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Abstract: The characterisation of small-scale turbulence has been an active area of research for decades
and this includes, particularly, the analysis of small-scale isotropy, as postulated by Kolmogorov.
In particular, the question if the dissipation tensor is isotropic or not, and how it is related to the
anisotropy of the Reynolds stresses is of particular interest for modelling purposes. While this subject
has been extensively studied in the context of isothermal flows, the situation is more complicated in
turbulent reacting flows because of heat release. Furthermore, the landscape of Computational Fluid
Dynamics is characterised by a multitude of methods ranging from Reynolds-averaged to Large Eddy
Simulation techniques, and they address different ranges of scales of the turbulence kinetic energy
spectrum. Therefore, a multiscale analysis of the anisotropies of Reynolds stress, dissipation and
sub-grid scale tensor has been performed by using a DNS database of statistically planar turbulent
premixed flames. Results show that the coupling between dissipation tensor and Reynolds stress
tensor is weaker compared to isothermal turbulent boundary layer flows. In particular, for low
and moderate turbulence intensities, heat release induces pronounced anisotropies which affect
not only fluctuation strengths but also the characteristic size of structures associated with different
velocity components.

Keywords: anisotropies of Reynolds stress tensor; dissipation tensor and subgrid scale tensor;
multiscale analysis; turbulent premixed flames

1. Introduction

Based on the hypothesis that the nonlinear turbulent energy transfer process from
large to small scales is accompanied with a loss of directional information, Kolmogorov
postulated [1] that small-scale turbulent motions are statistically isotropic [2] at sufficiently
high values of Reynolds numbers. In fact, the fundamental argument of the Large Eddy
Simulation (LES) approach is that small-scale structures are easier and more universal to
model because they are assumed to be isotropic and independent of the flow geometry
which only affects energy-carrying eddies. By contrast, in Reynolds-averaged Navier–
Stokes-based modelling (RANS), the full range of structures requires modelling, which
obviously calls for considerably more complex constitutive equations for closing Reynolds
stresses. For sufficiently high Reynolds numbers, there is a distinct scale separation be-
tween the energy spectrum (dominant at larger scales) and the dissipation spectrum (domi-
nant at the smallest scales of motion), and it is often assumed that the dissipation tensor
εij = 2〈ν ∂u′i/∂xk ∂u′j/∂xk〉 (with ν being the kinematic viscosity) obeys an isotropic relation
of the form εij = εδij/3, while the anisotropies of the Reynolds stresses 〈u′iu′j〉, where angled
brackets denote a suitable averaging operation, are conveniently characterised with the
help of the anisotropy tensor aij given by the following equation:
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aij =
〈u′iu′j〉

2k
− 1

3
δij k =

1
2
〈u′iu′j〉 (1)

where k is the turbulence kinetic energy. It is noted that the anisotropy of the dissipation
tensor eij can be defined by the same analogy. Instead of an isotropic relation εij = εδij/3,
a linear relation between the dissipation tensor and the Reynolds stress anisotropy has been
suggested by Hanjalic and Launder [3]. Antonia et al. [4] suggested a linear relationship be-
tween the dissipation tensor and the anisotropy tensor with a Reynolds number dependent
constant of proportionality. By contrast, Liu and Pletcher [5] proposed an anisotropic model,
which approximates anisotropy tensor aij by a normalised turbulent dissipation tensor.
It becomes clear from the foregoing discussion that the relationship between Reynolds
stress tensor and dissipation tensor plays a fundamental role in RANS based turbulence
modelling, a topic reviewed in the 1990s by Launder [6] and Speziale [7] or more recently
in a variety of textbooks [2,8–10].

Apart from the modelling aspect, the physics of small-scale turbulence, which is
strongly associated with the mechanism of dissipation, has been an active area of research
for several decades (e.g., Sreenivasan and Antonia [11]). Shen and Warhaft [12] reported,
for turbulent shear flows up to a Taylor scale Reynolds number of Reλ = 1000, that the
postulate of local isotropy is untenable, both at dissipation and inertial scales, and they
suggested that it is unlikely to be so even at higher Reynolds numbers. The multiscale
behaviour of anisotropy occurring in turbulent boundary layers has been analysed by Liu
and Pletcher [5], who reported that anisotropy does not decay as scales decrease.

