
Universität der Bundeswehr München
Fakultät für Luft- und Raumfahrttechnik

Institut für Raumfahrttechnik und Weltraumnutzung

Space Relative Navigation for Autonomous
Safe Capture of Non-Cooperative Targets

Harvey Camilo Gómez Martínez

Vollständiger Abdruck der von der Fakultät für Luft- und Raumfahrttechnik der Universität

der Bundeswehr München zur Erlangung des akademischen Grades eines

Doktors-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Gutachter:

1. Prof. em. Dr.-Ing. Bernd Eissfeller

2. Univ.-Prof. Dr. Helmut Mayer

Die Dissertation wurde am 14.06.2018 bei der Universität der Bundeswehr München einge-

reicht und durch die Fakultät für Luft- und Raumfahrttechnik am 07.05.2019 angenommen.

Die mündliche Prüfung fand am 05.06.2019 statt.

To P. Alberto, my friend and mentor, whom I will be forever grateful.

Acknowledgements

The last years have been a long but satisfactory stage for my personal and professio-
nal development. I am grateful for the time I have been here.

First of all, I would like to thank Prof. Bernd Eissfeller, for giving me the opportu-
nity of developing my research at his institute. His continuous support in different
aspects of the project produced humongous enhancements in my investigation,
generating better and satisfactory results as those written down in this dissertation.

Secondly, I also want to express my special gratitude to Dr. Hauke Fiedler, who
was the Space Situational Awareness research group leader at the German Aerospace
Center, and provided me guidance with respect to different aspects related to my
project, as well as with diverse issues I had to confront. His support was always
valuable and very opportune. Additionally, I am thankful to Dr. Toralf Boge, for the
advice given in the initial phase of this venture. His continuous constructive critics
made my research to take a second impulse, correcting the path when everything
seemed lost. Also, I thank Dr. Oliver Montenbruck for the few, but very rewarding
talks, that helped me to improve the quality of my work. I must thank Dr. Heike
Benninghoff, for lending me the necessary equipment for the experimental phase of
the project.

An special mention of gratitude has to be made to Dr. Gabriele Georgi, who was
of great aid and support during the last period of my research. The continuous
observations and kind patience produced an enrichment in certain skills in a way I
hardly imagined. The latter was possible due to his extensive professionalism, and
that was the best lesson I could ever learned.

I am grateful to Munich Aerospace for being the sponsor of my PhD project.
All the people related to and involved in this process made easier to bear the load
of living in a foreign country. Furthermore, I was pleased of being colleague of

vi

astounding people that influenced me in the best way possible, specially Graciela
González, and Gerald Ameres. Also, I would like to thank Prof. Roger Förstner, for
his guidance and counsel when required, as well as to Susanne Peters for sharing
some of her time, for discussing thoughts, theories, and results for the adequate
development of the research topic.

At last, but not least, I want to thank my Mother, my Brother, and my Father, for
being understanding and supportive about my decisions during all these years. I
strongly believe that the effort will be worth it at the end. And a sincere “thank you”
to my girlfriend, who also knows all the process of doing research for a living. She
has been of extraordinary support during this time, allowing me to complete my
doctorate studies.

Kurzfassung

Die Menge an Weltraummüll ist in den letzten Jahren gestiegen. Die Anzahl in-
operativer Objekte nimmt exponentiell zu, was zu Problemen bei aktuellen und
zukünftigen Satellitenmissionen in niedrigen und geozentrischen Erdumlaufbah-
nen führen kann. On-Orbit-Servicing bietet eine Lösung zur Verlängerung der Be-
triebsdauer von Raumfahrzeugen. Anders ist es mit bereits stillgelegten Satelliten,
hochgelegenen oberen Raketenstufen oder Fragmenten und Überresten, die die
Sicherheit im Orbit ständig bedrohen. Die aktive Trümmerbeseitigung kann eine
einflussreiche Erweiterung der Servicemissionen für Satelliten sein, bei denen ein
Chaser-Satellit ein bestimmtes Ziel erfasst und kontrolliert entsorgt, um nicht nur
die zukünftige Entstehung von neuen Trümmern zu vermeiden, sondern auch die
Trümmerdichte auf bestimmten, stark nachgefragten Umlaufbahnen in bevorste-
henden Missionen zu reduzieren. Dies erfordert ein neues Maß an Autonomie in
Bezug auf das Rendezvous-Manöver. Neue Herausforderungen gehen daher mit
den hohen Anforderungen einher.

Diese Dissertation stellt eine Methodik zur Schätzung der Position und Orien-
tierung eines Raketenkörpers im Orbit, d.h. dem Ziel, unter Verwendung einer
Translations- und Rotationsbewegung bezogen auf einen Chaser-Satellit vor. Letzte-
rer hat die Aufgabe, die Dynamik des Ziels für ein sicheres autonomes Rendezvous
und die Erfassung anzupassen. Während dieses Manövers verwendet der Chaser
eine Time-of-Flight-Kamera, die eine Punktwolke von 3D-Koordinaten erfasst und
die Oberfläche des erfassten Ziels kartiert. Sobald das System das Ziel identifiziert
hat, initialisiert es die relative Position und Ausrichtung des Chasers zum Ziel. Nach
der Initialisierung ermöglicht ein Tracking-Verfahren dem System, den Verlauf der
Pose des Ziels zwischen den Frames zu erfassen. Die vorgeschlagenen Algorithmen
werden anhand von simulierten Punktwolken, die mit einem CAD-Modell des Ziels
und den Kameraspezifikationen des PMD CamCube 3.0 erzeugt wurden, bewertet.

viii

Zusätzlich wurde ein skaliertes, gedrucktes Modell mit einem tatsächlichen Sensor
verwendet, um reale Daten zu erfassen und die Leistung der Routinen zu beurteilen.

Abstract

The number of space debris population has risen during the last years. The amount
of inoperative objects is exponentially increasing, and this may cause problems in
current and future satellite missions in both Low and Geocentric Earth Orbits. On-
Orbit Servicing is rising as a solution for extending the operative life of spacecraft.
But the situation changes with already defunct satellites, high-altitude upper rocket
stages, or fragments and leftovers, which are continuously threatening the safety
in orbit. Active Debris Removal can be an influential expansion of the satellite’s
servicing missions, where a chaser satellite will capture a designated target, and
discard it in a controlled manner not only to avoid future production of new debris,
but also to reduce the population on certain high demand orbits in forthcoming
missions. This requires new levels of autonomy with respect to the rendezvous
maneuver. Hence, new challenges go along with those demanding requirements.

This dissertation presents a methodology for estimating the position and orien-
tation of a rocket body in orbit, i.e. the target, under a translational and rotational
motion with respect to a chaser spacecraft. The latter has the task of matching the
target’s dynamics for a safe autonomous rendezvous and capture. During this ma-
neuver, the chaser would employ a Time-of-Flight camera that acquires a point cloud
of 3D coordinates, mapping the sensed target’s surface. Once the system identifies
the objective, it initializes the chaser-to-target relative position and orientation. After
initialization, a tracking procedure enables the system to sense the evolution of
the target’s pose between frames. The proposed algorithms are evaluated using
simulated point clouds, generated with a CAD model of the target, and the PMD
CamCube 3.0 camera specifications. Additionally, a scaled printed model was used
with an actual sensor to capture real data and assess the routines performance.

Contents

List of Figures xv

List of Tables xix

Nomenclature xxi

1 Introduction 1

1.1 Motivation . 1

1.1.1 Space Debris . 2

1.1.2 Autonomous On-Orbit Servicing 5

1.1.3 Active Debris Removal . 7

1.2 Visual Navigation Methods for Space Rendezvous 9

1.3 Related Work . 13

1.4 Contributions . 15

1.5 Outline . 16

2 Image Theory 17

2.1 Time-of-Flight theory . 17

2.1.1 Photonic Mixer Device . 18

2.1.2 ToF Camera Equipment . 19

2.2 Formation of Images . 20

xii Contents

2.2.1 Pinhole Camera Model . 20

2.2.2 Range Imaging . 23

2.3 Point Clouds . 25

2.4 Summary . 28

3 Point Clouds: Features, Segmentation and Registration 31

3.1 Surface’s Normals Estimation . 31

3.1.1 Surface Division . 32

3.1.2 Normal Vector Field . 33

3.1.3 Validation of Normals’ Orientation 35

3.2 Point Feature Descriptors . 36

3.2.1 Local descriptors . 37

3.2.1.1 Point Feature Histogram 38

3.2.1.2 Fast Point Feature Histogram 39

3.2.2 Global Descriptors . 40

3.2.2.1 Viewpoint Feature Histogram 42

3.2.2.2 Clustered Viewpoint Feature Histogram 42

3.2.2.3 Oriented, Unique and Repeatable Clustered View-
point Feature Histogram 45

3.3 Random Sample Consensus . 46

3.3.1 Plane Model . 47

3.3.2 Cylinder Model . 49

3.4 Iterative Closest Point . 51

3.5 Summary . 54

4 Pose Estimation 57

4.1 Estimation Problem Description . 58

4.2 Initialization . 60

Contents xiii

4.2.1 Initialization Based on Global Descriptors 61

4.2.1.1 Training phase . 62

4.2.1.2 Testing phase . 63

4.2.2 Initialization Based on Body Geometry 65

4.2.2.1 Recognition of the main body 65

4.2.2.2 Estimation of the cylinder’s centroid 66

4.2.2.3 Identification of the nozzle, external tanks and fairing 66

4.2.2.4 Definition of the body pose 69

4.3 Tracking . 71

4.3.1 Transformation Estimation . 71

4.3.2 Extended Kalman Filter Design 73

4.3.2.1 Motion model . 73

4.3.2.2 State measurement 79

4.4 Summary . 80

5 Simulations and Results 83

5.1 Synthetic Data . 83

5.1.1 Pose Initialization using Global Descriptors 84

5.1.2 Pose Initialization based on Body Geometry 87

5.1.3 Pose Tracking . 91

5.2 Real Data . 95

5.2.1 Pose initialization based on Body Geometry 99

5.2.2 Pose Tracking . 101

5.3 Summary . 105

6 Conclusion 111

6.1 Contributions . 112

6.2 Future Research . 113

xiv Contents

6.2.1 Fusion with 2D Images . 113

6.2.2 Online Model Generation . 114

6.2.3 Real-time Implementation . 115

6.2.4 Non-linear Estimation Filters 115

6.2.5 Dual Control with Enhanced Target Models 116

Bibliography 117

Appendix A Quaternions 123

A.1 Quaternion Rotation Operator . 125

A.2 Euler Angles to Quaternion . 125

A.3 Quaternion to Euler Angles . 126

List of Figures

1.1 Simulation of space debris belt . 2

1.2 Spatial density of cataloged space debris 4

1.3 Missions of autonomous rendezvous technology demonstration. . . . 6

1.4 CAD model of the Cosmos-3M upper stage. 9

1.5 Example of point clouds. 11

1.6 Operation of scanning and flash lidar 12

1.7 European Proximity Operations Simulator–EPOS– 14

2.1 Principle of the ToF camera . 18

2.2 PMD-Technologies CamCube 3.0 . 19

2.3 1D Pinhole camera model . 21

2.4 Pinhole camera model . 22

2.5 Pinhole camera model LOS angles . 22

2.6 Scale ambiguity in passive cameras . 23

2.7 Typical stereo camera system . 24

2.8 Structured light . 25

2.9 Example of a range image obtained by a ToF sensor 26

2.10 Visualization of voxels based on the rocket body point cloud. 28

3.1 Definition of surface cluster based on distance 33

3.2 Surface’s normals estimation . 35

xvi List of Figures

3.3 Vicinity region for PFH estimation . 39

3.4 Coordinate frames for PFH calculation 39

3.5 Point Feature Histogram descriptor . 40

3.6 Vicinity region for FPFH estimation 41

3.7 Fast Point Feature Histogram descriptor 41

3.8 Calculation of the viewpoint angle . 42

3.9 Viewpoint Feature Histogram descriptor 43

3.10 Segmentation of a point cloud in clusters 44

3.11 Clustered Viewpoint Feature Histogram descriptor 44

3.12 Oriented, Unique and Repeatable Clustered Viewpoint Feature Histo-
gram descriptor . 45

3.13 Plane model fitted to a point cloud. 49

3.14 Cylinder model fitted to a point cloud 52

3.15 Point cloud registration using Iterative Closest Point algorithm. . . . 54

4.1 Definition of the rocket body fixed frame 62

4.2 Estimation of cylindrical axis and rocket body’s centroid 67

4.3 Visualization of the nozzle detector at both possible locations along
the cylinder’s axis of symmetry. 68

4.4 Visualization of the fairing detector at both possible locations. 69

4.5 Flowchart of the initialization process using structural descriptors. . 70

4.6 Descriptor correspondences between two consecutive views 72

4.7 EKF process flowchart. 81

5.1 Test point cloud for evaluation of pose initialization using a global
descriptor. 85

5.2 Closest candidates to match the test point cloud view. 85

5.3 Pose initialization using ICP algorithm after finding best matching
candidate . 86

List of Figures xvii

5.4 Outcome of the initialization process based on body geometry 88

5.5 Output of the initialization routine for estimating the rocket orientation 89

5.6 Difference between the estimated and true relative rocket orientations 90

5.7 Residual error for the alignment of each pair of consecutive frames . 91

5.8 Larger registration errors due to an erroneous rotation alignment
about the rocket longitudinal axis . 92

5.9 Comparison of the true and estimated relative position, linear velocity,
and angular velocity output by the EKF. 93

5.10 Difference between the EKF-estimated and the true relative rocket
position, velocity and angular rate. 94

5.11 Attitude estimate output by the EKF, given in Euler angles, compared
to the true values. 96

5.12 Difference between the EKF-estimated and the true relative rocket
orientation, given in Euler angles. 97

5.13 Cylinder mock-ups for scale assessment. 98

5.14 OUR-CVFH descriptor comparison for cardboard cylinder mock-ups 98

5.15 Scaled, printed model of the Cosmos-3M upper stage. 99

5.16 Point cloud obtained from the printed model using the CamCube 3.0 100

5.17 Render of the real point cloud data acquirement. 100

5.18 Outcome of the initialization process based on body geometry on the
printed model. 102

5.19 Output of the initialization routine for estimating the scaled-rocket
orientation . 103

5.20 Difference between the estimated and true relative orientations for
the printed rocket body . 104

5.21 Residual error for the real data alignment of each pair of consecutive
frames . 105

5.22 Comparison of the true and estimated relative position, linear velocity,
and angular velocity output by the EKF for real sensor data. 106

xviii List of Figures

5.23 Difference between the EKF-estimated and the true relative rocket
position, velocity and angular rate for real sensor data. 107

5.24 Orientation estimate output by the EKF using real sensor data, given
in Euler angles, compared to the true values. 108

5.25 Difference between the EKF-estimated and the true relative printed
rocket orientation, given in Euler angles. 109

List of Tables

1.1 Debris Size Classification . 4

2.1 PMD-Technologies CamCube 3.0 Specifications 20

3.1 Point Feature Local Descriptors . 37

3.2 Point Feature Global Descriptors . 37

5.1 Synthetic Data Simulation - Body Initial Parameters 87

5.2 Real Data Simulation - Body Initial Parameters 101

Nomenclature

Roman Symbols

n⃗ Surface’s normal at a query point

Pi ith-point in point cloud

P Point cloud set

Acronyms / Abbreviations

ADR Active Debris Removal

CAD Computer-Aided Design

CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide-Semiconductor

CVFH Clustered Viewpoint Feature Histogram

DART Demonstration of Autonomous Rendezvous Technology

DLR Deutsches Zentrum für Luft- und Raumfahrt - German Aerospace
Center

DOF Degrees-of-Freedom

EKF Extended Kalman Filter

EOL End-Of-Life

EPOS European Proximity Operations Simulator

ESA European Space Agency

xxii Nomenclature

ETS-VII Engineering Test Satellite-VII

EVA Extra-Vehicular Activities

FOV Field of View

FPFH Fast Point Feature Histogram

GEO Geostationary Earth Orbit

HST Hubble Space Telescope

ICP Iterative Closest Point

ISS International Space Station

JAXA Japan Aerospace Exploration Agency

KF Kalman Filter

LED Light-emitting diode

LEO Low Earth Orbit

LOS Line-of-sight

MEO Medium Earth Orbit

NASA National Aeronautics and Space Administration

NIR Near-Infrared

OOS On-Orbit Servicing

OUR-CVFH Oriented, Unique and Repeatable Clustered Viewpoint Feature Histo-
gram

PFH Point Feature Histogram

PMD Photonic Mixer Device

RANSAC Random Sample Consensus

SfM Structure from Motion

Nomenclature xxiii

SL-8 Name designated to a family of rocket bodies cataloged as space
debris

SLAM Simultaneous Location and Mapping

SVD Singular Value Decomposition

ToF Time-of-Flight

VFH Viewpoint Feature Histogram

XSS-11 Experimental Satellite System-11

1 | Introduction

1.1 Motivation

Different facts have characterized the space exploration since the launch of Sputnik
in 1957, and the subsequent “Space Race” during the following decade, which ended
with the landing of the man on the Moon. Many technological milestones developed
during the last half of the 20th century until today have made a great impact in
the development of the robotics. The latter was extremely important in order to
explore remote locations where the human being is not capable of doing so by its
own means. But also new requirements in Earth observation, remote sensing, and
satellite communications have arisen side by side with those technologies. As a
result, the population of the Low Earth Orbit (LEO) and the Geostationary Earth
Orbit (GEO) has considerably increased during the last decades. There are also
some population in the Medium Earth Orbit (MEO). Some of those satellites are
floating around without control, being a threat for current operational missions.
Also rockets’ leftovers, small pieces of those objects, and tools lost by astronauts
during spacewalks are also a menace for the operative satellites.

Those residuals are commonly named “space debris”, which are continuously in-
creasing based on the phenomenon identified as “Kessler syndrome”, defined as the
tendency of exponential increase of the number of objects due to collisions among
themselves (Kessler and Cour-Palais, 1978). Therefore, a remediation for this pro-
blem enforced the necessity of applying space robotics in how to reach those objects
and dispose them properly. Before thinking about the means of capture/collection
of those bodies, two of the more demanding issues to solve are the identification of
the object as the designated target, as well as the estimation of its relative position
and orientation with respect to a chaser satellite.

2 Introduction

Figure 1.1. Simulation of the space debris belt on LEO–yellow, MEO–magenta, and
GEO–blue. The objects are not at scale. (Credit: DLR)

1.1.1 Space Debris

As said above, the first man-made object that orbited the Earth was the Sputnik-
1, on October 4th, 1957. Since then, different missions had been launched for
diverse purposes, e.g. exploration, communications, Earth observation, meteorology,
navigation systems, et cetera. As a result of those missions, some objects remained on
orbit because of their specific function during the different phases of the spacecraft
operation, and they were not properly disposed. For instance, upper stage rockets
for the high-altitude orbit insertions, or satellites after fulfilling their mission. It is
also possible to find satellite-to-launcher adapters, upper stage fairings, or diverse
clamps/bands/retainers for movable devices, that are increasing the number of
space debris elements.

On the other hand, unintentional items –tools or gloves of the astronauts–, lef-
tovers of the launcher operation –particle products of solid motor combustion, or
diverse internal liquids leakage–, and coating/painting degradation of both the
satellite’s and upper stage’s surfaces are other sources of space debris. Additionally,
the sudden explosion of spacecraft and rocket stages is also an important source

1.1 Motivation 3

of debris, mainly produced by the abrupt change in temperature on orbit, making
the unused fuel to ignite inside the satellites and upper stages. Therefore, the space
debris have been cataloged based on their function/operation, into three groups
mainly:

• Fragments

• Payloads

• Rocket bodies

Because of more than 60 years of space operations, some space regions have
had more exploitation than others due to different factors, like better illumination,
desired orbital period, among others. For instance, most of the operative spacecraft
are located in LEO, because they are close enough for remote sensing and Earth
observation missions, and those satellites are protected from the cosmic rays thanks
to the Earth’s magnetic field. Additionally, some of those orbits at LEO have certain
characteristics that make them desirable for specific missions, e.g. Sun-Synchronous
orbits maintain the same sun illumination conditions over the year, making this
fact very useful for Earth observation using cameras. These orbits have inclinations
greater than 90◦, with the most used altitude between 900 and 1500km (National
Research Council, 1995; United Nations, 1999). On the other hand, spacecraft at GEO
have an orbital period of approximately 23h, 56min, and 4s, or the same as a mean
sidereal day. This ensures that the spacecraft remains around the same longitude
during the whole time. This fact is useful for communications, because satellites
seem to be fixed in sky for ground antennas.

Hence, the demand of having a catalog that describes the different type of space
debris objects arises as new spacecraft are launched year after year. Most of the
data is observed by the US Space Surveillance Network, maintained in their catalog
through data collection, based on ground radars and telescopes network. The latter
watches the sky, detecting and tracking most of the space objects. It is not possible
to watch all of them due to technical limitations, since the average size of observable
debris is 5 − 10cm in LEO, and 30cm to 1m in GEO (Klinkrad, 2006). Figure 1.2
shows the orbital spatial distribution of the cataloged elements.

For those objects not-observable from Earth, the measurements have been made
in situ by optical means, or even some evidence has been taken from impacts of small

4 Introduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

10−13

10−12

10−11

10−10

10−9

10−8

10−7

Altitude [km]

Sp
at

ia
lD

en
si

ty
[o

bj
ec

ts
/k
m

3]

Spatial Density of Cataloged Space Debris

Figure 1.2. Spatial Density of Cataloged Space Debris.
(Data source: www.space-track.org)

fragments on diverse spacecraft. Those recordings allow to reproduce environmental
models of the debris population. Thus, another important classification topic for the
space debris is their size, along with the estimated mass. This arrangement can be
seen in Table 1.1 (National Research Council, 1995).

Table 1.1. Debris Size Classification

Size Diameter Mass

Small < 1mm < 1mg
Medium 1mm− 10cm 1mg− 1kg

Large > 10cm > 1kg

The altitude is a determinant factor for space debris. For instance, the velocity
needed for an object to stay in orbit is about 6.9 − 7.8km/s, depending on the LEO
height, and an average velocity of 3.1km/s for satellites in GEO. Then, a fragment,
whose speed can be 10 times the speed of a bullet –for LEO–, can easily perforate any
part of a satellite due to the high momentum of each piece. Additionally, when the
mass of the target increases, the kinetic energy also rises, making the threat greater.
As an example, an object of 500kg at a speed of about 7.8km/s can have a kinetic

www.space-track.org

1.1 Motivation 5

energy of about 1.521× 1010J. The latter is comparable to about 3.6 times the energy
released by the explosion of 1t of trinitrotoluene, i.e. 3.6 megatons, approximately.

