
Holistic design of a GN&C system for safe
and precise autonomous landing in very

challenging planetary terrains

M.Sc. Konstantinos Konstantinidis
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Για το Νικόλα και την Ελένη
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- Can you fly this plane and land it?
- Surely you can’t be serious?
- I am serious. And don’t call me Shirley.
Airplane!, 1980
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KURZFASSUNG VII

Kurzfassung

Die Suche nach Leben im Sonnensystem ist eine der Hauptantriebskräfte für die Plan-
etenforschung. Die Eismonde der Riesenplaneten sind die vielversprechendsten Ziele.
Vor allem der Saturnmond Enceladus besitzt einen Ozean, der zunehmend die Vorausset-
zungen für das Entstehen mikrobiellen Lebens schafft. Darüber hinaus strömen Geysire
aus seinem Südpol, die Wasser direkt aus dem Ozean in den Weltraum schleudern. Durch
Wasserentnahmen unter den Geysiren, bevor mögliche Biosignaturen durch das Vakuum
des Weltraums abgebaut werden, erhofft man sich vielverprechende Erkenntnisse.

Das vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) geförderte Landerkonzept
Enceladus Explorer (EnEx) zielt darauf ab, eine Schmelzsonde einzusetzen, um Flüs-
sigkeitseinschlüsse unter den Geysiren zu untersuchen. Die Landung dort wäre aufgrund
der rauen Canyon-Topographie, der polaren Lichtverhältnisse, der mit einer Schicht
feinsten Schnees bedeckten Oberfläche und der strengen Planetary-Protection-Regeln
außerordentlich schwierig. Jede Landung dort muss daher genau sein, um in der Nähe
der Fahne für den Einsatz der Sonde zu landen, sicher, um alle oben genannten Gefahren
zu erkennen und zu vermeiden, und autonom aufgrund der langen Signalrücklaufzeiten
von der Erde zum Saturn. Frühere Landeeinsätze und -studien zeichnen sich durch
blinde Landungen mit geringen Genauigkeitauf sicherem Gelände aus. Aktuelle Studien
für eine autonome, sichere und genaue Landung konzentrieren sich auf den Mond und
Mars und zielen auf vergelichsweise zu EnEx-Lander weniger herausfordernde Terrains
ab.

In dieser Arbeit wird die kritischste Endphase der Landung untersucht. Ein detail-
liertes System- und Betriebskonzept für die Guidance, Navigation, und Control (GN&C)
wird definiert, das die notwendigen Schlüsselfunktionen umfasst. Für das Sensing wird
ein Satz interozeptiver inertialer und exterozeptiver Kameras sowie Lidar verwendet.
Basierend auf den Eingaben dieser Sensoren wird ein EKF-SLAM-Ansatz verfolgt, um
den Lander zu lokalisieren und die Umgebung abzubilden. Bei der Gefahrenerkennung
und -vermeidung (Hazard Detection and Avoidance, HDA) verwendet ein Fuzzy-Logik-
Ansatz den unsicheren Sensoreingang, um Gefahren zu erkennen und zu vermeiden. Für
die Führung wird die konvexe Optimierung verwendet, um eine realisierbare optimale
Trajektorie zum Ziellandeplatz zu berechnen.

Um die Landefähigkeit zu überprüfen und das Konzept weiter zu verfeinern, wurde ein
Tool zur Landungssimulation entwickelt. Jede Funktion wurde separat validiert und
analysiert, indem der jeweilige Block im Werkzeug mit Sensitivitäts- und Worst-Case-
Analysen verwendet wurde. Aus den Ergebnissen wurden Kenntisse und Vorschläge für
den System-optimierung abgeleitet.
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Es wurden Schlussfolgerungen und Vorschläge für Änderungen und Verbesserungen
gemacht. Schließlich wurde eine Monte-Carlo-Simulation mit allen Funktionen durchge-
führt, um zu überprüfen, ob die Funktionen in einem vereinfachten geschlossenen Regelkreis
ordnungsgemäß funktionieren, und um einige erste Erfolgsstatistiken zu schätzen. Die
Ergebnisse wurden abgeschlossen und kommentiert und es werden Schritte für die nahe
und ferne zukünftige Arbeit zur Erweiterung vorgeschlagen.



ABSTRACT IX

Abstract

The search for life in the solar system is one of the main driving forces behind planetary
exploration. The icy moons of the giant planets are the most promising targets. Saturn’s
moon Enceladus in particular possesses an ocean increasingly likely to have the right
conditions for microbial life to emerge. Furthermore, plumes are jetting from its south
pole ejecting water directly from the ocean to space. The ability to sample water from
under the plumes, before any potential biosignatures are degraded by the vacuum of
space would be very desirable.

The German Aerospace Administration (DLR) funded Enceladus Explorer (EnEx) land-
ing mission concept aims to deploy a melting probe to sample liquid pockets under the
plumes for life. Landing there would be exceptionally challenging due to the rough
canyonous topography, polar lighting conditions, the surface covered by a layer of su-
perfine snow, and the strict planetary protection regulations. Any landing there must
thus be accurate, to land near the plume for probe deployment, safe, to detect and
avoid all the above hazards, and autonomous due to the long signal return times from
Earth to Saturn. Past landing missions and studies, have landed blindly and with low
accuracy on safe and flat terrains. Current studies for autonomous safe and accurate
landing focus on the Moon or Mars, and target terrains that are still not as challenging
as the one for the EnEx lander.

In this work the most critical final phase of landing is investigated. A detailed landing
Guidance, Navigation, and Control (GN&C) system and operations concept is defined,
encompassing the key functions necessary. For Sensing, a set of interoceptive inertial
and exteroceptive cameras and lidar are used. Based on input from these sensors, an
EKF-SLAM approach is followed to localize the lander and map the environment. For
Hazard Detection and Avoidance (HDA), a fuzzy reasoning approach uses the uncertain
sensor input to detect hazards and avoid them. For Guidance, convex optimization is
used to calculate a feasible optimal trajectory to the target landing site.

To verify the landing feasibility and further refine the concept, a landing simulation tool
was created. Each function was separately validated and analyzed using the respective
block in the tool with sensitivity and worst case analyses. Conclusions and proposals
for modifications and improvements were made. Finally, a closed loop Monte Carlo
simulation with all functions was performed to verify that the functions work properly
in a simplified closed loop and to estimate some initial mission success statistics. The
results were concluded and commented and a steps for near and far future work to
expand this are proposed.
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Chapter 1

Introduction

1.1 Astrobiology on the icy moons

The search for life in the solar system has been one of the main driving forces behind
space exploration. The recent discoveries that the icy moons of the giant planets in
our solar system contain vast oceans, has made them prime targets for that search.
In particular, Jupiter’s moon Europa and Saturn’s moon Enceladus are currently the
most promising candidates among the icy moons, as they appear to fulfill the basic
requirements for them to host life: the heat that is generated by the tidal pull of the
parent planet maintains a sub-glacial ocean in the liquid state and in direct contact
with the rocky core of the moon, through which reactions critical for the creation of the
building blocks of basic life as we understand it can occur. Exchange processes through
the thick ice shells covering those moons, much like in the polar regions of Earth, mean
that further chemicals needed for life are transported from the surface where they have
been delivered by e.g. micro-meteoroids, all the way down to the ocean [1, 5, 4]. The
chemical makeup of plume jets found to emanate from the south pole of Enceladus by
the recently decommissioned Cassini spacecraft further point to a chemically rich ocean
hospitable to microbial life [3]. There are strong indications that similar plumes also
exist on Europa [6].

Hydrothermal vents in the ocean bottom of an icy moon are often suggested as a source
for the emergence of potential microbial life there [3, 4, 8]. Any potentially present
microbial life created there can then migrate and populate other hospitable niches in
the ocean of the icy moon (Figure 1.1). Signs of that life can be carried closer to the
surface and beyond by various transport methods. Glaciological processes in the ice shell
slowly transfer ocean material upwards. Once on the surface, ocean material and any
signs of possible life contained in it are degraded by the strong radiation surrounding
the giant planets [9].

A more dramatic transport method is through channels that directly connect to the
aforementioned plumes on the surface. Microbes from the ocean could be carried along
with the ocean water, and then ejected to space via the plumes [10]. The microbes would
remain in their unaffected state up to a certain depth under the plumes and could even
form small microbial communities in pockets of liquid water close to the plume channel.
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Any potential life forms will be heavily altered after they are ejected by the plumes,
due to their exposure to vacuum, but signatures of life could be detectable in the plume
material and in the deposits it may form on the surface of the icy moon [3].

Figure 1.1: Potential habitable regions on an icy moon, and transport mechanisms of ocean
material to the surface [2]. Although the figure refers to Europa, the concept is also valid for
Enceladus.

1.2 Mission concepts for in-situ icy moons astrobi-

ology

Each of the potential habitable regions and biosignature transfer and preservation areas
shown in Figure 1.1 can be conceivably sampled in-situ for signatures of life.

An orbiter could fly through the plumes, capturing freshly ejected material for in-situ
analysis or Earth return [11]. A lander could land near areas where material from the
ocean has been deposited via glacial upwelling, by plume ejection, or by other means
[2, 90]. Increasing in complexity, but also in science return potential, a probe can be
deployed from a lander and melt through the ice to reach material deposits or even local
liquid sub-glacial water reservoirs [38], or even climb down the plume channel, potentially
all the way to the ocean [12]. Even more ambitious mission concepts aim to melt through
the entire ice shell to deploy a submersible that will navigate the ocean, investigate the
hypothesized hydrothermal vents themselves and characterize the hypothesized extant
life there [13].

Interest in such missions is indeed growing, as evidenced e.g. the creation by NASA of an
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Ocean Worlds Exploration Program (OWEP) to parallel the Mars Exploration Program
(MEP) in the mid-term has been hinted at [14, 15]. The German Space Administration
(DLR) has been investigating technologies for accessing environments relevant to the
icy moons through the Explorer and other initiatives [16].

In the above mission concepts, an interesting outlier in cost-to-science-return can be
said to exist: the ice shell beneath the plume sources of Enceladus is postulated to be 2
- 3 km thick, with liquid water potentially rising even to the surface [10], and forming
liquid water pockets a few hundreds of meters under the surface. The combination of the
relative ease of access to these water pockets and the freshness of the material contained
in them makes them a very desirable target for in-situ astrobiology.

1.3 The Enceladus Explorer project and the EnEx

lander concept

A mission concept for the in-situ astrobiological sampling of a relatively shallow water
pocket (∼ 200 m) under a plume source on Saturn’s moon Enceladus, was developed
between 2012 and 2015 at the Institute of Space Technology & Space Applications
(ISTA) of Bundeswehr University Munich. The lander would land near a plume source
and deploy a future version of the IceMole melting probe currently under development
by FH Aachen [39]. This work was part of the joint research collaboration of eight
German universities called Enceladus Explorer (EnEx) and funded by the German Space
Administration (DLR). The main goal of the EnEx project was the development of a
terrestrial navigation system for a subglacial research probe, to be applied and field-
tested on the IceMole. The Enceladus Lander (EL) mission concept is presented in [38]
in some detail and will be summarized in the following.

The mission concept comprises of three elements: an Orbiter, a Lander, and the IceMole.

The IceMole (Figure 1.2) is a novel, highly maneuverable sub-glacial probe combining
melting and screwing. A differential melting head can be heated in different sides and
hollow screw assures close-contact between the melting head and the ice, which opti-
mizes conductive heat transfer into ice and, combined with the differential heating, aids
steering in the desired direction. It is connected to the lander via a tether a few hundreds
of meters long, un-spooled from its backside as it melts into the ice. Further significant
elements of the IceMole is the subglacial navigation system described in [40] as well as
its general operational autonomy [38]. Both of these areas have been under significant
development within the original EnEx initiative and its follow-on projects [16].

The Lander is seen in Figure 1.3. Due to the large power requirements coming from
the electrical melting head of the IceMole and the large distance from the Sun, a small
5 kWe nuclear reactor is chosen as the power source. A radiator is in turn necessary
to radiate away the excess heat generated by the reactor. The radiation emitted by
the nuclear reactor when it is active further drives the configuration of the lander, with
lander electronics set on top of a mast and behind shielding material. The lander must
be able to perform a very demanding autonomous planetary landing.

According to the EL concept, the nuclear reactor is also used to provide power to the
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Orbiter during the interplanetary trip using Nuclear Electric Propulsion (NEP).

Figure 1.2: The IceMole 1 design as tested on the Morteratsch glacier, Switzerland (2010)
[39]

.

After launch, the combined Orbiter-Lander-IceMole spacecraft will transfer to Enceladus
and capture in orbit around it. It will then perform remote sensing of potential landing
sites. Due to the strong gravitational influence of Saturn, orbits with inclinations higher
than 60° are not stable for more than a few days, making the reconnaissance of polar
latitudes operationally challenging [38].

Once landing site reconnaissance is completed by the Orbiter, the landing phase can
start (Figure 1.3, left). After separation from the Orbiter, the Lander performs a burn to
simultaneously lower its periapsis to 5 km above the south-pole and raise the inclination
of its orbit from 60° to 90°. The Lander then coasts to periapsis, where it starts a second
burn to dump most of its excess velocity. A ∆V of 180 m/s is needed for an impulsive
landing maneuver at periapsis [90]. Once the Lander has achieved a sufficiently reduced
velocity the engines begin to throttle down, and a targeted descent phase begins. Once
the Lander reaches an altitude of 10–20 m, it shuts its engines and slowly free-falls to a
soft landing on the surface.



1.4. THE ENVIRONMENT NEAR THE PLUME SOURCES OF ENCELADUS 5

After a precise and safe landing near one of the plume sources (Figure 1.4, right),
the IceMole will be deployed and melt to a depth of ∼ 200 m to a sub-glacial liquid
water pocket, which it will then sample for potential signatures of life, all the while
communicating with the Earth via the Orbiter.

Figure 1.3: Preliminary design of the EL-Lander [38].

1.4 The environment near the plume sources of Ence-

ladus

Enceladus is a small icy moon (diameter ∼ 500 km) orbiting Saturn at a radius of 4
Saturn radii. The moon is tidally locked, with identical rotational and orbital periods of
1.37 days. Its orbital eccentricity and inclination are close to zero. It has an approximate
surface gravity of 0.113 m/s2 [33, 17]. More details on Enceladus are given in [33, 17].

Figure 1.5 gives an overview of Enceladus, showing its rocky core in contact with the
ocean, with hydrothermal vents on its bottom. Water channels lead from the ocean all
the way to the surface where it is ejected to space via the plumes.

The plumes are located in the South-Polar Terrain (SPT) of Enceladus, and indeed 100
distinct of them have been detected emanating from the bottom of the so-called tiger
stripe canyons (Damascus, Baghdad, Cairo and Alexandria Sulcus) as seen in Figure 1.6
[10]. Each canyon is roughly formed by ridges, about 100-150 m high while the valley is
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Figure 1.4: Concepts of operations for the EnEx landing (left) and the landed (right) oper-
ations phases.

Figure 1.5: Cutaway view of the interior of Saturn’s moon Enceladus and the plumes [7].
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about 200-250 m deep and 50-100 m wide. The canyon faces have a maximum slope of
∼ 30°[18]. The total width of the formation is about 2-5 km (Figure 1.7).

A close-up illustrating canyon topography around - and subsurface structure under - a
plume source can be seen in Figure 1.8.

As seen in Figures 1.7 and 1.9, terrain on the SPT is interspersed with obstacles such as
icy blocks. The spatial density of icy blocks features in the SPT was estimated for blocks
larger than 10 m in [19] and found to be up to 1500 ± 450 blocks per square km. No
distinct block distribution pattern was found with respect to the tiger-stripe flanks or
jet sources. The resolution of existing maps is insufficient to deduce the distribution of
smaller blocks. Other features typical to glacial terrains might exist, such as ice cracks
etc.

An important aspect is the unusual texture characterizing the SPT. As ice particles are
ejected by the plumes, larger ones fall near the plume sources while smaller ones fall
further away or are even ejected into Saturn orbit (populating the E-ring). This results
in the SPT terrain being covered in plume fallout. Studies have shown that nearer
the plumes, particle deposition rates can reach up to 1 mm/year or more, indicating a
deposit layer thickness of tens of meters (if the plumes can be assumed to have been
active in the past million years) [20]. Still, exposed icy crust can also be encountered,
especially on slopes on which less consolidated material has slid downward.

The mechanical behavior of the fallout is crucial to the understanding of the surface
texture. In a first approach the fallout can be approximately treated as super-fine
snow, comprising grains of about 7.5 µm outside the SPT, 40 µm in the vicinity of the
Tiger Stripes and 100 µm or larger inside the valleys [20]. Grains are expected to have
lost their crystalline shape due to collisions with the vent walls, and have a roughly
round shape. These microscopic properties can result in increased force transmission
capacity due to the fine grain size and non-consolidated layers of material and increased
compressibility due to the low gravity. On the other hand, due to the absolute lack
of humidity and very fine grain size, a possible analogue for it could be dry quicksand
on Earth [32]. Alternatively, thermal cycling could have cause fallout particles to have
sintered, resulting in a hard surface. Overall, a high uncertainty around the properties of
the surface texture is assumed here. In the following, the plume fallout will be referred
to as snow.

Another characteristic aspect it the polar latitude of the terrain in question. The SPT
includes areas below a latitude of 60°S, meaning that it is characterized by polar illumi-
nation conditions. Due to the eccentricity of Saturn’s orbit the total solar flux in orbit
around Saturn varies between 17 W/m2 and 13 W/m2. Enceladus follows the seasonal
cycle of Saturn: with Saturn’s orbital period of 29.46 years about the Sun, each season
on Enceladus lasts approximately 7 to 8 years. The next Saturnian southern summer
period will begin in the year 2028 and last until beginning of 2036 with the peak in
2032. For the majority of the plume sources the maximum Sun angle during summer
solstice does not exceed 40°. During the rest of the southern summer on Enceladus the
illumination angles will be smaller, with many areas in permanent darkness due to the
rough canyon topography. During the long southern winter the entire SPT will be in
complete darkness [33, 17].
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Figure 1.6: Map of Enceladus’ south polar terrain (SPT) showing all 100 currently known
plume sources. The circles are the corresponding 2σ location uncertainties [10]

.

Figure 1.7: Left: Stereo-derived elevation model of characteristic canyon area on the SPT,
on Baghdad Sulcus (76◦S / 323◦E, resolution: 150-300 m/pixel horizontally and 7-14 m/pixel
vertically). Right: Enlarged image of the central-lower part of the previous image [18].
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Figure 1.8: Schematic illustrating current knowledge of the small-scale physical and thermal
structure and processes relevant to Enceladus’ geysering activity [10].

Figure 1.9: Blocky terrain just beyond the terminus of Damascus Sulcus (resolution: 4
m/pixel). Image is slightly smeared due to spacecraft motion [18].
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The density of H2O molecules in the vicinity of the plumes has been modelled in [34].
At the very mouth of the plume source the water vapor density is estimated at ∼
1022 molecules/m3, dropping by three orders of magnitude within a distance of 100 m.
Comparing this to Earth’s atmospheric density at sea level (ρEarth = 1025 molecules/m3),
or to that of Mars (ρMars = 1023 molecules/m3) it is seen that the plume density is
negligible for engineering purposes.

The fresh, clean ice that dominates the surface makes Enceladus the body with the
highest albedo in the solar system (∼ 0.99).

Despite the icy surroundings, the bottom of the tiger stripe canyons are relatively warm.
Due to water condensation, and the resulting release of heat at their mouths, the plume
sources can act as concentrated hot spots on the canyon bottoms. This means that
the canyons have temperatures of up to at least 167 K on the large scale [35], and can
reach to temperatures up to 200K in concentrated areas (tens of meters) surrounding
the plumes (Figures 1.6 and 1.10) [10, 36].

Figure 1.10: Model temperature distribution at an idealized tiger stripe, showing terrain
temperature over a 2D cut-out of the canyon terrain near a plume source. Distance from
the plume source and terrain elevation are denoted by x and y respectively. Plume source
temperature is assumed to be 180 K [36].

Another interesting characteristic is the difference in thermal inertia of the two textures
composing the surface. Ice has a relatively high thermal inertia, while loosely packed
and dry snow has a very low one, comparable to the best industrial insulation materials
[37]. It thus follows, that in the localized heat environment near the plume source, the
surface temperature will vary significantly according to the local texture.

The SPT of Enceladus presents a restricting area from a planetary protection (PP)
perspective. Active venting from fissures in the ice may lead directly downward into a
liquid water environment and cracks at the surface may stay open to a few kilometers
depth. The PP sensitivity of such a mission would be thus unprecedented, making PP
one of the driving requirements. In addition, additional PP requirements concerning
nuclear or chemical materials might be made for landing near a plume source. This
means that among decontamination and other measures, an especially high landing
reliability might be required.
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Finally, even though Saturn possesses a trapped particle belt, radiation around it, and
in particular in the vicinity of Enceladus is not as harsh as, e.g. that of Jupiter’s
Europa. Furthermore, Enceladus itself aborbs some of the particles around Saturn,
slightly shielding spacecraft in low orbit around and on it [17].

1.5 Landing requirements definition

Arguably the most critical phase of any lander mission is the landing itself, where much
of the mission/operational risk is concentrated. EnEx in particular, is a mission where
a large majority of the science will be performed after landing, where landing must take
place in an extremely challenging terrain, and where landing reliability must be ensured
to a level even higher than that of past landing missions due to the strict planetary
protection rules.

From the environmental, operational, and regulation aspects described in the previous
sections, the requirements for landing near a plume source can be deduced. The deduc-
tion process is shown in Table 1.1. The first step includes decomposing the landing to
three verbal characteristics it must possess: it must be accurate, safe, and reliable.

Focusing on each characteristic in turn, accuracy was first investigated. The lander
must land within the canyon bottom (with a width of 50-100 m), and it must also land
close enough so that the IceMole can reach its subglacial target under the plume source
(depth of ∼ 200 m) without running out of tether. Based on analysis discussed in [38],
a distance of 50 m from the plume source is deemed adequate.

The next characteristic investigated is landing safety. This can be broken down into
further safety elements. The lander must not overturn on landing, so it must land on a
slope within its landing tolerances. It must also avoid landing on obstacles, that might
results in the lander exceeding its slope tolerances. A further reason for the lander to
avoid obstacles is to not risking puncturing or otherwise damaging its underside. It must
then avoid landing on obstacles that are bigger than a set tolerance. To further avoid
damage or overturning, the velocity of the lander upon touchdown must not exceed
a set limit. This limit is exacerbated for landing in a tiger stripe canyon due to the
possibility of landing on snow and causing an avalanche that could overturn or cover the
lander. Depending on the design of the lander and the touchdown method, as well as the
eventual dynamical behavior of snow, snow cover could also be critical to landing safety,
and should be potentially avoided. Furthermore, the lander must be able to localize
itself accurately, so that it can reliably avoid any landing hazards and also avoid landing
too close to the planetary-protection-sensitive area close to the plume source.

A final desirable landing characteristic is reliability. To consider the landing viable, a
specific probability of success must be ensured. That number for landing missions is
typically set in the order of 99% (see e.g. [21]). However in this case, as planetary
protection is involved, it must be ensured that in any failure scenario the contamination
probability will remain within acceptable levels. This is a complex requirement to verify
here. In its place, a simple substitute requirement will be given, to not land to close to
the plume source.
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Table 1.1: Requirements traceability matrix for landing GN&C. Elements in italics refer are
special or ”soft” requirements.

Characteristic Requirement Reason

Accurate
Distance to plume <50 m Canyon bottom size

IceMole tether length

Safe

Velocity < 1 m/s in any di-
rection

Lander tolerances

Velocity < 0.25 m/s in any
direction

Avoid avalanche on snow touch-
down

Detect slope > 15 deg. Lander tolerances
Land in darkness Polar illum. and topography, long

seasons (programmatic)
Detect obstacles > 50 cm Lander tolerances
Prefer ice over snow Texture, lander tolerances

Reliable
TBD success probability Failure probability within limits
Distance to plume >5 m Avoid ocean contamination

The specific lander tolerances and other relevant characteristics for a successful landing
are gathered in Table 1.2. As the EnEx design was preliminary, the lander character-
istics used here are adopted from a few similar planetary landing missions with similar
requirements and operational conditions (see also Section 1.6). An important charac-
teristic is the tolerance of the lander to landing in snow. As it is very likely that the
landing terrain will be largely covered by snow, and that landing on this snow will be of
higher risk than landing on firm ice, a special or ”soft” requirement is introduced here
that the lander should ”prefer” landing on ice over snow. This is not an ideally expressed
requirement but it should be sufficient for the purposes of this work1.

Table 1.2: Lander tolerances and characteristics, adopted from similar landing missions
[91, 78]. Elements in italics originate from special or ”soft” requirements.

Tolerance Value

Survivable slope 15°
Max. survivable obstacle 50 cm
Max. survivable impact velocity
(any direction)

1 m/s

Max. survivable impact velocity
impact velocity on snow (any di-
rection)

0.25 m/s

Lander footprint (circle diam.) 4 m
Able to land on snow Yes

From the above information, some preliminary top-level functional and performance
requirements for the lander, and in particular its GN&C system can be defined and

1Wherever this soft requirement is mention in this section, it is written in italics.
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listed here. Each requirement is given an identifier corresponding to its the landing
verbal characteristic it originated from (ACC for accurate, SAF for safe, and REL for
reliable).

� ACC001: The lander shall land no further than 50 m from a plume source,

� ACC002: The lander shall land with a velocity of 0 and a velocity uncertainty of
< 0.25 m/s,

� ACC003: The lander shall land on the designated landing spot with an accuracy
of < 1 m relative to surrounding hazards,

� SAF001: The terrain slope in the lander footprint upon landing shall not exceed
15°,

� SAF002: No obstacle larger than 50 cm shall exist within the lander footprint
upon landing,

� SAF003: The lander should preferably land on ice rather than snow, other con-
siderations being equal,

� SAF004: The lander shall be able to land in darkness,

� REL001: The lander shall land no closer than 5 m from a plume source2,

Due to the uncertainties in orbital maps and imperfect lander navigation (as will be also
seen in Sections 2.2 and 2.2.5 respectively), it is impossible for an automated sequential
landing with a pre-calculated trajectory to achieve the above requirements. It would be
further impossible to remotely control the landing due to the ∼ 3 hour two-way signal
delay from Earth to Saturn. The following requirements then demand from the lander
to perform certain functions autonomously on-board. The identifier assigned (AUT)
stands for autonomy.