In turbulent premixed combustion, the situation can become even more complicated
due to the anisotropic nature of heat release. This is closely related to the phenomenon
of counter-gradient transport, which has been theoretically explained by Clavin and
Williams [13] and Libby and Bray [14] and has been observed in many experimental
and numerical studies, as reviewed in Klein et al. [15,16] and Brearley et al. [17], where
combustion-induced flow anisotropy has been characterised with the help of the so-called
Lumley triangle [18]. However, the relation between Reynolds stress tensor and dissipation
tensor anisotropies has, to the best knowledge of the authors, not been explored in the
context of turbulent premixed combustion. As the landscape of Computational Fluid
Dynamics (CFD) methods is full of different modeling approaches ranging from classical
RANS models to hybrid RANS-LES to LES methods, it will be of particular interest to
perform a multiscale analysis of turbulence anisotropies which reflects the nature of the
associated different unclosed terms. In this regard, the main objectives of this study are the
following: (i) perform a multiscale analysis of the anisotropies of Reynolds stress, dissipa-
tion and subgrid scale tensors for a large range of different filter sizes, (ii) to compare their
level of anisotropy for different turbulence intensities and (iii) to provide detailed physical
explanations for the observed behaviour.

The rest of the paper is organised as follows: Section 2 introduces the database and the
numerical methods and Section 3 provides the mathematical framework for the subsequent
analysis. Results will be presented in Section 4 and the main findings will be summarised
in Conclusions.

2. Numerical Methodology and DNS Database

Three turbulent, statistically planar premixed flames with global Lewis number
Le = 1.0, representing stoichiometric methane-air flames preheated to 415 K, have been
chosen from a larger database that has been described in [19,20]. The compressible Navier–
Stokes equations have been solved in nondimensional form (see, e.g., [21]) using the
well-known SENGA code [22]. As this work focuses on the fluid dynamical aspects of
reacting flows, a generic single step Arrhenius type irreversible chemistry has been em-
ployed, which provides the same qualitative and very similar quantitative behaviour of
flame turbulence interaction [23] compared to a detailed chemical mechanism, in particular,
with respect to flow anisotropy [15,16].
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The turbulence Reynolds number Ret, normalised turbulent root-mean-square (rms)
velocity fluctuation u′/SL, integral length scale to thermal flame thickness ratio l/δth,
Damköhler number Da and Karlovitz number Ka for cases A–C are shown in Table 1. The
definitions of these quantities are given as follows.

Da =
lSL

δthu′
Ka =

(
u′

SL

) 3
2
(

l
δth

)− 1
2

δth =
Tad − T0

max|∇T|L
τ =

Tad − T0

T0
β =

Tac(Tad − T0)

T2
ad

(2)

Here, δth is the thermal flame thickness, and SL (with the subscript L referring to
unstrained laminar flame quantities) is the laminar burning velocity. The heat release
parameter τ (with the adiabatic and fresh gas temperatures Tad, T0) and the Zel’dovich
number β (Tac is the activation temperature) are 4.5 and 6.0, respectively, for the stoichiomet-
ric methane–air flames preheated to 415 K. Standard values of Prandtl number (Pr = 0.7)
and ratio of specific heats (γ = 1.4) have been used, which are consistent with unity Lewis
number assumption.

Table 1. Initial parameters for the three turbulent premixed flames considered in this analysis.

Case Ret u′/SL l/δth Da Ka

A 11.67 1.0 4.58 4.58 0.47
B 87.5 7.5 4.58 0.61 9.6
C 175.0 15.0 4.58 0.31 27.16

Flame–turbulence interaction takes place under decaying turbulence, and the values
reported in Table 1 have to be understood as initial values. The simulation time is taken
to be the chemical time scale tchem = δth/SL, which is in all cases larger than the eddy
turnover time tEDT = l/u′. Advantages and disadvantages of this particular setup have
been discussed in detail in [24], and it has been checked that the results are qualitatively
similar to those obtained from a database with unburned gas forcing [25], which are
not explicitly shown here for the sake of brevity. While the decaying turbulence setup
potentially has a history effect, it is not important for the qualitative nature of the results
presented in this work. This approach ensures that flame development is mostly natural
and possible artificial effects due to the forcing term in the Navier–Stokes equations can
be avoided. While the reacting flow and species fields are initialised by a steady planar
unstrained premixed laminar flame solution, turbulent velocity fluctuations are initialised
using a homogeneous isotropic incompressible velocity field in conjunction with a model
spectrum suggested by Pope [2]. The simulation domain is taken to be a cube with side
length 26.1δth, which is discretised using a uniform Cartesian grid of dimension 5123.
This ensures sufficient resolution of the flame structure (11 grid points are kept within
δth) and the smallest scales in the turbulent flow. It has been found that coarsening the
mesh by factor of 2.0 did not make any significant influence on the values of SL and
δth (<1% change); thus, the grid spacing considered here deemed appropriate for the
current analysis. The timestep has been determined by the acoustic CFL criterion and
it remained at about 0.1 for all computations reported in this paper. An increase in CFL
number by a factor 2.0 did not significantly affect the values of SL and δth (i.e., less than
0.1% difference). Time integration is performed using an explicit third-order low-storage
Runge–Kutta scheme, and spatial derivatives for all internal grid points are evaluated
using a 10th order central difference scheme, but the order of accuracy gradually drops to
a one-sided second-order scheme at the non-periodic boundaries. The SENGA code is well
established in the scientific community, and its implementation has been verified several
times in the past. Exemplarily, it is mentioned that for a Taylor–Green vortex, the maximum
deviation in enstrophy with respect to reference data [26,27] is 2.5%, while kinetic energy
can be considered to be identical with those reference solutions. The boundary conditions
in the mean flame propagation direction are taken to be partially nonreflecting, whereas
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boundaries in transverse directions are taken to be periodic. The computational cost is of
the order of 105 CPU hours (on Intel Xeon E5) for each of the cases considered here.

