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Abstract

In this thesis, we explore the efficiency of different direct discretization strategies to

find numerical solutions to re-entry optimal control problems with minimum heating.

The first part of this thesis is dedicated to introducing the theoretical grounds of

this work. We focus on SQP methods and the nonsmooth Newton method to solve

nonlinear optimization problems numerically, and so-called first discretize, then opti-

mize or direct discretization strategies for optimal control problems. The distinction

between full and reduced discretization methods will be key to the development of

different numerical strategies and the discussion on their efficiency in later chapters.

The particularly sparse structure of the dynamics yielded by the application of the

method of lines to PDE constrained optimal control problems is also illustrated here.

The second part of the thesis is dedicated to the models, definitions and approxi-

mations needed to compose atmospheric re-entry trajectory problems with thermody-

namic constraints, in order to explore the application of our methodologies to different

problems that may arise in this context.

In the third part of the thesis, the results of the application of a reduced discretiza-

tion approach with the software OCPID-DAE1 to different re-entry optimal control

problems are presented. The results show the robust applicability of this method to

various problems featuring different scenarios, parameter optimization and coupled

ODE-PDE problems.

In the last part of the thesis, our newly implemented strategy for the exploitaiton of the

structure yielded by a full discretization approach with a nonsmooth Newton method

and PDE discretization through the method of lines is presented. The efficiency of

this strategy is demonstrated through its application to quadratic and nonlinear heat

equation control problems. We consider as well the application of this method to a

re-entry temperature control problem with a controllable active cooling system. The

computational results show that while reduced discretization is a viable and robust

option for smaller trajectory problems, a structure-exploiting method is necessary in

order to tackle large PDE constrained optimal control problems.





Kurzzusammenfassung

In dieser Arbeit wird die Effizienz verschiedener direkter Diskretisierungsstrategien

untersucht, um numerische Lösungen für die optimale Steuerung von Wiederein-

trittsproblemen mit minimaler Erwärmung zu finden.

Im ersten Abschnitt dieser Arbeit werden die theoretischen Grundlagen für diese Ar-

beit vorgestellt. Wir interessieren uns für SQP-Methoden und nichtglatte Newton-

Verfahren, sowie für so genannte first discretize, then optimize beziehungsweise di-

rekte Diskretisierungsstrategien, um nichtlineare Optimierungsprobleme numerisch

zu lösen. Die Differenzierung zwischen vollständiger und reduzierter Diskretisierung

ist entscheidend für die Entwicklung verschiedener numerischer Ansätze und der an-

schließenden Betrachtung ihrer Effizienz in späteren Kapiteln. Die spezielle, dünn

besetzte Struktur der Dynamik, die sich aus der Anwendung der Linienmethode

auf Optimalsteuerungsprobleme mit PDE-Beschränkungen ergibt, wird hier ebenfalls

dargestellt.

Der zweite Teil der Arbeit beschäftigt sich mit den Modellen, Definitionen und Ap-

proximationen, die für die Formulierung von atmosphärischen Wiedereintrittsproble-

men mit thermodynamischen Beschränkungen erforderlich sind, um die Anwendung

unserer Methoden auf verschiedene Probleme zu untersuchen, die in diesem Zusam-

menhang auftreten können.

Im dritten Abschnitt der Arbeit werden die Ergebnisse der Anwendung eines re-

duzierten Diskretisierungsansatzes mit Hilfe der Software OCPID-DAE1 auf

verschiedene Wiedereintritts-Optimierungsprobleme präsentiert. Die Ergebnisse zeigen

die robuste Anwendbarkeit dieser Methode auf verschiedene Probleme mit unter-

schiedlichen Szenarien, Parameteroptimierung und gekoppelten ODE-PDE-Problemen.

Schließlich wird im letzten Teil der Arbeit eine neue Strategie zur Ausnutzung der

Struktur, die sich aus einer vollständigen Diskretisierung in Verbindung mit einer

nicht-glatten Newton-Methode und einer PDE-Diskretisierung mittels der Linien-

methode ergibt, vorgestellt. Die Effizienz dieses Ansatzes wird durch dessen Anwen-

dung auf quadratische und nichtlineare Wärmeleitungsprobleme demonstriert. Außer-

dem analysieren wir die Anwendung dieser Methode auf ein Temperatur-

regelungsproblem beim Wiedereintritt mit einem steuerbaren aktiven Kühlsystem.



Die numerischen Ergebnisse zeigen, dass eine reduzierte Diskretisierung zwar eine

praktikable und robuste Option für kleinere Bahnplanungsprobleme ist, andererseits

aber eine Methode zur Ausnutzung der Struktur notwendig ist, um große, durch PDEs

beschränkte Optimalsteuerungsprobleme zu bewältigen.
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1 Introduction

Reducing the cost of access to space is one of the main current goals of the aerospace

industry. The reduction of aerodynamic heating is vital for improving safety in flight

and its derived costs, and most missions encounter their most extreme heating values

during their re-entry phase. As a hypersonic vehicle descends into the atmosphere,

it undergoes extreme convective heat rates (q̇conv) due to its high kinetic energy, and

high efforts need to be made in order to prevent the internal structure of the vehicle

from exceeding its limits. The Columbia disaster [96] dramatically demonstrated the

fatal consequences of a failure to control extreme heating during re-entry. However,

one does not need to consider extreme cases in order to see the benefit of minimizing

heating in order to reduce the costs of aircraft design and other material resources.

Therefore, finding appropriate strategies to reduce heat loads originated during re-

entry can result in a great gain in safety and the possibility of a drastic reduction in

costs.

This work is done in the framework of the interdisciplinary research project Re-entry

optimization to minimise heating or infrared signature for Munich Aerospace e.V. -

Bavarian Research Network. The main goal of the project was to model and optimize

re-entry maneuvers for flight systems taking into account the heat flux, with a focus

on safety aspects and efficiency. Some of the work produced in this project has been

presented in [1, 2, 99, 100, 118, 119, 125, 126]. In particular, the contribution of this

work is the development, analysis and comparison of efficient optimization methods

for re-entry problems. Efficiency is always an important benefit to aim for when de-

veloping solvers for any kind of optimization problem, but it is also a key factor in

the context of re-entry applications, where real-time trajectory computation and op-

timization are of high interest in order to produce systems adaptable to disturbances

and configuration changes during flight. Furthermore, the high complexity, nonlinear-

ity and dimension of aircraft trajectory and temperature evolution models can pose
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1 Introduction

a big challenge to standard nonlinear optimizers, which makes the development of

efficient methods able to deal with large, complex problems all the more necessary.

Figure 1.1: Apollo Command Module (left) and Sänger spacecraft (right). Image cour-

tesy: NASA and Wikimedia Commons

There are four main variables that can contribute to reducing the heat load that an

aircraft endures during re-entry: vehicle shape, Thermal Protection System (TPS)

design, trajectory and active cooling systems. This work focuses mainly on the last

two, i.e. finding optimal trajectories and cooling strategies to minimize heating, but

TPS and shape design are also touched upon as additional proof of the versatility

of our methodology to solve different problems related to re-entry. Furthermore,

accurate modelling and optimization for TPS and vehicle shape require the application

of computational fluid dynamics (CFD) techniques or other complicated calculations

such as the heat transfer model by Fay and Riddell [33], which fall outside of this

scope. Some in-depth studies on vehicle shape and TPS design optimization can be

found in [27, 29, 70, 73, 82, 93, 136, 139]. There is extensive work in the topic re-entry

trajectory and active cooling systems optimization with minimum heating, we offer

a selection: [3, 4, 8, 21, 27, 28, 54, 71, 81, 88, 95, 104, 111, 140]. A good part of

the literature focuses on the German Sänger concept [83] and the Apollo Command

Module [60, 102], see Figure 1.1.

We base our approach to optimize re-entry problems in optimal control theory. Op-

timal control is the branch of applied mathematics that aims to derive a control for

a given dynamical system in order to optimize a certain objective function. Opti-

mal control problems are a generalization of variational problems where the control

2



and state variables are separated and control constraints are admitted. This way,

the dynamic behavior of the states can be described by dynamic equations, usually

systems of ordinary and/or partial differential equations (ODEs and PDEs), that are

influenced by the controls. There are applications of optimal control theory in many

fields, including aerospace, robotics, bioengineering, economy, and other disciplines.

One of the most important theoretical results of optimal control theory is Pontryagin’s

local minimum principle [108] that establishes necessary conditions for optimal con-

trol problems. A good overview of optimal control theory and techniques is gathered

in [12, 41, 120].

In general, optimal control problems are not analytically solvable and require nu-

merical methods in order to obtain an approximated solution. We follow a first dis-

cretize,then optimize approach in order to approximate the optimal control problem

in question by a finite dimensional optimization problem with a suitable discretiza-

tion scheme. In particular, a direct discretization approach aims to solve the finite

optimization problem directly, as opposed to an indirect discretizaton that aims to

solve the first order necessary optimality conditions with suitable techniques. The pri-

mary goal of this work is to test, analyze and compare in terms of efficiency different

direct discretization methodologies to numerically solve re-entry optimal control prob-

lems with minimum heating. A reduced discretization method poses a small, dense

optimization problem in terms of the discretized controls, while a full discretization

method considers both the discretized states and controls as variables, yielding a large

optimization problem with a sparse structure that needs to be exploited in order to

produce solutions efficiently. This key difference poses the question of which method

is more suitable and efficient for different types of optimal control problems, which is

explored in this work in the context of re-entry.

A fully discretized optimal control problem can be solved using any suitable method

for finite nonlinear optimization problems. The application of sequential quadratic

programming (SQP) and interior point methods methods adapted to the sparse struc-

ture of fully discretized optimal control problems has been studied in [12, 13, 67, 137].

Several commercial and non-commercial software packages that use these methods to

solve general sparse optimization problems are available, such as SNOPT [49, 50], IPOPT

[135] and WORHP [18]. The use of nonsmooth Newton methods to solve the Karush-

Kuhn-Tucker (KKT) necessary optimality conditions has been presented in [34, 72,

3



1 Introduction

101, 123], and its application to discretized optimal control problems in [43, 44, 68,

75, 85]. Structure-exploiting strategies for nonsmooth Newton methods have been

recently explored in [16, 25]. In order to take advantage of the structure generated

by full discretization and the application of a certain nonlinear optimization method,

it is necessary to use an optimizer tailored to sparse, large-scale problems, with an

efficient LU decomposition method like MA48 from the HSL library [31] or a suitable

subroutine from the LAPACK package [5] to solve the linear system in every itera-

tion. A prior LU decomposition by blocks provides the opportunity to solve a series

of smaller subsystems instead, which can also present an exploitable substructure.

However, solvability of the linear system is only guaranteed under certain assump-

tions, which are recalled and explored in Chapter 2 for SQP and nonsmooth Newton

methods, see [89] for details.

Optimal control problems involving PDEs are a challenging case of large-scale optimal

control problems, especially when PDEs in several dimensions are present. They are

treated theoretically in [63, 86, 127], and a good overview of numerical treatment of

PDE optimal control problems can be found in [58, 64]. A simple but effective strat-

egy to obtain numerical solutions is the method of lines; it consists in discretizing the

PDE in space using finite differences [42, 47, 78, 107, 137], expressing it as a large

ODE system. Like so, we can apply directly the methods used for standard ODE

optimal control problems. Moreover, the doubly discretized problem in space and

time presents a particularly sparse and banded structure, which makes a substruc-

ture exploitation particularly beneficial. Therefore, a full discretization approach with

different structure exploitation strategies tailored to this type of problems is imple-

mented and tested in this work for two-dimensional heat equations adapted from [57,

107], with an application to active cooling control during re-entry. Similar work on

structure exploitation for discretized PDE constrained problems can be found in [47,

59, 103, 137].

Furthermore, the combination of aerodynamic trajectory dynamics with a tempera-

ture evolution model generates a complex case of a coupled ODE-PDE optimal control

problem, where the goal is to minimize the temperature increase by controlling the

trajectory. Coupled problems are a relatively recent object of study, and general the-

oretical results are not available; however, there is a great deal of literature focused on

the analysis and derivation of first order necessary optimality conditions for specific

4



problems, see [20, 32, 65, 76, 105, 138] for some examples, and numerical solutions for

different applications are calculated in [21, 66, 78, 79, 140]. While a full discretization

approach seems to be the most efficient choice in the case of PDE constrained prob-

lems, a reduced discretization approach can also produce numerical solutions robustly

and efficiently for PDEs of smaller dimensions and in the absence of a large number of

controls. The described coupled ODE-PDE trajectory problem falls under this cate-

gory, which makes the application of this method to re-entry trajectory problems also

worth exploring. This is done in this work using OCPID-DAE1 [40], an optimizer of

the Institute for Applied Mathematics and Scientific Computing at the Universität

der Bundeswehr München by Prof. Matthias Gerdts. OCPID-DAE1 solves general

optimal control problems featuring differential algebraic equations (DAEs) using mul-

tiple shooting for integration with an SQP method for general constrained nonlinear

problems, and it has been successfully used to solve a variety of optimal control prob-

lems and coupled ODE-PDE problems, see some examples in [17, 45, 77, 78, 87, 92,

99, 112].

The main contribution of this thesis, as presented in Chapter 5 and in the article

[100], is the implementation of a structure and substructure exploitation strategy for

fully discretized optimal control problems solved with the nonsmooth Newton method.

We provide an analysis and comparison of the application of this methodology and

a reduced discretization approach to different optimal control problems in the con-

text of re-entry with minimum heating, focusing on efficiency and the limitations of

their applicability. Our method proves to be an efficient alternative to the reduced

discretization approach for PDE constrained optimal control problems, and it could

be used for general large-scale optimal control problems. We present as well several

alternatives for structure and substructure exploitation with different linear solvers,

and compare their efficiency on several large-scale problems involving discretized heat

equations through the method of lines. A discussion on the numerical complications

that may arise related to the solvability of the linear systems that need to be solved

in the nonsmooth Newton method is also included.

This thesis is structured as follows. In Chapter 2, we present some general results and

definitions from nonlinear optimization and optimal control theory. We first recall

the basic concepts and the KKT conditions, and then we go into detail about SQP

methods and nonsmooth Newton methods, providing some convergence and solvability
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1 Introduction

results for the linear systems that arise from their application. In the second part of

the chapter, we focus on general optimal control problems, the necessary optimality

conditions established by the local minimum principle, and the direct discretization

approach to find numerical solutions. We describe in detail the reduced and full

discretization approaches, presenting an adaptation of the discrete local minimum

principle for general one-step methods. Finally, the method of lines to discretize

PDEs and transform them into a sparse ODE system is presented.

Chapter 3 gives an outline of the various models used to define the different re-

entry problems that are solved numerically in this thesis. There are several aspects to

consider that are presented in detail: an atmospheric model to obtain air temperature,

density and other quantities at different altitudes; a dynamic model for the position

and direction of the aircraft, taking into account the aerodynamic and gravitational

forces to define a system of equations of motion; a thermodynamic model involving

the heat equation to calculate temperature evolution, with models for external and

internal heating and a model for the interaction between the TPS and the active

cooling system; and finally, a parametric shape model for an Apollo-type capsule.

Chapter 4 is dedicated to finding optimal re-entry trajectories with minimum heat-

ing using a reduced discretization approach with the software package OCPID-DAE1,

expanding from the results presented in [99]. We formulate re-entry trajectory prob-

lems in different scenarios and with additional challenges, such as the aforementioned

parametric capsule shape optimization and a coupled ODE-PDE system to calculate

the temperature in a one-dimensional section through the TPS. For the last one, we

consider as well different objective functions based on the temperature and the heat

flux. Numerical solutions are depicted for all of the defined problems.

In Chapter 5, our structure and substructure exploitation strategies for fully dis-

cretized optimal control problems solved with the nonsmooth Newton method are

presented. Different approaches to solving the obtained linear system are considered

and compared computationally on a benchmark quadratic PDE problem involving a

two-dimensional heat equation. The approaches that yield the better results in terms

of computational time are tested further on a nonlinear PDE benchmark problem,

and numerical solutions and particularities of each approach are discussed. These

results are taken and expanded upon from the publication [100]. To conclude the

numerical results, a re-entry temperature control problem with a controllable active

6



cooling system is considered and solved numerically with this methodology. Finally,

the suitability and limitations of the reduced and full discretization approaches based

on the obtained computational results are discussed.
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2 Optimal control and optimization

theory

In this chapter, we remind the reader of a few basic nonlinear optimization con-

cepts and methods used for finding numerical solutions, we define the optimal control

framework, and we recall some of the most important concepts and results of optimal

control theory. We recall as well a brief classification of the methods typically used

to approach optimal control methods, both analytically and numerically, and then

focus on a first discretize, then optimize or direct discretization approach. Finally, a

discretization strategy for the heat equation with the method of lines, which is used

in the following chapters to transform PDE constrained optimal control problems into

regular ODE constrained ones, is described.

Although both nonlinear optimization and optimal control theory are vast fields, we

focus on the optimization methods and techniques to solve optimal control problems

numerically that will be used in this scope. We provide as well the theoretical re-

sults that can be relevant to better understand the strategies and numerical results

presented in the following chapters; for example, the discretized minimum principle

provides a useful relation between the theory applied to the discretized problems and

their continuous versions. An issue that comes up when optimizers fail is the solvabil-

ity and conditioning of the linear systems that arise and therefore, a short outline of

some sufficient conditions is given for the presented optimization methods that will

be useful for the discussion of the results in Chapter 5.