� AUT001: The lander shall sense terrain slope,

� AUT002: The lander shall sense terrain roughness and detect obstacles larger
than 10 cm (reasonable assumption, for dangerous obstacles can be resolved),

� AUT003: The lander should sense terrain snow cover,

� AUT004: The lander shall be able to identify and land on a new suitable landing
spot,

� AUT005: The lander shall be able to reach a new suitable landing spot,

� AUT006: The lander should be able to identify and localize the plume source to
within 10 m 3σ if its not known to that accuracy before landing operations start,

� AUT007: The lander shall be able to sense all hazards also in darkness.

1.6 State-of-the-art for precise and safe planetary

landing

Robotic planetary landing has a long history, starting with Luna 9 softly landing on the
moon in 1966 [22], up to more recently to the Mars InSight lander [23]. Up to now, such
robotic planetary landings have been automated, landing blindly while following either
a timed pre-set event sequence, or using simple triggers, e.g. a certain altitude being

2This PP-related requirement is classified here provisionally as a reliability requirement.
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reached as measured by an altimeter. The accuracy achievable is in the orders of 10-100
km for both Mars and Moon landings. To ensure a safe landing, large, flat areas are
chosen as targets (e.g. [24]). This significantly restricts landing missions from accessing
scientifically interesting areas and forces planetary rovers to drive long distances to reach
such areas.

Of the currently planned missions, NASA’s Mars2020 employs the most advanced land-
ing GN&C system: it navigates during landing by comparing camera images to an
a-priori map stored on-board, and performs simple avoidance maneuvers to pre-marked
hazardous areas known to exist on that a-priori map [25].

Several novel landing mission concepts exist, that aim to land on planetary surfaces
with requirements of safety and accuracy, similar to those of EnEx. The ESA Lunar
Lander had the aim to land on the rim of the Shackleton crater near the lunar south
pole, with an accuracy in the order of ∼ 100 m and with autonomous hazard detection
and avoidance. Apart from the preparatory science for human exploration, its goal was
to demonstrate critical technologies for planetary landing and prove Europe’s ability to
land safely and precisely. The mission reached the B1 phase before being canceled in
2012 [91, 94]. NASA’s Lunar MARE concept aims to land on a 100-meter radius region
of smooth lunar maria terrain near Aristarchus crater for sample collection and dating,
with an accuracy of ∼ 20m. Due to the hazardousness of the area, a hazard detection
and avoidance capability is included [78, 25]. Both these concepts carry a wide set of
sensors including lidar and cameras to observe the terrain for navigation and hazard
detection, and the capability for autonomous re-targeting to safe landing locations.

Technology development programs around autonomous precise and safe planetary land-
ing are being performed by the agencies.

NASA is developing several aspects necessary with interconnected relevant projects [25].
Autonomous Landing Hazard Avoidance Technology (ALHAT) was a technology devel-
opment program that combined autonomous guidance, navigation and control algo-
rithms to characterize a landing surface while identifying and avoiding hazards in real
time, and also navigate in reference to those hazards. It was extensively tested on heli-
copter flights and the Morpheus autonomous landing testbed, and has brought its HDA
payload to a TRL of 6 [26, 25]. ALHAT has also been proposed for landing on Europa
[28].The CoOperative Blending of Autonomous Landing Technologies (COBALT) pro-
gram developed technologies for terrain relative navigation, with the goal of infusion
into near-term robotic and future human missions. It has been also tested on landing
testbed called Xodiac to reach a TRL of 5 [25].

ESA and Airbus are currently working on the Precise Intelligent Landing using On-board
Technology (PILOT) landing system, further developing the terrain relative navigation
and hazard detection and avoidance technologies of the ESA Lunar Lander [27]. The
PILOT system is planned to be flown as an ESA contributed payload on the Russian
Luna Resurs lunar lander mission in the coming years [29].

There are several icy moon landing mission concepts with strict accuracy and safety re-
quirements [90, 38, 2], however no detailed, dedicated GN&C system has been proposed
for them, except in terms of potential and partial re-use of technologies used e.g., for
lunar landing as seen above. There are also not a lot of detailed studies about landing
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in difficult planetary topography. An interesting study discusses the necessary guidance
technology for landing in planetary pits [87].

Planetary landing success statistics have been relatively low, and a lot of effort is needed
for ensure a high landing reliability, in particular for a complex autonomous system
needed to satisfy the strict requirements discussed above. A dedicated study on landing
reliability, in particular for safe and precise landing, was not found in the literature.

1.7 Top-level systems and operations concept for

safe and accurate planetary landing

The requirements derived in Section 1.5 can be allocated to top-level functions of a
landing GN&C system:

� Sensing senses elements of the surrounding environment and of the lander itself,

� Navigation estimates the navigational state of the lander,

� Hazard Detection and Avoidance (HDA) identifies hazards and command a
retargeting to a new suitable landing spot if needed,

� Guidance calculates a feasible trajectory from the current lander position to the
selected landing target, and

� Actuation and control implements the thrust commands given to move the
lander along the desired trajectory.

A top-level system architecture for the landing GN&C seen in Figure 1.11.

A general operations concept was derived by studying missions with landing require-
ments similar to EnEx (mainly the ESA Lunar Lander [91, 92], and NASA Lunar
MARE [78], for both of which detailed information exists) and is given in Figure 1.12.
A typical safe and accurate planetary landing consists of a few specific phases. The nav-
igational state of the lander is accurately estimated right before landing initiation, e.g.
using ground measurements. To start the landing, a Deorbit Initiation Maneuver (DOI)
places the lander on a trajectory with a periapsis with an altitude of a few km above the
general landing area. Before the periapsis is reached, at an altitude in the order of ∼ 10
km, the Powered descent phase starts which sheds the largest part of the kinetic energy

Sensing

Navigation

HDA

Guidance 
Control & 
Actuation

Sensor
data

Lander
nav. state

Retarget
command

Thrust
commands

Figure 1.11: Top-level diagram of the landing GN&C system for the Enceladus Lander (EL).



16 CHAPTER 1. INTRODUCTION

by applying full thrust. During this phase the navigation state is propagated based on
inertial navigation measurements. To reduce the navigational uncertainty relative to the
surface, the navigation function uses e.g. on-board cameras to estimate the navigational
state of the lander based on optical navigation methods. Once the nominal landing site
comes in view and in range of the full sensor set on the lander (at a range of ∼ 2 km),
the approach phase begins. During that phase, the landing terrain is sensed for hazards,
the measurements are analyzed by the HDA function, and a command can be given
to target a new, better landing site. Navigation further continues, now including the
entire sensor set, e.g. a lidar. The guidance function can then calculate a trajectory
and thrust profile to take the lander to the new landing site. The control and actuation
function translates the thrust profile to actuator commands, and apply the commands
on the on-board thrusters as required.

Figure 1.12: Generic concept of operations for safe and accurate planetary landing. Adapted
from [78].

1.8 Goal of this thesis

From the information given in the previous section, the approach phase emerges as the
most critical and complex operational phase of landing. In a span of a few minutes the
landing GN&C system must apply the full extend of its capabilities to ensure a safe
and accurate landing. A detailed closer look into the approach phase, and an extended
effort into designing the needed system and operations would be central in furthering
the development of the EnEx lander concept.

The mission concepts discussed in Section 1.6, deal with some of the issues facing the
EnEx lander: landing accuracy and safety to a much higher degree than past landing
mission and in addition, on significantly more challenging terrains. The EnEx lander
would face the same challenges to an even greater degree: the landing would have
to take place in very challenging topography, under polar illumination conditions on
a terrain with an “exotic”, ultra-fine snow-covered texture. Landing reliability should
exceed even the high requirements for other accurate landing mission concepts, due to
the particularly strict planetary protection requirements. A crash near the target plume
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source could introduce material from the lander to the ocean in timescales orders of
magnitude smaller than the ones for a crash in any other part of Enceladus. On the
other hand, particularities of the landing terrain such as the unusually rich thermal
environment can be leveraged to extract additional information from sensed terrain.

The goal of this thesis then becomes the following: to investigate the approach phase of
a safe and accurate landing near a plume source on the bottom of a tiger stripe canyon
on Enceladus. First a detailed GN&C system and operations concept is to be defined,
encompassing the key functions necessary: sensing, navigation, hazard detection and
avoidance, and control and actuation. To verify the landing feasibility with the defined
concept, and to further refine the design, a simulation tool was created incorporating
each of the above top-level GN&C functions. The functions interact with each other in
a closed loop and with simulated relevant elements of the landing environment. Using
this tool, detailed analysis of each function is performed separately and modifications
are recommended based on the results. Finally, a closed loop Monte Carlo simulation
including all used functions is performed, and the run statistics analyzed.

The following analysis and the developed tool consider the lander a point mass with
gravity and thrust vectors acting upon it, with the attitude dynamics of the vehicle
not considered. This is a common and reasonable assumption made in similar analyses,
as the attitude control takes place in far higher frequencies than that of the transla-
tional control - the two can thus be considered separately [81]. This approach also
avoids incorporating attitude dynamics into the problem formulation, keeping the scope
and complexity of the problem within reasonable bounds. Where necessary, the thrust
pointing vector can be considered as replacement for lander attitude.
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Chapter 2

Autonomous landing on Enceladus

In this section the underlying theory for each of the top-level functions for landing
GN&C will be discussed and analyzed. Conclusions drawn from this analysis will help
in further defining a detailed system and operations concept. It is reminded that this
work does not consider attitude dynamics (Section 1.8). Only information relevant to
translational dynamics will be given in this chapter.

2.1 Sensing

Sensors have the function to either sense particular elements of the lander navigation
state (interoceptive), or elements of the external world (exteroceptive). Sensor types of
interest will be described in this section.

2.1.1 Inertial Navigation System (INS)

An Inertial Navigation System (INS) uses its constituent accelerometer to measure the
accelerations acting on the carrying vehicle, and by double integration estimate succes-
sively the vehicle velocity and position.

Real accelerometers are affected by several errors and noises (Figure 2.1). For an ideal
accelerometer the input accelerations would correspond exactly to the output measure-
ments; the function to map the first to the second would then be a straight line with a
slope of 1. This is not the case for a real accelerometer: a bias (usually unknown) means
that a non-zero measurement will be output even when no accelerations are acting on
the sensor. A scale factor affects the measurement model line making slightly different
than unity. A random noise is also always present in the measurement. After double
integration, the noises lead to a random walk in the final position solution [41].

It is common to correct for these errors by filtering them (as in the Section 2.2.1). As
will be seen further down in this chapter, this would mean that these drifts, some of
them initially unknown (e.g. the bias), should appear in the dynamics and observation
model equations, and be observed in the filtering process. This would increase the
complexity of this work significantly. Considering the small timescales involved in the
problem studied here, and the high quality of accelerometers used on-board spacecraft,



20 CHAPTER 2. AUTONOMOUS LANDING ON ENCELADUS

Figure 2.1: Most significant IMU Errors [41]

only the white noise, the simplest to integrate in the following filtering application, will
be taken into consideration.

In the rest of this work, ”INS” and ”accelerometer” are used interchangeably.

2.1.2 Cameras

A camera sensor produces 2D projections of the 3D world. The simplest camera model
is the pin-hole model (Figure 2.2). This model consists of the optical axis, and the focal
plane perpendicular to the axis, with an infinitely small hole situated at the optical
center, i.e. the intersection of the plane with the axis. A second parallel plane, called
the image plane, is situated behind the focal plane at a distance f , called the focal
distance. The point where the optical axis intersects the image plane is called the
principal point. In a pin-hole camera, light rays coming from the external 3D world are
projected into the 2D image plane in a straight line through the optical center. More
advanced camera models can take into account ideal focused lenses, as well as real world
lens distortion effects [46]. In this work however, only the simple pinhole camera model
will be considered. According to the above, cameras can be defined as bearing-only
sensors.

Figure 2.2: The pin-hole camera model [46].
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Figure 2.3: A thermographic image from the far-side of the moon taken by the mid-infrared
camera on-board the LCROSS mission. Temperatures range from −100°C (blue) to 70°C (red)
[43].

Cameras sensing in the visible spectrum - optical cameras - have been used in space
since the beginning of the space age and are a basic component of GN&C systems for
autonomous planetary landing (Section 1.6).

Similar to the optical camera, a thermal imaging camera uses infrared radiation, pro-
jecting the temperature of the sensed object in a 2D thermographic image (Figure 2.3)3.
Although thermal cameras have been used or proposed to be used on-board spacecraft
[42, 43], and models already exist for aerospace and defense applications [44], they have
not so far not been proposed for autonomous planetary landing.

Camera images are composed by a finite number of pixels. By dividing the field-of-view
of a camera, its angular resolution can be derived. The sharpness of a camera image
also depends on the sensed wavelength, with optical cameras giving sharper images than
thermal ones [45]. Image blur can be the result of incorrect focusing or movement during
image creation.

2.1.3 Lidar

Rangefinder instruments (e.g. radar) estimate the distance to a surface by measuring
the time it takes an emitted electromagnetic beam to return to the sensor head. LIght
Detection And Ranging (LIDAR) sensors use light round-trip time-of-flight (ToF) to
estimate the range to an impacted surface. For each measured point, the lidar produces
a set of x,y coordinates on the sensor focal plane (similar to a camera) plus the range
to the point, and the returned signal intensity [54]. An often used lidar variant is Flash
LIDAR. Flash LIDARs simultaneously provide the range-and-bearing from the sensor
to many points, generating a 3D point cloud representation of the observed object.

Lidar measurements are characterized by range and bearing errors, and a random un-
known ranging bias. Furthermore, each lidar beam is not in reality an ideal ray, but
defines a small cone, due to beam divergence, covering a beam footprint on ground im-
pact. Multiple flash lidar measurements are usually taken in quick succession to reduce

3A distinction is to be made between thermal imaging cameras and night vision cameras, that
simply intensify existing reflected visible light, see e.g. https://www.flir.com/discover/ots/

thermal-vs-night-vision/.

https://www.flir.com/discover/ots/thermal-vs-night-vision/
https://www.flir.com/discover/ots/thermal-vs-night-vision/


22 CHAPTER 2. AUTONOMOUS LANDING ON ENCELADUS

range noise within acceptable limit, and methods exist for averaging out lidar biases
(see e.g. [30]).

The sensing of the return pulses on a lidar is more commonly a discrete signal, depending
on wiehter the incoming intensity surpasses a set threshold. It is possible however for
some sensor head types to sample the entire reflected waveform of the return signal.
This way, further physical properties of objects included in the diffraction cone may
be derived with an analysis of the backscattered waveform. The shape of the returned
waveform will depend on the roughness of the surface inside the diffraction cone of the
beam in question and the reflectivity of the surface material. Methods to decompose
the return signal waveform are given e.g. in [55] and are used among other applications,
for forestry applications [56].

It is conceivable therefore that, given the right type of lidar sensor head and waveform
decomposition methods, snow and ice can be distinguishable by lidar. This assumption
is reinforced by two facts: first, snow will be significantly smoother than ice and will
therefore produce a different waveform shape [49]. Second, and as can be seen in Figure
2.4, light in the visible wavelengths typically used by lidar is reflected differently by
different types of ice and snow and more so for very fresh and pure snow. These two
facts combine to reinforce the above assumption.

Figure 2.4: Spectral reflectance curves for various types of snow and ice [48]. Fresher and
finer snow will have a higher reflectivity in all wavelengths than older and coarser snow (not
shown in the figure).

A description of lidar used for planetary landing applications is given in [47]. The
following assumption concerning lidar are made for this work: a range noise and a
pointing error is considered for each lidar beam. Lidar rays are considered ideal rays,
that can however detect terrain texture, albeit with a relatively high uncertainty.
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2.2 Navigation

Navigation is defined as the task of estimating the state of the spacecraft from sensed
data. Traditional landing approaches based on inertial sensing only, do not have the
navigational precision to meet the high accuracy requirements (Section 1.6). In addition,
and depending on the previous knowledge of the plume source location, the lander must
be able to localize it with some accuracy (Section 1.5)

For lander navigation a sensor-aided inertial navigation approach is thus followed, where
the measurements of the INS are corrected by those of exteroceptive sensors, namely
optical and thermal cameras and lidar. A mapping element must be added for any
sensed elements of the environment, such as a plume source, to be localized relative to
the lander.

This process will be discussed here in detail. The approach to navigation taken here is
based on references [46] and [50].

2.2.1 Filtering

The problem of navigation during landing under uncertain initial conditions and while
using imperfect sensor measurements can be formulated as a filtering problem. Navi-
gation filtering is defined as estimating the navigational state of a vehicle by making
measurements of elements of that state. Several noises and uncertainties affect such a
system: the vehicle is affected by random perturbations and has an uncertain initial
state and sensors are inherently noisy. Furthermore, the way this system evolves with
time, and the way the measurements relate to the current state of the vehicle are known
[46].

Filtering is roughly made up of two steps:

� Prediction/time update step: the navigation state and related uncertainties
are propagated to the next timestep according to the system model and corre-
sponding probability distribution functions (pdfs) of its elements.

� Correction/measurement update step: the navigation state is corrected ac-
cording to measurement of certain of its elements, according to the model and
corresponding uncertainties for these measurements.

The key assumption commonly made in filtering problems is that all uncertainties are
considered Gaussian.

Various solutions to the filtering problem exist (see e.g. discussion in [46]). Possibly
the most widely used is the Kalman Filter and its variants. The driving assumption the
Kalman Filter makes is the linearity of the evolution and observation equations. How-
ever, many practical systems have non-linear state update or measurement equations.
Variants of the original Kalman Filter have been formulated to deal with these non-
linearities. For the Extended Kalman Filter (EKF), this linearity constraint is relaxed
by applying local linearizations around the most recent computed estimates [46].
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2.2.2 Simultaneous Localization and Mapping (EKF-SLAM)

Apart from estimating the navigational state of a moving vehicle (in our case the lander),
a map of landmarks can be constructed of the surrounding world by the vehicle using
exteroceptive sensors. These landmarks can then be used at the same time to localize
the vehicle. This process is known as Simultaneous Localization And Mapping (SLAM).
The steps of this process are shown in Figure 2.5.

Figure 2.5: SLAM principle of operation for a single filter iteration. 1: Perception and
initialization of new landmarks. 2: Prediction of vehicle motion & increase in position un-
certainty. 3: Observation of already mapped landmarks from an uncertain vehicle position.
4: Correction of landmark positions and vehicle localization, with accompanying reduction in
both vehicle and map uncertainties. Ellipses represent the uncertainty boundaries, and dotted
lines the observations [46].

An Extended Kalman Filter can be used as the basis for a SLAM algorithm (EKF-
SLAM). In this work, the EKF-SLAM formulation and notation given in [46] and [50]
will be used4.

In EKF-SLAM, the map5 vector is defined as a state vector containing the vehicle pose
(position, velocity, etc.) and the currently mapped landmark positions:

x =

[
R
M

]
=


R
L1
...
Ln

 (2.1)

where R is the vehicle navigation state and M = (L1, · · · ,Ln) are landmark states,
with n the current number of landmarks in the map. The map in EKF is modeled
as a Gaussian variable using the mean and the covariances matrix of the state vector,

4The reader is advised to familiarize themselves with the notation, as given in the preamble. The
reader with little or no background in Kalman filters is referred to the simple and intuitive introduction
given in [51], and an interactive tutorial in Matlab in [52].

5It should be kept in mind that the SLAM ”map” used in navigation is a different than e.g. the
hazard map used in HDA (Section 2.3).
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denoted respectively by x̂ and P:

x̂ =

[
R̂
M̂

]
=


R̂

L̂1
...

L̂n

 P =

[
PRR PRM
PMR PMM

]
=


PRR PRL1 · · · PRLn
PL1R PL1L1 · · · PL1Ln

...
...

. . .
...

PLnR PLnL1 · · · PLnLn

 (2.2)

Elements across the diagonal of a covariance matrix Pij are the variances σ2
i of the i-th

element of the map vector, a measure of the uncertainty in their value (σi being the
standard deviation of the value). Elements off the diagonal Pij are the covariances, and
represent the degree of correlation between the i-th state variable and the j-th state
variable. The covariance matrix is always symmetrical (Pij = Pji).

The goal of EKF-SLAM it then to maintain the map {x̂, P} up-to-date when the vehicle
moves, when it perceives a landmark it has already observed, and when it perceives a new
landmark and decides to add it to the map. These steps correspond to the prediction
and correction steps of the filtering described above, with the added step of landmark
initialization.

2.2.2.1 Vehicle motion: the prediction step

The map can be initialized with state means and covariances of the navigation state of
the vehicle, as well as of any known landmarks. Setting R as the state vector and u as
the control vector, then the generic model update function is be given as

R+ = f(R,u) (2.3)

with u ∼ N{û; U} a vector of controls assumed to be Gaussian with mean û and
covariances matrix U. The prediction step from the EKF formulation can be given as

R̂+ = f(R̂,û) (2.4)

P+
RR = FRPRRF>R + FuUF>u (2.5)

P+
RM = FRPRM (2.6)

P+
MM = PMM (2.7)

where the Jacobian matrices are defined by

FR =
∂f

∂R>

∣∣∣∣
R̂,û

Fu =
∂f

∂u>

∣∣∣∣
R̂,û

(2.8)

In short, during the prediction step the new vehicle nav. state is predicted (Equation
2.4), the part of the map covariance matrix concerning the vehicle state increases based
on the map and control covariance matrices (Equation 2.5), the covariances between the
vehicle and the landmarks are also updated (Equation 2.6), and finally the variances
of the landmarks in map covariance matrix are left unchanged, as their state remains
unaffected.
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2.2.2.2 Observations of existing landmarks: the correction step

In EKF the generic observation function is written as:

y = h(x) + ν (2.9)

where y is the noisy measurement, x is the full state, h() is the observation function
and ν is the measurement noise6. The EKF correction step is then given as

ẑ = y − h(x̂) (2.10)

Z = R + HxPH>x (2.11)

K = PH>x Z−1 (2.12)

x̂+ = x̂ + Kẑ (2.13)

P+ = P−KZK> (2.14)

with the Jacobian Hx = ∂h(x̂)
∂x

and where R is the covariances matrix of the measurement
noise. z is defined as the measurement innovation, and {ẑ; Z} as the innovation’s mean
and covariances matrix. The innovation can be seen as the difference between the
”real” and the ”expected” measurement (Equation 2.10). Equation 2.12 is defined as the
Kalman gain K. Equations 2.13 and 2.14 express the update of the entire map (means
and covariance matrix).

In SLAM, observations occur when a measurement of a particular landmark is taken by
a sensor on-board the vehicle. When observing the landmark i, the observation model
is given as

yi = hi(R,Li) + ν (2.15)

which does not depend on any landmark other than Li. The Jacobian Hx in EKF-SLAM
is then

Hx =
[
HR 0 · · · 0 HL1 0 · · · 0

]
(2.16)

with HR = ∂hi(R̂,L̂i)
∂R and HR = ∂hi(R̂,L̂i)

∂Li . The set of correction equations then becomes

ẑ = yi − hi(R̂,L̂i) (2.17)

Z =
[
HR HLi

] [PRR PRLi
PLiR PLiLi

] [
H>R
H>Li

]
+ R (2.18)

K =

[
PRR PRLi
PLiR PLiLi

] [
H>R
H>L1

]
Z−1 (2.19)

x̂+ = x̂ + Kẑ (2.20)

P+ = P−KZK> (2.21)

This set of equations is applied each time a landmark is measured and updated.

6The common filtering notation ν for measurement noise should not be confused with the common
dynamics notation v for velocity, as used below
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2.2.2.3 Landmark initialization

Landmark initialization happens when landmarks that are not yet mapped are discovered
by the vehicle, and are in turn incorporated in the map.

Landmark initialization is simple in cases where the sensor provides information about
all the degrees of freedom of the new landmark, as when using range-and-bearing sensors.
When this happens, the observation function h() needs only to be inverted to compute
the new landmark’s state Ln+1 from the vehicle state R and the observation yn+1.

In cases where the sensor does not provide enough degrees of freedom for the function h()
to be invertible (e.g. when using bearing only sensors such as a monocular camera), this
lacking information is introduced by a further parameter called a ”prior”. The inverse
observation model g() = h−1() including a prior is

Ln+1 = g(R,yn+1, s) (2.22)

where the prior s is Gaussian with mean ŝ and covariances matrix S7. The landmark’s
mean and all Jacobians can then be computed:

L̂n+1 = g(R̂,yn+1, ŝ) (2.23)

GR =
∂g(R̂,yn+1, ŝ)

∂R
(2.24)

Gyn+1 =
∂g(R̂,yn+1, ŝ)

∂yn+1

(2.25)

Gs =
∂g(R̂,yn+1, ŝ)

∂s
(2.26)

and then the landmark’s variance PLL, and its covariance with the rest of the map are
computed PLx

PLn+1Ln+1 = GRPRRG>R + Gyn+1RG>yn+1
+ GsSG>s (2.27)

PLx = GRPRx = GR
[
PRR PRM

]
(2.28)

These results are then appended to the state mean and covariance matrix:

x̂+ =

[
x̂

L̂n+1

]
(2.29)

P+ =

[
P P>Lx

PLx PLL

]
(2.30)

The above method to introduce an invented prior to overcome the lack of initialization
information for a landmark might seem trivial but it is not. With s being an unknown

7The initial values of the mean and uncertainty of the prior can be calculated using reasonable
guesses based on the problem under study. In this work, a more robust approach is taken, where a
reasonable value is taken for the mean and the initial uncertainty is set to a very large number.
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parameter, setting upper and lower validity limit for it would break the linearity condi-
tion for the EKF filter and make it fail. Advanced ways to deal with this problem and
introduce a proper prior are discussed in [46] and [53] and will not be discussed here.
In the application of this approach later in this work (Section 3.4), the methodology as
implemented by the authors of those papers will be applied.