Figures 1–3 show the instantaneous distribution of reaction progress variable c with
superimposed isocontours corresponding to c = 0.1, 0.5, 0.9 for cases A–C in two different
sections cutting the computational domain in x-y and y-z direction. In all figures, the
flame propagates from right to left along the negative x-direction. In this context, the
reaction progress variable c is defined based on the reactant mass fraction YR as follows:
c = (YR0 −YR)/(YR0 −YR∞) where the subscripts 0 and ∞ refer to the values in the
unburned reactants and fully burned products, respectively. It can be observed from
Figure 1 that c-isosurfaces are mostly parallel to each other in case A, whereas the c = 0.1
isosurface is more distorted than the c = 0.9 in cases B and C. The Karlovitz number
increases from case A to case C (see Table 1), which results in a larger length scale separation
between δth and η. As a consequence, energetic turbulent eddies are more likely to perturb
the preheat zone for high values of Ka and local flame thickening can be observed in case C.
Furthermore, it can be also observed from Figures 1–3 that flame wrinkling increases from
case A to case C. While turbulent structures tend to be relatively isotropic for cases B and C,
case A clearly shows larger structures for the velocity fluctuations which are aligned with
the mean flame propagation direction (i.e. u′/SL) compared to those which are normal to
the x-direction (e.g., v′/SL).

Bray et al. [28] derived the following expression of 〈ρu′′i u′′j 〉 based on a presumed
bi-modal probability density function (PDF) of reaction progress variable c.

〈ρu′′i u′′j 〉 = 〈ρ〉{c} (1− {c})[〈ui〉P − 〈ui〉R]
[
〈uj〉P − 〈uj〉R

]
+〈ρ〉(1− {c})〈u′iuj〉R + 〈ρ〉{c}〈u′iuj〉P + O(γc)

(3)

Here, {Q} is the Favre-averaged/filtered value of a quantity Q, defined as
{Q} = 〈ρQ〉/〈ρ〉 and the corresponding Favre fluctuation is given by Q′′ = Q − {Q}.
The quantities 〈Q〉R and 〈Q〉P refer the averaged/filtered values of Q conditioned upon
reactants and products, respectively. The first term on the right-hand side of Equation (3)
accounts for the effects of thermal expansion arising from heat release, whereas the second
and third terms arise due to non-reacting turbulence effects and the last term on the right-
hand side of Equation (3) originates from the interior of the flame. The last term on the
right-hand side of Equation (3) remains small in magnitude for Da� 1 under which the
PDF of c can be considered to be bimodal. Whether the PDF of c is bimodal for the cases
considered here is not relevant for the discussion in this paper, and Equation (3) provides
important physical insights into the qualitative behaviour of 〈ρu′′i u′′j 〉 irrespective of the
validity of the bimodality of the c-PDF. Veynante et al. [29] demonstrated that slip velocity
[〈ui〉P − 〈ui〉R] can be expressed as follows:

[〈ui〉P − 〈ui〉R] = −
(
αEu′ + τSL

)
Mi (4)

where Mi = −(∂c̃/∂xi)/|∇c̃| is ith component of the normal vector based on the flame
brush and αE is a model parameter of the order of unity. Based on Equation (4), Veynante
et al. [28] defined a nondimensional parameter known as the Bray number NB ∼ τSL/u′ ∼
τ/
(