2.1 Nonlinear optimization

We consider nonlinear optimization problems of the general form:

9



2 Optimal control and optimization theory

Problem 2.1 (NLP). Minimize f(z) subject to the constraints

g(z) ≤ 0, (2.1)

h(z) = 0, (2.2)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp are assumed to be twice

continuously differentiable functions. Function f(z) is referred to as the objective

function, (2.1) are referred to as the inequality constraints and (2.2) are referred to as

the equality constraints. It will be useful for the following development to define as

well the feasible set :

Ω := {z ∈ Rn | gi(z) ≤ 0, i = 1, ...,m, hj(z) = 0, j = 1, ..., p},

as well as the active set of the inequality constraints for a certain z ∈ Rn:

Ag(z) := {i ∈ 1, ...,m | gi(z) = 0}.

With the goal of trying to define solutions to (NLP), we can define a global minimum

as a z∗ ∈ Ω such that

f(z∗) ≤ f(z), ∀z ∈ Ω,

and z∗ ∈ Rn is a local minimum if there exists an ε > 0 such that

f(z∗) ≤ f(z), ∀z ∈ Ω ∩ Uε(z∗).

Before establishing the main result that we want to reproduce here, the well-known

Karush-Kuhn-Tucker conditions (KKT conditions), we mention some of the constraint

qualifications that are required to guarantee that the conditions hold. The most

common ones are Linear Independence Constraint Qualification (LICQ), which holds

for a given feasible z ∈ Ω if the gradients

{∇gi(z), i ∈ Ag(z)} ∪ {∇hj(z), j = 1, ..., p} (2.3)

are linearly independent, or the Mangasarian-Fromowitz Constraint Qualification

(MFCQ), which holds if the gradients

{∇hj(z), j = 1, ..., p}

10



2.1 Nonlinear optimization

are linearly independent and there exists a vector d ∈ Rn such that

∇gi(z)>d < 0, i ∈ Ag(z)

∇hj(z)>d = 0, j = 1, ..., p

We define as well the Lagrangian or Lagrange function for (NLP), given vectors λ ∈
Rp, µ ∈ Rm, as:

L(z, λ, µ) = f(z) + λ>h(z) + µ>g(z). (2.4)

The vectors λ and µ are often referred to as Lagrange multipliers. One of the most

fundamental results in nonlinear programming is the KKT conditions, established by

[74, 84], since they provide first order necessary optimality conditions for (NLP):

Theorem 2.1 (KKT conditions). Let z∗ be a local minimum of Problem 2.1 satisfying

a constraint qualification. Then there exist Lagrange multipliers λ∗ ∈ Rp and µ∗ ∈ Rm

such that

∇zL(z∗, λ∗, µ∗) = 0, (2.5)

h(z∗) = 0 (2.6)

µ∗ ≥ 0, g(z∗) ≤ 0, µ∗i gi(z
∗) = 0, i = 1, ..,m. (2.7)

The most commonly used methods to solve constrained nonlinear optimization prob-

lems are based on constructing sequences {(zk, λk, µk)} iteratively that eventually

converge to a point that satisfies the necessary KKT conditions. In the case in which

inequality constraints are not present, it suffices to solve the system of nonlinear

equations (2.5) - (2.6) with the Newton method, which is referred to as the Lagrange-

Newton Method. Sequential Quadratic Programming (SQP) methods can be consid-

ered an extension of of the Lagrange-Newton Method based on finding solutions to a

sequence of Quadratic Programming (QP) subproblems. Interior Point methods add

slack variables to the inequality constraints and attempt to solve a series of barrier

problems that converges to a feasible solution of the problem. The nonsmooth Newton

method introduces a complementarity function that becomes 0 if and only if condition

(2.7) is satisfied.

We focus on SQP methods and the nonsmooth Newton method in the following sec-

tions, and we introduce some of the theoretical results that guarantee their conver-

gence. It is important to acknowledge that none of these approaches can be consid-

ered superior to the others from a purely mathematical point of view. However, their

11



2 Optimal control and optimization theory

practical performance depends largely on the implementation of the method and its

strategies to deal with the numerical challenges that may arise. Moreover, some im-

plementations might be better for some problems than others in terms of convergence,

efficiency and robustness.

For more in-depth theory on nonlinear programming, the reader can consult the clas-

sical textbooks [10, 98].

2.1.1 SQP method

SQP methods were first developed in [52, 56, 109, 117] and since then, they have

become one of the most powerful iterative algorithms to solve nonlinear problems.

We define priorly the Hessian of the Lagrange function at a point (zk, λk, µk) as

Hk := L′′zz(z
k, λk, µk)

In order to find a solution to (NLP) iteratively, the following quadratic optimization

problem is considered:

Problem 2.2 (QP). Minimize

1

2
d>Hkd+∇f(zk)>d

with respect to d ∈ Rn subject to the constraints

g(zk) + g′(zk)d ≤ 0,

h(zk) + h′(zk)d = 0.

This problem arises as a linearization of the KKT conditions: a search direction d is

computed in order to minimize a quadratic approximation of the Lagrangian subject

to a linear approximation of the constraints. The KKT conditions for (QP) would be

Hkd+∇f(zk) + g′(zk)>µ+ h′(zk)>λ = 0,

h(zk) + h′(zk)d = 0,

g(zk) + g′(zk)d ≤ 0, µ ≥ 0, µ>(g(zk) + g′(zk)d) = 0,

being µ ∈ Rm, λ ∈ Rp the Lagrange multipliers for the inequality and equality con-

straints of (QP), respectively. A local SQP method would read as:

12



2.1 Nonlinear optimization

Algorithm 2.1. (Local SQP Method)

(0) Choose (z0, λ0, µ0) and set k = 0.

(1) If (zk, λk, µk) is a KKT point of (NLP), STOP.

(2) Compute a solution (dk, λk+1, µk+1) of (QP).

(3) Set zk+1 = zk + dk, k = k + 1 and go to (1).

The following result from [7, Theorem 7.5.4] establishes the convergence of Algorithm

2.1 to a local minimum of (NLP) under certain conditions:

Theorem 2.2 (Local convergence of the SQP method). Let the following assumptions

hold:

(a) Let z∗ be a local minimum of (NLP).

(b) Let f , g and h be twice continuously differentiable with Lipschitz continuous

second derivatives.

(c) Let (LICQ) (2.3) hold at z∗.

(d) Let

v>L′′zz(z
∗, λ∗, µ∗)v > 0

for all v ∈ Rn, v 6= 0 with

g′i(z
∗)v = 0, i ∈ Ag(z∗), h′j(z

∗)v = 0, j = 1, ..., p.

Then there exist neighborhoods U of (z∗, λ∗, µ∗) and V of (0, λ∗, µ∗) such that all

quadratic optimization problems (QP) have a unique local solution dk with unique

multipliers µk+1 and λk+1 in V for every (z0, λ0, µ0) in U . Moreover, the sequence

(zk, λk, µk) converges locally quadratically to (z∗, λ∗, µ∗).

Therefore, finding a local minimum of (NLP) is reduced to solving a series of quadratic

problems for which there are powerful algorithms available using primal or dual active-

set methods, interior point methods or semismooth Newton methods [24, 46, 48, 51,

55, 130]. We selected the primal active-set methods given in [7] for this work, so we

13
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expand briefly on them. Given a solution d∗ to (QP) with active-set AG(d∗) ⊆ I :=

{1, ...,m}, where G(d) := g(zk) + g′(zk)d, and J := {1, ..., p}, we define the quadratic

problem for iteration k with the general form:

Problem 2.3 (Active-set QP). Minimize

1

2
d>Qd+ c>d

with respect to d ∈ Rn subject to the constraints

a>i d = vi, i ∈ AG(d∗),

b>j d = wj, j ∈ J ,

where Q ∈ Rn×n, c ∈ Rn, a, v ∈ Rm, b, w ∈ Rp. Since the active set at the solution d∗

is not known a-priori, the idea of active-set methods is to estimate AG(d∗) iteratively

through a series of sets Ak ⊆ I by solving the auxiliary problem for a given feasible

d:

Problem 2.4 (Auxiliary QP). Minimize

1

2
(d+ ∆d)>Q(d+ ∆d) + c>(d+ ∆d)

with respect to ∆d ∈ Rn subject to the constraints

a>i ∆d = 0, i ∈ Ak,

b>j ∆d = 0, j ∈ J .

Given the absence of inequality constraints, this problem can be solved by solving the

linear system given by the KKT conditions: Q A>Ak B>

AAk 0 0

B 0 0


∆d

µAk
λ

 =

−(Qd+ c)

0

0

 , (2.8)

where AAk := (a>i )i∈Ak , B := (b>j )j∈J , and µ, λ are the multipliers associated to the

inequality and equality constraints in (QP), respectively. Hence, the algorithm to

solve (QP) with the active-set method would read as:

Algorithm 2.2. (Active-set method, [7])
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(0) Choose a feasible initial guess d0 and set k = 0, A0 = A(d0).

(1) Compute a solution (∆d, µAk , λ) of (2.8).

(2) If ∆d = 0 and µAk ≥ 0, set µi = 0 for all i ∈ I \ Ak, STOP.

(3) If ∆d = 0 and µq := min{µi | i ∈ Ak} ≤ 0, set Ak+1 := Ak \ {q}, k := k + 1

and go to (2).

(4) If ∆d 6= 0 and a>i (dk + ∆d) ≤ ui for all i ∈ I \ Ak, set dk+1 := dk + ∆d,

Ak+1 := Ak, k := k + 1 and go to (2).

(5) Find r ∈ I \ Ak with a>r ∆d > 0 and

tk :=
vr − a>r dk

a>r ∆d
= min

{
vi − a>i dk

a>i ∆d
| i ∈ I \ Ak, a>i ∆d > 0

}
.

Set dk+1 := dk + tk∆d, Ak+1 := Ak ∪ {r}, k := k + 1 and go to (2).

Note that finding a feasible initial guess is not always trivial. A possible way to

do so is to solve a relaxed version of (QP) by introducing a slack variable to relax

the constraints whose value is introduced with a penalty parameter in the objective

function [109].

Since Theorem 2.2 only guarantees convergence for starting points in some neighbor-

hood of a local minimum of (NLP), we need to use so-called globalization strategies

so that the method converges for arbitrary starting values. This is achieved by intro-

ducing a step αk ∈ R and choosing

zk+1 = zk + αkd
k (2.9)

as new iterate. The step size is computed by minimizing a certain merit function

that measures the improvement of the iterates along the direction dk depending on a

penalty parameter ν > 0 (or several). Typically used merit functions are:

• The L1 penalty function (non-differentiable, [109]):

L1(z; ν) = f(z) + ν
m∑
i=1

max{0, gi(z)}+ ν

p∑
i=1

|hi(x)|.
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• The augmented Lagrangian function ([117]):

La(z, λ, µ; ν) = f(z) + λ>h(z) +
ν

2

p∑
i=1

hi(z)2

+
1

2ν

m∑
i=1

((max{0, µi + νgi(z)})2 − µ2
i )

Under certain regularity conditions and an adequate choice of ν > 0, it holds that

every local minimum z∗ of (NLP) is also a local minimum of these functions and

therefore, for any direction of descent d for (NLP) it holds i.e. for the directional

derivative of L1

L′1(z; d; ν) < 0.

In order to determine the step αk that minimizes the merit function for the search

direction dk in each step to compute the next iterate (2.9), we use the so-called Armijo

line-search. Using L1 as merit function, we define the function

ϕ(α) := L1(xk + αdk; ν).

Given that

ϕ′(0) = L′1(xk; dk; ν) < 0,

we try to find the largest α for which the Armijo conditon holds:

ϕ(α) ≤ ϕ(0) + σ α ϕ′(0)

for a certain σ ∈ (0, 1). To this end, we select β ∈ (0, 1) and perform a line-search by

reducing α iteratively with

α = βj

for j ∈ N0 until the Armijo condition holds for α. Therefore, a global version of

Algorithm 2.1 with an Armijo line-search and L1 as merit function reads as:

Algorithm 2.3. (Global SQP Method, [7])

(0) Choose (z0, λ0, µ0), β ∈ (0, 1), σ ∈ (0, 1) and set k = 0.

(1) If (zk, λk, µk) is a KKT point of (NLP), STOP.
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(2) Compute a solution (dk, λk+1, µk+1) of (QP).

(3) Adapt the penalty parameter ν.

(4) Armijo line-search: determine a step size αk = maxj∈N0 β
j such that

L1(zk + βjdk; ν) ≤ L1(zk; ν) + σαkL
′
1(zk; dk; ν)

(5) Set zk+1 = zk + αkd
k, k = k + 1 and go to (1).

Strategies for adapting penalty parameters, calculating the derivatives of L1 and La

and global convergence results for Algorithm 2.3 using these merit functions can be

found in [56, 109, 117]. There are other alternatives for globalization: filter methods

that evaluate search directions on their improvement for the objective function and

the constraint violation separately, see [38, 39, 129], and trust-region methods that

limit the search direction to a certain trust-region radius, adjusted in each iteration

according to the reduction in a merit function and a model function, see [23, 37].

The bulk of the numerical calculations and computational effort in Algorithm 2.3 lie

in solving linear system (2.8) iteratively in order to find a solution of (QP) in step (2)

for every iteration. The solvability of this system is not always guaranteed, specially

when the starting point is chosen poorly, but there are certain techniques to deal with

potentially singular matrices or inconsistent linear systems, see [53]. We examine

nonetheless the conditions established by Theorem 2.2 for the following matrix:

K :=

H E> F>

E 0 0

F 0 0

 , H := L′′zz(z, λ, µ), E := {∇gi(z)>}i∈Ag(z), F := ∇h(z)>

(2.10)

for a (z, µ, λ) ∈ Rn+m+p, often referred to as the KKT matrix. The matrix in (2.8)

differs from K only if the set of active inequality constraints for (NLP) and (QP)

differ; however, in the range of convergence the active set should not change, which

means that locally around the solution the two matrices should be the same. Full

rank of K at the solution is required by the conditions of Theorem 2.2 as established

by the following Lemma from ([89]):
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Lemma 2.1 ([89], Lemma A.3). For n,m ∈ N, n ≥ m, suppose C ∈ Rn×n is

symmetric and D ∈ Rm×n has full rank m. Moreover, it holds

d>Cd > 0 for all d ∈ ker(D) \ {0}.

Then, the matrix (
C D>

D 0

)
∈ R(n+m)×(n+m)

is non-singular.

Corollary 2.1. If conditions (c) and (d) from Theorem 2.2 hold, the KKT matrix K

is non-singular.

Proof. D :=

(
E

F

)
has full rank due to the (LICQ) condition established by (c), and

C := H verifies d>Hd > 0 for all d ∈ ker(D) \ {0} as established by (d), so the

conditions of Lemma 2.1 apply.

Note that (LICQ) only requires for the gradients of the active inequality constraints

and the equality constraints to be linearly independent. This allows, for example, for

box constraints of the type

a ≤ g(z) ≤ b

with a, b ∈ Rm, a < b to be included in (NLP). We consider the following problem:

Problem 2.5 (NLP with box constraints). Minimize f(z) subject to the constraints

g̃(z) ≤ 0, (2.11)

h(z) = 0, (2.12)

where

g̃(z) =

(
a− g(z)

g(z)− b

)
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with f, g, h as defined for (NLP) and g̃ : Rn → R2m continuously differentiable by

extension. We have that

g̃i(z) = ai − gi(z),

g̃i+m(z) = gi(z)− bi.

The set of all the gradients of the constraints for Problem 2.5 is:

{∇g̃i(z), i = 1, ..., 2m} ∪ {∇hj(z), j = 1, ..., p} = (2.13)

{−∇gi(z), i = 1, ..,m} ∪ {∇gi(z), i = 1, ...,m} ∪ {∇hj(z), j = 1, ..., p},

which are linearly dependent for all z ∈ Rn if m ≥ 1, regardless of g and h. However,

defining the partition of Ag̃(z):

I1 = {i ∈ Ag̃(z) : gi(z) = ai}, I2 = {i ∈ Ag̃(z) : gi(z) = bi},

we have that I1 ∩ I2 = ∅ since ai < bi and if i ∈ Ag̃(z), then either gi(z) = ai or

gi(z) = bi, so Ag̃(z) = I1 ] I2. Therefore,

{∇g̃i(z), i ∈ Ag̃(z)} ∪ {∇hj(z), j = 1, ..., p}

= {−∇gi(z), i ∈ I1} ∪ {∇gi(z), i ∈ I2} ∪ {∇hj(z), j = 1, ..., p}.

which can be linearly independent at the solution, as opposed to (2.13).