However, not only the orbital velocity and the mass are critical for an impact,
but also the relative velocity two objects may have. The collision velocities can vary
from 0km/s if both objects are in the same orbit, to twice the orbital velocity if the
objects are facing each other. A special mention has to be made when the impact
is produced by an object in an elliptical orbit. The latter has the highest velocity at
the perigee, which will be faster than the local circular orbital velocity. Otherwise,
the lowest speed is located at the apogee, which will be lower than the local circular
orbital velocity. Thus, even higher relative velocities could be achieved. Additionally,
the intersection angle of the orbits has an influence in the collision velocity, e.g. if the
angle between two orbits is greater than 60◦, the relative velocity would be larger
than the local orbital velocity (National Research Council, 1995).

1.1.2 Autonomous On-Orbit Servicing

On-Orbit Servicing (OOS) is defined as the capability of a master spacecraft to
rendezvous another operative spacecraft, and perform certain tasks on the latter
that may correct and/or enhance its conditions, in order to have an improved
operation (NASA, 2010). OOS surged as a necessity of extending the End-of-Life
(EOL) of the satellites around the Earth by refueling, replacing power batteries, or
adapting/changing payloads for mission extension. Servicing on spacecrafts has
been done in past, specially on space stations like Skylab or the International Space
Station (ISS), and on the Hubble Space Telescope (HST).

One particular factor in the samples described above refers that the astronauts
are who perform Extra-Vehicular Activities (EVA), i.e. spacewalks, in order to repair
and/or update the hardware of the serviced spacecraft. Sometimes those tasks can
be really demanding, or even dangerous for the people who perform these activities.
Furthermore, the prevalence of factors like safety and integrity for both servicer
and under-servicing spacecraft granted improvements in autonomous proximity
operations. For instance, because of the high orbital velocities both spacecraft have,
the rendezvous requires a very precise operation in order to keep a constant distance
in between. For that reason, the search of a bigger autonomy level in the process
was imperative. In addition to this, the rendezvous maneuver can be limited due

6 Introduction

(a) ETS-VII (b) XSS-11

(c) DART (d) Orbital Express

Figure 1.3. Missions of autonomous rendezvous technology demonstration.

to short communication windows from ground station. Hence, the mission could
take additional resources that could be reduced, if the rendezvous is made in an
autonomous way.

Because of all the described reasons, some technology demonstrators like the
missions Engineering Test Satellite VII (ETS-VII), Experimental Satellite System-11
(XSS-11), Demonstration of Autonomous Rendezvous Technology (DART), and
Orbital Express (Woffinden and Geller, 2007), tested the possibility of performing
servicing tasks without astronauts involved in the process. In these missions, either
the target provided its own position and attitude to the chaser, or ad hoc visual
markers on the target’s surface enabled the chaser to autonomously obtain the
relative pose (Christian et al., 2012). Some assessments were successful, while others
were not. However, the average outcome of those tests was the high probability of
performing autonomous OOS, under certain operative conditions.

1.1 Motivation 7

1.1.3 Active Debris Removal

Before the idea of servicing, the spacecraft was considered to be orbiting around the
Earth after the completion of its mission. Those “defunct” satellites were considered
junk, or debris. Some of them returned to Earth burning up due to the friction with
the atmosphere at reentry, but exist others that could survive the fall and become a
threat for the population. Furthermore, when a satellite is near to its EOL, it can be
put into a graveyard orbit, where the influence of atmosphere is nearly minimum
and can be there for tens of decades, suffering almost no decay in their altitude.
Unfortunately, there are other objects that exist in between, and they can become
a threat for operative spacecraft and satellites, e.g. the ISS, which have performed
evasive maneuvers to ensure both the integrity of its structure and the safety of its
occupants.

Although space surveillance catalogs exist for tracking the space debris, the
number of elements is continuously increasing, making harder to ensure the integrity
of the operative satellites. For that reason, like the OOS, another servicing necessity
has emerged in order to reduce the population of space junk: Active Debris Removal
(ADR). ADR is defined as the process of sending a chaser satellite to capture a
certain target, and dispose it properly, without producing additional debris during
the process. Both ADR and OOS refer to rendezvous to an object on orbit, but
OOS has the advantage that the target would still be operative and provide some
information about its status. In this scenario, the target is cooperative for the OOS.
On contrast, space debris are non-operative devices that have finished their duty
time and were not designed to be recovered after EOL. For this reason, the debris
are named non-cooperative targets.

This non cooperativeness increases the level of complexity to the autonomous
proximity operations, because of the absence of knowledge about the dynamics of
the target. Additionally, due to the lack of orbital control of the debris, the latter may
be tumbling. Hence, the change of the target’s attitude makes even harder on how to
define the approach method to capture the debris in a safe way for both chaser and
target. For that reason, before the capture of the object, it is important to perform a
trade-off between the possible methods for detecting and tracking the debris.

Furthermore, all the process should be done in an autonomous way, based on
the possible interruption of the communication links between the ground station

8 Introduction

and the chaser satellite. In the case of LEO, the orbital period indicates how many
minutes a spacecraft could pass through the coverage area of a ground antenna. If a
critical maneuver –e.g. capturing the target using a robotic arm– is being performed
remotely from the station, and the communication link is broken during that precise
moment, the risk of failing the mission is evident due to lack of information at the
current epoch. Moreover, a communication network could be set using multiple
ground stations and/or relay communication satellites at higher altitudes. However,
the latter could induce latency in the communication signal. This produce a misma-
tch between the data that the operator is observing, and the current measurements
from the on-board sensors.

The critical step is the selection of an object as a target for a possible ADR mission.
It is necessary to take into account different aspects to consider a space debris object
as a candidate for removal:

• Orbit, i.e. the height and the inclination plus the population of elements in a
specific region.

• Collision probability, or how big the chances are for producing new debris due
to impact and/or explosion.

• Size, which determine the quantity of fragments, if the object breaks apart.

• Mass, that implies the amount of matter of new fragments, if they are genera-
ted.

Based on the previous considerations, it implies that the suitable candidates to
be removed are the rocket bodies, due to their big size and mass, additional to the
high impact probability with other orbiting debris. Furthermore, rocket bodies are a
source of new debris objects due to explosion risks, result of unused fuel inside the
propulsion system, as described in Section 1.1.1. Based on the previous premises,
the most promising targets to be actively removed are the SL-8 Rocket Bodies (Peters
et al., 2015). This nomenclature refers to the second stage of the Russian launcher
Cosmos-3M, whose Computer-Aided Design (CAD) model is shown in Figure 1.4.

1.2 Visual Navigation Methods for Space Rendezvous 9

Figure 1.4. CAD model of the Cosmos-3M upper stage.

1.2 Visual Navigation Methods for Space Rendezvous

When two spacecraft are going to encounter, the rendezvous maneuver is divided in
4 main phases, based on the distance between them. They are: phasing, far range,
close range, and final approach (Fehse, 2003). In case on ADR, the same rendezvous
scheme can be hold. However, the sensors selected for this kind of mission can
differ to those used in OOS. The latter is based on the nature of the targets of being
non-cooperative.

The trade-off of the sensors are based on their capabilities and what is expected as
a result. The required outcomes are commonly the distance between the target and
the chaser satellite, and the attitude of the target with respect to the chaser reference
frame. Thus, the suitable option for achieving those outcomes is by using visual
navigation sensors. The main advantage of this type of devices is the possibility
of detecting an object, i.e. see the shape and appearance of it, as well as tracking it,
i.e. following its movements during a certain lapse.

10 Introduction

As the ranging is one of the unknowns to solve, the system requires a setup for
such purpose. There are active and passive sensors that can be useful for solving this
issue. Passive sensors, or cameras, detect a portion of the wavelength emitted or
reflected by the objects in order to generate images of them, without any additional
action than recording consecutive frames. By itself, a camera is not able to measure
distances. However, some improvements has been made in order to record such
data.

For instance, the stereo triangulation makes possible the extraction of depth in a
scene, with the use two or more cameras and a well-known baseline between them.
Otherwise, the range information can also be obtained by using a single camera
when one of the two actors involved is moving, i.e. either the camera or the observed
object. This method is referred as structure from motion (SfM) (Bonin-Font et al.,
2008). Although the camera is a cheap sensor and its mass is low, the requirement
of having textured surfaces, which are used for detecting features and reconstruct
the 3D points of the surface, makes difficult its implementation. Additionally, the
illumination conditions on orbit change quite fast, making hard the proper algorithm
operation. Finally, the scale ambiguity using cameras makes hard to distinguish
between a big target that is far from the sensor and a small object that is very close.
The latter will be discussed in more detail in Section 2.2.1.

On the other hand, active sensors help to overcome some of the drawbacks
described before for the cameras. For instance, the light detection and ranging sensor,
or lidar, emits their own illumination with lasers in a certain wavelength range
(e.g. 500 − 1600nm), being less susceptible to variation in the lighting conditions.
The great advantage of lidar is related to their capability of measuring the distance
between the target and the sensor, as well as the possibility of reproducing its
surface based on the range data acquired. Each range recording is a point in the 3D
Euclidean space of the sensor reference frame. Hence the set of all those points after
acquisition are commonly called “point clouds”. Otherwise, the accuracy of those
range measurements can be reduced by the reflectivity properties of the object, and
the radiation emission carries more power consumption to the system.

In between, different variants of the lidar exist based on the way these devices
capture the 3D information. First of all, the scanning lidar uses a laser beam pointed
to the requested scene/object through a steerable mirror, which directs the laser
beam. For each step the mirror has, a range measurement is made. The most

1.2 Visual Navigation Methods for Space Rendezvous 11

Figure 1.5. Example of point clouds.

common types of this kind of lidar are the single-line scanning and the bidirectional
pattern scanning. The former steers the mirror in a way that all the measurements
lies on a plane (see Figure 1.6a). On the contrary, the latter has the possibility of
moving in 2 directions instead of one, obtaining a more descriptive information of
the scene.

Although the accuracy of lidar is in order of centimeters, and it can cope with
adverse illumination conditions, the use of gimbals and mirrors to redirect the laser
beam is a kind of drawback for the proposed ADR mission, based on the weight
and power consumption of the sensor. Additionally, the target is supposed to be
tumbling free on orbit. This dynamics may produce blur motion on the data, due to
the time required by the lidar to scan the scene.

Otherwise, the second variant of the lidar is called flash lidar, in which the laser
beam is optically diverged to produce a whole illumination of the scene/object
in a single laser shot without the use of mechanical devices like those used in the
scanning lidar (see Figure 1.6b). The sensor has a pixel array similar to those used in
passive cameras, which capture the reflected light. Each pixel is capable to record
the range by measuring the time required by the emitted light since it was shot and
the reflection returns to the sensor. Therefore, the flash lidar can produce the 3D
representation of the surface with the range information in each pixel of the sensor.

Regarding the drawbacks, the flash lidar also has some of consideration. First of
all, the sensor captures the light in the field of view, coming from the reflected light
as well as from other illumination sources. This may expose the sensor to saturation,
leading a bad range measurement. Secondly, the operational range is lower than that

12 Introduction

(a) Scanning lidar (b) Flash lidar

Figure 1.6. Comparison of the operation between a scanning lidar and a flash lidar.

from the scanning lidar, because of the diffraction of the laser beam, which produces
a light with a lower intensity (Pollini et al., 2011).

During the last decade, a new sensor has capture the attention of applied robotics,
and it is called Time-of-Flight (ToF) camera. As its name indicates, it also measures
the range towards an object based on the time the photons “flight” from the camera,
impact on the target and return to the sensor. In the sense of “camera”, it is capable
of producing not only a 3D surface representation, but also a 2D gray-scale image
of the object based on the measurement of the amplitude of the reflected light in
one single shot (Ringbeck and Hagebeuker, 2007). The illumination source is an
array of light-emitting diodes (LED), that have their operational wavelength in the
near-infrared (NIR) section of the electromagnetic spectrum, i.e. similar to that used
in lidar. Because of the low power consumption for emitting light, low weight in
comparison to the laser counterparts, as well as the similar operation principle to the
flash lidar, the ToF cameras are considered to be candidates for proximity operations,
despite of the lack of qualification for space flight.

However, the ToF camera also has the similar disadvantages to those related to
the flash lidar. The use of led arrays instead of laser reduces the operative range
measurement. Also the multi-path errors, i.e. illumination of other sources than the
object reflected light, are common in ToF camera. On the other side, the capability of
having its own illumination source, as well as producing 3D measurements, make
this sensor a good option for full darkness conditions. For instance, if the ADR
is performed in LEO, the orbit may have a shadowed portion given by the Earth

1.3 Related Work 13

and the duration of this eclipse is about one third of the orbital period. This can be
advantageous for estimating the position and orientation of the space debris.

1.3 Related Work

The main technological demonstration missions about autonomous rendezvous have
been already addressed in Section 1.1.2. In those cases, the estimation of the position
and orientation, also called pose, has been done in a cooperative way, through the
use of markers or reflectors on the target spacecraft, in order to identify them and
subsequently tracking. Similarly, different type of lidar has been used in relative
navigation on orbit (Christian and Cryan, 2013), being some of them related to the
demonstrators, as well as flying experiments aboard the Space Shuttle.

Moreover, additional research has been made in laboratory in order to validate
new improvements with respect to the goals achieved by the flown missions, using
different approaches for points clouds manipulation as well as types of sensors. In
the laboratory experiments (Aghili, 2010; Aghili and Parsa, 2009; Ruel et al., 2008),
scanning lidar were used for the state estimation, and then the outcome was used
for proper autonomous rendezvous. Basically, the motion of the target spacecraft is
always assumed to be moving slowly relative to the time frame between scans. The
last statement was done because the scanning time of the lidar may be slower than
the spin motion of the target. If this happens, the collected range data will suffer
of “smearing”, which can be compared to the blur in common photograph images.
The data smearing produces a bad geometry representation of the target, if it is not
corrected. Hence, having the low rotation speed assumption, it makes the solution
to be more restrictive in comparison to the motion of a non-cooperative, tumbling
debris. Furthermore, The German Aerospace Center (DLR - Deutsches Zentrum
für Luft- und Raumfahrt) has been performing OOS studies for the last meters of
rendezvous using visual navigation (Boge et al., 2013; Sellmaier et al., 2010). For that
purpose, the orbital conditions are simulated on the European Proximity Operations
Simulator (EPOS) (see Figure 1.7). Here, due to the purpose of OOS, it inferred that
the relative motion between the two spacecraft is quite slow.

With respect to the ADR, different methods has been studied in order to detect
and track the space debris (Bonnal et al., 2013), as well as the means for capturing
them (Shan et al., 2016). Here, a chaser platform was assumed to be equipped with a

14 Introduction

Figure 1.7. EPOS in the facilities of DLR in Oberpfaffenhofen, near Munich (Credit:
DLR)

robotic arm (Felicetti et al., 2016). Recently, a technology demonstration mission from
the European Union has been announced with the name of “Removedebris” (Lappas
et al., 2014). This mission has been designed in order to perform three different
experiments on orbit using three cubesats as mock-ups, respectively. Two of them
are regarding to capture methods, specifically a net and a harpoon. The remaining
dummy cubesat will be subject of navigation algorithms validation for different
rendezvous maneuvers using a standard visual camera and a flash lidar. All the
data acquired during this mission will be processed on-ground, meaning that the
rendezvous operation will not be autonomous. Even though, this would be one of
the first missions focused on validating methods for ADR.

Although one might think otherwise, the main space agencies have focused their
efforts in different directions, and not all of them are related to ADR. For instance,
the National Aeronautics and Space Administration (NASA) and its Orbital Debris
Program Office (Liou, 2017) has been developing their research activities towards
observations from ground in order to characterize the orbital debris population.
Additionally, this department is developing particle impact detection technologies
for in situ measurements. Finally, the Office also develops, maintains, and updates
space debris environment models. In the case of the Roscosmos State Corporation for

1.4 Contributions 15

Space Activities, commonly known only as “Roscosmos”, the efforts for space debris
mitigation are now focused on adopting new policies for future missions, which may
reduce the augmentation of the space debris population. They are also planning
new methods and procedures for proper spacecraft disposal after EOL (Makarov
et al., 2017). But, surprisingly, both American and Russian space agencies are not
promoting any ADR activity by themselves.

On the contrary side, the Japan Aerospace Exploration Agency (JAXA) has
been working recently in a concept for ADR (Kawamoto et al., 2017), where they
are assessing the possible sensors to be used –cameras and lidar–, as well as the
trajectory scheme, and the means for capture. For the disposal method, they are
evaluating an electrodynamic tether, which is a long conducting wire that generates
energy by passing through the magnetic field of a planet –the Earth in case of ADR–
. Then, the tether can be used as a thruster, ejecting electrons generated by the
magnetic field, as well as those that float freely in the ionosphere, also captured by
the tether. Hence, the debris has now a propulsion device to enter in a controlled
way into the atmosphere. JAXA is proposing to make an on-orbit demonstration
around 2020.

At last, but not least, the European Space Agency (ESA) is determined in remo-
ving a single large ESA-owned space debris from LEO. The e.deorbit mission is the
answer to achieve that goal in the next years (Biesbroek et al., 2017). This mission
is the result of the necessity of disposing in a proper way the defunct ENVISAT,
which is tumbling in an uncontrolled way, and with a mass of around 8 tons. ESA
has been evaluating the different sensors –most of them both passive and active
cameras–, methods of capture, and guidance procedures to perform a safe ADR
through simulations and laboratory tests. ESA plans to demonstrate the technical
advances on orbit and the possible disadvantages in 2023.

1.4 Contributions

This thesis presents the development of quasi-real time algorithms for the autono-
mous estimation of the 6 Degrees-of-Freedom (DOF) of a non-cooperative, tumbling
rocket body in orbit, previously selected as target, using a ToF camera.

16 Introduction

1. The algorithms use individual, consecutive point clouds, fundamental for the
two main phases of the estimation:

(a) Initialization: to estimate the target position and orientation for an initial
state.

(b) Tracking: to preserve the pose estimation over time due to the motion of
the target.

2. The performance of the algorithms was evaluated in two conditions:

(a) Use of simulated point cloud data, based on the characteristics of a com-
mercial ToF camera.

(b) Use of real point cloud data, operating a ToF camera on a 1:10 scaled, 3D
printed model of the rocket body.

1.5 Outline

The current chapter has presented the motivation for this research, and an over-
view of the state of the art for relative navigation to cooperative targets on orbit.
Additionally, the contributions of this thesis to the field but for non-cooperative
targets.

Chapter 2 details the theoretical foundation image formation, as well as the ToF
camera operation, and how the point clouds are produced. It also describes the
fundamental point cloud operations.

Chapter 3 defines point cloud feature descriptors, and the point cloud registration
problem.

Chapter 4 presents in detail the problem of position and attitude estimation of a
free-floating object, and the proposed approach of this research work.

Chapter 5 describes the validation of the algorithms with both simulated and
real point cloud data, in order to show the performance of the solution.

Chapter 6 summarizes the thesis, showing the conclusions of the work, and
proposing further recommendations for future research.

2 | Image Theory

This chapter presents how it is possible to measure range using a camera and its
illumination source, under certain operation conditions. This technique allows
not only to measure the distance between the agent and the target, but also to
have a visual representation of the object in both 2D and 3D. Thanks to the last
outcome –the 3D information–, robotics has greatly enhanced, because it allowed to
autonomous agents to interact with the environment, with more safety and better
performance. Of course, different range measurement methods have existed before
by using radio-frequency, i.e. radar, or ultrasound, i.e. sonar. But those techniques
have some drawbacks that may affect the operation of an autonomous system. For
instance, the use of ultrasound in vacuum is impossible, because of the absence of a
transmission medium. Contrary to the radar that can work in different means, the
most basic arrangement can only detect objects in one dimension. Otherwise, active
imaging allows not only to measure the range, but also to identify the object and
check its condition, if required.

2.1 Time-of-Flight theory

Active 3D imaging is based on the Time-of-Flight (ToF) principle: it employs the
speed of light of an emitted signal to calculate the range. An array of LEDs produces
NIR light, which is modulated by a emitted signal of lower frequency (typically a
few tens ofMHz). This light hits on a scene, and the portion of the reflected light is
captured by a receiver sensor that records both brightness and emitted-to-received
phase shift (see Figure 2.1). The latter enables to extract the range ρ between the

18 Image Theory

Controller

IR light

Sensor array

Object

∆φ

Figure 2.1. Principle of operation of the ToF camera. The phase difference between
the emitted (blue) and received signal (red) helps to measure the distance
from the sensor to the object.

camera and the observed scene, based on the following equation:

ρ =
c

2f
∆φ

2π
(2.1)

being c the speed of light, f the signal modulation frequency, and ∆φ the signal
phase difference (Hansard et al., 2013).

2.1.1 Photonic Mixer Device

Different type of sensors are used for capturing the intensity of light in order to
generate images. Common image processing systems are based on Charge-Coupled
Device (CCD) or Complementary Metal–Oxide–Semiconductor (CMOS) sensor, that
allow to project the information of 3D world into a 2D image. Because of the latter,
a new technology has been produced in order to obtain 3D information: Photonic
Mixer Device (PMD) (Ringbeck and Hagebeuker, 2007). The PMD sensor is capable
of obtaining the distance measurements without additional mechanical or electronic
devices. The sensor itself is composed by an array of pixels, which is capable of
recording three layers of information:

• a brightness matrix

2.1 Time-of-Flight theory 19

Figure 2.2. PMD-Technologies CamCube 3.0 is composed by a central body where
the optics and sensor are located, and two LED arrays at each side of the
main body for illuminating the scene.

• an amplitude matrix, which is proportional to the received signal strength

• a depth map, i.e. the distance to the objects in the scene

For this research, the depth map is used without any combination with the other
two matrices. The decision for this approach is based on the harsh conditions that
the camera would have as being a payload in a chaser satellite. First of all, the sun
would be in the field of view (FOV) of the camera, and it may saturate the sensor.
This over-exposition of light affects in many ways how the brightness intensity
of a scene is captured. Secondly, the amplitude matrix is an indicator of quality
in the received signal. Although this matrix could be used in environments with
high-background clutter in order to detect the sources of better reflection on an
object, it is expected to have only one target in the camera FOV for ADR missions.