Da1/2Ka
)

to decide if the velocity jump across the flame brush due to heat release
is greater (NB > 1) or smaller (NB < 1) than the turbulent velocity fluctuations. For
cases A–C, the Bray number is given by 4.5, 0.6 and 0.3, respectively, based on the initial
conditions, which shows that the Reynolds stresses in case A are likely to be dominated
by effects of heat release, whereas cases B and C are increasingly influenced by turbulent
velocity fluctuations. By contrast, the large-scale strain rate aturb in the context of RANS
can be scaled as u′/l [30], whereas the strain rate induced by thermal expansion achem
can be scaled as τSL/δth [31]. Therefore, the ratio of the strain rates induced by thermal
expansion due to heat release to the large-scale turbulent strain rate can be scaled as
achem/aturb ∼ τDa [31]. The values of Da in Table 1 reveal that the influence of achem is
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likely to progressively weaken in comparison to the effects of aturb from case A to case
C. Thus, the statistics of εij in case A are likely to be strongly influenced by heat release,
whereas these statistics are expected to be influenced by turbulent straining in case C. The
relative strength of thermal expansion in comparison to the background flow turbulence
will affect the flow anisotropies as discussed in Section 4.
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corresponding to 𝑐̅ = 0.5, which demarks the position of the 𝑦 − 𝑧 plane. Middle and bottom: In-
stantaneous, normalised velocity fluctuations in direction aligned with (𝑢 /𝑆 ) and normal to (𝑣 /𝑆 ) 
mean flame propagation direction. Results are shown for case A in the 𝑥 − 𝑦 (left) and 𝑦 − 𝑧 plane 
(right). The flame propagates from right to left along the negative 𝑥 −direction. The field of view 
represents the computational domain of dimension 26.1𝛿 × 26.1𝛿 . 

Figure 1. Top: Instantaneous distribution of reaction progress variable with superimposed isocon-
tours corresponding to c = 0.1, 0.5, 0.9. The white line shows the position of the mean flame brush
corresponding to c = 0.5, which demarks the position of the y-z plane. Middle and bottom: Instan-
taneous, normalised velocity fluctuations in direction aligned with (u′/SL) and normal to (v′/SL)
mean flame propagation direction. Results are shown for case A in the x-y (left) and y-z plane (right).
The flame propagates from right to left along the negative x-direction. The field of view represents
the computational domain of dimension 26.1δth × 26.1δth.
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Figure 2. Top: Instantaneous distribution of reaction progress variable with superimposed isocon-
tours corresponding to c = 0.1, 0.5, 0.9. The white line shows the position of the mean flame brush
corresponding to c = 0.5, which demarks the position of the y-z plane. Middle and bottom: Instan-
taneous, normalised velocity fluctuations in direction aligned with (u′/SL) and normal to (v′/SL)
mean flame propagation direction. Results are shown for case B in the x-y (left) and y-z plane (right).
The flame propagates from right to left along the negative x-direction. The field of view represents
the computational domain of dimension 26.1δth × 26.1δth.
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Figure 3. Top: Instantaneous distribution of reaction progress variable with superimposed isocon-
tours corresponding to c = 0.1, 0.5, 0.9. The white line shows the position of the mean flame brush
corresponding to c = 0.5, which demarks the position of the y-z plane. Middle and bottom: Instan-
taneous, normalised velocity fluctuations in direction aligned with (u′/SL) and normal to (v′/SL)
mean flame propagation direction. Results are shown for case C in the x-y (left) and y-z plane (right).
The flame propagates from right to left along the negative x-direction. The field of view represents
the computational domain of dimension 26.1δth × 26.1δth.
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3. Mathematical Background

The turbulent state and its anisotropy can be analysed in the so-called Lumley trian-
gle [18]. The boundaries of the triangle are defined in terms of the second I Ia and third I I Ia
invariant of the tensor aij (and by analogy for eij) after introducing variables η and ξ in the
following manner.

I Ia =
trace(a)2 − trace

(
a2)

2
, I I Ia = det(a), η =

(
−1

3
I Ia

)1/2
, ξ =

(
1
2

I I Ia

)1/3
(5)

Two borders are given by the straight lines connecting the origin (0,0) with the points
(−1/6, 1/6) and (1/3, 1/3), respectively, while η =

(
1/27 + 2ξ3)1/2 represents the third,

curved border. Any physically realizable state of the anisotropy tensors has to lie within this
triangle and the borders, sketched in Figure 4a, represent an axisymmetric contraction (left
border), axisymmetric expansion (right border) and the two-component state, respectively,
while the origin demarks the isotropic state [2]. Coordinates ξ and η are nondimensional
quantities; thus, the Lumley triangle provides a general framework for the parameterization
of anisotropy.

Figure 4. (a) Sketch of the Lumley triangle with its borders; (b) sketch of turbulence kinetic energy
spectrum of velocity before (solid line), after applying a low pass filter which results in u (dash-
dotted line) and after applying a high pass filter which results in u (dashed line). The axisymmetric
contraction border (∗) signifies a situation where 〈u′1u′1〉 < 〈u′2u′2〉 = 〈u′3u′3〉, while the axisymmetric
expansion (∗∗) signifies a situation where 〈u′1u′1〉 > 〈u′2u′2〉 = 〈u′3u′3〉.