We finish this section with a note on how to calculate or estimate numerically the

Hessians of the Lagrange function Hk for every iteration. Using the exact Hessian

matrix, when explicitly known, comes with the risk of Hk being indefinite, which poses

a problem to find a solution to (QP) since it is no longer convex. However, it also comes

with the advantage of being able to exploit the structure of the matrix, which is useful

and even necessary with large and sparse problems. In the case of dense problems, it

is preferable to use BFGS updates [109] to produce positive definie approximations to

Hk. Starting with a symmetrical, positive-definite H0 (i.e. the identity matrix), the

following Hessians Hk, k = 1, 2, ... are calculated with the formula

Hk+1 = Hk +
qk(qk)>

(qk)>dk
− Hkd

k(Hkd
k)>

(dk)>Hkdk
,
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where

qk = θky
k + (1− θk)Hkd

k,

yk = ∇xL(xk+1, λk, µk)−∇xL(xk, λk, µk),

θk =

1, if (dk)>yk ≥ 0.2(dk)>Hkd
k,

0.8(dk)>Hkd
k

(dk)>Hkdk−(dk)>yk
. otherwise

2.1.2 Nonsmooth Newton method

A nonsmooth Newton method [110] is an extension of Newton’s method for solving a

nonlinear equation of several variables to a nonsmooth case by using the generalized

Jacobian instead of the derivative. Following the approach from [34], it can be used

for solving nonlinear programs by finding a solution to the KKT conditions (2.5) -

(2.7) using a complementarity function ϕ : R2 → R that satisfies:

a ≥ 0, b ≥ 0, ab = 0 ⇐⇒ ϕ(a, b) = 0,

for all a, b ∈ R. Using a function of these characteristics, the conditions (2.5)-(2.7)

are converted to the nonlinear equation system

F (Z∗) =



∇zL(z∗, λ∗, µ∗)

h(z∗)

ϕ(−g1(z∗), µ∗1)
...

ϕ(−gm(z∗), µ∗m)


= 0, Z∗ = (z∗, λ∗, µ∗),

where continuous differentiability is not necessarily assumed from F . A possible choice

for ϕ that offers several advantages such as local Lipschitz continuity is the Fischer-

Burmeister function ϕ : R2 → R defined by

ϕ(a, b) :=
√
a2 + b2 − a− b. (2.14)

Because the Fischer-Burmeister function ϕ is not differentiable at (a, b) = (0, 0) (but

continuously differentiable everywhere else), F is only differentiable in

DF := {Z = (z, λ, µ)> ∈ Rn+m+p | |gi(z)|+ |µi| > 0, i = 1, ...,m}.
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Since ϕ is locally Lipschitz continuous, F is locally Lipschitz continuous as well and

therefore, F is differentiable almost everywhere by Rademacher’s theorem and the

B(ouligand)-Differential

∂BF (Z) :=

V | V = lim
Zi∈DF
Zi→Z

F ′(Zi)


is well defined, and its convex hull

∂F (Z) := conv(∂BF (Z))

is Clarke’s generalized Jacobian, which is non-empty, convex and compact [22]. In the

case of the Fischer-Burmeister function, the generalized Jacobian of ϕ is defined by

∂ϕ(a, b) =


{(

a√
a2+b2

− 1, b√
a2+b2

− 1
)}

, if (a, b) 6= (0, 0),

{(s, t) | (s+ 1)2 + (t+ 1)2 ≤ 1}, if(a, b) = (0, 0).

Given the existence of the generalized Jacobian, the nonsmooth Newton method can

be applied to solve the equation F (Z) = 0. The procedure is identical to the classical

Newton method, with the exception that some element of the B-differential replaces

any non-existing Jacobian that may arise. The algorithm to solve (NLP) would read

as:

Algorithm 2.4. (Local Nonsmooth Newton Method)

(0) Choose Z0 and set k = 0.

(1) If some stopping criterion is satisfied, STOP.

(2) Choose Vk ∈ ∂F (Zk) and compute the search direction dk as the solution of the

linear equation

Vkd
k = −F (Zk).

(3) Set Zk+1 = Zk + dk, k = k + 1 and go to (1).

We reproduce here a result from [110] on the local convergence of this algorithm. It

introduces the new notion of semismoothness, but it suffices to know, for our purpose,

that the Fischer-Burmeister function is semismooth [35].
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Theorem 2.3 (Local convergence of the nonsmooth Newton method). Suppose that

Z∗ is a solution of F (Z) = 0 , F is locally Lipschitz continuous and semismooth at

Z∗, and all V ∈ ∂F (Z∗) are non-singular. Then Algorithm 2.4 is well-defined and

convergent to Z∗ in a neighborhood of Z∗.

The local nonsmooth Newton method needs to be globalized in order to obtain global

convergence for arbitrary starting points Z0. Several globalizations for semismooth

Newton methods have been presented and explored in the literature, such as trust-

region or primal-dual active-set strategies [68, 75, 128]. We focus on a line search

globalization [43, 72] with the merit function

Θ(Z) :=
1

2
‖F (Z)‖2. (2.15)

Given that the squared Fischer-Burmeister function ϕ2 is continuously differentiable,

Θ(Z) is continuously differentiable as well, and it holds

∇Θ(Z) = V >F (Z),

where V ∈ ∂F (Z). Thus, for any search direction d obtained by solving V d = −F (Z)

it holds

∇Θ(Z)>d = −F (Z)>F (Z) = −‖F (Z)‖2 = −2Θ(Z).

Therefore, d is a direction of descent if F (Z) 6= 0 and Armijo’s line search is well-

defined. We can define a global version of Algorithm 2.4 as:

Algorithm 2.5. (Globalized Nonsmooth Newton Method)

(0) Choose Z0, β ∈ (0, 1), σ ∈ (0, 1/2) and set k = 0.

(1) If some stopping criterion is satisfied, STOP.

(2) Choose Vk ∈ ∂F (Zk) and compute the search direction dk as the solution of the

linear equation

Vkd
k = −F (Zk). (2.16)

(3) Armijo line-search: determine a step size αk = maxj∈N β
j such that

Θ(Zk + αkd
k) ≤ Θ(Zk) + σαk∇Θ(Zk)>dk.
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(4) Set Zk+1 = Zk + αkd
k, k = k + 1 and go to (1).

Superlinear convergence of Algorithm 2.5 is guaranteed by this result from [72] under

certain solvability assumptions:

Theorem 2.4 (Global convergence of the nonsmooth Newton method). Suppose that

equation (2.16) is solvable for each k and Z∗ is an accumulation point of {Zk} gen-

erated by Algorithm 2.5. Then Z∗ is a solution of F (Z) = 0 and {Zk} converges to

Z∗ superlinearly if V ∗ ∈ ∂F (Z∗) is non-singular.

As we did for the KKT matrix K (2.10) in the previous section, we address now the

solvability of system (2.16) i.e. the non-singularity of matrix

V (Z) :=

 H E> F>

−SE T 0

F 0 0

 ∈ ∂F (Z), (2.17)

H = L′′zz(z, λ, µ), E = ∇g(z)>, F = ∇h(z)>, (2.18)

S = diag((s1, ..., sm)), T = diag((t1, ..., tm)), (si, ti) ∈ ∂ϕ(−gi(z), µi) (2.19)

for an arbitrary Z = (z, λ, µ) ∈ Rn+m+p, as required by Theorem 2.4 for the iterates

Zk. We define the following partition of I := {1, ...,m}:

J := {i ∈ I : gi(z) = 0}, I \ J = {i ∈ I : gi(z) 6= 0}

We cite as well some properties from the Fischer-Burmeister function that can be

found in [34] or derived directly from its definition:

(F1) (si, ti) 6= (0, 0) for all i ∈ I.

(F2) ti = 0 if and only if i ∈ J .

(F3) (si, ti) ∈ [−2, 0]× [−2, 0], which means si ≤ 0, ti ≤ 0 for all i ∈ I.

We define the matrices:

EJ := (∇gi(z)>)i∈J , EI\J := (∇gi(z)>)i∈I\J , (2.20)

H̄ := H +
∑
i∈I\J

si
ti
∇gi(z)∇gi(z)> = H + diag

((
si
ti

)
i∈I\J

)
E>I\JEI\J , (2.21)
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2 Optimal control and optimization theory

K̄ :=

 H̄ E>J F>

EJ 0 0

F 0 0

 . (2.22)

The following theorem adapted from [34], where it is proved in absence of equality

constraints, links the non-singularity of V (Z) to the non-singularity of the matrix K̄,

similar to the KKT matrix K:

Theorem 2.5 ([34], Theorem 4.1). Let Z = (z, λ, µ) ∈ Rn+m+p. The matrix V (Z) is

non-singular if and only if K̄ is non-singular.

Proof. Considering the homogenous system

V (Z)

uv
w

 = 0, u ∈ Rn, v ∈ Rm, w ∈ Rp, (2.23)

which by linear transformations and rearrangement of the equations is equivalent to

K̄

 u

vJ

w

 = 0, vi =
si
ti
∇gi(z)>u ∀i ∈ I \ J.

where vJ = (vi)i∈J , given that ti 6= 0 ∀i ∈ I \ J as established by (F2). Hence, if

K̄ is non-singular, the only solution to the system is (u, v, w) = (0, 0, 0) and if it is

singular, (2.23) admits a non-zero solution.

We can derive sufficient conditions for V (Z) to be non-singular in the same fashion

as for the KKT matrix K in Corollary 2.1:

Corollary 2.2. If the gradients {∇gi(z), i ∈ J} ∪ {∇hj(z), j = 1, ..., p} are linearly

independent and H̄ is positive definite, then matrix V (Z) ∈ ∂F (Z) is non-singular.

Proof. D :=

(
EJ

F

)
has full rank due to the linear independence, and C := H̄ verifies

d>H̄d > 0 for all d ∈ ker(D) \ {0}, so the conditions of Lemma 2.1 apply to K̄ and

from Theorem 2.5, V (Z) is non-singular.
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2.1 Nonlinear optimization

Note that H̄ being positive definite only requires

d>H̄d = d>Hd+ d>diag

((
si
ti

)
i∈I\J

)
E>I\JEI\Jd > 0

for all d ∈ Rn. From property (F3), si/ti ≥ 0 for all i ∈ J , so defining

e := diag

((√
si
ti

)
i∈I\J

)
EI\Jd ∈ Rm

this condition is equivalent to

d>Hd > −‖e‖2
2

which, in the case that ‖e‖2
2 > 0 implies that H does not necessarily have to be positive

definite. It is still a requirement on the original Hessian H, but a less restrictive one.

It is again not required that the gradients of all the constraints are linearly indepen-

dent for the conditions of Corollary 2.2 to apply, but only a subset of them. This

allows as well for V (Z) to be non-singular for Problem 2.5 with box constraints, since

despite the gradients of all the constraints being present in V (Z), the presence of T

allows to eliminate the equations corresponding to the active inequality constraints

and transform the system, as done in the proof for Theorem 2.5. Indeed, defining the

partition of J = {i ∈ {1, ..., 2m} : g̃i(z) = 0}:

J1 = {i ∈ J : gi(z) = ai}, J2 = {i ∈ J : gi(z) = bi},

we have that J1∩J2 = ∅ since ai < bi and if i ∈ J , then either gi(z) = ai or gi(z) = bi,

so J = J1 ] J2 and

{∇g̃i(z), i ∈ J} ∪ {∇hj(z), j = 1, ..., p}

= {−∇gi(z), i ∈ J1} ∪ {∇gi(z), i ∈ J2} ∪ {∇hj(z), j = 1, ..., p}.

can be linearly independent.

Nonetheless, the solvability of system (2.16) cannot always be guaranteed when these

conditions are not met, which can pose an issue when trying to find numerical solu-

tions using the nonsmooth Newton method. In these cases, one could try to perform

a regularization as in the modified nonsmooth Newton method proposed in [72]: it

consists in solving the system

(V >k Vk + νkI)d = V >k F (Zk) (2.24)
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2 Optimal control and optimization theory

instead of (5.1) for a chosen νk > 0. This system is now solvable for every Z and

V (Z) ∈ ∂F (Z). We introduce the main result for the convergence of this modified

method from [72]:

Theorem 2.6. Let Z∗ be an accumulation point generated by the modified nonsmooth

Newton method version of Algorithm 2.5, and let νk = min{Θ(Zk),
∥∥∇Θ(Zk)

∥∥}. Then

Z∗ is a stationary point of the merit function Θ(Z); furthermore, Z∗ is a solution of

F (Z) = 0 and {Zk} converges to Z∗ superlinearly if V ∗ ∈ ∂F (Z∗) is non-singular.

Notice that both this theorem and Theorem 2.4 for the original nonsmooth Newton

method still require for V ∗ ∈ ∂F (Z∗) to be non-singular, and both methods are very

similar when Θ(Z) gets close to 0 and therefore, convergence issues may still arise

in the numerical application of the modified method. Furthermore, the advantage of

the potentially sparse structure of matrix Vk can be lost when calculating the matrix

product in (2.24). In any case, the original nonsmooth Newton method worked well

with the heat equation problems treated in Chapter 5 and the fast convergence was

not lost.

On a final note, we emphasize that all this development is based on the use of the

Fischer-Burmeister function as complementarity function. Some of its properties, such

as the differentiability of its square ϕ2, are key to the proofs of these results. Other

prominent alternatives are the minimum function [36, 101]

ϕ(a, b) = min{a, b},

or the similar [62, 69]

ϕc(a, b) = a−max{0, a− cb}

for a c > 0, whose application leads to the same algorithm of the primal-dual active-

set method [62]. There are also parameter-dependent modifications of the Fischer-

Burmeister function with similar properties, such as

ϕc(a, b) =
√

(a− b)2 + cab− a− b,

for a fixed c ∈ (0, 4) [36]. More choices of complementarity functions are explored in

[122].
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2.2 General optimal control theory

2.2 General optimal control theory

In this section, we provide an outline of the optimal control theory and some of the

most important results. While a great part of the theory focuses on the more general

class of DAE optimal control problems, we limit ourselves to optimal control problems

involving only ODEs since our goal problems do not involve algebraic equations.

An optimal control problem is formulated in terms of state and control variables.

State variables are defined by their dynamic behavior, which can be influenced by the

choice of control variables. On top of solving the differential equations that define the

dynamics, an objective function is given to be maximized or minimized by the choice

of controls. Other elements, such as a choice of static parameters that can influence

the objective function or the dynamics, or a set of constraints on states, controls and

parameters, can also be added to the problem.

Given the time interval [t0, tf ], tf > t0, the general form of an ODE Optimal Control

Problem is formulated as follows:

Problem 2.6 (General OCP). Find a state function x(·) : [t0, tf ] → Rnx, a control

function u(·) : [t0, tf ] → Rnu and a parameter vector p ∈ Rnp that minimize the

objective function

φ(x(t0), x(tf ), p) +

∫ tf

t0

f0(t, x(t), u(t), p)dt (2.25)

subject to the differential equation

ẋ(t) = f(t, x(t), u(t), p) ∀t ∈ [t0, tf ], (2.26)

the boundary conditions

ψ0(x(t0), p) = 0, ψf (x(tf ), p) = 0, (2.27)

the mixed control-state constraints

cmin ≤ c(t, x(t), u(t), p) ≤ cmax ∀t ∈ [t0, tf ], (2.28)

and the box constraints

umin ≤ u(t) ≤ umax ∀t ∈ [t0, tf ], (2.29)

pmin ≤ p ≤ pmax,
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2 Optimal control and optimization theory

where the functions φ : Rnx × Rnx × Rnp → R, f0 : R × Rnx × Rnu × Rnp → R,

f : R×Rnx×Rnu×Rnp → Rnx , c : R×Rnx×Rnu×Rnp → Rnc , ψ0 : Rnx×Rnp → Rn0

and ψf : Rnx × Rnp → Rnf are at least twice continuously differentiable. There are

numerous transformation techniques to express Problem 2.6 into more general forms.

We mention some of them which will be useful in the following development and later

in the numerical implementation of the problems:

- Transformation to fixed time interval: Problem 2.6 can be transformed into an

equivalent problem with fixed initial and final time with the transformation

t(τ) := t0 + τ(tf − t0), τ ∈ [0, 1].

Defining as new state and control functions

x̃(τ) := x(t(τ)),

ũ(τ) := u(t(τ)),

the ODE system (2.26) is transformed into

˙̃x(τ) = (tf − t0)f(t(τ), x̃(τ), ũ(τ)).

In the case that t0 or tf are not fixed, in which they are called free initial and

final time, respectively, this transformation allows for t0 and tf to be included

as additional optimization parameters in this formulation.

- Transformation to autonomous problem: by introducing an additional state ac-

cording to the differential equation

Ṫ (t) = 1, T (t0) = t0,

we can transform a non-autonomous problem into an autonomous one.

- Transformation to a Mayer type problem: by defining an additional state x̃(t)

such that

˙̃x(t) = f0(t, (t), u(t), p), x̃(t0) = 0,

and X(t) := (x(t), x̃(t)) as the new state function, we reduce the objective

function (2.25) to

φ̃(X(t0), X(tf ), p) = φ(x(t0), x(tf ), p) + x̃(tf ).
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2.2 General optimal control theory

- Transformation of parameters into constant states: for some theoretical results,

it is useful to eliminate parameters from the formulation. This can be achieved

by defining an additional vector of states p(t) to substitute the parameters such

that

ṗ(t) = 0

with free p(tf ).

We define as well some function spaces that will be mentioned in what follows:

• L∞([t0, tf ],Rm) consists of all measurable functions f := (f1, ..., fm) : [t0, tf ] →
Rm whose components are essentially bounded, i.e. for all i = 1, ...,m

ess sup
t∈[t0,tf ]

|fi(t)| := inf {C ≥ 0 : |fi(t)| ≤ C almost everywhere in [t0, tf ]} <∞

• W 1,∞([t0, tf ],Rm) consists of all absolutely continuous functions f := (f1, ..., fm) :

[t0, tf ]→ Rm whose components hold for all i = 1, ...,m:

‖fi‖1,∞ := max
0≤j≤1

‖f (j)
i ‖∞ <∞

• BV ([t0, tf ],Rm) is the space of functions of bounded variation f := (f1, ..., fm) :

[t0, tf ]→ Rm where for every component fi for i = 1, ...,m there exists a constant

K > 0 such that for any partition

Gk := {t0 < t1 < ... < tk = tf}

of [t0, tf ] it holds

k∑
j=1

|fi(tj)− fi(tj−1)| ≤ K

• NBV ([t0, tf ],Rm) is the space of normalized functions of bounded variations,

which consists of all functions f ∈ BV ([t0, tf ],Rm) which are continuous from

the right in (t0, tf ) and satisfy f(t0) = 0.