2.1.2 ToF Camera Equipment

Based on the benefits that this kind of technology offers, this research is founded
on the specifications of a PMD-Technologies CamCube 3.0 (see Figure 2.2 and
Table 2.1) (PMD-Technologies, 2010). Other studies have demonstrated the pros and
cons of this type of active image technology (Foix et al., 2011; Keller and Kolb, 2009),
but explaining all of them here is beyond the scope of this research.

20 Image Theory

Table 2.1. PMD-Technologies CamCube 3.0 Specifications

Parameter Value

Sensor size 200 px × 200 px
Pixel size 45µm
Field of view 40◦ × 40◦
Focal length 12.8mm
Wavelength 870nm

2.2 Formation of Images

Although the use of brightness intensity image were not selected to be part of this
research, the theory of how the images are formed in this type of sensor is relevant
for the formation of the depth map. As explained in Section 2.1.1, the PMD sensor is
capable of recording both intensity and distance. As matter of fact, it is valid to say
that the depth map is also another type of image, where the distance to the object
substitutes the brightness intensity values in the image.

2.2.1 Pinhole Camera Model

The most common model used for image formation is the perspective or pinhole
model, because it mimics more accurately the behavior of real cameras. This camera
model consists on the image formation on a plane by projecting the 3D points
towards the center of projection O. This model assumes that the rays of light do
not diverge and pass only through the center previously mentioned. Figure 2.3
illustrates the model in one dimension.

From the diagram, an object has a height H located at a distance Z from the
camera. The latter has a focal length f which indicates the distance between the
camera center and the image plane. By the use of similar triangles, the height of the
produced image h can be obtained by the means of:

h = −f
H

Z
(2.2)

The negative sign of the focal length indicates that this distance is measured in
opposite direction to the location of the object, confirming also the inversion of the

2.2 Formation of Images 21

Of Z
h

H

θ

Figure 2.3. 1D Pinhole camera model. The object image is inverted in the image
plane of the camera.

image height. In addition to this, the line-of-sight (LOS) angle θ is defined from the
optical axis and the height of the object, as well as the height of the image, with the
following relation:

θ = arctan
(
H

Z

)
= arctan

(
h

f

)
(2.3)

Because of the real world is 3D instead of 2D, the above formulas need to be
extended, although not expressed in this research. Hence, the pinhole camera model
is also extended to 3D coordinates. In order to avoid an inverted image, the camera
reference frame is rotated 180◦ around the yO-axis. In this manner, the image plane
is located towards the object in space. The intersection of the optical axis and the
image plane is called as principal point. Figure 2.4 shows the pinhole camera model
with a frontal image. Now, two LOS angles are defined: a horizontal angle measured
from the optical axis to the projection of the ray on the plane xOzO, and a vertical
angle measured from this projection to the ray itself, as shown in Figure 2.5.

Using Equation 2.2, it could be possible to obtain the distance between a passive
camera and an object if the dimensions of the latter are known in advance. However,
this approach can be problematic if the object is under high dynamic behavior,
i.e. translating and/or rotating. Additionally, the appropriate orientation of the
object should also be known, and this is the main goal of this research. Furthermore,
passive cameras suffer of scale ambiguity: taking again the 1D pinhole model for
simplicity, it is possible to have different sizes of an object located at an specific
distance from the center of projection. Thus, the image produced in the sensor could

22 Image Theory

O

P(X, Y,Z)

z =
−f

p(x,y)

principal
point

xOzO

yO

optical
axis

image
plane

Figure 2.4. Pinhole camera model. P is a 3D point in world coordinates, and its
correspondent image p, which is the intersection of the ray, which comes
from P to the center of projection O, and the image plane.

O
θh

θv

xO

zO

yO

optical
axis

Figure 2.5. Pinhole camera model LOS angles. Horizontal angle, θh, and vertical
angle, θv.

2.2 Formation of Images 23

O

image plane

A
B

C
D

Figure 2.6. Scale ambiguity in passive cameras. Similar objects with scaled dimensi-
ons may have an equal image output.

be the same for all the objects under certain specific conditions. A new diagram
showing this issue is addressed in Figure 2.6.

2.2.2 Range Imaging

In the field of computer graphics, a depth map is an image that contains information
regarding to the distance between an object and a particular viewpoint. This distance
information is recorded in an additional channel, usually named Z-depth or Z-buffer.
The channel is also stored as an array, similar to the intensity matrix of gray-scale
images, where each pixel contains information about the distance value.

This methodology has been translated into computer vision as a technique for
calculating the distance to objects from a given viewpoint using cameras, which is
called range imaging. Here, a depth channel is added to the 2D imaging in order to
provide a distance, or range value from the specific reference frame.

Active and passive cameras are capable of obtaining a range image, based on
their configuration and/or operation. For instance, one of the most common appli-
cations is the stereoscopy, where two passive cameras are properly arranged, and
they simultaneously capture images for the same object. By means of matching
techniques (Scharstein and Szeliski, 2002), the depth is obtained by finding corre-
sponding points in both of the images. Perhaps the strength of this technique is
also its drawback. First of all, the correspondence problem has a higher degree of

24 Image Theory

P(X, Y,Z)

left camera
image plane

pl(xl,yl)

right camera
image plane

pr(xr,yr)xl
zl

yl

xr
zr

yr

Figure 2.7. Typical stereo camera system. The light rays show a point P in global
coordinates, and the respective projected scene for each camera’s image.

complexity when the scene has minimum variation in intensity, color or surface
texture (Rosso et al., 2013).

Additionally, the synchronization of the cameras must be ensured, i.e. the shutter
time, in order to obtain the images at the same epoch. A stereo vision system can
also be arranged with more than two cameras. Figure 2.7 shows a simple stereo
camera setup.

Otherwise, the use of structured light also allows to obtain the range to objects
using cameras (Besl, 1988). This is an active technique, because it requires an
additional illumination source for its operation. The lighting system illuminates
the scene with a particular light pattern (e.g. speckles, lines, dots), and this motif is
observed by a camera sensor. The detected light is no longer steady but distorted
because of the surface of the scene, and from those geometrical changes it is possible
to reconstruct the shape of the objects, i.e. having the distance to the viewpoint. In
comparison to the previous method, instead of having two cameras, one of them
is replaced by the light emitter, but conserving the baseline between them. This is
made in order to observe the distorted light from a different perspective than from
the light source itself.

The main drawback on this technique is related to the baseline between the
camera an the light emitter. Depending on the application, this baseline commands

2.3 Point Clouds 25

P(X, Y,Z)

image plane

p(x,y)

xO

zO

yO

projector

Figure 2.8. Structured light. The projector illuminates the object and the reflected
light is captured by the camera. The arrangement is similar to the stereo
vision system.

how far the system is capable of detecting the range. But at the same time, the
power required by the illumination system is constraining the range measurement.
Additionally, the computational burden of detecting the light distortion can be
similar to the detection of the features in stereo imaging. A diagram of the structured
light setup is shown in Figure 2.8.

Finally, lidar and ToF cameras can also obtain the called range image based
on the Equation 2.1. They both have an illumination source –laser for the former
and IR-LEDs for the latter–, whose reflection on the scene is captured by the sensor.
Although they both have the same principle of operation, the selection of the sensor is
based on different aspects, like the operative range or the environmental conditions.
The outcome, however, is pretty similar for both sensors. An example of a range
image can be seen in Figure 2.9.

2.3 Point Clouds

Although the range images provide the distance to the objects in query, the operati-
ons of the data supplied can be fatiguing due to the format. When the ray of a 3D
point in world coordinates is projected thanks to the camera model (see Figure 2.4),
the data obtained is stored as the position (u, v) in the image coordinates, plus the

26 Image Theory

Figure 2.9. Example of a range image obtained by a ToF sensor. The color map
represents the depth of the scene: cold colors are closer to the sensor.

value of the range ρ. This kind of information display can be defined as 2.5D, because
the depth information in world coordinates is represented in an image ofm pixels
per row and n pixels per column. Most of visual navigation applications requires to
have this information in full 3D, i.e. in world coordinates, because it is also required
to know the constraints in each Euclidean dimension for the autonomous agent.
This will ensure that a robot does not collide with the obstacles in the environment,
or a manipulator can grab an object with better accuracy.

Hence, a transformation of the data is compulsory in order to have the represen-
tation of this range data as the spatial distribution of the scene under observation.
With the a priori knowledge of the internal characteristics of the ToF camera, like the
number of pixels of the images and size of the pixel, as well as the focal length of the
camera, the conversion of data can be performed using Algorithm 2.1.

See that, for each range value ρ, a point in 3D space Pij has coordinates (X, Y,Z)
in the same units as the range, usually meters. Because of the data transformation
was performed in the pinhole model reference frame, the coordinates of each of the
obtained points are also given in this canonical frame. The new set that contains all
new points is now considered as a point cloud. This term refers to the similitude

2.3 Point Clouds 27

Algorithm 2.1 Convert range image into point cloud

1: procedure RANGE2POINTCLOUD(m, n, f , ρ)
2: S← ∅
3: for i← 0 tom do
4: for j← 0 to n do
5: v← (i, j, f)
6: v̂← v

∥v∥
7: Pij ← ρv̂
8: S← S ∪ Pij ▷ append Pij to a new list
9: end for

10: end for
11: return S

12: end procedure

between the data spatial distribution, and a common cloud in the sky. A sample of a
point cloud was shown in Figure 1.5. Thanks to this data transformation, it is possible
to distinguish the surface of the objects (unless some of them are overlapped), as
well as to get rid of the scale ambiguity, inherent to the pinhole model of the passive
cameras.

The point clouds are now full 3D representations of the objects, i.e. it is possible
to measure the height, width, and depth, although the users are seeing the data on
a screen. Depending on the capture device, e.g. stereo camera or Kinect™ (Soares
Beleboni, 2014), the points can also have additional labels associated, like the color
of the object’s surface from where the ray comes, the reflected signal amplitude in
case of ToF cameras, or the distance to each point similar to that on range images.

From this representation, the point cloud expands the possibilities on how we
can visualize the information, like the dispersed dots in space with or without the
color information. Alternatively, the range can be shown in a color scale, where the
cold colors indicates the objects closer to the viewpoint, opposite to the warm colors
(see Figure 2.9). If the concept of volume is somehow missing, the possibility of
showing boxes that enclose the points based on given conditions, like the length of
each box or the number of points per box. Those boxes are called “voxels” (Kaufman
et al., 1993), and they were named as an analogy for the 2D pixels, but in 3D. Apart of
giving an idea of volume, this voxel representation is useful in tasks like point query
search, because the voxels can be considered like buckets and each of them can be
labeled depending on the analysis requirements. An example of the “voxelization”

28 Image Theory

Figure 2.10. Visualization of voxels based on the rocket body point cloud.

of the point cloud obtained from the Cosmos-3M CAD model (see Figure 1.4) can be
seen in Figure 2.10.

Additionally, meshes can be formed based on the points’ position, giving a more
conceptual representation of the surface of the objects in the scene. The latter gives
the idea of how the objects are in reality, but this representation has not enough in-
fluence in signal processing. Furthermore, the meshes demand more computational
power when the scene need to be updated due to camera manipulation, i.e. panning
or zooming.

2.4 Summary

This chapter presented an overview of image theory, related to the procurement and
further representation of 3D information using passive and active cameras. First of
all, the explanation of the operation principle of the ToF cameras, including a short
description of a capturing device, was given in order to establish the concepts for

2.4 Summary 29

understanding this range measurement technique. Moreover, the depiction of how
the mathematical model of a pinhole camera serves for obtaining a range image, and
the consequent point cloud. Finally, diverse representations of the point clouds were
briefly described, starting with the basic form like the distribution of points in 3D
space, and finishing with the mesh representation, which can be useful for visual
inspection and object collision.

3 | Point Clouds: Features, Segmen-
tation and Registration

As described in Chapter 2, point clouds are a manner of spatial representation of
scenes, observed by either an active camera or a stereo vision arrangement. The
spatial data is now a sparse distribution in 3D. Therefore, it is required to operate
and manipulate the data in order to extract quantifiable information, additional to
their Euclidean position, which allows a better understanding of the scene nature.

Based on this reason, the fact of having additional clues about the distribution of
the points in Euclidean space can allow to perform tasks that are trivial for humans,
but extremely hard for computers, e.g. to recognize an object, to estimate the position
of an object, to figure out how fast an object is moving, or to grab an element without
the risk of breaking it or dropping it.

This chapter presents some clarifications about the basic operation on point
clouds, as the estimation of the surface’s normal vectors. This procedure is the
main foundation for further applications like point feature descriptors, also briefly
explained in the current section. Additionally, the method for segmenting point sets
using geometric primitives, as well as the registration of multiple clouds, are also
subject of explanation in this chapter.

3.1 Surface’s Normals Estimation

The point cloud obtained by an active camera is just the position of scattered points
with respect to a reference frame, i.e. the sensor, that represents the surface of
the objects in the viewed scene. But the sensor does not have the capability of
distinguishing how the orientation of the observed surfaces is. For this reason, the

32 Point Clouds: Features, Segmentation and Registration

estimation of the surface’s normals is one of the most important operations in the
manipulation of point clouds. The expected outcome of this process is a vector field,
i.e. the normals, whose orientation in space will help to identify and differentiate
the different objects in a scene, or the object’s faces that it may have. As a reminder,
the normal of a surface is the perpendicular vector to the tangent plane associated to
that surface.

This process required a number of steps in order to obtain a well-descriptive
normal vector field. Thus, the pipeline for this estimation is composed by the
following steps:

• Subdivision of the points in the cloud to create small patches.

• Estimation of the surface’s normal vectors.

• Validation of the vector field orientation.

3.1.1 Surface Division

It is compulsory to detect the surfaces that belong to the different objects in the scene.
Sometimes the point clouds do not define surfaces by their own, then a division
of the point cloud is required in order to describe the clusters, i.e. small surface
patches, to estimate their normals. But the selection of those patches is crucial not
only for the accuracy of the estimation, but also because of the data distribution of
the point clouds to be manipulated. One possible method to understand the clusters
is comparing them to the neighborhood concept. The latter is defined as the area
around a specific place, e.g. a query point in the cloud, and the additional elements
that are located in their vicinity, i.e. the points around the query point. Therefore,
the vicinity of the points are determined by two different methods:

• All the points enclosed in an imaginary sphere of certain radius, whose center
is the query point.

• The closest number of points of the query point, no matter their distance to
that point.

The selection of one of those methods to define the surface clusters heavily
depends on how the points are distributed. Additionally, the proper selection of

3.1 Surface’s Normals Estimation 33

Figure 3.1. Definition of surface cluster based on distance. All the points inside the
imaginary circle of a given radius from a query point (in red) are defined
as neighbors (in orange). The latter conform the surface patch, which will
be then used to estimate the normal of the plane tangent to the surface at
the query point.

either the radius for the first method, or the number of neighbors for the second
one, is a limitation when an automated process of the data manipulation is required.
An example of the first method, radius neighborhood, is shown in Figure 3.1. As a
rule of thumb, the selection of those parameters –radius or number of neighbors– is
made by trial and error, depending on the level of detail required for each specific
application.

3.1.2 Normal Vector Field

With the determination of the surface patches, the geometrical information of a local
region can be estimated by means of the normal of the patch. The latter is a vector in
3D, which has an specific orientation to a given reference frame. This outcome is
important not only for knowing the orientation of a surface, but also for identifying
objects, if they are known a priori.

Different normal estimation methods have been evaluated (Klasing et al., 2009),
and one of the simplest available methods is to determine the normal to the plane
tangent to the requested patch at the query point. Having a patch P composed by Pi
points, being k the number of points in the patch, the query point X can be defined

34 Point Clouds: Features, Segmentation and Registration

as follow:

X = P̄ =
1
k

k∑
i=1

Pi (3.1)

This query point is also considered the centroid, P̄, of P. With this into account,
the creation of a covariance matrix C of the subset P is:

C =
1
k

k∑
i=1

(Pi − P̄)(Pi − P̄)
T (3.2)

Now, it is possible to find the eigenvalues and eigenvectors of this new base matrix,
i.e.

(C− λjI3)⃗vj = 0 , with j ∈ {1, 2, 3} (3.3)

The eigenvectors v⃗j are the principal components of the set P, and their corre-
spondent eigenvalues are λj. This procedure is called Principal Component Analysis
(PCA) (Pearson, 1901). The intention of obtaining those elements –eigenvectors and
eigenvalues– is to fit the points in the patch to an ellipsoid, where each of the three
axes represent a principal component. At the same time, PCA can be considered as a
coordinate frame transformation where the eigenvectors are the new orthogonal axes
of the new reference frame located at the query point P̄. Each principal component
shows the degree of correlation based on the direction of the eigenvector and its
associated eigenvalue. The bigger the latter is, the greater the correlation of the data
in that direction. In mathematical terms, having 0 ⩽ λ1 ⩽ λ2 ⩽ λ3, the eigenvector
v⃗3 encloses the direction of maximum correlation. Relating those PCA concepts to
the estimation of the normal of a tangent plane, the latter is defined by the vectors
associated to the biggest and middle eigenvalues. Otherwise, the eigenvector related
to the lowest associated eigenvalue is the approximate normal vector to the surface
under analysis:

λ1 → v⃗1 = ±n⃗ =

nx

ny

nz

 (3.4)

3.1 Surface’s Normals Estimation 35

Figure 3.2. Example of a surface’s normals estimation in a point cloud, shown in
blue.

3.1.3 Validation of Normals’ Orientation

Because PCA is not capable of resolving the sign of the eigenvectors, the result
can be ambiguous in the normals’ orientation. This is the reason of the ± sign in
Equation 3.4. An additional step is required in order to ensure the consistency in
the normals’ orientation. As the location of the sensor reference frame is known,
and the point clouds are acquired for this coordinate frame, the orientation of the
normals n⃗ must point towards the sensor. In other words, this operation ensures
that the camera is seeing the external surface of the objects, which is facing towards
the sensor. This is figured out by means of:

n⃗ · (O− Pi) > 0 (3.5)

Sometimes the viewpoint is not known, depending on the application. For
instance, when more than one sensor are operating at the same time, but the point
clouds are simultaneously concatenated in a new coordinate system. For this thesis,
the use of a single ToF camera always provides the same viewpoint location for all
the point clouds acquired.

36 Point Clouds: Features, Segmentation and Registration

3.2 Point Feature Descriptors

The surface’s normal is a basic geometrical descriptor, which helps to identify the
geometry relations and constraints of point clouds. But it could happen that many
objects in the scene may have similar normal orientation, reducing the informa-
tion about any specific surface. If the normal fields of different objects in a scene
share comparable characteristics, this may lead to erroneous analysis for further
development due to the emergence of false positives in the information.

To reduce the impact of bad accuracy, the point feature descriptors have been
developed in order to provide better geometrical information of a subset of the point
cloud. Principally, a descriptor is a means used for comparing point clouds, and it
has robustness dealing with rigid transformations, i.e. rotations and/or translations
among the point sets. The descriptors should be also effective against the noise that
the data could have. Finally, the descriptors must be similar, if not identical, when
the point cloud resolution changes. Hence, the final purpose of the point feature
descriptors is to identify a point across many different point clouds, as long as the
data is referring to the same scene/object. Either the camera or the objects may
have rotations and translations in space, and the descriptors must be identifiable no
matter those transformations.

Each descriptor –also called signature– can be described as a histogram, whose
bins encapsulate different values, which are based on the metric employed to build
the signature, e.g. the distance between points in a selected neighborhood, or the
normal orientation angle for a determined surface. It is important to bear in mind
that the number of bins may or not affect the point cloud processing velocity. As
the final purpose is to identify a point in two or more clouds, the comparison of its
descriptor may take more or less time, depending on the type of signature and the
length of the histogram. For instance, for real time applications it should be better to
have shorter descriptors. If the time is not a concern, longer histograms can be more
accurate at the matching procedure.

The signatures can be classified in two big categories: local and global. First, the
local descriptors express how the local geometry surrounding the query point is,
without previous knowledge of the object as a whole. Table 3.1 shows a summary
of the feature local descriptors, including the number of histogram bins for each of
them. Otherwise, the global descriptors require the whole object in order to enclose

3.2 Point Feature Descriptors 37

Table 3.1. Point Feature Local Descriptors

Name Number of Bins

SHOT - Signatures of Histograms of Orientations 352

PFH - Point Feature Histogram 125

FPFH - Fast Point Feature Histogram 33

3DSC - 3D Shape Context 1980

USC - Unique Shape Context 1960

RSD - Radius-based Surface Descriptor 289

Spin images 153

Table 3.2. Point Feature Global Descriptors

Name Number of Bins

VFH - Viewpoint Feature Histogram 308

CVFH - Clustered Viewpoint Feature Histogram 308

OUR-CVFH - Oriented, Unique and Repeatable CVFH 308

ESF - Ensemble of Shape Functions 640

GRSD - Global Radius-Based Surface Descriptor 20

its geometry. Thanks to this, it can be possible to identify the objects, estimate the
position and orientation, and extract the shape. Table 3.2 presents a survey of global
descriptors, also indicating the number of bins in the histogram. Additional and
detailed information about the both local and global descriptors is available (Aldoma
et al., 2012a), but only a small selection of them are related to the development of
this research work, and they will be shortly described in Sections 3.2.1 and 3.2.2. In
the end, the selection and usage of the point signatures are based on the expected
outcome and the processing speed required for a specific application.

3.2.1 Local descriptors

The use of local descriptors has been useful in passive imaging, when they are
employed to detect similar features in stereo camera setups (Bonin-Font et al., 2008).
The idea behind this is to export the capability from 2D images to 3D point clouds.
Below is explained in more detail two of the more relevant local feature descriptors.

38 Point Clouds: Features, Segmentation and Registration

3.2.1.1 Point Feature Histogram

The Point Feature Histogram (PFH) is one of the most common local descriptors
in the point cloud processing algorithms (Rusu, 2010). The PFH encloses the ge-
ometrical information around a query point based on the normal direction of the
point’s neighborhood. If the normal estimation is not constant and pretty accurate,
the quality of this descriptor is directly affected and the outcome’s precision is really
poor.

The formulation of the histogram is composed by the following steps: first, it is
required to have the normal estimation of the point cloud under evaluation. Then,
the query point and the normal associated to its surface are the base for the histogram
formation. Taking into account the points in the vicinity, the algorithm pairs each
point in the region not only with the query point, but also with the other points in
the neighborhood (see Figure 3.3).

