = 5. This is shown in Figure 3.11.
The controller output is out of this range. This is due to the fact that the method in
(Apkarian and Noll 2006) does not take any type of hard constraints.
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Figure 3.11: Plant input for V = 0.8 (dashed red), V = 1.0 (black) and V = 1.2
(dashdot blue)

Table 3.1: Overshoots in (Apkarian and Noll 2006)

Criteria Complexity Constraint Controller Optimization
(Input/Output)

Method (3.51) Mittel Possible PID Offline
(Apkarian and Noll 2006) High No PID Offline
(Kothare et al. 1996) High Possible State feedback Online

(adaptive)

By complexity, we mean the effort required to implement the related method. The method
in (Apkarian and Noll 2006) is based on Nonsmooth optimization techniques, which re-
quires the computation of theH∞ subgradient, see (Clarke 1990). The method in (Kothare
et al. 1996) is based on the LMI formulation of the related MPC problem. Adaptive state
feedback controller is used to approximate the MPC optimal input trajectory. The con-
troller computation is performed online by solving an LMI problem at each sampling time.
It constrains the controller application to plants with slow sampling time. Contrary to
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(Kothare et al. 1996), the optimization problem (3.5) is solved in the controller parameters
offline. The optimal input trajectory is approximated using a PID controller. Robustness
is taking into consideration through the specification of a desired output trajectory.

Our Method and the approach in (Apkarian and Noll 2006) consider only linear system
without time delay. This can be overcome by approximating the delay part using a linear
transfer function. The appraoch in (Kothare et al. 1996) deals directly with time delay.

Our appraoch is not part of the Matlab Toolbox (Robust Control). It is based on the free
LMI solver (Labit et al. 2002) and (Lofberg 2004), which makes it free accessible.

3.5 Summary

In this chapter, a novel method was presented to optimize the parameters of PID con-
trollers, which provides an alternative method to be used instead of the Matlab function
Hinfstruct for the optimization of fractional controllers in the previous section. More-
over, it consists a modern appraoch to optimize the parameters of PID controllers. Our
proposed technique in this section is based on MPC approach to formulate the control
problem. First of all, Section 3.2 deals with the considered performance specifications.
The feedforward as well as the feedback or closed-loop MPC problem has been discussed in
Section 3.3. Moreover, a method is presented to transform the resulting control problem
into a LMI. This was successfully applied to compute the optimal trajectory for a model
of the electronic throttle. The design and optimization of a robust PID controller is also
treated. The resulting optimization problem turns out to be a BMI. It can be not solved
using existing LMI solvers. In Section 3.4, a method has been presented to transform
this problem into a set of LMIs. To test the effectiveness of the whole approach, a robust
PDf is design for the electronic throttle. Moreover, simulation results have shown that
the controller provides the desired performance for all variations of the static gain of a
given plant.
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4 Artificial Neural Network Controllers

4.1 State of the Art (ANN)

The permanent development of nonlinear black-box tools and methodologies is aimed to
identify high nonlinear systems. Among modern nonlinear black-box model structures
(see e.g. (Sjöberg et al. 1995) and references therein) ANNs have been extensively sug-
gested and used. Especially, this is due to their inherent approximation capabilities. A
three layered feedforward neural network containing a sufficient number of neurons with
Sigmoidal activation functions can (at least theoretically) approximate, to any level of
accuracy, a given continuous nonlinear function (Sontag 1997). Neural networks consti-
tute, beside a tool for modeling purpose, an alternative method to design controllers for
linear and nonlinear systems. Therefore, as a further technique to be implemented later
in a real system neural ANNS are explored. Contrary to the method proposed in Section
3, we are considering the optimization of general linear state-space controllers instead of
PID controllers.

Feedforward neural networks are static network structures. They are used in nonlinear
system identification, see (Nørgård et al. 1996) and (Nørgård 2000). The way these struc-
tures approximate the dynamic of the system to be identified is carried out by providing
a sequence of past inputs and past outputs to the neural network. This type of networks
is more suitable to approximate and identify static functions.

A different way to represent dynamic systems is to incorporate feedback connections
within the hidden layers. The resulting neural network is known as Recurrent Neural
Network (RNN). These structures represent a broader class of nonlinear dynamic systems.
They can be used for grey-box as well as for black-box identification. The first one
is achieved by building a RNN with the same structure as the plant to be identified.
Furthermore, RNNs can be used to identify open-loop as well as closed-loop systems. A
RNN structure has been successfully used to identify a nonlinear system operating in
closed-loop, see (Lachhab et al. 2008). The idea is based on representing the closed-loop
system as a network consisting of two RNNs. One RNN represents the implemented
controller. Its weights are fixed to the controller parameters. Another recurrent network
represents the plant to be identified. The weights of this network are adapted during the
training or the optimization stage.

In (Widrow and Bilello 1993), the identification of a nonlinear system is shown. Moreover,
the authors used a neural network to approximate the inverse of the nonlinear model. The
validation of this method is given only by means of simulations. In (Mohagheghi et al.
2005), a dynamic neural network structure is used for nonlinear identification in power
system. The training of this network shows that the system dynamic is well identified
thanks to the use of a nonlinear state-space representation. In (Arsie et al. 2008), the
application of RNNs to the Air Fuel Ratio (AFR) estimation is proposed. Based on
measured signals, a RNN is trained to approximate the AFR. Validation of the RNNmodel
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using measured data is given. Moreover, the authors identify an inverse model of the plant
and apply the related controller to the real plant. In (Hunt and Sbarbaro 1991), Internal
Model Control (IMC) principle is applied to a nonlinear system. First, a nonlinear model
of the plant is obtained using a neural network. Based on this network and an inverse
model identification, IMC is applied to the nonlinear plant. Application of neural network
compensation in combination with sliding mode control and feedback linearization is
presented in (Xu et al. 1991). In (Huang et al. 1999), a neural network is used to estimate
the load torque of the induction motor and to identify the related model. In the field of
Linear Parameter Varying (LPV) system identification, linear recurrent neural networks
are used in (Abbas et al. 2010) for identification purpose in open- as well as in closed-loop.
Other applications of neural networks can be found in (Isermann and Müller 2001) and
(Dias and Mota 2001).

Actually, the use of neural networks can be classify as follows

• System Identification. Neural networks are used to identify nonlinear dynamics.
The resulting structure constitutes the counterpart to the well known linear identi-
fication methods. These are summarized here (Nørgård 2000, p. 38 and p.122):

– FIR/NNFIR: Neural Network Finite Impulse Response. Only past inputs are
used for identification.

– ARX/NNARX: Neural Network Auto Regressive External. Past inputs and
observed outputs are used for identification.

– OE/NNOE: Neural Network Output Error. Identification is based on past
inputs and output predictions.

– ARMAX/NNARMAX: Neural Network Auto Regressive Moving Average Ex-
ternal. Identification is based on past inputs, output predictions and residuals.

– SSIF/NNSSIF: Neural Network State-Space Innovation Form. Identification is
based on past inputs, states estimation and residuals.

• Control Design. Neural networks are used for control purposes. This approach
can be classified as follows:

– Direct design: This approach means that the controller itself is a neural net-
work. In this case, a model is not necessary required to design the controller.
The neural network is trained online to achieve a specified performance. Such
a design includes, among others, direct inverse control, internal model control,
feedback linearization, feedforward strategy and optimal control.

– Indirect design: This approach means that neural network strutctures are
trained to approximate the dynamic of a given nonlinear plant. Once a neural
network is obtained, the controller can be optimized based on this model. A
well-known method is given by model predictive control.
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4.2 Neural Network Topology

In this section, ANN are briefly introduced. Two structures are considered, namely feed-
forward and feedback. Moreover, a numerical example given by a nonlinear static function
is considered to demonstrate the approximation capability of neural networks. Afterword,
the main contribution in the field of neural networks, which is based on the work (Lachhab
et al. 2008) is discussed. The main difference to the work (Lachhab et al. 2008) is that
the plant is already identified, but the controller is not known. Instead of using RNN
for identification purposes, it is used to optimize the controller parameters in closed-loop.
The resulting RNN controller is linear and time invariant.

4.2.1 Feedforward and Recurrent Neural Networks

In the last years, ANNs have become a wide attention in the control community. Thanks
to its learning capability, ANNs can be used to solve linear and nonlinear identification
problems as well as control problems. The efforts by many researchers to understand
the humain brain (nervous system) and its elementary units gave birth to ANNs. The
humain brain consists of a huge number of neurons which interact with each other, see
(Sarangapani 2006). Neurons constitute the basic unit of the nervous system.
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Figure 4.1: Artificial neuron (Nørgård 2000, p. 6)

The structure of a simplified neuron is shown in Figure 4.1. The inputs to the neuron are
x1 to x5. The coefficients w1 to w5 are weights of the related inputs. Additionally, the
neuron has a constant input, which is set to one. This provides a bias or an offset b. The
function f(·) is called the network activation function. It maps the inputs of the neuron
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to the output y, which is given by

y = f

(
5∑
i=1

wixi + b

)
(4.1)

or in vector form

y = f(xTw + b) (4.2)

with

x =

x1

...
x5

 and w =

w1

...
w5

 . (4.3)

The scalar activation function f(·) plays an important role in the field of neural networks.
It exists a high number of differently defined activation functions. Generally, these func-
tions are classified into linear and nonlinear activation functions. A detailed description
of the commonly used functions is given in (Sarangapani 2006).
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Figure 4.2: Linear and nonlinear activation functions

Figure 4.2 shows four well known functions. Depending on the input-output behavior to
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be approximated, the type of the neuron activation function is defined. In case that the
dynamic to be approximate is nonlinear, the Hyberbolic Tangent function is frequently
used. In (Sontag 1997), the identification based on this nonlinear function is discussed.
The author proves that a neural network with a sufficiently high number of Hyberbolic
Tangent neurons can approximate any arbitrary given nonlinear function, to any desired
accuracy.

Figure 4.3 shows a neuron, which represents the Hyberbolic Tangent function with a bias
b. The output of this neuron is given by

y = tanh
(
xTw + b

)
=
e(xTw+b) − e(−xTw−b)

e(xTw+b) + e(−xTw−b) . (4.4)

This activation function maps values x between −∞ and +∞ to the bounded output y
between −1 and +1. A neuron constitutes the basic unit of neural networks. Combining
several neurons to a global network leads to the so-called layers. A neural network with
more than one layer is called Multilayer Perceptron network (MLP). It represents the
standard and general neural network structure.

x

b

1

y
w

Figure 4.3: Artificial neuron with nonlinear activation function

Figure 4.4 shows a MLP network with r inputs and q outputs. f1(·) to fn(·) and h1(·)
to hm(·) are the activation functions. The MLP network consists of an input layer with
inputs ϕ1 to ϕr, a hidden layer and an output layer that generates the outputs z1 to zq.
Mostly, the activation functions of the input layer are nonlinear. On the other hand, the
output layer is represented with linear activation functions.

The outputs of the MLP in Figure 4.4 are computed as follows (Nørgård 2000, p. 8)

zi = hi

(
n∑
j=1

vjifj

(
m∑
l=1

ϕlwlj + bIl

)
+ bHi

)
. (4.5)
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Figure 4.4: Multilayer Perceptron Neural Network (two layers: hidden and output),
(Nørgård 2000, p. 8)

It is common that the activation functions of one layer are equal. It means that f1(·) =

f2(·) = · · · = fn(·) = f(·) and h1(·) = h2(·) = · · · = hm(·) = h(·). Now define the vector
field activation functions f(·) and h(·) as follows

f(·) =


f(·)
f(·)
...

f(·)

 and h(·) =


h(·)
h(·)
...

h(·)

 . (4.6)

The input and output weights can be regrouped as follows

W =


w11 w12 · · · w1r

w21 w22 · · · w2n

...
...

...
...

wn1 wr2 · · · wnr

 and V =


v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

...
...

vm1 vr2 · · · vmn

 . (4.7)

Now based on the input vector ϕ =
[
ϕ1 ϕ2 · · · ϕr

]T
, the corresponding output vector

z =
[
z1 z2 · · · zm

]T
can be written in the following compact form

z = h(V · f(W · ϕ+ bI) + bH). (4.8)
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Thereby, bI and bH consist the input and output bias vectors, respectively. These are
defined as follows

bI =


bI1
bI2
...
bIn

 and bH =


bH1

bH2

...
bHm

 . (4.9)

The expression (4.8) is very useful to represent state-space models as will be shown later.
The main characteristic of the MLP network shown in Figure 4.4 is that it has a feedfor-
ward structure. It means that the neural network does not contain any delay or feedback
component. It is a static network. One of the main application fields of feedforward neural
networks is the identification of nonlinear systems. Linear and nonlinear system identi-
fication based on this type of networks are provided by the Matlab Toolbox NNSYSID,
which is developed by (Nørgård et al. 1996). After providing the measured input and
output signals, the user of the NNSYSID Toolbox can choose the number of layers, the
number of inputs and outputs and the type of activation functions. Internally, an opti-
mization problem is set and solved iteratively. The goal is to fit the measured output to
the output of the built feedforward neural network.

The main idea is summarized here. Consider for this purpose a given SISO-nonlinear
discrete-time system as follows

yk = g(yk−1, yk−2, · · · , yk−n, uk−1, uk−2, · · · , uk−m) (4.10)

with uk and yk denote the input and output at sampling time k with the related orders
n and m, respectively. The function g(·) is nonlinear and maps past inputs and outputs
onto the actual output yk. The objective is to approximate the nonlinear function g(·)
using the structure (4.4). For this purpose, set now the input and output vectors in this
structure as

ϕ =



yk−1

...
yk−n
uk−1

...
uk−m


and z1k = h(vT · f(W · ϕ+ bI) + bH1) (4.11)

with v = [v11, v21, · · · , vm1]T . Thereby, z1k consists the output of the MLP network at
sampling time k. It represents also the predicted output ŷk based on the past input
and output values, yk−1, yk−2, · · · , yk−n and uk−1, uk−2, · · · , uk−m, respectively. In
this case, ϕ is called the regressor vector. The problem under consideration consists of
approximating the output of the real system yk defined by the unknown function g(·)
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using the past data. For this purpose, a cost function has to be defined. In this context,
the mean square error defined as follows

J(e) =
1

N

N∑
k=0

e(k)2 with e(k) = y(k)− ŷ(k) (4.12)

is mostly used. N denotes the length of the error signal. The goal is to minimize the
cost function J(e) in the neural network parameters v, W, bI and bH1. The optimization
problem can be formulated as follows

minimize
v,W,bI ,bH1

1

N

N∑
k=0

e(k)2. (4.13)

Now substituting for the predicted output ŷk the network output given by the expression
(4.11) results in

Problem 4.1 :

minimize
v,W,bI ,bH1

1

N

N∑
k=0

(y(k)− h(vT · f(W · ϕ(k) + bI) + bH1))2. (4.14)

This problem is quadratic in the error e(k), but it is nonlinear in the network parame-
ters. This is due to the nonlinear activation functions f(·) and h(·) and the multiplication
between the network weights. Due to this fact, the minimizing of this nonlinear problem
requires special algorithms. The minimizing of this problem as well as a discussion of the
different existing algorithms that can be used is given in Appendix D.

Example 4.1

For a better understanding of MLP feedforward neural networks, the approximation of a
given static nonlinear function is presented. For this reason, consider the following given
function

y(k) = cos(πx(k)) sin(πx(k)) exp(−|x(k)|)︸ ︷︷ ︸
g(x(k))

. (4.15)

The static function g(x(k)) maps the sequence x(k) ∈ [−1 1] into the output y(k). Sup-
pose that the nonlinear function g(·) is not known and has to be approximated. Based
on the input and output vectors x and y, the goal is to approximate this function using
the feedforward structure shown in Figure 4.4. The MLP network has one input, which
is ϕ1(k) = x(k), and one output which is the approximated output ŷ(k) = z1(k). The
output function h(·) is chosen to be linear. On the other hand, the hidden layer function
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f(·) is chosen to be Hyperbolic Tangent.
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Figure 4.5: Training of the MLP, Mean Square Error (MSE) versus number of iteration
(left) and output of the MLP (right)

In what concerns the bias, we set bI1 to zero. The output bias bh1 is a scalar network
weight. Thereby, the hidden and output layer weights are given by

w ∈ R5×1, v1×5 ∈ R. (4.16)

The related output of the MLP is described by the following function

ŷ(k) = v · tanh(w · x(k)) + bh1. (4.17)

The goal is to optimize the MLP-parameter given by the vectors v and w, and the
bias bh1. For this purpose, the whole problem is formulated using the Matlab Neural
Network Toolbox. Thereby, the cost function is the mean square error given by the
expression (4.13). The algorithm used to train the neural network is Levenberg-Marquadt,
see Appendix D.