We reformulate Problem 2.6 for the following development with the aforementioned

transformations:
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2 Optimal control and optimization theory

Problem 2.7 (OCP). Minimize

φ(x(t0), x(tf ))

w.r.t. the state function x ∈ W 1,∞([t0, tf ],Rnx) and the control function

u ∈ L∞([t0, tf ],Rnu), subject to the constraints

ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ],

c(x(t), u(t)) ≤ 0, t ∈ [t0, tf ],

ψ0(x(t0)) = 0,

ψf (x(tf )) = 0.

We formulate now the local minimum principle for ODE optimal control problems

with mixed control-state constraints. We distinguish between pure state constraints

and mixed control-state constraints, i.e. c(x(t), u(t)) = (cs(x(t)), cu(x(t), u(t))) with

cs : Rnx → Rncs , cu : Rnx × Rnu → Rncu . The augmented Hamilton function Ĥ :

Rnx × Rnu × Rnx × Rncu → R is defined as

Ĥ(x, u, λ, λu) := λ>f(x, u) + λ>u cu(x, u).

According to [41, Chapter 3], under certain assumptions on functions J, φ, c, ψ0, ψf

and a constraint qualification, and given a local minimum (x̂, û) of (OCP), there exist

multipliers κ ∈ R, σ0 ∈ Rn0 , σf ∈ Rnf , λ ∈ BV ([t0, tf ],Rnx), λu ∈ L∞([t0, tf ],Rnu)

and λs ∈ NBV ([t0, tf ],Rncs ) such that the following conditions are satisfied:

Theorem 2.7 (Local minimum principle). Let the following assumptions hold for

Problem 2.7:

• Assumptions on the smoothness of functions φ, f, cu, cs, ψ hold (see [41, Chap-

ter 3]).

• (x̂, û) is a local minimum of Problem 2.7.

• For γ(t) := (cu)
′
u(x̂(t), û(t))> it holds rank(γ(t)) = ncu almost everywhere in

[t0, tf ] and its pseudo-inverse

(γ(t))+ = γ(t)>(γ(t)γ(t)>)−1

is essentially bounded.
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2.2 General optimal control theory

Then there exist multipliers

κ ∈ R, λ ∈ BV ([t0, tf ],Rnx), λu ∈ L∞([t0, tf ],Rnu),

λs ∈ NBV ([t0, tf ],Rncs ), σ ∈ Rnψ ,

such that the following conditions are satisfied:

(a) κ ≥ 0, (κ, λ, λu, λs, σ0, σf ) 6= 0.

(b) Adjoint equations: Almost everywhere in [t0, tf ] it holds

λ(t) = λ(tf ) +

∫ tf

t

∇xĤ(x̂(τ), û(τ), λ(τ), λu(τ)) dτ

+

∫ tf

t

∇xcs(x̂(τ)) dλs(τ)

(c) Transversality conditions:

λ(t0)> = −(κφ′x0(x̂(t0), x̂(tf )) + σ>0 ψ
′
0(x̂(t0)))

λ(tf )
> = κφ′xf (x̂(t0), x̂(tf )) + σ>f ψ

′
f (x̂(tf ))

(d) Optimality conditions: Almost everywhere in [t0, tf ] it holds

∇uĤ(x̂(t), û(t), λ(t), λu(t)) = 0

(e) Complementarity conditions: Almost everywhere in [t0, tf ] it holds

λu(t)
>cu(x̂(t), û(t)) = 0 and λu(t) ≥ 0,

λs,i, i ∈ {1, ..., ncs}, is monotonically increasing in [t0, tf ] and constant in every

interval (t1, t2) with t1 < t2 and cs,i(x̂(t)) < 0 for all t ∈ (t1, t2).

These necessary conditions are not only important from a theoretical point of view;

they provide the basis for an indirect approach to solving optimal control problems

numerically as well. There is also a relationship between this continuous version of

the necessary conditions for infinite dimensional optimal control problems and the ap-

plication of necessary optimality conditions to their finite dimensional discretization,

which will be exposed later.
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There are many approaches one can take to solve (OCP). A first distinction can be

made between discretization methods and function space methods. Discretization

methods follow a first discretize, then optimize approach, according to which the

problem is approximated by a finite dimensional optimization problem using suitable

discretization and integration schemes. On the other hand, the first optimize, then

discretize approach or function space approach considers the optimal control problem

as an infinite dimensional optimization problem. As our interest is to find numerical

solutions, we only consider the first approach in the frame of this work.

Another distinction can be made between direct and indirect methods. The indirect

approach is based on deriving a Boundary Value Problem (BVP) from the necessary

optimality conditions that draw from the local minimum principle. This leads to very

accurate numerical solutions, but requires a very good initial approximate solution,

and it often leads to cumbersome calculations to solve the optimality system, which

defies our purpose of finding efficient strategies to solve large-scale, complex prob-

lems numerically. On the other hand, direct methods use a suitable discretization to

obtain a finite dimensional optimization problem that can be solved by suitable op-

timization methods. Therefore, we focus on direct discretization approaches and the

different discretization, integration and optimization methods that can be employed

to implement them.

2.3 Direct discretization approach

We consider the time grid with constant step h = (tf − t0)/N :

GN := {ti = t0 + ih, i = 0, ..., N}. (2.30)

We start by defining a control discretization. Given a control function vector u(·) ∈
L∞([t0, tf ],Rnu), we consider a basis of B-splines of order k, {Bk

i (·), i = 1, ..., N+k−1}.
We define a control parametrization by choosing a vector of control parameters w ∈
RM , where M := nu(N + k − 1), that defines

u(·) ≈
N+k−1∑
i=1

wiB
k
i (·), (2.31)

32



2.3 Direct discretization approach

where wi ∈ Rnu , i = 1, ..., N + k − 1. B-splines are defined as follows: Let k ∈ N and

GN as in (2.30). We define the auxiliary grid

Gk
N := {τi, i = 1, ..., N + 2k − 1} (2.32)

with auxiliary grid points

τi :=


t0, if 1 ≤ i ≤ k,

ti−k, if k + 1 ≤ i ≤ N + k − 1,

tN , if N + k ≤ i ≤ N + 2k − 1.

The elementary B-splines Bk
i (·) of order k, i = 1, ..., N + k − 1, are defined as

B1
i (t) :=

1, if τi ≤ t ≤ τi+1,

0, otherwise,

Bk
i (t) :=

t− τi
τi+k−1 − τi

Bk−1
i (t) +

τi+k − t
τi+k − τi+1

Bk−1
i+1 (t).

With this methodology, control functions are represented as a function of parameters

wi, i = 1, ..., N + k − 1. Choosing k = 1 or k = 2, a piecewise constant or linear

approximation is obtained, respectively.

In order to discretize the states, an ODE discretization method for the initial value

problem

ẋ(t) = f(x(t), u(t)), x(t0) = x0

is required. Approximating the states by their values at the temporal nodes in GN

as x(ti) ≈ xi and the controls by their B-spline approximations u(t) ≈ u(t;w) for a

certain w ∈ RM , we focus on methods with the general form

xi+1 = xi + hΦ(ti, xi, w, h), i = 0, ..., N − 1 (2.33)

being Φ an appropriate increment function for so-called one-step methods. The wide

variety of Runge-Kutta methods are included in this formulation: For a given s ∈ N
and coefficients bj, cj, aij, i, j = 1, ..., s, the s-stage Runge-Kutta method is defined

by

xi+1 = xi + h

s∑
j=1

bjkj(ti, xi, w, h),
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where the stage derivatives kj, j = 1, ..., s, are defined by

kj(ti, xi, w, h) = f(ti + cjh, xi + h
s∑
l=1

ajlkl(ti, xi, w, h), u(ti + cjh;w)).

Note that we can obtain implicit methods from this formulation: For example, with

Φ(ti, xi, w, h) =
1

2
f(ti, xi, u(ti;w)) +

1

2
f(ti + h, xi + hΦ(ti, xi, w, h), u(ti + h;w)),

we obtain the implicit trapezoidal rule

xi+1 = xi +
h

2
(f(ti, xi, u(ti;w)) + f(ti+1, xi+1, u(ti+1;w))) . (2.34)

We distinguish now between the full discretization approach and the reduced dis-

cretization approach. The key difference between them that will be exploited in the

development of this thesis is that the first leads to a large, sparse nonlinear optimiza-

tion problem, whereas the second leads to a small, dense one. The different method-

ologies and possibilities that this distinction implicates will be discussed thoroughly

in the next chapters.

2.3.1 Full discretization

With the discretized states and controls, we obtain directly from (OCP) the fully dis-

cretized problem (FDP) by discretizing the constraints on the grid GN and substuting

the ODE by its discretized version with a one-step method:

Problem 2.8 (FDP). Minimize

φ(x0, xN)

with respect to x ∈ R(N+1)·nx and w ∈ RM subject to the constraints

xi+1 − xi − hΦ(ti, xi, w, h) = 0, i = 0, ..., N − 1,

c(xi, u(ti;w)) ≤ 0, i = 0, ..., N,

ψ0(x0) = 0,

ψN(xN) = 0.
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Note that this is a discretized version of the simplified (OCP) where a transformation

to a Mayer problem has been applied, but in the case that an objective function

features the integral of a function f0(x(t), u(t)) as in Problem 2.6, we can apply

a numerical integration method to approximate the integral instead of using this

transformation to eliminate it. For example, with the trapezoidal rule for integration,

we would just add to the objective function the sum

h

2
(f0(x0, u(t0;w)) + f0(xN , u(tN ;w))) + h

N−1∑
i=1

f0(xi, u(ti;w)). (2.35)

We now expose the relation between the necessary conditions formulated in the lo-

cal minimum principle (2.7) for (OCP) and the formulation of the necessary KKT

conditions (2.5)-(2.7) for the fully discretized problem (FDP). We distinguish again

between pure state constraints and mixed control-state constraints, i.e. c(x, u) =

(cs(x), cu(x, u)) with cs : Rnx → Rncs , cu : Rnx × Rnu → Rncu . The discrete Hamilton

function is defined as

Ĥh(t, x, w, λ, λu, h) = λ>Φ(t, x, w, h) + λ>u cu(x, u(t;w)).

Applying first order necessary optimality conditions for finite optimization problems

to (FDP) and again assuming a constraint qualification, we adapt the discrete local

minimum principle [41, Chapter 5] to the case of our general ODE integration scheme

(2.33). Given a local minimum (x̂, ŵ) of (FDP), there exist multipliers σ0 ∈ Rn0 , σf ∈
Rnf , λ = (λ0, ..., λN)>, λu = (λu,0, ..., λu,N)>, and λs = (λs,0, ..., λs,N)> such that the

following conditions are satisfied:

(a) (λ, λu, λs, σ0, σf ) 6= 0.

(b) Discrete adjoint equations : For i = 0, ..., N − 1 it holds

λi = λi+1 + h∇xĤh(ti, x̂i, ŵ, λi+1, λu,i, h) +∇xcs(x̂i)λs,i

= λN +
N−1∑
j=i

h∇xĤh(tj, x̂j, ŵ, λj+1, λu,j, h) +
N−1∑
j=i

∇xcs(x̂j)λs,j.

(c) Discrete transversality conditions :

λ>0 = −(φ′x0(x̂0, x̂N) + σ>0 ψ
′
0(x̂0)),

λ>N = φ′xN (x̂0, x̂N) + σ>Nψ
′
f (x̂N) + λ>s,Nc

′
s(x̂N).
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(d) Discrete optimality conditions :

∇w

N−1∑
i=0

Ĥh(ti, x̂i, ŵ, λi, λu,i, h) = 0.

(e) Complementarity conditions :

λu,i ≥ 0, λ>u,icu(x̂i, u(ti; ŵ)) = 0 i = 0, ..., N − 1,

λs,i ≥ 0, λ>s,ics(x̂i) = 0 i = 0, ..., N.

Proof. Given the Lagrangian of (FDP)

L(x,w, λ̃, λ̃u,λ̃s, σ0, σf ) = φ(x0, xN) + σ>0 ψ0(x0) + σ>f ψf (xN)

+
N−1∑
i=0

Ĥh(ti, xi, w, λ̃i, λ̃u,i, h) +
N−1∑
i=0

λ̃>i
xi − xi+1

h
+

N∑
i=0

λ̃>s,ics(xi),

application of the first order necessary optimality conditions for the local minimum

(x̂, ŵ) results in the equations:

1. ∇wL = 0 for all i = 0, ..., N − 1, therefore it holds:

∇w

N−1∑
i=0

Ĥh(ti, x̂i, ŵ, λ̃i, λ̃u,i, h) = 0,

2. ∇xiL = 0, therefore it holds for all i = 1, .., N − 1

1

h
λ̃i −

1

h
λ̃i−1 +∇xĤh(ti, x̂i, ŵ, λ̃i, λ̃u,i, h) +∇xcs(x̂i)λ̃s,i = 0,

for i = 0

1

h
λ̃0 +∇xĤh(t0, x̂0, ŵ, λ̃0, λ̃u,0, h)

+ (φ′x0(x̂0, x̂N) + σ>0 ψ
′
0(x̂0))> +∇xcs(x̂0)λ̃s,0 = 0

and for i = N

− 1

h
λ̃N−1 + (φ′xN (x̂0, x̂N) + σ>f ψ

′
f (x̂N))> +∇xcs(x̂N)λ̃s,N = 0.
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2.3 Direct discretization approach

Defining

λi :=
1

h
λ̃i−1, i = 1, ..., N,

λ0 := −(φ′x0(x̂0, x̂N) + σ>0 ψ
′
0(x̂0))>,

λu,i :=
1

h
λ̃u,i, i = 1, ..., N,

we obtain the previously described conditions (a)-(e).

We can interpret these conditions as discrete versions of the continuous case exposed

above with the following interpretation of the variables and multipliers:

x̂i ≈ x̂(ti), u(ti; ŵ) ≈ û(ti), λi ≈ λ(ti), λu,i ≈ λu(ti), λs,i ≈ λs(ti+1)− λs(ti),

following a similar development to [41, Section 5.4], only observing that the sum in the

discrete adjoint conditions involving the discrete Hamilton function can be recognized

as a Riemann sum on GN , and thus

N−1∑
j=i

h∇xĤh(tj, x̂j, ŵ, λj+1, λu,j, h) ≈
∫ tf

ti

∇xĤ(x̂(τ), û(t), λ(τ), λu(τ))dτ,

given that∫ ti+1

ti

f(x̂(t), û(t))dt = x̂(ti+1)− x̂(ti) ≈ x̂i+1 − x̂i = hΦ(ti, x̂i, ŵ, h).

The derivation of the discrete Hamilton function will also require calculating

Φ′x(t, x, w, h), which is not always trivial. We expose the relation in the case of the

implicit trapezoidal rule and considering a piecewise-linear approximation for the con-

trols, which means that u(ti;w) = wi and the control is defined by its values at the

nodes w = (u0, ..., uN):

xi+1 = xi +
h

2
(f(xi, ui) + f(xi+1, ui+1)), i = 0, ..., N − 1.

Leaving out state and mixed control-state constraints, we would obtain as discrete

adjoint equations for i = 0, ..., N − 1:

λ>i = λ>i+1 +
h

2
(λ>i+1f

′
x(x̂i, ûi) + λ>i f

′
x(x̂i+1, ûi+1))

≈ λ(ti+1)> +

∫ ti+1

ti

λ(τ)>f ′x(x̂(τ), û(τ))dτ.

37
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Regarding the state constraints, we can interpret the sum in (a) as

N−1∑
j=i

c′s(x̂(tj))
>(λs(tj+1)− λs(tj)) ≈

∫ tN

ti

∇xcs(x̂(τ))dλs(τ).

For i = N , the discrete multipliers can be interpreted as

λs,N ≈ λs(tf )− λs(t−f ),

λN ≈ λ(t−f ),

given that λs and λ can jump at tf (see [41] for more details).

While it might seem like a disadvantage in the case of full discretization to require

a nonlinear optimization software to solve a large problem in every iteration, the

sparsity allows for the structure to be exploited or even for the problem to be reduced

into smaller subproblems. By considering again a piecewise-linear approximation to

the control and expressing as the optimization variable

z := (x0, u0, x1, u1, ..., xN , uN)> ∈ R(nx+nu)(N+1),

and as functions, using the trapezoidal rule (2.34) for ODE discretization,

f(z) := φ(x0, xN) +
h

2
(f0(x0, u0) + f0(xN , uN)) + h

N−1∑
i=1

f0(xi, ui) (2.36)

g(z) :=


c(x0, u0)

c(x1, u1)
...

c(xN , uN)

 (2.37)

h(z) :=



x1 − x0 − h
2
(f(x0, u0) + f(x1, u1))

...

xN − xN−1 − h
2
(f(xN−1, uN−1) + f(xN , uN))

ψ0(x0)

ψf (xN)


, (2.38)

(FDP) can be considered as a general nonlinear optimization problem in the form

of (NLP) and therefore, the nonlinear optimization methods described in Section 2.1

can be applied to solve it. However, due to the large-scale nature of this type of
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2.3 Direct discretization approach

problems, the sparsity of the derivatives must be exploited by the solver in order

to reduce the computational effort and be able to find a solution in an acceptable

computational time. A structure-exploiting strategy for a nonsmooth Newton method

and its application to fully discretized, large-scale problems is presented in Chapter

5. A study on the non-singularity of the KKT matrix (2.10) of (FDP) under certain

conditions can be found in [89].