An interesting approach for full landmark initialization is to use a pointable laser beam
or scanning lidar to provide full range information for every landmark [31]. Although
promising, this approach is left to be investigated in the future.

2.2.2.4 Initialization of a-priori known landmarks

A landmark detected in SLAM is previously largely unknown. Based on the discussions
above concerning the meaning of covariance and of SLAM, it can be said that its esti-
mated position in the SLAM map is correlated to the navigational state of the vehicle
that detected it. The implication of this is that landmarks detected in SLAM cannot
have an navigational uncertainty smaller than that of the vehicle that observed them.
Further, the navigational uncertainty of the vehicle drop below its initial value only by
observing previously unknown landmarks.

There can exist however landmarks whose position in the world is assumed to be a-
priori known. These landmarks can be identified as such when observed by the lander.
In contrast to the previous case, the position of the landmarks can then be seen as not
correlated to the navigational state of the vehicle. It then follows that vehicle-landmark
covariances in the covariance matrix can be set to zero.

According to the observations above, Equation 2.30 can be modified for the initialization
of a-priori known landmarks. The mean value L̂A-priori

n+1 can be directly assigned, e.g. from
a landmark database and the covariance matrix of the SLAM map can be updated as:

x̂+ =

[
x̂

L̂A-priori
n+1

]
(2.31)

P+ =

[
P 0
0 PLL

]
(2.32)

where 0 are zero matrices of the appropriate size.

The practical meaning of this, is that by forcing the vehicle-landmark covariances to be
zero, as can be seen in the equation set for the map correction after the observation of an
existing landmark (Equations 2.17 to 2.21), the non-diagonal elements of the covariance
matrix P will be zero, meaning that in the final covariance matrix correction in Equation
2.21, the covariances can be reduced to levels below the initial.

In more intuitive terms, a-priori known landmarks can be thought of as navigational
anchor points. Once the vehicle gets hold of a few, it can reduce its navigation state
uncertainty based on them. With the new reduced uncertainty it can then in turn reduce
the uncertainty of the rest of the map. In addition, a-priori unknown points also serve
the purpose to observe certain ”differential” parts of the vehicle navigation state, like
e.g. velocity.
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2.2.3 Sensor models

Mathematical models of the measurements taken from the sensors discussed in Section
2.1 can be integrated into the above EKF-SLAM framework. In particular, a model for
the INS can be used as update function f() used in the prediction step, and models and
their corresponding inverse models for the exteroceptive camera and lidar can be used as
the measurement h() and inverse measurement g() functions respectively. These sensor
models will be described here.

2.2.3.1 Update model - INS accelerometer

In inertial-based navigation methods, an accelerometer is used to update the navigation
state of a vehicle. The initial lander 3-DOF navigation state is comprised of the position
and velocity vectors R = [p v]>. Its update function (eq. 2.3) f() can be based on
basic dynamics equations:

R+ = f(R,uINS) =

[
p+

v+

]
=

[
p + Ts · v + 1

2
T 2
s · uINS

v + Ts · uINS

]
(2.33)

where the control vector from Equation 2.3 has been replaced with the acceleration
measured by the INS accelerometer, and Ts is the update time-step; in our case the
accelerometer sampling time-step. The accelerometer measures the accelerations applied
to the lander:

aapplied = agrav + athrust (2.34)

where agrav is the gravitational acceleration vector and athrust the acceleration vector
applied by the thrusters. The gravity acceleration is assumed here to be perfectly known,
and the thrust accelerations ideal8. The combined applied acceleration on the lander
aapplied is then measured by the INS, adding the related measurement noises νINS

uINS = aapplied + νINS (2.35)

The elements FR and Fu of the covariance matrix update equation (Equation 2.5) are
according to Equations 2.8:

FR =

[
I Ts · I
0 I

]
and Fu =

[
1
2
T 2
s · I

Ts · I

]
(2.36)

PRR below is the initial covariance matrix and U is the control covariance matrix:

PRR =

[
σ2

x 0
0 σ2

v

]
and U = ν2

INS (2.37)

where in turn σx and σv are the standard deviations in position and velocity, and 0
and I are 3× 3 zero and diagonal unit matrices respectively.

8These assumptions can be made in this work, considering a relatively small timescale of a few
minutes is investigated.
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2.2.3.2 Observation model – Camera/Bearing-only sensors

In camera-based navigation a measurement of a point landmark corresponds to the
coordinates of the pixel where this landmark is projected in the image: yi = (ui, vi).
The landmark should first be expressed in the camera focal reference frame and then
projected to the camera sensor following the pin-hole camera principle. Defining the focal
frame as S{RDF} (Right-Down-Front) with coordinates XY Z and the image frame as
I{RD} (Right-Down) with coordinates xy, as seen in Figure 2.6, the pin-hole projection
equation can be given as [46]:

Figure 2.6: The camera RDF coordinate system, and the geometric principles of the projec-
tion of 3D points onto the camera focal plane. All points (X,Y, Z) in the back-projected ray
of the image point (x, y) satisfy [X,Y, Z]> = s[x,y,1]> with s ∈ [0, inf) [46].

h = su = KsKfP0p
S (2.38)

s

uv
1

 =

su 0 u0

0 sv v0

0 0 1

f 0 0
0 f 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0



X
Y
Z
1

 (2.39)

In Equation 2.38, pS are the homogeneous coordinates of the projected point in the
sensor frame9. The coordinates are transformed from the world frame based on the
equation pS = HWSpW , where HWS is the homogeneous transformation matrix from
the world frame to the sensor frame (see Appendix A.1). The matrix P0 is often referred
to as the normalized projection matrix, representing the projection performed by the
focal element into the image plane Z = 1 (in the focal frame). The matrix Kf represents
a scaling from having the image plane at a distance Z = f different to unity. Ks

represents the conversion of the idealized projection to a pixel value.

In Equation 2.39, su and sv are the number of pixels per unit length for each axis, u0

and v0 are the coordinates of the principal point, i.e. the point where the optical axis

9Homogeneous coordinates are often used in projective geometry as explained e.g. in [57]. For the
their limited use in this work they can be considered as the usual coordinate vector padded with a 1
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intersects the image plane, and f is the focal length of the camera. The values au = f ·su
and, av = f · sv, along with the pixel counts u0 and v0 of a given camera, are defined as
the intrinsic camera parameters [46]. The parameter s of the projection ray connecting
the projected to the world point (as seen in Figure 2.6) is the distance from the 3D point
to the focal plane, and is called the depth of that point10.

A useful concept in vision is the field-of-view (FOV) of a sensor, expressed in angle units
and derived based on the intrinsic parameters for each axis as:

FOVu = 2arctan
u0

au
and FOVv = 2arctan

v0

av
(2.40)

The inverse of the projection function is called back-projection. It maps pixel coordinates
on the focal plane of a camera, back to 3D space. Following the inverse of the above
process, the back projection equation is

g = pS = sK−1u (2.41)

with

K−1 =

1/au 0 −avu0/auav
0 1/av −v0/av
0 0 1

 (2.42)

The back-projected point can then be transformed to the world frame by the equation
pS = HSWpW , where HSW = HWS

−1
.

2.2.3.3 Observation model – Lidar/Range-and-bearing sensors

A basic measurement model for the beam i of a lidar beam bundle can be simply given
as

hi = pS
i

= HWSpW
i

+ vi (2.43)

where pW
i

are the coordinates of the impact point of beam i in the world frame, pS
i

the coordinates of the same point in the sensor frame, HWS is the frame transformation
between the two (essentially a rotation and a translation, see Appendix A.1), and vi is
a zero-mean Gaussian noise, v ∼ N{0; Ri}.

According to [54], assuming that the range error and bearing error from a lidar beam
are small and uncorrelated, then it can be shown that the covariance for a single ranger
measurement is described by

Ri = ρ2
iσ

2
φI +

(
σ2
ρ

ρ2
i

− σ2
φ

)
pS

i
pS
>
i

(2.44)

10This prior s, is the same one discussed in Section 2.2.2.3
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where σφ is the standard deviation of the bearing error (in radians), σρ is the standard

deviation of the range error, ρi = ‖pS
ii
‖ =

√
pS

i

>
i
pS

ii
, is the range from the sensor to

the laser beam impact point, and as before, I and 0 are diagonal unit and zero 3 × 3
matrices respectively.

The inverse observation function is given as

g = pF
i

= HSF−1pS
i

+ vi (2.45)

2.2.4 Sensing the landing environment for navigation

As seen in Sections 1.4 and 2.1, there are three aspects of the environment that can
provide information to the exteroceptive navigation sensors: the optical environment,
the thermal environment, and the surface of Enceladus.

The optical and thermal environments can be sensed using the corresponding camera
type. Strongly identifiable points in the resulting 2D images (e.g. corners, local intensity
maxima, etc), can be uniquely associated to particular landmarks in 3D space. This step
is called feature detection. By memorizing the neighborhoods of these features in the
2D image, a signature for a given feature can be created. In the succeeding feature
matching step, it will be able for the same feature to be identified in different images.
The same landmark can then be tracked across images. The process is illustrated in
Figure 2.7. A matched feature can then serve as the camera measurement in the above
SLAM formulation, to help navigate the lander and localize the observed landmark itself
(Figure 2.8). Surveys of feature detection, description, and matching methods can be
found in [59] and [60].

On Enceladus, salient features can be identified in visual images - such sensing however
is restricted to illuminated areas. This restriction is non-existent for thermal images.
Images from infrared cameras are usually less sharp than visual images making it more
difficult to identify features in them [63]. Thermal cameras can also sense local sources
of heat, such as the plume sources in the present case.

The surface of Enceladus can be sensed in a more straightforward way with range sensors.
If a lidar is used, a point cloud is generated from every measurement, comprising the
impact points of the laser beam with the surface, expressed in the lidar sensor frame.
For most planetary landing applications, the terrain can be assumed to be flat in the
large scale. An observation model for the lidar measurement can then calculate the lidar
ray-surface intersection point by assuming that a plane more or less coincident with the
planetary surface. For landing in a canyon terrain this assumption cannot be made, and
a Digital Terrain Model (DTM) of the landing terrain is necessary to calculate the lidar
beam impact points.
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Figure 2.7: An illustration of feature detection, description, and matching in 2D images:
salient features are detected in an image and a descriptor is assigned to each. In this case a
bundle of vectors indicating the intensity gradient of pixels surrounding the detected feature
is used as a descriptor (a simplified version of the SIFT descriptor [58]). Descriptors from
different images can then be compared and matched. All three marked images were provided
as shown by R. Jakob of Uni. Bundeswehr Munich.

Figure 2.8: Correspondences between 2D image matched features and 3D map locations
(left), and between matched features in a base image and a subsequent image (right) [61]

An alternative for lidar navigation is using point cloud registration to fit the point cloud
generated by a lidar measurement to the DTM of the landing terrain. This way, the
position of the lander relative to the DTM (assumed to be given in a planetary inertial
coordinate frame) can be estimated. A popular registration method is the Iterative
Closest Point (ICP) algorithm [66].
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2.2.5 A-priori knowledge of the landing environment for navi-
gation

As discussed in Section 2.2.2.4, landmarks on the surface of Enceladus can be broken
down in two categories: a-priori known and a-priori unknown.

In the context of an accurate planetary landing, ground operators can prepare a database
of a-priori known landmarks based on orbital reconnaissance before the landing starts.
This is done following the process shown in Figure 2.9. In that process, a-priori known
landmarks have been localized in the inertial frame of a planetary surface and given a
corresponding uncertainty value. A descriptor has been assigned to each landmark so
that it can be identified in further camera images. A Digital Terrain Model (DTM)
has been first created by orbital reconnaissance data (from e.g. stereo imaging of the
surface). The high resolution camera image corresponding to the region of the DTM is
draped over it. Features detected in that image can then be back-projected onto the
DTM, back to the distinctive landmarks on the surface that produced the features [62].
With this method however, features are generated only for regions for which images
exist, and for the particular illumation conditions that the images were made in. To
generate features particular to a wider range of illumination conditions, the DTM can
be input to a high-performance graphics tool (e.g. PANGU [64]), and features can be
identified and described in the generated virtual images for the expected illumination
conditions and landing approach direction.

Figure 2.9: Process for the off-line generation of an a-priori known landmarks database
[62]. DEM is used here in lieu of DTM. The blue line in the middle image represents the
camera imaging plane. Rays originating from the focal point and crossing the imaging plane
at the coordinates of the features will intersect the DTM at the locations of the landmarks the
produced said features (right image).

The inertial location of identified features can be estimated, with the corresponding
position uncertainties due to the resolution of the DTM, uncertainties in the planetary
shape parameters, uncertainties in the correlation between the planetary shape model
and the 2D camera images draped over it (Map-tie error), and others [62]. The inertial
location mean values and uncertainties of a-priori known landmarks as well as a descrip-
tor for the corresponding feature of each can be then made available to the lander before
landing starts.

There is a minimum altitude down to which the descriptors of a-priori known points
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would be detectable in images: at some point as the lander approaches the surface,
the resolution of sensed images becomes higher than that of the terrain data that was
used to generate the descriptors of the a-priori known features. After that point those
descriptors become meaningless and the lander can no longer observe the a-priori known
landmarks.

The best orbital images for e.g. the Moon and Mars can reach a ground sample distance
(GSD)11 of under ∼0.25 m. Due to the challenges due to the instability of polar orbits
around Enceladus, and the polar illumination conditions and the general rough topog-
raphy on the south polar terrain, it can be assumed that the resolution of the maps
acquired from any orbital reconnaissance of that terrain will not be as high as that. As
a general guide, a DTM can be derived with a resolution ∼4 times the pixel scale of the
input images. For images with a resolution of 0.25 - 0.5 m/pixel, a DTM of 1-2 m can
be generated with vertical precision in the tens of centimeters [65].

Another group of landmarks that can be localized a-priori are the plume sources them-
selves. Using optical imagery as above (see e.g. [10]), but also thermal measurements,
the locations of plume sources on the planetary surface can be identified along with
the corresponding uncertainties. Generating an identifiable optical feature descriptor
for these plume source landmarks would be challenging due to the difficult illumination
conditions on the canyon bottoms, but not impossible. The feature description and
matching problem for thermal images of the plume sources can be simplified by assum-
ing that during the final phases of landing, only a few plume sources will be visible,
most likely only one. The detection and matching problem can then be simplified to
matching the local intensity maxima within a certain pixel distance in a thermal image,
with sensed surface temperatures above a given threshold.

For lidar navigation the landing terrain DTM discussed above can be used as the basis
for an observation model, or for ICP registration. It is not certain however that the
GSD of the DTM will be adequate for either application due to its relatively low GSD.
Arguably, this is one of the reasons why ICP is more popular for rendezvous and close
proximity satellite operations, where a 3D model of the target object is more readily
available (see e.g. [66]).

2.2.6 System and operational considerations

The following preliminary navigation concept ties the information presented in this
section together to give a detailed operations concept from the point of view of the
navigation function for landing near a plume source on Enceladus.

An EKF-SLAM formulation is followed, with a SLAM map initialized with the lander
state only. During operations features are detected, matched, and then initialized in the
SLAM map. Detected features can be a-priori known, or a-priori unknown; they can
also be detected by either the thermal or the optical camera. The SLAM map vector
and covariance matrix are separated into separate “compartments” for the lander state

11In remote sensing, ground sample distance (GSD) in an image or DTM is the distance between
pixels, measured on the ground. E.g., in an image with a one-meter GSD, adjacent pixels represent
locations 1 meter apart on the ground.
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and each landmark type: known visual, unknown visual, known thermal, and unknown
thermal (Figure 2.10).

Figure 2.10: The EKF-SLAM map used in the EnEx lander navigation function. The
initials for each compartment are: OK for optical (a-priori) known, OU for optical unknown,
TK for thermal known, and TU for thermal unknown. See text in previous sections for further
reference. Adapted from [46].

When an a-priori unknown feature is detected and matched, its off-diagonal covariances
with the lander state are initialized normally. When an a-priori known landmark is
detected, these covariances set to zero (sec. 2.2.2.4). When a landmark already in the
SLAM map is observed, the correction step is performed. Depending on whether the
detected landmark is a-priori known or unknown, the lander navigation state error can
be reduced below its initial levels or not.

In the following, observation and navigation based on a-priori known points is called
absolute navigation. On the contrary, navigation besed on a-priori unknown points is
called relative navigation.

A plume source can be as an a-priori known or unknown thermal landmark on the
map, depending on the accuracy of its position knowledge before landing start. With
repeated observations it can be localized with increasing accuracy in the SLAM map.
As the lander navigational state improves via absolute camera or lidar navigation, the
accuracy of the plume source location will also improve.

The lidar can be used to give full observations of points on the surface. It should be
noted that the points sensed by the lidar in the lidar sensor frame, after back-projected,
are not located in the same inertial frame as those e.g. of the camera, but are defined in
a new one. This frame is not identical to the World frame, and an extra transformation
matrix should be found between the two if the lidar points are to be expressed in the
World frame. This tranformation matrix can be given e.g. by ICP and registration
methods, but as discussed in Section 2.2.5 this will very likely not be practical for the
present case.
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To overcome this issue, the new inertial frame defined by the back-projection of lidar
points will be defined as the hazard frame. As will be seen later, this is adequate for the
purposes of this study, where the main goal is to navigate relative to hazards (implicitly
existing in the hazard frame as the name implies) and to the target plume source (which
can be defined in the hazard frame as will be discussed later). Landmarks defined in
the World frame, can no longer be used once a hazard frame has been defined. This
approach of using a hazard frame is defined as hazard relative navigation, and is common
in safe and accurate landing studies (e.g. [25]).

The lander and plume source position mean values and uncertainties can potentially
be forwarded for use in other functions, e.g. the HDA for hazard evaluation and re-
targeting.

2.3 Hazard detection and avoidance (HDA)

Landing safety is a key of planetary landing missions. In all planetary landing missions
up to now the spacecraft follows a predetermined trajectory to its nominal landing site.
Missions landing in less challenging terrains and with less strict accuracy requirements
can afford this lack of capability, as a wide, flat, and safe landing area can be chosen
to ensure a given landing success probability. This option however is not available to
the EnEx lander that must land in an extremely challenging terrain, with a high degree
of accuracy, and, due to the planetary protection sensitivity of the landing area, even
stricter safety requirements than other similar landing concepts.

As seen in Section 1.5, the EnEx lander must be able to sense and assess terrain hazards
and make the autonomous decision to select a new suitable landing site if necessary. A
central feature of this approach is the imprecise and uncertain nature of the information
coming from the sensors, due to environmental, sensor design, and other uncertainties.

In the following, the types of safety terrain characteristics that can be detected with
the sensors presented in Section 2.1 will be discussed. Data fusion methods that can be
used to provide a fused landing assessment based on the information available will then
be investigated.

2.3.1 Terrain safety features

Each exteroceptive sensor type produces independent measurements of the terrain. For
hazard sensing purposes the process of sensor output co-registration is beneficial: if the
lidar and camera sensors are co-aligned with enough accuracy, and their angular resolu-
tions coincide, an enhanced point cloud can be created from the combined illumination,
thermal, and point cloud measurements by assigning one pixel from each camera to each
point from the point cloud. As the fields-of-view (FOV) of each sensor might differ, the
new co-registered enhanced point cloud will correspond to the smaller FOV.

The enhanced point cloud can then be used as the input to the hazard detection process.
Safety feature values for each point in this enhanced point cloud can then be added as
further information layers in the format of fSf (x,y), where f in the subscript refers to
a given feature as measured by the sensor S (either lidar - L, optical camera - C, or
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thermal camera - T ). This notation is adapted from [71].

Wherever features must be calculated within a certain area (e.g. the local slope), this
area is the lander footprint (given in Table 1.2), i.e. a circle with a diameter of 4 m.

The point cloud produced by the lidar can be used to estimate the slope and roughness
features. In [72] and [71], least median of squares (LMedSq) regression is used to estimate
the local plane parameters a, b, and c at location (x, y) of the point cloud. Given these
parameters, the slope (θ) is obtained by

fLθ (x,y) = cos−1

(
1√

a2 + b2 + 1

)
(2.46)

The roughness feature r is then the residual of the point cloud and the fitted plane at
location (x, y)

fLr (x,y) = |d(x,y)− (ax+ by + c)| (2.47)

where d(x, y) is the range data from the lidar.

A measure of terrain roughness as observed by the camera is obtained by computing the
local intensity variance at each pixel [71, 72]:

fCr (x,y) =
1

|W | − 1

∑
i,j∈W

|c(i,j)− µ|2 with µ =
1

|W |
∑
i,j∈W

c(i,j) (2.48)

where W is a sub-region of the camera intensity image c(x, y), |W | is the number of
pixels in W , and µ is the mean intensity in sub-region W .

Individual obstacle detection from optical camera images can be seen as a clustering or
image segmentation problem. The high saliency of either the illuminated faces or the
shadows of obstacles in optical images can be taken advantage of to separate the image
into ”obstacle” and ”non-obstacle” groups or clusters. In [73], the K-means clustering
algorithm is applied to the obstacle detection problem. A boolean information layer can
then be created based on the clustering analysis indicating the presence or not of an
obstacle (o) for every point on the map:

fCo (x,y) =

{
1, for (x,y) ∈ O
0, otherwise

(2.49)

where O is the set of pixel locations in the camera image identified as obstacles.

As seen in Section 2.1.3, the strength and shape of lidar returns varies with the texture
of the surface reflecting the beam. Smooth and reflective surfaces will give a sharper
return signal, while rough and less reflective surfaces will tend to give a more spread out
return signal; consequently snow covered surfaces will return sharper signal peaks than
icy surfaces. It becomes then conceivable that lidar beams can act as texture sensors,
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albeit potentially with high uncertainty, as it cannot always be clear whether a surface
property or some other effect produced the observed return signal. In addition, different
types of lidar have different resolutions of the return signal waveform (See Section 2.1.3).
Here the simplification will be made that each lidar beam will directly return a binary
snow/ice texture value. The boolean map describing the surface texture as measured
by the lidar is then:

fLt (x,y) =

{
1, for (x,y) ∈ S
0, otherwise

(2.50)

where S is the set of pixel locations in the lidar input identified as snow-covered.

Using a thermal camera, the local thermal environment near a plume source can also
be leveraged to extract information on the texture of the terrain. Heat originating
from a plume source will warm the surrounding ice in a very localized manner (Section.
1.4). However, due to their significant differences in thermal inertia, the super-fine snow
and the exposed ice will have a noticeable temperature difference. This temperature
difference can be observable in thermal images.

To extract explicit texture information from thermal images, a two-step process is ap-
plied. First, the thermal background due to the plume source hot spot will be calculated.
It can be assumed that by orbital reconnaissance and/or analysis, the location of the
plume source will be roughly known, as will be the maximum surface temperature near
it, the ambient surface temperature at some distance from it, and the surface tempera-
ture distribution around it. The simplification is further made that surface temperature
near a plume source follows a Gaussian distribution with a standard deviation in the
order of ∼30 m. Knowing the maximum and minimum temperatures, the plume source
location, and the standard deviation of the heat ”spread”, a background temperature
map can then be calculated. By subtracting the background temperature map from the
thermal camera temperature map sensed during landing, a “corrected” image with pixel
values indicating the difference from the local image background is given:

Tcorr(x,y) = Tbackground(x,y)− Torig(x,y) (2.51)

Pixels with negative values in these corrected images will then correspond to warmer
temperatures, and thus exposed ice, and positive values should accordingly correspond
to snow:

fTt (x,y) =

{
1, for Tcorr(x,y) ≥ 0
0, for Tcorr(x,y) < 0

(2.52)

An a-priori perfect knowledge of the variables necessary to create a background temper-
ature image is assumed above. The effect of uncertainties in all of these parameters will
be investigated in Section 4.2.3. Alternatively, some or all of these parameters can be
estimated in real time according to measurements with the thermal camera. Another
option would be to generate the background image ”agnostically”, i.e. without assuming
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any related previous knowledge. Such a solution would be e.g. to generate the back-
ground thermal image by blurring the original temperature image. The thermal texture
detection process is illustrated further down in this thesis, in Figure 4.30.

The terrain safety features detectable by each sensor are summarized in Table 2.1.

Table 2.1: Terrain features that can be detected by each exteroceptive sensor

Sensor Slope Roughness Obstacles Texture

Lidar + + +
Optical camera + +
Thermal camera +

A critical parameter not related to safety but to the mission science requirements is the
scientific interest of the map points. For the purposes of the landing mission concept
discussed here, scientific interest is equated to the proximity of a point to a plume
source. According to the landing requirements (Section 1.5), the landing should not be
farther away than a given maximum distance rmax from the plume source, but also, for
planetary protection reasons, not closer than a minimum rmin:

r2
min ≤ (x− xPlS,i)2 + (y − yPlS,i)2 ≤ r2

max (2.53)

where (xPlS,i,yPlS,i) are the coordinates of the ith plume source in the map. As seen in
Section 1.5, reasonable values for rmin and rmax are 5 and 50 m respectively.

2.3.2 Reasoning under uncertainty

Principles of reasoning under uncertainty can be used to first assess landing safety based
on terrain features observed by the sensors, and then combine this with information on
landing site scientific interest. Three different frameworks for representation of data
uncertainty have gained traction for safe and precise planetary landing applications [71,
72, 74, 75, 76]: fuzzy set theory, Bayesian probability (BP) theory, and Dempster–Shafer
(DS) belief theory.

Fuzzy logic is a form of logic in which the truth values of variables may be any real
number between 0 and 1, in contrast to Boolean logic, where variables may only be the
integer values 0 or 1. It is employed to handle the concept of partial truth, where the
truth value may range between completely true and completely false [67]. Based on that
logic, fuzzy rule-based reasoning uses a set of linguistic statements, or rules, defined
by a human expert. Each rule is of the form IF C, THEN A, where the condition C
is composed of fuzzy input variables (e.g. terrain safety, fuel consumption, scientific
return) and fuzzy operands (e.g. AND, OR, NOT) and the action A is a fuzzy output
variable (e.g. landing site quality). The rules are evaluated based on their membership
to fuzzy sets. Unlike traditional boolean logic where full membership in a set is required,
a fuzzy-based reasoning allows for degrees of membership in multiple sets [75].