Afterwards, for each couple of points in the list, a pair of new fixed coordinate
frames is computed based on the points’ associated normals. A surface reference
frame is created at the query point, using the following definition:

u = nq

v = u×
(Ps − Pq)

∥Ps − Pq∥
w = u× v

(3.6)

Having established the main reference frame, a copy of it is translated to each of
the neighbors of the query point. Therefore, three angular variables can be calculated
as follows:

ϕ = arccos
(

uT ·
(Ps − Pq)

∥Ps − Pq∥

)
α = arccos

(
vT ·ns

)
θ = arctan2

(
wT ·ns, uT ·ns

) (3.7)

Figure 3.4 shows an example of the surface reference frame, and the angles used
for the PFH descriptor formation. When this procedure is performed for all the point
couples, the resultant values are binned to created a histogram for each angular

3.2 Point Feature Descriptors 39

Pq

P1

P2

P3

P4

P5

P6

P10
P9

P8

P7

P11

Figure 3.3. Vicinity region for PFH calculation. The query point (red) and its neig-
hbors are connected among themselves.

Pq

w

nq = u

v

ϕ

Ps

w

u

v

ns

θ

α

Figure 3.4. Coordinate frames for angular and distance feature calculation in PFH.

value and one for the euclidean distance between each couple. An example of this
descriptor can be seen in Figure 3.5.

3.2.1.2 Fast Point Feature Histogram

Although PFH is a very stable descriptor with great accuracy, it also has the disad-
vantage of being a huge computational burden in order to perform the descriptor
calculation in real time. For that reason, a simplification method was proposed in
order to reformulate the signature without affecting its descriptiveness. This was
called Fast Point Feature Histogram (FPFH) (Rusu et al., 2009), which reduces the

40 Point Clouds: Features, Segmentation and Registration

0 20 40 60 80 100 120
0

2

4

Bins

Po
in

ts
Point Feature Histogram

Figure 3.5. Example of Point Feature Histogram descriptor for a single query point.

computational complexity from O{o·k2} for the former descriptor to O{o·k} for the
latter, being k the number of points in the neighborhood.

Because of this new descriptor is a modification of the previous one, it maintains
the same principle of connecting the query point to its direct neighbors and calculate
the angular features for each couple using Equations 3.6 and 3.7. Afterwards, a new
vicinity is defined for each of the points linked to the query one (see Figure 3.6),
and the process is repeated again. In the end, the FPFH is the integration of all the
values previously calculated, without including the distance between points as a
differentiating factor. However, it was indeed included as a weighting coefficient,
because the angular values are counted twice: from the query point to a neighbor
and from the latter to the former, when the new vicinity is created. Figure 3.7 shows
the descriptor based in this new calculation method.

3.2.2 Global Descriptors

As mentioned in Section 3.2, the global descriptors can be useful for object pose
estimation. Because of this, these signatures can be considered as the first candidates
for solving the space debris pose estimation. Hence, a brief explanation of three of
them is necessary in order to understand how these descriptors can be employed to
solve the position and orientation determination problem.

3.2 Point Feature Descriptors 41

Pq

P1

P2

P3

P4

P5

P6

P10
P9

P8

P7

P11

P12

P14 P13

Figure 3.6. Vicinity region for FPFH calculation. The query point is linked to its
neighbors. Similarly, each of the neighbors are connected to their own
neighbors.

0 5 10 15 20 25 30 35

10

20

Bins

Po
in

ts

Fast Point Feature Histogram

Figure 3.7. Example of Fast Point Feature Histogram descriptor for a single query
point. Notice the reduced number of bins (33) in comparison to the PFH
(125).

42 Point Clouds: Features, Segmentation and Registration

Pi

xO

zO

yO

vO−Pi

ni

β

Figure 3.8. Calculation of the viewpoint angle with respect to a point cloud at a
query point (red).

3.2.2.1 Viewpoint Feature Histogram

This is the application of the FPFH with the inclusion of the viewpoint information,
but using the whole point cloud instead of a subset of it (Rusu et al., 2010). This
signature was named Viewpoint Feature Histogram (VFH), thanks to this new metric
inclusion. In this particular case, the query point is just the centroid of the point
cloud –assuming that only one object is observed– using the Equation 3.1. With the
obtained centroid, the angular values for the histogram formation are calculated for
each point in the cloud paired with the centroid. In addition the viewpoint, i.e. the
sensor origin, is used to create a new metric to each point whose normal has been
estimated previously using the next expression:

βi = arccos
(
ni·

O− Pi
∥O− Pi∥

)
(3.8)

being the subscript i each point and its correspondent normal. Figure 3.8 shows how
is the formation of this new acquired angle. The histogram concatenation proceeds
as usual as for the FPFH, and an example can be seen in Figure 3.9.

3.2.2.2 Clustered Viewpoint Feature Histogram

Because of the stability weakness shown by VFH regarding sensor noise/errors and
occlusions, the Clustered Viewpoint Feature Histogram (CVFH) tries to solve those
drawbacks. The purpose is to subdivide the surface into subsets, or clusters, where

3.2 Point Feature Descriptors 43

0 50 100 150 200 250 300
0

500

1,000

Bins

Po
in

ts

Viewpoint Feature Histogram

Figure 3.9. Example of Viewpoint Feature Histogram descriptor for the whole rocket
body. The bins from 0 − 45, 46 − 90 and 91 − 135 encapsulates the angles
information. The viewpoint component is enclosed in last 63 bins.

a VFH can be computed for each region (Aldoma et al., 2011). The conditions for
generating the point cloud clusters are established as follows:

∥Pi − Pj∥ < td
ni·nj > tn

(3.9)

The latter establishes the two thresholds, distance and normal direction, that
define which points belong to the same cluster. This condition permits to exclude
the spurious points, whose surface normal orientation is wrong estimated most of
the times. An example of a clustered point cloud can be seen in Figure 3.10.

Additionally to the segmentation of the cloud, a Shape Distribution Component
(SDC) was added to the VFH descriptor giving an additional robustness factor. SDC
is defined as:

SDC =

(
P̄ − Pi

)2

max
((
P̄ − Pi

)2
) (3.10)

with P̄ as the centroid of each cluster, using Equation 3.1. This new descriptor com-
ponent encodes the points distribution around the cluster’s centroid. For instance,
this allows to distinguish two planar surfaces one from another, although having
similar normal orientations.

44 Point Clouds: Features, Segmentation and Registration

Figure 3.10. Segmentation of a point cloud in clusters, based on the normal orienta-
tion and distance among elements.

0 50 100 150 200 250 300
0

500

1,000

Bins

Po
in

ts

Clustered Viewpoint Feature Histogram

Figure 3.11. Example of Clustered Viewpoint Feature Histogram descriptor, using
the same rocket body pose as used for calculating VFH shown in Fi-
gure 3.9. The SDC is encapsulated in bins 146 − 190.

3.2 Point Feature Descriptors 45

0 50 100 150 200 250 300
0

500

1,000

1,500

Bins

Po
in

ts
Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

Figure 3.12. Example of Oriented, Unique and Repeatable Clustered Viewpoint
Feature Histogram descriptor, using the same rocket body pose as used
for calculating VFH shown in Figure 3.9. The SGURF is encapsulated in
bins 146 − 245.

3.2.2.3 Oriented, Unique and Repeatable Clustered Viewpoint Feature
Histogram

The Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram
(OUR-CVFH) has included a new metric in order to enhance the performance of
the previous descriptor. OUR-CVFH has the same operation principle of the CVFH,
with the difference of having a second filtering for each of the clusters obtained.
Thus, it has a new thresholding condition after the outcome of the Equation 3.9,
where the angle between the average normal of the cluster and each point in the
latter is in certain range. As the new regions are better defined than before, the
generation of a new surface coordinate frame can be easily computed (Aldoma et al.,
2012b), called as Semi-Global Unique Reference Frame (SGURF).

Because of the method enhancement, the orientation of each of the SGURFs in
the cloud can be discriminated, obtaining the same coordinate frame orientation no
matters the position of the object. Additionally, this new frame in the refined cluster
allows to calculate a new feature based on the points location for each octant of the
SGURF, defined by the sign of the axes: (x+,y+, z+) . . . (x+,y−, z−) . . . (x−,y−, z−).
This new component replaces the SDC from the CVFH signature, as can be seen in
Figure 3.12.

46 Point Clouds: Features, Segmentation and Registration

3.3 Random Sample Consensus

Random Sample Consensus (RANSAC) is a method used to fit a mathematical model
to a sample of given data with a number of iterations previously established (Fischler
and Bolles, 1981). The RANSAC algorithm divides the data into inliers and outliers,
being the former those data that have an acceptable margin to fit into the model,
and the latter those elements that cannot fit at all. RANSAC is a non-deterministic
algorithm, i.e. a procedure that, even with the exact input for a given number of
trials, the result can be different for each of those runs. For the case of the RANSAC,
the result has certain probability and it improves with every new iteration, although
without reaching 100%. The procedure is shown as follows:

Algorithm 3.1 Random Sample Consensus

Require: ps, pf, M, N, x⃗, Kt

1: L← log(pf)
log(1−(ps)M)

2: for i← 0 to L do
3: Select M random items from data
4: Estimates x⃗ on N
5: K← number of elements from N that fits on x⃗
6: if K ⩾ Kt then
7: return K set fits the model based on x⃗
8: end if
9: end for

10: return No data items fit the model

From Algorithm 3.1, ps is the probability of selecting data randomly that may
belong to the requested model, pf is the probability that the algorithm will finish
without finding a good model fit (even if it exists), M is the minimum number of
data that can allow the estimation of the model parameters, N is the total number of
elements in the data set, x⃗ is a vector that contains the model’s parameters, and Kt is
the threshold for determining if the data can fit the model or not. For instance, the
simplest example of fitting a model in 2D sparse data is using a line model and see
how many of the items can fit into the model. In the case of point cloud processing,
the RANSAC algorithm may procure if the point set can be fitted to 3D primitives
like planes, cones, spheres, cylinders, among others.

3.3 Random Sample Consensus 47

3.3.1 Plane Model

The plane is one of the models most used in RANSAC to be applied on point clouds,
specially in terms of indoor environment perception, where it is necessary to detect
planar surfaces like the floor, the walls, and the ceilings. The detection of those
structures can allow the robot to map them. Also a lot of human-made objects are
composed by planes like a table, a door, or a closet. In case of outdoor navigation,
the urban roads, highways, and building’s facade can also be considered as planes.
In case of roads, however, there are depressions and steep streets that may distort
the smoothness of it. For OOS and ADR, most of satellites have planar surfaces and
displayed solar arrays that can be fitted to a plane model.

First of all, the general equation of the plane is defined as:

ax+ by+ cz+ d = 0 (3.11)

and its normal vector, n⃗, is

n⃗ =

nx

ny

nz

 =

ab
c

 (3.12)

Having a point P, that belongs to the plane, the Equation 3.11 can be rewritten in
algebraic form:

n⃗ · P = −C (3.13)

for some constant C. Equation 3.13 is the Hessian normal form of the plane. Under
the assumption that the normal vector has magnitude 1, it is possible to define that

d = −n⃗ · P (3.14)

The minimum number of points required to calculate the plane equation is three.
This is valid because three non-linear points define a triangle, which is the minimum
plane possible in Euclidean geometry. From those points, two vectors are created in
order to calculate the cross product between them. The outcome is the plane’s normal
vector candidate (see Equation 3.12). And using Equation 3.14, the independent
coefficient d of the plane’s general equation is calculated.

48 Point Clouds: Features, Segmentation and Registration

In addition to this, it is necessary to calculate the perpendicular distance, r, to
any 3D point, Q, to a plane, by means of:

r = n⃗ ·Q+ d (3.15)

The sign of r indicates in which side of the plane is located the point: positive if it is
on the side where the normal vector points, or negative otherwise. Although it is
important, the sign is not relevant for the plane fitting. However, a certain distance
threshold, rt, must be defined in advance, using the relation:

0 ⩽ rPi
⩽ rt (3.16)

Therefore, the steps for detecting planes is shown in Algorithm 3.2. This pro-
cedure is repeated L iterations until the number of inliers support the found plane
model (see Algorithm 3.1). An example of an identified plane in a point cloud can
be seen in Figure 3.13.

Algorithm 3.2 Plane model fitting

Require: P, rt
1: S← ∅
2: Select three non-collinear random points {P1,P2,P3} ∈ P

3: Compute n⃗, and d ▷ Eq. 3.11 - 3.14
4: for i← 0 to N do
5: rPi

← n⃗ · Pi + d
6: if 0 ⩽ rPi

⩽ rt then ▷ Eq. 3.16
7: S← S ∪ Pi
8: end if
9: end for

10: return S

3.3 Random Sample Consensus 49

Figure 3.13. Plane model fitted to a point cloud.

3.3.2 Cylinder Model

The second model to be considered is the elliptical cylinder, due to the fact that most
of rocket launchers has a body with a cylindrical shape, and it is defined as:(x

a

)2
+
(y
b

)2
= 1 (3.17)

where a and b are the semi-major and semi-minor axes of the cross-section ellipse,
respectively. In the case those values are equal, i.e. a = b, Equation 3.17 becomes
valid for a circular cylinder, hereafter referred to as a cylinder.

The initial step for the validation of the cylinder model is the previous normal
estimation for the whole point cloud, using the procedure explained in Section 3.1.
Then, the iterative process of the RANSAC method takes part (see Algorithm 3.1),
when two points and its associated surface’s normal are selected randomly from
the point set. Afterwards, the cross product between those two normal vectors is
performed. The resultant vector of this operation has the same direction akin the
cylinder’s axis of symmetry, as long as the normals chosen belongs to the cylinder’s
surface. In the case the cross product is very close to zero, i.e. the normals selected
were almost parallel, the points are discarded and the selection of a new pair is
performed. In mathematical terms, the direction of the cylinder’s axis is given by:

a⃗ = n⃗1 × n⃗2 (3.18)

Under the assumption that both normal vectors are valid, a parametric line is
created using for each normal and its associated point, by means of

L = P + sn⃗ (3.19)

50 Point Clouds: Features, Segmentation and Registration

where P is either one of the point randomly selected and n⃗ is the associated normal
unit vector. Equation 3.19 is known as the parametric equation of a line in 3D, where
any line can be expressed by a point that lies on the line, the unit vector that indicates
the direction of the line, and the parameter s ∈ R that suggests how far from the
point the line is extended. If s > 0, the line extends in the same direction of n⃗.
Otherwise, the line extends to the opposite direction of n⃗ if s < 0.

Returning to the cylinder model fitting, a local coordinate frame is located in
such a way that its x-axis is aligned with one of the normal vectors, i.e. n⃗ · x = 1
and z-axis is aligned with the cylinder’s axis a⃗, i.e. a⃗ · x = 0. Then, both parametric
lines from the two normal vectors are projected into the local xy plane, and their
intersection is calculated equating L1 and L2. This point is then the center C of the
cross-section circle, whose distance rc to the surface’s points should be equal to the
radius r of the cylinder model. This verification can be done using a variation of the
Equation 3.17, as follows:

x2 + y2 = r2
c (3.20)

with a certain limit threshold given by:

rmin ⩽ rc ⩽ rmax (3.21)

where the minimum and maximum values of r are previously settled. This procedure
is repeated L times (see Algorithm 3.1) until there is enough confidence in the number
of points that are fitted into the cylinder model.

After the model fitting, a new “linear” point cloud is created with all the “inter-
section points” previously found, whose average point also lies on the cylinder’s axis.
Moreover, a new set of the axis vectors estimated for each point couple is generated,
with their direction to be consistent. The cylinder’s axis is the average of all the
vectors in the set. Finally, the average of all the radius values obtained is calculated
to define the last parameter of the model. In summary, a point that belongs to the
axis, the axis’ direction unit vector, and the radius are the outcome parameters for
the model. Algorithm 3.3 compiles the procedure previously described. Figure 3.14
shows the cylinder model fitting, including the axis of symmetry.

3.4 Iterative Closest Point 51

Algorithm 3.3 Cylinder model fitting

Require: P, N, rmax, rmin

1: M← ∅
2: A← ∅
3: R← ∅
4: while P is not ∅ do
5: Select two random points {P1,P2} ∈ P with {n⃗1, n⃗2} ∈ N

6: a⃗← n⃗1 × n⃗2 ▷ Eq. 3.18
7: L1 ← P1 + scn⃗1, L2 ← P2 + tcn⃗2 ▷ Eq. 3.19
8: Calculate C, with L1 = L2 and solving for sc and tc
9: rc,1,2 ←

√
x2

1,2 + y
2
1,2 ▷ Eq. 3.20

10: if rmin ⩽ rc,1,2 ⩽ rmax then ▷ Eq. 3.21
11: M←M ∪ {P1,P2}

12: A← A ∪ a⃗
13: R← R ∪ rc
14: end if
15: P← P \ {P1,P2}

16: end while
17: Pmean ← 1

k

∑k
i=1 (Pi ∈M)

18: a⃗mean ← 1
k

∑k
i=1 (a⃗i ∈ A)

19: rmean ← 1
k

∑k
i=1 (rc,i ∈ R)

20: return Pmean, a⃗mean, rmean

3.4 Iterative Closest Point

Iterative Closest Point (ICP) (Besl and McKay, 1992) is a method to register point
clouds, when one of them has been transformed in terms of rotation and translation.
This procedure of alignment is called as registration, where the main purpose is to
match the points of one cloud into the other. The latter is only valid when both point
clouds are equal. At the end, the outcome of the ICP algorithm is composed by the
rotation matrix and the translation vector required to overlap one cloud into the
another. The method is iterative until a criterion of convergence is achieved, which
is usually the minimum distance, dmax, between the point clouds.

52 Point Clouds: Features, Segmentation and Registration

Figure 3.14. Cylinder model fitted to a point cloud. The blue line refers to the
cylinder’s longitudinal axis.

For the ICP, one point cloud is kept as reference, or target. Otherwise, the second
point set, called as the source, is transformed to match the target as best as possible.
Hence, having two point sets, Pi ∈ P as the source, and Qi ∈ Q as the target, for
i = {1, 2, . . . , N},

Qi = RPi + t+ Ni (3.22)

where R is the rotation matrix, t is the translation vector, and N is a noise vector.
The purpose of ICP is to minimize the Euclidean distance between the two point
clouds (Arun et al., 1987), by means of:

arg min f(R, t) =
1
N

N∑
i=1

∥Qi − (RPi + t)∥2 (3.23)

ICP employs linear algebra to determine the transformation, specifically the
use of Singular Value Decomposition (SVD), whose routine is condensed in Algo-
rithm 3.4. Having the two point clouds, a covariance matrix (see Equation 3.2) is
constructed using the centroid of each point cloud (see Equation 3.1). From the new

3.4 Iterative Closest Point 53

matrix, the SVD is applied in order to find three matrices:

C = USVT (3.24)

being U and V as the matrices that contain the left and right singular vectors of the
covariance matrix, respectively, and S as the non-zero singular values matrix. The
rotation matrix between the two clouds is the multiplication between V and the
transpose of U:

R = VUT (3.25)

thus, obtaining the translation vector:

t = Q̄− RP̄ (3.26)

Algorithm 3.4 Singular Value Decomposition

Require: P, Q
1: P̄ ← 1

N

∑N
i=1 Pi ▷ Eq. 3.1

2: Q̄← 1
N

∑N
i=1Qi ▷ Eq. 3.1

3: C←
∑N

i=1

(
Pi − P̄

) (
Qi − Q̄

)T
▷ Eq. 3.2 variant

4: C← USVT ▷ Eq. 3.24
5: R← VUT ▷ Eq. 3.25
6: t← Q̄− RP̄ ▷ Eq. 3.26
7: return R, t

ICP is widely used for creating maps in robot navigation (May et al., 2008),
because it allows to know the environment’s position and orientation with respect
to the sensor. On the other hand, if the ToF camera is placed fixed and the objects are
moving in its FOV, then is possible to obtain the pose of further point clouds if the
position and orientation of the object is known in a certain epoch. For instance, the
latter refers to the situation of a chaser satellite and its target, in order to identify the
object’s pose. Algorithm 3.5 shows the process for obtaining the rigid transformation
between two point clouds. Based on the point clouds shown as sample in Figure 1.5,
the ICP procedure was executed in order to register both point clouds: Figure 3.15a
shows two point clouds before the use of the ICP method. Figure 3.15b exposes the
outcome of the ICP algorithm for the registration process.

54 Point Clouds: Features, Segmentation and Registration

(a) Source (blue) and target (red) point clouds
before ICP.

(b) Point clouds align-
ment after ICP

Figure 3.15. Point cloud registration using Iterative Closest Point algorithm.

Algorithm 3.5 Iterative Closest Point
Require: P, Q, dmax

1: R, t using SVD ▷ Algorithm 3.4
2: while not converged do
3: for i← 0 to N do
4: Qi ← ClosestPointQ(RPi + t)

5: if ∥Qi − (RPi + t)∥ ⩽ dmax then
6: wi ← 1
7: else
8: wi ← 0
9: end if

10: end for
11: R, t← arg min

∑N
i=1wi∥RPi + t−Qi∥2 ▷ Eq. 3.23 variant

12: end while
13: return R, t

3.5 Summary

This chapter exposed the fundamental operation on point clouds as is the surface’s
normal vectors estimation, being the basic feature descriptor for a 3D point set.
Additionally, the point feature signatures have been described, using as foundation
the normal vectors previously explained. Here, two main categories, local and global
descriptors, were depicted, showing their capabilities, strengths and drawbacks.

3.5 Summary 55

Furthermore, the Random Sample Consensus (RANSAC) was determinant for fitting
geometric models into the data, and detecting them from the point distribution.
Finally, the Iterative Closest Point (ICP) algorithm was presented as one of the most
reliable methods for registering successive point clouds, in order to either reconstruct
the object or determine its pose under certain conditions.

4 | Pose Estimation

This chapter presents the fundamental problem to be treated, as is the pose estima-
tion of a non-cooperative target. Resembling Chapter 1, the reckoning of the position
and orientation of an object in OOS is a cooperative task, because the target has
markers previously designed for giving aid to the chaser satellite. Principally, the
purpose of the fiducials is to assist the system in giving a first pose estimate based on
the location of the target’s visual markers. This is not possible with non-cooperative
targets, either defunct satellites, or rocket bodies, because they were not designed for
further servicing at the design phase. The main intention was to left them “floating”
in orbit after EOL.

For that reason, it is necessary to employ new methods to recover the space
debris before they can be considered a full-potential threat. Generally, the target
geometry is known a priori, in order to develop the mission to capture a certain
family of targets. Thus, model-based pose estimation procedures (Horaud et al.,
1989) are methods for estimating the position and orientation of the target. Some
studies (D’Amico et al., 2012; Kanani et al., 2012) have shown different procedures
by using passive cameras, i.e. detecting the target, find the edges in the image and
match the obtained wireframe model with the designated model previously stored
in the chaser satellite’s system. Nevertheless, this approach is subject to prone error
due to illumination variations.