2.3.2 Reduced discretization

The reduced discretization approach differs from the full discretization in that the

equations resulting from the discretization of the ODE are not part of the optimization

step, but instead solved recursively. Given that every xi+1 is completely defined by

the initial value x0, the control parametrization w and the one-step method (2.33)

defined by Φ, we can solve the following equations recursively and obtain the values

of the states in all the time nodes:

X0(x0, w) := x0, (2.39)

X1(x0, w) := X0(x0, w) + hΦ(t0, X0(x0, w), w, h), (2.40)

X2(x0, w) := X1(x0, w) + hΦ(t1, X1(x0, w), w, h), (2.41)

... (2.42)

XN(x0, w) := XN−1(x0, w) + hΦ(tN−1, XN−1(x0, w), w, h). (2.43)

We obtain this way the Reduced Discretization Problem (RDP):

Problem 2.9 (RDP). Minimize

φ(X0(x0, w), XN(x0, w))

with respect to x0 ∈ Rnx and w ∈ RM subject to the constraints

c(Xi(x0, w), u(ti;w)) ≤ 0, i = 0, ..., N,

ψ0(X0(x0, w)) = 0,

ψN(XN(x0, w)) = 0.
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2 Optimal control and optimization theory

(RDP) is again a finite dimensional nonlinear optimization problem with the form of

(NLP) with

z := (x0, w) ∈ Rnx+M

as optimization variable, and defined by the functions

f(z) := φ(X0(x0, w), XN(x0, w)), (2.44)

g(z) :=


c(X0(x0, w), u(t0;w))

c(X1(x0, w), u(t1;w))
...

c(XN(x0, w), u(tN ;w))

 (2.45)

h(z) :=

(
ψ0(X0(x0, w))

ψf (XN(x0, w))

)
. (2.46)

The size of the variable of (RDP) is much smaller than (FDP), but the derivatives

are not sparse anymore and must be calculated by the chain rule:

f ′(z) = (φ′x0 ·X
′
0,x0

+ φ′xN ·X
′
N,x0
| φ′x0 ·X

′
0,w + φ′xN ·X

′
N,w),

g′(z) =


c′x(z0) ·X ′0,x0 c′x(z0) ·X ′0,w + c′u(z0) · u′w(t0;w)

c′x(z1) ·X ′1,x0 c′x(z1) ·X ′1,w + c′u(z1) · u′w(t0;w)
...

...

c′x(zN) ·X ′N,x0 c′x(zN) ·X ′N,w + c′u(zN) · u′w(t0;w)


h′(z) =

(
ψ′0,x(X0) ·X ′0,x0 ψ′0,x(X0) ·X ′0,w
ψ′f,x(XN) ·X ′N,x0 ψ′f,x(XN) ·X ′N,w

)
,

where zi := (Xi(x0, w), u(ti;w)) and abbreviating Xi := Xi(x0, w). The sensitivities

Si := X ′i(x0, w), i = 0, ..., N,

are calculated taking advantage of the following relationships obtained from the dif-

ferentiation of system (2.39)-(2.43):

Si+1 = Si + h

(
Φ′z(ti, Xi(x0, w), w, h) · Si + Φ′w(ti, Xi(x0, w), w, h) · ∂w

∂z

)
(2.47)

for i = 0, ..., N − 1 and with ∂w
∂z

:= (0RMnz |IM). Note that computing these deriva-

tives is reduced to solving one initial value problem, and the size of the sensitivity
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2.3 Direct discretization approach

equations (2.47) to be solved depends on the number of unknowns (x0, w) but not

on the constraints of the optimization problem. For more details on how to compute

the sensitivities and the derivatives Φ′z and Φ′w, which can be trivial (case of the ex-

plicit Euler method) or not depending on the chosen one-step method, consult [41,

Section 5.3] .

2.3.3 PDE discretization with the method of lines

We focus now on the one dimensional heat or diffusion equation for this introduction

to PDE discretization in the context of optimal control problems:

∂T

∂t
= k

∂2T

∂x2
, (t, x) ∈ (0, tf )× (0, D) (2.48)

where T = T (t, x) is the temperature as a function of position x along a line and time

t, and k > 0 is the thermal diffusivity. To solve (2.48), initial conditions at t = 0

and boundary conditions at x = 0 and x = D are required. For the initial condition,

a distribution of the initial temperature T (0, x) = f0(x) is needed. As for boundary

conditions, there are several possibilities:

• Dirichlet conditions: temperature distributions at x = 0 and x = L are specified

as

T (t, 0) = a0(t), T (t,D) = a1(t). (2.49)

• Neumann conditions: the spatial derivatives of temperature distributions at

x = 0 and x = L are specified as

∂T

∂x
(t, 0) = b0(t),

∂T

∂x
(t,D) = b1(t). (2.50)

• Mixed boundary conditions: a combination of the prior.

Diverse methods are available to discretize and solve PDEs such as the heat equation.

However, we find ourselves already having effective methods that solve ODEs in the

context of optimal control problems and therefore, a full discretization is not needed

to solve it numerically, so we limit ourselves to discretizing the equation along the

spatial variables using the so-called method of lines.
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2 Optimal control and optimization theory

The philosophy behind the method of lines is to replace the spatial derivatives in the

PDE with algebraic finite difference approximations in terms of the independent time

variable, reducing it to a system of ODEs that approximate the original PDE. Once

this is done, we can use any integration algorithm for initial value problems to obtain

a numerical solution to the PDE. It is particularly useful when the use of existing,

well established numerical methods for ODEs is desired. For results on convergence,

stability and accuracy of the method of lines, the reader is referred to [116, 132,

141]. When using Runge-Kutta methods to integrate the ODE system, the order of

convergence of the method of lines can be reduced [115, 131]; however, this only takes

place in the case of Runge-Kutta methods with an order greater or equal to 3, and

the negative effects are not likely to be important in practice [114].

We consider N ∈ N as the size of the spatial grid, and we define δ := D/N as the grid

step. Let the grid points be

xi = iδ, i = 0, 1, ..., N.

From Taylor’s Theorem, we can derive the second order central difference

∂2T

∂x2
(t, xi) ≈

1

δ2
(T (t, xi−1)− 2T (t, xi) + T (t, xi+1)). (2.51)

Approximating T (t, xi) ≈ Ti(t), we obtain a collection of functions {T0(t), T1(t),

..., TN(t)} that are determined by the system of ODEs

∂Ti
∂t

(t) =
k

δ2
(Ti−1(t)− 2Ti(t) + Ti+1(t)) , i = 1, ..., N − 1, (2.52)

in the case of the internal nodes. Functions at the boundary nodes T0(t) and TN(t)

are defined, in the case of Dirichlet boundary conditions, as

T0(t) = a0(t), TN(t) = a1(t).

In the case of Neumann boundary conditions as in (2.50), the first spatial derivative

can be approximated again from Taylor’s theorem as with the central differences

∂T

∂x
(t, x0) ≈ T (t, x0 + δ)− T (t, x0 − δ)

2δ
, (2.53)

∂T

∂x
(t, xN) ≈ T (t, xN + δ)− T (t, xN − δ)

2δ
. (2.54)
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Defining the functions T−1(t) and TN+1 at the fictitious nodes x−1, xN+1 outside of

the spatial grid, we obtain

∂T

∂x
(t, x0) = b0(t) ≈ T1(t)− T−1(t)

2δ
⇒ T−1(t) = T1(t)− 2δb0(t)

∂T

∂x
(t, xN) = b1(t) ≈ TN+1(t)− TN(t)

2δ
⇒ TN+1(t) = 2δb1(t) + TN(t)

and use these vales to extend (2.52) to i = 0, N substituting T−1(t) and TN+1(t) with

these expressions:

∂T0

∂t
(t) =

k

δ2
(2T1(t)− 2T0(t))− 2k

δ
b0(t), (2.55)

∂TN
∂t

(t) =
k

δ2
(2TN−1(t)− 2TN(t)) +

2k

δ
b1(t). (2.56)

As initial values for each of the Ti(t) functions, we use the original PDE initial con-

dition T (0, x) = f0(x) and define

Ti(0) = f0(xi), i = 0, 1, ..., N.

Considering Neumann boundary conditions, we can write the discretized ODE system

obtained from (2.52), (2.55) and (2.56) as

∂T0

∂t
(t)

∂T1

∂t
(t)

...
∂TN
∂t

(t)


=

k

δ2



−2 2 0 · · · 0

1 −2 1 · · · 0
...

. . . . . . . . .
...

... 1 −2 1

0 · · · 0 2 −2


·


T0(t)

T1(t)
...

TN(t)

+
2k

δ



−b0(t)

0
...

0

b1(t)


, (2.57)

which exhibits a sparse and diagonal pattern due to the method of lines discretization.

We now extend this methodology to the case of a two-dimensional heat equation:

∂T

∂t
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
(t, x, y) ∈ (0, tf )× (0, Dx)× (0, Dy),

where T = T (t, x, y) is the temperature as a function of position (x, y) along a rect-

angular surface and time t. Considering the step sizes δx := Dx/N , δy := Dy/M with

N,M ∈ N, the grid points are defined as

(xi, yj) = (iδx, jδy), i = 0, 1, ..., N, j = 0, 1, ...,M.
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Approximating again T (t, xi, yj) ≈ Tij(t), we can obtain applying (2.51) analogously

for both dimensions:

∂Tij
∂t

(t) =
k

δ2
x

(Ti−1,j(t)− 2Tij(t) + Ti+1,j(t)) +
k

δ2
y

(Ti,j−1(t)− 2Tij(t) + Ti,j+1(t)) ,

i = 1, ..., N − 1, j = 1, ...,M − 1. (2.58)

Neumann boundary conditions

∂T

∂x
(t, 0, y) = c0(t, y),

∂T

∂x
(t,Dx, y) = c1(t, y), (2.59)

∂T

∂y
(t, x, 0) = d0(t, x),

∂T

∂y
(t, x,Dy) = d1(t, x), (2.60)

are used as in (2.53)-(2.56) to obtain the temperatures at the fictitious nodes through

central difference expressions and with that, extend (2.58) to the boundary nodes: for

example, when i = 0 we obtain

∂T00

∂t
(t) =

k

δx

(
2T10(t)− 2T00(t)

δx
− 2c0(t, 0)

)
+
k

δy

(
2T01(t)− 2T00(t)

δy
− 2d0(t, 0)

)
,

∂T0j

∂t
(t) =

k

δx

(
2T1j(t)− 2T0j(t)

δx
− 2c0(t, yj)

)
+
k

δ2
y

(T0,j−1(t)− 2T0j(t) + T0,j+1(t)) , j = 1, ...,M − 1,

∂T0M

∂t
(t) =

k

δx

(
2T1M(t)− 2T0M(t)

δx
− 2c0(t,Dy)

)
+
k

δy

(
2d1(t, 0)− 2T0M(t)− 2T0,M−1(t)

δy

)
and analogously, we can obtain the partial time derivatives of TNj(t), Ti0(t) and TiM(t)

for i = 1, ..., N, j = 1, ...,M − 1.

Defining the submatrices

A :=



a 2b 0 · · · 0

b a b · · · 0
...

. . . . . . . . .
...

... b a b

0 · · · 0 2b a


, B :=


c

. . .

c

 ∈ R(N+1)×(N+1),
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where a := −2k/δ2
x − 2k/δ2

y , b := k/δ2
x and c := k/δ2

y , and the vectors

Tj(t) :=


T0j(t)

T1j(t)
...

TNj(t)

 , ∂Tj(t) :=



∂T0j

∂t
(t)

∂T1j

∂t
(t)

...

∂TNj
∂t

(t)


∈ R(N+1), j = 0, ...,M

Cj :=
2k

δx



−c0(t, yj)

0
...

0

c1(t, yj)


∈ R(N+1), j = 0, ...,M

D0 = −2k

δy


d0(t, x0)

d0(t, x1)
...

d0(t, xN)

 , D1 =
2k

δy


d1(t, x0)

d1(t, x1)
...

d1(t, xN)

 ∈ R(N+1),

we can write the whole discretized ODE system as in (2.57):

∂T0(t)

∂T1(t)
...

∂TM−1(t)

∂TM(t)


=



A 2B 0 · · · 0

B A B · · · 0
...

. . . . . . . . .
...

... B A B

0 · · · 0 2B A





T0(t)

T1(t)
...

TM−1(t)

TM(t)


+



C0 +D0

C1

...

CM−1

CM +D1


, (2.61)

which once again exhibits the same sparse, tridiagonal pattern not only in this block

structure, but also in the submatrices A,B that compose it. Therefore, it will be

particularly advantageous to exploit both this structure and substructure when trying

to find numerical solutions for optimal control problems that feature this type of ODE

systems.
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Finding a re-entry trajectory that minimizes heat flux motivates a complex optimal

control problem. In this section, we introduce step by step the several aspects of the

models that need to be considered in order to compose a re-entry trajectory prob-

lem with thermodynamic constraints. This model might not be accurate or realistic

enough for detailed spacecraft or operational trajectory design, but it is sufficient for

our purpose of applying our methodologies to obtain numerical solutions and demon-

strating their applicability and efficiency. Approximations with functions that can

be sufficiently differentiated were necessary for some of the described models. We

describe as well specific models for the cases of the Sänger hypersonic aircraft concept

and the Apollo Command Module obtained from the literature [19, 29, 30, 90] that

were used to test our different methodologies with more realistic examples.

3.1 Atmospheric model

An exact atmospheric model that provides values of air density and temperature

is needed to calculate the aerodynamic forces and thermodynamic quantities. The

US Standard Atmosphere of 1976 has been selected for this purpose [94, 97]. It

provides continuous expressions to calculate air temperature for each layer of the

atmosphere from 0 to 450 km of altitude, and derivations of pressure, density, and

sound speed from temperature. However, in order to preserve the regularity of the

functions required to satisfy the necessary optimality conditions that were discussed

in Chapter 2, air temperature was approximated with the polynomial

Tair(h) :=
10∑
i=0

aih
i,
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and an exponential approximation was used to calculate density as

ρ(h) = ρ0e
−h/β.

Original values from the US 1976 model and our approximations are depicted in Figure

3.1. We obtained a maximum difference between the original and the approximation

of 8.15 K for air temperature and 0.04 kg/m3 for air density.

Figure 3.1: Models from US Standard 1976 Atmosphere and approximations

The speed of sound at a certain altitude c(h) can also be calculated from air temper-

ature with the formula

c(h) =
√
γRTair(h),

where γ = 1.4 is the ratio of specific heat of air and R = 286.9 J/(kg ·K) is the gas

constant. The Mach number M can be calculated from altitude and velocity as:

M =
v

c(h)
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3.2 Dynamic model

The main external forces acting on an object moving through the atmosphere of the

Earth are aerodynamic and gravitational. In order to define the equations of motion

for the vehicle, we need to define appropriate models for these forces.

3.2.1 Earth gravitational force

We assume a rotational spheric Earth, given the mean radius and angular velocity

[106]:

rE = 6371.01 km,

ωE = 7.29211 · 10−5 rad/s.

We set gravitational acceleration at sea level to the standard value [97]:

g0 = 9.80665 m/s2.

According to Newton’s law of universal gravitation and considering a one-body prob-

lem due to the small mass of the aircraft in relation to the Earth’s mass, the gravita-

tional acceleration as a function of altitude can be expressed as

g(h) := g0

(
rE

rE + h

)2

.

3.2.2 Aerodynamic forces

The aerodynamic forces, lift L and drag D (see Figure 3.2), can be described in terms

of the lift and drag coefficients, CL and CD respectively, as follows [6, 90, 136]:

L = CL q(v, h) Sref (3.1)

D = CD q(v, h) Sref , (3.2)

where Sref is the reference surface area of the vehicle and q(v, h) is the dynamic

pressure

q(v, h) =
1

2
ρ(h)v2.
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3 Re-entry modelling

An exact calculation of the lift and drag coefficients would require deriving them from

the angle of attack taking into account several factors, like the shape of the airfoil or

the flow conditions. For our purposes, it is sufficient to consider the lift coefficient as

a control variable. We resorted to analytical expressions derived from data to express

the drag coefficient as a function of the lift coefficient.

L

D

µ

mg

v
α

Figure 3.2: Aerodynamic and gravitational forces, and control angles α and µ

We used two different models. The first one is based on the Sänger hypersonic aircraft

[19, 90]:

CD(CL) = CD0 + kC2
L, (3.3)

with CD0 = 0.017, k = 2. The second one is a linear approximation based on the data

representations in [29] for the Apollo command capsule obtained from wind-tunnel

data:

CD(CL) = CD0 − CL, (3.4)

with CD0 = 1.5. We can also obtain a similar approximate relation between the angle

of attack α and the lift coefficient and therefore, considering CL as control is equivalent

to considering α for the purpose at hand.