Part of the appeal of fuzzy systems is that they can be used for approximate reasoning.
This is particularly important when there is uncertainty in the reasoning process, in



2.3. HAZARD DETECTION AND AVOIDANCE (HDA) 41

addition to imprecision in the data [75]. An additional advantage is that fuzzy rule
statements model the human expert’s domain knowledge and are thus intuitive to work
with. Fuzzy logic rule evaluation involves only simple arithmetic calculations and is thus
computationally light [75]. However, a fuzzy logic reasoning engine and its component
rules need to be ”hand-crafted” and tuned with close supervision by an expert. Also the
informal nature of the fuzzy rule-sets might make the formal verification of performance
and traceability an issue down the line.

Bayesian Networks (BN) are probabilistic graphical models representing a set of vari-
ables and their conditional dependencies via a directed acyclic graph (DAG). In a DAG,
the nodes represent variables and the links between nodes represent causal dependence
between them. The direction of a link indicates causality, and thus a dependence rela-
tionship. Nodes that exist at the same level are considered conditionally independent
[74]. In the landing safety example, a Bayesian network could represent the probabilistic
relationships between landing safety and terrain features. Given certain features present
in an area, the network can be used to compute the probabilities of safe landing in that
area.

Where fuzzy logic above deals in a subjective and linguistic classification of probability,
Bayesian networks formulate the uncertainties of a problem in an objective and numerical
way. A more formal and traceable representation of probabilities is then given. The
defining negative aspect of Bayesian inference is that it requires all unknowns to be
represented by probability distributions, needing the definition of potentially largely
unknown probabilities of random events [69].

The evidential reasoning algorithm is based on the Dempster–Shafter (DS) mathematical
theory of evidence. DS is based on belief functions and plausible reasoning, which is
used to combine separate pieces of information (evidence) to calculate the probability
of an event [68]. In other words, DS allows for the consideration of uncertainties in the
knowledge of probabilities in a problem. An example would be instructive: spinning a
coin is known to be fair and a simpler probabilistic approach can be followed. Betting
on the outcome of a fight between the world’s greatest boxer and the world’s greatest
wrestler would be a more difficult probabilistic problem. In this second problem, where
the probabilities are unknown, DS theory allows one to consider the confidence one has
in the probabilities assigned to the various outcomes [69].

Evidence theory is defined as an extension of probability theory that explicitly accounts
for lack of information. It allows the combination of multiple observations without the
need to know about a priori or conditional probabilities as in the Bayesian approach. It
thus presents a more robust approach while preserving the formality of the probabilistic
approach. Disadvantages include the possible invalidity of the assumption made by DS,
that the pieces of evidence are statistically independent from each other, and the high
computational complexity [70]

Some previous works have opted to implement all three fusion engines and add an extra
decision fusion step to get a combined, and thus more robust, result [72, 76]. However,
due to its simplicity, intuitiveness, and smaller computational requirements, a fuzzy
based landing reasoning approach was chosen for implementation in this work. It will
be described it in the following.
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2.3.3 Fuzzy-reasoning-based terrain landing assessment

Fuzzy inference is the process of formulating the mapping from a given input to an
output using fuzzy logic. The process is illustrated with an intuitive example in Figure
2.11. The input variables, given in crisp numerical values are first fuzzified (assigned
a linguistic label) via the respective membership functions. Using the fuzzified inputs,
the fuzzy rules are then evaluated using the logical-fuzzy operands and combined based
on the implication method. The combined results are finally defuzzified, giving crisp
numerical output values. The process is explained in more detail in [77].

Figure 2.11: The fuzzy inference process, explained with an intuitive example use case: what
tip is appropriate at a restaurant given service and food quality? [77].
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Figure 2.12: Block diagram of the selected fuzzy landing site selection approach. Phase
where fuzzy reasoning is implemented are shown in grey. Adapted from [75]

A modified version of the fuzzy approach for landing reasoning given in [75] will be
applied here. Determination of the best landing site is performed in three fuzzy reasoning
phases as depicted in Figure 2.12.

In the first fuzzy step, the safety of the terrain is assessed using a set of rules to combine
the safety extracted from the on-board sensors described in Section 2.3.1. The second
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step involves fusing the combined safety information with information on the distance
to the plume source. In the third phase, the landing quality of neighboring sites and
landing quality at earlier times in the descent are combined using spatial and temporal
rule sets. A final landing goodness score map is given for the input terrain at the end of
this process. A re-targeting function then chooses the point in the map with the highest
landing score, and commands a re-targeting to it. This process will be explained in
detail in the following.

2.3.3.1 Fuzzy Safety Reasoning

Following the example of [71, 72, 75], the concept of a terrain safety score s ∈ [0, 10]
is used to represent a continuous, quantitative measure of the level of safety of a given
point on the terrain. In a fuzzy context, the range of safety scores s can be classified
into qualitative measures in the form of a linguistic fuzzy set with membership func-
tions of adjacent grades having smooth and overlapping boundaries to avoid abrupt
transitions. The fuzzy sets comprise the linguistic labels {HSAFE, MSAFE, MUN-
SAFE, HUNSAFE}, which stand for highly-safe, moderately-safe, moderately-unsafe,
and highly-unsafe, respectively. The safety map for each sensor is obtained by applying
the appropriate set of rules and membership functions. These fuzzy rules are listed in
Tables 2.2 and 2.3 for the lidar and optical camera respectively.

Table 2.2: Lidar safety fuzzy rule set

Texture (pre-fused) op. Roughness op. Slope Terrain

SNOW and and STEEP HUNSAFE
SNOW and and SLOPED HUNSAFE
SNOW and and FLAT MSAFE
ICE and VROUGH or STEEP HUNSAFE
ICE and ROUGH and SLOPED MUNSAFE
ICE and SMOOTH and SLOPED MSAFE
ICE and ROUGH and FLAT MSAFE
ICE and SMOOTH and FLAT HSAFE

Table 2.3: Optical camera safety fuzzy rule set

Obstacle op. Roughness Terrain

PRESENT and HUNSAFE
ABSENT and VROUGH HUNSAFE
ABSENT and ROUGH MUNSAFE
ABSENT and SMOOTH MSAFE
ABSENT and VSMOOTH HSAFE

For icy surfaces sensed by the lidar, a surface point is considered HUNSAFE if the area
around it is VROUGH or if it has a slope that is STEEP. More benign combinations of
roughness and slope will result in better safety scores. For snowy surfaces no roughness
feature is considered, as it is assumed that snow covers over any terrain roughness. The
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safety rating of snow-covered areas is downgraded compared to an equivalent ice covered
area. This is due to the potential instability of loose snow on slopes, and the risk of
sinking or otherwise unstable landing in flatter areas.

The texture information considered in the lidar rule table does not only consider infor-
mation from that sensor, but also from the thermal camera. This is a more compact
solution to having a separate thermal camera rules table comprising only of texture
information. The two texture measurements are normalized according to the confidence
parameters of each sensor:

fFusedt (x,y) =
βLf

L
t (x,y) + βTf

T
t (x,y)

βL + βT
(2.54)

where fFusedt (x,y) is the fused texture information, βk is a confidence parameter for each
sensor, and fkt (x,y) is the texture measurement by each sensor (k can be L or T). A
second processing step is performed on the texture map, applying a moving averaging
window with a size equal to the lander footprint. The final combined texture map
represents then the percentage of the lander footprint that is covered in snow for each
point in the map.

The sensor confidence parameters βk ∈ [0,1] can themselves be fuzzy variables (as e.g. in
[72]), or they can be set manually to favor measurements from one or the other sensor,
provided that in the above equation βL + βT = 1. The second, simpler approach is used
here.

For the camera, areas covered by obstacles are automatically considered HUNSAFE. Ab-
sent an obstacle, terrain safety is then dependent on the measured illumination variance
as a proxy for terrain roughness.

The membership functions for the lidar and camera ruleset are given in Figures 2.13
and 2.14 respectively.

For the lidar, the slope was labeled as FLAT for values up to ∼10°, SLOPED from ∼8°
to ∼18° and STEEP from ∼15° on. This gives preference to smaller slopes while respect-
ing the ∼15° slope requirement given in Section 1.5. A similar approach is followed for
the roughness parameter, where small roughness values as SMOOTH, values at around
half the 0.5 m roughness requirement given in Section 1.5 are marked as ROUGH, and
values around that requirement are marked as VROUGH. As texture in the lidar rules
table is expressed as a snow cover percentage (Equation 2.54), the texture MFs have
somewhat smooth slopes, with the texture characterization gently transitioning from
ice to snow. The lidar safety score MF comprises of four trapezoidal functions reason-
ably distributed between zero and ten, with HUNSAFE centered around 0, MUNSAFE
around 3, MSAFE around 6, and HSAFE around 9.

For the optical camera an essentially binary MF the obstacle MF is used for obstacles,
due to the binary nature of the obstacle detection method. The illumination variance
MFs were roughly calibrated to coincide with the roughness requirements in the same
way as discussed for the lidar above. The camera safety output score MF is identical to
that of the lidar.
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Figure 2.13: Membership functions for the lidar safety ruleset.
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Figure 2.14: Membership functions for the optical camera safety ruleset.
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Fuzzy rules and membership functions are also used to determine the sensor confidence
values. Several relevant factors can be considered separately for each sensor, like e.g.
illumination and angular velocity during a measurement for the optical camera, and the
incidence angle and intensity of the return signal for lidar. Confidence factors can also
be dependent on location in the map. For simplicity however, here only range to the
center of sensed surface will be considered as a common confidence parameter for all
sensors and map points.

Centroid defuzzification is finally used to produce a numerical safety score sk each sensor.
The safety score is a weighted combination of the degrees of membership to the fuzzy
terrain safety classes

sk(x,y) =

∑
i piAi∑
iAi

(2.55)

where sk(x,y) is the defuzzified terrain safety score for the sensor k (can be either L or
C) at point (x,y) on the terrain, pi is the peak value associated with the membership
functions, and Ai is the area under the truncated membership function, as calculated
during the implication step of the fuzzy assessment (see [77]). The resulting safety score
is in the range [0,10].

The safety scores are then weighted according to the set sensor confidence scores ({βL, βC} ∈
[0,1]) and are combined into a single fused safety score according to the equation

sf (x,y) =
βLsL(x,y) + βCsC(x,y)

βL + βC
(2.56)

It is reminded that the thermal camera information has been incorporated with its
corresponding confidence in the lidar texture measurement. It should be pointed out
that if equal confidence is assigned to each sensor, the final safety score will then be the
sum of the optical camera and lidar scores divided by two.

2.3.3.2 Landing Reasoning

The second key factor for landing success is closeness to a plume source. According to
Equation (2.53), the landing site must be between a minimum and a maximum distance
from the plume source, set at 5 and 50 m respectively. To account for this in the
fuzzy landing assessment process, a distance weighing factor is introduced, given as the
difference of two sigmoidal functions12

βd(x,y) = S1(r; a1,c1)− S2(r; a2,c2) (2.57)

where S(r; a,c) =
1

1 + e−a(r−c) (2.58)

and r =
√
x2 + y2 (2.59)

12See Matlab’s dsigmf documentation page, https://de.mathworks.com/help/fuzzy/dsigmf.

html

https://de.mathworks.com/help/fuzzy/dsigmf.html
https://de.mathworks.com/help/fuzzy/dsigmf.html
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where, x is the distance of a map cell from the plume source and a and c are shaping
parameters. After appropriately tuning the shaping parameters (a1 = 2.36, c1 = 6.01,
a2 = 0.3958, and c2 = 41.2), βd acquires the shape shown in Figure 2.15.
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Figure 2.15: The distance to plume source weighting factor

The overall landing score of a given map cell is then given by

lmap(x,y) = βd(x,y)sf (x,y) (2.60)

As seen, the distance factor maintains the score of map cells at distances between 5 and
30 m, while sharply reducing the score of points between 30 and 50 m and more so in
the range of 0 to 5 m.

2.3.3.3 Fuzzy Spatial and Temporal Reasoning

The fuzzy reasoning process described up to this point is performed independently for
each map cell (x,y). Realistically, however, the quality of a landing site is connected to
the quality of its neighboring sites and does not change over time[75]. These observations
can be used to further refine the landing assessment process with a final set of fuzzy
reasoning processing as seen in Figure 2.16.

Figure 2.16: Fuzzy rulesets for spatial (left) and temporal (right) landing assessment [75].
P, L, M, and H stand for Poor, Low, Medium, and High landing goodness respectively.
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In Figure 2.16, l0 is the landing score at a given location and current point in time, l−1 is
the landing score at a given location and previous point in time, and ln, is the mean score
of the map points within a set range around l0 (e.g. at a range of 4 lander footprints).
The spatial and temporal landing scores (ls and lt respectively) are calculated using a
fuzzy assessment process, and are finally combined using a weighted average to arrive
at a final landing score, l:

l(x,y) = asls + atlt (2.61)

where as + at = 1. The weights can be set equally or can be biased towards either
the spatial score or the temporal score. The spatial and temporal rules-sets provide a
further layer of uncertainty mitigation.

2.3.3.4 Re-targeting

The final landing score l takes into consideration the two key landing factors (terrain
safety and scientific interest), as well as spatial and temporal information that further
increases the robustness of the assessment. The selection of the optimal site for landing
in a map then becomes about finding the point on the terrain with the highest score l. To
avoid unnecessary re-targeting that would increase operational risk, a new landing site
is selected only if the score of the currently selected site drops below a preset threshold.

2.3.4 System and operational considerations

The HDA function must be able to sense the hazards in order to satisfy landing safety
requirements within the entire lander footprint. For meaningful HDA to take place in
that sense, the ground sample distance of the HDA sensors must be small enough to
resolve the area of the lander footprint. The lander would ideally be also able to sense
as much of the candidate landing area for hazards as possible.

The critical parameters for HDA sensing are then the ground sample distance (GSD)
and the ground coverage area (GCA)13. Both of these factors depend on the range from
which an HDA measurement was taken. Further, the GSD depends on sensor angular
resolution and the GCA depends on sensor FOV.

A reference HDA sensor suite can be defined here based on the HD lidar from the Lunar
MARE mission concept/ALHAT project [78]. Its characteristics are given in Table 2.4.
The dependence of GSD and GCA from range to the target surface given the sensor
characteristics in Table 2.4, and assuming a nadir-pointing sensor can be calculated
through basic trigonometry and is given in Figure 2.17.

13The ground coverage area is defined as the area on the surface that is visible by a sensor with a
given FOV. It is expressed in terms of length of the side of the projection of the FOV on the surface
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Table 2.4: Some characteristics of the chosen lidar (based on HD lidar from [78])

Characteristic Value

Number of beams 128× 128
FOV 6.6°

Angular resolution 0.05°

Considering a lander footprint with a diameter of ∼4 m and according to the comments
above, the earliest meaningful HDA measurement will be for a GSD of ∼1 m. As seen
in Figure 2.17 this will happen at a range from the target surface of ∼1100 m. From the
same figure it can be seen that the GCA for this measurement is then ∼125 m, which
nicely coincides with the potential landing area, i.e. the width of the bottom of the tiger
stripe canyon containing the target plume source, with some margin.
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Figure 2.17: Ground sample distance (GSD, left) and ground coverage area (GCA, right) as
a function of altitude from the target surface, assuming a nadir pointing sensor

Consecutive HDA measurements can be taken at set intervals as the lander approaches
the landing target. These measurements will have increasingly smaller GSDs and GCAs.
Constraints will be set on the timing of these measurements by the execution time needed
for the HDA process to run on the on-board computer. For example, [78] gives an
execution time for the NASA ALHAT HDA process of 5 s. Although not identical with
the HDA process described above, this value will be used here as a first approximation.

There are also constraints setting a minimum reasonable range from target for HDA
measurements. As the lander nears the surface, some fine snow might be kicked up by
the lander’s thrusters. This material can significantly interfere with lidar measurements,
making them unreliable. Equally critically, and as seen in Figure 2.17, the GCA drops
to sizes below that of the lander footprint. As the purpose of an HDA measurement is
to command a re-targeting, it would be meaningless if the covered area contained no
room for HDA to command a re-targeting to. The minimum meaningful GCA is then
set to 10 m (the equivalent to ∼four lander footprints), which corresponds to an altitude
of ∼100 m. This is set as the HDA cut-off altitude.
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Taking the above into account, and assuming that an unnecessarily high number of HDA
measurements is likely to increase operational complexity, a first value for the number
of measurements is 4, taken at ranges of [1100, 550, 250, 100] m corresponding to GCDs
of [1, 0.5, 0.2, 0.1] m and GCAs of [125, 55, 20, 10] m (see Figure 2.17).

Concerning sensor pointing during landing, an agile approach is required, as each HDA
measurement can possibly select a new target landing site. To provide this agility, a
solution where the HDA sensor suite is mounted on a gimbaled platform is selected.
Consecutive HDA measurements, with a smaller ground sample distance and a smaller
ground coverage area will then be performed around this new landing target.

2.4 Guidance

The function of the guidance function is to solve the minimum-fuel planetary landing
problem consisting of estimating the thrust profile to take the lander from its initial
state, to a target location while minimizing the fuel consumed for these maneuvers [79].

2.4.1 Approaches to the planetary landing Guidance problem

An exhaustive survey of guidance laws for safe and accurate planetary landing is per-
formed in [80]. Various guidance algorithms were compared for their optimality, com-
putational efficiency, their ability to fulfill the requirements for landing with safety and
precision, and their ability to incorporate the related landing constraints. Two ap-
proaches for landing come on top: Convex programming and Neural Guidance.

Convex guidance is based on a mathematical result known as lossless convexification of
the associated optimal control problem, which allows for the formulation of the problem
as a convex optimization problem and guarantees obtaining the global optimal solution
when a feasible solution exists [81].

The main argument in favor of convex guidance is that, as the guidance problem must
be solved in real time during landing, it is critical that any algorithms are guaran-
teed to converge to the global optimum. By using deterministic convergence criteria,
convex guidance can achieve this. In addition, putting the problem in a convex for-
mulation makes it very computationally efficient to solve. Landing constraints can be
directly considered. The global optimality for a given solution is proven mathemati-
cally, so that validation of this optimality becomes straightforward. On the other hand,
although relatively computationally efficient, this method still is more complex than
simpler polynomial guidance approaches [80, 82].

A novel approach for planetary landing guidance is Neural guidance. This guidance
method has a generally biomimetic origin, the underlying idea being to model neurons
and connect them into a network. Such systems ”learn” to perform tasks by considering
examples. In the planetary soft landing case, networks must be trained by using models
and sets of constraints and boundaries for hundreds or thousands of simulated landing
trajectories [80]. Several approaches to neural guidance have been proposed [83, 84, 85].

Neural guidance has several advantages over more conventional guidance algorithms in-
cluding improved performance (lower fuel consumption) and some ability for trajectory
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modification in real time. It has been shown to be robust, accurate, and optimal for
Mars landing cases [85]. A major drawback of neural guidance however is that its per-
formance is limited by the input training cases. Although small deviations from the
nominal mission parameters can be handled provided enough training cases, significant
or unexpected changes in the mission parameters are not possible in real-time. In other
words, the algorithm has no formal knowledge of the problem being solved, merely turn-
ing input values to working solutions, acting as a black box. This makes the algorithm
very difficult to validate, and practically impossible to prove that the guidance solution
is convergent [80].

Convex guidance optimization is chosen for further implementation in this work, mostly
due to it being demonstrably optimal, its verifiability, and its operational robustness for
real time application.

2.4.2 Convex planetary landing guidance

Convex optimization is a subfield of optimization that studies the problem of minimizing
convex functions over convex sets14. Convex guidance was introduced in [82]. The
particular implementation that will be investigated here is called G-FOLD (Guidance
for Fuel Optimal Large Divert) and is presented in [81, 86]. The following is based on
the formulation and notation used in [81].

The landing guidance function must calculate the thrust vector profile Tc and trajectory
(r, ṙ) to take the lander from an initial position r0 and velocity ṙ0 to a state of rest
at the target location on a planetary surface while minimizing fuel use and respecting
specific state and control constraints. The general problem is illustrated in Figure 2.18,
and formulated in Equations 2.62 to 2.71.

Figure 2.18: Illustration of the landing guidance problem (see text for description). Slightly
adapted from [81].

14A real-valued function defined on an n-dimensional interval is called convex (or convex downward
or concave upward) if the line segment between any two points on the graph of the function lies above
or on the graph. A convex set is a subset of an affine space that is closed under convex combinations.
More intuitively, in a Euclidean space, a convex region is a region where, for every pair of points within
the region, every point on the straight line segment that joins the pair of points is also within the region
[Wikipedia]
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max
tf ,Tc

m(tf ) subject to (2.62)

ẋ(t) = Ax(t) + B
(
g +

Tc(t)

m(t)

)
, ∀t ∈ [0,tf ] (2.63)

ṁ(t) = −α‖Tc(t)‖, ∀t ∈ [0,tf ] (2.64)

tanγgse
>
3 r(t) ≥

√
(e>1 r(t))2(e>2 r(t))2, ∀t ∈ [0,tf ] (2.65)

||ẋ(t)|| ≤ tan(ψ)||x(t)||, ∀t ∈ [0,tf ] (2.66)

0 < ρ1 < ‖Tc(t)‖ < ρ2 (2.67)

n̂>Tc(t) ≥ ‖Tc(t)‖cosθ (2.68)

m(0) = mwet (2.69)

r(0) = r0, ṙ(0) = ṙ0 (2.70)

r(tf ) = 0, ṙ(tf ) = 0 (2.71)

The optimization objective is expressed Equation 2.62: the lander must expend the
minimum amount of propellant, with m(t) being the time-variable lander wet mass (with
m0 the initial lander wet mass), and tf the time of landing. The dynamics equations for
the landing are given in Equation 2.63, where ẋ(t)) = (r(t), ṙ(t)),

A =

[
0 I
0 0

]
and B =

[
0
I

]
(2.72)

g is the gravity vector, and Tc(t) is the time variant thrust vector. Equation 2.64 gives
the propellant consumption rate where

α =
1

Ispg0

(2.73)

The optimized landing trajectory must respect state and control constraints. The first
state constraint is given in Equation 2.65. This equation describes an inverse cone with
a slope angle γgs with its apex on the landing target, within which the lander is allowed
to fly. This is termed the glide slope cone constraint. The unit vectors for each of the
axes are noted as e{1,2,3}. The second state constraint in Equation 2.66 keeps the velocity
magnitude to increasingly lower levels as a function of the lander range-to-target, i.e.
the lander is forced to be slower as it nears the target and the surface. This constraint
is a line crossing zero in the velocity magnitude vs range space, with a slope of ψ.
There are two constraints on the controls: first a thrust magnitude constraint is given
in Equation 2.67, stating that the thrust magnitude must be between a minimum (ρ1)
and a maximum value (ρ2). Second, Equation 2.68 requires that the angle between the
thrust vector and the local vertical will not be larger than a given value θ. The control
constraints are illustrated in Figure 2.19.

It should be noted here that the important requirement, that the final thrust vector
of the lander should be pointing up-wards (representing an up-right attitude), was not
implemented for tool-related technical issues. It should be considered in future iterations
of this work.
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Figure 2.19: 2D representation of the thrust magnitude (ρ1 - ρ2) and angle (θ) constraints.
The resulting allowed control space is non-convex [81].

Equations 2.69 to 2.71 give the initial and final boundary conditions for the optimization
problem.

The element of the above formulation that does not allow for the problem to be formu-
lated as a convex optimization problem are the non-convex thrust constraints, and in
particular due to the thrust magnitude contraint: once started, the thrusters cannot be
throttled below a certain level [79].

This issue is resolved in the G-FOLD algorithm by applying the“lossless convexification”
by using a particular convex relaxation of the control constraints. In the relaxed problem
a scalar slack variable Γ(t) is introduced to lift the control space to a higher dimension
(with one additional dimension) and relax the non-convex set of controls to a convex set.
It can be shown that after this introduction the optimal solution to the relaxed problem
is always a feasible and optimal solution to the original non-convex problem [82]. The
mathematical foundation behind this finding is complex and extensive, and it falls out
of the scope of this work to describe it in detail. The interested reader is directed to the
main reference for G-FOLD [82] and the further work cited therein.

The new ”convexified” problem is formulated as

max
tf ,Tc,Γ

m(tf ) subject to 2.65, 2.69, 2.70, 2.71, and (2.74)

ẋ(t) = Ax(t) +B
(
g +

Tc(t)

m

)
, ∀t ∈ [0,tf ] (2.75)

ṁ(t) = −αΓ(t), ∀t ∈ [0,tf ] (2.76)

‖Tc(t)‖ ≤ Γ(t) (2.77)

0 < ρ1 ≤ Γ(t) ≤ ρ2 (2.78)

n̂>Tc(t) ≥ cosθΓ(t) (2.79)
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2.4.3 System and operational considerations

The guidance aspect of the landing operations concept can now be discussed in more
detail. Guidance operations start at approach phase start. The lander is following a
nominal pre-calculated trajectory, targeting a pre-selected nominal landing site near but
not on the target plume source. However, due to navigational uncertainty, the nominal
lander state at approach gate will be different than the real one. As the operations
advance, the HDA function will likely command a re-targeting. In both cases either the
starting or the ending point of the current guidance trajectory is no longer up-to-date.
A new guidance trajectory will then have to be calculated.

In the case where the starting point of the current guidance trajectory is no longer
considered valid, it would make sense for this new guidance calculation to happen when
the navigational uncertainty has been reduced to within acceptable limits. This is most
likely to happen after optical camera or lidar navigation measurements (Sections 2.2.3.2
and 2.2.3.3). An HDA assessment also takes place after each lidar measurement, it
is thus likely that re-targeting will take place once the processing time for the HDA
function has passed (5 s, see Section 2.3.4). It would make therefore sense for the
guidance function to be executed after each lidar measurement and HDA assessment if
a re-targeting is commanded by HDA.

The glide slope constraint can be used to enforce no-go areas around the target tiger
stripe canyon. A possible approach would be to define two phases, one inside and one
outside the canyon. While outside the canyon, the glide slope would be close to zero.
Inside the canyon the glide slope constraint would match the slope of the canyon walls,
with an additional buffer margin. By defining two separate no-go zones it is assured that
each one is convex, and convex guidance can be applied. This is the approach followed
e.g. by [87].