The results with the following obtained network weights
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w =


−5.20

−3.35

−3.35

−1.71

1.71

 vT =


−17.89

17.64

18.63

−14.96

8.24

 bh1 = −5.82 (4.18)

are shown in Figure 4.5. The convergence of the algorithm shows that after only 20
iterations, the output of the MLP approximately fits the real output.

The static problem above is nonlinear, which makes the optimization hard. However,
thanks to the algorithm Levenberg-Marquadt a good convergence was achieved. The
obtained set of parameters provides a good fit to the function output.

4.2.2 Recurrent Neural Networks

The example considered above shows that feedforward networks are capable to approx-
imate static nonlinear functions. They are suitable in case that the system under con-
sideration does not display any dynamics. However, in the field of control and modeling
the systems under consideration are mostly dynamic. For this reason, the MLP network
given by the structure shown in Figure 4.4 has to be modified. Another class of MLP
networks is needed. Such a class has to contain tapped delay lines. These class are well
known as recurrent or dynamic network. Figure 4.6 shows such a dynamic neural net-
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Figure 4.6: Multilayer recurrent neural network (Nørgård 2000, p. 11)

works. The hidden layer contains a delay component. In this case, the output of the
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activation functions f1(·) to fn(·) depends on the values at time k and on the previous
values at time k − 1. Such neural networks are called recurrent networks. They can be
seen as discrete-time nonlinear systems. Using the structure shown in Figure 4.6 with
the appropriate choice of the related weights, nonlinear dynamic systems can now be rep-
resented as recurrent neural networks. This structure consists a bridge between neural
networks and dynamic nonlinear systems.

The output of the hidden layer zfi can be computed as follows

zfj(k + 1) = fi

(
r∑
l=1

ϕl(k)wli +
n∑
j=1

zfi(k)wfij + bIi

)
. (4.19)

Now using the weights definition (4.7), the bias definition (4.9), the input and output
vectors ϕ and z and the following feedback matrix

Wf =


wf11 wf12 · · · wf1n

wf21 wf22 · · · wf2n

...
...

...
...

wfr1 wfr2 · · · wfrn

 , (4.20)

the output vector of the hidden layer can be written as

zf (k + 1)︸ ︷︷ ︸
x(k+1)

= f(Wϕ(k)︸ ︷︷ ︸
Bu(k)

+ Wfzf (k)︸ ︷︷ ︸
Ax(k)

+bI). (4.21)

Thereby, the vector zf is defined as follows

zf =


zf1

zf2

...
zfn

 . (4.22)

Based on this vector, the output layer provides the following network output given by

z(k)︸︷︷︸
y(k)

= h(V · zf (k)︸ ︷︷ ︸
Cx(k)

+bh). (4.23)

The representation of the recurrent network outputs (4.21) and (4.23) relates neural net-
works to nonlinear dynamic systems. Moreover, assume that the activation functions f(·)
and g(·) are linear and that the bias vectors bh and bI are set to zero. Then, the recurrent
network given by the structure shown in Figure 4.6 and the equations (4.21) and (4.23)
defines a nonlinear MIMO discrete-time model. Moreover, this system has q outputs, r
inputs and n states.
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Figure 4.7: State-space RNN

Remark. To make the discussion later easier, the recurrent network given by Figure 4.6
will be replaced by the simplified representation shown in Figure 4.7. The subscript W in
the matrices AW , BW and CW means that these matrices are network matrices. It aims
to distinguish between general discrete-time state-space models and network models.

4.2.3 Closed-Loop Recurrent Neural Networks

In the previous sections, feedforward as well as feedback or recurrent neural networks have
been presented and discussed. Due to their inherent dynamic, recurrent networks present
an interesting network structure. In this case, dynamic linear as well as nonlinear discrete-
time systems can be represented as a neural network. This fact opens new possibilities to
apply neural networks in the field of identification and control. The successful application
of such a dynamic network is presented in (Lachhab et al. 2008), which was used to
identify a nonlinear unstable system operating in closed-loop. Moreover, the authors
present additionally a novel class of recurrent networks. This is characterized by the fact
that it contains two recurrent networks instead of one. The idea is based on representing
the plant to be identified as well as the implemented controller, each by a recurrent
network. Based on the idea in (Lachhab et al. 2008), the main approach of this work is

u
fP hP

bWP 
AWP   

hCfC
r

AWC  
bWC z 

Controller Plant

T

WPc
T

WCc

Figure 4.8: Closed-loop recurrent neural network (nonlinear structure)

now presented. For this purpose, the SISO case is considered. Thereby, the output z of
the closed-loop structure shown in Figure 4.8 is given by

z(k) = hP (cTWP · zfP (k)), (4.24)
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with hP , cTWP and zfP denote the output activation function, the output weight and states
of the recurrent neural network, respectively. The update of the state vector zfP is given
by

zfP (k + 1) = fP (AWP · zfP (k) + bWP · u(k)), (4.25)

with fP , AWP and bWP denotes the hidden activation function, the state and input weights
of the plant network, respectively. Equation (4.24) and (4.25) describe the dynamic of a
given nonlinear system with input u, states zfP , output z and the system matrices AWP ,
bWP and cWP . Moreover, assume that a controller is also provided that generates the
input signal u(k) given by

u(k) = hC(cTWC · zfC(k)), (4.26)

with the controller state vector zfC

zfC(k + 1) = fC(AWC · zfC(k) + bWC · (r(k)− z(k))). (4.27)

Thereby, the controller matrices are denoted by AWC , bWC and cTWC . The input and
output activation functions are fC and hC , respectively. The internal controller state
vector is denoted by zfC . Thereby, r denotes the reference.

To this point, the closed-loop recurrent network shown in Figure 4.8 can be seen as a
MLP network with four layers. The first layer is given by the function fC(·). The input to
this layer is the signal r(k)− z(k). The second layer is given by the function hC(·), which
generates the input signal u(k). The function fP (·) constitutes the third layer, which
updates the states of the plant. The network output is given by the last layer, namely
hP (·).
The computation of the network output z is given through the back-substitution in the
equations (4.24), (4.25), (4.26) and (4.27). Assume first that the reference signal r is
provided. In this case, the output of the network is fully characterized through the signal
r and the controller weigths AWC , bWC and cWC , which will be denoted for simplicity by
the matrix

WC =

[
AWC bWC

cTWC 0

]
(4.28)

and the plant weigths AWP , bWP and cWP given by

WP =

[
AWP bWP

cTWP 0

]
. (4.29)

The representations of the controller and plant matrices (4.28) and (4.29) are introduced
to make the understanding of our approach easier. Now assume that a desired output



4.2 Neural Network Topology 81

signal yd is provided. Moreover, the goal is to fit the network output z to yd. To achieve
this goal, the following mean square representation

Problem 4.2 :

minimize
WC ,WP

1

N

N∑
k=0

(yd(k)− z(k,WC ,WP ))2

︸ ︷︷ ︸
J(WC ,WP )=e2(k)

(4.30)

is used. The cost function J(WC ,WP ) is formulated in terms of the controller matrices
given by WC and the plant matrices given by WP . Minimizing this cost function can be
classified into two approaches, which are summarized below.

Plant Identification

In this case, the controller is known. A
model of the plant using the reference
and the measured output signal has to
be identified. The plant can be linear
as well as nonlinear and has to be iden-
tified. The update of the plant weights
with respect to the cost function (4.30)
can be performed as follows[

W0
C

Wk+1
P

]
=

[
W0

C

Wk
P

]
−
([

0m×n
g(Wk

P )

])
.

(4.31)

Controller Training

In this case, the plant is known. A con-
troller has to be optimized to provide a
specified performance. The controller
can be linear as well as nonlinear. The
optimization of the controller weights
with respect to the cost function (4.30)
can be performed as follows

[
Wk+1

C

W0
P

]
=

[
Wk

C

W0
P

]
−
([
g(Wk

C)

0m×n

])
.

(4.32)

This means that the value of the con-
troller matrix WC is not updated. It
is set to the known controller matrix
given by W0

C . To update the current
plant matrix Wk

P , first or second order
informations based on the first or sec-
ond derivative of the cost function in
the matrix Wk

P given by the function
g(Wk

P ) are used.

This idea was successfully applied to
identify an unstable nonlinear model
in closed-loop with a known controller,
(Lachhab et al. 2008).

This means that the value of the plant
matrix WP is not updated. It is set to
the known plant matrix given by W0

C .
To update the current controller matrix
Wk

P , first or second order informations
based on the first or second derivative
of the cost function in the matrix Wk

C

given by the function g(Wk
C) are used.

This idea is the core contribution of this
work. It was successfully used to de-
sign a robust controller for a MIMO
system. Moreover, the controller was
implemented on the real plant.
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4.3 LTI-Neural Network Controllers

In this section, the robust controller problem is presented. The related closed-loop recur-
rent neural network is discussed. For this purpose, the structure shown in Figure 4.9 is
considered. This structure constitutes a special case of the closed-loop network shown in
Figure 4.8. All activation functions are set linear. It means that

fC(x) = fP (x) = x and hC(x) = hP (x) = x (4.33)

with x and x denotes the scalar and vector input, respectively. The linear recurrent neural
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Figure 4.9: Closed-loop recurrent neural network (linear structure)

network describing the plant is given by

zfP (k + 1) = AWP · zfP (k) + bWP · u(k)

z(k) = cTWP · zfP (k). (4.34)

The network matrices AWP , bWP and cTWP consist the plant state-space matrices, which
are fixed and will not be updated during the network training stage. In Section 3.4,
the design of a robust PDf controller for the electronic throttle was considered. In this
section, the design of a LTI neural network controller for the same plant is considered.
For this reason, these matrices AWP , bWP and cTWP are set to the system matrices A, b

and c0 given by the expression (3.12) in Section (3.3.1). In this section, we consider the
design of a robust state-space controller defined as follows

zfC(k + 1) = AWC zfC(k) + bWC (r(k)− y(k))

u(k) = cTWC zfC(k) + dWC (r(k)− y(k)).
(4.35)

One of the main benefit of using the closed-loop recurrent structure is that the order of
the controller can be defined independently of the plant order. This provides the user
the freedom to define the controller order. In the case of the electronic throttle, a second
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order controller is chosen. This results in the controller matrices AK ∈ R2×2, bK ∈ R2×1,
cTK ∈ R1×2 and dK ∈ R.

After defining the controller structure (4.35), the desired closed-loop performance with
this controller is defined. This is given in terms of a desired crossover frequency ωdc , which
is equal to 10 rad/s. Moreover, the controller has to provide a step response without any
overshoot for all variations of the uncertain parameter V of the electronic throttle. It was
shown in Section 3.2 that this performance is equivalent to specifying a desired closed-loop
response Td(z) defined by the expression (3.32) in Section (3.3.3). Thereby, the open-loop
function is given in terms of an integrator with a gain equal to ωdc . Moreover, the neural
network plant output z is required to fit the step response yd of the transfer function
Td(z).
Set now the matrices WWC and WWP in the expressions and as follows

WC =

[
AWC bWC

cTWC dWC

]
(4.36)

and the plant weigths AWP , bWP and cWP given by

WP =

[
AWP bWP

cTWP 0

]
, (4.37)

the overall optimization problem can be set. The control minimization problem can be
defined as follows

Problem 4.3 :

minimize
WC

1

N

N∑
k=0

(yd(k)− z(k,WC ,W
0
P ))2

︸ ︷︷ ︸
J(WC ,W

0
P )= 1

N

∑N
k=0 e

2(k)

.
(4.38)

The formulation above defines an optimization problem in the matrix WC . Thereby, the
matrix W0

P is fixed to the plant state-space matrices given by WP . This optimization
problem is quadratic in the error e(k), but nonconvex in the controller matrices WC . The
suboptimal controller matrix Wopt

C can be computed using the update rule (4.32). Based
on the gradient and Hessian of the cost function J(WC ,W

0
P ), the update function g(W k

C)

can be computed. Two approaches can be used to achieve this gaol. The first method is
to use the Steepest-Descent search, which is based on the gradient of the cost function.
The second method is to use the Newton method based on second order information.
Another approach, which is more convenient to minimize the nonconvex problem (4.38)
can be used: it is given by the Levenberg-Marquadt method, which is a combination of
the Newton and the Steepest-Descent methods. Details about this approach is given in
the Appendix D.
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Remark. The main benefit of using the structure shown in Figure 4.9 is that the resulting
controller is linear and time-invariant. This means that the stability of the closed-loop
system can be easily checked using known methods for LTI systems.

To train the controller, the structure given by Figure 4.9 is built and trained using the Mat-
lab Neural Network Toolbox. The algorithm used to train the controller is the Levenberg-
Marquadt algorithms.
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Figure 4.10: Closed-loop step response (left) and Bode magnitude of the desired (yellow
dashed) and achieved closed-loop response for V = 0.5 (dashed red), V = 1.0 (black) and
V = 1.5 (dashdot blue)

Figure 4.10 shows the obtained time and frequency response with the obtained controller.
The closed-loop step response does not shows any overshoot for all values of the uncertain
parameter V . This is confirmed through the closed-loop frequency response. Variations
in the parameter V causes a shifting of the closed-loop bandwidth. Moreover, at low
frequencies the amplitude of the Bode magnitude is for all values of V one. The robustness
requirements are in this case achieved. The neural network controller provides the required
performance in the presence of parameter variations.

Now comparing the achieved performance with the NN controller and the PDf controller
in Section 3.4, one can observe that there is approximately no difference. For the sim-
plified model of the electronic throttle (B.48), both controllers satisfy the robustness re-
quirements, except that the RNN provides a more accurate crossover frequency 9.95 rad/s
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Table 4.1: Comparison of the achieved performance (LMI/RNN controllers)
Controller LMIs RNN Desired Performance

Overshoots in (%) 0% 0% 0%
Crossover frequency 9.6% 9.95 rad/s 10 rad/s

in comparison to the desired crossover frequency 10 rad/s. Nevertheless, the NN based
approach in this section has a main advantage over the LMI based method which is the
structure of the controller. It means that the NN controller is not restricted to be PID as
it is the case for the LMI based controller. RNN can build any state-space LTI controller
to be used. However, for a given system one can first optimize a PID controller using
the method in Section 3. In case that related LMI problem (3.51) in Section (3.4) is not
feasible, one can compute a RNN controller using the technique in this section.

4.4 Summary

In this chapter, a method to optimize robust controllers using recurrent neural networks
was presented. First of all, Section 4.2, feedforward and recurrent neural network are
revised. Moreover, the training of a feedforward NN to fit the output of a nonlinear
function has been discussed. In what concerns RNNs, a novel structure has been pretend
specific to be applied to closed-loop system. Thereby, it consists of two RNNs, which are
used to separately represent the plant and the controller. Given a model of the plant, a
RNN controller can be trained to achieve a specified performance. In Section 4.3, this
performance is specified. It is given in term of a desired step response. This performance
is guaranteed in case of variations of the plant static gain. To show the effectiveness of
the proposed approach, a robust LTI controller was computed for the electronic throttle.
Simulation results have shown that the required performance is achieved.
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5 Parallel Hybrid Electrical Vehicles

5.1 Introduction

The application of the design methods proposed in Section 4 and 3 is considered. It will
be used to design linear discrete-time robust controllers for a MIMO system. The method
given in Section 2 regarding the design of fractional controllers is not suitable to be used
here. This is due the fact that we are interested in this section into designing a robust
controller, which achieves an overshoot free step response. Moreover, as the controller
will be implemented on the real plant, it is always desired to use a low order controller.
For this purpose, the LMI based PID controller and the RNN (second order controller)
are more appropriate to be used.