For the purpose of this multiscale analysis, DNS data have been explicitly filtered
by using a Gaussian filter kernel G(r) such that the filtered values of a quantity Q can be
expressed as follows.

Q(x) =
∫

Q(x− r)G(r)dr, G(r) =
(

6/π∆2
)3/2

exp
(
−6 r · r/∆2

)
(6)

The application of this low pass filter removes the high wavenumber content of the
fluctuating velocity signal (refer to Figure 4b) and an associated high pass filter (which
removes the low wavenumber content) can be defined by Q = Q − Q. In this paper,
results will be presented from ∆/δth = 0.4, where the flame is partially resolved, up to
∆/δth = 5.8, where the flame becomes fully unresolved and ∆ becomes larger than the
integral length scale.

While the Reynolds stress tensor is usually defined as Tij = 〈u′iu′j〉, Favre filtering is
often applied in variable-density flows. The Favre-averaged Reynolds stress is defined as
TF

ij = 〈ρu′′i u′′j 〉/〈ρ〉. Similarly, the Reynolds-averaged dissipation tensor can be defined as

εij = 2〈ν ∂u′i/∂xk ∂u′j/∂xk〉 or in the context of Favre averaging as εF
ij = 〈tijs

′′
ij〉/〈ρ〉, where

s′′ij is the fluctuating strain tensor and tij = 2ρνs′′ij − (2ρν/3)δijs
′′
kk is the usual constitutive
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stress–strain relation [32]. Figure 5 shows that there is nearly no difference in the Lumley
triangles of the Reynolds-averaged versus Favre-averaged Reynolds stress and dissipation
tensors. Henceforth, the Favre-averaged version will be shown, and for the sake of simplic-
ity, it will be denoted Tij and εij, respectively. Half the trace of Tij (εij) is usually referred to
as turbulence kinetic energy k (dissipation of turbulence kinetic energy ε) [2].

In the context of LES, the unclosed term is called subgrid scale stress and is defined
as τij = uiuj − ui uj. Comparable to averaging, a Favre-filtered subgrid scale stress can be
defined as τF

ij =
(
ρuiuj − ρũiũj

)
/ρ, where Favre-filtering is provided by Q̃ = ρQ/ρ.

Figure 5. Anisotropies of the tensors Tij, TF
ij , εij and εF

ij in the Lumley triangle shown exemplarily for
case B. The left (right) column shows the turbulent state of the Reynolds stress (dissipation) tensor,
while the first (second) row is related to Reynolds (Favre) averaging, respectively. The results are
shown conditional on reaction progress variable c, as indicated by the colorbar. In addition, the first
(c = 0.05) and last points (c = 0.95) are marked by a circle and a cross, respectively.

4. Results and Discussion

The distributions of k and ε in a x-y planes are shown in Figure 6. and it is obvious
that their behaviour changes significantly from case A to case C. Turbulence kinetic energy
and its dissipation can be scaled as k ∼ 1.5u′2 and ε ∼ k1.5/l, respectively [2]. According to
Table 1 this suggests that, globally, k increases by a factor of about 56 and 225 from case A
to B and case A to C, while dissipation increases by a factor of 422 and 3375, respectively.
This explains the largely different scales in Figure 6. While case A shows indications of
augmentations of k within the flame because of thermal expansion, turbulent velocity
fluctuations decay from the unburned to the burned gas side for cases B and C due to
the rise of kinematic viscosity. Furthermore, for case A, highest values of dissipation are
obtained within the flame, but for cases B and C, the dissipation magnitude decreases from
unburned gas to the burned gas side by roughly a factor 1/5.
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Figure 6. Instantaneous distribution of normalised turbulence kinetic energy (left) and normalised
dissipation in the x-y plane for top-bottom cases A–C. The flame propagates from right to left along
the negative x-direction. The field of view represents the computational domain of dimension
26.1δth × 26.1δth.