In this case however a single glide slope constraint would be preferable, as the lander
will have to maintain visibility to the landing site, the plume source, and the entirety of
the canyon bottom around them at all times. A single cone glide slope constraint will
ensure that at no time will the landing site be obscured by local topography. As the
canyon wall slope is 30 deg. (Section 1.4), a single glide slope constraint of γgs = 40°
would allow for a safety buffer. Extending this cone to an altitude of ∼ 1500 m above
the plume source, where the start point of the approach landing phase is assumed to
be, the cone base has a diameter of ∼ 2000 m. This approach phase starting point
should then be within that general area to safely reach the landing site while respecting
the glide slope constraint. As will be seen later (Table 2.7), this level of lander position
accuracy at the start of approach operations is easily achievable, thus further reinforcing
the argument for using a single glide slope. The above points are illustrated in Figure
2.20.

A thrust angle constraint, as discussed above, can ensure that the lander attitude will
not be allowed to deviate excessively from the local vertical during the final few minutes
of the landing in the approach phase. A compromise between safety and agility can be
achieved for θ = 45°. The velocity magnitude constraint is also implemented, with a
velovity-vs-range slope empirically chosen as ψ ∼ 65°.
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Landing 
target

Flight region

α γgs

Figure 2.20: Glide slope cone flight region for landing on a tiger stripe canyon bottom (not
to scale). The glide slope constraint cone with an angle γgs ∼ 40° would ensure adequate
distance between the lander and the canyon faces (slope α ∼ 30°) for any landing target on
the canyon bottom. The lander maintains visibility of the entire canyon bottom at all times.
Adapted from [87]

2.5 Control and Actuation

The Control function in a GN&C system derives the control commands necessary to
match the current vehicle state (position, velocity) with the desired path provided by the
guidance function. These commands are in turn forwarded to the appropriate actuators
that apply the commanded forces for trajectory control.

Control methods for planetary landing is a big field of research (see e.g. [88] for an
introduction to existing control approaches). In this work however focus is given to the
other functions of GN&C and ideal control will be assumed. The rest of this section will
be focus on landing actuators, i.e. main thrusters for landing.

An initial detailed propulsion system design for the EnEx lander was performed in [89]
and is summarized in [38]. The propulsion system given there is a monopropellant
system working on blowdown mode. A Main Engine Assembly (MEA) of thrusters is
mounted at the bottom of the Lander so that the thrust vector runs through the lander’s
center of gravity.

A critical parameter for the design of propulsion systems for planetary landing is thrust-
to-weight (TtW), meaning how much larger the maximum thrust achievable by the
thrusters is, compared to the weight of the lander on the target planet, i.e. the mass
of the lander times the local gravity. Intuitively this parameter can be seen as a metric
of lander maneuverability, as higher control accelerations can be implemented on the
lander to quickly change its trajectory. Previous landing missions and existing mission
concepts have had a thrust-to-weight ranging from a little above 1 [90], to ∼ 2 [79], to
∼ 5 [78]. As the EnEx lander has very challenging landing requirements, it is assumed
that a high level of maneuvrability will be necessary and a TtW ratio of 5 is chosen.
The resulting maximum thrust (rounded up) would then be:

Tmax = TtW ∗mwet ∗ gEncel ' 1118N (2.80)
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where, Tmax is the maximum thrust magnitude, TtW is the thust-to-weight ratio, mwet is
the lander wet mass at approach phase start and gEncel = 0.113m/s2 is the gravitational
acceleration magnitude on Enceladus. An interesting observation is that, despite the
large wet mass of the lander, the low gravity on Enceladus means that a relatively low-
thrust engine is needed, compared e.g. to the ESA Lunar Lander concept [91]. The Isp
for this propulsion system is given as 220s.

Propulsion systems can be typically throttled between a minimum and a maximum
value. For this work these thrust limits are set between ρ1 = 30% and ρ2 = 80% of Tmax
[82, 86, 87]. Alternatively, pulse modulation, i.e. rapidly pulsing engines at varying
frequencies, can be implemented to the same effect [91].

It is further assumed that a guidance-generated thrust vector is ideally applied on a
point-mass lander, without considering noises in the magnitude and direction of thrust
applied by actuators.

2.6 Baseline GN&C system and operations

By combining information and analysis performed in the above previous sections in
this chapter, a detailed baseline system and operations concept can be defined for the
approach phase of the landing.

The system is comprised of the sensors and actuators with the characteristics given in
Tables 2.5 and 2.6 respectively.

Table 2.5: Sensor parameters and noises (see text for description). Lidar is always considered
to be in range during the approach phase. See text for discussion on the thermal camera pixel
error.

Ext.
Sensor

Resolution FOV Angular
resolution

Pixel
error

Pointing
error

Range
noise

Optical
camera

1024× 1024 55° 0.05° 1 0.05° -

Thermal
camera

1024× 1024 55° 0.05° [2, 10]* 0.05° -

Lidar 128× 128 6.6° 0.05° - 0.05° 0.3% (multi-
plicative)

Int. Sensor Sampling frequency White noise

INS accelerometer 100 Hz 10−5m/s2 1σ

For the optical and thermal camera, typical parameters used in typical space cameras
are assigned. A pointing error is assigned, attributed to mounting errors and similar
effects. The camera pixel error corresponds to the angular resolution of a pixel, and
represents the minimum angular accuracy achievable by a camera due to the fact that
camera images are composed of a finite amount of pixels. Two pixel error values are
assigned for the thermal camera. The first one is used for generic observations with the
thermal camera and accounts for the lower image sharpness of thermal images. The
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second even higher pixel error value is used when observing a plume source hot spot
in the thermal image. Due to its nature (somewhat spread out local maximum in the
thermal image) it will be difficult to pinpoint. Centroiding methods similar to the ones
used in star trackers for sub-pixel pinpointing can be applied [93], but this is left to
future iterations of this work.

For the INS accelerometer, typical measurement frequency value is used and a white
noise value is chosen to produce a reasonable drift in lander position as seen in other
similar works (see e.g. [92]).

All three exteroceptive sensors are assumed to be perfectly co-aligned and placed on
a gimbaled platform able to point freely in any direction. All sensors have the same
angular resolution so that their measurements can be directly co-registered for use in
the HDA function.

The characteristics of the propulsion subsystem and the guidance constraints are sum-
marized in Table 2.6.

Table 2.6: Propulsion system and guidance constraint characteristics.

Characteristic Value

Tmax 1118N
Thrust range 30% to 80% of Tmax

ρ1 356 N
ρ2 949 N
Isp 220 s

Fuel (approach phase) 100 kg
Max. thrust angle 45°
Glide slope angle 40°

Velocity magnitude slope 65°

The initial and final conditions for the landing approach phase start are given in Table
2.7 along with other necessary starting parameters. The initial navigation uncertainties
will be inherited by the final state in the main braking phase (Section 1.7). To get an
estimate for realistic navigation uncertainty values at the start of approach operations
for the EnEx lander, previous lunar landing studies [78, 92, 94, 95] with similar landing
requirements and navigation function operations were referred to. The nominal position
is selected somewhat arbitrarily, so that the lander starts at a range of ∼2 km from the
landing target, just as the lidar comes within range of the surface, which marks the start
of the approach phase. The initial velocity is approximated based on the fact that to
null all velocity relative to the surface of Enceladus over the plume sources, an impulsive
landing maneuver of 180m/s is necessary (Section 1.3). Based on that number, it can
be assumed that most of that ∆V is performed during the main braking phase, with
∼ 30 m/s leftover at approach phase start. Similar nominal position and velocity values
at approach phase start are also given e.g. in [96]. The final conditions are dictated by
the landing requirements (Section 1.5).



58 CHAPTER 2. AUTONOMOUS LANDING ON ENCELADUS

Table 2.7: Initial and final (target) navigation state and other conditions for the EnEx lander

Initial parameters
(DCA frame15)

Nominal value Uncertainty
(3σ)

Comment

Init. lander position,
m

[1000, 0, 1500]> [100, 100, 100]> Worst case com-
bination of values
from [92] and [94]

Init. lander velocity,
m/s

[−20, 0,−20]> [1, 1, 2]> see above

Init. plume source po-
sition, m

[0, 0, 0]> [10, 10, 10]>

Final lander position,
m

[0, 0, 20]> < [1, 1, 1]> Uncert. relative to
the plume source
and local hazards

Final lander velocity,
m/s

[0, 0, 0]> [0.25, 0.25, 0.25]> Uncert. of [94] di-
vided by four (see
text)

Lander dry mass, kg 2000 - [38]
Lander wet mass, kg 2100 - [38]
Enceladus grav. con-
stant, m/s2

0.113 -

Figure 2.21: Baseline concept for landing operations for the EnEx lander (adapted from [96])
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Based on the operational considerations for each GN&C function as described in the
previous sections, and the operational sequences of similar missions [96, 92], a combined
concept for the approach phase operations can be given, integrating all the functions
described in this chapter. The operations concept is further illustrated in Figure 2.21.

1. Approach Gate to High Gate

a) At approach gate (AG), the landing site comes in view of the sensors and
is within range of the lidar (∼ 2 km range from the landing site). An optical
camera navigation measurement of a-priori known points is used for a significant
reduction in the lander’s navigation state uncertainty. A-priori known points
are observed at set times down to a minimum altitude, after which no a-priori
known features are recognizable to the lander cameras. Using the improved
navigation knowledge, the gimbaled sensor set can be pointed to the nominal
landing site.

b) Based on this navigational uncertainty reduction, a new corrective guidance
trajectory is calculated, from the newly estimated lander position to the nom-
inal landing site. A large scale divert maneuver might be necessary, depending
on the lander position accuracy before AG.

2. HDA High Gate to HDA Low Gate

a) The first HDA measurement is taken at HDA High Gate (∼ 1 km range from
landing site). An HDA assessment is performed and after it is completed 5
seconds later, a new landing site is possibly selected. A few more (4) HDA
measurements are taken at set times so that increasingly higher resolution
HDA maps are produced. Each time a new landing site is selected, the sensor
set turns on its gimbal to point to the new landing site.

b) From the lidar measurement, the navigation function can define a new hazard
frame. The lander navigation state is then estimated in this new hazard frame.
If necessary, a thermal camera observes the plume source and localizes it on
the new hazard frame, based on the EKF-SLAM formulation. As the thermal
camera has a wide FOV, the plume source will be observable for almost the
entire landing down to TG. If a thermal camera is not used, the position and
uncertainty of the plume source on the hazard frame will be estimated based
on its position and uncertainty on the world frame, plus the last lander position
uncertainty value on the world frame, before the switch to the hazard frame.
No more absolute camera navigation measurements are going to be taken after
the frame switch to the hazard frame.

c) Each time a re-targeting is commanded by HDA, guidance calculates a new
trajectory to the new landing site. As the overall landing area is less than 100
m across, all diverts are expected to be small and any landing site within this
area is assumed to be reachable by the lander.

3. HDA Low Gate to Terminal Gate

a) At HDA Low Gate (LG), the last HDA measurement is taken, the final re-
targeting maneuver can take place and the final guidance trajectory can be
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calculated.

b) The lander follows the guidance trajectory to Terminal Gate (TG) where the
approach phase terminates with the lander having reached a position of 20 m
above a safe target landing site having a navigation state accuracy within the
requirements.

4. Terminal Descent

a) The lander can then perform the Terminal Descent, either by free falling to the
surface, or being gently lowered by a sky crane, depending on the design of the
mission (Section 1.5).
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Chapter 3

The Landing Simulation Tool

A simulation tool was put together implementing the functions described in the previous
chapter, to achieve the goals, and respecting the assumptions and simplifications, de-
scribed in Section 1.8. The tool was written in Matlab based on the elements discussed
in Section 3.8, and is provisionally called the LandingSim tool.

3.1 Top Level Architecture

The tool comprises several simulation blocks, roughly corresponding to the top-level
GN&C functions in Figure 1.11. The top level tool architecture is shown in Figure 3.1.

In a general description, the Sensor block senses elements of the lander and landing
environment. Information from this sensing is passed on to the Navigation block that
can estimate the lander navigation state and, if needed, the location of a plume source.
Sensing information is also forwarded to the Hazard Detection and Avoidance (HDA)
block that assesses the safety and proximity to a plume source of the sensed terrain. If
an overall better landing site than the current is found in the HDA block, a re-target
to this new site is commanded. The Guidance block will then estimate a viable landing
trajectory, starting from the Navigation-estimated current lander position to the new
HDA-commanded landing site. The thrust profile generated by Guidance will be applied
on a point mass lander dynamics model along with the Enceladus gravitational force,
and the updated position of the lander for the new simulation step will be given. The
combined accelerations applied on the lander will be then forwarded to the navigation
block thus closing the loop.

Figure 3.2 shows the representation of all the relevant elements in the tool. In more
detail, the tool implements a 3 degrees-of-freedom (3-DOF) model, with a thrust ac-
celeration vector applied on the point mass lander. Another unit vector represents the
pointing direction for all sensors that are assumed to be on a gimbaled platform that
can point freely. Each sensor has its own FOV and pixel count. A Digital Terrain Model
(DTM) of the landing terrain can be input. The plume source is placed on the DTM,
and a higher resolution area is created around it, further populated by obstacles. Sets of
both a-priori known and a-priori unknown landmarks are interspersed randomly on the
terrain. Terrain additional illumination, snow, and temperature layers can be generated.
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The navigation function also tracks the estimated position of the lander.

Sensing

Navigation

HDA Guidance 

Lander 
dynamics

New 
landing
target

Thrust
profile

Lander
nav. state

Accelerations

Landing 
environment

Gravity 
accel.

Figure 3.1: Top-level architecture of the LandingSim tool, comprising each of the major
simulation blocks. The entire terrain is ∼ 500 m across, and the detailed area in around the
plume source is ∼ 125 m across

Lander real position

Thrust vector

Lander estimated position

Camera FOV

Lidar FOV

Landmarks 
(a-priori known)

Landmarks 
(a-priori unknown)

Terrain model

Plume source

Figure 3.2: Illustration of all the relevant entities in the LandingSim tool

In the following each of the major simulation blocks will be described in detail.
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3.2 Landing environment block

An abstracted version of the landing environment is simulated in the Landing environ-
ment block, based on the information given in Sec. 1.4. A central role in this block is
played by the Digital Terrain Model (DTM) of the landing terrain. DTMs are a common
format for 3D models of terrains. In the LandingSim tool, the input DTM is simply a
list of terrain points expressed in the world frame (Appendix A.1). To generate a sur-
face based on these points, Delaunay triangulation is applied [100]. A set of triangular
“faces” is then generated, connecting the terrain model points, or “vertices” in threes. If
the input terrain resolution is deemed too low, the tool has the capability to artificially
increase this density by interpolating additional points on the current surface faces and
noising their altitude values [101]. The magnitude of that noise is defined by a rough-
ness parameter, representing natural terrain undulation in larger scales and small-scale
roughness features in smaller scales.

The terrain input here is an Enceladus DTM16 as seen in Figure 1.7 [18], with a GSD of
∼ 100 m. A ∼ 500 m part of the terrain was chosen and its resolution was increased as
mentioned above. A point representing the plume source was placed in its center, and
an area ∼ 125 m across around it was further refined to a GSD of ∼ 10 cm.

The next topography feature added is obstacles. A set number of obstacles can be
randomly distributed on a terrain model, each obstacle described as a 2D Gaussian
”bump”:

hi(x,y) = hi,maxexp

(
− x2 + y2

2h2
i,max

)
(3.1)

where hi(x,y) is the height of each point (x,y) comprising the ith obstacle (starting from
the center of the obstacle), hi,max ∈ [0.2, 10] m is the maximum height of the ith obstacle,
the limits being set between ∼half the lander roughness survivability requirement of
50cm and an arbitrary maximum reasonable height for an obstacle. As seen in the
above equation, it is assumed that the width and height are equal for a given obstacle.

To simulate the snow-covered SPT surface, parts of the terrain can be designated as
covered by the fine plume ejecta. It is assumed that the probability that the ith face of
the DTM, having a slope of αi will be covered by snow follows the distribution

psnow,i(αi;µsnow, σsnow) = 1−D(αi;µsnow, σsnow) (3.2)

with D(α;µsnow, σsnow) =
1

2

[
1 + erf

(
α− µsnow
σsnow

√
2

)]
(3.3)

where D(x;µ, σ) is the normal cumulative distribution function, erf is the Gauss error
function, and µsnow and σsnow are values used to shape the snow cover distribution
function. In particular, µsnow represents a ”cut-off” slope value for snow cover below
which faces will be nominally snow covered and above which they will not be. In turn,
σsnow represents the 1σ uncertainty in that cut-off value. Here the rough assumption is

16Kindly provided by B. Giese of DLR-Cologne
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made for µsnow = 20° and σsnow = 10°. The resulting distribution is plotted in Figure
3.3. Still, a few randomly sized and distributed no-snow areas can be defined. In those
areas there is no snow present, irrespective of the local slope17.
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Figure 3.3: Probability of snow cover vs face slope (µsnow = 20° and σsnow = 10°)

Interesting points can be placed on the terrain model, first by defining their (x,y) coor-
dinates and then by projecting them on the corresponding terrain face. The following
interesting point groups are placed on the model:

� Plume source: A single plume source is placed on a selected point along the
canyon bottom as discussed above.

� A-priori known landmarks: Points whose locations are assumed to be known
before the start of the landing, along with associated uncertainties. These land-
marks are distinctive enough for them to be identifiable as features in a camera
image, as discussed in Sections 2.2.4 and 2.2.5 and then used for camera naviga-
tion. A further sub-grouping of these points can be between optical and thermal
landmarks. The only type of thermal a-priori known landmark are the plume
sources.

� A-priori unknown landmarks: Points that represent landmarks distinctive
enough to be identifiable in sensor images, but whose position is a-priori unknown.
Again, these point group can be sub-divided into optical and thermal landmarks.
For the thermal camera, these points simply represent identifiable landmarks; it
is assumed that no a-priori unknown plume sources exist18.

An illumination layer can be added to the terrain model, by calculating the angle be-
tween each and the Sun direction, given in elevation and azimuth over the terrain. Faces
facing away from the Sun are not illuminated. Shadows cast by the terrain are how-
ever not implemented due to the complexity of the corresponding algorithms and their
computational cost [102], considering the limited added value to the model.

17The equation given here for the likelihood of a terrain model face being covered by snow is based
purely on the author’s intuition. In future work, a more accurate equation should be found to describe
the snow cover of a given terrain.

18This is an important assumption for the design of the landing GN&C. The investigation of this
case will be left for future work
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The surface temperature of the terrain can also be estimated. The plume sources are
a significant source of heat and produce local hot spots around them. The ice and
snow comprising the local landscape possess distinct thermal properties, and thus can
have slightly different temperatures (Section 1.4). In the tool, the ambient ice and
plume source temperatures are set to Tamb = 100K and TPlS = 180K respectively.
The temperature distribution in the material around a plume source follows a Gaussian
distribution with a maximum around the plume source (e.g. 180K) and a standard
deviation to define the “spread” of the hot spot of σPLS = 30m 19. To account for
the lower thermal inertia of the very fine, powder-like snow, a factor by which the
snow temperature is lowered is simply assigned, e.g. by Tmod,snow = 10 K). Due to the
distance from the Sun and the polar latitudes, the contribution of Solar heat to the
surface temperature can be ignored.

3.3 Sensor block

The main function of the Sensor block is to provide simulated interoceptive and exte-
roceptive measurements to be later used as input by the Navigation and HDA blocks.
The structure of the Sensor block is shown in Figure 3.4.
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A-priori unknown

landmarks
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TO HDA:
 Lidar enhanced

DTM

Sensors

Figure 3.4: Architecture of the Sensor simulation block.

To simulate INS accelerometer measurements, the accelerations acting on the lander due
to propulsive thrust and gravitational force, considered ideal, are added together and
input into an accelerometer model. The INS accelerometer measurements are in turn
noised (Section 2.2.3.1).

19This process can be seen as the inverse of that described in Section 2.3.1 for the generation of
Tbackgr
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For the purposes of this work a perfect knowledge of the lander and target positions for
exteroceptive sensor pointing purposes is assumed.

To simulate camera measurements for navigation purposes, a simplified version of the
feature detection method described in Section 2.2.4 is used: the abstracted optical and
thermal camera landmarks distributed on the surface of the terrain model are pro-
jected on the focal plane of the corresponding camera as described in Section 2.2.3.2.
The resulting pixel measurement is the output camera measurement. Instead of a fea-
ture descriptor, the pixel measurement is accompanied by a unique numerical landmark
identifier. Projected measurements that are outside the field-of-view of a camera are
rejected.

To simulate lidar for navigation purposes, a number of beams, usually significantly less
than the full beam count available, are back-projected from the lidar sensor, and their
intersection points to the impact points are noised for corresponding range and pointing
errors. The range to each point is then the lidar navigation measurement.

To simulate a lidar measurement for HDA purposes, the same process is performed for
all lidar beams, resulting in a dense aligned grid of points. Due to the computational
complexity of the above method and the resulting long execution times, a second, simpler
method for lidar measurement simulation was also implemented. In this method, the
points of the DTM that are inside the FOV of the lidar sensor are extracted, and are
then down-sampled to a resolution according to the expected ground sample distance
for the current range from the target (see Figure 2.17). The elevation of this point cloud
is noised as needed. As will be seen later, this less accurate method will be adequate
for generating input for the HDA function where a large number of points are involved,
while the first method will be more useful to the Navigation function where accuracy is
necessary and a smaller number of lidar rays are used. The noised lidar point cloud in
both cases is given in the lidar sensor as well as the world frame.

As discussed in Section 2.3.1, information from camera sensors is co-registered with lidar
clouds, to produce an enhanced lidar cloud to be used as input to HDA. To simulate
this enhanced lidar cloud, illumination, thermal, and texture layers are added to the
original point cloud produced by a lidar measurement. The illumination layer is created
as described above for the landing terrain DTM. The lidar cloud is triangulated, and
an illumination intensity value is added to a face according to the angle it forms with
the Sun direction. To create the thermal layer, the temperature layer of the original
DTM is sampled at the points of the lidar measurement, and the sensed temperatures
are assigned to each lidar point. A similar process is used to simulate the texture layer.
An enhanced lidar cloud with three additional information layers can thus be forwarded
to the HDA block.

3.4 Navigation block

The Navigation block has the purpose to estimate the navigation state of the lander and,
if needed, of the plume source. In the core of the Navigation block lies the EKF-SLAM
approach described in Section 2.2.2. The architecture of the Navigation block is shown
in Figure 3.5.
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INS accelerometer readings are used as input to the state propagation function in the
prediction step. Pixel measurements from camera sensors, as described above, represent
detected camera features. An equally simplified process is used to attempt to match
features from the current step with features from the previous step, whereby camera pixel
measurements with the same numerical landmark identifier are assigned as matched,
and the respective pixel measurement can be forwarded as input to the EKF-SLAM
correction step. Unmatched features will go through the landmark initialization process.
Each class of navigation-related points listed in Section 3.2 is assigned a designated part
of the SLAM map for easier tracking.

Lidar measurements are primarily used to define a new, hazard relative frame, instead
of being directly integrated to the EKF-SLAM approach (Section 2.2.3.3). To facilitate
the current work, it is assumed that the new hazard frame is defined at the first lidar
measurement, and that consecutive lidar measurements are made in that same frame.
To be consistent with this approach, a-priori known points are not used again after
that point. It is also assumed that the thermal camera measures the plume source hot
spot in tandem with the lidar measurement, so that the plume source landmark can be
maintained in the SLAM map.
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meas.

FROM SENSORS: 
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Figure 3.5: Architecture of the Navigation simulation block.

3.5 Hazard detection and avoidance block

The Hazard Detection and Avoidance block will evaluate the input co-registered sensor
information for landing safety and proximity to the plume source and will provide a new
landing target if the current one is found to be unsuitable. The process described in
Section 2.3.3.1 was implemented and is summarized in Figure 3.6.

Sensor safety maps are input to the fuzzy safety reasoning step20. The resulting fused

20A note on obstacle detection: in this implementation, the K-means algorithm detects the illumi-
nated faces of the obstacles only. To simplify that process, if the face of a particular obstacle is detected,
then the entire obstacle is marked as detected.
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safety map is fed to the next fuzzy landing reasoning step, that will calculate the overall
“goodness” of the landing map, also considering proximity to a plume source. The
proximity map simply measures the distance of each point of the HDA map to a plume
source. The plume source location and the size of the no-go area around it can be fixed,
or they can be informed by the plume source location and uncertainty estimated by the
Navigation block. In this work however, the no-go area will be assumed fixed.

For the fuzzy spatial reasoning step, the landing goodness map is ”blurred” by averaging
the map values using a moving average filter of the size of a few lander footprints [107].
To get the temporal score of the map, the current landing goodness map is compared
with the one from the previous HDA assessment. For the two maps to be comparable,
the previous map (larger and less dense) is interpolated on the current map (smaller
and denser). The two can then be compared point to point.

The final step in the HDA block, is the selection of a new target point. This takes
place only if the landing score of the currently selected landing target falls below a set
threshold. The highest scoring point from the final landing goodness map is then set as
the new landing target.
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Figure 3.6: Architecture of the HDA simulation block. Gray boxes represent the Fuzzy
reasoning blocks. The location of the plume source can be assumed to be known, or it can be
given by the navigation function in real-time
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3.6 Guidance block

The Guidance block uses a lander start state and an end state to calculate a viable
trajectory and a thrust arc between the two. The general architecture of the Guidance
simulation block is shown in Figure 3.7.
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Figure 3.7: Architecture of the Guidance simulation block.

Several constraints must be satisfied: the calculated trajectory must remain within the
glide slope cone. The angle between the local vertical and the calculated thrust vector
must remain within the thrust angle constraint. The velocity magnitude must remain
within its varying limits. Finally, the thrust magnitude must remain within set upper
and lower limits.

The start and end states, the constraints and the lander dynamics are re-formulated
in the G-FOLD problem formulation as given in Section 2.4.2. This convex optimal
landing under constraints optimization problem is input into an optimal control problem
solver. The solver outputs an optimal trajectory and thrust arc respecting the input
constraints. Other useful parameters given is a “solution found” flag, the calculated
propellant expenditure over time, etc.