The plant under consideration is a hybrid electrical vehicle. Precisely, it is a parallel
hybrid electrical vehicle in which the electrical machine and the ICE are placed on the
same shaft. This makes a pure electrical drive possible. In this case, the EM drives
the vehicle. In some cases, it is necessary to start the ICE. This is achieved through a
separation clutch. It enables the coupling and decoupling of the ICE from the rest of the
drivetrain. Such a process can be represented as a MIMO system.

In this chapter, the modeling of the PHE test vehicle is considered. It is presented in Sec-
tion 5.3. Based on measurement signals a continuous-time identification is performed to
define a MIMO model of the synchronization process. Thereby, the nonlinear characteris-
tic of the clutch dynamic is considered as an uncertainty in the modeling. In Section 5.4,
the design of robust controllers is presented. First, the application of the method based
on LMI and MPC is discussed. Then, a linear robust controller is trained in closed-loop
to achieve the robustness requirements. At the end of this chapter, simulation as well as
experimental results are presented and discussed.

5.2 Classification of HEVs

The aim of this brief summary is to introduce the topic of HEVs to the reader. The mostly
used definitions of hybrid electric vehicles are given. Moreover, the classification of HEVs
into serial, parallel and power split is provided. Depending on the position of the ICE on
the drivetrain, a HEV can be classify into one of these structures.

The discussion provided in this section is based on the definitions, classifications and
structures provided in (Reif 2010), (Reif and Noreikat 2012), (Hofmann 2014) and (Ehsani
et al. 2009). Figure 5.1 shows an overall description of HEVs. The following configurations
are possible:

• Serial Hybrid. The main characteristic of this configuration is the presence of
three components, namely combustion engine, electrical machine and generator. In
this configuration, the ICE is used to charge the battery through the generator.
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Figure 5.1: Classification of HEVs. Source: (Hofmann 2014, p. 24)

The vehicle is driven using an Electrical Motor (EM). Depending on the number
and position of the used EMs, it exists three configurations:

– One-Motor Hybrid. This structure consists of one generator used to charge
the battery and one motor that drives the vehicle using the energy stored in
the battery.

– Tandem-Motor Hybrid. In this case, two motors are used to drive the
vehicle through the left and right back wheels.

– Hub-Wheel-Motor Hybrid. In this configuration, four motors are used to
drive the vehicle. All motors are taking the needed energy from the battery.
A fifth motor is used as a generator to charge the battery.

• Parallel Hybrid. A common characteristic of PHEVs is that both the EM and the
ICE can be combined to drive the vehicle. The ICE and the EM are placed on the
same shaft. The EM can be used to assist the ICE during high torque phase (for
example Boost). Depending on the type of combination, it differs between torque
addition, speed addition or both.
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– Torque-Coupling Hybrid. In this case, the overall torque of the vehicle is
the sum of the torque generated by the ICE and the torque of the EM.

– Speed-Coupling Hybrid. Another combination of both machines is the
speed-coupling. The speed of the vehicle is the sum of the ICE speed and EM
speed.

– Torque-Coupling and Speed-Coupling Hybrid. In this structure, torque-
coupling and speed-coupling are possible.

• Power Split Hybrid. Each of the above configurations parallel and serial hybrid
vehicles has advantages and disadvantages. In some cases, it is better to have the
freedom to use both. This is given by the power split configuration. Within this
configuration, it exists three hybrid structures.

– Combined. This structure combines the parallel and serial architecture. In
case that the clutch is open, this structure represents the serial hybrid. Closing
the clutch makes the transition from serial to parallel hybrid configuration.

– 1-Mode. The main aspect of this mode is the use of the planetary gear. It
splits the ICE path into two. The machine between the ICE and the battery
is used to charge the battery. 1-Mode means that there is only one planetary
gear to split the power (also known as input-split).

– 2-Mode. This structure contains two planetary gears. With this configuration,
two types of power split can be realized, namely input-split and output-split.

The classification presented above is based on the structure of hybrid vehicles. Addition-
ally, another classification depending on the size of the battery is made. It depends on
the power available to drive the vehicle fully electrically. Generally, the following hybrid
vehicle types are found in the literature:

• Micro-Hybrid. This type of hybrid vehicles is the first step towards the hybrid
concept. It enables only simple functions as the start-stop and limited energy recu-
peration.

• Mild-Hybrid. The second degree of electrification of hybrid vehicles is the Mild-
Hybrid. It enables the same functions as the Micro-Hybrid and limited boost with
a middle sized electrical machine. Fully electrical drive is very limited possible.

• Full-Hybrid. This hybrid vehicle provides all the electrical hybrid functions such
as start-stop, energy recuperation, electrical drive. Generally, vehicle velocity till
50 km/h is pure electrical possible. The range in which an electrical drive is possible
is about 2 km.

• Plug-In-Hybrid. The extension to Full-Hybrid is given by this vehicle. Plug-In
means that the battery can additionally be charged using a home or a commercial
charging station. In such a vehicles, the battery is accordingly sized.
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5.3 Modeling and Identification of a PHEV

In the last section, the classification of hybrid electrical vehicles were discussed. In this
work, a Parallel Hybrid Electric Vehicle is considered. Moreover, it is a Full-Hybrid
vehicle. Specifically, Torque-Coupling-Hybrid vehicle is treated here. Within this cate-
gory, it exists another classification. Depending on the position of the EM on the drive
train, it exists three structures, namely P1, P2 and P3. Figure 5.2 shows three parallel
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Figure 5.2: Classification of PHEVs

configurations. In (Reif and Noreikat 2012, p. 32), the following definition is given.

• P-1 Parallel Hybrid. In this situation, the EM is place between the ICE and
the clutch. The EM is used here as a starter. In Boost mode, the EM is used to
support the ICE in case of a high torque demand. A pure electrical drive using this
configuration is not possible. This structure is denoted as Mild-Hybrid.

• P-2 Parallel Hybrid. The EM is placed behind the clutch. The main characteris-
tic of this configuration is that the vehicle can be driven fully electrical. Moreover,
all hybrid main functions are achieved with this configuration. It represents a Full-
Hybrid vehicle.

• P-3 Parallel Hybrid. The EM is placed at the output of the converter. Electrical
drive and recuperation with this configuration are possible. A advantage of the
P3-PHEV is the preservation of the traction force.
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In this work, we are concerned with the design of model-based robust controllers for the
P-2 Parallel Hybrid configuration. For this purpose, it is mandatory to perform a system
identification of the plant. Two main approaches can be taken into consideration. The
first approach is based on the physical laws, differential equations can be set to describe
a physical model of the plant. This approach was adopted and explored in (Jarczyk
et al. 2009), (Alt et al. 2010) and (Alt et al. 2012). Unfortunately, the model based
controller was test only in simulation. Moreover, the physical model and parameters are
not experimentally validated. It is worth to be mentioned that the number of physical
parameters needed is very high. The second approach, which can be used, is to obtain
a model of the plant based on the plant response to some test signals. This method is
known as system identification. This approach does not require a physical modeling of
the plant. Moreover, one can choose between linear system identification (Ljung 1998),
and nonlinear system identification (Nørgård 2000). In this context, one has to pay
attention when deciding to use this identification method. An inaccurate choice of the
mathematical model needed for system identification may lead to under- or overestimation
of the dynamic of interest.

Another approach known as Grey-box model of the plant is to combine the physical
informations about the system with the system response to specified input signals. A
priori knowledge about the system to be identified is first gathered. Based on the obtained
informations, the order and the structure of the model are defined. This is the approach
adopted in this work.

A simplified model of the test vehicle drivetrain configuration is shown in Figure 5.3. In
case of a pure electrical drive, the separation clutch is open. The unfired ICE is decoupled
from the drivetrain. In this case, the EM has to provide the driver desired torque. In
case that the driver torque demand is high, the ICE has to be fired and coupled to the
drivetrain to provide this torque. This process is achieved by requesting the actuator
of the separation clutch to track a predefined position trajectory up to fully closing the
clutch. At the same time, the ICE angular velocity is pulled up to the EM angular velocity.
The actual and desired clutch actuator position are internally converted into an actual
and desired clutch torque. For this reason, the clutch can be seen as a torque source for
the ICE. Actually, we are interested in the dynamic that relates the desired clutch torque
MCL,Des and the desired EM torque MEM,Des to the angular velocities ϕ̇ICE and ϕ̇EM . It
is a multi-input multi-output dynamic with four transfer functions.

Combustion Engine Dynamic

The dynamic of the unfired engine is characterized through the transfer function from
the actual clutch torque MCL,Act to the angular velocity of the engine ϕ̇ICE. Using the
Toolchain (ETAS 2009a), (ETAS 2008b) and (ETAS 2009b) the related signals during a
synchronization process are measured and recorded.
Figure 5.4 shows the step response of the system under consideration. The left hand side
of this Figure shows the actual clutch torque MCL,Act. The response to this torque results
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Figure 5.3: Simplified representation of the drivetrain configuration of a PHEV
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Figure 5.4: Actual clutch torque (left) and the related ICE angular velocity ϕ̇ICE (right)

in pulling up the ICE. This is given by the right hand side of Figure 5.4. To catch the
ICE dynamic, a model structure has first to be chosen. An intuitive simplified model that
can be used is an integrator. This assumes that the dynamic of the ICE is linear and
that the moment of inertia of the ICE plays the major role. In (Jarczyk et al. 2009), a
second order model was used to catch this dynamic. It is based on the linearization of
the physical model of the PHEV.

Considering now the trajectory of the angular velocity ϕ̇ICE, it can be divided into two
phases namely, ϕ̇ICE < 400 rpm and ϕ̇ICE > 400 rpm. In the first phase, the dynamic of
the ICE is nonlinear and more complex. Especially, the trajectory of ϕ̇ICE around 1.2 sec

have a dynamic similar to systems with delay part. For this reason, a non-minimum
phase system (unstable zero / stable pole) is used. In the second phase, the dynamic of
the combustion engine is approximately linear. In this case, an integrator with a gain is
used. The overall second order transfer function

GICE(s) =
b1ICEs+ b0ICE

a2ICEs
2 + a1ICEs

=
ϕ̇ICE(s)

MCL,Act(s)
(5.1)
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is selected to catch the ICE dynamics in the whole range. After identifying the param-
eters of the transfer function (5.1), the obtained system is validated. Figure 5.5 shows
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Figure 5.5: Validation of the identified ICE transfer function, measured ICE angular
velocity ϕ̇ICE (dashdot blue) and output of the identified function GICE (red)

the measured angular velocity of the ICE and the output of the identified model. The
identified second order model provides about 71% fit. Thereby, the following formula

100
(1− ‖y − ys‖2)

‖y − ym‖2

(5.2)

is used to calculate the fit, see the Matlab function Compare. Thereby, y and ys are
the measured and simulated output, respectively. ym denotes the mean or average value.
Augmenting the order or changing the structure of the transfer function (5.1) does not
lead to a better fit. This is due to several nonlinear effects concerning the dynamic of the
ICE. Nonlinear identification methods can be used to get a more accurate model. In this
work, however this uncertainty in the identification of the system is compensated using a
robust controller. This avoids the identification of a complex nonlinear models. Moreover,
the linear control methods proposed in Section 3 and 4 can be applied.

Electrical Machine

During a pure electrical drive, the only source of torque is the electrical machine. It
provides the desired driver torque. In this case, the driver requests a specified torque
through the pedal position, which is internally converted into a desired torque value.
This value plays the role of the reference trajectory. The EM torque should track this
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torque trajectory. This is ensured using an internal EM torque controller. Figure 5.6
shows the response of the closed-loop system (desired EM torque MEM,Des to actual EM
torque MEM,Act) using this controller. The goal is to identify the transfer function from
the MEM,Des to MEM,Act.
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Figure 5.6: Actual and desired torque of the EM, MEM,Act (dashdot red) and MEM,Des

(blue)

Now comparingMEM,Des andMEM,Act shown in Figure 5.6, one can notice that the torque
of the electrical machine tracks the desired torque for the given trajectory. As it is well
known for closed-loop systems, it is also desired to have a good tracking performance
up to a specified bandwidth. Based on this assumption, a first order function is used to
catch this dynamic. Specifically, a low-pass transfer function is used. Due to the CAN
communication this system suffers from a time-delay of about 20 to 30 ms. In this case,
the required model is given by

GEM(s) =
b0EM

s+ a0EM

e−τs =
MEM,Act(s)

MEM,Des(s)
. (5.3)

Now the goal is to identify the parameters b0EM , a0EM and τ of the transfer function (5.3).
The time-delay is given by the CAN-communication time and varies between 20 ms and
30 ms. The identification problem consists of the identification of the parameters b0EM
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and a0EM . This is achieved using the Matlab Identification Toolbox. In Figure 5.7 the
measured and simulated output of the identified transfer function signals are presented.
The output of the identified model perfectly fits the measured data. Using the formula
(5.2), the obtained fit is 97%.
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Figure 5.7: Validation of the identified EM transfer function, measured EM torque
MEM,Act (blue) and output of the identified function GEM (dashdot red)

Separation Clutch

After identifying the closed-loop dynamic of the EM torque, the torque dynamic of the
clutch is considered. During a pure electrical drive, the separation clutch is open. It
separates the ICE from the EM. The coupling and the decoupling of the clutch is achieved
using an electromechanical actuator. The dependency between the actuator position and
the transmitted torque is given by look-up tables. The dynamic of the clutch is mainly
governed by the actuator controller. This ensures that the clutch actuator follows the
position trajectory. Figure 5.8 shows a typical trajectory for the desired torque of the
clutch MCL,Des with the related actual clutch torque MCL,Act. In case that MCL,Act is
equal to 0 Nm, then the clutch is open. In this case, no torque can be transmitted. In
case that the actual clutch torque is equal to 600 Nm, then the clutch is fully closed.
The clutch is then locked. The dynamic of interest is the transfer function from the
desired clutch torque MCL,Des to the transmitted clutch torque MCL,Act. The closed-loop
dynamic of the clutch is approximated by a first order transfer function. Due to the CAN
communication this system also suffers from a time-delay of 20 to 30 ms.
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Figure 5.8: Actual and desired torque of the clutch,MEM,Act (dashdot red) andMEM,Des

(blue)

The obtained model is given by

GCL,0(s) =
b0CL

s+ a0CL

e−τs =
MCL,ActR(s)

MCL,Des(s)
. (5.4)

In Figure 5.9, the measured and simulated signals are presented. The output of the
identified model provides a good fit of the measured data. Using the output formula
(5.2), the obtained fit is 95%. At this point, we want to mention that the transfer function
GCL,0(s) is the nominal transfer function. This is due to the fact that the clutch consists
the main source of uncertainty in the modeling of the whole synchronization process.
The identification of this model is based on the assumption that the real clutch torque
MCL,ActR is equal to the internally calculated torque MCL,Act, which is the output of the
transfer function GCL,0. Generally, this is not true: it means thatMCL,ActR = V ·MCL,Act.
Replacing this in the expression (5.4) results in the following

GCL(s) = V ·GCL,0(s) = V · b0CL

s+ a0CL

e−τs. (5.5)

It means that the uncertainty in the clutch torque is represented as a multiplicative output
uncertainty. This is given by the uncertain static gain V . The representation of the clutch



96 5 Parallel Hybrid Electrical Vehicles

dynamic by the uncertain function (5.5) is based on the assumption that the variations
of the parameter V are very slow. It means that the rate of change given by V̇ (t) is
negligible.
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Figure 5.9: Validation of the identified clutch transfer GCL,0 function, measured clutch
torque MCL,Act (blue) and simulated clutch torque (dashdot red)

Drivetrain Rotational Dynamics

The drivetrain rotational dynamics is responsible for transforming the actual EM torque
into a rotation. In case that the separation clutch is open, this dynamic is represented by
the transfer function from the actual EM torqueMEM,Act to the actual EM angular velocity
ϕ̇EM . The signals used to identify the model are presented in Figure 5.10. In (Jarczyk
et al. 2009), the modeling of the rotational dynamics of the EM have discussed. Based on
the nonlinear differential equations of the powertrain of the PHEV, a linearization was
performed which leads to a fourth order transfer function. For this purpose, the following
transfer function

GROT (s) =
b3ROT s

3 + b2ROT s
2 + b1ROT s+ b0ROT

s4 + a3ROT s
3 + a2ROT s

2 + a1ROT s
=

ϕ̇EM(s)

MEM,Act(s)
. (5.6)

is used.