It can further be observed from Figure 6. that the dissipative structures are clearly
smaller than the structures carrying turbulence kinetic energy, which is in agreement with
the idea of scale separation between the scales injecting and dissipating energy (i.e., l � η

consistent with the scaling l/η ∼ Re3/4
t , see Table 1, where η denotes the Kolmogorov scale).
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Multiscale [33,34] or spectral [35] analysis of turbulent premixed flames is frequently
conducted in the homogeneous directions, because heat release does not allow a Fourier
transform in the direction of mean flame propagation. It might be, therefore, of interest
to study the effects of a 2D (i.e., in the y-z plane) versus a 3D Gaussian filter on flow
anisotropies. The anisotropy of the tensor Tij is shown in Figure 7 for cases A–C after
the application of a high pass filter with ∆/δth = 0.4. By comparing the left and right
columns, it can clearly be observed that results are qualitatively similar for both filters,
but the anisotropies remain stronger in the case of 2D filtering because large structures in
x-direction are not affected by filtering in the y-z plane. In the following, only results for
the 3D filter will be shown. This does not impose any problems because the flames are
sufficiently far away from the x-boundaries to allow for the application of the 3D filter.

Figure 7. Anisotropy of the tensor Tij in the Lumley triangle for cases A–C when applying a 2D
versus a 3D Gaussian high pass filter with ∆/δth = 0.4. The results are shown to be conditional on
reaction progress variable c, as indicated by the colorbar. In addition, the first (c = 0.05) and last
points (c = 0.95) are marked by a circle and a cross, respectively.

In order to be able to correctly classify the following results for turbulent premixed
flames, the anisotropies of the Reynolds stress and dissipation tensor from a channel flow
simulation are exemplarily shown in Figure 8, where the data were taken from results
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presented in [36]. Data for the Reynolds stresses were shifted in vertical direction by 0.01
in order to be able to distinguish it from the dissipation data. Figure 8 shows that the
anisotropies of Tij and εij are nearly identical, with only marginally more isotropy for εij
towards the channel center (indicated by the crosses). The same holds true for bubbly chan-
nel flow, as reported in [36], and the findings are also consistent with the early experimental
data from turbulent boundary layers by Antonia et al. [4]: Very close to the wall in the
viscous sublayer of the channel flow, the turbulence is essentially two-component, v being
much smaller than u and w. Anisotropy reaches a peak at a dimensionless wall distance
of about y+ = 7 close to the 1C state and subsequently becomes increasingly isotropic
towards the channel center [2]. Apart from the artificial offset, Figure 8 shows nearly the
same behaviour for anisotropy based on Reynolds stress and dissipation tensors.

Figure 8. Anisotropy based on Reynolds stress and dissipation tensor for the channel flow data
presented in [36]. The point closest to the wall is marked with a circle, whereas the channel center
location is marked with a cross. Results for Tij are shifted in direction of η by 0.01.

The results for the anisotropy of the tensors Tij and εij are shown in the Lumley triangle
for cases A–C in Figures 9–11. The first row in each plot shows the results for unfiltered
data, followed by the data after applying a high pass filter of sizes ∆/δth = 5.8, 1.4, 0.4,
such that, for the last row, only the smallest structures remain. Focusing first on the
unfiltered results in the first row of Figures 9–11, two things are apparent: (i) there is
a pronounced anisotropy of the Reynolds stresses, particularly for case A, where thermal
expansion effects dominate the turbulent velocity fluctuations. The turbulent state of
the largest part of the statistically planar flame brush can be found on the axisymmetric
expansion border which, for the flame propagation direction aligned with the x-direction,
signifies a situation where T11 > T22 = T33 (refer to Figure 4a). The initial background
fluid motion is isotropic, and with increasing turbulence intensity (alternatively increasing
Ka or decreasing Da, see Table 1), the relative contribution of thermal expansion effects
weakens, and the flow fields becomes more isotropic. These observations are consistent
with earlier findings in [15–17]: Turbulent premixed flames can cause strong anisotropies
such that the turbulent state is located on the axisymmetric expansion border and reaches,
for small turbulence intensities (e.g., u′/SL ≈ 1) from the isotropic state two-thirds up
the way to one component’s endpoint. For large turbulence intensities (e.g., u′/SL > 10),
a nearly isotropic behaviour can be observed: (ii) The dissipation tensor is considerably
more isotropic than the Reynolds stress tensor but this difference decreases with decreasing
∆. For example, the maximum departure from the origin can reach up to ξ = 0.27 (0.13)
and η = 0.27 (0.13) for Tij in case A (case C), whereas the maximum departure from the
origin extends to ξ = 0.11 (−0.024) and η = 0.11 (0.024) for εij for the unfiltered condition.
This situation changes to ξ = −0.13 (−0.028) and η = 0.13 (0.028) for Tij in case A (case C),
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whereas the maximum departure from the origin extends to ξ = −0.064 (−0.03) and
η = 0.064 (0.03) for εij for ∆/δth = 0.4. The differences in anisotropy between Tij and
εij tensors are in contrast to the observations from shear flows, as illustrated in Figure 8.
Nevertheless, with increasing u′/SL (which is equivalent to increasing Ka or decreasing Da
for a given value of l/δth), isotropy increases (i.e., from case A to case C). This shows that
linear relationships between the anisotropy of Tij and εij that might have been developed
for shear flows are unlikely to work well for turbulent premixed flames. The effects of
anisotropy on Tij is dictated by the relative strengths of turbulent velocity fluctuation u′

and the velocity jump due to thermal expansion, which can be characterised in terms of
NB ∼ τSL/u′ ∼ τ/