The output thrust arc can then be fed to the dynamics block to be applied by the thrust
actuators during landing, until a new guidance trajectory is calculated (e.g. after a
re-targeting or other triggering event).

3.7 Lander Dynamics block

This block implements a point mass dynamic lander model, combining the gravitational
and thrust accelerations from the environment and guidance blocks respectively. The
accelerations are then added and forwarded to the INS accelerometer in the Navigation
block, thus closing the loop of the simulation.

3.8 Software used

The LandingSim tool was entirely written in Matlab. Details will be briefly given con-
cerning the specific toolboxes and functions used per block:
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� Environment block: In-built Matlab graphics functions where used for the
graphics-related processing in this block.

� Sensors and Navigation: A large part of the two blocks was put together based
on the open-source Matlab SLAM-Toolbox [46, 53, 50] available for download at
[103]. The EKF-SLAM approach used here was inspired by the SLAM-toolbox and
its accompanying literature, and several lower level functions from that toolbox
where used. Basic examples and lower level functions from the toolbox were heavily
modified and combined into the present implementation.

� Hazard Detection and Avoidance: The Matlab in-built Fuzzy Logic Toolbox
was extensively used for all fuzzy logic steps in this block [77, 104].

� Guidance: The G-FOLD convex optimization problem was implemented in the
FALCON optimal control solver created by the Institute of Flight System Dynam-
ics of the Munich Technical University (TUM), freely available for download at
[105]. Another aerospace control problem solved with FALCON can be found e.g.
in [106].
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Chapter 4

Simulation Results

The performance and design results for the three central functions are presented in this
chapter. Each individual function is first demonstrated and validated to work, and then
its performance is assessed. Observations and modification proposals are made for each
function. Finally, a combined simulation is performed.

The following types of analyses have been used in this work, applied per case as men-
tioned in the following sections:

� Linear covariance analysis: The complicated non-linear dynamics of a system
are linearized and a state covariance matrix of the monitored parameters is carried
forward during the run and updated and corrected at each appropriate simulation
step [97, 98]. As this method involves an explicit formulation of the system un-
certainties, a single simulation run can give a quick estimation of their evolution
in time. However, more time should be dedicated in setting it up and it is less
accurate than statistical methods.

� Monte Carlo analysis: A model of the system is simulated hundreds or thou-
sands of times, while varying the uncertain initial conditions and system parame-
ters. The results from the simulations are analyzed statistically. A Monte Carlo
simulation can be useful for complex and non-linear systems where it is harder
to know the underlying statistics, and potentially easier to set up. It is demands
however long simulation run-times and a lot of computational resources.

� Worst case analysis: The worst-case values of the uncertain conditions or design
parameters for a system are found, and a simulation of the system is performed
with these values. It is then assumed that if the system performs successfully
under these conditions, it will then be able to deal with all other initial conditions
[99].

4.1 Navigation

In this section, the LandingSim tool will be used to design and investigate the perfor-
mance of the navigation function.
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4.1.1 Description of elements

As seen in Sections 2.2 and 3.4, the navigation function is built out of the following
blocks:

� Nav. state update using a simple accelerometer model,

� Absolute camera navigation by feature matching to a-priori known optical and
thermal (plume sources) landmarks for each respective camera type,

� Relative camera navigation by feature matching of detected a-priori unknown
landmarks for each respective camera type,

� Lidar navigation by range estimation to multiple points on the surface, and

� Plume source mapping to improve the estimation of the location of the plume
source, and to reduce its uncertainty to within acceptable values (if necessary).

The navigation function is built on the EKF-SLAM framework (Section 2.2.2). In short,
the INS accelerometer predicts the navigation state of the lander, and the methods above
are applied on the input of the relevant exteroceptive sensor to correct the navigation
state of the lander, as well as of any observed landmarks. A SLAM map vector contains
the navigation state of the lander and the landmarks, and the corresponding SLAM
covariance matrix contains the variances and covariances of these vector elements.

For the purpose of testing and validating the Navigation function in this section and
the HDA function in the following, a simple reference trajectory was generated by the
guidance function as given in Table 4.10 below.

4.1.2 Validation and demonstration

To validate each of the navigation methods above, Monte Carlo runs were performed with
the characteristics given in Table 4.1. For each run the navigation error was tracked
during simulation, i.e. the difference between the real navigation state of the lander
and that estimated by the navigation function. The navigation errors from each run
were plotted together, along with the 3σ deviations of each navigation state element.
By definition, the navigation errors should remain within the bounds set by the 3σ
deviations ∼ 97% of the time21. The navigation function, based on the principle of
covariance analysis, can thus be validated using Monte Carlo simulations.

The simulation parameters common to all validation runs, and particular to each, are
given in Table 4.1. Other relevant parameters are as given in Table 2.5. It must be
noted here that the number of iterations in the Monte Carlo simulations (50) are not
enough to produce a statistically significant validation, but is sufficient to demonstrate
the proper functionality of the navigation function.

21In case a spread is observed in the estimated covariances (red dotted lines), this is due to the
random selection of points to observe at each iteration.
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Table 4.1: Navigation simulation parameters for validation. Elements of the first part of the
table are common for all runs. Elements of the second part are relevant to each method being
validated.

Common validation parameters

Initial lander state and uncer-
tainty

Same as Table 2.7

Number of Monte Carlo itera-
tions

50

INS accel. sampling frequency 100 Hz
INS accel. meas. noise (1σ) 10−2 m/s2

Abs. opt. nav. validation parameters

Optical camera sampling pe-
riod

10 s

Number of points tracked 10

Rel. nav. validation parameters

Optical camera sampling pe-
riod

5 s

Number of points tracked 10

Lidar parameters

Number of measurements 4
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Figure 4.1: Validation simulation runs for the INS accelerometer Position and velocity errors
of the MC runs are plotted in blue, while the 3σ covariances are given in red.
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Figure 4.2: Validation simulation runs for absolute optical navigation. Position and velocity
errors of the MC runs are plotted in blue, while the 3σ covariances are given in red.
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Figure 4.3: Position error of a-priori known landmarks during absolute optical navigation.
Each landmark of the 10 tracked is represented by a different colored line.

Due to the large changes in scale in navigation error and uncertainty, in particular for
the correction validation, the following plots are made in semi-logarithmic axes.

The validation results for the INS accelerometer are seen in Figure 4.1. The navigation
state is updated according to the INS accelerometer equations at the given measure-
ment rate, with no corrective measurements made. Due to the high accelerometer noise
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assigned here, a significant drift in the covariance of all three components of the lan-
der position. Almost no change is observed for the velocity covariances. All Monte
Carlo-generated position and velocity errors are well within the 3σ covariance lines.

Next, the absolute optical camera navigation method was validated, with the results
shown in Figure 4.2. The navigation state was being constantly updated as in the above
case, but a correction step was applied every 10 s with measurements from an optical
camera, observing 10 a-priori known landmarks at each measurement. The nav. state
was then corrected through the EKF-SLAM formulation. It is assumed that 10 known
landmarks can be found in every measurement of the optical camera, regardless of the
lander altitude over the terrain (see Section 2.2.5)

A significant reduction both the position and the velocity uncertainties of the navigation
state can be observed, mostly for the initial measurements and less so for the following
ones. A more marked reduction is observed in the cross-range component, where little to
no accelerations are applied (the nominal trajectory has no cross-range component). For
some MC runs, the navigation error becomes larger than the corresponding covariance,
something to be expected based on the fact that a 3σ covariance value covers ∼ 97%
of the cases. This increase in reduction for this component will be a feature of all the
following validation runs.

It is seen in Figure 4.2 and other similar plots for other camera navigation cases in this
section, that some covariance curves remain constant after a given point. This can be
explained by the lack of any observable landmarks in the FOV of the camera. It is
further seen that for the final part of the simulation, the estimated error consistently
exceeds the one calculated by the EKF-SLAM. This discrepancy should be investigated
in the future. However, it does not affect the performance of the current system, as
absolute optical navigation is only used early in operations, where this effect is absent.

Figure 4.3 illustrates the evolution of the uncertainty in position that the tracked a-
priori known landmarks have in the EKF-SLAM map. As seen, the uncertainty for each
landmark is initialized at high, practically ”infinite” values and is corrected with each
observation. When tracked landmarks are lost from camera view, new ones take the
place in the SLAM map, initialized with a high uncertainty (therefore the jumps in the
plot). Overall, the lander and landmark position uncertainty are continually reduced
with observation, with uncertainty tending towards zero.

Validation results for relative camera navigation, valid for both optical and thermal
cameras, are seen in Figure 4.4. As discussed in Section 2.2.6, this method reduces the
uncertainties in velocity, and at least negates the increase in position uncertainty. Figure
4.5 demonstrates the evolution of the position deviation of the tracked a-priori unknown
landmarks. As expected, their uncertainty converges to the uncertainty of the lander
position, as this is the minimum achievable, absent any other navigation methods.

Figure 4.6 illustrates the performance of navigation by observation of three a-priori
known plume sources by the thermal camera. It is reminded here that the blurriness of
detecting a hot spot in a thermal image is taken into account by setting the pixel error
for the thermal camera to 10. It is seen, that even with three observed plume sources
at all times, something that is not likely operationally due to the separation between
plume sources on the SPT, the navigation performance is not sufficient. In addition, in
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Figure 4.7, it is seen that the plume source itself is not adequately localized, due to the
persistent high uncertainty in lander position.
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Figure 4.4: Validation simulation runs for relative camera navigation. Position and velocity
errors of the MC runs are plotted in blue, while the 3σ covariances are given in red.
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Figure 4.5: Position error of a-priori unknown landmarks during relative optical navigation.
Each landmark of the 10 tracked is represented by a different colored line. Towards the end
of the run, no individual landmark remains in the camera FOV for enough measurements to
reduce its uncertainty.
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Figure 4.6: Validation simulation runs for absolute thermal navigation. Position and velocity
errors of the MC runs are plotted in blue, while the 3σ covariances are given in red.
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Figure 4.7: Position error of the a-priori known plume source landmark during absolute
thermal navigation. The plume source is always in the thermal camera FOV, as it points
towards it at all times.
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Figure 4.8: Validation simulation runs for combined camera navigation. Position and velocity
errors of the MC runs are plotted in blue, while the 3σ covariances are given in red
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Figure 4.9: Position error of each landmark type (left to right: plume source, optical a-priori
known, a-priori unknown).

Figures 4.8 and 4.9 show the evolution of lander and plume source navigation elements
for a run combining all above camera navigation methods. The uncertainties of the navi-
gation elements of the lander, plume source, and a-priori known and unknown landmarks
are reduced progressively in concert.

For lidar navigation, four measurements are performed at set times, using 10× 10 lidar
beams. An impressive improvement is observed, even when using only a small proportion
of the available number of beams (Figure 4.10)22.

22This validation was performed on a different trajectory and with less iterations, but the validity of
the results remains unaffected.
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Figure 4.10: Validation simulation runs for lidar navigation. Position and velocity errors of
the MC runs are plotted in blue, while the 3σ covariances are given in red.

4.1.3 Baseline navigation system and operations

Using the building blocks above, a navigation system and operation concept will be
designed to reduce the initial lander navigation state and plume source position un-
certainties to within the requirements (Section 1.5). The navigation requirements are
summarized in Table 4.2.

Uncertainty must be first decreased in the world frame so that the assumption of a
small difference between the world and hazard frame holds. Lidar can then further
reduce uncertainties to the sub-meter accuracies needed for hazard avoidance. No more
camera measurements will be taken in the new hazard frame, so the connection between
the two frames is not necessary.

Absolute optical camera navigation will be first investigated. As mentioned in Section
2.2.5, there is a minimum altitude the optical camera can be used for absolute navigation
and that altitude depends on the quality of the orbital reconnaissance before landing.
Here it is assumed that that minimum altitude is at AG, for a range to the plume source
of ∼ 1800 m, corresponding according to Figure 2.17 to a GSD of ∼ 1.6m. This is
a reasonable value compared to the 1-2m GSD expected as discussed in Section 2.2.5.
Only one absolute camera measurement is to be performed then, taking place at AG.

Although lidar does a good job in reducing velocity uncertainties, and the INS ac-
celerometer noise is low, relative navigation will still be performed to give robustness to
the velocity estimation.



80 CHAPTER 4. SIMULATION RESULTS

Two different broad landing scenarios can be identified for landing on the SPT. They
are defined here, with their details given in Table 4.3:

� Nominal operations: The landing, defined as nominal, will take place at the
height of Enceladan south summer, with good illumination conditions for all points
of the landing terrain, with only part of the canyon bottom potentially in darkness.
Absolute optical navigation can be performed at AG. A thermal camera is used
for plume source tracking, and the optical camera is further used for relative
navigation. Lidar navigation will start at at HDA HG (range = 1100 m) for sub-
meter hazard frame accuracy. In case the plume source is not tracked but already
known, no thermal tracking of it is necessary.

� Landing in darkness: The landing will take place during Enceladan winter,
assuming no illumination. No absolute or relative navigation will be possible,
even for some time into the braking phase, well before AG. This means that the
lander navigation uncertainty will be increased (here assumed ×2). Only the lidar
and the thermal camera can then be used for navigation. Because of this, it will
be desirable to perform lidar navigation as soon as possible (assumed at a range of
∼ 1500 m) to localize the lander in the hazard frame. As the camera is co-aligned
with the lidar, the thermal imaged can be co-registered on the lidar cloud, and
the plume source can be localized in the hazard frame. Everything relevant to the
mission is then defined in the hazard frame, and the lander can proceed navigating
with the lidar and thermal camera

The simulation results for the two scenarios are presented in Figure 4.11, where the
magnitudes of the 3σ deviations are given for the lander position and velocity, and the
plume source position estimations. The value of the mission requirement for each is also
shown. It is seen that both scenarios have similar profiles in all three elements. Initially,
a reduction in uncertainty due to the optical absolute navigation measurement takes
place in the first scenario, and due to the first lidar measurement for the second scenario.
The position uncertainties are gradually reduced, mainly due to the contribution of the
lidar, and end up within the accuracy requirements. The uncertainties in velocity are
more easily and quickly reduced. The uncertainties in the location of the plume are also
slowly reduced down to the required levels. Both scenarios satisfy the landing position
and velocity accuracy requirements, with the plume source accuracy requirement only
marginally satisfied.

Table 4.2: Navigation function performance requirements.

Requirement Value

Distance to plume source
(3σ)

between 5m and 50m

Lander Position accuracy
(3σ, hazard frame)

< 1m

Lander Velocity accuracy
(3σ, any component)

0.25m/s

Plume source position ac-
curacy (3σ)

10m
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Table 4.3: Nominal navigation parameters and requirements fulfillment. Initial and final/-
target lander conditions are as given in the end of Chapter 2

Parameter Nominal Landing in
darkness

Initial lander nav. uncertainties 1× of original 2× of original

Optical camera nav. parameters

Absolute nav. measurement at AG -
Number of points tracked for abs.
nav.

10 -

Relative nav. measurements every 1 s -
Number of points tracked for rel.
nav.

10 -

Thermal camera nav. parameters

Relative nav. measurements - every 1 s
Number of points tracked for rel.
nav.

- 10

Plume source tracking measure-
ment

every 5 s every 5 s

Lidar nav. parameters

Lidar nav. measurements, at
ranges to target

[1100, 500, 200,
100] m

[1500, 1100, 500,
200, 100] m

An interesting effect is observed in the plume source position uncertainty plot, where
the uncertainty remains fixed towards the end of operations. As the plume source for
the reference scenario used here is always the pointing target for the sensor set, this is
not to be attributed to the plume source going out of FOV, but the opposite: the plume
source is in the center of the FOV, and as the lander approaches the target almost in
a straight line towards the end of operations, there is almost no change in the pixel
coordinates of the plume source. Its position estimate is therefore not improved, and
the position uncertainty either.

The nominal scenario will be used in all the following analyses. It is improbable, due
to several considerations, that landing will be attempted in the darkness of winter. Due
to the long duration of winter on Enceladus however (7-8 Earth years, Section 1.4) it
would be good to have the capability to be programmatically flexible.

4.1.4 Navigation sensitivity analysis

A sensitivity analysis will be performed to determine how system and operational pa-
rameters affect the navigation system performance. The parameters investigated for
sensitivity are listed in Table 4.4. The values of critical parameters in the nominal
scenario given above were varied and then the effect on performance was investigated.
These effects were first visualized by jointly plotting the uncertainty magnitudes of lan-
der position and velocity and of the plume source for all variation values. The effects
were also given in the so-called sensitivity curves, where the values of the performance
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Figure 4.11: Performance profiles for the ”nominal”(upper) and ”landing in darkness”(lower)
landing scenarios: magnitude of deviation in lander position and velocity, and plume source
position (left to right). The respective requirements are marked with dotted red lines.

metrics where plotted against the varied values.

The magnitudes of the 3σ deviations fore lander position and velocity, and the plume
source position are used in the following as performance metrics. The sensitivity anal-
ysis results are given in two types of plots in respect with these metrics. The varying
parameters are given as blue dots on the sensitivity curves. Profile plots show the evo-
lution of the metrics over time for each of these values of the varying parameters, and
sensitivity curve plots plot the value of the varying parameters against the final values of
the three navigation performance metrics at TG. The sensitivity profiles are plotted in
shades of blue, with lighter shades representing higher values of the investigated varying
parameter. The respective requirements as given in Table 4.2 are represented as dotted
red horizontal lines.

The fulfillment of requirements at TG is important, but consistent performance during
the entire approach phase is beneficial and adds robustness - both sets of plots are
therefore indicative of performance.

First, sensitivity analysis will be performed to investigate system parameters and noises.

Figure 4.12 shows the sensitivity to the INS accelerometer noise. There a small variation
in the profiles in position and velocity, especially in the beginning. Towards the end there
is however no difference between the curves. The accuracy in plume source position
seems to increase with low noise, however as can be seen in the respective profile plot,
this result seems to be an artifact, due to the jump in the plume source certainty, that
is assumed to be random. Similar behavior will be observed in some of the runs below
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Table 4.4: Varying parameters in navigation sensitivity analysis. Initial and final/target
lander conditions and sensor parameters are given in the end of Chapter 2.

System parameters

INS accelerometer noise [0.1, 1, 10, 100]× nominal
Lidar ranging noise [0.1, 0.5, 1, 2, 5]× nominal
Lidar pointing error [0.1, 0.5, 1, 2, 5]× nominal
Lidar beam number [2× 2, 3× 3, 5× 5, 10× 10, 20× 20
Optical cam. pixel error [0.1, 0.5, 1, 2, 5]× nominal
Thermal cam. pixel error [0.1, 0.5, 1, 2, 5]× nominal
Number of points tracked for abs.
nav.

[3, 5, 10, 20, 30]

Number of points tracked for rel.
nav.

[3, 5, 10, 20, 30]

Operational parameters

Lander initial position uncertainty [0.1, 1, 10, 100]× nominal
Lander initial velocity uncertainty [0.1, 1, 10, 100]× nominal
INS accel. sampling frequency [10−3, 5 ∗ 10−3, 10−2, 10−1] Hz
Thermal cam. plume source tracking
every

[1, 2, 5, 10, 20] s

Optical cam. rel. nav. measurement
every

[1, 2, 5, 10, 20] s

Number of lidar nav. measurements [1, 2, 4, 6]
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Figure 4.12: INS accelerometer sensitivity - Performance profiles and sensitivity curves. The
blue lines are the 3σ deviations and the dotted red lines the respective requirements. See text
for further explanation.
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too. In those cases, the broader trends are investigated in this sensitivity curve.

Figure 4.13 shows the sensitivity of performance to the range noise levels of the lidar
beams. In the profiles, a large effect is seen for the lander position and velocity uncer-
tainties, which effect persists and is not corrected until TG. The result of that is that for
noise levels larger than 1× of the nominal, the final position uncertainty slightly exceeds
the requirements. Velocity uncertainty remains well within, and plume source position
uncertainty hover around the required values.

Figure 4.14 shows the sensitivity to the lidar pointing error. A small effect is seen in
the early stages of operations for lander position and velocity uncertainty, but there are
small effects remaining in the final values. A jump is seen in the plume source position
sensitivity curve but it’s interpreted as random as discussed above, the general trend for
the plume source position uncertainty is also not changing.

Figure 4.15 shows sensitivity to the number of lidar beams used for navigation. The
HD lidar used here (Table 2.4) has 128 × 128 beams, but only some of them are used
for navigation purposes to save computational resources. The beam values given in
the sensitivity figures’ x-axis refer to the side length of the lidar point cloud, that is
the number of beams used are (n × n). There is significant variation in the profiles
throughout the landing for position and velocity. The final position values for small
amounts of beam numbers exceed the requirements somewhat but not dramatically. In
a relaxed requirements concept, the minimum acceptable value of 4× can be used. A
larger number of beams does not increase performance. Jumps are observed in the plume
source position sensitivity plot, but it can be said that the general trend is stable.

Figure 4.16 shows sensitivity for the pointing error of the optical camera, used for
absolute navigation at AG and for relative navigation at short intervals. This analysis
corresponds to both an increased pixel error value and to a general pointing error.

A significant variation during operations is observed. An optical absolute navigation
measurement of better quality can be said to give better head-start to the following
lidar measurements. Due to the corrections from these succeeding lidar measurements,
final values are minimally sensitive for all metrics.

Figure 4.17 shows sensitivity to the pointing error of the thermal camera. Again here
pointing error is generically taken to mean pixel error and general pointing error. A dra-
matic effect is seen on plume source localization, which is logical, as an ability to better
pin-point the feature corresponding to the plume source (hot spot/maximum intensity)
means that the plume source landmark will be itself better localized in 3D space. If
values can be achieved below the nominal 10 pixel error, a significant improvement will
bring the uncertainty well under the requirement. This however might be challenging,
as it is expected that hot-spots in the camera corresponding to plume sources will not
be easy to pinpoint, meaning a high pixel error. Some sensitivity of the lander nav.
state elements is also seen during operations but none in the final conditions at TG.

Figure 4.18 shows the sensitivity to the number of points tracked for optical absolute
navigation. It can be considered as a design parameter or a metric of the quality of pre-
landing orbital reconnaissance and the number of a-priori points available for sensing.

There is a significant difference on the lander position uncertainty right after the optical
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Figure 4.13: Lidar range noise sensitivity - Performance profiles and sensitivity curves. The
blue lines are the 3σ deviations and the dotted red lines the respective requirements. See text
for further explanation.
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Figure 4.14: Lidar pointing error sensitivity - Performance profiles and sensitivity curves.
The blue lines are the 3σ deviations and the dotted red lines the respective requirements. See
text for further explanation.
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Figure 4.15: Lidar beam number sensitivity - Performance profiles and sensitivity curves.
The blue lines are the 3σ deviations and the dotted red lines the respective requirements. See
text for further explanation.
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Figure 4.16: Optical camera pointing sensitivity - Performance profiles and sensitivity curves.
The blue lines are the 3σ deviations and the dotted red lines the respective requirements. See
text for further explanation.
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Figure 4.17: Thermal camera pointing error sensitivity - Performance profiles and sensi-
tivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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Figure 4.18: Sensitivity to number of points observed for optical absolute navigation - Per-
formance profiles and sensitivity curves. The blue lines are the 3σ deviations and the dotted
red lines the respective requirements. See text for further explanation.
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absolute navigation measurement at AG, but the differences are equalized over time. The
same happens with velocity and less markedly for the plume source location uncertainty.
There is no sensitivity for final values at TG.

Figure 4.19 shows the sensitivity to the number of points tracked for optical relative
navigation. This parameter mainly effects velocity, which is seen by the small effect in
the velocity profile. Otherwise no sensitivity is observed for any of the metrics at TG.

The operational parameters will now be investigated.

Figure 4.20 shows the sensitivity to lander initial position. Lander position accuracy is
corrected to approximately the same levels for all varying values after optical absolute
navigation at AG. After that almost no variation is seen in the profiles. No sensitivity
is seen in values at TG.

Figure 4.21 shows the sensitivity to lander initial velocity. Large initial dispersions in
lander velocity are gradually corrected to coincide until the end of operations at TG.
Some variation for the lander position at first stages that is eliminated by TG. No
sensitivity for the plume source position uncertainty is observed.

Figure 4.22 shows the sensitivity to sampling frequency for the INS accelerometer. Some
sensitivity is seen for the lander position uncertainty that exceeds requirements for higher
noise levels, but not dramatically. Lander velocity uncertainty is quite sensitive but still
remains well under the requirements. Some uncertain behavior is observed for the plume
source position uncertainty but no particular trend can be said to be dominant.

Figure 4.23 shows the sensitivity to the number of lidar navigation measurements. Mea-
surements in addition to the nominal four are timed roughly equidistantly in between
them. A large effect is seen for lander position uncertainty: less measurements than the
nominal significantly exceed the requirement, and more measurements than nominal do
not add value. There is some sensitivity for velocity uncertainty but the values remain
well within requirements in any case. Uncertain behavior is seen for the plume source
position uncertainty, but no particular trend is observed.

Finally, Figure 4.24 shows the sensitivity to the measurement frequency of the thermal
camera for plume source tracking. An impressive sensitivity is observed for the plume
source position uncertainty. A higher measurement rate gives significant improvement,
even with the original relatively low pixel accuracy of the thermal camera. On the con-
trary, a lower measurement rate ”breaks” the process and results in unacceptably high
plume source position uncertainty estimates. Increasing the thermal camera measure-
ment frequency is thus potentially a resource-efficient way to increase performance in
plume source localization, in contrast e.g. with trying to decrease the thermal camera
pixel error.

4.1.5 Results summary and initial conclusions

Informative observations on the above results can now be gathered, that will be helpful
with the next design iteration of the navigation concept. In the following significant
conclusions are summarized in bullet form, for easier reference

� Considering the lidar, the range noise has some effect on performance throughout



4.1. NAVIGATION 89

0 20 40 60 80 100

Time (s)

10-1

100

101

102

P
o

s
. 

e
rr

o
r 

m
a

g
n

. 
(m

)

Lander position error 

0 20 40 60 80 100

Time (s)

10-2

10-1

100

V
e

l.
 e

rr
o

r 
m

a
g

n
. 