In Figure 5.11, the output of the identified model GROT and the measured angular velocity
ϕ̇EM are shown. The output of the identified model approximately fits the measured data.
Using the formula (5.2), the obtained fit is 96%. Augmenting the order of the transfer
function 5.6 does not lead to a better fit.
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Figure 5.10: Actual EM torque MEM,Act (dash black) and EM angular velocity ϕ̇EM
(dashdot)
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Figure 5.11: Validation of the identified drivetrain transfer function GROT , measured
angular velocity ϕ̇EM (dashdot blue) and simulated angular velocity (red)
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Building MIMO Model

After identifying the four transfer functions, the overall MIMO model is built. It has two
inputs, the desired EM torque MEM,Des and the desired clutch torque MCL,Des and two
outputs, the angular velocities ϕ̇ICE and ϕ̇EM . Using the identified transfer functions
GCL(s), GICE(s), GEM(s) and GROT (s), the MIMO system is constructed. The structure
of the model is presented in Figure 5.12, which was also considered in (Alt et al. 2010).

− 

GCL (s)MCL,Des (s)

GEM (s)

GICE (s)

GROT (s)MEM,Des (s)

)(sICE

)(sEM

Figure 5.12: MIMO Model with identified transfer functions

The system dynamic is described as follows

ϕ̇EM(s) = (MCL,Des(s)GCL(s)−MEM,Des(s)GEM(s))GROT (s)

ϕ̇ICE(s) = MCL,Des(s)GCL(s)GICE(s)

or in matrix form

[
ϕ̇EM(s)

ϕ̇ICE(s)

]
=

[
GCL(s)GROT (s) −GEM(s)GROT (s)

GCL(s)GICE(s) 0

] [
MCL,Des(s)

MEM,Des(s)

]
. (5.7)

This MIMO system is a two by two coupled model. The angular velocity ϕ̇EM depends
on both inputs MCL,Des and MEM,Des. The angular velocity ϕ̇ICE depends only on the
clutch torque MCL,Des.

5.4 Design of Robust LTI-Controllers for the Synchronisation
Task

In this section, the design of robust controllers to solve the synchronization task in PHEV
is discussed. The approaches presented in Section 3 and 4 are considered, namely LMI-
and RNN-based methods. Thereby, the MIMO Model (5.7) is used for this task. The
requirements to be achieved by the controller are expressed in terms of a desired closed-
loop response. Precisely, the goal is to synchronize the angular velocity of the ICE ϕ̇ICE
with the angular velocity of EM ϕ̇EM taking into account the variations of the gain V of
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the clutch model (5.5). Thereby, any deterioration in the performance of ϕ̇EM should be
avoided.

First of all, the controller structure has to be defined. The goal is to control the clutch and
the electrical machine torques to minimize the error between the ICE and EM angular
velocities. This means that the controller has one input (ϕ̇EM − ϕ̇ICE) and generates
two outputs MCL,Des and MEM,Des. It is a Single-Input Two-Outputs controller. Due
to its simple structure, the design of a controller with two PIDs is discussed. For this
purpose, the approach presented in Section 3 based on MPC and LMIs is applied. Based on
simulation, the performance of this controller is evaluated. To compare the performance of
the PID controller, a neural network controller is used as a counterpart. Using the method
presented in Section 4 based on RNN, the synchronization task is built as a neural network
consisting of the identified MIMO modell and a neural network controller. Thereby, a
second order controller with one input (ϕ̇EM − ϕ̇ICE) and two outputs, MCL,Des and
MEM,Des. The controller order is chosen, on one hand to keep the controller complexity
low as it will be implemented on the test vehicle, on the other hand the dynamics of
the plant can be well catched using second order systems. The optimized controller is
compared with the obtained PID controllers in terms of achievement of the performance
requirements. Simulation results are presented at the end of this chapter.

5.4.1 PD Controller

Due to the fact the dynamics of the angular velocities ϕ̇ICE and ϕ̇EM given by the transfer
functions GICE and GROT contain an integrator, the design of PD controllers is considered
here. For this reason, the configuration shown in Figure 5.13 is considered. Thereby, R is
the reference signal. The input to the controller E is the difference between the angular
velocity ϕ̇ICE and the reference R. Yd consists the desired response used to shape ϕ̇ICE.
The value of the desired angular velocity of the EM at the time of synchronization is
denoted by ϕ̇EM,Des.

The goal of the control design is twofold. On one hand, the controller should cope with
the uncertainty in the modeling of the separation clutch (5.5). This is given through the
variations of the static gain parameter V . On the other hand, the dynamic of the angular
velocity ϕ̇ICE and ϕ̇EM should be decoupled. It means that the velocity ϕ̇ICE should
follows its reference R without a deterioration of the velocity ϕ̇EM .

Note here that the controller design is performed in discrete-time. For this reason, the
related discrete-time transfer functions of the identified model (5.7) are used. These are
denoted by discrete-time shift operator z. Thereby, the sampling time Ts is 10 ms.

To formulate the control specifications, consider the open-loop function in Figure 5.13
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− 

GCL (z)
MCL,Des 

GEM (z)

GICE (z)

GROT (z)
MEM,Des 

ICE

EM

PDf1 (z)R
− 

Yd

− 
PDf2 (z)

DesEM ,

Figure 5.13: Closed-loop structure with MPC-controllers PDf1 and PDf2

defined as follows

LCL(z) =
ϕ̇ICE(z)

E(z)
= V · PDf1(z)GCL,0(z)GICE(z)︸ ︷︷ ︸

LCL,0(z)

. (5.8)

The robustness in terms of the static gain variations can be achieved through the specifica-
tion of a desired response for the nominal open-loop function LCL,0(z). As it is presented
in Section 3.2, this requirement can be also achieved by shaping the nominal closed-loop
response

TCL,0(z) =
ϕ̇ICE(z)

R(z)
=

PDf1(z)GCL,0(z)GICE(z)

PDf1(z)GCL,0(z)GICE(z) + 1
(5.9)

to the desired closed-loop response (3.32) given by

Td(z) =
1− e−Tsωdc
z − e−Tsωdc , (5.10)

which is equivalent to fitting the step response of the closed-loop function (5.9) in terms of
ϕ̇ICE to the step response of the desired function (5.10). Thereby, ωdc consists the desired
bandwidth.

Additionally to the robustness requirement for static gain variations of the clutch model,
the controller should also not deteriorate the trajectory of the angular velocity ϕ̇EM .
During the synchronization process the angular velocity of the electrical machine should
not break down to avoid a deterioration of the driver comfort. This is given by requiring
ϕ̇EM to be equal to the desired angular velocity ϕ̇EM,Des during the synchronization
process. For the seek of simplicity, we assume that the EM rotates with the desired
velocity ϕ̇EM,Des before the synchronization starts.
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To apply the approach presented in Section 3.4, the problem matrices describing the
synchronisation task required for the optimization problem (3.51) should be defined. Let
first introduce the discrete-time state-space representation for the nominal case V = 1

of the clutch model, which is obtained through the discretization of the identifed MIMO
continuous model (5.7) as follows

P :



xp(k + 1) = Ap xp(k) + Bp

[
MDes,CL(k)

MDes,EM(k)

]
︸ ︷︷ ︸

MDes(k)[
ϕ̇ICE(k)

ϕ̇EM(k)

]
=

[
cTICE
cTEM

]
︸ ︷︷ ︸

CT
P

xp(k).

(5.11)

with Ap ∈ R8×8, Bp ∈ R8×2, cTICE ∈ R1×8, cTEM ∈ R1×8 and the state vector xp ∈ R8×1.

The angular velocities ϕ̇ICE and ϕ̇EM at successive time instant k are given by

ϕ̇ICE(k) = 0

ϕ̇ICE(k + 1) = 0 + cTICEBp MDes(k)

ϕ̇ICE(k + 2) = 0 + cTICEApBp MDes(k) + cICEBp MDes(k + 1)

... = · · ·
ϕ̇ICE(k − 1 +N) = 0 + cTICEAN−1

p Bp MDes(k) + · · ·
· · ·+ cTICEBp MDes(k +N − 2) (5.12)

and

ϕ̇EM(k) = ϕ̇EM,Des

ϕ̇EM(k + 1) = ϕ̇EM,Des + cTEMBp MDes(k)

ϕ̇EM(k + 2) = ϕ̇EM,Des + cTEMApBp MDes(k) + cTEMBp MDes(k + 1)

... = · · ·
ϕ̇EM(k − 1 +N) = ϕ̇EM,Des + cTEMAN−1

p Bp MDes(k) + · · ·
· · ·+ cTEMBp MDes(k +N − 2). (5.13)

Remark. The discrete-time state-space model obtained above was based on the identified
transfer function with the time delay part. This is due to the fact that the approache
proposed in this work considers only linear systems without time delay during the opti-
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mization step. The performance of the controller is tested afterwards based on robustness
analysis with the time-delay model.

The parameter N represents the number of past samples of the desired response yd(k).
Using now the following notation

MDes =


MDes,ICE(k)

MDes,EM(k)
...

MDes,ICE(k − 1 +N)

MDes,EM(k − 1 +N)

 (5.14)

to denote the control inputs in vector form, the outputs of the model given by ϕ̇ICE and
ϕ̇EM in vector form can be presented. These are given as follows

ϕ̇EM(k)

ϕ̇EM(k + 1)
...

ϕ̇EM(k − 1 +N)


︸ ︷︷ ︸

nEM

= ΩEM M + ϕ̇EM,Des (5.15)

and 
ϕ̇ICE(k)

ϕ̇ICE(k + 1)
...

ϕ̇ICE(k − 1 +N)


︸ ︷︷ ︸

nICE

= ΩICE M. (5.16)

The transition matrices ΩICE and ΩEM are given by

ΩICE =


0 0 0 · · · 0

cTICEBp 0 0 · · · 0

cTICEApBp cTICEBp 0 · · · 0
...

...
...

... 0

cTICEAN−2
p Bp cTICEAN−1

p Bp · · · cTICEBp 0


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and

ΩEM =


0 0 0 · · · 0

cTEMBp 0 0 · · · 0

cTEMApBp cTICEBp 0 · · · 0
...

...
...

... 0

cTEMAN−2
p Bp cTEMAN−1

p Bp · · · CT
EMBp 0

 .

Note that the deviation of the angular velocity ϕ̇EM is taken into consideration by mini-
mizing the 2-norm

‖ϕ̇EM,Des − nEM‖2
2 = ‖ϕ̇EM,Des −ΩEM M− ϕ̇EM,Des‖2

2, (5.17)

which is equivalent to the norm ‖ΩEM M‖2
2. Before proceeding to the main result, the

controller structure is discussed. It is given as follows

M̃ICE,Des = KP1(r− yd) +KD1ΩD(r− yd)f (5.18)

and

M̃EM,Des = KP2(r− yd) +KD2ΩD(r− yd)f . (5.19)

It is given by two PDf controllers. These are defined through the parameters KP1 , KD1 ,
KP2 and KD2 . The vector yd is the discrete-time step response of the reference transfer
function (5.10). The vector r denotes the step command in vector notation. Additionally
to the robust performance imposed on the PDf controllers, the closed-loop response
should be fast. This is achieved by specifying a value for the desired bandwidth ωdc .
For values smaller than 4 rad/s, the LMI-based method provides a PDf controller that
achieves the required performance. For ωdc = 4 rad/s, the method fails to compute a
robust controller. This was the motivation to use neural network based controllers, which
achieves robustness in case of static gain variations for ωdc = 4 rad/s. For higher values,
the neural network appraoch did not find any controller with an acceptable performance.
In this section, the obtained performance with both controllers is presented.

Now, the proposed approach can be applied to optimize the controller parameters KP1 ,
KD1 , KP2 and KD2 the optimal input vector MDes.

The overall optimization problem in LMI form is given by
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Problem 5.1 :

minimize
KP1 ,KD1

,KP2 ,KD2
,MDes

(γ1 + γ2 + γ3 + γ4)

subject to
[ −γ1 (yd −ΩICEMDes)

T

(yd −ΩICEMDes) IN

]
< 0,

[ −γ2 (ΩEMMDes)
T

(ΩEMMDes) IN

]
< 0,

[ −γ3 (MDesEM − M̃DesEM )T

(MDesEM − M̃DesEM ) −IN

]
< 0,

[ −γ4 (MDesCL − M̃DesCL)T

(MDesCL − M̃DesCL) −IN

]
< 0

(5.20)

The desired torques for the EM and the clutch in vector notation are given by

M̃Des,ICE =


MDes,ICE(k)

MDes,ICE(k + 1)
...

MDes,ICE(k − 1 +N)

 , M̃Des,EM =


MDes,EM(k)

MDes,EM(k + 1)
...

MDes,EM(k − 1 +N)

 (5.21)

Problem (5.20) consists of computing two optimal input trajectories M̃Des,CL and M̃Des,EM ,
which brings the angular velocity of the ICE up to the desired value given by the desired
response yd. Thereby, the angular velocity ϕ̇EM should not deteriorate. To solve this
problem, the optimization software (Labit et al. 2002) is used. In this case, the computa-
tion of the optimal solution takes 18 seconds.

Figure 5.14 shows the closed-loop response with the obtained controller. Thereby, a con-
stant desired angular velocity is set as a reference, namely 3000 rpm. The step response
in terms of the angular velocity ϕ̇ICE shows a maximal overshoot of 80 rpm in case of
variations of the gain V . The robustness requirements are approximately achieved. On
the right hand side of Figure 5.14, the step response in terms of the angular velocity ϕ̇EM
is given. A small deterioration in this velocity is shown. It is about 290 U/min or 10%

for V = 0.85, 2% for V = 1.0 and −4% for V = 0.85 . It is acceptable. Generally, the
requirements imposed on the closed-loop system are partially satisfied.
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Figure 5.14: Step response with the PD SIMO controller for V = 0.85 (blue dashdot),
V = 1.0 (black) and V = 1.15 (red dashed), (top, left) ICE angular velocity ϕ̇ICE and
desired ICE speed (dash yellow), (top, right) EM angular velocity ϕ̇EM and its deviation
in [%], (bottom left) desired clutch torque MDes,CL, (bottom right) desired EM torque
MDes,EM

5.4.2 LTI-Neural Network Controller

In this section the design and the optimization of a NN controller to solve the synchro-
nization problem is presented. Based on the discrete-time model (5.11), a structured
closed-loop recurrent neural network is built. It consists of two recurrent networks. The
first RNN represents the identified plant in discrete-time. Their weights are set to the
plant matrices and will not be updated, this correponds to an already well identified
plant behaviour. The second RNN is dedicated to the controller. The weights of this
network consists the optimization parameters. These are updated through a specified
cost function.
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The structure used to optimize the controller is presented in Figure 5.15. Thereby, all

u

fP hP

BWP 
AWP   

hCfC

r

AWC  
bWC z1 

Controller Plant

yd en

dWC

z2 

T

WCC T

WPC

Figure 5.15: Closed-loop structure with recurrent neural network controller

activation functions are set linear. It means that

fC(x) = fP (x) = hC(x) = hP (x) = x (5.22)

with x denotes the input vector. In this case, the linear recurrent neural network describ-
ing the plant is given by

zfP (k + 1) = AWP · zfP (k) + BWP · u(k) (5.23)

z(k) = CT
WP · zfP (k).