3.2.3 Equations of motion

Considering a point mass model and a spherical rotating Earth, we can describe the

position of the aircraft in an Earth-centered, Earth-fixed coordinate system with the
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3.3 Thermodynamic model

longitude Θ, the latitude Λ and the altitude h (see Figure 3.3). The movement is

described as well by the velocity v, flight-path angle γ and the heading angle χ. We

consider a gliding vehicle with no thrust, only influenced by the aerodynamic lift and

drag L and D and the gravitational force, and controlled by the lift coefficient CL and

the bank angle µ (see Figure 3.2). The six equations of motion are [91, 136]:

v̇ = −D
m
− g(h) sin γ (3.5)

+ ω2
E(rE + h) cos Λ(sin γ cos Λ− cos γ sinχ sin Λ),

γ̇ =
L cosµ

mv
−
(
g(h)

v
− v

rE + h

)
cos γ (3.6)

+ 2ω cosχ cos Λ

+
ω2
E(rE + h)

v
cos Λ(sin γ sinχ sin Λ + cos γ cos Λ),

χ̇ =
L sinµ

mv cos γ
− cos γ cosχ tan Λ

v

rE + h
(3.7)

+ 2ωE(sinχ cos Λ tan γ − sin Λ)

− ω2
E(rE + h)

v cos γ
cos Λ sin Λ cosχ,

ḣ = v sin γ, (3.8)

Λ̇ =
v

rE + h
cos γ sinχ, (3.9)

Θ̇ =
v

(rE + h) cos Λ
cos γ sinχ, (3.10)

See [133] for details on how these equations are derived.

3.3 Thermodynamic model

Our objective is to reduce heat loads during re-entry trajectories and hence, we require

analytical models for aerodynamic heating and temperature evolution that can be

coupled with the previously described equations of motion, forming an optimal control

problem.
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Figure 3.3: Earth coordinate system for system (3.5) - (3.10)

3.3.1 Convective heat flux

For more precise calculations of hypersonic heating over a full body, it is necessary

to use CFD or experimental data. CFD high fidelity simulations and experimental

tests remain time and resource consuming, and both of these techniques provide heat

flux values for a singular scenario after costly calculations. This is insufficient for

defining our optimal control problem, since we need heating values to be provided as

a continuous function of the aerodynamic variables. Fortunately, several analytical

formulas have been developed to estimate heat transfer at the stagnation point [15]

and have proven to be sufficiently accurate for similar purposes [21, 30, 104]. The

Sutton-Graves correlation expresses convective heat flux at the stagnation point as a

function of altitude and velocity [124]:

q̇conv,sp = kE

√
ρ(h)

RN

v3. (3.11)

Here, RN is the nose radius and kE a constant derived for a general gas mixture and

planet-specific: In [113] it is calculated as kE = 1.7623e−4 . For our general case,

we consider the heating only in the stagnation point as it is one of the most critical
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3.3 Thermodynamic model

points during re-entry. In [29], a shcorrection on the stagnation point heat flux to

obtain the maximum corner heating q̇conv,max for an Apollo-type capsule using shape

parameters is defined with the formula:

q̇conv,max
q̇conv,sp

= c1M + c2α + c3
RS

Rm

+ c4θN + c5, (3.12)

where RS, RM and θN are the shape parameters as described in Section 3.5, α is the

angle of attack and M is the Mach number. The coefficients c1, ..., c5 are calculated in

[29] using a least squares curve fit for the given data on wind tunnel results, yielding

c1 = −0.0006, c2 = 0.0185, c3 = −0.5321, c4 = −0.2939 and c5 = 1.3630.

As for the convective heating in the interior of the vehicle, assuming a constant inner

temperature Tin, the general convective heat transfer formula can be used:

q̇conv,in = αq(T − Tin), (3.13)

where αq is the heat transfer coefficient.

3.3.2 Radiative heat flux

At hypersonic speeds, convective heat flux is not the only thermal load acting on a

re-entring vehicle and it is necessary to consider radiative cooling for a more accurate

depiction of the heat exchange at the wall. The Stefan-Boltzmann Law describes the

power radiated between two bodies (1 and 2) as:

q̇rad = εσ(T 4
1 − T 4

2 ), (3.14)

where ε is a constant dependent on the material, and σ = 5.67051 ·10−8 J/(m2sK4) is

the Stefan-Boltzmann constant. Therefore, on the external boundary, we would have

q̇rad,air = εσ(T 4 − Tair(h)4), (3.15)

In this model, air temperature in the context of hypersonic flight refers to the tem-

perature after the shock that generates a change in the temperature of the medium.

This effect on temperature can be calculated with CFD simulations. For the sake of

simplicity, we consider this air temperature as the one obtained from our atmospheric
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3 Re-entry modelling

model in Section 3.1. As for the radiative heating in the interior considering constant

temperature Tin, we have:

q̇rad,in = εσ(T 4 − T 4
in). (3.16)

3.3.3 Temperature evolution

In hypersonic flight, the aerodynamic heating leads to very high temperatures on the

surface of the vehicle that can cause severe damages, and as a consequence, it requires

a Thermal Protection System (TPS) to get through re-entry safely. In order to study

the impact of the heating on the TPS, we consider the one-dimensional heat equation

to model the temperature distribution in a perpendicular section to the stagnation

point:

ρTPS cp,TPS
∂T (t, x)

∂t
= λTPS∆T (t, x), (3.17)

where T (t, x) is the temperature along the perpendicular section of depth D repre-

sented by x ∈ [0, D], and ρTPS, cp,TPS and λTPS are the density, specific heat capacity

and heat conductivity of the material of the TPS, respectively. The boundary condi-

tions at the edges of the section are

∂T

∂x
(t, 0) = q̇conv,sp − q̇rad,air, (3.18)

∂T

∂x
(t,D) = q̇conv,in − q̇rad,in, (3.19)

using the previously described formulas (3.11)-(3.16) to calculate the convective and

radiative heat flux from the air and the interior of the vehicle. As for the initial

condition, we impose a constant temperature

T (0, x) = Tinit, x ∈ [0, D]. (3.20)

There is only a one-way coupling between the dynamic system and the temperature

evolution i.e. the temperature does not have any direct influence on the aerodynamic

variables or external convective heat flux in our models, but the external heat flux

from (3.11) and (3.15) are dependent on the aerodynamic variables and do have a

direct influence in the temperature evolution.
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3.3 Thermodynamic model

In order to test some of our methodologies with a PDE of larger dimensions in Section

5.5, we consider as well a two-dimensional section through the stagnation point into

the TPS with an internal cooling system. The domain on the capsule is depicted in

Figure 3.4 (the stagnation point is represented on the center of the capsule surface

even though its position can vary depending on the angle of attack). We extend (3.17)

to a two-dimensional case:

ρTPS cp,TPS
∂T (t, x, y)

∂t
= λTPS∆T (t, x, y), (3.21)

for (x, y) ∈ (0, Dx)× (0, Dy), where Dx is the length of the section and Dy the depth.

The stagnation point is located at (0, 0), and (x, y) ∈ [0, Dx] × [0, Dy] represent the

horizontal distance x along the surface, and the depth y through the TPS.

Stagnation point

Coolant

Figure 3.4: 2D section through the TPS from the stagnation point

In this case, boundary conditions for the four edges of the section need to be defined:

the external temperature is defined in terms of the convective and radiative external

heating as in (3.18). We only have (3.11) to model the convective heating at the

stagnation point, due to the complications that using CFD calculations to obtain

values for the convective heating along the capsule surface for a whole trajectory

would imply. Therefore, given that the heating is maximal at the stagnation point,

we consider a linear decrease of the external heating from the stagnation point:

q̇conv,ext(t, x) := (1− rx) q̇conv,sp(t), (3.22)
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3 Re-entry modelling

where r is a chosen decreasing ratio for the heat flux, and x represents the distance to

the stagnation point located at x = 0. The idea is to represent the decreasing effect

of the heating in the considered area from the stagnation point in order to introduce

a variation in the heating for the external boundary, which serves our purpose of

modelling a two-dimensional heating effect on a capsule. For the internal boundary,

the heat flux q̇cool(t, x) is modelled depending on the temperature of the coolant along

the boundary, see the next section for details. Hence, the horizontal boundaries are

given by:

∂T

∂y
(x, 0, t) = q̇conv,ext(t, x)− εσ(T (x, 0, t)4 − Tair(h)4), (3.23)

∂T

∂y
(x, ymax, t) = q̇cool(t, x). (3.24)

For the lateral boundaries, we consider constant derivative conditions:

∂T

∂x
(0, y, t) = 0, (3.25)

∂T

∂x
(xmax, 0, t) = 0. (3.26)

3.4 Active cooling model

For the example based on a two-dimensional heat equation, the temperature decrease

given by a cooling system is considered in order to control the temperature in the

interior nodes. From [3, 88], we consider an active cooling system that uses cryogenic

fuels to compensate the effects of the aerodynamic heating and to support the TPS. In

[3, 4] several coolants are compared, showing liquid hydrogen to be a clearly superior

choice in terms of cooling and saving mass, and being able to reach temperatures as

low as 14 K.

We considered as control the temperature of the cooling system Tcool(t, x) depending

on the position along the section, and we use equations (3.13) and (3.14) to model the

heat flux interaction between the two-dimensional section of the TPS and the coolant:

q̇cool(t, x) := αq(T (t, x,Dy)− Tcool(t, x)) + εσ(T (t, x,Dy)
4 − Tcool(t, x)4), (3.27)

for x ∈ [0, Dx]. The goal is to minimize the use of coolant while keeping the temper-

ature at the interior nodes of the section under a certain threshold. From [3], coolant
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3.5 Shape model

mass rate is modelled as:

ṁ = Ac q̇cool,

where Ac is a constant depending on the area of the cooling section and the char-

acteristics of the coolant. Therefore, since the mass rate of the coolant is directly

proportional to the heat flux, minimizing both quantities is equivalent. The heat

flux q̇cool is mainly influenced by the controllable cooling temperature Tcool in (3.27);

specifically, it decreases when Tcool remains unchanged from its nominal value, and

it increases when Tcool decreases, which means there is an activation of the cooling

system in order to lower Tcool. In other words, minimizing the use of coolant would be

equivalent to maximizing the temperature of the cooling system along the trajectory.

3.5 Shape model

A realistic, detailed shape optimization is out of the scope of this work. However, given

the simplicity of the Apollo capsule shape that can be expressed in terms of only a few

parameters, we included these in our model focused on the Apollo command capsule to

analyze the effect of including a few shape parameters in our trajectory optimization.

RN

RS
RM

θN

Figure 3.5: Parametrized capsule shape, compare [29]

The Apollo capsule shape approximate parametrization developed in [29] divides the

capsule into four analytical shapes defined by 5 parameters (see Figure 3.5). We only

considered the three parameters that define the analytical frontal shape of the Apollo

capsule: nose radius RN , side radius RS and mid radius RM . These are all used to
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3 Re-entry modelling

calculate the maximum heat flux with the formula (3.12). The nose sphere angle θN

is also present in (3.12), but it can be derived from these three parameters as:

θN = arcsin

(
RM −RS

RN −RS

)
.

The reference surface area Sref can be calculated from the nose radius and the nose

sphere angle with a standard formula to calculate the area of a spherical cap:

Sref = 2πR2
N(1− cos θN). (3.28)

This means the shape parameters can also have an influence on the trajectory, since

Sref is present in the calculation of lift and drag, see (3.1) and (3.2).
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OCPID-DAE1

This chapter is devoted to finding optimal re-entry trajectories with minimum heating

numerically, using a reduced discretization approach. We discuss three different prob-

lems: a simple re-entry trajectory problem with the heat load as objective function,

considered in two different scenarios for different vehicles; the same problem with the

addition of a parametrization of an Apollo-type capsule in order to optimize shape

parameters as well; and finally, a coupled ODE-PDE featuring a heat equation that

models the temperature evolution, with different objective functions based on the

temperature and the heat flux being considered for comparison. These results have

been expanded from those presented in [99].

OCPID-DAE1 [40] is a Fortran package designed to solve optimal control problems

and parameter identification problems subject to ordinary differential equations and

differential algebraic equations, control and state constraints, and boundary condi-

tions. It implements a direct multiple shooting method with several ODE integrator

options (e.g. Euler, Heun, classic Runge-Kutta methods...) and control approximation

by B-splines in order to apply a reduced discretization approach. It can also perform

adjoint estimation based on the conditions of the local minimum principle. OCPID-

DAE1 uses the optimization software sqpfiltertoolbox, an implementation of an

SQP method for general constrained NLPs. It offers a choice of line-search strategies

with merit functions or filter techniques in order to achieve convergence from arbi-

trary starting points. Derivatives can be provided by the user or are approximated

automatically by finite difference approximations, and Hessians are calculated with

BFGS updates in every iteration. The code is designed for small-scale to medium-scale

problems with dense Jacobian and Hessian matrices.
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4 Optimal re-entry trajectories with OCPID-DAE1

OCPID-DAE1 is able to solve optimal control problems where a small number of

controls is involved robustly and efficiently. With the following results, it proves to

be a useful tool for the purpose of finding optimal re-entry trajectories with minimum

heating, and testing different models and problems. It also proves to be able to

deal with coupled ODE-PDE problems involving the heat equation, which can be

challenging due to the large, complex structure they present. These results will also

be used in the next chapter to define optimal external heating for larger cases of the

heat equation involving a larger number of controls.

4.1 Re-entry trajectory problem with minimum heating

Referring to the models described in Sections 3.2 and 3.3, we formulate a simple

re-entry trajectory optimal control problem with the objective of minimizing the con-

vective heat flux q̇conv along the trajectory as follows:

Problem 4.1 (Re-entry trajectory OCP). Minimize∫ tf

0

q̇conv(t) dt = qconv(tf ) (4.1)

w.r.t. tf , CL(t) and µ(t), subject to the differential equations (3.5)-(3.10) and (3.11)

and the constraints

(v(t0), γ(t0),χ(t0), h(t0),Λ(t0),Θ(t0), qconv(t0)) = (v0, γ0, χ0, h0,Λ0,Θ0, 0), (4.2)

h(tf ) ≤ hmax (4.3)

q(v(t), h(t)) ≤ Qmax, ∀t ∈ [t0, tf ], (4.4)

CL,min ≤ CL(t) ≤ CL,max, ∀t ∈ [t0, tf ], (4.5)

µmin ≤ µ(t) ≤ µmax, ∀t ∈ [t0, tf ], (4.6)

tf,min ≤ tf ≤ tf,max. (4.7)

Here, the states are the six position variables (v(t), γ(t), χ(t), h(t),Λ(t),Θ(t)) and the

heat flux q̇conv(t), which we strategically placed among the differential equations in

order to obtain the value of its integral along the trajectory for the objective function,

also known as the heat load qconv. The initial conditions (4.2) are given by the initial

orbital position of the vehicle and considering qconv(t0) = 0, and (4.3) ensures the
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re-entry condition, i.e. that the final altitude is close to the surface of the Earth. The

constraint (4.4) on the dynamic pressure q(v, h) is included as well to ensure that the

vehicle does not surpass its maximum allowed mechanical stress, commonly known as

max q.

As a first step to test our models and the application of OCPID-DAE1, we solved

Problem (4.1) in two different initial scenarios: a baseline scenario based on the

hypersonic Sänger aircraft concept obtained from [19, 41, 90], from a lower altitude

of 33.9 km (Case 1), and a scenario based on the Apollo capsule obtained from [29,

60, 61] from a typical Low-Earth-Orbit (LEO) at 120 km of altitude (Case 2). Table

4.1 compiles the values of the initial values, vehicle-specific constants required in the

models from Chapter 3, and bounds on controls and parameters. For calculating the

drag coefficient from the lift coefficient, model (3.3) was used for Case 1, and (3.4)

for Case 2, according to the vehicle considered for each case. The initial latitudes and

longitudes correspond to a position near Bayreuth, Germany, for Case 1, and over the

Pacific Ocean for Case 2. The mass m, nose radius RN and reference area Sref were

also chosen appropriately for each vehicle. We chose a very restrictive max q value for

Case 2, in order to make sure that the state constraint became active and to see its

effect on the solution; as orientative values, reports [60, 61] show the evolution of the

dynamic pressure during re-entry for different Apollo missions reaching values over 8

kN/m2 and 24 kN/m2, respectively.

Case 1 Case 2

v0 2.15 km/s h0 33.9 km v0 7.83 km/s h0 120.0 km

γ0 2◦ Λ0 49.57◦ γ0 -2◦ Λ0 -23.75◦

χ0 130◦ Θ0 11.35◦ χ0 40◦ Θ0 225.5◦

CL,min 0.01 CL,max 0.18326 CL,min 0 CL,max 0.5

µmin -45◦ µmax 45◦ µmin -45◦ µmax 45◦

tf,min 100 s tf,max 500 s tf,min 500 s tf,max 2000 s

hf 0.5 km Qmax 60 kN/m2 hf 2.0 km Qmax 7 kN/m2

m 115000 kg Sref 305 m2 m 5897 kg Sref 39.44 m2

RN 0.5 m RN 4.69 m

Table 4.1: Constants and parameters for Problem 5.3

For these problems and the following ones, the number of time nodes for the discretiza-
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tion was set to N = 200, the order of the B-splines (2.31) used to discretize the control

was set to k = 1 (piecewise constant approximation), and the classic Runge-Kutta

method was chosen as ODE integration method. In the SQP method, a line-search

with the augmented Lagrangian as the merit function was selected as globalization

strategy, and the feasibility and optimality tolerance were set to 10−8 and 10−6, re-

spectively. For Case 1, the software converged to a solution in 155 SQP iterations

and took 9.04 seconds of CPU time in total; for Case 2, it converged in 99 iterations

and took 7.44 seconds. It should be pointed out that the number of iterations and,

correspondingly, the CPU times are highly dependent on how close the initial guess

is to the solution.