Because of the latter, the pose estimation using 3D point clouds will have an
enhancement related to the 2D edges methods. First of all, the point clouds provide
the 3D coordinates of the target surface. Secondly, the illumination depends only on
the ToF camera, under certain orbit conditions.

58 Pose Estimation

4.1 Estimation Problem Description

The autonomous rendezvous begins when there is visual relative navigation be-
tween the chaser spacecraft and the target, i.e. the passive camera has received
light reflected from the target. This can be classified into the far range phase of the
rendezvous maneuver, previously explained in Section 1.2. The distance between
the chaser and target could be up to tens of kilometers, depending on the optical
head of the camera. The next phase is the close range, which is comprised between
tens of meters up to 10km. Usually, a combination of passive cameras and lidar are
commonly proposed for OOS missions. The final approach phase is the step just
previous to the physical encounter of the two objects on orbit. The operation range
is between 1 to 3m and approximately 20m. Here, the chaser spacecraft must have
great certainty in the position and orientation parameters estimation, in order to
perform the capture maneuver in a safe way. Basically, a portion of the final appro-
ach phase is overlapped with the close range one, and there is no clear boundary
between them. Hence, the phases are designated depending on the type of target
to be captured: a big object can be detected from a farther distance than a smaller
debris.

Due to the potential operation of a ToF camera in ADR, the scenario for estimating
the position and orientation of a target is assumed in this way:

• The chaser spacecraft is located at a safe distance from the target, performing
station keeping at the same nominal altitude of the latter.

• There are neither external forces nor torques acting on the target.

• Both chaser spacecraft and target are located in quasi-circular orbit.

• The target cannot control its attitude, supposed to be tumbling/rotating.

• The target is non-cooperative, i.e. it has no visual markers, and it does not
provide information about its state.

• The target must have a distinctive geometry, in order to determine the 6DOF.

A little disclaimer about the last item: due to the fact that the pose estimation is
solely based on the target’s geometry, there should exist a section of the structure that

4.1 Estimation Problem Description 59

helps to define the body reference frame without ambiguity. For instance, a cubesat
or a rocket body, which are commonly symmetrical about the longitudinal axis,
could only provide 4DOF –3 for position and only 1 for orientation–. Nevertheless,
sometimes the absolute orientation is not required, depending on the method se-
lected for docking/capture (Shan et al., 2016). For instance, if the methods employed
are either a net or a harpoon, there would not be need of a full pose estimation. In
the contrary, if the capture means proposed is a robotic arm –also assumed for this
thesis–, the latter will grab the rocket body from a protruding section, like the nozzle
or a flange. Hence, this action requires a full pose estimation to ensure the grasp,
and to avoid a possible impact between the agent and the debris.

The state vector of the debris to be estimated by the chaser satellite is composed
by the position of the target r, its derivative, i.e. the linear velocity ṙ, the attitude
orientation α, and the angular velocity ω. This can be written in a 1-column vector
as:

x =

r

ṙ

α

ω

 (4.1)

with each element defined as follows:

r =

xy
z

 , ṙ =

ẋẏ
ż

 , α =

ϕθ
ψ

 , ω =

ω1

ω2

ω3

 (4.2)

The attitude orientation can be described by means of the Euler angles: ϕ is the
roll angle, i.e. the rotations around the x-axis of the body coordinates frame; θ is the
pitch angle, which encloses the rotations around the y-axis, and ψ is the yaw angle,
which defines the heading when the body rotates around the z-axis.

Although the Euler angles are easily understandable, they can cause problems
due to gimbal lock and rotation ambiguity –different angles can refer to the same
rotation–. Because of the previous reasons, the target’s attitude will be described
using quaternions, because they have no ambiguity in describing a rotation, and
they are also easier to handle by computers, making them more efficient than the
Euler angles. Hence, the attitude parameter α of the state vector x is now changed

60 Pose Estimation

to the quaternion q, and is defined as:

q =

q0

q1

q2

q3

 (4.3)

where qs is the scalar part of the quaternion, and qv is the quaternion’s vectorial
part:

q =

[
qs

qv

]
; qs =

[
q0

]
, qv =

q1

q2

q3

 (4.4)

4.2 Initialization

The final goal is to estimate the position and orientation of a rocket body with respect
to a chaser satellite. The rocket’s upper stage is a non-cooperative target, which is
assumed to be tumbling on orbit without control. When the chaser has acquired
a precise estimation of the target’s dynamics, it would be possible to perform a
safe capture, reducing the probabilities of having a collision, which can produce
additional debris.

In order to achieve great accuracy at the pose estimation, a settlement for the
dynamic parameters of the target is of vital importance. This is called as initialization,
which is defined as the a priori knowledge that an agent has about an object’s
position and orientation in 3D space.

The initialization step refers to the procedure to obtain the initial values of the
target’s state vector x with respect to the sensor reference frame, in which all the
measurements are performed. This means that a fixed coordinate frame has to be
defined previously in the target’s body in order to compute the changes in translation
and rotation with respect to the camera. In the case of the rocket body, the fixed
reference frame is located at the cylinder’s centroid, with the z-axis aligned with
the cylinder’s axis of symmetry. The positive region of the axis points towards the
instrumentation compartment, i.e. opposite to the nozzle.

4.2 Initialization 61

Nevertheless, the location of the x- and y-axis can have infinite possible locations
in the transverse section of the body. But for the specific case of the Cosmos-3M
second stage (see Figure 1.4), it is possible to eliminate the ambiguity location of
the xy plane. Due to the external configuration, two outer cylindrical tanks can
help to point one of the body reference frame axis and define a fixed location for
the coordinate frame. However, a third point for determination is still required.
Fortunately, a fairing was built just 90◦ apart from the lateral tanks, giving the
possibility of excluding any uncertainty on the definition of the coordinate frames.
Recapping, the location and orientation of the body fixed reference frame is as
follows:

• The origin of the coordinates frame is located at the cylinder’s centroid.

• The z-axis is aligned with the cylinder’s axis of symmetry.

• The x-axis points towards the second stage’s “frontal” fairing.

• The y-axis completes the triad, pointing to the axis of symmetry of one of the
lateral tanks, in such a way that y = z× x.

Figure 4.1 shows a better depiction of the target body frame. The Euler angles
were described in Section 4.1 for a configuration where the x-axis is aligned with
the longitudinal axis of the vehicle. However, the definition of the rocket body’s
reference frame differs from that explanation. Here, the roll angle ϕ is measured
around the body’s z-axis; the yaw angle ψ is measured around the x-axis; and the
pitch angle θ is measured around the y-axis. This arbitrary definition of the body
reference frame was decided in order to match the axes of the 3D CAD model.

Thus, the visual navigation system must estimate the parameters of the target’s
state vector based on the declaration of the body reference frame. To achieve this
objective, two methods were assessed in order to accomplish this goal: by means of
point clouds’ global descriptors, and through recognition of point clusters associated
to distinctive target’s external geometry.

4.2.1 Initialization Based on Global Descriptors

Under the assumption that the whole rocket body is observed by the ToF camera and
no other additional object, it is possible to recognize the pose of the target based on

62 Pose Estimation

Figure 4.1. Definition of the rocket body fixed frame. It is located at the centroid
of the main cylinder body; z-axis is aligned with the cylinder’s axis of
symmetry and pointing towards the bay for the navigation instruments;
x-axis points towards the fairing; y-axis points towards a lateral tank.

global descriptors, defined in Section 3.2.2. This procedure is composed by two main
steps: the first one is to produce a training database filled with global signatures of
the object at different poses, and a second phase where a test point cloud descriptor
is matched against all the elements stored in the training data (Gomez and Boge,
2015).

4.2.1.1 Training phase

In this initial step, it is required to create a database, where the elements are global
descriptors of the designated target. The particularity of those signatures is that each
of them is computed from a different pose of the object of interest. The main idea is
to populate the database with different histograms associated with its correspondent
pose. The method for obtaining this training data set is by taking many depth images
of the object at different pre-established poses. For each of them, the point cloud is
obtained, and the chosen global descriptor is calculated for each of the point sets
previously recovered.

4.2 Initialization 63

For every day objects, it would not be so difficult to find the appropriate element
to take the point clouds at different poses. Otherwise, if the object is not so common,
or the target is too big, the construction of the data base may be more difficult. For
that reason, another alternative to produce the training database is using 3D CAD
models of the object, and produce the point clouds by simulating the sensor. Due to
the fact that this thesis uses as a target an object longer than 6m, the last option is
preferred for the procedure assessment. Based on that, the CAD model shown in
Figure 1.4 was the object from which synthetic point clouds were obtained using
software tools, specifically BlenSor (Gschwandtner et al., 2011). The latter is an
open-source add-on, that not only simulates ToF cameras, but also scanning lidars
and light-structured range sensors, like the Kinect™. This add-on runs on top of
Blender1, an open-source 3D creator software.

Hence, it is possible to obtain any number of views as wished for the object
poses. Then, the global descriptor is computed for each of those poses. When
this calculation is performed, it is possible to build the training database, which is
composed by:

• The point cloud of a specific pose view.

• The global descriptor associated to its correspondent point cloud view.

• The respective object’s position and orientation to the point cloud view.

The last item usually is declared as the rigid transformation from the body fixed
reference frame to the sensor coordinates frame, which is previously known because
it was assigned on purpose.

4.2.1.2 Testing phase

When the training list is finally completed, then it is feasible to estimate any given
pose of the target. After obtaining the actual point cloud view of the target at an
unknown pose, the correspondent global descriptor is calculated. Now the algorithm
would try to find the closest match between the current view descriptor and all
those previously stored in the training database. This descriptors comparison is

1www.blender.org

www.blender.org

64 Pose Estimation

performed by brute force, based on the Chi-square distance between histograms (Pele
and Werman, 2010), whose computation is performed by means of:

χ2 =
1
2

N∑
i=1

(Hi,P −Hi,Q)
2

Hi,P +Hi,Q
(4.5)

where N is the number of bins in the histograms. Hence, this metric performs a
bin-to-bin comparison. The ideal match is when the χ2 distance is equal to 0, where
the current view’s descriptor has been already trained previously. For that reason,
the outcome of the histogram comparison will be the list with the best possible
candidates, i.e. those whose distance is close to 0, that could be represented by the
current view descriptor.

As a final step, it is required to calculate the rigid transformation between the
current point cloud view and the found nearest neighbor by means of the ICP
algorithm (see Section 3.4). As a requirement, all the point clouds stored in the
training database are then considered as the target cloud for the ICP procedure, and
the current point cloud view is defined as the source cloud. Hence, ICP tries to align
the current view to the found match.

However, the transformation from the target cloud to the source one is required,
because the demanded pose is that which refers to the current view, i.e. the source
point cloud. For instance, any orientation of the rocket body is described by the
orthonormal matrix R, which rotates the sensor reference frame F into the body
fixed frame Fb:

Fb = RF (4.6)

On the other hand, the rotation matrix from the ICP, RICP, indicates the rotation
from the current view pose, F ′

b, to the nearest match, Fb. Also, although the transla-
tion tICP that defines the displacement between source and target point clouds, it
is not taken into account for estimating the orientation. Hence, both poses can be
expressed in the same way as Equation 4.6:

Fb = RICPF
′
b (4.7)

4.2 Initialization 65

The required pose is the current view one, though. With this in mind, the pose of
the test view is obtained from modifying Equation 4.7:

F ′
b = RT

ICPFb (4.8)

Finally, combining Equations 4.6 and 4.8, the current pose of the rocket body
with respect to the sensor coordinates frame is:

F ′
b = RT

ICPRF (4.9)

4.2.2 Initialization Based on Body Geometry

The initialization method explained in Section 4.2.1 is based on nearest neighbor
search among a training list populated by descriptors, obtained by a real object or
a CAD model of the target. When we refer to space debris, the shape of the target
is unknown, and the structure might be affected by external factors like impacts
with other debris or metal degradation. If this happens, the probabilities of finding
a closer match in the database could be drastically reduced, and there would not be
any possibility of extracting the target’s initial pose.

Accordingly, it could also be possible to obtain the position and orientation of
the debris without any additional information, but the general outer geometry of
the target. Most of human-built objects are composed by geometrical primitives,
i.e. planes, circles, triangles, et cetera, for 2D; and cubes, cylinders, cones, spheres
for 3D, among others. Taking the advantage of this, and with the assumption of
knowing some geometrical information a priori about the rocket body:

• The main body is a circular cylinder, with known radius.

• The number of appendices that the body has, i.e. external tanks, fairings, etc.

• The position of the rocket nozzle on one of the body’s extremities.

4.2.2.1 Recognition of the main body

Thanks to the procedure of the recognition of primitives by the use of the RANSAC
algorithm (see Section 3.3.2), the detection of the rocket body as the target for ADR

66 Pose Estimation

can be achieved using the cylinder model. When the fitting process is successful,
the outcome is the estimation of the cylinder longitudinal axis, i.e. the parametric
equation of the line in 3D space, as well as the points set that conform the main body
or the rocket’s upper stage.

4.2.2.2 Estimation of the cylinder’s centroid

Generally speaking, the point P found in the axis estimation routine does not coincide
with the middle point of the cylinder. As it can be reminded, origin of the body
reference frame is located at the cylinder’s centroid (see Section 4.2). Hence, the
detection on this point in the estimated cylinder’s axis of symmetry is crucial for a
good pose initialization.

Taking the points set that fitted onto the cylinder model, each pointQi is projected
onto the axis of symmetry as:

ti = d⃗T (Qi − P) (4.10)

obtaining the parameter t for each of those points, in such a way that the new
coordinates of the projected point Q ′

i are:

Q ′
i = P + tid⃗ (4.11)

which is the same equation of a parametric line (see Equation 3.19). This new
“linear” point cloud is located along the cylinder’s axis, whose extremal values of
ti determine the two longitudinal ends of the cylindrical body, Q ′

min and Q ′
max. The

centroidM is then the resultant average of those two end points. Figure 4.2 shows
the centroid of the cylinder, as well as the longitudinal end points of the cylinder’s
axis of symmetry.

4.2.2.3 Identification of the nozzle, external tanks and fairing

Although the RANSAC algorithm for detecting the cylinder provides the direction of
the line that lies on the rocket’s axis, the estimation of the unit vector direction cannot
be previously settled (Gomez Martinez and Eissfeller, 2016), e.g. to point towards
the camera, like the procedure made for the point cloud’s normals estimation. Due

4.2 Initialization 67

Figure 4.2. Estimation of cylindrical axis and rocket body’s centroid. The centroid is
the average of the axis extremal points Q ′

min and Q ′
max.

68 Pose Estimation

Figure 4.3. Visualization of the nozzle detector at both possible locations along the
cylinder’s axis of symmetry.

to the definition of the body fixed reference frame (see Section 4.2), it is required
to have this vector d⃗ to be pointing towards the instrumentation bay of the upper
stage, i.e. in opposite direction of the rocket’s nozzle.

For achieving this goal, a cluster detector isolates a spherical region, whose center
is located at a given distance along the axis from the main cylinder’s centroid in the
direction of d⃗. The radius of this sphere is selected so that the number of points lying
within the filter is much larger than the number of points encapsulated when the
detector is located in the direction of the instrumentation bay, as shown in Figure 4.3.

Additionally, the normal vector of the point cluster inside the spherical filter
is again estimated. In such a way, it is possible to increase the certainty about
the nozzle, because their surface’s normals tend to intersect the cylinder’s axis of
symmetry, which should be the same for the rocket nozzle of the Cosmos-3M upper
stage.

After the detection of the two main structures of the rocket body, i.e. main
cylindrical body and nozzle, the points associated to those surfaces can be eliminated,
letting the additional appendages more accessible for further calculations. The
following step to carry on is the detection of one of the lateral tanks. Because they
are cylinders with known radius as the main body, the detection of those structures
followed the same procedure detailed in Section 3.3.2. The detection of one of the
two lateral tanks is enough for the pose initialization.

Finally, the last structure to be identified is the fairing, located on the surface of
the main cylindrical body. A new cluster detector is applied with a known distance
from the cylinder’s centroid, with the correspondent sphere’s radius. Thanks to the
upper stage’s footage before launch, this fairing is a protrusion composed by planar
surfaces. Hence, it is possible to validate the point cluster as part of the fairing if

4.2 Initialization 69

Figure 4.4. Visualization of the fairing detector at both possible locations.

planar surfaces are detected by using RANSAC for planes fitting, as explained in
Section 3.3.1. Similarly to the nozzle spherical filter, Figure 4.4 shows the possible
locations that the fairing detector can have. The flowchart shown in Figure 4.5
summarizes the sequential steps performed to extract the necessary geometrical
information from the available point cloud.

4.2.2.4 Definition of the body pose

The z-axis of the body reference frame is defined first, using as its principal vector k
the direction of the cylinder’s axis d⃗. If the nozzle is located in the opposite direction
of d⃗, then k is correct for the coordinate frame definition. Otherwise, the vector d⃗
should be flipped, i.e. changing the sign.

The principal vector j of the y-axis is determined by the unit vector from the
cylinder’s centroid towards the axis of the detected lateral tank, while i completes
the right-hand frame by pointing towards the side of the main cylinder where the
fairing lies (see Figure 4.1).

Afterwards, the orientation of the rocket body is then described via the orthonor-
mal matrix R, formed by the retrieved vectors in such a way that:

R =

 ix iy iz

jx jy jz

kx ky kz

 (4.12)

At last but not least, the translation of the target is defined by the vector t,
which is formed by the distance between the camera coordinates frame F and the
main cylinder’s centroidM. Therefore, the pose initialization for the rocket body is

70 Pose Estimation

start process

acquire point cloud

detect cylinder

cylinder identified?

discard data

find axis midpoint

locate nozzle detector

nozzle identified?

change location

detect lateral cylinder

locate fairing detector

fairing identified?

change location

6D pose initialized

no

yes

no

yes

no

yes

Figure 4.5. Flowchart of the initialization process using structural descriptors.

4.3 Tracking 71

defined as:
Fb = RF + t (4.13)

4.3 Tracking

Tracking is used in computer vision to follow the location of an object across multiple
frames of a video stream. Under the rigid-body assumption, a subset of the point
cloud –points that enter/leave the cloud, due to changes in the FOV and obstruction,
are discarded– is subject to a transformation proportional to the body translation
and rotation (Gómez Martínez et al., 2017).

4.3.1 Transformation Estimation

The transformation is estimated by applying the ICP algorithm (see Section 3.4)
to extract the translation vector and rotation matrix that describe the inter-frame
motion, finding the minimum arguments using Equation 3.23. The target cloud is the
point cloud which has been initialized, using either the global descriptor matching,
or the body geometry methods, observed at a time t. Consequently, the source cloud
is the immediate subsequent point set at the epoch t + ∆t, where ∆t is the time
between frames.

In order to accelerate the execution of the ICP procedure, both point clouds,
target and source, are downsampled by means of voxels (see Section 2.3). The voxel
filtering is also a useful method to reduce the number of points in a cloud. Here,
each voxel encapsulates some points of the cloud –based on the side length of each
box–, and the average point of each box will be a new member for the downsampled
cloud.

After this data reduction is performed, all the elements of the cloud are then
called “keypoints”, and each of them correspond to a voxel. Afterwards, a selected
local descriptor (discussed in Section 3.2.1) is computed to each of the keypoints. Of
course, the descriptor selection is based on the user’s requirements. After having
two new sets of descriptors for each point cloud, they are compared to each other in
order to find the closest match in both point sets, associating both signatures. This
couple association is called as descriptor correspondence (see Figure 4.6).

72 Pose Estimation

Figure 4.6. Descriptor correspondences between two consecutive views. The corre-
spondences couples 1, 2, and 3 indicate a good feature matching. The
non-labeled correspondences show wrong match due to the symmetry
and the surface curvature of the object, which cause to have similar
geometrical descriptors but at different location.

Those correspondences are the foundations for a first coarse registration using
the SVD method (see Algorithm 3.4), but taking into account only the keypoints,
whose descriptors have mutual equivalence. Hereafter, the original source cloud,
i.e. that before downsampling, is then transformed using the rotation matrix and
translation vector resultant from the SVD procedure, as follows:

Fb,int = RSVDFb,t+∆t (4.14)

being Fint the intermediate body pose after coarse alignment. The last step is perfor-
med in order to minimize the distance between point clouds. Henceforth, the ICP
algorithm is applied on the complete point cloud, yielding a refined final registration
of the source cloud onto the target cloud

Fb,t = RICPFb,int (4.15)

Thus, the rocket body pose at the current view is defined as:

Fb,t+∆t = RT

SVDR
T

ICPFb,t (4.16)

4.3 Tracking 73

Finally, the translation vector t is obtained using Equation 3.26, being the rotation
matrix R the product of the two matrices RT

SVD and RT

ICP.

4.3.2 Extended Kalman Filter Design

Although the object’s motion is tracked continuously by the ICP algorithm after the
pose initialization, there exists an accumulation error. The latter, if not corrected,
yields unacceptable biases when tracking the relative position and rotation after just
a few rotations. However, the same procedure performed to initialize the relative
pose of the target could be repeated after a given time to correct for the current
estimation, thus eliminating, or largely mitigating, the accumulated bias.

The latter can be achieved by identifying and mapping distinctive points of
the target structure, and estimating their relative position after a full rotation, if
it exists. Hence, this set of distinctive points is used by a filter to compensate for
estimation drifts during the pose determination of a tumbling target in similar
technique to the concept of loop-closure in simultaneous localization and mapping
(SLAM) techniques (Newman and Ho, 2005).

In order to determine the set of measurements and propagate the target’s position
and orientation, an Extended Kalman Filter (EKF) (Crassidis et al., 2007) is proposed.
The EKF is a generalization of the Kalman Filter (KF) (Kalman, 1960), where the
estimation for non-linear systems are then linearized both the dynamical process
and the measurement updates around the average estimate.

4.3.2.1 Motion model

First of all, taking as base the target’s state vector x (See Equation 4.1), the time-based
version of the state vector can be settled as

x(t) =

r(t)

ṙ(t)

qs(t)

qv(t)

ω(t)

rf(t)

(4.17)

74 Pose Estimation

where

- r is the target position vector

- ṙ is the target velocity vector

- (qs,qv)
T is the unit quaternion q (Equation 4.4) used to describe the target

orientation, with q2
s + qT

vqv = 1

- ω is the target angular velocity vector

- rf is the position vector of a distinctive point on the target’s surface, e.g., the
fairing.