The matrices AWP , BWP and CT
WP consist the plant state-space matrices. This RNN

defines a MIMO discrete-time system. It can be used to represent the identified PHEV
model given by the expression (5.11). In this case, the matrices AWP , BWP and CT

WP

are set to the matrices AP , BP and CT
P , respectively. Moreover, the input and output

notation is as follows

u =

[
MCL,Des

MEM,Des

]
and z =

[
z1

z2

]
=

[
ϕ̇ICE
ϕ̇EM

]
. (5.24)

The second RNN denotes the controller. the structure of this network has to be defined.
From Figure 5.15, the controller has one input e and two outputs MICE,Des and MEM,Des.
It is a SIMO controller, which is defined as follows

zfC(k + 1) = AWC · zfC(k) + bWC · (r(k)− ϕ̇ICE(k))[
MDes,ICE

MDes,EM

]
= CT

WC · zfC(k) + dWC · (r(k)− ϕ̇ICE(k)). (5.25)

This results in the controller matrices AWC ∈ R2×2, bWC ∈ R2×1, CT
WC ∈ R2×2 and
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dWC ∈ R2×1.

As discussed in the previous section, the goal is to find a robust controller to cope with
the static uncertainty of the separation clutch given by the function (5.5). This is defined
through the desired transfer function (5.10). The goal of the NN controller optimization
is to minimize the mean square error between the output of the desired model yd and
the output of the model ϕ̇ICE. Thereby, the same desired crossover frequency ωdc =

4 rad/s is used. At the same time the value of the angular velocity ϕ̇EM should not
break down. As it is the case for the PD controller, we are assuming that the EM
rotates with a specified constant desired value ϕ̇EM . The goal is to keep ϕ̇ICE in this level
during the synchronization phase. This objective is taken into consideration through the
minimization of the mean square error norm between the angular velocity ϕ̇EM,Des and
ϕ̇EM . Before presenting the optimization problem, the following notation for the controller
matrix

WC =

[
AWC bWC

CT
WC dWC

]
(5.26)

which have to be optimized and the constant fixed plant weights AWP , bWP and cTWP

given by

WP =

[
AWP BWP

CT
WP 02×2

]
. (5.27)

is considered. The representations of the controller and plant matrices (4.36) and (4.37)
are introduced to make the understanding easier. The goal is to fit the network output z to
a given desired output yd. To achieve this goal, the following mean square representation

Problem 5.2 :

minimize
WC ,W

0
P

1

N

N∑
k=0

e21︷ ︸︸ ︷
(yd(k)− ϕ̇ICE(k,WC ,W

0
P ))2 +

e22︷ ︸︸ ︷
(ϕ̇EM,Des(k)− ϕ̇EM(k,WC ,W

0
P ))2

︸ ︷︷ ︸
J(WC ,W

0
P )=e2(k)

(5.28)

is used. The above optimization problem consists of minimizing the sum of the square
errors e2

1(k) and e2
2(k) over the sampling step k. Thereby, the plant matrices denoted by

W0
P will not be updated. On the other hand, the controller matrix WC is updated using

the method discussed in Section 4.2.3 which is given as follows[
Wk+1

C

W0
P

]
=

[
Wk

C

W0
P

]
−
([
g(Wk

C)

010×10

])
. (5.29)



108 5 Parallel Hybrid Electrical Vehicles

In this case, the computation of the update function function g(Wk
C) is performed using

the Levenberg-Marquadt algorithm discussed in the Appendix (D). After defining the
structure of the recurrent neural network given by Figure 5.15, the network which repre-
sents the plant given by the expression (5.23), the network which represents the controller
given by the expression (5.25) and the cost function given by the expression (5.28), the
control problem can be solved. For this purpose, the whole approach is programmed using
the Matlab Neural Network Toolbox.
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Figure 5.16: Step response with the neural network controller for V = 0.85 (blue dash-
dot), V = 1.0 (black) and V = 1.15 (red dashed), (top, left) ICE angular velocity ϕ̇ICE
and desired ICE speed (dash yellow), (top, right) EM angular velocity ϕ̇EM and its de-
viation in [%], (bottom left) desired clutch torque MDes,CL, (bottom right) desired EM
torque MDes,EM

Figure 5.16 shows the obtained performance. The overshoot of the response in terms
of the angular velocity ϕ̇ICE for all parameter variations is approximately zero. In this
case, the robustness requirement is achieved. Regarding the angular velocity ϕ̇EM , the
deterioration for the nominal case is zero. For the minimal and maximal cases, it is
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about ∓210 rpm, which corresponds to ∓7%. It shows a more reduced variation then the
performance achieved by the SIMO PD controller.

Remark. Comparing the performance of both controllers, it is clear that the NN con-
troller outperforms the PD controller. For this reason, the NN controller is used to be
implemented on the real plant. Although, an improvement of the NN controller perfor-
mance in terms of the deterioration of ϕ̇EM can be achieved. This fact is discussed in the
next section in details.

5.4.3 Simulation of the PHEV

In this section, the performance analysis of the obtained NN controller is presented under
a more realistic simulation environment. Thereby, three aspects are investigated. First,
the interval in which the static gain V varies is augmented. Now it is given by ∓20%.
Another important aspect is considered, namely the time-delay of the system. For this
purpose, a variation of the nominal value given by 20 ms is considered. Moreover, up to
250% is assumed. The third aspect is dedicated to the performance of the EM angular
velocity ϕ̇EM during a synchronization phase. Additionally to these issues, a more prac-
tical assumption is considered. In the previous sections, a reference trajectory for the
angular velocity ϕ̇ICE was generated indepently of the velocity ϕ̇EM . Unfortunately, this
is not actually true in practice. This due to the fact that the goal of the synchronization
is to bring ϕ̇EM up to ϕ̇EM . In this case, the EM velocity plays the role of the reference
trajectory for ϕ̇ICE.

− 

GCL (z)

MCL,Des 

GEM (z)

GICE (z)

GROT (z)
MEM,Des 

ICE

EM

K (z)

− 

DesEM ,

− 

Figure 5.17: Synchronization closed-loop structure with neural network controller K(z)
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Time Delay

The time delay in the modeling of the PHEV is due to the CAN communication. In
Section 5.3, a constant time delay was assumed. It is 20 ms. The behaviour of the real
plant shows that this value is not constant. For this reason, it is necessary to test the
performance of the controller in case of variations of this parameter. Moreover, we assume
a 250% variation. It means that the time-delay varies from 20 to 50 ms.

Figure 5.18 shows the obtained performance for all variations of the time delay. The step
response in terms of the angular velocity ϕ̇ICE does not show any overshoot. The impact
of the time delay variations is approximately absent. Thereby, this parameter takes the
minimal, nominal and maximal values 20 ms, 30 ms and 50 ms, respectively. This means
that the performance of the controller is ensured up to 250% variation of the assumed
value 20 ms.

Static Gain Variations

Additionally to the time delay variations, the impact of the static gain V is considered.
The simulation results are shown in Figure 5.19. The angular velocity ϕ̇ICE reaches the
desired value, which is the actual EM velocity ϕ̇EM , without any overshoot. This due to
the fact that the NN controller is robust in the presence of static gain variations. These
are given by ∓20% of the nominal value. Additionally, the performance of the EM velocity
is considered. Thereby, the deviation for all variations is smaller then 50 rpm. In terms
of the relative error, it is less then 2%. This value is acceptable for the performance of
the controller.

Actually, the range in which the static gain parameter V varies is not known. For this
purpose, we want to find out up to which value of V , the robustness of the neural network
controller is guaranteed. To achieve this goal, we assume larger variations of this param-
eter, given by ∓50 %. The simulation results are shown in Figure 5.20. The synchro-
nization of the ICE and EM angular velocities show an overshoot for V = 1.5. Moreover,
the performance of the EM angular velocity is deteriorated. In this case, the robustness
performance is only partially achieved. This means that the robustness performance, in
case that the variation of the parameter V is larger than 20 %, is not guaranteed.
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Figure 5.18: Synchronization of ICE speed with EM speed, comparison of the nominal
delay 20 ms and increasing delay 30 ms and 50 ms, (top, left) ICE and EM angular
velocities ϕ̇ICE and ϕ̇EM , (top, right) EM angular velocity ϕ̇EM and its deviation in [%],
(bottom left) desired clutch torque MDes,CL, (bottom right) desired EM torque MDes,EM
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Figure 5.19: Synchronization of ICE speed with EM speed with respect to static gain
variations V = 0.8, V = 1.0 and V = 1.2, (top, left) ICE and EM angular velocities ϕ̇ICE
and ϕ̇EM , (top, right) EM angular velocity ϕ̇EM and its deviation in [%], (bottom left)
desired clutch torque MDes,CL, (bottom right) desired EM torque MDes,EM
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Figure 5.20: Synchronization of ICE speed with EM speed with respect to static gain
variations V = 0.5, V = 1.0 and V = 1.5, (top, left) ICE and EM angular velocities ϕ̇ICE
and ϕ̇EM , (top, right) EM angular velocity ϕ̇EM and its deviation in [%], (bottom left)
desired clutch torque MDes,CL, (bottom right) desired EM torque MDes,EM
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5.5 Controller Implementation

After having confirmed in the previous section the capabilities of the robust NN controllers
in simulations for gain and time-delay variations, the implementation of this controller
on the test PHEV is considered. Moreover, experimental results are presented. For this
reason, the Toolchain based on ETAS hardware and software is used. It is based on
external bypassing the ECU signals.

Before presenting the experimental results, it is important to describe the situation we
are considering. It is as follows:

• Initially, the separation clutch is open. The PHEV is driven electrically.

• A synchronization process is activated. This could happen for some of the following
reasons:

– Desired driver torque is higher then the maximal EM torque

– Desired velocity is higher then the maximal velocity which can be provided by
the EM

– The level of the battery is low. In this case, the ICE has to be started to charge
the battery.

• The controller is activated to bring the ICE angular velocity up to the EM angular
velocity (synchronization).

• When both velocities are approximately equal, the separation clutch is completely
closed.

The main goal which has to be achieved by the controller during the synchronization
is to pull up the unfired ICE without any deterioration in the EM velocity. Moreover,
the ICE velocity should follow a specified desired trajectory. As a parameter to be used
to check this performance, the clutch temperature can be considered. Nevertheless, due
to the fact that this parameter is not available on the test vehicle and the estimation
for such temperature goes beyond the scope of this work, the ICE temperature is used
instead. It serves as an auxiliary variable that helps to evaluate the controller performance.
Regarding the ICE velocity ϕ̇ICE, the dynamic of the ICE for ϕ̇ICE < 600 rpm is highly
nonlinear so that the controller performance is evaluated for ϕ̇ICE > 600 rpm.

Remark. The total clutch engagement time (the time it takes to synchronize the angular
velocities ϕ̇ICE and ϕ̇EM) achieved in Simulation is about two seconds. During the con-
troller implementation, a desired trajectory with a slower increase is used such that the
performance of our controller can be compared to existing methods (Dolcini et al. 2005).
The desired engagement time 4 sec is used.
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Synchronization Task
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Figure 5.21: Synchronization of the EM and ICE angular velocities (experimental results
test vehicle): (top, left) ICE, EM and desired EM angular velocities ϕ̇ICE (green), ϕ̇EM
(blue) and ϕ̇EM,Des (red), (top, right) error EM angular velocity ϕ̇EM,Des − ϕ̇EM , (centre
left) desired clutch torque MCL,Des, (centre right) desired EM torque MEM,Des, (bottom)
vehicle velocity V

Figure 5.21 shows the experimental results of a synchronization task with the implemented
neural network controller. During this process, the angular velocity ϕ̇EM follows the de-
sired trajectory ϕ̇EM,Des without any significant deterioration. Thereby, the error ∆ϕ̇EM
is bounded by −60 rpm and +60 rpm, which corresponds to −2.3 % and +2.3 %. This
experiment was performed at the vehicle velocity V ≈ 18 Km/h and the motor temper-
ature TEng = 80◦C. Note here that the desired clutch torque MCL,Des has to be provided
by the EM additionally to the driver desired torque. This is shown in the figure above
(centre right) by the increasing of the EM torque by MCL,Des at 60 s.
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Synchronization Task: Engine temperature TEng = 67.5◦
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Figure 5.22: Synchronization of the EM and ICE speeds (experimental results test
vehicle): (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green),
ϕ̇EM (dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the
EM and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torque
MCL,Des, (centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

Figure 5.22 shows the experimental results of a synchronization task with a reference
trajectory ϕ̇ICE,Des for the angular velocity ϕ̇ICE. Thereby, the velocity ϕ̇EM follows its
reference ϕ̇EM,Des. The deviation ∆ϕ̇EM is approximately between −39 rpm and 51 rpm,
which corresponds respectively to −1.7 % and 2.2%. To analyse the performance of the
controller, we used the tracking error eTr shown for the ICE speed variation ∆ϕ̇ICE, which
is the smallest error between ϕ̇ICE,Des and ϕ̇ICE as soon as both velocities run parallel.
This is approximately equal to 200 rpm for the parallel section. This experiment was
performed at the motor temperature TEng = 67.5◦C.

The rest of the experimental results is given in Appendix A.
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5.6 Summary

In this section, the design and optimization of the controllers developed in Section 3
and 4 for the synchronization task in a PHEV have been considered. First of all, a
MIMO model of the plant has been identified using a rapid control prototyping system.
This model consists of four transfer functions describing respectively the dynamics of the
ICE, EM, clutch and powertrain. Validation results have shown that the identified linear
MIMO system provides a very good fit of the measured data. Based on this model, two
controllers have been considered, namely a SIMO PD controller and a second order state-
space neural network. By means of robustness analysis, the NN controller outperformed
the PD controller.

Table 5.1: PHEV Controller Performance

TEng [◦C] 67.5 69.6 74.15 77.8 79.6 83.1
eTr[rpm] 200 123 110 32 103 85

∆ϕ̇EM [rpm] [−39 51] [−45 51] [−30 48] [−40 56] [−32 42] [−36 66]
∆ϕ̇EM [%] [−1.7 2.2] [−2.1 2.3] [−1.53 2.2] [−1.9 2.4] [−1.5 1.9] [−1.6 2.9]
saeN 227.5 224.4 169.8 135.3 163.6 143.3

Additionally to the tracking error eTr and the angular velocity variations ∆ϕ̇ICE and
∆ϕ̇EM , the following error

saeN =
N∑
k=0

|ϕ̇ICE,Des − ϕ̇ICE|
N

=
N∑
k=0

|e(k)|
N

(5.30)

is used to evaluate the performance at each temperature TEng, see (Unbehauen 2008, p.
191). The parameter N consists the number of samples needed for a synchronization
process. The experimental results of the NN controller are summarized in Table 5.1. In
all cases, the variations of the angular velocity ∆ϕ̇EM is less than 3 %. Thereby, the
tracking error eTr is varying depending on the temperature TEng, which is an indicator
that the system gain is also changing. The NN controller provides a robust performance.
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6 Conclusion and Outlook

The main goal of this thesis consists in exploring new methods and techniques to design
robust controllers. The work focus was put on their practicability in terms of the im-
plementation in a real environment. Thereby, the controller should provide a specified
performance in the whole parameter range of interest. Three controllers have been used
to achieve this task, namely fractional as well as integer order PID controllers and then
neural network structures.

Due to the fact that fractional operators are not well known in the control community,
an introduction to this field has been given in Appendix B. Magnitude and phase Bode
plot of fractional derivatives and integrals are discussed. The advantage of this operator
is that the slope of the magnitude and phase are not restricted respectively to a whole
multiple of 20 dB and 90◦ any more. This fact is very important in the design of robust
controllers as it opens new possibilities in tuning the controller for uncertain plants. This
later class of plant consists of a nominal transfer function which is constant and a static
gain parameter, which varies in a specified range. In this context, an uncertain model of
the electronic throttle is introduced to show the impact of parameter variations on the
frequency response given by the Bode plot. It has been shown that this consists of a
shifting of the magnitude plot; the phase plot is not affected by theses variations.

In Section 2, the optimization of the robust fractional order controllers (PIαDβ) and
(PID)n has been treated in detail. Thereby, the robustness requirements are given in
terms of a desired crossover frequency and a desired phase margin for all parameter
variations of systems with static gain variations. It has been shown that we can formulate
these requirements as a desired fractional order integrator for the open-loop transfer
function. The case in which a maximal overshoot is determined instead of phase margin
has been also considered. For this reason, a method has been given to represent the
maximal overshoot for the closed-loop step response as a desired phase margin. Two
approaches have been developed to optimize the fractional controllers parameters, which
are based on shaping the open-loop in the frequency domain response for the PIαDβ

controller or the closed-loop response for the (PID)n. To solve the related optimization
problem, an algorithm based on the recently developed nonsmooth techniques and the
Steepest-Descent method was presented.