Figures 4.1 and 4.3 depict the obtained optimal trajectories in terms of latitude,

longitude and altitude (h, Λ and Θ) for Cases 1 and 2, respectively. The obtained

minimum objective function values were
∫
q̇conv = 3778.13 J/cm2 for Case 1, and∫

q̇conv = 5112.89 J/cm2 for Case 2. For reference on Case 2, the Apollo TPS expe-

rience report [102] indicates heat loads over 20000 J/cm2. The minimum heat flux

trajectory is depicted in Figure 4.2 for Case 1 and in Figure 4.4 for Case 2, along with

velocity v (the main component that influences the heat flux along with air density)

and controls CL and µ. The optimal final times are tf = 506.57 s for Case 1 and

tf = 792.68 s for Case 2.

The adjoints λi associated to the states i = v, γ, χ, h,Λ are plotted for each of the

cases in Figures 4.5 and 4.6. The two remaining states, Θ and q̇conv, yield constantly

0 adjoints due to the fact that they do not appear in the dynamic functions in (3.5)-

(3.10). The state constraint on the dynamic pressure does not become active in the

solution for Case 1, which means its associated multiplier is constantly 0 due to the

complementarity condition. In Case 2 it does become active around t = 428 s, which

allows for the multiplier to change its value at this point, as depicted in Figure 4.7.

This means as well that there can be jumps in the adjoints, such as the one that can

be appreciated in λh at the time the state constraint becomes active.
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Figure 4.1: Optimal re-entry trajectory for Case 1

Figure 4.2: Velocity, heat flux and optimal controls for Case 1
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Figure 4.3: Optimal re-entry trajectory for Case 2

Figure 4.4: Velocity, heat flux and optimal controls for Case 2
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Figure 4.5: Adjoints for states v, γ, χ, h and Λ for Case 1

Figure 4.6: Adjoints for states v, γ, χ, h and Λ for Case 2
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Figure 4.7: Dynamic pressure state constraint and associated multiplier for Case 2

4.2 Parametric shape optimization

The influence of the vehicle shape on the heat flux is already evident in the previous

test problems, since the nose radius is present in the Sutton-Graves formula used to

calculate the heat flux at the stagnation point. We tested an extension of the previous

Case 2 where the capsule shape is described by three parameters, as exposed in Section

3.5: the nose radius RN , mid radius RM and shoulder radius RS. The convective heat

flux q̇conv is now calculated with the formula (3.12) that involves all three of these

parameters (in what follows, we refer to it as q̇conv,max to differentiate it from the

convective heat flux at the stagnation point q̇conv,sp used in the previous section), and

the surface area Sref needed to obtain lift and drag for the dynamic equations is now

calculated via (3.28).

We solved Problem 4.1 with these modifications and imposing bounds on the three

parameters RN , RM and RS. Additionally, a constraint on the weighted sum of the

three shape parameters was considered:

w1(RN − b1) + w2(RM − b2) + w3(RS − b3) ≤ Pmax (4.8)

where the weights w1, w2, w3 and biases b1, b2, b3 are chosen to normalize the three

parameters: w1 = 0.25, b1 = 3.0, w2 = 1.0, b2 = 2.0, w3 = 2.63 and b3 = 0.02; and
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Pmax ≤ 3 is a chosen constant. The constraint can be imposed in order to evaluate how

the parameters would have to be decreased should there be a constraint on the area or

volume of the capsule, for example; in other words, to find out what parameters are

more important for the minimization of the heat flux and which ones can be decreased

if needed. The bounds and optimal parameters without the constraint and with the

constraint with Pmax = 1.5 are shown in Table 4.2.

Min value Max value Optimal value
Optimal value

with constraint (4.8)

RN 3.0 m 7.0 m 7.0 m 5.0 m

RM 2.0 m 3.0 m 3.0 m 3.0 m

RS 0.02 m 0.4 m 0.02 m 0.02 m

Table 4.2: Bounds and optimal shape parameters for Problem 5.3

From these results, we can draw several interesting conclusions. The optimal pa-

rameters in the case without the constraint show that, as could be expected, when

minimizing heat flux a larger capsule with a small shoulder is preferable. Hence, both

the nose radius RN and mid radius RM that define the size of the frontal surface of

the capsule are at their upper bounds, and the shoulder radius at its lower bound.

When including the constraint, we see that both RM and RS remain unchanged, and

only RN is decreased: this means that the contribution to the heat flux is higher when

RM and RS vary from their optimal value, and lower in the case of RN .

The inclusion of the shape parameters in the formulation leads to a different optimal

re-entry trajectory as well. In Figure 4.8, the optimal controls for the shape optimiza-

tion problem are shown along with those obtained for the original problem (Case 2

from the previous section) with a very noticeable variation. Consequently, the states

also vary from the solution for the original problem. Both solutions and their respec-

tive adjoints are pictured in Figures 4.9 and 4.10. Note that we compare the heat flux

at the stagnation point q̇conv,sp for both solutions, but the objective function for the

shape optimization problem was
∫
q̇conv,max, where q̇conv,max is calculated from q̇conv,sp

and the shape parameters as in (3.12); it is plotted separately as well for comparison.
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Figure 4.8: Optimal controls for the shape optimization problem and for Case 2 from

Section 4.1

   

   

Figure 4.9: Solution for the shape optimization problem and for Case 2 from Section

4.1
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Figure 4.10: Adjoints for the shape optimization problem and for Case 2 from Section

4.1

OCPID-DAE1 found a solution for the shape optimization problem in 451 iterations

and 28.49 s of CPU time: we reiterate the fact that these are highly dependent

on a good initial guess, specially for parameters. The minimum objective function

value resulted in
∫
q̇conv,max = 5710.16 J/cm2, larger than the obtained

∫
q̇conv,sp =

5112.89 J/cm2 for the original problem as expected. The obtained final time, tf =

752.49 s, also differed from the obtained tf = 792.68 s for the original problem.

4.3 ODE-PDE coupled optimal control problem

After obtaining an optimal trajectory with minimum heat flux, the next desirable

goal would be to involve the temperature evolution on the aircraft in the optimization

process. OCPID-DAE1 is able to solve a range of different problems with different

challenging aspects and yield fast and robust numerical solutions, as shown with

the previous test problems. Its main limitation is that a larger number of controls

would lead to a very dense, larger optimization problem that can severely affect the

performance of an SQP method for small, dense problems. For this reason, PDE
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problems of a larger dimension and with a larger number of controls may pose a

problem for this methodology and therefore, they are reserved for the full discretization

approach in the next chapter. Therefore, we limit ourselves to consider an ODE-PDE

coupled optimal control problem with the re-entry trajectory dynamics and a one-

dimensional heat equation to model the temperature evolution.

We extend again Case 2 from Section 4.1 with the addition of temperature to the

states, coupling the PDE

ρTPS cp,TPS
∂T (t, x)

∂t
= λTPS∆T (t, x), t ∈ (0, tf ), x ∈ (0, D) (4.9)

to the ODE dynamic system, along with the constraints

∂T

∂x
(t, 0) = q̇conv,sp − q̇rad,air, (4.10)

∂T

∂x
(t,D) = q̇conv,in − q̇rad,in, (4.11)

T (0, x) = Tinit (4.12)

where all the heat fluxes are defined as in formulas (3.11)-(3.16). We describe briefly

the coupling betweeen the ODE and PDE system. Given the controls (CL(t), µ(t))

that we intend to optimize, we can obtain the position and direction of the vehicle by

solving the ODE system (3.5)-(3.10), which allows us to obtain the heat flux as well.

Given these ODE variables, we can define the external boundary for the PDE and solve

it to obtain T (x, t). We have a one-way coupling so far, which means the temperature

is not really involved in the optimization process and we only have a simulation of its

evolution given by the solution of the PDE. However, if the temperature is involved in

the objective function or constraints as well, this will have an influence on the optimal

controls which defines a fully coupled system, see Figure 4.11.

Following the method of lines along the grid xi = iδ, i = 0, ...,M with M ∈ N
and δ = D/M to discretize (4.9), we obtain the collection of states (T0, ..., TM) that

represent the temperature at each spatial node xi, being x0 = 0 the stagnation point

and xM = D at the most inner layer of the TPS. With the discretization of (4.9) and

the constraints (4.10)-(4.12) and defining the heat diffusivity k := λTPS/(ρTPS cp,TPS)

and T (t) := (T0(t), ..., TM(t)), the problem in question would read as:

Problem 4.2 (Discretized coupled re-entry trajectory problem). Minimize

J(tf , q̇conv,sp(t), T (t)) (4.13)
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CL, µ ODE q̇conv, h PDE T
Input Solve Input Solve

Min T or T ≤ Tmax

Figure 4.11: Coupling dependencies for a re-entry problem with heat equation

w.r.t. tf , CL(t) and µ(t), subject to the differential equations (3.5)-(3.10), (3.11) and

Ṫi =
k

δ2
(Ti−1(t)− 2Ti(t) + Ti+1(t)) , i = 1, ...,M − 1, (4.14)

Ṫ0 =
k

δ2

(
δ

λTPS

(
q̇conv,sp(t)− εσ(T0(t)4 − Tair(h(t))4)

)
− T0(t) + T1(t)

)
, (4.15)

˙TM =
k

δ2

(
TM−1(t)− TM(t)− δ

λTPS
(αq(TM(t)− Tin),−εσ(TM(t)4 − T 4

in).)

)
, (4.16)

and the constraints (4.2)-(4.7) and

Ti(0) = Tinit, i = 0, ...,M. (4.17)

Here, J(tf , q̇conv,sp(t), T (t)) is used to denote the different objective functions we tested

for this problem. In the previous problems in this chapter, our models have been lim-

ited to minimizing the external convective heat flux. The inclusion of the temperature

in this section allows for other objective functions to be considered. In particular, we

considered the following cases:

• Minimizing the heat load, as in previous problems (Solution 1):

J(tf , q̇conv,sp(t), T (t)) =

∫ tf

t0

q̇conv,sp(t) dt (4.18)

• Minimizing the maximum convective heat flux (Solution 2):

J(tf , q̇conv,sp(t), T (t)) = max
t∈[t0,tf ]

q̇conv,sp(t) (4.19)

• Minimizing the maximum external temperature (Solution 3):

J(tf , q̇conv,sp(t), T (t)) = max
t∈[t0,tf ]

T0(t) (4.20)
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4 Optimal re-entry trajectories with OCPID-DAE1

• Minimizing the maximum internal temperature (Solution 4):

J(tf , q̇conv,sp(t), T (t)) = max
t∈[t0,tf ]

TM(t) (4.21)

Defining the maximum of one of the states x(t) along the trajectory as the objective

function is accomplished by defining an auxiliary parameter p, considering p as the

objective function to minimize, and adding to the problem the constraint

x(t) ≤ p, t ∈ [t0, tf ]. (4.22)

Table 4.3 compiles all the constants and initial values needed to define the dynamic

system with the discretized PDE to complete those from Table 4.1. All constants

related to heat transfer are obtained from [80, 136] with the intention of reproducing

the case of the Apollo capsule and using realistic values: specifically, the values that

describe the physical properties of the TPS are obtained from [80], a NASA report

that performs a re-entry thermal analysis for the Apollo capsule. We also relaxed

the value of Qmax to a more realistic 8 kN/m2 as suggested by the dynamic pressure

values in [60, 61].

Constant Value Constant Value

ρTPS 528.6 kg/m3 ε 0.8

cp,TPS 2742.35 J/kg K σ 5.67 ·10−8 J/m2 s K4

λp,TPS 0.242 W/K m αq 35 J/m2 s K

Tin 300 K Tinit 300 K

D 0.07 m

Table 4.3: Constants and parameters for Problem 4.2

We considered M = 10 spatial nodes and solved the problem for the aforementioned

four different objective functions to calculate four solutions for Problem 4.2. The

minimized objective values and performance results can be found in Table 4.4, as well

as the optimal values for the tf parameter. Solutions 2 and 3 took a considerably

larger CPU time, this is probably due to the initial guess being further from them

and closer to Solutions 1 and 4. Solution 2 required the least number of iterations
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Obj. function Value Optimal tf Iterations CPU time

Solution 1
∫
q̇conv,sp 5101.04 J/cm2 740.54 s 65 12.90 s

Solution 2 max q̇conv,sp 13.50 W/cm2 1117.69 s 51 58.07 s

Solution 3 max T0 1252.38 K 1090.43 s 101 96.37 s

Solution 4 max TM 331.68 K 740.39 s 52 13.80 s

Table 4.4: Results for Problem 4.2

despite its larger CPU time: this is due to some of these iterations in the SQP solver

requiring a larger number of iterations to solve the QP.

The optimal controls for each trajectory are represented in Figure 4.12, where the

difference between the four solutions can be most appreciated. However, as shown

in Figures 4.13 and 4.14, the obtained trajectories for Solutions 1 and 4 barely differ

from one another, and they are also quite similar for Solutions 2 and 3. Therefore,

minimizing the heat load and minimizing the internal temperature seem to be related,

as well as minimizing the maximum heat flux and the maximum external tempera-

ture. This could be expected from the fact that the external temperature is mostly

influenced by the heat flux in (4.15). However, the fact that the optimization of the

maximum temperature at the external node and the internal node yields a different

optimal re-entry trajectory implies that the involvement of the heat equation is rele-

vant in this problem, and that it does not suffice to minimize the external heating if

our goal is to minimize the temperature increase at the inner structure of the capsule

due to safety reasons.

The full temperature evolution along the one-dimensional section is depicted in Figure

4.15. The external temperature is the highest for most of the time interval until there

is a sudden decrease in the heat flux (see Figure 4.14), after which the accumulated

heat load in the inner nodes becomes higher than in the external one.

Finally, all the adjoints to the states that were non-zero are plotted in Figure 4.16. It is

interesting to see how the adjoints to the temperature states T0, ..., T10 are constantly

zero for Solutions 1 and 2 since they were not involved in the objective function and as

previously mentioned, only a simulation of the temperature evolution was performed

along with the heat flux optimization. However, in the case of Solutions 3 and 4, the

temperatures at all the nodes have non-zero adjoints which means the PDE is fully
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4 Optimal re-entry trajectories with OCPID-DAE1

involved in the optimization. The state constraint on the dynamic pressure does not

become active for any of the solutions.

In conclusion, these solutions prove that OCPID-DAE1 can efficiently deal with re-

entry trajectory optimal control problems and find solutions to problems with different

initial conditions, nonlinear constraints, objective functions and parameters to opti-

mize. In particular, it can efficiently find solutions to coupled ODE-PDE problems

where the PDE is fully involved in the optimization. The dimensions of the PDE

could be increased as long as the number of controls does not increase. However, a

good initial guess for the controls and parameters can be crucial to find these solutions

efficiently, and a bad guess can lead to a larger number of iterations and a considerable

increase in the CPU times.

Figure 4.12: Optimal controls for Solutions 1-4 to Problem 4.2
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4.3 ODE-PDE coupled optimal control problem

Figure 4.13: Trajectory for Solutions 1-4 to Problem 4.2

Figure 4.14: Heat flux and boundary temperatures for Solutions 1-4 to Problem 4.2
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Figure 4.15: Temperature evolution for Solutions 1-4 to Problem 4.2
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Figure 4.16: Adjoints to the states for Solutions 1-4 to Problem 4.2
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5 Full discretization with structure

exploitation

In this chapter, we discuss an application of the nonsmooth Newton method with a

structure exploitation strategy to optimal control problems involving heat equations.

The nonsmooth Newton method (and the majority of nonlinear optimization meth-

ods) requires solving a linear system in every iteration, which can become very large in

the case of fully discretized optimal control problems, so it becomes crucial to choose

a method that can solve these systems efficiently. For this purpose, we analyzed both

the structure resulting from the application of full discretization and the substruc-

ture resulting from the application of the method of lines to discretize the PDE by

representing these matrices in a block-banded way.

Several approaches to solving the linear system are applied to a benchmark quadratic

two-dimensional heat equation optimal control problem. The effects of increasing both

the time and the spatial nodes on the computational times are used to select the best

approaches. The results mentioned so far are included in the paper [100]. Finally, the

methods deemed most efficient are applied to a nonlinear version of the benchmark

problem with space-dependent controls, and to a problem based on finding an active

cooling strategy to control the temperature of the TPS around the stagnation point

during re-entry, using an optimal trajectory calculated with the reduced discretization

approach in the previous chapter. These applications yield some interesting conclu-

sions on the different advantages of these methods. A discussion on the limitations of

this approach to solving optimal control problems and for re-entry trajectory control

in particular is included at the end of this chapter.
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5.1 Structure exploitation

We chose the nonsmooth Newton method for this exploration; however, any NLP al-

gorithm that involves solving a linear system in every iteration such as SQP or interior

point methods would benefit equally from this procedure. For convergence results on

the nonsmooth Newton method for fully discretized optimal control problems where

controls are only required to be of bounded variation, see [85].

We recall that the nonsmooth Newton method requires solving the system

V (Z) d = −F (Z), V (Z) ∈ ∂F (Z) (5.1)

in every iteration, where

F (Z) =



∇zL(z, λ, µ)

h(z)

ϕ(−g1(z), µ1)
...