Position, translational velocity, rotation, and angular velocity are to be intended
with respect to the sensor coordinates frame. In order to describe the body reference
frame orientation, a rotation matrix defines the target’s attitude in terms of unit
quaternion as

R(qs,qv) = (q2
s − qT

vqv)I3 + 2qvq
T

v − 2qsΩqv

=

q
2
0 + q

2
1 − q

2
2 − q

2
3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q

2
1 + q

2
2 − q

2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q

2
1 − q

2
2 + q

2
3

 (4.18)

where

Ωqv
=

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (4.19)

On the other hand, the target’s distinctive point, bf, is a constant vector in body
coordinates, such that

rf(t) = R(qs(t),qv(t))bf + r(t) (4.20)

from which one obtains, by applying the identity to time instances t and t+ ∆t,

rf(t+ ∆t) = R (qs(t+ ∆t),qv(t+ ∆t))R
T (qs(t),qv(t))︸ ︷︷ ︸

Rreg

(rf(t) − r(t)) + r(t+ ∆t)

(4.21)

4.3 Tracking 75

Here, the rotation matrix Rreg refers to the incremental (relative) rotation estimated
by the registration between two consecutive point clouds, i.e. the coarse and fine alig-
nments extracted for the rigid transformation estimation, explained in Section 4.3.1.

Regarding to space applications, it is assumed constant linear velocity and angu-
lar velocity in the target’s motion. If the chaser is not subject to internal or external
forces, the relative motion between the chaser and the target yields the following
state transition model between time tk and tk+1:

xk+1 =

rk + ṙk(tk+1 − tk)

ṙk

qs,k+1

qv,k+1

ωk

R(qs,k+1,qv,k+1)R
T(qs,k,qv,k)(rf,k − rk) + rk+1

(4.22)

where the quaternion components qs,k+1 and qv,k+1 are obtained, for constant angu-
lar velocity ωk between tk and tk+1, as

qs,k+1 = qs,k cos
(
∥ωk∥

(tk+1 − tk)

2

)
+

qT

v,kωk

∥ωk∥
sin
(
∥ωk∥

(tk+1 − tk)

2

)

qv,k+1 = qv,k cos
(
∥ωk∥

(tk+1 − tk)

2

)
+

1
∥ωk∥

[Ωωk
qv,k − qs,kωk] sin

(
∥ωk∥

(tk+1 − tk)

2

) (4.23)

with skew-symmetric matrix

Ωωk
=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.24)

Equations 4.22 and 4.23 enable one to predict the pose of the target at time tk+1

given an initial state at time tk. Hence, the propagation of uncertainty stems from
the linearization of the functions xk+1 = fk(xk) as

Pk+1 = JfkPkJ
T

fk (4.25)

76 Pose Estimation

with the Jacobian matrix Jfk is equal to

Jfk =
I3 (tk+1−tk)I3 03×1 03×3 03×3 03×3

03×3 I3 03×1 03×3 03×3 03×3

01×3 01×3
∂qs,k+1
∂qs,k

∂qs,k+1
∂qv,k

∂qs,k+1
∂ωk

01×3

03×3 03×3
∂qv,k+1
∂qs,k

∂qv,k+1
∂qv,k

∂qv,k+1
∂ωk

03×3

03×3 03×3 03×1 03×3 I3 03×3

I3−R(qs,k+1,qv,k+1)R
T (qs,k,qv,k) (tk+1−tk)I3

∂rf,k+1
∂qs,k

∂rf,k+1
∂qv,k

∂rf,k+1
∂ωk

R(qs,k+1,qv,k+1)R
T (qs,k,qv,k)

(4.26)

having the correspondent partial derivatives

∂qs,k+1

∂qs,k
= cos

(
∥ωk∥

(tk+1 − tk)

2

)
∂qs,k+1

∂qv,k
=

ωT

k

∥ωk∥
sin
(
∥ωk∥

(tk+1 − tk)

2

)
∂qs,k+1

∂ωk

=
−1
∥ωk∥

[
qT

v,kΩ
2
ωk

∥ωk∥2 +
(tk+1 − tk)

2
qs,kω

T

k

]
sin
(
∥ωk∥

(tk+1 − tk)

2

)
+ qT

v,k
ωkω

T

k

∥ωk∥2

(tk+1 − tk)

2
cos
(
∥ωk∥

(tk+1 − tk)

2

)
(4.27)

4.3 Tracking 77

∂qv,k+1

∂qs,k
= −

ωk

∥ωk∥
sin
(
∥ωk∥

(tk+1 − tk)

2

)
∂qv,k+1

∂qv,k
=

[
q1,k 0 0

0 q2,k 0
0 0 q3,k

]
cos
(
∥ωk∥

(tk+1 − tk)

2

)
+

1
∥ωk∥

Ωωk
sin
(
∥ωk∥

(tk+1 − tk)

2

)
∂qv,k+1

∂ωk

=
(tk+1 − tk)

2∥ωk∥2 [Ωωk
qv,k − qs,kωk]ω

T

k cos
(
∥ωk∥

(tk+1 − tk)

2

)
+

1
∥ωk∥

[
−
(tk+1 − tk)

2
qv,kω

T

k −Ωqv,k − qs,k

[
ω1,k 0 0

0 ω2,k 0
0 0 ω3,k

]]
· sin

(
∥ωk∥

(tk+1 − tk)

2

)
− [Ωωk

qv,k − qs,kωk]
ωT

k

∥ωk∥3 sin
(
∥ωk∥

(tk+1 − tk)

2

)

(4.28)

78 Pose Estimation

∂rf,k+1

∂qs,k
= 2(qs,k+1I3 −Ωqv,k+1)

ak

bk

ck

 ∂qs,k+1

∂qs,k
+ R(qs,k+1,qv,k+1)

∂ak

∂qs,k
∂bk

∂qs,k
∂ck

∂qs,k

∂rf,1,k+1

∂qv,k
= 2(qs,k+1,qT

v,k+1)

[
ak 0 −ck bk
0 ak bk ck

−ck bk −ak 0
bk ck 0 −ak

](
∂qs,k+1
∂qv,k

∂qv,k+1
∂qv,k

)
+ rT

1,k+1

∂ak

∂qv,k
∂bk

∂qv,k
∂ck

∂qv,k

∂rf,2,k+1

∂qv,k
= 2(qs,k+1,qT

v,k+1)

[
bk ck 0 −ak
ck −bk ak 0
0 ak bk ck

−ak 0 ck −bk

](
∂qs,k+1
∂qv,k

∂qv,k+1
∂qv,k

)
+ rT

2,k+1

∂ak

∂qv,k
∂bk

∂qv,k
∂ck

∂qv,k

∂rf,3,k+1

∂qv,k
= 2(qs,k+1,qT

v,k+1)

[
ck −bk ak 0
−bk −ck 0 ak
ak 0 −ck bk
0 ak bk ck

](
∂qs,k+1
∂qv,k

∂qv,k+1
∂qv,k

)
+ rT

3,k+1

∂ak

∂qv,k
∂bk

∂qv,k
∂ck

∂qv,k

∂rf,1,k+1

∂ωk

= 2(qs,k+1,qT

v,k+1)

[
ak 0 −ck bk
0 ak bk ck

−ck bk −ak 0
bk ck 0 −ak

](
∂qs,k+1
∂ωk

∂qv,k+1
∂ωk

)

∂rf,2,k+1

∂ωk

= 2(qs,k+1,qT

v,k+1)

[
bk ck 0 −ak
ck −bk ak 0
0 ak bk ck

−ak 0 ck −bk

](
∂qs,k+1
∂ωk

∂qv,k+1
∂ωk

)

∂rf,3,k+1

∂ωk

= 2(qs,k+1,qT

v,k+1)

[
ck −bk ak 0
−bk −ck 0 ak
ak 0 −ck bk
0 ak bk ck

](
∂qs,k+1
∂ωk

∂qv,k+1
∂ωk

)

(4.29)

4.3 Tracking 79

where R(qs,k+1,qv,k+1) =

[
rT1,k+1

rT2,k+1

rT3,k+1

]
and ak,bk, ck (and corresponding derivatives)

(ak,bk, ck)T = RT(qs,k,qv,k)(rf,k − rk)(
∂ak

∂qs,k
,
∂bk

∂qs,k
,
∂ck

∂qs,k

)T

= 2
[
qs,kI3 +Ωqv,k

]
(rf,k − rk)

∂ak

∂qv,k
= 2(rf,k − rk)

T

[q1,k −q2,k −q3,k
q2,k q1,k −q0,k
q3,k q0,k q1,k

]
∂bk

∂qv,k
= 2(rf,k − rk)

T

[q2,k q1,k q0,k
−q1,k q2,k −q3,k
−q0,k q3,k q2,k

]
∂ck

∂qv,k
= 2(rf,k − rk)

T

[q3,k −q0,k q1,k
q0,k q3,k q2,k
−q1,k −q2,k q3,k

]

(4.30)

Although the complexity of the Jacobian is noticeable, it allows to propagate the
attitude of the target in time without taking into account the inertia properties of the
object. This is crucial, because bad assumptions about the inertia tensor values can
produce unexpected results in the motion estimation process.

4.3.2.2 State measurement

At each consecutive frame, an observation of the position and orientation of the
target is provided via the transformation estimation (see Section 4.3.1),

E(zk+1) =

[
I3 03×3 03×4 03×6

04×3 04×3 I4 04×6

]
xk+1 = Hk+1xk+1 (4.31a)

D(zk+1) = Rz,k+1 (4.31b)

where E(·) and D(·) denote the expectation (mean state value) and dispersion (co-
variance) operator, respectively. When the distinctive point on the target rf is
re-observed, the observation model (4.31a) modifies as

E(zk+1) =

 I3 03×3 03×4 03×3 03×3

04×3 04×3 I4 04×3 04×3

03×3 03×3 03×4 03×3 I3

 xk+1 = H ′
k+1xk+1 (4.32)

80 Pose Estimation

Thereby, it is possible to execute the prediction and update steps of the EKF can
then be formulated as

Prediction:

x̄k+1 = fk(xk)

P̄k+1 = JfkPkJ
T

fk +Qk

Update:

Kk+1 = P̄k+1H
T

k+1

(
Hk+1P̄k+1H

T

k+1 + Rz,k+1
)−1

xk+1 = x̄k+1 +Kk+1 (zk+1 −Hk+1x̄k+1)

Pk+1 = (I3 −Kk+1Hk+1) P̄k+1

(4.33)

where Qk denotes the process noise added at each step to model the uncertainty
about the motion model employed. The process noise added is

Qk = Jfk

03×3 03×3 03×4 03×3 03×3

03×3 σ2
vI3 03×4 03×3 03×3

04×3 04×3 04×4 04×3 04×3

03×3 03×3 03×4 σ2
ωI3 03×3

03×3 03×3 03×4 03×3 03×3

 JT

fk (4.34)

being σv and σω the linear velocity and angular velocity standard deviations, re-
spectively.

Figure 4.7 illustrates the EKF flowchart: after initialization, the state vector at the
next frame is predicted and updated via the assumed motion model and the rigid
transformation estimation given in Section 4.3.1. When the chaser senses one full
rotation of the target, or after a given fixed elapsed time, a re-initialization to detect
one distinctive point on the target surface (given in Section 4.2) is triggered. The
latter, as can be remembered, enables a correction for the drift in the estimated target
pose.

4.4 Summary

The current chapter introduced the paradigm of the pose estimation for a target
tumbling freely in orbit. After the establishment of certain orbital conditions, the

4.4 Summary 81

Predictor{
x̄k+1, P̄k+1

}Initialization
{x0,P0}

Full turn detected OR
time threshold elapsed

Transformation
estimation

k = k+ 1Detect distinctive
point(s)

Update
{xk+1,Pk+1}

yes

no

Figure 4.7. EKF process flowchart.

presentation of the target’s state vector was given. The pose estimation problem is
composed by two phases, which are the pose initialization and the target’s tracking.
The former indicated the procedures to obtain the relative position and orientation
of an object having the sensor coordinates frame as the reference one. Two different
approaches for initialization procedure were exposed, using geometrical descriptors
with offline training, or using geometric structural information. On the other hand,
the tracking phase was explained, whose main objective is to estimate the motion of
the target using consecutive point clouds. This procedure included how to find the
rigid transformation between clouds, and to use the EKF in order to have a better
estimation of the target’s state parameters. The complete definition of the filter was
indicated.

5 | Simulations and Results

Two simulations were performed to assess the pose estimation process exposed in
Chapter 4. Firstly, the synthetic simulation of the target and the point cloud data,
and secondly, the use of a scaled model with a real ToF camera, previously described
in Section 2.1.2.

The synthetic simulations were performed using a CAD model of the Cosmos-3M
upper stage (see Figure 1.4), whose dimensions were based on public available data,
and assumed as true. The purpose of using the synthetic data was to validate the
performance and outcome of the algorithms during the development phase of the
project. In principle, the point clouds did not include any level of noise. In a later
phase, Gaussian noise was added in order to have a better representation of possible
real data.

On the other hand, the simulations using the real sensor were made in order
to evaluate the robustness of the algorithms in real world, because the noise in
simulated data differs from the real noised data. Here, the model used was built
using a 3D printer, and in a scale of 1:10. The latter forced to modify the initial
algorithm, scaling the internal parameters in the same proportion, as well as the
distance between the sensor and the observed object. However, the illumination
conditions that a target may have in orbit were not taken into account for the
algorithm validation.

5.1 Synthetic Data

For algorithm prototyping and validation of the first outcomes, the use of synthetic
data was crucial for the initial development phase of the project. First of all, the
construction of the CAD rocket body based on public data was assumed to be

84 Simulations and Results

true. Furthermore, the production of synthetic point clouds was possible thanks to
BlenSor, as mentioned in Section 4.2.1.1.

5.1.1 Pose Initialization using Global Descriptors

First of all, the generation of a training database was necessary in order to have a
repository of descriptors, when a signature match is executed in order to find the
nearest neighbor. Studies have shown that rocket bodies in LEO may tumble with
an angular velocity up to 10°/s (Ojakangas and Cowardin, 2012; Yanagisawa and
Kurosaki, 2012). Hence, a stack of point clouds were generated, where the rocket
body was rotating at the same angular velocity described previously, i.e. 10°/s, in
order to have an extreme rotational state.

However, the rotation of the target may provoke the orientation of the latter
to be in any direction. Thus, the point clouds created were covered for the whole
sphere, with an angle step between positions of 10◦ with respect to the x- and y-axis
of the model reference frame. Then, a rotation through the z-axis was carried until
the target returned to the initial position, but without recording the last orientation
again, to avoid duplicates. At the end, the total number of point clouds generated
using this procedure was 22104, i.e. the number of descriptors stored in the training
database. At this point, there was no noise added to the point clouds.

Before generating the global descriptors, a robustness analysis was performed in
order to see which type of signature could offer more information in each histogram,
avoiding the possible false positives due to the symmetry of the target. Figures 3.9,
3.11, and 3.12 shows an example of the three global descriptors evaluated –VFH,
CVFH, and OUR-CVFH– for the same rocket body’s orientation. At the end, the
use of OUR-CVFH was chosen due to the additional information that the descriptor
has due to the local reference frames created after the point cloud clustering (see
Section 3.2.2.3). Figure 5.1 shows an arbitrary point cloud view of the rocket body,
meanwhile Figure 5.2 presents the two closest matches of the test view on the
training list, using the adopted global descriptor.

Although the possible candidates for matching the pose of the test point cloud is
feasible, the matching process sometimes presented many false positives, i.e. that the
closest neighbors found in the histogram had different orientation to the outcome
expected (see right part of Figure 5.2). The main reason behind this problem is the

5.1 Synthetic Data 85

Figure 5.1. Test point cloud for evaluation of pose initialization using a global des-
criptor.

Figure 5.2. Closest candidates to match the test view. The comparison of the test view
global descriptor and the trained descriptors is performed by finding the
minimum χ2 distance between them, using brute force, i.e. per element
in the training list.

86 Simulations and Results

(a) Test view (source, magenta) and best
candidate (target, black) point clouds
before ICP.

(b) Clouds alignment after ICP. Transfor-
med cloud (source, cyan) and best can-
didate (target, black).

Figure 5.3. Pose initialization using ICP algorithm after finding best matching candi-
date. The registration is not completely accurate: a longitudinal misma-
tch is noticeable at the nozzle’s end (5.3b).

symmetry of the rocket body, despite of having external appendages that may help
to distinguish between the aft and the front of the rocket body.

When the certainty about the closest match for the current body pose is assured,
then it is possible to apply the ICP algorithm to register the point clouds and find
the transformation matrix, i.e. rotation and translation, between the current view
and the database candidate. As a result, the test view pose is the product of the
match pose and the rotation matrix from the ICP. At the time of this analysis, no
improvement was made to the registration process, in comparison to that explained
in Section 4.3.1. Outcome of the ICP procedure is shown in Figure 5.3.

As a final remark, it is important to take into account the condition of the target’s
surface for real operation: if the object has a variation in its structure, there would
not be any possibility for a descriptor matching. Unfortunately, the training database
assumed the complete integrity of the rocket body. If this completeness cannot be
assured, the procedure would not work as expected.

5.1 Synthetic Data 87

5.1.2 Pose Initialization based on Body Geometry

For this assessment, there was not required a full stack of different point clouds, but
only one. A initial pose was given for debugging the algorithm and evaluating its
effectiveness. Table 5.1 reports the conditions of a stable rotation of the rocket body,
where the latter tumbles about an axis parallel to the sensor’s y-axis. Using 37 point
clouds, i.e. one full rotation, the initialization process was performed based on the
schemes described in Section 4.2.2. Figure 5.4 is a feasible result of the process of
initialization.

Table 5.1. Synthetic Data Simulation - Body Initial Parameters

Parameter Value

Roll angle (about sensor’s x-axis) −90◦

Pitch angle (about sensor’s y-axis) −70◦

Yaw angle (about sensor’s z-axis) −20◦

Rotation axis in sensor reference frame [0, 1, 0]
Angular velocity 10°/s

Sensor acquisition frequency 1Hz
Number of simulated frames 100

Each point cloud was processed independently to obtain the target’s pose. Fi-
gure 5.5 shows the difference between the nominal and the estimated attitude of
the rocket body, given in Euler angles. The attitude was correctly retrieved only
when the fairing was in the FOV of the sensor, i.e. 31 out of 37 point clouds. Each
Euler angle –roll, pitch and yaw– could be initialized with an error not grater than
2◦, always when the fairing was visible (see Figure 5.6). Hence, the routine is not
capable of estimate the 6DOF pose in the absence of this structural appendage.
This flaw can be solved using analysis of 2D image features in addition to the 3D
data, helping to identify another visual clues on the rocket’s surface. On the other
hand, if there are no such keypoints or the target’s surface is too much degraded
due to the outer space environment, the probabilities of enhancing this method are
considerably reduced.

88 Simulations and Results

Figure 5.4. Outcome of the initialization process based on body geometry. The body
reference frame is located at the centroid of the cylinder. The cylinder’s
axis of symmetry is shown in blue, meanwhile the location for the axis’
endpoints, as well as the location for nozzle and fairing detectors are
shown in red.

5.1 Synthetic Data 89

0 5 10 15 20 25 30 35 40

80

100

ϕ
[d

eg
]

Euler angles initialization

true
estimated

0 5 10 15 20 25 30 35 40
−20

0

20

θ
[d

eg
]

true
estimated

0 5 10 15 20 25 30 35 40
−200

−100

0

100

200

Frame number

ψ
[d

eg
]

true
estimated

Figure 5.5. Output of the initialization routine for estimating the rocket orientation.
Both estimated and nominal (true) Euler angles are given. The six incor-
rect initializations of the rocket yaw angle are due to the lack of view of
the fairing from the sensor, which could not resolve rotations about the
rocket’s longitudinal axis.

90 Simulations and Results

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

ϕ
di

ff
.[

de
g]

Euler angles estimation error after initialization

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

θ
di

ff
.[

de
g]

0 5 10 15 20 25 30 35 40

−2

0

2

Frame number

ψ
di

ff
.[

de
g]

Figure 5.6. Difference between the estimated and true relative rocket orientations,
given in Euler angles, following the initialization procedure.

5.1 Synthetic Data 91

0 10 20 30 40 50 60 70 80 90 100

4

5

6

7
·10−2

Registration

rm
s

[m
]

Tracking residual error

initial
fine

Figure 5.7. Residual error for the alignment of each pair of consecutive frames. The
blue curve shows the coarse alignment using SVD. The red curve shows
the fine alignment using ICP, after the coarse one.

5.1.3 Pose Tracking

After the pose was initialized, the motion tracking of the target can start. First, the
registration process of two consecutive point clouds was necessary to obtain the
rigid transformation between them, using the procedure explained in Section 4.3.1.
From the initial conditions exposed in Table 5.1, 100 point clouds were generated, re-
presenting 2.78 full 360◦-rotations. Gaussian white noise was added to the simulated
point cloud: each point was given an uncertainty of 1cm (standard deviation).

Figure 5.7 shows the residual errors related to the alignment of two consecutive
point clouds, where the coarse and fine alignment had been involved. The enhance-
ment obtained when passing from the coarse alignment (where the point cloud was
downsampled to keypoints) to the refined estimation (when the linear and angular
distance were reduced thanks to the initial alignment, but using the whole number
of points in the cloud) is noteworthy.

The residual rms error is not exceeding 7cm, provoked by the non-perfect associ-
ation of the keypoints correspondences, additional to the non-equality of the point
data sets. If some visual markers could be added to the initial coarse alignment
and their correspondent feature descriptors, the accuracy of the initial registration
would improve considerably. When the fine alignment took part by using the ICP,
the error is reduced, not being greater than 5cm. However, there were some local
drawbacks, when the two point clouds possessed a certain degree of symmetry.

92 Simulations and Results

Figure 5.8. Larger registration errors due to an erroneous rotation alignment about
the rocket longitudinal axis, noticeable by the displacement of the lateral
tank. The point clouds are seen from the nozzle viewpoint, with the
current point cloud in gray and the former point cloud in black.

The latter might produce a larger alignment error on a target’s rotation close to the
rocket’s longitudinal axis. Figure 5.8 shows an example of this situation, where the
offset in the transverse section of the body becomes noticeable.