The fractional order optimization problems (2.52) and (2.58) in Section 2.3.1 are non-
smooth and nonconvex, which motivates us to design a novel Fractional Order PID
Controller (FOPID) Matlab Toolbox. It aims to enable the user to tune the controller
parameters further in case that the obtained parameter does not satisfy the robustness
requirements. In all the examples which have been considered, it was not necessary
to use this feature. The obtained controllers already satisfy the imposed specifications.
Moreover, the comparison to other existing methods in the literature has shown that our
FOPID provides the best performance.

In case that the robustness specifications to be achieved are given in terms of an overshoot
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free step response, classical integrator can be used to formulate this requirement. In
Section 3, the optimization of robust controllers that achieve this goal has been discussed.
Thereby, as the mostly used controllers type PIDs are considered. Due to its capability
to represent constraints on systems, Model Predictive Control (MPC) has been applied
to formulate the related optimization problem. Open-loop as well as closed-loop MPC
problems are treated. Moreover, we propose a method to formulate these problems in
terms of Linear Matrix Inequalities (LMIs). The advantage of this formulation is that
LMIs correspond to convex problems, which can be solved efficiently using existing LMI
solvers. This has been shown through the computation of an optimal input trajectory for
the electronic throttle. Thereby, constraints on the input and output were imposed. As we
are interested in the optimization of robust controllers, the formulation of the closed-loop
problem is discussed. In turns out that the related optimization problem is nonconvex
given in terms of a Bilinear Matrix Inequality (BMI) which is a nonconvex problem, and
therefore hard to solve. For this reason, we proposed a method to transform this problem
into a set of LMIs based on the Schur complement. The effectiveness of our proposed
method has been shown through the optimization of a robust PD controller for the
electronic throttle. Simulation results are given that showed the achieved performance.

Although, PID controllers are able to provide a satisfactory performance in many appli-
cations, it is preferable to have other alternatives in case that they fail. For this reason,
the design of a more sophisticated and modern methods has been explored in Section 4,
by applying Neural Network to the control problem. Firstly, the classification of NNs into
feedforward and recurrent network have been given. The capability of nonlinear networks
to approximate a given nonlinear static function is demonstrate with a numerical exam-
ple. Regarding dynamic systems, Recurrent Neural Networks (RNNs) provides a more
appropriate network structure to be used. In this context, we proposed a novel RNN rep-
resentation, which represents the closed-loop system. Thereby, we proposed to use this
structure to formulate the closed-loop problem in which whether the controller is known
and the plant has to be identified or a controller has to be optimized for a given known
plant. In both cases, we introduced an algorithm to optimize the system parameters given
by the weights of the related RNN.To demonstrate the effectiveness of our approach, the
optimization of robust controller for the uncertain model of the electronic throttle has
been presented. Thereby, the same robustness as in Section 3 are considered. Simula-
tion results have shown that the RNN controller always provides the imposed robustness
specifications.

Both proposed approaches in Section 3 and 4 are suitable to optimize robust controllers
for uncertain systems. To compare both methods, the design of a Single-Input Multiple-
Output (SIMO) controller has been considered in Section 5. The system under considera-
tion is Multi-Input Multi-Output model of the synchronisation of the Internal Combustion
Engine (ICE) and Electric Machine (EM) velocities in a Parallel Hybrid Electrical Vehicle
(PHEV). This consists a very interesting plant to be explored as it is a very active field
of research. With the help of a Rapid Control Prototyping (RCP) system, we identified
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a MIMO model that describes the dynamics of the synchronisation task from the torque
of the EM and the clutch to the angular velocity of the ICE and the EM. Additionally
to imperfection of the identification, the main source of uncertainty corresponds to the
separation clutch. Thereby, we proposed to represent this uncertainty as variations in a
multiplicative static gain of the clutch transfer function. Using our method, the uncer-
tainties related to the transmitted torque by the clutch can be handled. This fact has
been confirmed for the optimized RNN and LMI based robust controllers. Simulation
results have shown that the RNN controller provides the imposed requirements given in
terms of an overshoot free step response of the ICE angular velocity for all variations of
the clutch model static gain. Morever, it has been shown that this RNN outperformed
the LMI based controller. For this reason, the implementation of RNN in a real PHEV
have been investigated. To round off this work, we applied the RNN controller to solve
synchronisation task. Experimental results are presented to shown the achieved robust
performance.

Outlook

Further research activities are proposed here:

• Fractional Order Controllers:

– In this work, the optimization of the fractional controllers PIαDβ and (PID)n

for Single-Input Single-Output (SISO) uncertain systems has been treated. A
future work would be to extend the proposed method to Multi-Input Multi-
Output (MIMO) systems. It will be also very interesting to explore the appli-
cation to nonlinear systems. Additionally, another point which can be explored
is the optimization of fractional controller to handle not only static gain vari-
ations but general parameter variations.

• Optimization of PID controllers using MPC and LMIs:

– Regarding the optimization of PID controllers, it has been shown that MPC
can be combined with LMI to produce an efficient method to optimize the
parameters of these controllers. The stability of the controller can be checked
afterwards using standard classical methods. A future work would be to incor-
porate a priori stability conditions into the set of LMIs. This can be achieved
using for example Lyapunov stability condition. Another point which can be
explored is the application of our method to nonlinear systems. As we are
using the MPC formulation, this can be achieved in a straightforward manner.
Another important point to be explored is the application of our method to
optimize adaptive PID controllers for slow parameter varying systems.

• Artificial Neural Network Controller:

– We have shown in this work that neural network can be applied to design robust
controllers achieving a specified performance. We have also demonstrate that
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such networks, when well structured, can be applied to solve practical problems.
The closed-loop structure presented here can be extended to nonlinear systems
as well as nonlinear controllers. Moreover, an interesting issue will be to explore
adaptive RNNs and real-time tuning of the neural network weights.

• Experimental implementation on a Parallel Hybrid Electrical Vehicle

– Regarding the synchronization task of the test PHEV, it was shown that the
RNN neural network provides a better performance than the LMI based con-
troller. Moreover, experimental results were very promising as well as many
ideas have been raised related to the synchronization task in PHEVs. These
are summarized here:

1. To design a robust controller, it is firstly necessary to specify the range in
which the uncertain parameter V varies. Otherwise, the performance can
not be guaranteed. For this reason, the estimating of the real transmitted
clutch torque can be explored. To achieve this goal, one can use linear or
nonlinear observer techniques.

2. The model used to identify the ICE was linear. An important point would
be to explore nonlinear identification methods to describe the nonlinear
dynamics of the ICE.

3. Due to the influence of the temperature on the clutch dynamics, another
important point which should be explored is to estimate its value by means
of a temperature observer.

4. Contrary to robust controllers, parameter varying controllers can be adapted
in real-time to achieve a more specific performance in terms of some phys-
ical parameters as temperature, transmitted clutch torque, etc.
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A Experimental Results

Synchronization Task: Engine temperature TEng = 69.6◦
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Figure A.1: Synchronization of the EM and ICE speeds (experimental results test vehi-
cle), (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green), ϕ̇EM
(dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the EM
and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torqueMCL,Des,
(centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

Figure A.1 shows the experimental results of a synchronization task for TEng = 69.6◦.
As in the previous case, there is no break down of the angular velocity ϕ̇EM . Thereby,
the velocity ϕ̇ICE follows its reference ϕ̇ICE,Des with a smaller tracking error 123 rpm.
Compared to the previous case shown in Figure 5.22, a change in this parameter is an
indicator that the gain of the system is also changing. However, due to the robustness
of the controller, there is no deterioration in the performance by means of overshoots for
the angular velocity ϕ̇EM .
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Synchronization Task: Engine temperature TEng = 74.15◦
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Figure A.2: Synchronization of the EM and ICE speeds (experimental results test vehi-
cle), (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green), ϕ̇EM
(dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the EM
and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torqueMCL,Des,
(centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

The experimental results of a synchronization task for TEng = 74.15◦ are shown in Figure
A.2. The variation of the angular velocity ∆ϕ̇EM is below 50 rpm. As in the previous
cases, the controller provides the required performance (no breakdown of the EM angular
velocity). The tracking error is here eTr = 110 rpm.
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Synchronization Task: Engine temperature TEng = 77.8◦
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Figure A.3: Synchronization of the EM and ICE speeds (experimental results test vehi-
cle), (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green), ϕ̇EM
(dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the EM
and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torqueMCL,Des,
(centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

Figure A.3 shows the experimental results of a synchronization task for TEng = 77.8◦.
This time, the desired trajectory for the ICE angular velocity ϕ̇ICE with the tracking
error eTr = 32 rpm. Also for this case, there is no deterioration of the angular velocity
ϕ̇EM , which is confirmed through a variation ∆ϕ̇EM below 56 rpm is achieved.
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Synchronization Task: Engine temperature TEng = 79.6◦C
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Figure A.4: Synchronization of the EM and ICE speeds (experimental results test vehi-
cle), (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green), ϕ̇EM
(dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the EM
and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torqueMCL,Des,
(centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

In Figure A.4, the ICE temperature TEng is about 80◦C. The controller still achieves a low
deviation ∆ϕ̇EM , which is smaller than 50 rpm. Thereby, the ICE velocity ϕ̇ICE follows
its reference ϕ̇ICE,Des with an achieved tracking error of about eTr = 103 rpm.



137

Synchronization Task: Engine temperature TEng = 83.1◦C
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Figure A.5: Synchronization of the EM and ICE speeds (experimental results test vehi-
cle), (top, left) ICE, EM and desired ICE and EM angular velocities ϕ̇ICE (green), ϕ̇EM
(dash blue), ϕ̇EM,Des (red) and ϕ̇ICE,Des (dash black), (top, right) variations of the EM
and ICE angular velocities ∆ϕ̇EM and ∆ϕ̇ICE, (centre left) desired clutch torqueMCL,Des,
(centre right) desired EM torque MEM,Des, (bottom) vehicle velocity V

The last experiment was performed at the ICE temperature TEng = 83.1◦C. In this case,
we remark a deterioration of the EM velocity ϕ̇EM , which is acceptable. In this case, the
robustness performance is not fully achieved. The simulation results for the case that
the static gain V varies more than 50% given in Figure 5.20 shows that in this case the
robustness performance is not guaranteed. For this reason, the variation of the static gain
related to the results in Figure A.5 is probably higher than 50%, which is outside the
robustness range of the NN controller.
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B Mathematical Preliminaries and Robust Control

In this section, the main mathematical tools used in this work are presented. Only
definitions and theorems, which contribute to a better understanding are presented and
discussed. For more details, the reader can see the related references or the Appendix.
When necessary, some definitions are accompanied with examples to demonstrate their
practical aspects. Basic mathematical definitions are presented in Section B.1. In Section
B.2, linear matrix inequalities are discussed. The introduction of fractional calculus and
the related fractional order functions are discussed in Section B.3. In Section B.4, the
definition of the class of uncertainty considered in this work is presented. At the end of
this Chapter, robust control is briefly revised.

B.1 Linear Algebra

First, the notation used along this thesis is given. Scalars, vectors and matrices are
denoted by lowercase letters x, boldface lowercase letters x and boldface capital letters
X, respectively. Time signals are denoted whether by lowercase letters x(t) for the scalar
case or by X(t) for the vector case. Laplace transform is denoted by capital lettersX(s) for
scalar signals and boldface capital letters X(s) for vector signals. The following notations
are used to denote the definiteness of matrices. A positive definite matrix A is denoted
by A > 0, semi-positive definite by A ≥ 0, negative definite by A < 0 and semi-negative
definite by A ≤ 0. An identity matrix ∈ Rn×n is denoted by In. A n by m matrix with
zeros entries is denoted by 0n×m. The transposed of a matrix A is denoted by AT and
the conjugate transposed (Hermitian) by AH . σ(A) denotes the singular values of a given
matrix A and σ̄(A) denotes the maximal singular value.

Vector 2-norm (Skogestad and Postlethwaite 2007, p. 550)

The vector 2-norm is used to define the cost function of the optimization problem in
Section 3. Therefore, the definition of this norm is presented here. It is as follows

‖x‖2 =

√√√√ m∑
i=1

|xi|2 (B.1)

or in vector form

‖x‖2 =
√

xHx (B.2)

for a given vector x ∈ Cm, where xH denotes the conjugate transpose of x. For real
vectors, xH can be replaced by the transposed xT .

Signal 2-norm (Skogestad and Postlethwaite 2007, p. 558)

Due to its use to define the H∞ norm, the signal 2-norm is presented. It is defined as
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follows

‖y(t)‖2 =

√∫ +∞

−∞
|y(τ)|2dτ (B.3)

with y(t) is a given scalar time signal. The lower bound can be replaced with zero as
y(t) = 0 for t < 0. For a vector time signal y(t), the 2-norm turns out to be

‖y(t)‖2 =

√∫ +∞

0

∑
i

|yi(τ)|2dτ . (B.4)

H∞-norm (Skogestad and Postlethwaite 2007, p. 163-166)

The H∞ norm plays an important role in control theory. Especially, it is known for its
use to derive the H∞ controller problem. In this work, the H∞ norm is used to formulate
the fractional order controller problem in Section 2. For this reason, it is necessary to
present its definition. Moreover, a brief interpretation for SISO systems is given.

g (t)
u (t) y (t)

Figure B.1: LTI-configuration with input u(t), output y(t) and impulse response g(t)

Figure B.1 shows a proper linear stable system with impulse response g(t), input u(t) and
output y(t). The first definition of the H∞ norm is given in terms of the time domain
response of the plant. It is as follows

‖G(s)‖∞ = max
u(t)6=0

‖y(t)‖2

‖u(t)‖2

= max
‖u(t)‖2=1

‖y(t)‖2. (B.5)

Another definition or interpretation of the H∞ norm is given in terms of the frequency
response of the transfer function G(s). It is as follows

‖G(s)‖∞ = sup
ω
|(G(jω)|. (B.6)

This definition can be interpreted as the maximal magnitude of the system over all frequen-
cies. Figure B.2 shows an example of the magnitude plot of the system G(s). Thereby, the
H∞ norm is the maximal magnitude over all frequencies. It is achieved at the frequency
ωT .
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 ! 
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|  G| 

║ G║∞   

Figure B.2: H∞ norm of the SISO system G, or maximal gain over ω

For MIMO systems, the magnitude |G| shown in Figure B.2 is replaced by the maximal
singular value σ̄(G).

Schur complement (Boyd et al. 1994, p. 7-8)

Another important mathematical tool used in this work is the Schur complement. It can
be used to transform a nonlinear matrix inequality into a linear matrix inequality. This
idea is applied on the control problem in Section 3. For this reason, consider the two
inequalities

Q(x) > 0 and Q(x)− S(x)R(x)−1S(x)T > 0. (B.7)

The symmetric matrices Q(x) and R(x) and the matrix S(x) depend affine on the pa-
rameter x. The inequality on the right hand side of the expression (B.7) is nonlinear.
This is due to the term R(x)−1 and the left and right multiplication with S(x) and S(x)T ,
respectively. The two inequalities in the above expression are equivalent to the condition[

Q(x) S(x)

ST (x) R(x)

]
> 0. (B.8)

This expression becomes linear in the parameter x. It defines a linear matrix inequality.
The Schur complement was used in many contributions to turn nonlinear problems into
LMIs. It plays an important role in deriving LMI conditions to design H∞ controllers,
(Apkarian and Gahinet 1995). In (de Oliveira et al. 1999, Theorem 1-2), the authors
use the Schur complement to derive stability and robust stability conditions for linear
discrete-time systems. For a better understanding of this mathematical tool, consider the
following least-square problem (Boyd and Vandenberghe 2004, p. 301)
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Problem B.1 :

minimize
x

‖Ax− b‖2
2︸ ︷︷ ︸

f(x)

subject to x > 0

(B.9)

with a given matrix A ∈ Rm×n, a given vector b ∈ Rm×1 and the parameter vector
x ∈ Rn×1. The expression (B.9) is a constrained least-square problem. The objective
function

f(x) = (Ax− b)T (Ax− b) = xTATAx− 2xTb + bTb. (B.10)

is quadratic in the parameter vector x. Using the Schur complement, the constrained
optimization problem (B.9) can be transformed into a LMI. This is achieved by considering
the equivalent problem

Problem B.2 :

minimize
x

γ

subject to (Ax− b)T (Ax− b)︸ ︷︷ ︸
f(x)

< γ and x > 0 (B.11)

with the scalar cost function γ. Now introducing the matrices Q, R and S as follows

(γ)︸︷︷︸
Q

− (Ax− b)T︸ ︷︷ ︸
S

IN︸︷︷︸
R−1

(Ax− b)︸ ︷︷ ︸
ST

> 0 (B.12)

and then applying the Schur complement (B.8) on the inequality (B.12) leads to[
γ (Ax− b)T

(Ax− b) IN

]
> 0. (B.13)

The quadratic matrix inequality (B.12) is transformed into the linear matrix inequality
(B.13) in x. The overall least square optimization problem is now given in terms of the
following LMI problem

Problem B.3 :

minimize
x

γ

subject to
[

γ (Ax− b)T

(Ax− b) IN

]
> 0,

x > 0.