(m
/s

)

Lander velocity error 

0 20 40 60 80 100

Time (s)

100

101

102

103

P
o

s
. 

e
rr

o
r 

m
a

g
n

. 
(m

)

Plume source position error

3 5 10 20

Number of points for opt. rel. nav.

0

1

2

3

4

5

P
o

s
it
io

n
e

rr
o

r
(m

)

Lander pos. error at TG

3 5 10 20

Number of points for opt. rel. nav.

0

0.2

0.4

0.6

0.8

1

V
e

lo
c
it
y
 e

rr
o

r 
(m

/s
)

Lander vel. error at TG

3 5 10 20

Number of points for opt. rel. nav.

0

5

10

15

20

25

P
o

s
it
io

n
 e

rr
o

r 
(m

)

Plume source pos. error at TG

Figure 4.19: Sensitivity to number of points observed for optical relative navigation - Per-
formance profiles and sensitivity curves. The blue lines are the 3σ deviations and the dotted
red lines the respective requirements. See text for further explanation.
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Figure 4.20: Initial lander position uncertainty sensitivity - Performance profiles and sen-
sitivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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Figure 4.21: Initial lander velocity uncertainty sensitivity - Performance profiles and sen-
sitivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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Figure 4.22: INS accelerometer measurement frequency sensitivity - Performance profiles and
sensitivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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Figure 4.23: Number of lidar measurements sensitivity - Performance profiles and sensi-
tivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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Figure 4.24: Thermal camera measurement frequency sensitivity - Performance profiles and
sensitivity curves. The blue lines are the 3σ deviations and the dotted red lines the respective
requirements. See text for further explanation.
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operations and at TG, this effect is however not dramatic. The current relatively
low 10× 10 nominal number of beams is sufficient for accuracy. Although a lower
number of beams would not violate the position accuracy requirement by much,
it would be more robust to have a relatively larger number of beams for robustly
defining the hazard frame with the lidar. The number of lidar measurements
should not be decreased, and offers limited value if increased.

� Depending on the importance given to the performance of the last optical cam-
era absolute navigation measurement, the generic pointing accuracy of the optical
camera, expressed here via the pixel error, is important to navigation operations.
The camera pointing error has a big effect on that measurement, as do the num-
ber of a-priori known points observed. To improve performance, considering the
pointing error to be relatively low in all cases, better quality orbital reconnaissance
would be necessary, resulting in more and better localized a-priori known points
to be observed. Considering adding a further measurement at a lower altitude, it
might a) not be possible due to the inability to create orbital maps with a GSD
lower than the one assumed, and b) will possibly not add value, considering that
the definition of a new hazard frame with the lidar might be a better solution.

� The main function of the thermal camera is observing and localizing the plume
source. However this is done inaccurately mainly due to the high pixel uncer-
tainty associated with detecting a relatively spread out hot spot with the thermal
camera. Steps can be taken to improve this accuracy, e.g. by using centroiding
methods for sub-pixel pinpointing, or somehow increasing the image quality of the
thermal camera. A more resource-efficient way however it to increase the mea-
surement frequency of the thermal camera. That way, even with a low resolution
camera, simply detecting a local maximum, the plume source can be localized very
accurately.

� In the reference scenario used for the study of the navigation function in this
section, the plume source and the landing target were coincident. The thermal
camera along with the entire gimbaled sensor set could always point at it, observe
it and localize it. Somewhat unexpectedly this resulted in the unwanted effect that
the plume source is in the center of the FOV, and not able to be well observed due
to its staticness in the thermal camera image towards, as the lander approaches
it in an almost straight line towards then end of the landing. In real operations,
as the sensor set will be pointed to a target landing site different than the plume
source, the plume source will be further than the center of the thermal image and
will thus be more ”mobile” in consecutive thermal images, thus making the plume
source localization better. Due to the wide FOV of the thermal camera, it will not
go out of FOV until the very last stages of landing. Plume source localization in
a more realistic scenario is thus expected to perform better.

� The navigation function can deal well with initial lander position uncertainty,
as this uncertainty is immediately corrected by the optical absolute navigation
measurement. Uncertainties in initial velocity however are more challenging, and
are only corrected after several lidar measurements.

� INS accelerometer and optical relative navigation measurements are to be kept to
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their respective nominal values. Neither is very impactful to the final result.

4.2 Hazard Detection and Avoidance

The results of the detailed analysis of the HDA function in the LandingSim tool will be
discussed in this chapter.

4.2.1 Description of elements

The high-resolution 125 × 125 m slice of the DTM around the plume source on a tiger
stripe canyon bottom as described in Section 3.2 was used here as a base map for the
further HDA analysis. The characteristics of this terrain model are given in Table 4.5.
The near and middle terrain models are given also in Figure 4.25 for easy reference.
The illumination, snow cover, and temperature layers of the terrain are shown in Figure
4.26.

Table 4.6 summarizes the HDA-related landing requirements. Based on these a ground
truth binary (suitable/unsuitable) landing safety map can be created for the baseline
terrain model above. This map is shown in Figure 4.27. It should be noted that the ”soft”
requirement/goal about preferring a landing on ice rather than snow is not captured in
this map.

Table 4.5: Terrain model parameters, as used in this section. Values in the table are based
on the equations given in Sec. 3.2

.

Parameter Value

Map size 125 m
Map resolution 10 cm
Number of obstacles 1000
Obstacle size limits 0.2 - 10 m
Sun angles Azimuth = 0°, Elevation = 30°
Snow cover parameters µsnow = 20°, σsnow = 10°
Number of no-snow zones 20
Surface temperature parame-
ters

Tamb = 100 K, TPlS = 180 K,
σPlS = 30 m, Tmod,snow = 10 K

Table 4.6: HDA function performance requirements/Requirements on the lander footprint
centered on the chosen landing site.

Requirement Value

Max. slope 15°
Max. obstacle height/roughness 50 cm

Distance to plume source 5− 50 m
Prefer ice rather than snow
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Figure 4.25: Illuminated middle and near terrain models. The plume source location is
marked with a red x. The vertical face at the end of the canyon in the first image is an artifact
of the triangulation process

Figure 4.26: The input terrain model and its information layers: elevation (upper left),
illumination (upper right), snow cover (lower left), and temperature (lower right).



4.2. HAZARD DETECTION AND AVOIDANCE 95

Figure 4.27: Ground truth binary (safe/unsafe) safety map. Blue areas are suitable for
landing while red areas are not.

4.2.2 Validation and demonstration

To validate the Fuzzy-reasoning-based HDA process implemented here, it will be applied
on the baseline terrain map and the results will be compared to the ground-truth landing
suitability map. The successive steps of the HDA process as given in Section 2.3.3 can
be seen in the following figures in this section.

Figures 4.28, 4.29, and 4.30 show the terrain hazard maps generated by the optical
camera, the lidar and the thermal camera respectively. All sensor measurements are
considered ideal (no noises or errors present). For the thermal camera, the thermal
background map is created assuming perfect knowledge of the corresponding surface
temperature characteristics, and the residual temperature map is extracted. Values
lower than the mean on this last map are identified as the colder snow and values larger
than the mean as the warmer ice. The fused thermal-lidar texture map is also given in
Figure 4.30, combining the texture measurements of these two sensors. It is reminded
that the score in this map represents the percentage of a lander footprint centered on
each map point that is covered by snow.

The fused safety maps for each sensor, combining the safety features for each individual
sensor, are shown in Figure 4.31. For the optical camera the obstacles are the main
source of hazards, with illumination variance coming second. As slope is not being
sensed, non-obstacle high slope areas are given high scores in the optical camera hazard
map. For the lidar, the best scoring points are ones that are flat, smooth, and not
covered in snow, followed by also smooth and flat but snow covered points.

The fused safety score for all sensors, the distance from the target plume source, and the
overall landing goodness maps are given in Figure 4.32. The point in the final map with
the best landing score is selected as the new landing target. It must be noted that the
final landing score map has gone through the spatial but not the temporal assessment
step. The effect of both these steps is to be demonstrated in Section 4.2.4.

To validate the implemented fuzzy-reasoning-based HDA method, the resulting landing
safety map (Figure 4.32, upper left) will be compared with the binary ground truth
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Figure 4.28: Maps for each safety feature sensed by the optical camera: illumination variance
– a measure of terrain roughness (left), and obstacles (right).

Figure 4.29: Maps for each safety feature sensed by the lidar: slope (upper left), roughness
(upper right), and surface texture – snow coverage (lower).
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Figure 4.30: Maps for the thermal camera: thermal background due to heating from the
plume source (upper left), residual thermal map (upper right), and surface texture – snow
coverage (lower left). The fused and averaged thermal-lidar texture map is given here for
completeness (lower right). In the plots where texture is concerned, 0 denotes ice, and 1
denotes snow.
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safety map (Figure 4.27). The safety map is chosen for the comparison instead of e.g.
the final landing goodness map, since it is the most important element of the HDA
process, and it covers the entire landing area (compared to e.g. the final score map that
covers a 50 m radius circle).

But how would one go about comparing the binary ground truth safety map, to the
landing safety map scored continuously from 0 to 10? The method chosen is to convert
the landing safety map from continuous to a binary good/bad score. To do this, a score
threshold can be set above which landing sites are considered good, and below which
bad. Given a threshold, and having converted the landing safety map to a binary above-
good/below-bad map, it can then be compared to the ground truth landing suitability
map. The results of this comparison for each point can be either of the three:

� False Negative (FN): a point that is in reality unsuitable for landing, is given
as suitable by the HDA process.

� False Positive (FP): a point that is in reality suitable for landing, is given as
unsuitable by the HDA process.

� True Measurement (TM): the landing suitability of a point is given correctly
by the HDA process.

”In reality” above, means the marking of a given point in the ground truth binary
suitability map. In the above, the terms ”positive” and ”negative” refer then to haz-
ardousness: a FN therefore falsely gives a negative hazardousness result while and FP
falsely gives a positive hazardousness.

But what should the landing goodness score threshold be? To investigate this, the
threshold was varied from 4 to 8, and the resulting binary map was compared to the
ground truth binary goodness map for each value of the threshold. The percentages of
false negatives, false positives, and true measurements where logged for each iteration
and are presented as a plot in Figure 4.33. The proportion of the map that is marked
as suitable for landing is also noted (”suit.”).

As expected, by varying the score threshold the three above metrics also vary. It is

Figure 4.31: Fused safety maps for each individual sensor: camera safety map (left), lidar
safety map (right).
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Figure 4.32: Fused safety score for all sensors (upper, left), distance from plume (upper,
right), and final landing goodness score, with the selected best new landing site marked as a
red x (lower, x is distinguishable slightly to the right of the center of the map).
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preferred to select a threshold that maximizes the percentage of true measurements,
therefore a value of 6.1 is selected. The resulting HDA and ground truth binary maps
are compared with the results also shown in Figure 4.33. A significant agreement is
noted between the two maps, with some false positives spread near lower slope part
of the map, and some false negatives on the canyon slope. Very small areas of false
negatives and positives can be seen in thin lines around the obstacles. False negatives
are mostly present in high slope areas. It is assumed that this is due to the high scoring
of these areas by the optical camera. On the contrary, false positives tend to be in lower
slope areas, where the hazard landscape is more complex. This is because the lidar
scores the low slope and roughness parts of larger obstacles as relatively safe, while both
the camera and the ground truth map give them an ”absolutely unsafe” marking.

The above FN, FP, and TM can be considered as the HDA performance metrics, as they
readily describe the performance of the HDA process in identifying suitable and unsuit-
able areas for landing. In the above process, the metrics were in a sense ”calibrated”
to their optimal values for the ideal case, where there are no noises in the sensors, and
the full resolution map is analyzed. These performance metrics for the ideal case can be
seen in Table 4.7.

Table 4.7: HDA metrics for the ideal HDA measurement, for a threshold score of 6.1 (see
discussion in text and Figure 4.33). These can be considered the optimal values for the HDA
metrics (usefull for further analysis in this chapter).

HDA perf. metric Value

False Negatives 8%
False Positives 7%

True Measurements 85%
Terrain suitable for landing 51%

It should be made clear that the values for the above performance metrics do not corre-
spond to the likelihood of successful landing or any other straightforward mission success
metric, but only imperfectly represent the agreement between the ground truth and the
HDA maps. These metrics are to be used for comparison between different HDA mea-
surements and will therefore be useful in the analysis below. The successful landing
probability is expected to be significantly higher than the true measurement metric for
the above ideal case, since the re-targeting function will not choose a random point with
a score above the threshold, but the point in the map with the highest score. The actual
mission success statistics will be calculated by Monte Carlo analysis later in this chapter
(Section 4.4).

In summary, the main conclusions from the above validation analysis and calibration
are:

a) any point with a fuzzy safety score above 6.1 can be nominally considered as safe for
landing, and

b) the HDA process correctly assesses a large percentage of the ground truth map for
safety and can be reliably used in further analysis.
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Figure 4.33: The HDA goodness threshold calibration plot (left, see text for further expla-
nation), and the ground truth-HDA goodness comparison map for a threshold value set at
6.1 (right). Red (1) denotes false negatives, green (0) true measurements and blue (-1) false
positives.

4.2.3 Sensitivity analyses

The effects of various parameters on the goodness of the results of the HDA function
will be investigated. This is done by comparing the HDA maps generated from each test
run with the original high resolution HDA map of the test terrain in the previous section
(Figure 4.32, upper left)23. Where necessary for a direct comparison to be possible, the
HDA maps from the test runs are interpolated to the high resolution of the original
HDA map.

Table 4.8: Varying parameters in HDA sensitivity analysis.

System and error parameters

Terrain model GSD/resolution (m) [0.1, 0.25, 0.5, 1, 2] m
Lidar range/elevation noise (1σ) [0, 0.1, 0.5, 1, 2] m
Lidar, probability of texture flip [0, 5, 10, 20, 50]%
Optical camera blurring (rolling win-
dow size)

[0, 1, 2, 5, 10] m

Thermal camera, heat source as-
sumed spread (1σ)

[10, 20, 30, 50, 100] m

Thermal camera, assumed plume
temperature

[160, 170, 180, 190, 200] K

Thermal camera, plume source as-
sumed location error

[1, 5, 10, 20, 50] m

The first such sensitivity analysis is in respect to map GSD/resolution. For a given
sensor with a certain angular resolution, this value depends only on the range to target
that the measurement was taken (Figure 2.17). The effect of the measurement slant

23...and NOT with the binary goodness map as with the validation case.
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angle24 can be ignored here due to the small FOV of the lidar, and the relatively small
slant angles for landing operations.

To investigate the dependence of HDA performance (as captured by the HDA metrics
discussed in the previous section) on map resolution, the terrain map was down-sampled
to various GSD/resolutions. The HDA process is then applied to each of these maps
and the resulting safety map is interpolated. The interpolated map is subtracted from
the nominal, high resolution safety map. This results in a new continuous comparison
map (in contrast to the binary comparison map in the previous section) with scores
ranging from −10 to +10. Negative values on this new comparison map indicate there-
fore an underestimation of hazardousness by the HDA function, and positive values an
overestimation of hazardousness. Accordingly, a given map point is assigned as a true
measurement if its score on the comparison map is between −1 and 1, as a false negative
if its score is < −1, and as a true positive if its score is > 1. All this will become clearer
during the presentation of the analyses in this section.

The sensitivity curves for the above resolution analysis are shown in Figure 4.34. As
expected, larger ground sample distances will give a less accurate HDA map. For the
nominal resolution of 0.1 m, the TM value is around 80%, and both FN and FP, are
at around 10% each. The fact that, even for the nominal resolution, there is no perfect
agreement between the ground truth safety map and the test map, can be attributed
to the interpolation step that was performed on the map (essentially to interpolate it
to its current resolution). By performing this step also on the nominal map, the effects
of interpolation can be accounted for on the comparison process. The values of the
performance metrics remain at those levels up to a map GSD of 0.5 m, which is the
maximum acceptable obstacle size for the lander. For GSD above this, the HDA process
starts ”missing” hazards and therefore a small increase in FP, and dramatic increase in
FN are observed.

A lower resolution map can also result from the non-nominal case, where some lidar beam
return signals are not detected by the lidar head sensor. Assuming that the distribution
of the beams whose signal is not returned is random, this results in a degradation in
map resolution. For the extreme scenario where half of the beam return signals are
not detected, this degradation is equivalent to the performance being downgraded to
that of a higher GSD class. This effect will have significant consequences at farther
measurement ranges where the sensitivity of performance to GSD is high, and less so
for nearer ranges, where the performance curves of Figure 4.34 are linear.

Due to the high computational requirements of the HDA process, and to reduce the
time needed for the following analyses to within reasonable levels, the 0.25 m GSD
interpolated map was used as a basis for the rest of the sensitivity analyses.

Next, the sensitivity of the HDA assessment to the input of each of the sensors will be
investigated. As lidar is essential for producing the point cloud basis for the HDA map
and in detecting the majority of hazard characteristics, two cases will be investigated
here: the absence of an optical camera, and the absence of any texture sensing by
the lidar and the thermal camera. The comparison maps are seen in Figure 4.35. As
noted before, the optical camera considers all non-obstacle and non-optically-rough areas

24Angle between horizon and lander-target line
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Figure 4.34: HDA sensitivity curves for a varying GSD/resolution of the input terrain model
(left, x-scale is logarithmic, green line: TN, red line:FN, blue line: FP). The comparison map is
given for the 2 m GSD case for illustration (right). On the comparison map, redder areas denote
increasing hazard underestimation and bluer areas denote increasing hazard overestimation by
the HDA function. The trend for smaller resolutions is for the hazard underestimation areas
(yellow) to diminish.

as highly safe. It thus overestimates the safety of these areas that may include e.g.
high slopes. Without the optical camera, the safety map becomes very similar to the
lidar safety map in Figure 4.31. It can be argued that this map better represents
the hazardousness of the terrain model. However, with no optical camera input, the
redundancy in obstacle detection is lost. If the texture information fused together by the
lidar and thermal camera is ignored, the safety of snow-covered areas is overestimated.
Depending on the sensitivity of the terminal descent method used and the general lander
design to landing on snow, this could be an acceptable choice to make.

The effect of noise in the elevation of values of the terrain model points will be then
investigated. The main source of noise in elevation is lidar range noise. As the noise
is multiplicative, measurements taken at larger ranges from target will produce higher
elevation noises. In particular, for a lidar range from target at HDA HG of 1100 m, and
the nominal multiplicative range noise value of 0.33%, an elevation noise of ∼ 3.5 m 1σ
is given, significantly higher than the size of the minimum acceptable terrain roughness
(0.5 m).

Figure 4.36 illustrates that effect. A sharp drop in HDA performance is observed when
deviating from the ideal, no-noise case. ”Spikes” produced in the map due to increas-
ing noise in elevation are interpreted by the HDA process as roughness hazards, thus
increasing the FP significantly. FN remain relatively stable.

The effect of the uncertain nature of sensing the texture of the terrain with lidar is
investigated next. To do this, a probability is assigned, that the texture of each point
in the terrain model will flip (from snow to ice or vice versa). This probability is varied
and the effects in HDA performance are presented in Figure 4.37. There it is seen, that
even for the worst case where the lidar provides fully noised texture measurements, only
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Figure 4.35: Comparison maps for HDA without opt. camera input (left), and without
terrain texture input (right). Redder areas denote increasing hazard underestimation and
bluer areas denote increasing hazard overestimation by the HDA function.
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Figure 4.36: HDA sensitivity curves for a varying lidar range/elevation noise of the input
terrain model (left, x-scale is linear, green line: TN, red line: FN, blue line: FP). The com-
parison map is given for the 1 m (1σ) case for illustration (right). On the comparison map,
redder areas denote increasing hazard underestimation and bluer areas denote increasing haz-
ard overestimation by the HDA function. The trend for lower noise levels is for the hazard
overestimation areas (blue) to diminish.



4.2. HAZARD DETECTION AND AVOIDANCE 105

a small effect on the overall safety score is noted, whereby the terrain safety is overesti-
mated for areas covered in snow. This is thanks to the redundant texture measurements
by the thermal camera, and the small contribution of texture to the total safety score.

Next, the effect of blurring in optical camera images is investigated. Blurring can occur
for example when a picture is taken at high rotational velocities. To simulate optical
image blurring, the nominal illumination layer was averaged using a rolling window with
increasing sizes (whereby the illumination of a given point is assigned as the mean of
the values in the neighborhood defined by the rolling window). The blurring effect is
illustrated in Figure 4.38.

The sensitivity curves for varying blur levels in the illumination layer are seen in Fig-
ure 4.39. Due to image blur, smaller obstacles go undetected by the optical camera.
Increasing blur levels increases the size of detectable obstacles until the obstacle detec-
tion process becomes useless. Accordingly, TM drop and FN increase in the sensitivity
curves. It should be noted here that obstacles are still detected by the lidar as rough-
ness and slope hazards. With the degradation of the optical obstacle detection though,
obstacles are not scored as low as in the ground truth safety map.

The effects of uncertainty in the knowledge of the surface temperature related parameters
used for the derivation of the texture by the thermal camera will be investigated next.

Starting with the assumed plume source hot spot spread, the HDA process was ran using
various values around the nominal of 30 m, and the performance of the HDA function
was plotted in the sensitivity plot of Figure 4.40. The effect of this mismatch between
the assumed and the real spread of the hot spot around the plume source is that the
corrected temperature after subtracting the assumed background temperature is either
over, or underestimated, resulting in a ”ring” of falsely identified texture, with the size
of the ring depending on the deviation of the assumed spread from the real one. This
results in the false designation of the ring as snow or ice respectively.

The next parameter investigated was the assumed plume temperature, varying it also
around the real value of 180 K. The results are seen in Figure 4.41 The effect is the
creation of disks around the plume source where texture is falsely estimated as ice for
assumed temperatures less than the real, and as snow for assumed temperatures larger
than the real.

Finally, the effect of the uncertainty in the location of the plume source on HDA perfor-
mance is investigated. To do this, the assumed plume source location was moved to the
right on the x-axis by increasing values. As can be seen in Figure 4.42, an increasing
error in assumed plume source location location results in two ”lobes” of increasing sizes,
with the ahead lobe overestimating snow cover (as it gives higher surface temperatures)
and the back lobe underestimating it.

The overall effect for the three parameters relating to the thermal camera texture detec-
tion, seen by the sensitivity curves in the above mentioned figures could be interpreted
as small. As described though, there are strongly localized effects affecting the texture
sensing of large areas on the map. In any case, the redundancy offered by the lidar
texture sensing means that any erroneous sensing by the thermal camera is muted in
the overall safety score maps.
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Figure 4.37: HDA sensitivity curves for a varying probability that a texture measurement
of any point on the map will be flipped (left, x-scale is linear, green line: TN, red line: FN,
blue line: FP). The comparison map is given for the 50% (1σ) case for illustration (right). On
the comparison map, redder areas denote increasing hazard underestimation and bluer areas
denote increasing hazard overestimation by the HDA function. The trend for lower noise levels
is for the hazard underestimation areas (light yellow) to diminish.

Figure 4.38: Illustration of the blurred illumination layer used for the blur sensitivity analysis,
for rolling window sizes of 1, 2, and 5 m (left to right).
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Figure 4.39: HDA sensitivity curves for a varying levels of optical image blurring, expressed
in the size of an averaging rolling window, see text for further explanation (left, x-scale is
linear, green line: TN, red line: FN, blue line: FP). The comparison map is given for the
5 m case for illustration (right). On the comparison map, redder areas denote increasing
hazard underestimation and bluer areas denote increasing hazard overestimation by the HDA
function. The trend for lower blur levels is for more and smaller obstacles to be identifiable.
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Figure 4.40: HDA sensitivity curves for a varying levels of the assumed spread of the hot
spot around the plume source, (left, x-scale is linear, green line: TN, red line: FN, blue line:
FP). The comparison map is given for the 10 m case for illustration (right). On the comparison
map, redder areas denote increasing hazard underestimation and bluer areas denote increasing
hazard overestimation by the HDA function. The effect of varying assumed spread around the
nominal of 30 m, is for a ring of falsely sensed texture to appear.
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Figure 4.41: HDA sensitivity curves for a varying levels of the assumed plume source temper-
ature (left, x-scale is linear, green line: TN, red line: FN, blue line: FP). The two comparison
maps are given for the 160 and 200 K cases respectively for illustration (right). On the com-
parison map, redder areas denote increasing hazard underestimation and bluer areas denote
increasing hazard overestimation by the HDA function. The trend is for lower assumed temper-
atures to produce a disk of mis-detected ice around the plume source, and for higher assumed
temperatures, a disk of mis-detected snow.
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Figure 4.42: HDA sensitivity curves for a varying levels of error in the assumed plume source
position (left, x-scale is linear, green line: TN, red line: FN, blue line: FP). The displacement
here takes place on the x-axis. The comparison map is given for the 20 m case for illustration
(right). On the comparison map, redder areas denote increasing hazard underestimation and
bluer areas denote increasing hazard overestimation by the HDA function. The trend for
increasing position errors is for the lobes of mis-detected texture to expand.

4.2.4 Simulation of nominal operations

After the sensitivity analyses above, nominal values where set for all parameters inves-
tigated above, based on reasonable assumptions for them (Table 4.9). Mainly, the lidar
range error had to be reduced to 0.1× the nominal, so that reasonable roughness values
are produced in early measurements. Using these values and based on the operational
concept defined in Section 2.3.4, the nominal landing operations where simulated to
further investigate the HDA function, with the lander following the reference landing
trajectory given in Section 4.3 while assuming ideal navigation.