(
Da1/2Ka

)
, whereas the anisotropy of εij is dictated by the relative

strengths of aturb ∼ u′/l and achem ∼ τSL/δth, which is dictated by τDa. This implies that
a simple linear relationship between the anisotropy of Tij and εij is unlikely to be valid for
premixed turbulent flames.

For a high pass filter of width ∆, flow structures smaller than ∆ are retained such
that the second, third and fourth row in Figures 9–11 represent increasingly small flow
structures. For case C, the following behaviour is as expected: Both tensors Tij and εij
tend to become more isotropic with decreasing filter width ∆. Isotropy, in particular,
increases once the filter becomes smaller than the integral scale (i.e., ∆/δth = 4.58 according
to Table 1). By contrast, case A shows an unexpected behaviour and the turbulent state
switches from axisymmetric expansion (lower right border) to the axisymmetric contraction
side (lower left border) with a decrease in ∆, but considerably anisotropy can be observed
even for the smallest filter width considered here.

This unexpected behaviour warrants an explanation, which is provided in the follow-
ing manner. The axisymmetric contraction signifies a situation where T11 < T22 = T33 in
the present scenario. This means that, for the smallest flow scales, the strong dilatation
effects, responsible for the opposite scenario (i.e., T11 > T22 = T33), are no longer present.
This can be explained as follows. Figure 1 shows that flow structures corresponding to
the fluctuating u velocity component are considerably larger compared to the v (or w,
not shown) structures. By filtering the flow field with a filter width smaller than these, u
velocity structures diminish their strength considerably until they finally vanish and only
the smaller velocity fluctuations of the transverse components are left. Ultimately, this
indicates that not only the fluctuation strength is anisotropic for case A but also the size of
the structures associated with different velocity components is different. The behaviour of
Case B is somewhere in between case A and case C. It is worth remarking that the value
of k decreased by roughly 50% at the time statistics were taken. As a result, Bray number
NB ∼ τSL/u′ for case B increases from 0.6 to a value close to unity. This also implies that
the Damköhler (Karlovitz) number Da (Ka) increases (decreases) roughly by a factor of
1.414 (0.6) in comparison to the initial values in case B.

Finally, the anisotropy of the subgrid scale stress tensor is analysed in Figure 12 for filter
widths ∆/δth = 0.4, 1.4, 5.8 and 11.6. In contrast to the previous results, a low pass filter is
used in this context and the unfiltered result (which would result in a vanishing subgrid
scale contribution) has been replaced with an even larger filter width of ∆/δth = 11.6. Only
cases A and B are shown in Figure 12 because the subgrid scale stresses for case C are nearly
isotropic even for the largest filter width. Figure 12 shows that the subgrid scale stresses
are considerably more isotropic than their averaged counterparts, and this statement
holds for the entire range of filter width. Again, isotropy increases with increasing u′/SL,
qualitatively similar to the Reynolds/Favre-averaged equivalents. The same physical
explanations which were mentioned earlier in the context of RANS to explain the greater
extent of isotropy for Tij and εij for the cases with high turbulence intensities are also
qualitatively valid in the context of subgrid quantities.
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Figure 9. Anisotropy of the tensors Tij and εij shown in the Lumley triangle for case A. A Gaussian
high pass filter with (bottom to top) ∆/δth = 0.4, 1.4 and 5.8 is used and compared to the results from
the unfiltered data. The results are shown conditional on reaction progress variable c, as indicated
by the colorbar. In addition, the first (c = 0.05) and last points (c = 0.95) are marked by a circle and
a cross, respectively.
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Figure 10. Anisotropy of the tensors Tij and εij shown in the Lumley triangle for case B. A Gaussian
high pass filter with (bottom to top) ∆/δth = 0.4, 1.4 and 5.8 is used and compared to the results
from unfiltered data. The results are shown conditional on reaction progress variable c, as indicated
by the colorbar. In addition, the first (c = 0.05) and last points (c = 0.95) are marked by a circle and
a cross, respectively.
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Figure 11. Anisotropy of the tensors Tij and εij shown in the Lumley triangle for case C. A Gaussian
high pass filter with (bottom to top) ∆/δth = 0.4, 1.4 and 5.8 is used and compared to the results
from unfiltered data. The results are shown conditional on reaction progress variable c, as indicated
by the colorbar. In addition, the first (c = 0.05) and last points (c = 0.95) are marked by a circle and
a cross, respectively.
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Figure 12. Anisotropy of the subgrid scale tensors τij shown in the Lumley triangle for cases A and B.
A Gaussian low pass filter with (bottom to top) ∆/δth = 0.4, 1.4, 5.8 and 11.6 is used. The results are
shown conditional on reaction progress variable c, as indicated by the colorbar. In addition, the first
(c = 0.05) and last points (c = 0.95) are marked by a circle and a cross, respectively.