(B.14)

Problem (B.14) consists of minimizing a linear objective given by γ and two linear matrix
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inequalities describing the constraints. This LMI problem can be solved using existing
LMI solvers.

B.2 Linear Matrix Inequalities

The benefit of representing optimization problems in terms of LMIs is that the resulting
problem is convex. Using modern algorithms such as (Labit et al. 2002) or (Gahinet
et al. 1995), LMIs can be solved numerically very efficient. The number of books and
papers dealing with LMIs is considerable high. For example, a good survey is given by
(Boyd and Vandenberghe 2004) and (Boyd et al. 1994). In this section, a very brief review
on LMIs is presented. Moreover, a control example is presented to show the field of their
application.

Linear matrix inequality is a special form of inequalities, which appears in control theory.
In this case, the optimization parameter enters the matrix inequality linearly. As it is
mentioned in (Boyd et al. 1994), the first contribution was made by Lyapunov (about
1880). He presented the so-called Lyapunov theory as a tool to check the stability of
dynamic systems. For this purpose, consider the following system

ẋ(t) = A x(t) (B.15)

with x ∈ Rn and and A ∈ Rn×n denote the state vector and system matrix, respectively.
Many approaches exist to check the stability of this system. One approach is given in
terms of the so-called Lyapunov matrix. In this context, it is well known that the system
(B.15) is stable (in the sense that all trajectories converge to zero) if and only if a positive
definite matrix P exists such that the following LMI condition (Boyd et al. 1994, p. 2)

ATP + PA < 0 (B.16)

holds. One way to solve problem (B.16) is to transform it into a linear matrix equality
(Boyd et al. 1994, p. 25). This can be done using any auxiliary symmetric positive definite
matrix Q and then solve the following equality

ATP + PA = −Q (B.17)

in the matrices P and Q.

In general, the matrix inequality (B.16) does not have an analytical solution. Especially,
for high dimensional problems it becomes very difficult to solve it by hand. Thanks to
the work of Karmarkar (Karmarkar 1984) in the early 1980, the introduction of pro-
jection methods (Nemirovskii and Gahinet 1994) and interior point methods (Boyd and
Vandenberghe 2004), LMIs become more popular. This is due to the fact that algorithms
based on these methods solve LMI problems efficiently and in polynomial time, see (Labit
et al. 2002) and (Gahinet et al. 1995).
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Actually, the general inequality form which defines LMI problems is as follows (Boyd
et al. 1994, p. 7)

S0 + p1S1 + p2S2 + · · ·+ pNSN > 0, (B.18)

with p = [p0 p1 p2 · · · pN ]T represents the vector of decision variables. The
matrices S0 to SN are given symmetric matrices. A more general LMI form is given by

Problem B.4 :

minimize
p

f(p) = cTp

subject to S0 + p1S1 + · · ·+ pNSN > 0.
(B.19)

The scalar function f(p) is the objective function, which is linear in the parameter vector
p ∈ Rn×1. The vector c ∈ Rn×1 defines the objective, which will be minimized. The
optimization problem (B.19) represents a minimization of a linear objective subject to a
linear matrix inequality. In this case, the resulting optimization problem is convex.

Many control problems can be formulated as LMI problems. Mostly, the original problem
is nonlinear. Using linear algebra, the nonlinear problem can be converted into a LMI
form. For a better understanding, a simple example is given. In control theory, one of
the common problems is the computation of a stabilizing state feedback gain for linear
systems. For this purpose, consider the following LTI system (Boyd et al. 1994, p. 100)

ẋ(t) = A x(t) + bu(t). (B.20)

with A ∈ R2×2, x ∈ R2×1 and b ∈ R2×1. The goal is to compute a state feedback vector
f ∈ R2×1 with u(t) = fT x(t) that stabilizes the plant (B.20). Applying now the Lyapunov
stability condition, the state feedback problem is defined as follows

P(A + bfT )T + (A + bfT )P︸ ︷︷ ︸
Bilinear

< 0. (B.21)

Due to the multiplication between the vector fT and the Lyapunov matrix P, the in-
equality (B.21) is not a LMI. It is a Bilinear Matrix Inequality (BMI). Now introducing
y = fTP and substituting it in the BMI (B.21), the following

PAT + yTbT + AP + by < 0, (B.22)

defines the state feedback problem in LMI form. Inequality (B.22) is a LMI in the auxiliary
variable y and the Lyapunov matrix P. The general form (B.18) of the LMI (B.22) can
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be obtained using

P = p1

[
0 1

1 0

]
+ p2

[
1 0

0 0

]
+ p3

[
0 0

0 1

]
(B.23)

and

y = y1

[
1 0

]
+ y2

[
0 1

]
. (B.24)

Substituting the expressions (B.23) and (B.24) in the inequality (B.22) leads to the fol-
lowing general LMI form

p1

S1︷ ︸︸ ︷
sym

(
A

[
0 1

1 0

])
+p2

S2︷ ︸︸ ︷
sym

(
A

[
1 0

0 0

])
+p3

S3︷ ︸︸ ︷
sym

(
A

[
0 0

0 1

])
+p4 sym

(
b
[
1 0

])︸ ︷︷ ︸
S4

+p5 sym
(
b
[
0 1

])︸ ︷︷ ︸
S5

< 0, (B.25)

with p4 = y1 and p5 = y2. The term sym(·) is defined as follows

sym(M) = M + MT ,

for a given matrix M. After solving the LMI (B.25), the state feedback vector fT is
equal to yP−1. Due to the fact that the Lyapunov matrix is positive definite, the inverse
of P exists. To solve LMIs, the modeling language YALMIP (Lofberg 2004) and the
optimization algorithm SeDuMi provided by (Labit et al. 2002) are used.

B.3 Fractional Order Derivative and Integral

In this section, a brief introduction to fractional order operators is given. Especially, def-
initions of fractional order derivative and integral are discussed. Moreover, the frequency
domain interpretation and the comparison to integer order integral and derivative are
provided. In this context, the Euler’s Gamma function is introduced. It is defined as
follows (Petras 2011, p. 7)

Γ(n) =

∫ ∞
0

t(n−1)e−tdt. (B.26)

The definition above consists a generalization of the classical factorial

Γ(n) = (n− 1)! (B.27)

for integer numbers n. Fractional derivatives and integrals generalize differentiation and
integration to noninteger orders. Now giving a fractional order α ∈ R, the integral and
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differential operator are defined as follows (Petras 2011, p. 9)

aD
α
t =


dα

dtα
, α > 0

1, α = 0∫ t
a
(dτ)α , α < 0

(B.28)

with a and t define the bounds of the integral. It exists several definitions of fractional
operators. In this brief introduction, the currently used definitions are presented.

Grünwald-Letnikov definition (Petras 2011, p. 9)

Before presenting this definition, recall first the definition of the integer order n-derivative
of a function f(t) as follows

dn

dtn
f(t) = f (n)(t) = lim

h→0

1

hn

n∑
j=0

(−1)j
(
n

j

)
f(t− jh) (B.29)

with the binomial coefficient(
n

j

)
=
n(n− 1)(n− 2) · · · (n− j + 1)

j!
=

n!

j!(n− j)! . (B.30)

Now generalizing the order n to real numbers, the fractional order derivative can be
written as

Dα
t f(t) = lim

h→0

1

hα

∞∑
j=0

(−1)j
(
α

j

)
f(t− jh) (B.31)

with α being a real number. To calculate the binomial coefficients for α, the following
expression

(
α

j

)
=

α!

j!(α− i)! =
Γ(α + 1)

Γ(j + 1)Γ(α− j + 1)
(B.32)

is used.

Riemann-Liouville definition (Petras 2011, p. 11)

The Riemann-Liouville definition provides another method to compute frational integrals
and derivatives. Contrary to the previous definition, an integral based expression is given.
The following defines fractional integration of a given order α for the function f(t) (Petras
2011, p. 11)

aI
α
t f(t) = aD

−α
t =

1

Γ(−α)

∫ t

a

f(τ)

(t− τ)α+1
dτ (B.33)
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with α and a ∈ R and α < 0. On the other hand, the fractional derivation with Riemann-
Liouville is given by

aD
α
t =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ. (B.34)

Laplace Transform (Petras 2011, p. 12-15)

The definitions presented above are suitable for analysis purposes. For the seek of control,
it is more convenient and preferable to have an insight into the frequency response of frac-
tional operators. For this reason, the Laplace transform of fractional orders is considered.
For the case of the fractional derivative of a function f(t) and with the assumption that
all initial conditions are zero, this is given by

L{0D
α
t f(t); s} = sαF (s) (B.35)

for α > 0. Comparing the Laplace transform of the fractional order α with the Laplace
transform of the n-derivative of the function f(t) given by

L{fn(t); s} = snF (s) (B.36)

with n ∈ N, the fractional order generalizes the use of the Laplace operator to fractional
derivatives sα. The counterpart to definition (B.35) is the Laplace transform of the
fractional integral. This is given by

L{0D
β
t f(t)} = sβF (s) (B.37)

with β < 0.

Implementation of Fractional Orders

It exists many formulas to implement fractional orders. Generally, they can be divided
into two main approaches, those which are based on continuous-time approximations and
others which are based on discrete-time approximations. In (Valério and da Costa 2005),
this issue is discussed in details. A summary of the main results is given in the Appendix
C. In this work, the continuous-time approximation given by (Melchior et al. 2002) is
used. It is known as the CRONE approximation. The main benefit of using this method
is the possibility to specify the frequency range in which the approximation of fractional
orders should be valid. This prevents unnecessary high order approximations. Due to its
importance for this work, the CRONE approximation is briefly discussed. Given now a
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fractional function sα, the following representation

N∏
i=1

1 + s

ω
′
i

1 + s
ωi

, ω
′

i, ωi ∈ R (B.38)

can be used to approximate the order α in the given frequency range [ωmin ωmax]. The
frequencies ω′i and ωi are computed by first determining v and η as follows

v =

(
ωmax
ωmin

)( αN )
, η =

(
ωmax
ωmin

)( 1−α
N )

(B.39)

and then compute

ωi = ω
′

iv and ω
′

i+1 = ωiη. (B.40)

The order of the approximation N can be chosen depending on the frequency range given
by ωmin and ωmax in which the fractional order approximation is valid.
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Figure B.3: Bode plot of the CRONE approximation of the fractional integrator 1
s1.5

for the frequency ranges, [10−4 104] rad/s (black), [10−3 103] rad/s (dashed red) and
[10−2 102] rad/s (dashdot cyan), in comparison Bode plot of the integrator 1

s
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To get an insight into the frequency response of fractional orders, the Bode diagram of
the following fractional integral

1

sα
≈

N∏
i=1

1 + s

ω
′
i

1 + s
ωi

, ω
′

i, ωi ∈ R (B.41)
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with α = 1.5 is considered. Moreover, three frequency ranges are considered. The results
are shown in Figure B.3. Considering the magnitude plot, the slope of the classical
integrator is given by −20 dB/dec. For the fractional integrator, the slope is a function of
the fractional order. Precisely, it is given by the order α multiplied by −20 dB/dec. For
the example above, it is −1.5×20 dB/dec. Now consider the phase plot, the phase of the
classical integrator is −90◦ over all frequencies. In contrast, the phase of the fractional
integral is −1.5 × 90◦. Changing the fractional order from 1 to 2 results in a variation
of the slope of the magnitude from −20 dB/dec to −40 dB/dec. Thereby, the constant
phase varies between −90◦ and −180◦.

To this point, we want to mention that the magnitude and phase characteristics depends
on the chosen frequency range, see Figure B.3. A rule of thumb is to use one order
for each frequency decade. For example, the frequency range [10−2 102] rad/s can be
approximated using a forth order function (N = 4).

Now, the approximation of the fractional derivative

sβ ≈
N∏
i=1

1 + s

ω
′
i

1 + s
ωi

, ω
′

i, ωi ∈ R (B.42)

using the same method is considered. The results are shown in Figure B.4.
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It is well known that the slope of the magnitude of an ideal differentiator s is 20 dB/dec,
see Figure B.4. The magnitude slope of the fractional derivative is given by 20 dB/dec

multiplied by the fractional order β, namely 1.5× 20 dB/dec. The phase of the classical
derivative is 90◦ over all frequencies. In contrast, the phase of the fractional derivative is
1.5× 90◦ in the bandwidth of interest.

To summarize this section, the following conclusion can be made. Depending on the
implementation constraint on the system, a frequency range has first be chosen. In this
range, the approximation (B.41) provides −α× 20 dB/dec for the slope of the magnitude
and −α × 90◦ for the phase. For the fractional derivative approximation (B.42), it is
β × 20 dB/dec for the slope of the magnitude and β × 90◦ for the phase. The order N
has to be chosen accordingly.

B.4 Uncertain Plants

One of the goals of this thesis is the design of robust controllers for uncertain systems.
For this purpose, it is necessary to define the type of uncertainty of interest. It consists
of uncertain continuous linear time invariant SISO systems with static gain variations.
Depending whether the uncertain plant is given in state-space form or as a transfer func-
tion, we discuss which conditions have to be fulfilled such that the uncertainty falls into
the class of static variations.

u          (t)   b(v1 ) c(v2)Tʃ y   (t)

A(v3)

Figure B.5: Linear time invariant system with varying input vector b(v1), output vector
c(v2)T and state matrix A(v3) depending on the parameters v1, v2 and v3

Figure B.5 shows a general representation of parameter uncertain LTI systems. The
input vector b(v1), output vector c(v2) and the state matrix A(v3) depends on the
parameters v1, v2 and v3, respectively. Assume that these parameters are available in
real-time, the structure shown in Figure B.5 describes a parameter-dependent system, see
(Apkarian et al. 1995). In this case, designing a gain scheduled controller seems to be
more convenient. The controller is also parameter dependent and is scheduled in real-
time. The design of gain-scheduled controllers for LPV systems is discussed in detail in
(Apkarian et al. 1995) and (Apkarian and Gahinet 1995).
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In case that the parameters are not available in real-time and the estimation of the
parameters is not possible, the structure shown in Figure B.5 describes a LTI system
with uncertain parameters. In this case, the design of a robust controller covering the
range of parameter variations should be considered. In case that this range is known, the
performance of the controller can be validated through simulation. In this work, we are
considering the design of such controllers for this class of LTI systems.

Now consider the following state-space system

G :

{
x(t) = A x(t) + b(v1)u(t)

y(t) = c(v2)T x(t).
(B.43)

with x(t) ∈ Rn×1, u(t) ∈ R and y(t) ∈ R denote the state vector, the input and out-
put, respectively. Assume that the matrix A ∈ Rn×n is parameter independent and the
vectors b(v1) ∈ Rn×1 and cT (v2) ∈ R1×n depend on the variable parameters v1 and v2,
respectively. Moreover, this dependency is as follows

b(v1) = v1 · b0 and c(v2)T = v2 · cT0 . (B.44)

The vectors b0 ∈ Rn×1 and cT0 ∈ R1×n constitute the nominal case with v1 = 1 and v2 = 1.
Moreover, we assume that the parameters v1 and v2 lie in the intervals [v1min, v1max]

and [v2min, v2max], respectively.