When the rigid transformation was obtained, the estimation of the target’s state
vector was the following step in order to predict and update the rocket body’s pose
via the EKF, exposed in Section 4.3.2. The EKF required as initial values the position,
linear velocity, orientation and angular velocity in the sensor frame. All of them were
obtained from the pose initialization as well as the rigid transformation estimation
(initial step of the tracking phase). The EKF converged rapidly towards the correct
pose when the correct initialization was introduced and the registration did not fail.
Figure 5.9 shows the true and estimated values for the rocket body’s state vector,
meanwhile Figure 5.10 shows the error between the estimated values by the EKF
and the ground truth values for the state vector.

On the other hand, the valid estimation of the relative orientation of the rocket
body is crucial for the capture phase of the autonomous rendezvous. Hence, Fi-
gure 5.11 visualizes the true and estimated values of the orientation’s Euler angles.
Additionally, the accuracy in the tracking of the rocket orientation is shown in Fi-

5.1 Synthetic Data 93

0 10 20 30 40 50 60 70 80 90 100
−12

−10

−8

−6

−4

−2
0

Po
si

ti
on

[m
]

Relative position, linear velocity and angular velocity
x
xest
y
yest
z
zest

−5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100105
−2 · 10−2

0
2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1
0.12
0.14
0.16
0.18
0.2

0.22

Ve
lo

ci
ty

[m
/s

]

ẋ

ẋest
ẏ

ẏest
ż

żest

0 10 20 30 40 50 60 70 80 90 100

0

5 · 10−2

0.1

0.15

0.2

Frame Number

A
ng

.v
el

.[
ra

d/
s]

αx

αx,est
αy

αy,est
αz

αz,est

Figure 5.9. Comparison of the true and estimated relative position, linear velocity,
and angular velocity output by the EKF.

94 Simulations and Results

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

·10−3

Po
si

ti
on

[m
]

Error for relative position, linear velocity and angular velocity after tracking

x
y
z

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
·10−3

Ve
lo

ci
ty

[m
/s

]

ẋ

ẏ

ż

0 10 20 30 40 50 60 70 80 90 100
−2.5
−2

−1.5
−1

−0.5
0

0.5
1

1.5
·10−2

Frame Number

A
ng

.v
el

.[
ra

d/
s]

αx

αy

αz

Figure 5.10. Difference between the EKF-estimated and the true relative rocket posi-
tion, velocity and angular rate.

5.2 Real Data 95

gure 5.12, which shows the difference between the true and estimated values for
the Euler angles associated to the upper stage’s attitude. The roll (ϕ) and pitch (θ)
angles were estimated with an accuracy of 3◦, whereas the yaw angle (ψ) is less
accurate. The latter was due to the characteristics of the simulated tumbling motion
and the tracking procedure employed: the yaw angle estimation is the most affected
by the registration errors such the one visualized in Figure 5.8.

Then again, since the fairing was selected as the distinctive point on the rocket
surface to be mapped by inclusion of its sensor-frame coordinates in the state vector,
the yaw angle estimation benefits the most from re-initialization: the steep correction
at each full turn is evident and solves the problem of unbound drifting that a tracking-
only approach would manifest. Also, this steep correction explains the spike in the
angular velocity (see Figure 5.9) estimation, which obviously reacts proportionally
to the amount of the yaw angle correction that follows the re-initialization.

5.2 Real Data

In order to validate the algorithms in real world, the construction of a scaled model
of the Cosmos-3M upper stage was carried. The scale of 1:10 was determined
using different cylinder models, which were built with cardboard with the same
dimension relationships but different scales. Figure 5.13 shows the diverse models
employed to determine the adequate size for the algorithms assessment. Having all
the models, diverse point clouds were taken with the PMD-Technologies CamCube
3.0 (see Section 2.1.1 and Figure 2.2) at different cylinder positions. Later on, a global
descriptor for each of them was estimated in order to analyze if the point clouds
shared any kind of relationship. Thus, the use of a scaled model could be effective
for the algorithm validation, without having a real size rocket body. The geometrical
similitude based on global descriptors can be observed in Figure 5.14.

Also the level of noise in the data was analyzed in order to have the most clean
point cloud, but without having a very big mock-up. The latter was a constrain of
the maximum print volume of the 3D printer (MakerBot, 2014). While it is possible
to segment a body, print all the pieces, and assembly them at the end, the resultant
model does not have a smooth surface compared to a model that is constructed
in just one piece. Taking into account all those restrictions, as well as the scale
ambiguity (see Figure 2.6), the most suitable option was a model of 1:10 in scale

96 Simulations and Results

0 10 20 30 40 50 60 70 80 90 100

80

100

ϕ
[d

eg
]

Euler angles estimation

true
estimated

0 10 20 30 40 50 60 70 80 90 100
−20

0

20

θ
[d

eg
]

true
estimated

0 10 20 30 40 50 60 70 80 90 100
−200

−100

0

100

200

Frame number

ψ
[d

eg
]

true
estimated

Figure 5.11. Attitude estimate output by the EKF, given in Euler angles, compared
to the true values.

5.2 Real Data 97

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

ϕ
di

ff
.[

de
g]

Euler angles estimation error after tracking

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2

4

θ
di

ff
.[

de
g]

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

Frame number

ψ
di

ff
.[

de
g]

Figure 5.12. Difference between the EKF-estimated and the true relative rocket orien-
tation, given in Euler angles.

98 Simulations and Results

Figure 5.13. Cylinder mock-ups for scale assessment.

0 50 100 150 200 250 300
0

10

20

30

Bins

Po
in

ts

Global Descriptors of Cylinder Mock-ups

r = 10cm
r = 12cm
r = 15cm
r = 20cm

Figure 5.14. OUR-CVFH descriptor comparison for cardboard cylinder mock-ups.
Cylinder models with smallest radius were not taken into account be-
cause of the high level of noise in the data, i.e. saturation in sensor,
hence it was not possible to fit the RANSAC cylindrical model.

5.2 Real Data 99

Figure 5.15. Scaled, printed model of the Cosmos-3M upper stage.

with respect to the assumed real rocket body dimensions, i.e. the cylinder of radius
r = 12cm. Figure 5.15 shows the outcome of the 3D printed rocket body, as well as
Figure 5.16 presents a point cloud sample obtained from the printed target.

In order to simulate a tumbling behavior of the rocket body, the latter had a fixed
orientation, and put onto a rotating table to provide an angular velocity around the
vertical axis. This was done is angle steps of 5◦, and the ToF camera recorded each
pose in a “stop-and-go” manner. Due to technical challenges, it was not possible
to record a full-360◦ turn, because the support frame, which held the rocket body
model in the given orientation, blocked the model from the sensor’s point of view.
Figure 5.17 shows a render of how the data was recorded.

5.2.1 Pose initialization based on Body Geometry

After adaptation of the algorithms to the new target size, the procedure remained
the same as for the simulated test, but with different initial conditions, indicated in
Table 5.2. However, contrary to the synthetic data analysis, only the pose initializa-
tion based on the body geometry was assessed. The other method, i.e. that based on
global descriptors, was not taken into account due to the great number of issues this
procedure has, like the training data set generation, or the rejection of false positives

100 Simulations and Results

Figure 5.16. Point cloud obtained from the printed model using the CamCube 3.0.
The noise in the data is noticeable.

Figure 5.17. Render of the real point cloud data acquirement.

5.2 Real Data 101

Table 5.2. Real Data Simulation - Body Initial Parameters

Parameter Value
Roll angle (about sensor’s x-axis) −90◦

Pitch angle (about sensor’s y-axis) −112.5◦

Yaw angle (about sensor’s z-axis) −40◦

Rotation axis in sensor reference frame [0, 1, 0]
Angular velocity 5°/s

Sensor acquisition frequency 1Hz
Number of frames 45

in the closest neighbor matching, among others. Figure 5.18 shows the result of the
initialization procedure for a specific pose. For the given range of samples, the result
of the pose initialization is shown in Figure 5.19, having as the true value the nominal
orientation of the body, taken from the CAD model in Blender. Apparently, the noise
reduction preprocessing can produce loss of significant data that could belong to the
surface of the target instead of being spurious points floating anywhere.

Nevertheless, the initialization was possible to perform well in general terms,
compared to the simulated counterpart (see Figure 5.4). Figure 5.20 indicates the
error for each Euler angle is around 4◦, showing that the noise in data is a determi-
nant factor for the pose initialization’s lack of accuracy. As a comment, the plot at
the bottom of Figure 5.20 does not show the error difference for the last 9 frames.
These data was excluded due to the big difference between the true and estimated
values for the yaw angle, when the fairing is not observable by the sensor in its FOV.

5.2.2 Pose Tracking

As its counterpart with the simulated data, the tracking phase for the printed rocket
body has the rigid transformation estimation plus the state vector determination
using the point cloud registration pipeline and the EKF, respectively. Figure 5.21
shows the registration error, where the latter is not exceeding more than 6mm when
both coarse and fine alignments have been performed in order to extract the rigid
rotation matrix. Compared to the simulation, the error value is approximately
reduced by one order of magnitude, giving robustness to the procedure. The latter
refers to the reduction of dimensions of the rocket body for proper manufacture and
real data analysis.

102 Simulations and Results

Figure 5.18. Outcome of the initialization process based on body geometry on the
printed model.

After the initialization of the rocket body printed model, the estimation of the
state vector is performed in the same manner as that used for the synthetic data,
described in Section 5.1.3. Thus, the initial values for the position, linear velocity,
orientation and angular velocity of the printed model are the input data for the EKF.
In this case the tracking filter converged rapidly towards the dynamic parameters,
as can be seen in Figure 5.22. The error of the estimation compared with the ground
truth values are shown in Figure 5.23.

However, this convergence cannot be seen with respect to the Euler angles that
described the orientation of the printed rocket body. These results are shown in
Figure 5.24 in Euler angles. Similarly to the results shown in Section 5.1.3, the truth
in the tracking procedure of the rocket orientation is shown in Figure 5.25. As
expected, the accuracy has been reduced because of the noise in the data. The roll (ϕ)
and pitch (θ) angles were estimated with an accuracy of 10◦ in average (sometimes
more), whereas the yaw angle (ψ) could achieve a variation up to 20◦. This confirms
the effects of the body’s symmetry, as observed with the results obtained for the
simulated scenario (see Figure 5.12) This loose on the estimation makes a possible
real rendezvous on orbit to be an arduous task. However, it is important to take into
account the additional artifacts in the point clouds used in this research could be

5.2 Real Data 103

0 5 10 15 20 25 30 35 40 45

80

100

120

ϕ
[d

eg
]

Euler angles initialization

true
estimated

0 5 10 15 20 25 30 35 40 45

−40

−20

0

20

40

θ
[d

eg
]

true
estimated

0 5 10 15 20 25 30 35 40 45
−100

0

100

Frame number

ψ
[d

eg
]

true
estimated

Figure 5.19. Output of the initialization routine for estimating the scaled-rocket
orientation. Both estimated and nominal (true) Euler angles are given.
The nine incorrect initializations of the rocket yaw angle are due to the
lack of view of the fairing from the sensor, similar to the situation of the
simulated point cloud.

104 Simulations and Results

0 5 10 15 20 25 30 35 40 45

−2

0

2

4

6

ϕ
di

ff
.[

de
g]

Euler angles estimation error after initialization

0 5 10 15 20 25 30 35 40 45

−4

−2

0

2

θ
di

ff
.[

de
g]

0 5 10 15 20 25 30 35 40 45

−4

−2

0

2

4

Frame number

ψ
di

ff
.[

de
g]

Figure 5.20. Difference between the estimated and true relative orientations for the
printed rocket body, given in Euler angles, following the initialization
procedure.

5.3 Summary 105

0 5 10 15 20 25 30 35 40 45
5

5.5

6

6.5

·10−3

Registration

rm
s

[m
]

Tracking residual error

initial
fine

Figure 5.21. Residual error for the real data alignment of each pair of consecutive
frames. The blue curve shows the coarse alignment using SVD. The red
curve shows the fine alignment using ICP, after the coarse one.

caused to different conditions, i.e. the material and size of the rocket body used, or
the scene illumination, that might not be present in real operation.

5.3 Summary

This chapter presented a condensed view for the validation tests of the pose initiali-
zation and tracking of a rocket body. Using both synthetic point clouds and real ToF
camera data, the algorithms could obtain plausible results based on the uncertainty
given by point clouds with no additional clues apart of their spatial distribution.
The synthetic data simulation demonstrated the drawbacks of the pose initialization
using two different methods. For instance, the global descriptors requires a lot more
of data preprocessing for creating the training data list, as well as the necessity of
hypothesis validation for the closest matches found. In order to reduce the number
of false positives, more data must be submitted to the training list, with a cost in the
memory size of the system, and the rise of the computational burden for the brute-
force descriptor comparison. Contrary to the body geometry-based initialization,
where the pose estimation did not require any matching method, but dependent on
fitting in geometrical primitives. Also, the absence of vital structures in the sensor
FOV produced a bad estimation.

106 Simulations and Results

0 10 20 30 40 50 60 70 80
−1.2

−1

−0.8

−0.6

−0.4

−0.2
0

Po
si

ti
on

[m
]

Relative position, linear velocity and angular velocity
x
xest
y
yest
z
zest

0 10 20 30 40 50 60 70 80

0

5 · 10−2

0.1

0.15

0.2

Ve
lo

ci
ty

[m
/s

]

ẋ

ẋest
ẏ

ẏest
ż

żest

0 10 20 30 40 50 60 70 80
−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5

Frame Number

A
ng

.v
el

.[
ra

d/
s]

αx

αx,est
αy

αy,est
αz

αz,est

Figure 5.22. Comparison of the true and estimated relative position, linear velocity,
and angular velocity output by the EKF for real sensor data.

5.3 Summary 107

0 10 20 30 40 50 60 70 80

−2

−1.5

−1

−0.5

0

·10−2

Po
si

ti
on

[m
]

Error for relative position, linear velocity and angular velocity after tracking

x
y
z

0 10 20 30 40 50 60 70 80
−3

−2

−1

0

1

2

3
·10−3

Ve
lo

ci
ty

[m
/s

]

ẋ

ẏ

ż

0 10 20 30 40 50 60 70 80

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Frame Number

A
ng

.v
el

.[
ra

d/
s]

αx

αy

αz

Figure 5.23. Difference between the EKF-estimated and the true relative rocket posi-
tion, velocity and angular rate for real sensor data.

108 Simulations and Results

0 10 20 30 40 50 60 70 80

60

80

100

120

ϕ
[d

eg
]

Euler angles estimation

true
estimated

0 10 20 30 40 50 60 70 80
−40

−20

0

20

40

θ
[d

eg
]

true
estimated

0 10 20 30 40 50 60 70 80
−200

−100

0

100

200

Frame number

ψ
[d

eg
]

true
estimated

Figure 5.24. Orientation estimate output by the EKF using real sensor data, given in
Euler angles, compared to the true values.

5.3 Summary 109

0 10 20 30 40 50 60 70 80

−10

0

10

ϕ
di

ff
.[

de
g]

Euler angles estimation error after tracking

0 10 20 30 40 50 60 70 80
−20

−10

0

10

θ
di

ff
.[

de
g]

0 10 20 30 40 50 60 70 80

−20

−10

0

10

Frame number

ψ
di

ff
.[

de
g]

Figure 5.25. Difference between the EKF-estimated and the true relative printed
rocket orientation, given in Euler angles.

110 Simulations and Results

Additionally, the pose tracking demonstrated to be steadier for synthetic data
than for real data. The latter was influenced on the control level that a simulation
may have in comparison to real data collection. The EKF results for the simulation
were confident enough to consider the position and orientation values obtained as
useful for an eventual target capture. On the other hand, the outcome of the real data
requires additional enhancements in the observation methods, in order to produce
better results in the state vector estimation. As a closing remark, it would be hard
and unfair to compare the accuracy between the synthetic and real data evaluations,
because the noise for each case affected in different way the diverse steps in the
whole estimation pipeline. However, the foundation for the real data test was the
algorithm developed using the synthetic model of the upper stage.

6 | Conclusion

This thesis has pointed towards the possible solution of the reduction in the space
debris population. ADR is a natural response from space agencies and universities
in order to solve this issue: this work intends to offer a solution for detecting a
chosen target, and estimating its relative position and orientation with respect to a
chaser satellite. This navigation approach is based on the use of ToF cameras, whose
operation principle is based on the same used by the flash lidar, but with lower
power requirements, reduced mass, and lack of mechanical devices.

Although the space debris have been cataloged in different groups, e.g. based
on their size or on their operation purpose, the rocket bodies were selected as the
main target for possible active removal. The latter is due to the probability they have
in order to produce additional debris, by possible impact to other objects, sudden
explosion of remained fuel, or survival of an uncontrolled reentry.

The main objective of the visual navigation algorithm proposed in this research
was to identify a non-cooperative, free-tumbling rocket body on orbit using a ToF
camera. Then, the routine performed the identification of the translational and rota-
tional states of the target, in order to have an initial pose estimation. Subsequently,
the algorithm followed the motion of the object, tracking it frame to frame with the
inclusion of point clouds procedures, and an extended Kalman filter in order to have
a more accurately estimation the upper stage’s pose.

Despite of the diverse non-cooperative objects that may be labeled as target for
ADR missions, this research was only focused on the disposal of rocket bodies. There
are diverse kind of space debris, whose shape is not cylindrical, but prismatic, or
even irregular. For those targets, a different approach for pose determination is
required. In other words, there is no one solution in order to cover all the different
types of space debris. In addition to this, the proposed method only takes into

112 Conclusion

account the contribution of a single sensor for performing the pose estimation
task, based on its advantages in terms of mass and power consumption. However,
sensors with better illumination capabilities (i.e. a lidar) in conjunction with multi-
spectral passive cameras, can give more robustness to the relative navigation system.
Nevertheless, this enhanced procedure will increase the complexity of the system, in
terms of both hardware and software.

All in all, this chapter is a summary of the contributions made, based on the
results obtained thanks to the simulated point clouds and real data taken with a ToF
camera on a scaled rocket body model. Additionally, it addresses diverse proposals
of future research that can possibly enhance the scope of this work.

6.1 Contributions

The outcome of this research work was the development of a pipeline to detect
a designated target, to obtain the 6DOF pose at a given epoch, and to track the
evolution in time of the object’s motion, using solely point clouds as input data. To
achieve those goals, different approaches were employed to find the appropriate
solution for each one of those phases.

The recognition and initialization procedures are bound, because the latter cannot
be executed without the former. Taking advantage of the general shape of rocket
launchers, whose main structural body is a cylinder, the algorithm evaluates the
obtained point cloud, fitting a cylindrical model to the data by means of the RANSAC
method. The effectiveness of this process is only assured if a cylinder model of certain
radius fits in the obtained data. If this is not possible, the algorithm does not go
further until it matches a suitable cylindrical model.

Then, the detection of additional structural parts, like the nozzle, fairings or
external tanks, is crucial for confirming if the object under observation is the target
chosen for the ADR mission. The recognition of the target’s appendages is also
accomplished assessing if the extension of the normal vectors of other structures
also coincide with the main body’s axis of symmetry –for the nozzle–, as well as
using the RANSAC method for distinguishing the external tanks and the fairings,
if any. Also, the relative position of those structural elements helps to resolve the

6.2 Future Research 113

paradigm of finding the position and orientation of the rocket body, relative to the
ToF sensor.

As a consequence, the routine can start the motion tracking phase. For this pur-
pose, the ICP registration algorithm carries this workload to achieve such objective.
The ICP algorithm evaluates consecutive point clouds in order to determine the rigid
transformation between them, finding the rotation matrix and the translation vector
between frames. However, the use of an estimation filter is required, because the
sensor does not provide exact measurements, making the registration process not as
accurate as required. For that reason, the use of an EKF is important to take those
measurements and have a better estimation of the target’s state vector. Here, the
inclusion of a loop closure point is necessary in order to decrease the drift inherent
to the EKF operation, making the pose estimation a bit preciser.

Finally, the framework was validated though experiments using both synthetic
data from the CAD model of the rocket’s upper stage, and real data obtained from a
PMD-Technologies CamCube 3.0 ToF camera. The latter has a 3D-printed model as
the target, in a 1:10 scale. Although the construction material of the model differs
from the real rocket body, the obtained data also contained noise, that could not be
achieved by simulation means. Those additional sources of error were relevant for
testing the robustness of the pose estimation algorithm.

6.2 Future Research

After assessing the outcome of the routines presented, other topics have risen in
order to enhance the performance of the algorithm: to make the latter more efficient,
more autonomous and more accurate at the target’s state estimation.

6.2.1 Fusion with 2D Images

The usage of range sensors allows to obtain a 3D representation of the target’s
surface in a direct manner. Additionally, the obtained range map grants a first
estimation of the relative distance between the target and the chaser satellite, without
additional calculations. Furthermore, the ToF camera has more robustness in terms
of illumination conditions, and they can almost operate in both light and dark

114 Conclusion

conditions. However, the strong dependency on the point data distribution makes
the registration procedure to produce misleading results. The latter is a consequence
of bad initialization on the rigid transformation between the clouds at the coarse
alignment.

In order to make the registration less prone to errors, the association with 2D
images could enhance the accuracy of the initial alignment. Using image feature des-
criptors like the Scale Invariant Feature Transform (SIFT) (Lowe, 1999), the routine
can detect specific keypoints on the image, whose signature is robust against transla-
tion, scaling, and rotation. When those keypoints are detected, they can be fussed
with the 3D surface’s point cloud, giving an additional factor for correspondence
between frames. Hence, it is possible to reduce the ambiguity in the association of
3D descriptors related to symmetrical surfaces.

6.2.2 Online Model Generation

This work assumed the knowledge of the target geometry before any capture attempt.
Unfortunately, there is complete uncertainty about the real condition of a rocket
body or any inoperative satellite. Because of that, it is crucial to know in advance
the real conditions of the target, e.g. if its integrity is still maintained, or if its surface
had been affected by a collision, or eroded due to temperature changes. Thus, a
possible target model reconstruction would enhance the overall process of target
identification, including the pose initialization and further tracking.

Here, the fusion of 2D and 3D data exposed in Section 6.2.1 is fundamental for
recreating an online model. For instance, the use of 2D features in association with
range data has been investigated in past (Padial et al., 2012), in order to create an
ad hoc 3D model. Here, it would be useful to have the point clouds registration
pipelines, using with the 2D feature data in order to have a better correspondence
association, increasing the accuracy of the routine. The object model would be
finished when the algorithm determines if the features observed in a later epoch has
been already seen in the past. This would determine the loop closure of an expected
turning behavior of the target. After having a complete model, the determination of
the body fixed reference frame should be defined based on the mission’s require-
ments. However, this new procedure may carry additional computational burden,

6.2 Future Research 115

that have to be taken into account for the 2D feature detection and tracking, as well
as the determination of the loop closure, which both would be memory intensive.