The modification of anisotropy distribution in the Lumley triangle in turbulent pre-
mixed flames in comparison to that in the corresponding non-reacting flow has been
reported in [15], and these findings have, in the meantime, been confirmed independently
by a few other DNS groups [37–39]: Turbulent premixed flames cause strong anisotropies
such that the turbulent state is located on the axisymmetric expansion border and reaches,
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depending on the turbulence intensity (Karlovitz number), from the isotropic state two-
thirds up the way to the one component endpoint. Furthermore, early measurements
of the enhancement of turbulence anisotropy in large-scale, low-intensity turbulent pre-
mixed propane-air flames using two-component measurements have been reported by
Furukuwa et al. [40].

It has been shown in the past [15,16,41] that the phenomenon of counter-gradient trans-
port or counter-gradient stresses, as theoretically predicted by Bray and co-workers [28], is
closely related to the axisymmetric expansion turbulent state. Its existence in the context of
LES has been confirmed by very recent and advanced measurement techniques [42] that
result in the conclusion that LES models should allow for upscale energy transfer in the
vicinity of the flame. In addition, in the context of unsteady RANS or hybrid RANS/LES,
the present results suggest the invalidity of the Boussinesq assumption and the need for an
anisotropic correction, which will depend on how much of the turbulence kinetic energy
can be resolved, as revealed by the multiscale analysis.

While the aforementioned findings can be considered an indirect or partial validation
of the present results (at least for the case when the velocity field is not filtered), future
analysis will be needed to confirm the present findings experimentally and by independent
simulation groups including other configurations and different combustion regimes. This
includes, in particular, the need for further multiscale analysis, which so far cannot be
found in the open literature neither from experiment nor from simulation.

5. Conclusions

The anisotropy of the Reynolds stress, dissipation, and subgrid scale tensor in turbu-
lent premixed flames with a range of different turbulence intensities has been characterised
using the Lumley triangle by performing a multiscale analysis. For this purpose, an existing
DNS database of statistically planar turbulent premixed flames has been filtered for a large
range of filter widths ranging from dimensions smaller than the thermal flame thickness to
structures that are larger than the integral scale. The main findings, which are reported for
the first time for turbulent premixed flames, can be summarised as follows:

(i) Although the initial background fluid motion is isotropic, there is a pronounced
anisotropy towards the axisymmetric expansion for low turbulence intensities. This
effect diminishes with increasing turbulence intensity.

(ii) In general, this anisotropy decreases with decreasing high pass filter width (i.e., when
only smaller and smaller structures remain), but for case A (i.e., the case with the
smallest value of u′/SL), the state of the turbulent flow flips towards the axisymmetric
contraction side. This trend has been explained by the different size of flow structures
associated with velocity components in the direction of mean flame propagation and
transverse to it.

(iii) The dissipation tensor tends to be more isotropic than the Reynolds stress tensor,
which is in agreement with the theoretical expectation. The behaviour is different to
the turbulent boundary layers, where a much closer coupling can be observed.

(vi) In agreement with theoretical arguments, subgrid scale stresses are more isotropic
than their averaged counterparts for all filter widths. Nevertheless, the axisymmetric
expansion state is observed for low turbulence intensities.

(v) No remarkable differences were observed when using Reynolds averaging versus
Favre averaging procedures and definitions.

(vi) The application of a 2D (in direction perpendicular to flame propagation) filter results
qualitatively in very similar outcomes but the anisotropies remain stronger. While
the pronounced anisotropy towards axisymmetric expansion for low turbulence in-
tensities has been observed in earlier work for Reynolds stresses [15–17], the present
analysis confirms this trend for the dissipation tensor and further extends the find-
ings to a multiscale analysis and shows several unexpected (e.g., the flipping of the
turbulent state mentioned in (ii)) and interesting aspects (e.g., no difference between
Reynolds and Favre-Averaging based definitions (v), or the quantification of 2D vs.
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3D filtering (vi)). However, the analysis is limited to moderate Reynolds numbers,
and more analysis will be needed in future to observe if the above trends persist at
higher Reynolds numbers.
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