The representation of the parameter dependent vectors b(v1) and c(v2) in the form given
by Equation (B.44) restricts the general paramater structure to be static gain uncertainty.
To make this clear, consider the parameter dependent transfer function of the system
(B.43) as follows

G(s) = c(v2)T (s · In −A)−1b(v1). (B.45)

Now substituting (v1 · b0) for b(v1) and (v2 · c0) for c(v2) results in

G(s) = cT0 · v2(s · In −A)−1b0 · v1 = v1 · v2︸ ︷︷ ︸
V

cT0 (s · In −A)−1b0︸ ︷︷ ︸
G0(s)

. (B.46)

The new introduced parameter V lies in the intervall [Vmin, Vmax]. G0(s) is the nominal
transfer function of the state-space model (B.43) for the case V = 1. The new parameter
bounds are deduced from the upper and lower limits of the parameters v1 and v2 as
follows

V ∈
[
v1min · v2min︸ ︷︷ ︸

Vmin

v1max · v2max︸ ︷︷ ︸
Vmax

]
. (B.47)

The parameter V consists the static gain of the plant. The uncertainty of the plant
consists in variations of this parameter.
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It is now straightforward to check if a given uncertain plant belongs to this class of
uncertainties. In case that the plant model is provided in state-space form, the input and
output vectors should be representable in the form given by Equation (B.44). In case that
the plant model is given as a tranfer function, the representation should be in the form
given by the Equation (B.46) consisting of a nominal function G0(s) and a static gain V .
To get an insight into the dynamic of such uncertain plants, an example is considered.

Example: Electronic Throttle

Generally, the design of robust controllers to ensure a specified performance in case of
parameter variations is always desired and should be considered. This is due to the fact
that uncertainties are mostly present. For example, uncertainty in the parameters can
be the result of an imperfect identification of the system. Another well known fact is the
influence of external factors as temperature or ageing effects in mechanical components.

In this context, the electronic throttle consists an interesting plant to be studied. It is a
main component in modern engines. It regulates the amount of the air going inside the
engine. For safety reason, it is necessary to provide the desired performance in case of
parameter variations. These are the result of ageing effects or temperature changes. The
design of robust controllers that guaranty a desired performance in the presence of static
gain variations is considered in Section 2, 3 and 4.

In (Alt et al. 2010), the following transfer function

G(s) =
F

s(τs+ 1)
=

α(s)

Ua(s)
(B.48)

is used to catch the dynamic of a simplified model of the electronic throttle. The input
and output of the system are the voltage Ua and the angular position α, respectively.
Assume that the time constant τ is fixed and well known. Thereby, the static gain F is
uncertain. The parameter dependent transfer function, which describes the dynamic of
the electronic throttle is given by

G(s) = V
F0

s(τs+ 1)︸ ︷︷ ︸
G0(s)

withV ∈ [Vmin Vmax] (B.49)

with Vmin = 0.5, Vmax = 1.5 and the nominal value Vnom = 1. F0 consists the nominal
static gain. A robust controller should cope with the variations of the parameter V and
provides the desired performance in the whole parameter range.

To understand the impact of parameter variations on the dynamic of the electronic throt-
tle, the frequency response of the system (B.49) is considered. Figure B.6 shows the
magnitude and phase of the Bode plot. The variations of V cause a shift in the magni-
tude response. The crossover frequency varies between ωCmin and ωCmax. The parameter
variations have no influence on the bode phase.
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Figure B.6: Bode plot of the uncertain transfer function of the electronic throttle for the
minimal, nominal and maximal values V = 0.5 (dashed black), V = 1 (blue) and V = 1.5
(dashdot red), respectively

B.5 Robust Control

In the previous section, the class of plants being considered in this work was introduced.
In this context, it is now appropriate to discuss the robustness specifications. Specifically,
which types of robustness are taken into consideration. Therefore, a brief introduction is
given here. Generally, robustness has been extensively discussed in several books, see for
example (Maciejowski 1989) or (Boyd et al. 1991).

In (Skogestad and Postlethwaite 2007), the classification of robustness into stability ro-
bustness and performance robustness is considered. The first type of robustness is reserved
to problems in which stability has to be guaranteed in case of uncertainties. In this case,
the main goal of the control problem is to find a controller that stabilizes the uncertain
system. Additionally to robust stability, it is often required that the controller achieves
a predefined performance for parameter variations. In this case, the controller provides
robust performance. The closed-loop structure shown in Figure B.7 is used to define this
performance.
Thereby, K(s) is a given LTI controller. G(s) is an uncertain plant with the uncertain
parameter V and the nominal transfer function G0(s). The input and output of the system
are denoted by U and Y , respectively. The transfer function from the reference R to the
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− 
K (s) G (s)=V·G0 (s)

E (s)
R (s)

U (s) Y (s)

Figure B.7: Closed-loop structure for an uncertain plant with static gain V variations
and a controller K(s)

output Y is given by

T (s) =
V ·G0(s)K(s)

1 + V ·G0(s)K(s)
. (B.50)

The function T (s) defines the frequency response depending on the gain V . It can be used
to specify the performance in terms of the static gain V . For this purpose, one can impose
constraints on its frequency response as well as on its time response. This fact is shown
in Figure B.8. The time domain specifications are given in terms of the closed-loop step
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Figure B.8: Performance specification in case of parameter variation, time domain spec-
ifications (left) with an upper and lower time performance bounds, frequency domain
specifications (right) with an upper and lower frequency performance bounds for minimal
(dark blue line), nominal (blue line) and maximal (red line) parameter variation

response y(t) for the minimal Vmin, nominal Vnom and maximal value Vmax. The frequency
domain specifications are given in terms of the Bode magnitude of the closed-loop transfer
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function T (jω). Formally, this is given by the following

|Θfmin(jω)| < |T (jω)| < |Θfmax(jω)| ∀ω,∀V. (B.51)

Thereby, Θfmin(jω) and Θfmax(jω) define the lower and upper frequency bounds on the
function T (jω). Generally, these are expressed in terms of linear high- or low-pass filters.
Depending on the approach used to design robust controllers, time domain specifications
can be used instead of frequency constraints. In this case, the step response y(t) is
constrained as follows

Θtmin(t) < y(t) < Θtmax(t) ∀t, ∀V (B.52)

with Θtmin(t) and Θtmax(t) are the lower and upper time constraints.

Additionally to the bounds on the complementary sensitivity function T , one can specify
the desired response for the open-loop function L = GK. Moreover, using the loop-
shaping technique and an appropriate choice of the related upper and lower bounds one can
even enforce the nominal open-loop function L0 = G0K to have a well defined frequency
response. The whole method is presented and discussed in details in Chapter 2.2.
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C Implementation of Fractional Orders

The number of formulas dedicated to the implementation of fractional orders are consid-
erably high. In (Valério and da Costa 2005), several methods to implement fractional
orders are presented and discussed. Moreover, they can be categorized into discrete-time
and continuous time formulas.

Formulas for Discrete-Time Implementation

One of the well known discrete-time formulas for fractional orders as well as for integer or-
ders is given by backward finite difference. For example, consider the fractional derivative
operator Dv, the approximation using backward differentiation is given by

Dv ≈
(

1− z−1

T

)v
(C.1)

with z denotes the shift operator and T the sampling time. Using the MacLaurin series
expansion, the following approximation (Valério and da Costa 2005, Equation 24)

Dv ≈ 1

T

n∑
i=0

(−1)i
Γ(v + 1)

Γ(i+ 1)Γ(v − i+ 1)
z−i (C.2)

is obtained. For the seek of comparison, higher order approximations are considered. The
Tustin approximation is given by

Dv ≈
(

2

T

1− z−1

1 + z−1

)v
≈
(

2

T

)v
Γ(v + 1)Γ(−v + 1)

n∑
k=0

z−k (C.3)

×
k∑
j=0

(−1)j

Γ(v − j + 1)Γ(j + 1)Γ(k − j + 1)Γ(−v + j − k + 1)
(C.4)

and Simpson approximation is given by

Dv ≈
(

3

T

(1 + z−1)(1− z−1)

1 + 4z−1 + z−2

)v
≈
(

3

T

)v
Γ(v + 1)Γ(−v + 1)2

×
n∑
q=0

z−q
q/2∑
n=0

q∑
p=2n

(−1)n

Γ(n+ 1)Γ(v − n+ 1)

× (2−
√

3)−v−p+2n(2 +
√

3)−v−q+p

Γ(p− 2n+ 1)Γ(−v − p+ 2n+ 1)Γ(p− q + 1)Γ(−v − q + p+ 1)
(C.5)

see (Valério and da Costa 2005, Equation 27-28). Additionally to this type of approxi-
mations, the impulse and step response to the fractional operator can be used to provide
other formulas.

The filter used to approximate the time response is given by F (z) =
∑+∞

k=0 aiz
−i. For the
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case of the impulse response, the goal is to approximate this response, which is given by

t−v−1

Γ(−v)
for t > 0 (C.6)

using the impulse response of the filter F (z) given by y(kT ) = ak with k ∈ N. The
discrete-time approximation is given by (Valério and da Costa 2005, Equation 33)

Dv ≈ T−v

Γ(−v + 1)
− T−v−1

Γ(−v)
+

i=1∑
n

(iT )−v−1

Γ(−v)
z−i (C.7)

Now using the step response, another formula can be obtained. For this reason, the
analytical formula is first recalled as follows

t−v

Γ(−v + 1)
for t > 0 (C.8)

and (Valério and da Costa 2005, Equation 35)

Dv =
n∑
i=0

aiz
−i with a0 =

T−v

Γ(−v + 1)
− T−v−1

Γ(−v)
and (C.9)

ak = −
i=0∑
k−1

ai +
(kT )−v

Γ(−v + 1)
, k = 1, 2, · · ·n (C.10)

The idea of using series expansion to approximate fractional derivatives in the discrete-
time domain can be also applied in the continuous time domain. One of the well known
continuous time formula is given by (Melchior et al. 2002). This is also the method
adopted in this work, which has been introduced in Section using the expression (B.38),
(B.39) and (B.40).
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Table C.1: Laplace and Inverse Laplace Transforms
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D Training Artificial Neural Networks

The aim of this section is to provide a basic overview about the training of neural net-
works. Basically, it consists of adapting the weights of the specified network such that a
defined cost function is minimized. This task is performed iteratively using well known
optimization algorithms. First of all, one has to specify the network structure. It is shown
in Figure D.1. It defines a recurrent neural network. It has r inputs ϕ1 to ϕr, two layers
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Figure D.1: Multilayer neural network (three layers: input, output and hidden layer)

and q outputs z1 to zq. The output of the above recurrent network is given by

zi(k) = hi

(
n∑
l=1

zfl(k)vli + bHi

)
(D.1)

with hi denotes the output activation functions. bHi and vl,i consist the output bias and
weights, respectively. Thereby, the internal states of the hidden layer zfi can be computed
as follows

zfi(k + 1) = fi

(
r∑
l=1

ϕl(k)wli +
n∑
j=1

zfi(k)wfij + bIi

)
. (D.2)

Whereas fi denote the activation of the hidden layer. Assume that the first network
output z1 has to be fit to a desired response given by yd. Therefore, a cost function has to
be specified. It is given in terms of the error signal e(k,p) = yd(k)− z1(k,p). The vector
p denotes all the network parameters given by the network bias and weights. In the field
of NN, it common to use one of three objective functions, mse(·), sse(·) or mae(·). The
mse(·) function stands for mean square error and is defined as follows
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mse(e) =
N∑
k=1

(yd(k)− z1(k,p))(yd(k)− z1(k,p))

N
=

N∑
k=1

e(k,p)e(k,p)

N
(D.3)

or in vector form

mse(e) =
eT (p)e(p)

N
(D.4)

for a given error vector e =
[
e(1,p) e(2,p) · · · e(N,p)

]
∈ RN . The error is a func-

tion in the parameter p. In case that the error depends on the parameter p linearly,
minimizing the cost function mse(e) describes a quadratic convex problem. In this case,
any gradient based method can be used. Due to the convexity, any local minimum is the
global minimum.

In some cases, it is preferable to use the sum of square error sse(e) given as follows

sse(e) =
N∑
k=1

e(k,p)e(k,p) (D.5)

instead ofmse(e). In case that the size of the vector e is not high, one can use the function
(D.5). Otherwise, the function mse(·), which is normalized with N , is numerically well
conditioned. For high dimensions, its value does not become very high.

The third function is the mean absolute error mae). It is defined as follows

mae(e) =
N∑
k=1

|e(k,p)|. (D.6)

In our case the mse function (D.3) is used to train the recurrent neural network. This
is due to its quadratic normalized form. After defining the objective function, the used
training algorithm is briefly discussed.

Levenberg Marquadt

There exists a huge number of algorithms to solve optimization problems, see (Boyd
and Vandenberghe 2004), (Werner 2004) and (Mark et al. 2011). Generally, it differs in
the literature between two main approaches, gradient free and gradient based methods.
The first method includes all algorithms that do not require the gradient of the objective
function as Evolutionary Method or Particle Swarm. They are sometimes called stochastic
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search methods. The second method consists of gradient based methods, which need
the gradient of the objective function to perform a search for the optimal value. The
computation of the gradient can be performed either analytically or numerically.

In the field of the NN training it is common to use gradient based methods. The widely
used methods are Steepest Descent, Newton or quasi-Newton methods. In this section a
brief summary of these methods is given.
Consider now the objective function

f(p) =
e(p)Te(p)

N
(D.7)

with the parameter vector p =
[
p1 p2 · · · pn

]
. The optimal vector that minimizes (D.7)

is denoted by p? and its optimal value is f ? = f(p?). An iterative procedure to compute
p? is given by

pk+1 = pk + αd (D.8)

where pk denotes the current approximated solution to p? and pk+1 the improved solution.
Here d and α denote the search direction and the learning rate, respectively, see (Boyd
and Vandenberghe 2004) or (Wilamowski and Irwin 2011)[chap. 12]. Depending on the
choice of d and α equation (D.8) defines either the Steepest Descent or Newton search
algorithm. (Gavin 2011)

Before proceeding to the definition of both methods, the gradient g = ∇f and the Hessian
H = ∇2f of the objective function is recalled as follows

∇f(p) =


∂f
∂p1
∂f
∂p2
...
∂f
∂pn

 and ∇2f(p) =



∂2f
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· · · ∂2f
∂p1∂pn

∂2f
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· · · ∂2f
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∂2f
∂p3∂p1

∂2f
∂p3∂p2

· · · ∂2f
∂p3∂pn

...
... . . . ...

∂2f
∂pn∂p1

∂2f
∂pn∂p2

· · · ∂2f
∂pn∂pn



. (D.9)

Starting with an initial value p0, an update using the Steepest Descent method is defined
as follows

pk+1 = pk − αg(p). (D.10)

Depending on the choice of the rate α it exists different classes of the Steepest Descent.



162 D Training Artificial Neural Networks

Steepest Descent with fixed step α0 consists in choosing a fixed value of the learning rate
for all iterations. Another variety is to update the rate αk during each iteration. In both
cases only first order information (gradient) is used. In case that information about the
Hessian exists, second order information methods can be used. The Newton method is
given by

pk+1 = pk −H−1(p)g(p) (D.11)

with the Hessian matrix H = ∇2f(p). In some cases it is not possible to compute the
Hessian or it is computationally expensive. In these cases an approximation of the Hessian
is used instead of the exact matrix. It is well known that far from the optimal value p∗

the Steepest Descent methods perform well. On the other side, Newton methods perform
close to p∗ better. The following update law

pk+1 = pk − (H(p) + µI)−1g(p) (D.12)

combine both methods. To make this clear, consider a very small value of µ ≈ 0, then
equation (D.12) becomes (D.11). In the case of a large value of µ it becomes the Steepest
Descent method. The use of the parameter µ allows a combination of both methods.
Using µ it is possible to switch between the two algorithms. The resulting algorithm is
called Levenberg Marquadt algorithm and is used in this work to train the closed-loop
recurrent neural network.
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