Four HDA measurements where made at the distances and timings given in Table 4.9.
These measurements produced terrain models that where then processed by the HDA
function to produce safety and landing score maps, and to select an new target for
landing. This process is illustrated in Figure 4.43. Each panel of the figure illustrates the
safety map generated by each HDA measurement. On each safety map, a circle is placed,
representing the lander footprint centered around the new landing target selected by the
re-targeting function (reminder: selected as the best score in the landing score map).
Finally, a black square illustrates the projected FOV of the following HDA measurement,
centered around the new landing target. As expected, earlier HDA measurements cover a
larger area, but produce low safety scores mainly due to the high elevation noise. Scores
increasingly grow for each measurement as the lander comes nearer to the surface. The
lander footprint increasingly becomes a larger part of an HDA measurement map. A
final landing site is chosen in the final HDA measurement.
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Table 4.9: Nominal HDA parameters

Parameter Value

Ranges to target [1100, 550, 200, 100] m
Time of measurement (after AG) [24, 45.2, 61.1, 75.2] s
Lidar range error 0.033% (1σ)
Lidar texture flip probability 10%
Lidar no beam return probability 5%
Optical camera blur none
Thermal cam., hot spot assumed spread er-
ror

5 m (1σ)

Thermal cam., plume temp. uncertainty 5 K (1σ)
Thermal cam., plume source location uncer-
tainty

5 m (1σ)

A closer look can also be taken at final steps of the HDA process, comprising the
temporal and spatial assessment. These steps are illustrated in Figure 4.44, using the
second HDA measurement of Figure 4.43 as basis. It can be seen there how the spatial
and temporal steps further refine the overall landing score, assessing the goodness of
neighboring points and the goodness of the same points in the previous measurement
respectively. A new landing target is selected by picking the point in the map with the
higher landing score in the final landing goodness map.

The evolution of HDA performance throughout landing operations is shown in Figure
4.45. As expected for earlier measurements, the FPs generated by false roughness mea-
surements due to high noises in elevation dominate the performance. As the lander gets
closer to the sensed surface, the ratio of TMs increase at the expense of FPs, and peaks
at about 70%. FNs remain at the same levels throughout operations, at about 10%.
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Figure 4.45: Evolution of HDA performance throughout the reference landing operations.
Time is measured after AG. The times of HDA measurments are marked with dotted vertical
lines.
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Figure 4.43: The four consecutive HDA measurements for the reference landing scenario.
See text for details. The colorscale of these plots is omitted for compactness and is identical
to that of Figure 4.32 (i.e. red is low and blue is high safety score).
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Figure 4.44: Demonstration of the final steps of the HDA process. The combined safety score
map (upper left) goes through the spatial (upper right) and temporal (lower left) evaluation
steps. The final landing score map is given in the lower right, with the highest scoring point
marked with a red x.
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4.2.5 Results summary and initial conclusions

We can now gather informative observations on the above results, that will be helpful
with the next design iteration of the HDA concept. In the following significant conclu-
sions will be summarized:

� Lidar is central for HDA and, in ideal conditions cover the entire range of haz-
ards to be detected. It is also equally operable in darkness. However the optical
and thermal cameras offer robustness in detecting obstacles, and terrain texture
respectively. The first is more critical to mission success, while the usefulness of
the second depends on the chosen strategy for touchdown, and how sensitive the
lander design is to landing on snow.

� The range noise in the lidar beams should be reduced significantly, to levels of
10% of those taken from the literature, if meaningful hazard assessments are to be
made with the early HDA measurements. Ways to achieve that (e.g. merging of
succesive rapid lidar measurements) should be investigated in the future.

� The optical camera hazard map does not consider slope. Past safe and accurate
landing missions targeted mostly terrains that are flat in the large scale, but this
is not the case for EnEx. The hazardousness of a large part of the terrain is the
underestimated by the camera. To correct this, the camera weight during the score
combination of Equation 2.56 should be significantly lowered

� The method for texture sensing using the thermal camera is a good compensating
measurement for the lidar, but it is not expected to be robust as a stand-alone
method in its current form. However, it is a novel concept worth a further look in
the future.

� Considering the example HDA run shown in Figure 4.43, a potentially hazardous
scenario comes to mind: as the first HDA measurement has the lowest performance,
it is conceivable for it to command a re-targeting to landing site that is not suitable,
that is also in an area that is also unsuitable for landing. As the sensor suite will
turn on its gimbal to point to that new point, future HDA measurements will be
increasingly restrained to the area near the original unsuitable area. This means
that the HDA function will be forced to select the“least of all evils”among a group
of unsuitable points. Potential ways to deal with this is to further lower the range
at which this first HDA measurement is taken, by setting a stricter requirement
for the range error of the lidar, or by modifying the HDA operations concept, to
search for a new target outside its current FOV if there is no point with a goodness
score above a given threshold in its current landing goodness map. Each of these
solutions comes with their challenges and advantages that should be investigated
in the future.

� In this approach only basic scalar factors where used for sensor certainty. However,
a more sophisticated approach would include fuzzy certainty factors taking into
account range, illumination, lander navigation parameters etc. (as is done e.g. in
[75]). The simplicity of the first approach should be compared with the robustness
of the second.



114 CHAPTER 4. SIMULATION RESULTS

4.3 Guidance and propulsion

In this section, the results of the guidance and propulsion relevant analyses performed
with the LandingSim tool will be presented.

4.3.1 Description of elements

The characteristics of the EnEx lander and its propulsion system are given in Section
2.5, a description of guidance considerations in Section 2.4.3, and an operations concept
for guidance in Section 2.6. In summary, the guidance function must create a landing
trajectory from a given starting point to a given target point, while respecting glide
slope, thrust magnitude and angle, and velocity magnitude constraints. The calculated
control thrusts are then applied using the lander propulsion system. A certain amount
of propellant has been assigned for the approach phase of the landing. It is reminded
that it is assumed that the propulsion system thrusters apply the thrusts commanded
by guidance ideally.

To further analyse the guidance and propulsion system, the guidance problem was sim-
ulated.

4.3.2 Validation and demonstation

Two landing scenarios were defined as baseline. Scenario 1 has been used as the reference
trajectory in Sections 4.1 and 4.2 for the analysis of the navigation and HDA functions
performed there. The initial and final conditions for both trajectories are given in Table
4.10.

Table 4.10: Initial and final conditions of reference trajectory used in the other simulation
results sections and challengin scenario used for guidance function validation in this section.
For guidance validation a generic inertial reference frame is assumed.

Parameter Scenario 1 (nominal) Scenario 2 (challenging)

Initial position [0,−1000, 1500] m [0,−1100, 1500] m
Initial velocity [0, 20,−20] m/s [20,−5,−15] m/s
Final position [0, 0, 0] m [0, 0, 0] m
Final velocity [0, 0, 0] m/s [0, 0, 0] m

The G-FOLD implementation in this work was validated against [79] for a Mars landing
scenario, with the results of the validation given in [108]. Here, a landing with the
initial conditions of Scenario 2 was simulated to demonstrate the performance of the G-
FOLD guidance algorithm. These initial conditions where manually calibrated so that
the landing target is barely reachable. A generic inertial frame is used for the purposes
of this validation.

Figure 4.46 shows the calculated trajectory and thrust arcs for Scenario 2, and the
projections of that trajectory on the z, y, and x planes respectively. A smooth trajectory
is produced for this challenging scenario that respects the glideslope constraint (red
dotted lines in the projection plots).
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Figure 4.46: Demonstration of the trajectory calculated by G-FOLD for Scenario 2. The
trajectory and thrust arcs (not in scale) are shown in 3D (upper), and the projections of the
trajectory are shown on the z, the y, and the x planes (lower, left to right). The projected
glideslope constraint cone is shown as red dotted lines.
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Figure 4.47 shows the evolution of lander mass, the elevation angle of the line connecting
the landing target and the lander, the velocity magnitude, thruster duty, and thrust an-
gle. As seen, the lander expends around 60 kg of fuel, respects the glideslope and thrust
angle constraint angles (black dotted lines in the respective plots). For the optimizer
to converge easier to a solution, the velocity magnitude constraint (plotted vs range
to landing target) had to be somewhat relaxed. The result is seen in the respective
plot of Figure 4.47, where the velocity magnitude is allowed to be higher than the con-
straint. Perhaps due to this slight relaxation, the thrust magnitude also slightly violates
the lower magnitude limits for a small part of the trajectory. This small violation is
considered acceptable, also considering the extreme nature of scenario 2.

Figure 4.48 shows the evolution of lander position, velocity, and acceleration acting on
the lander. They all evolve smoothly, except for sudden jumps in acceleration when the
thrusters are turned to maximum or minimum thrust.

4.3.3 Sensitivity and worst-case analyses

Sensitivity analyses where performed for the guidance function. The guidance function
system must be flexible in two senses: it must be able to reach the nominal landing target
from varying initial lander state values, and also to reach any landing site commanded
by the HDA re-targeting function. It must do so while minimizing the amount of fuel
expended. The sensitivity of guidance to initial lander state conditions, and re-target
point distance from nominal will be thus checked. The performance metrics will be the
amount of propellant spent, and the distance from the nominal spot. The varying values
are given in Table 4.11. Each parameter was varied separately.

The results are shown in Figure 4.49. It is seen that the guidance function can easily deal
with highly variable initial and final conditions. The expenditure of propellant varies
between ∼ 45 kg for the close-to-nominal cases, and ∼ 65 kg for the more extreme cases.

The above reassuring results are valid for the first guidance trajectory calculated at AG.
The next trajectory to a newly selected point after the first HDA measurement will
have to be calculated as the lander is already on this first highly optimized trajectory.
The possible problem then for future re-targetings is then that the lander is no-longer

Table 4.11: Varying parameters in guidance sensitivity analysis. The parameters are varied
between the minimum and maximum values for which guidance can produce a trajectory are
given.

Initial and final lander state param.

Final landing position, along-range −1000 - 700 m
Final landing position, cross-range −1200 - 1200 m
Initial landing position, along-range −700 - 1000 m
Initial landing position, cross-range −1200 - 1200 m
Initial lander velocity direction, rotation around
altitude axis (left-right)

−45° - 45°

Initial lander velocity direction, rotation around
cross-range (up-down)

−25° - 20°
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Figure 4.47: Evolution of lander mass, elevation angle between landing target and lander,
velocity magnitude (upper, left to right), thrust magnitude/duty, and angle (lower, left to
right). All parameters respect the set constraints (black dotted lines).
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Figure 4.49: Sensitivity of guidance at AG to final landing site position along- and cross-
range (upper, left, to right), initial lander position along- and cross-range (left, to right), and
initial lander velocity rotated around the cross-range and the altitude axes (left, to right). Line
color corresponds to fuel usage (45kg dark blue to 65 kg dark red).
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flexible, as its already on an optimal trajectory to another landing site. In in other
words, the lander is speeding towards a given landing site, with minimal flexibility and
”left-over thrust” to divert to another.

A two-sided solution to the above problem was devised. Firstly, and as seen by the sen-
sitivity analyses above, the guidance function somewhat ”over-performs” for reachability
at AG. A limit can then be set on the available thrust at this first, and slowly relaxed for
the following maneuvers. Essentially this means that the engine will be ”throttled-up”
after each consecutive re-targeting. This relaxation was found to be insufficient after a
few simulations and a second aspect to the approach was added, the gradual relaxation
of constraints. Of the constraints given for guidance, arguably the more amenable to
relaxation due to it being the least critical, is the velocity magnitude constraint. By set-
ting a relaxation parameter > 0 for the respective constraint inequality in the guidance
equations, and gradually increasing it after each maneuver, the necessary flexibility can
be achieved by the lander.

To demonstrate and validate this approach a worst case analysis was performed. In
this analysis the lander was initialized at its nominal nav. state and a trajectory to
the nominal landing site was calculated by guidance. At the first re-targeting a new
target was set at a worst case distance from the original. The reasonable worst-case
assumption for re-targeting distance of 2× the ground cover area (GCA) of the respective
HDA measurement is made (see e.g. Figures 2.17 and 4.43). This is done for all four
re-targeting maneuvers, for both the along- and the cross-range cases, with each new
landing target being moved the appropriate distance to the opposite direction, resulting
in a zig-zag overall landing trajectory. To allow for the needed increasing guidance
flexibility, the thrust upper limit and velocity magnitude are gradually relaxed after each
re-targeting maneuver. Due to their sensitive nature, the relaxations were performed
manually during the analysis. In the future, a more formal and automated way will have
to be found.

The results of this worst-case analysis are seen in Figures 4.50 and 4.51. The guidance
trajectory successfully performs a re-targeting at every step. The gradual relaxation of
thrust magnitude and velocity constraint is also visible in the corresponding plots after
each re-targeting.

4.3.4 Results summary and initial conclusions

Information and conclusions from the above analysis can now be summarized here:

� The G-FOLD algorithm implemented is very robust and finds viable large divert
trajectories for a very broad range of lander initial conditions and re-target dis-
tances, while respecting a wide array of constraints.

� It was found however during this analysis that this good performance at AG might
be misleading. The real challenge to guidance are the multiple re-targeting maneu-
vers, each to be performed along an already optimal trajectory to another landing
target. A new approach where thrust is held in reserve and the least critical
constraint (velocity magnitude) is relaxed is introduced.

� Pending a more formal calibration of the re-targeting method discussed above, it
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Figure 4.50: Zig-zagging guidance calculated worst-case trajectories for the along- (upper)
and cross-range (lower) cases, and from a far (left) and near (right) perspective. Each target
landing site has the same color with its respective trajectory segment. Re-target points are
marked as blue dots.
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Figure 4.51: Thrust duty and velocity vs range to target plots for the worst-case trajectories
of Figure 4.50. The maximum thrust and velocity magnitude constraints are relaxed after each
re-targeting command (blue dots) to make the corresponding maneuver possible.

might be possible to use a smaller thrust-to-weight ratio for the thrusters, since
they over-perform at AG. This is not expected to be the case however, since TtW
will likely be a critical factor for the re-targeting maneuvers.

� The 100 kg of fuel initially allocated with ample margin in the original EnEx
lander design, can be reduced to 65 kg for the worst case re-targeting scenario,
plus a small margin.

4.4 Combined simulation results

To investigate the combined functionality of the LandingSim tool and get a first estimate
of landing success probability, a closed-loop Monte Carlo simulation was performed.
In short, for a single MC iteration, the lander started from its nominal position, and
performed the navigation and HDA functions ase set out in Tables 4.3 (Nominal case)
and 4.9 respectively. Due to technical issues with the solver used for the guidance
function in a Monte Carlo environment, as each run required human supervision, it was
assume that whatever target the HDA function commanded was reachable by guidance
and with the fuel allocated. This assumption was shown in Section 4.3.3 to be reasonable.
All parameters where noised as indicated by their respective deviation values. Major
modifications for this simulation integrated from the conclusions drawn by the analyses
performed in this chapter are listed in Table 4.12. 1000 MC iterations were performed.
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Table 4.12: Modifications to the landing GN&C systems for the MC simulation.

Parameter Old nomi-
nal value

New modi-
fied value

NAV: Thermal camera measure-
ment frequency

5 s 2 s

HDA: Optical camera confidence
parameter

1 0.2

HDA: Lidar range noise (cumula-
tive, 1σ)

0.33% 0.033%

Monte Carlo iterations 1000

The results of the Monte Carlo statistics are shown in Figures 4.52 to 4.54. In de-
tail, Figure 4.52 demonstrates the fulfilment of navigation requirements and the correct
function of the EKF-SLAM ”machinery”.

Figure 4.53 presents the landing success statistics. The overall landing success rate is
PSuccess = 94.1%. Landing failures are primarily due to landing on high slope terrain,
and can be connected to the small issues that the HDA function faced with high slope
areas. Obstacles are nicely avoided and areas with little snow cover are mostly preferred.
Seven runs ended within the critical no-go zone around the plume source.

Figure 4.54 further helps in interpreting the results. Successful landing spots are con-
centrated around specific map areas, nicely corresponding with the high scoring areas of
the HDA safety and landing score maps (Figure 4.32). The chosen areas are also largely
snow-free (compare to Figure 4.30). It is further seen that several failed landing areas
are at the edges of obstacles, on the thin lines where the HDA function produced false
negatives of hazardousness.

Overall, the landing success rate is high but still not within the ∼ 99% success rate
typical for landing missions. In addition, the worst-case scenario with significant conse-
quences for planetary protection, with the lander entering the plume source no-go zone,
has a probability of ∼ 1%. Further studies will need to be performed to investigate and
improve both these metrics.
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Figure 4.52: Distributions of landing success criteria from Monte Carlo run (1000 iterations)
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Figure 4.53: Distributions of landing success criteria. Requirements are marked with red
dotted lines.
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Figure 4.54: Final landing sites on the landing terrain. Green dots represent landing success
and red landing failure. Red dots where plotted bigger for better visibility.
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Chapter 5

Conclusions and Future Work

The search for life in the solar system is arguably one of the main driving motivations
behind planetary exploration. Past, current, and planned orbiter remote sensing mis-
sions like the recently decommissioned Cassini spacecraft are showing with increasing
convincingness that the icy moons of the giant planets, in particular Europa and Ence-
ladus, are indeed habitable, containing all the necessary conditions to host microbial
life. The space agencies are picking up on this trend and are planning near-, mid- and
long-term missions to search for and characterize microbial life on the icy moons in-situ.

The EnEx lander, a particularly promising concept, aims to deploy a sub-glacial melting
probe to access liquid water pockets in the ice under the plume sources on Saturn’s moon
Enceladus. This concept takes advantage of the opportunity presented by the plume
sources, that bring fresh ocean material, potentially containing biosignatures, very close
to the surface.

To achieve this, a landing of unprecedented challenge must be performed, that involves
aspects not encountered by other, similarly ambitious mission concepts, including land-
ing in a polar canyon, on a snow terrain with hazardous texture, and on a an extremely
sensitive area from a planetary protection point of view.

The GN&C system for this landing must be extraordinarily capable and reliable. In this
thesis the first steps towards the creation of this system are taken, in particular for the
final critical landing approach phase were the full capabilities must be deployed.

In this work, the functions necessary were derived and investigated in detail: sensing,
navigation, hazard detection and avoidance, and guidance. A detailed system and op-
erations concept was defined, with a lot of useful insights from the analysis. The above
functions were investigated using a simulation tool created for the purposes of this thesis,
first individually and then in a closed loop Monte Carlo simulation. Some conclusions
and observations from this analysis will be given here, and proposed steps for future
work will be given.

Sensors found to be useful are the lidar and optical camera that are usually found in
similarly advanced landing mission concepts. The unusual thermal environment and
surface texture, however, make new sensing capabilities necessary, namely a lidar that
is capable of sensing texture by analyzing the beam return signal and a thermal camera
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that can be used for navigation and (indirectly) surface texture sensing.

These sensors are put to use for navigation and hazard detection. In navigation, a
particularly novel and challenging problem, among others, it to be dealt with: the
lander should land neither too far nor too close to the plume source. In parallel, the
position of this plume source is likely to not be very accurately known before landing
start, due to several difficulties in remotely sensing of the south pole of Enceladus.

An elegant way to deal with this that was implemented here is the SLAM method,
by which the target point is localized while taking into account the uncertainty of the
lander. This way all the critical uncertainties are quantified and taken into account.
In this framework, further elements of the environment can be incorporated, like e.g.
points whose location is known before landing start, that can assist with navigation. In
this framework, the thermal camera, although observing a ”spread out” target (the hot
spot around the plume source), successfully localizes the plume source. The lidar for
hazard relative navigation was found to be a very accurate and robust solution. The
optical camera was essential only at the start of the approach phase.

In conclusion, the navigation approach used satisfied the requirements and was shown
to be robust to noises. The EKF-SLAM approach used is elegant, and by explicitly
formulating and tracking navigation uncertainties, also helps with understanding and
verifying the system. Its true power will be better seen when tracking multiple uncertain
points at one landing, e.g. in a landing scenario with multiple plume sources, some of
them unknown.

The HDA function had to ensure a safe landing at a very challenging canyonous, snowy
terrain. The most critical element for HDA was the lidar range noise. Due to this,
the operational concept has a weak spot in the early HDA measurements, where the
hazard map is ”unclear” and a dangerous landing site might be selected there. As future
measurements will take place in this original map, the HDA function might become
”trapped” in selecting a bad landing site.

A simple and novel approach was developed to extract surface texture information by
using thermal images and previous knowledge of the thermal environment. This method
still needs to be made more robust and able to work as a stand-alone. It already
works well as a complementary method for texture sensing to the uncertain lidar texture
measurements. The method could be made to track certain relevant thermal parameters
in real time, e.g. the spread of the plume source hot spot spread, and thus be made
more robust.

Overall for HDA, the lidar is central and offers a robust base. The optical camera
can offer dubious measurements and can be even misleading, since it cannot measure
slope, a prevalent feature in a canyon. Whether a thermal camera is a worthy inclusion
will depend whether the lander is robust to touchdown on snow, and to the actual
hazardousness of the snow on the SPT for a lander.

The fuzzy framework implemented is intuitive and a smooth introduction in reason-
ing and autonomy under uncertain conditions. However, its relative informality and
requirement for manual configuration make the work necessary for large scale analy-
sis potentially tedious and difficult to validate. Probabilistic an DS methods should
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be investigated in the future, possibly as a prelude to implementing a decision fusion
algorithm for the three.

For guidance, the G-FOLD convex guidance algorithm implemented is clearly formu-
lated, robust and can deal well with multiple constraints. Additional work is needed to
implement further constraints to make the landing simulation even more realistic. A
new concept is given for the unexpectedly critical part of guidance after each of many
re-targeting maneuvers involving gradually increasing the thrust available, while relax-
ing the least critical constraints after each maneuver, so that the next one is feasible.
More work is needed to develop and verify this concept, and make it more robust. In
addition, more work is needed on the guidance block of the simulation tool so that it can
be executed without human supervision and in Monte Carlo-type large scale simulations.

The closed-loop Monte Carlo simulations produce some first landing success statistics
but more work is needed to implement more complex interactions between functions,
and to make the guidance function work reliably. MC will be increasingly important for
future work, in conjunction with the set of analyses primarily used in this thesis.

An interesting idea for future implementation resulting from this thesis is an alternative
design for a more lean landing GN&C system involving only a lidar and a thermal
camera. This system would make a landing possibly under any lighting conditions. In
this concept, one or multiple plume sources can be initialized with bearing observations
from the thermal camera and range observations of by the lidar. A co-registered lidar-
thermal map can be used for HDA, assuming preferably that further hazard detection
methods can be devised for the thermal camera. This concept would be particularly
relevant in scenarios where texture has a critical role and more than one (including
unknown) plume sources are expected.

Future work should also expand the studied operations back to DOI, add attitude into
the conversation by implementing a 6-DOF approach, adding more noises and biases
for the sensors, and more environmental details, including the implementation of e.g. a
graphics engine such as Blender or PANGU [64], and so on.

Several longer term ideas for necessary technology development stem from this work.

Special sensors should be further developed satisfying the requirements derived here, in
particular for texture sensing, i.e. a texture sensing lidar and a thermal camera, along
with further development of the necessary algorithms, in particular for the second case.

In most cases, the GN&C problem is formulated in a deterministic way. The high
uncertainties involved in the EnEx landing make a probabilistic/stochastic formulation
of the GN&C system desirable. An idea would then be to expand the philosophy behind
the SLAM approach to the other GN&C functions and express all relevant parameters
and their interactions in a probabilistic way.

A big part of risk and un-reliability in complex autononous systems such as this one
is the result not of random failures but of highly complicated interactions between the
system elements. An approach to study these interactions and design for reliability from
the earlier stages of design is given in [109]. This approach should be investigated in the
future for EnEx potentially assisted by simulation tool such as the one developed here.
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Finally, the algorithms and approaches developed here could eventually be flown on a
landing testbed. A handy and inexpensive platform for such test are quadrocopters.
An integrated simulation tool - quadrocopter platform can then serve as an end-to-end
testbed for the rapid development of new technologies for landing.
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[46] J. Solà-Ortega, Towards Visual Localization, Mapping and Moving Objects Track-
ing by a Mobile Robot: a Geometric and Probabilistic Approach, PhD Thesis, Lab-
oratoire d’Analyse et d’Architecture de Systemes du CNRS, 2007

[47] A. Farzin, D. F. Pierrottet, L. B. Petway, Glenn D. Hines, V.E. Roback, Lidar
Systems for Precision Navigation and Safe Landing on Planetary Bodies, SPIE ISPDI
2011-International Symposium on Photoelectronic Detection and Imaging, Beijing,
China, (2011), https://ntrs.nasa.gov/search.jsp?R=20110012163

[48] J.-G. Winther, Landsat TM derived and in situ summer reflectance of
glaciers in Svalbard. Polar Research 12 (1): 37-55 (1993), doi:10.1111/j.1751-
8369.1993.tb00421.x

[49] R.S. Lu, G. Y. Tian, On-line measurement of surface roughness by laser light scat-
tering, Meas. Sci. Technol. 17 1496 (2006), https://doi.org/10.1088/0957-0233/
17/6/030
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Appendix A

Reference frames

A.1 Reference Frames for Navigation

In accordance to the approach followed in Section 2.2, the reference frames from the
main source for the EKF-SLAM formulation [46] will be used to define the reference
frames used in the navigation function and the transformations between them. The
frame transformations are shown in Figure A.1.

Figure A.1: Frame transformation in 3D. Each of the blue arrows is a column vector of the
rotation matrix R, corresponding to the orientation of the local frame F [46].

A point p in space can be expressed in the World frame W or in the local frame F .
Both expressions are related by the frame-transformation equations,

pW = RpF + t (A.1)

pF = R>(pW − t) (A.2)

where R is the rotation matrix associated with the orientation of the local frame F and
t is the translation matrix of the local frame F relative to the World frameW . The first
expression is known as the ”from frame” transformation and the second as ”to frame”.
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A.2 Reference Frames for Guidance

A reference frame often used in planetary landing is the Downrange25-Crossrange-Altitude
(DCA) frame, illustrated in Figure A.2. It is defined based on the landing vehicle and
its target. A ground surface is first defined as parallel to the local horizon and crossing
the landing target. The downrange direction is then defined as parallel to the local
horizon, starting from the sub-spacecraft point and pointing towards the landing target.
The altitude direction is defined as the vertical to the local horizon, pointing from the
sub-spacecraft point to the spacecraft. Finally, the cross-range direction completes the
orthogonal system as seen in the figure. Negative down-range values are also referred to
as up-range.

Figure A.2: The Downrange-Crossrange-Altitude (DCA) reference frame. Adapted from [46]
based on Figure A.1.

25...or Along-range
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