6.2.3 Real-time Implementation

The simulations carried were tested for offline operation, i.e. the algorithm was
not designed to operate in real time. All point clouds, either synthetic or real data
obtained from the ToF camera, were taken in advance and stored for further opera-
tion. If the 2D feature descriptors or the ad hoc model generation are included, the
rise in the number of operations is noticeable, as well as the signatures comparison
procedure for both 2D and 3D loop closure.

Additionally, online pose detection and estimation requires that the data coming
from the sensors is analyzed just immediately after acquisition, having the proper
balance between accuracy of the descriptors’ evaluation and the speed of the in-
volved calculations. Hence, due to the high load of computation for 2D and 3D
computer vision, a topic for investigation would be parallel computing. The latter
is currently achieved by Graphical Processor Units (GPU) in most of the robotics
research projects, but apparently with no presence in space robotics. Having paralle-
lization in the computer vision pipelines might produce a better performance in the
many computations the system has to run frame to frame.

6.2.4 Non-linear Estimation Filters

Although the EKF performed well in the tracking phase of the algorithm, its formu-
lation and respective tuning made it a bit tedious, because of the Jacobian matrix
calculation. For this reason, an additional research could be pointing towards the use
of another alternatives of non-linear estimation filters, like the Unscented Kalman
Filter (UKF) or the Particles Filter (PF).

Those previously mentioned examples might accomplish the target’s state estima-
tion in a better way, more accurate and faster than the EKF used in this research. The
avoidance of calculating derivatives of non-linear functions gives great advantages
at the filter design phase. Otherwise, they can be also eager in terms of computa-
tional resources. An exhaustive trade-off must be made in order to assess if the

116 Conclusion

inclusion of a different estimation filter may have a real advantage in comparison to
the filter used in this work.

6.2.5 Dual Control with Enhanced Target Models

For both synthetic and real simulations, the chaser satellite was assumed to be at a
fixed position with respect to the target, maintaining a tumbling motion around the
center of mass. For a expected mission of ADR, the chaser satellite may require to
inspect the target from different locations, depending on the motion that the latter
may have. Those approach maneuvers should also be taken into account for pose
estimation, and for the model construction, if it will be included. This approach of
combining the estimation problem with the control one is called “dual control” (Kim
and Rock, 2006). This contributes to have small errors in both estimation and control
issues. This concept can also be applied for the trajectory planning when the agents
would chase the target. Maybe the chosen path would not be the shorter one, but it
could be more efficient, reducing the estimation uncertainty.

On the other hand, the enhancement in both synthetic and mock-up models will
allow a better data reproduction for the algorithm application, with the appropriate
illumination conditions in orbit. Regarding the CAD model, it may be difficult to
simulate the exact reflection properties of the rocket body, but it can provide a better
understanding of how the images and point clouds could behave. If the chosen
target has Multi-Layer Insulation (MLI), e.g. OOS or a defunct satellite for ADR, it
may be more difficult to simulate the appropriate reflection that this material has.
With respect to the mock-up, the material used for its construction is not the same as
that used for real rocket body manufacture. Additionally, the type of coating used on
the launchers has specific properties, and this changes among primer manufacturers.
Thus, the proposed idea is to have a similar mock-up, in size –if possible– and
in manufacture material. Regarding the finishing of the target’s surface, it could
be quite impossible to match the same type of paint and the real conditions of
the painting with respect to a real object in orbit, which has been under strong
environmental conditions, provoking erosion and/or delamination of the coating.
But the results might be closer to those expected to have in orbit conditions.

Bibliography

Aghili, F. (2010). Automated Rendezvous & Docking (AR&D) without impact using
a reliable 3D vision system. In AIAA Guidance, Navigation, and Control Conference,
pages 1–11.

Aghili, F. and Parsa, K. (2009). Motion and parameter estimation of space objects
using laser-vision data. Journal of Guidance, Control, and Dynamics, 32(2):538–550.

Aldoma, A., Marton, Z. C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B.,
Rusu, R., Gedikli, S., and Vincze, M. (2012a). Tutorial: Point cloud library: Three-
dimensional object recognition and 6 DoF pose estimation. IEEE Robotics and
Automation Magazine, 19(3):80–91.

Aldoma, A., Tombari, F., Rusu, R. B., and Vincze, M. (2012b). OUR-CVFH – oriented,
unique and repeatable clustered viewpoint feature histogram for object recognition
and 6DOF pose estimation. In Pattern Recognition. DAGM/OAGM 2012. Lecture
Notes in Computer Science., pages 113–122.

Aldoma, A., Vincze, M., Blodow, N., Gossow, D., Gedikli, S., Rusu, R. B., and Bradski,
G. (2011). CAD-model recognition and 6DOF pose estimation using 3D cues. In
IEEE International Conference on Computer Vision, pages 585–592.

Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-Squares fitting of two
3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
9(5):698–700.

Besl, P. (1988). Active, optical range imaging sensors. Machine vision and applications,
1:127–152.

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256.

Biesbroek, R., Innocenti, L., Wolahan, A., and Morales Serrano, S. (2017). e.Deorbit –
ESA’s Active Debris Removal Mission. In 7th European Conference on Space Debris,
pages 1–10.

Boge, T., Benninghoff, H., and Tzschichholz, T. (2013). Visual navigation for On-
Orbit Servicing missions. In 5th International Conference on Spacecraft Formation
Flying Missions and Technologies, pages 1–11.

118 Bibliography

Bonin-Font, F., Ortiz, A., and Oliver, G. (2008). Visual navigation for mobile robots:
a survey. Journal of Intelligent and Robotic Systems, 53:263–296.

Bonnal, C., Ruault, J. M., and Desjean, M. C. (2013). Active debris removal: Recent
progress and current trends. Acta Astronautica, 85:51–60.

Christian, J. A. and Cryan, S. (2013). A survey of LIDAR technology and its use in
spacecraft relative navigation. In AIAA Guidance, Navigation, and Control Conference,
pages 1–7.

Christian, J. A., Patangan, M., Hinkel, H., Chevray, K., and Brazzel, J. (2012). Com-
parison of Orion vision navigation sensor performance from STS-134 and the
Space Operations Simulation Center. In AIAA Guidance, Navigation, and Control
Conference, pages 1–18.

Crassidis, J. L., Markley, F. L., and Cheng, Y. (2007). Survey of nonlinear attitude
estimation methods. Journal of Guidance, Control, and Dynamics, 30(1):12–28.

D’Amico, S., Ardaens, J.-S., Gaias, G., Schlepp, B., Benninghoff, H., Tzschichholz, T.,
Karlsson, T., and Jørgensen, J. L. (2012). Flight demonstration of non-cooperative
rendezvous using optical navigation. In 23th International Symposium on Space
Flight Dynamics, pages 1–15.

Fehse, W. (2003). Automated Rendezvous and Docking of Spacecraft. Cambridge Univer-
sity Press, New York.

Felicetti, L., Gasbarri, P., Pisculli, A., Sabatini, M., and Palmerini, G. B. (2016).
Design of robotic manipulators for orbit removal of spent launchers’ stages. Acta
Astronautica, 119:118–130.

Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A paradigm
for model fitting with applicatlons to image analysis and automated cartography.
Communications of the ACM, 24(6):381 – 395.

Foix, S., Alenyà, G., and Torras, C. (2011). Lock-in Time-of-Flight (ToF) Cameras: A
survey. IEEE Sensors Journal, 11(3):1–11.

Gomez, H. and Boge, T. (2015). Relative pose estimation of space debris using point
cloud geometrical descriptors. In 3rd CEAS EuroGNC, Specialist Conference on
Guidance, Navigation & Control, pages 1–12.

Gómez Martínez, H., Giorgi, G., and Eissfeller, B. (2017). Pose estimation and
tracking of non-cooperative rocket bodies using Time-of-Flight cameras. Acta
Astronautica, 139:165–175.

Gomez Martinez, H. C. and Eissfeller, B. (2016). Autonomous determination of spin
rate and rotation axis of rocket bodies based on point clouds. In AIAA Guidance,
Navigation, and Control Conference, AIAA SciTech Forum, pages 1–13.

Gschwandtner, M., Kwitt, R., Uhl, A., and Pree, W. (2011). BlenSor: Blender sensor
simulation toolbox. In Advances in Visual Computing, volume 6939, pages 199–208.

Bibliography 119

Hansard, M., Lee, S., Choi, O., and Horaud, R. (2013). Time-of-Flight cameras -
principles, methods and applications. Springer-Verlag, London.

Horaud, R., Conio, B., Leboulleux, O., and Lacolle, B. (1989). An analytic solution
for the perspective 4-point problem. In Computer Vision and Pattern Recognition,
pages 500–507.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transactions of ASME - Journal of Basic Engineering, 82:35–45.

Kanani, K., Chabot, T., Petit, A., Marchand, E., and Gerber, B. (2012). Vision based
navigation for debris removal missions. In 63rd International Astronautical Congress,
pages 1–8.

Kaufman, A., Cohen, D., and Yagel, R. (1993). Volume graphics. Computer, 26(7):51–
64.

Kawamoto, S., Ohkawa, Y., Okamoto, H., Iki, K., Okumira, T., Katayama, Y., Hayashi,
M., Horikawa, Y., Kato, H., Murakami, N., Yamamoto, T., and Inoue, K. (2017).
Current status of research and development on active debris removal at JAXA. In
7th European Conference on Space Debris, pages 1–7.

Keller, M. and Kolb, A. (2009). Real-time simulation of time-of-flight sensors. Simu-
lation Modelling Practice and Theory, 17:967–978.

Kessler, D. J. and Cour-Palais, B. G. (1978). Collision frequency of artificial satellites:
The creation of a debris belt. Journal of Geophysical Research, 83(A6):2637–2646.

Kim, J. and Rock, S. (2006). Stochastic feedback controller design considering the
dual effect. In AIAA Guidance, Navigation, and Control Conference, pages 1–13.

Klasing, K., Althoff, D., Wollherr, D., and Buss, M. (2009). Comparison of surface nor-
mal estimation methods for range sensing applications. In 2009 IEEE International
Conference on Robotics and Automation, pages 3206–3211.

Klinkrad, H. (2006). Space Debris - Models and Risk Analysis. Springer-Verlag Berlin
Heidelberg.

Kuipers, J. B. (1999). Quaternions and Rotation Sequences. Princeton University Press,
Princeton.

Lappas, V. J., Forshaw, J. L., Visagie, L., Pisseloup, A., Salmon, T., Joffre, E., Chabot,
T., Retat, I., Axthelm, R., Barraclough, S., Ratcliff, A., Bradford, A., Kadhem, H.,
Navarathinam, N., Rotteveel, J., Bernal, C., Chaumette, F., Pollini, A., and Steyn,
W. H. (2014). RemoveDEBRIS: an EU low cost demonstration mission to test ADR
technologies. In 65th International Astronautical Congress, pages 1–12.

Liou, J.-C. (2017). Highlights of recent research activities at the NASA Orbital Debris
Program Office. In 7th European Conference on Space Debris, pages 1–7.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Seventh
IEEE International Conference on Computer Vision, volume 2, pages 1150–1157.

120 Bibliography

Makarov, Y., Prokopchik, A., Simonov, M., Gorlov, A., Dubleva, A., Popkova, L.,
Stepanov, D., Loginov, S., Usovik, I., Yurash, V., and Yakovlev, M. (2017). Major
trends for mitigation of space debris in near-Earth space in the Russian Federation.
In 7th European Conference on Space Debris, number April, pages 1–5.

MakerBot (2014). MakerBot Replicator Z18 3D Printer - User manual.

May, S., Droeschel, D., Holz, D., Wiesen, C., and Fuchs, S. (2008). 3D Pose estima-
tion and mapping with Time-of-Flight cameras. In IEEE/RSJ 2008 International
Conference on Intelligent Robots and Systems, pages 1–6.

NASA (2010). On-Orbit Satellite Servicing Study. Technical report, NASA.

National Research Council (1995). Orbital Debris: A Technical Assessment. The
National Academies Press, Washington, DC.

Newman, P. and Ho, K. (2005). SLAM- Loop closing with visually salient features.
In IEEE International Conference on Robotics and Automation, pages 635–642.

Ojakangas, G. W. and Cowardin, H. (2012). Probable rotation states of rocket bodies
in Low Earth Orbit. In 13th annual Advanced Maui Optical and Space Conference,
pages 1–12.

Padial, J., Hammond, M., Augenstein, S., and Rock, S. M. (2012). Tumbling target
reconstruction and pose estimation through fusion of monocular vision and sparse-
pattern range data. In IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, pages 419–425.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559–572.

Pele, O. and Werman, M. (2010). The quadratic-Chi histogram distance family. In
11th European Conference on Computer Vision, volume 6312, pages 749–762.

Peters, S., Fiedler, H., and Förstner, R. (2015). ADReS-A: Mission architecture for the
removal of SL-8 rocket bodies. In IEEE Aerospace Conference, pages 1–8.

PMD-Technologies (2010). PMD Vision CamCube 3.0 Datasheet.

Pollini, A., Blanc, N., and Mitev, V. (2011). Flash optical sensors for guidance, navi-
gation and control systems. In 8th International Conference on Guidance, Navigation
and Control Systems, pages 1–7.

Ringbeck, T. and Hagebeuker, B. (2007). A 3D time of flight camera for object
detection. In Optical 3-D Measurements Techniques, pages 1–10.

Rosso, F., Gallo, F., Allasia, W., Licata, E., Prinetto, P., Rolfo, D., Trotta, P., Favetto, A.,
Paleari, M., and Ariano, P. (2013). Stereo vision system for capture and removal of
space debris. In Design and Architectures for Signal and Image Processing, pages 1–7.

Ruel, S., Luu, T., Anctil, M., and Gagnon, S. (2008). Target localization from 3D data
for on-orbit autonomous rendezvous & docking. In IEEE Aerospace Conference,
pages 1–11.

Bibliography 121

Rusu, R. B. (2010). Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments. PhD thesis, Technische Universität München.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast Point Feature Histograms (FPFH)
for 3D registration. In IEEE International Conference on Robotics and Automation,
pages 3212–3217.

Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). Fast 3D recognition and
pose using the Viewpoint Feature Histogram. In IIEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2155–2162.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer Vision,
47(1):7–42.

Sellmaier, F., Boge, T., Spurmann, J., Gully, S., Rupp, T., and Huber, F. (2010). On-
Orbit Servicing missions: Challenges and solutions for spacecraft operations. In
SpaceOps 2010 Conference, pages 1–11.

Shan, M., Guo, J., and Gill, E. (2016). Review and comparison of active space debris
capturing and removal methods. Progress in Aerospace Sciences, 80:18–32.

Soares Beleboni, M. G. (2014). A brief overview of Microsoft Kinect and its applicati-
ons. In Interactive Multimedia Conference 2014, pages 1–6.

United Nations (1999). Technical Report on Space Debris. Technical report, United
Nations, New York.

Woffinden, D. C. and Geller, D. K. (2007). Navigating the road to autonomous orbital
rendezvous. Journal of Spacecraft and Rockets, 44(4):898–909.

Yanagisawa, T. and Kurosaki, H. (2012). Shape and motion estimate of LEO debris
using light curves. Advances in Space Research, 50:136–145.

A | Quaternions

A quaternion is a 4-tuple of real numbers, discovered by William Rowan Hamilton in
1843 (Kuipers, 1999), and considered as a hyper-complex number. The latter consists
of a scalar part and three orthogonal parts, commonly named as vectorial part. The
principle of this complex number was based on the definition given by Hamilton:

i2 = j2 = k2 = ijk = −1 (A.1)

where i, j, and k are the orthonormal basis vectors for the euclidean space. From
this rule, the quaternion can also be represented as:

q = q0 + q1i+ q2j+ q3k (A.2)

The regular representation of a quaternion was already given in Equations 4.3
and 4.4, but included here again for reading easiness:

q =

q0

q1

q2

q3

 (A.3)

q =

[
qs

qv

]
; qs =

[
q0

]
, qv =

q1

q2

q3

 (A.4)

Due to the fact that the quaternion is a sum of a scalar with a vector, a new algebra
had to be developed. For instance, the sum of two quaternions, p and q, is defined

124 Quaternions

by adding the corresponding components, giving as a result a new quaternion, s:

s = p+ q = (p0 + q0) + (p1 + q1)i+ (p2 + q2)j+ (p3 + q3)k (A.5)

The product of a quaternion and a scalar is the latter multiplied by each compo-
nent of the former:

cq = cq0 + cq1i+ cq2j+ cq3k (A.6)

Otherwise, the product of two quaternions heavily depends on the orthonormal
vectors property given by Equation A.1, which leads to the following cases:

ij = −ji = k

ki = −ik = j

jk = −kj = i

inducing to:

pq = (p0 + p1i+ p2j+ p3k)(q0 + q1i+ q2j+ q3k)

= p0q0 − (p1q1 + p2q2 + p3q3)

+ p0(q1i+ q2j+ q3k) + q0(p1i+ p2j+ p3k)

+ (p2q3 − p3q2)i+ (p3q1 − p1q3)j+ (p1q2 − p2q1)k

(A.7)

Using properties of the dot and cross products for vectors, and the quaternion’s
definition of q = qs + qv, i.e. Equation A.2, it is possible to write Equation A.7 in a
more succinct form:

pq = psqs − pv · qv + psqv + qspv + pv × qv (A.8)

The complex conjugate of the quaternion, q∗, is defined as

q∗ = qs − qv = q0 − q1i− q2j− q3k (A.9)

A.1 Quaternion Rotation Operator 125

The squared norm of a quaternion is given by

∥q∥2 = q∗q = qq∗

= q2
s + qv · qv = q2

0 + q
2
1 + q

2
2 + q

2
3

(A.10)

The inverse multiplicative of a quaternion is designated as

q−1 =
q∗

∥q∥2 (A.11)

In case the quaternion is normalized, i.e. ∥q∥2 = 1, then the inverse is equal to the
conjugate, i.e. q−1 = q∗.

A.1 Quaternion Rotation Operator

The quaternion rotation operator, Lq(v), acting on a vector v, is defined as

Lq(v) = q∗vq (A.12)

and represents a rotation of the vector v through an angle α about qv as the axis
of rotation, having as a condition that the quaternion q must be a unit quaternion,
i.e. normalized, of the form

q = qs + qv = cos
α

2
+ u sin

α

2
(A.13)

being u the unit vector which represents the direction of the quaternion.

A.2 Euler Angles to Quaternion

Taking again the definition of the Euler angles:

• ϕ is the roll angle

• θ is the pitch angle

• ψ is the yaw angle

126 Quaternions

the correspondent quaternion elements are:

q0 = cos
ψ

2
cos

θ

2
cos

ϕ

2
+ sin

ψ

2
sin

θ

2
sin

ϕ

2

q1 = cos
ψ

2
cos

θ

2
sin

ϕ

2
− sin

ψ

2
sin

θ

2
cos

ϕ

2

q2 = cos
ψ

2
sin

θ

2
cos

ϕ

2
+ sin

ψ

2
cos

θ

2
sin

ϕ

2

q3 = sin
ψ

2
cos

θ

2
cos

ϕ

2
− cos

ψ

2
sin

θ

2
sin

ϕ

2

(A.14)

A.3 Quaternion to Euler Angles

The extraction of the Euler angles from a quaternion is given by the following
trigonometric relationships:

tanϕ =
m23

m33

sin θ = −m13

tanψ =
m12

m11

(A.15)

where

m11 = 2q2
0 + 2q2

1 − 1

m12 = 2q1q2 + 2q0q3

m13 = 2q1q3 − 2q0q2

m23 = 2q2q3 + 2q0q1

m33 = 2q2
0 + 2q2

3 − 1

(A.16)

In order to avoid ambiguities in the rotation sequence, the sign of the cosine of any
Euler angle will be always positive by definition (Kuipers, 1999).

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.1.1 Space Debris
	1.1.2 Autonomous On-Orbit Servicing
	1.1.3 Active Debris Removal

	1.2 Visual Navigation Methods for Space Rendezvous
	1.3 Related Work
	1.4 Contributions
	1.5 Outline

	2 Image Theory
	2.1 Time-of-Flight theory
	2.1.1 Photonic Mixer Device
	2.1.2 ToF Camera Equipment

	2.2 Formation of Images
	2.2.1 Pinhole Camera Model
	2.2.2 Range Imaging

	2.3 Point Clouds
	2.4 Summary

	3 Point Clouds: Features, Segmentation and Registration
	3.1 Surface's Normals Estimation
	3.1.1 Surface Division
	3.1.2 Normal Vector Field
	3.1.3 Validation of Normals' Orientation

	3.2 Point Feature Descriptors
	3.2.1 Local descriptors
	3.2.1.1 Point Feature Histogram
	3.2.1.2 Fast Point Feature Histogram

	3.2.2 Global Descriptors
	3.2.2.1 Viewpoint Feature Histogram
	3.2.2.2 Clustered Viewpoint Feature Histogram
	3.2.2.3 Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram

	3.3 Random Sample Consensus
	3.3.1 Plane Model
	3.3.2 Cylinder Model

	3.4 Iterative Closest Point
	3.5 Summary

	4 Pose Estimation
	4.1 Estimation Problem Description
	4.2 Initialization
	4.2.1 Initialization Based on Global Descriptors
	4.2.1.1 Training phase
	4.2.1.2 Testing phase

	4.2.2 Initialization Based on Body Geometry
	4.2.2.1 Recognition of the main body
	4.2.2.2 Estimation of the cylinder's centroid
	4.2.2.3 Identification of the nozzle, external tanks and fairing
	4.2.2.4 Definition of the body pose

	4.3 Tracking
	4.3.1 Transformation Estimation
	4.3.2 Extended Kalman Filter Design
	4.3.2.1 Motion model
	4.3.2.2 State measurement

	4.4 Summary

	5 Simulations and Results
	5.1 Synthetic Data
	5.1.1 Pose Initialization using Global Descriptors
	5.1.2 Pose Initialization based on Body Geometry
	5.1.3 Pose Tracking

	5.2 Real Data
	5.2.1 Pose initialization based on Body Geometry
	5.2.2 Pose Tracking

	5.3 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Future Research
	6.2.1 Fusion with 2D Images
	6.2.2 Online Model Generation
	6.2.3 Real-time Implementation
	6.2.4 Non-linear Estimation Filters
	6.2.5 Dual Control with Enhanced Target Models

	Bibliography
	Appendix A Quaternions
	A.1 Quaternion Rotation Operator
	A.2 Euler Angles to Quaternion
	A.3 Quaternion to Euler Angles