ϕ(−gm(z), µm)


= 0, Z = (z, λ, µ) ∈ Rn+m+p, (5.2)

where ϕ is the Fischer-Burmeister function, the nonlinear problem is defined by f , g

and h as in (2.36)-(2.38), and L is its associated Lagrange function.

The Lagrange function associated to Problem 2.8, using a piecewise-linear control

approximation and the trapezoidal rule as in (2.34) and adding directly (2.35) if

present in the original (OCP), is given by

L(x, u, λ, µ, σ0, σf ) := φ(x0, xN) +
h

2
(f0(x0, u0) + f0(xN , uN)) + h

N−1∑
i=1

f0(xi, ui)

+
N∑
i=0

µ>i c(xi, ui) + σ>0 ψ0(x0) + σ>f ψf (xN)

+
N−1∑
i=0

λ>i (xi+1 − xi −
h

2
(f(xi, ui) + f(xi+1, ui+1))),

with multipliers λ := (λ0, ..., λN−1)> ∈ RnxN , µ := (µ0, ..., µN)> ∈ RncN , σ0 ∈ Rn0 and
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σf ∈ Rnf . The first order necessary KKT conditions read as

∇{x,u}L(x, u, λ, µ, σ0, σf ) = 0

xi+1 − xi −
h

2
(f(xi, ui) + f(xi+1, ui+1)) = 0, i = 0, ..., N − 1,

ψ0(x0) = 0,

ψf (xN) = 0,

c(xi, ui) ≤ 0, µi ≥ 0, µ>i c(xi, ui) = 0, i = 0, ..., N,

Applying the Fischer-Burmeister function and rearranging conveniently the equations

and the order of the variables, we obtain the nonsmooth equation:

F (Z̄) :=



ψ0(x0)

∇{x0,u0}L(x, u, λ, µ, σ)

ϕ(−c(x0, u0), µ0)

x1 − x0 − h
2
(f(x0, u0) + f(x1, u1))

∇{x1,u1}L(x, u, λ, µ, σ)

ϕ(−c(x1, u1), µ1)

x2 − x1 − h
2
(f(x1, u1) + f(x2, u2))

...

∇{xN ,uN}L(x, u, λ, µ, σ)

ϕ(−c(xN , uN), µN)

ψf (xN)



= 0, (5.3)

where

Z̄ = (σ0, x0, u0, λ0, µ0, x1, u1, λ1, µ1, ..., xN , uN , µN , σf )
>

and the Fischer-Burmeister function ϕ is applied component-wise. The generalized

Jacobians of F (Z̄) read as

∂F (Z̄) ⊆


Γ0 Ω0

Ω>0 Γ1
. . .

. . . . . . ΩN−1

Ω>N−1 ΓN

 (5.4)
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when defining the matrices

Γk :=

 Hk C>k F>k

−SkCk Tk 0

Fk 0 0

 , k = 1, . . . , N − 1,

Γ0 :=


0 Ψ0 0 0

Ψ>0 H0 C>0 F>0

0 −S0C0 T0 0

0 F0 0 0

 , ΓN :=

 HN C>N Ψ>N

−SNCN TN 0

ΨN 0 0

 ,

and

Ωk :=

 0 0 0

0 0 0

Gk 0 0

 , k = 1, . . . , N, Ω0 :=


0 0 0

0 0 0

0 0 0

G0 0 0


where, abbreviating L := L(x, u, λ, µ, σ0, σf ),

Hk :=

(
∇xkxkL ∇xkukL

∇ukxkL ∇ukukL

)
,

Ck :=
(
c′x(xk, uk) c′u(xk, uk)

)
,

(Sk, Tk) ∈ ∂ϕ(−c(xk, uk), µk), k = 0, . . . , N,

Fk :=
(
−Inx − h

2
f ′x(xk, uk) −h

2
f ′u(xk, uk)

)
,

Gk :=
(
Inx − h

2
f ′x(xk+1, uk+1) −h

2
f ′u(xk+1, uk+1)

)
, k = 0, ..., N − 1

Ψ0 :=
(
ψ′0(x0) 0

)
, ΨN :=

(
ψ′f (xN) 0

)
.

The rearrangement of variables and equations we performed yields a nice structure for

the block-banded matrix (5.4). Furthermore, its bandwidth and sparsity are mostly

determined by the structure of the matrices Fk that represent the derivatives of the dy-

namics f(x, u). Therefore, in the case these also exhibit a banded or sparse behavior,

this structure is particularly advantageous.

The linear system (5.1) solved in every iteration has the form

Md = ζ,
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where M is a large, block-banded and sparse matrix when N is large. One could

factorize the matrix directly with a linear solver that takes advantage of its banded

structure or sparsity (note that M is nonsymmetric); however, a block factorization

can be performed priorly to exploit the substructure of the blocks. We can define

M = UL =


I Ω0L

−1
1

. . . . . .

I ΩN−1L
−1
N

I




L0

Ω>0 L1

. . . . . .

Ω>N−1 LN


with LN = ΓN and

Lj = Γj − ΩjL
−1
j+1Ω>j , j = N − 1, . . . , 0. (5.5)

Thus, solving a linear equation of type Md = ζ can be done using forward-backward

substitution as follows:

(i) Solve Uy = ζ:

yN = ζN ,

yj = ζj − ΩjL
−1
j+1yj+1, j = N − 1, ..., 0

(ii) Solve Ld = y:

d0 = L−1
0 y0,

dj = L−1
j

(
yj − Ω>j−1dj−1

)
, j = 1, ..., N.

Therefore, performing this prior factorization and solving the system by forward-

backward substitution reduces the effort of solving the system to the factorization of

the Lj matrices, much smaller than M . Additionally, we can take advantage of the

possibly banded or sparse substructure of the block matrices that make up M (i.e. in

the case of discretized PDEs) by using structure-exploiting linear solvers to factorize

each Lj.

The reason why an UL factorization is preferred to a classic LU one in this case, being

U an upper triangular matrix and L a lower triangular matrix, is due to possible rank

defficiencies in the submatrices in the presence of initial conditions. An analogue

development attempting to obtain an LU factorization would require the matrix Γ0
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to be inverted as a first step in (5.5), and this matrix is bound to be rank defficient

in this case: the first and last block rows in Γ0 are(
0 Ψ0 0 0

0 F0 0 0

)
,

which despite Ψ0 ∈ Rn0×(nx+nu) and F0 ∈ Rnx×(nx+nu) having full rank, leads to

Γ0 having these two linearly dependent block rows and being singular. Therefore,

performing an UL factorization which requires inverting ΓN as a first step is a more

convenient option. The rank of ΓN also depends on the problem and the submatrices,

so it is not guaranteed to be invertible either, but it is under some assumptions (see

Corollary 2.2): for example, if the Hessian HN is positive definite (which can be

enforced by adding γI to HN , being γ > 0 a small but large enough constant), the

matrix CN has full rank, and there are no final boundary conditions, i.e. nf = 0.

This is the case for the PDE problems explored in the next sections. From this point

forward, when an LU factorization is mentioned, we refer to the UL factorization

described here.

5.2 Software implementation

In order to implement this methodology and explore its possibilities, a software pack-

age was implemented in C++ with two separate modules:

• An explicit derivative generator for optimal control problems using the free

computer algebra system GiNaC [9] to perform symbolic differentiation

• An optimization solver that implements the nonsmooth Newton method with a

linesearch globalization (Algorithm 2.5) and exploits the block-banded structure

from (5.4).

The discretization module derivGenerator works as an interface to GiNaC that gen-

erates a .cpp file in which all the functions from the optimal control problem and

their derivatives are written explicitly as methods of a class called OPCO. GiNaC uses

symbolic differentiation to provide explicit derivatives by application of the chain rule

and algebraic operations to the functions in the problem represented as symbolic ex-

pressions. Note that this method is limited to functions that can be represented in
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terms of elementary functions and algebraic operations, so it cannot be applied when

piecewise-defined functions are present, for example. The code writes first derivatives

of the objective function, dynamics and constraints needed to calculate ∇{x,u}L and

submatrices Fk, Gk, Ck, Sk and Tk, as well as their second derivatives in the form

of a method that calculates directly the Hessians Hk. Symbolic differentiation comes

with the advantage of accuracy provided by the exact explicit derivatives over other

numerical methods, such as finite differences. However, problems may arise since full

rank is not guaranteed for the Hessians, unlike with BFGS updates (see Section 2.1.1),

and it becomes crucial that the user provides a well-defined problem.

The main optimization module consists of a main class NLProblem with the following

members: an object of the class OPCO, that provides all the functions and derivatives

from the optimal control problem, a series of vectors that store all the aforementioned

submatrices, and the number of time nodes N and time step h = 1/N . The method

solveNLPNewton provides a solution to the fully discretized optimal control problem

using the nonsmooth Newton method for a certain initial point (z0, λ0). Notice that

it is not necessary to formulate the fully discretized problem, but only to call the

methods in OPCO to define and update the submatrices and the function F (Z̄) as

formulated in (5.3) in every iteration.

All the matrices are stored in a sparse matrix format defined in the class SpMatrix,

where only the row and column indices of each element and their values are stored in

three separate vectors. This means a great saving in memory since instead of the full

number of elements m×n, only 3×nz elements are stored, where nz is the number of

non-zero elements in the matrix. Some operations such as addition or multiplication

of matrices can become very costly on the other hand, but these were not needed in

our algorithms. It was necessary to implement other methods that in fact imply fewer

operations with the sparse format, such as transposition or multiplication by a vector.

Some sparse linear solvers also require for the matrix to be converted to Compressed

Colum (CC) format, which can save even more memory as it requires storing even

fewer elements, but makes it more complex to manipulate matrices.

A high-level diagram of these main classes in the optimization module, their members

and methods, and the external components is depicted in Figure 5.1.
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Figure 5.1: Diagram of nonlinear optimization software

We selected two linear solvers that exploit the structure of linear system (5.1): MA48

[31] from the HSL Mathematical Software Library for sparse nonsymmetric systems,

and subroutine dgbsv from the LAPACK library [5] for banded matrices. The purpose

of the test is to compare four different approaches, namely:

(L1) Solving the linear system directly with dgbsv.

(L2) Solving the linear system directly with MA48.

(L3) Solving the linear system by forward-backward substitution after block LU fac-

torization, using dgbsv to solve the subsystems.

(L4) Solving the linear system by forward-backward substitution after block LU fac-

torization, using MA48 to solve the subsystems.

The first task that arises is to compare these approaches and decide which one per-

forms more efficiently in terms of computational time, which is done in the next section

on a quadratic benchmark problem. However, further tests have revealed that there

might be different advantages and disadvantages for each approach, depending on the

problem at hand. From the point of view of implementation, it is worth mentioning

that:

86



5.3 Quadratic PDE benchmark problem

• The sparse solver MA48 allows for the matrices to be provided in sparse format,

while dgbsv requires a transformation into a banded format (all the elements

from the diagonals are stored in a vector), which can result in a larger memory

requirement if the number of diagonals is not small.

• The LU decomposition requires for a larger number of smaller subsystems to be

solved forward and backward. Ideally, these could be solved in parallel, but it

would require a more complicated implementation.

All the following tests have been performed on an Intel Core i7-8565U, 4 × 1.80 GHz

processor.

5.3 Quadratic PDE benchmark problem

In order to test our implemented full discretization approach and nonsmooth New-

ton method, and to compare the described structure and substructure-exploiting ap-

proaches to solving the linear system (5.1) in every iteration, we formulated the fol-

lowing benchmark quadratic problem adapted from [11] involving a two-dimensional

heat equation with a constant controlled temperature at the edge u(t) over a squared

surface [0, H]× [0, H] (see Figure 5.2):

Problem 5.1. Minimize

∫ tf

t0

∫ H

0

∫ H

0

(T (x, y, t)− Ta)2 dx dy dt+

∫ tf

t0

γu(t)2 dt
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w.r.t. u(t), subject to the constraints

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
T (x, 0, t)− λ∂T

∂y
(x, 0, t) = u(t), (C1)

T (0, y, t)− λ∂T
∂x

(0, y, t) = u(t), (C2)

∂T

∂x
(H, y, t) = 0, (C3)

∂T

∂y
(x,H, t) = 0, (C4)

T (x, y, 0) = T0,

0 ≤ T (x, y, t) ≤ Tmax,

0 ≤ u(t) ≤ umax,

for all t ∈ [t0, tf ], (x, y) ∈ [0, H]× [0, H].

x

y

0
0

H

H

(C1)

(C2)

(C4)

(C3)

Figure 5.2: Spatial domain for Problem 5.1 with boundary constraints (C1)-(C4)

The goal is for the temperature to be as close as possible to the constant temperature

Ta over the whole domain and time interval, and a control regularization term with a

small constant γ > 0 is added to the objective function. This can help to guarantee the

full rank of the Hessians. We apply the method of lines from Section 2.3.3 to transform

this PDE optimal control problem into an ODE one: We perform a spatial finite-

difference discretization based on an uniform grid over the spatial domain [0, H] ×
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[0, H]:

xi = i∆x, i = 0, 1, ...,mx, ∆x = H/mx,

yj = j∆y, j = 0, 1, ...,my, ∆y = H/my,

and defining Tij(t) = T (xi, yj, t), we obtain an approximation of the PDE as the

system of ODEs

∂Tij
∂t

(t) =
α

∆x2
(Ti,j−1 − 2Tij + Ti,j+1) +

α

∆y2
(Ti−1,j − 2Tij + Ti+1,j),

i = 0, ...,mx, j = 0, ...,my,

completed by using the discretized boundary conditions to approximate the values

outside of the domain using central differences as in (2.53):

Ti,my+1 = Ti,my−1, Ti,−1 =
2∆x

λ
(u(t)− Ti0) + Ti1, i = 0, ...,mx,

Tmx+1,j = Tmx−1,j, T−1,j =
2∆y

λ
(u(t)− T0j) + T1j, j = 0, ...,my.

With this discretization, the objective function becomes∫ tf

t0

mx∑
i=0

my∑
j=0

wivj(Tij(t)− Ta)2 + γu(t)2 dt,

where

wi = ∆x

0.5, if i = 0 or i = mx

1, otherwise,
vj = ∆y

0.5, if j = 0 or j = my

1, otherwise.

The structure and substructure of the linear problem following the discretization and

rearrangement procedures presented in Section 5.1 is depicted in Figure 5.3 for a small

spatial grid size of 4 × 4 and 10 time nodes, for better visualization. As observed in

Section 5.1, the structure of the matrix Vk is banded and sparse, due to the full

discretization approach. The substructure of each Γi, i = 0, ..., N that composes Vk

is banded and sparse as well, due to the use of the method of lines to discretize the

PDE as presented in (2.61).

For our test example, we chose Ta = 0.2, α = 1.0, λ = 0.5, t0 = 0, tf = 2, H = 1.0,

T0 = 0, Tmax = 0.7, γ = 10−8 and umax = 1.0. We tested the four approaches to
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5 Full discretization with structure exploitation

Figure 5.3: Matrix and submatrix structure for Problem 5.1: Vk and Γ0 with mx = 8,

my = 8, N = 10.

solving the linear system in Section 5.2, (L1)-(L4), with different cases of spatial grid

points (mx×my) and time nodes (N). The feasibility and optimality tolerances were

set to 10−8, and all methods produced the same solution in the same number of global

iterations in each case.

The computational results are shown in Table 5.1, as well as the linear system size

(LS size) of the system (5.1) that needs to be solved in every iteration that varied

from around 5000 to almost 50000.

Despite the size of the linear systems being of the same order, increasing spatial grid

points yields a more complex matrix structure than increasing time grid points and

therefore, requires a higher effort. This is visible by comparing the times for each row

in the table. Furthermore, it seems likely that MA48 might not be the best choice

for solving the problem directly, but comparing approaches (L2) and (L4), it is clear

that the forward-backward substitution method offers a vast improvement when using

MA48.

In the case of the subroutine dgbsv from LAPACK, approach (L3) performed slightly

worse than approach (L1). This is probably due to LAPACK already being able to

deal with big, complex matrices very efficiently, compensating for the slight extra effort

of performing the forward-backward substitution as in approach (L3). In conclusion,

approaches (L1) and (L4) were the best performers, and the obtained computational
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mx ×my N LS size
Total CPU time

(L1) (L2) (L3) (L4)

4 × 4 50 5253 1.13 s 7.66 s 1.48 s 1.50 s

8 × 8 50 16677 10.35 s 311.19 s 12.51 s 8.38 s

12 × 12 50 34629 195.43 s 4875.85 s 232.60 s 125.49 s

8 × 8 50 16677 10.35 s 311.19 s 12.51 s 8.38 s

8 × 8 100 33027 49.94 s 1484.30 s 49.51 s 36.17 s

8 × 8 150 49377 45.66 s 3488.94 s 55.19 s 37.28 s

mx ×my N LS size
Time/iteration

(L1) (L2) (L3) (L4)

4 × 4 50 5253 0.07 s 0.51 s 0.10 s 0.10 s

8 × 8 50 16677 0.86 s 25.93 s 1.04 s 0.70 s

12 × 12 50 34629 8.14 s 211.99 s 9.69 s 5.23 s

8 × 8 50 16677 0.86 s 25.93 s 1.04 s 0.70 s

8 × 8 100 33027 2.77 s 82.46 s 2.75 s 2.01 s

8 × 8 150 49377 3.26 s 249.21 s 3.94 s 2.66 s

Table 5.1: Computational results for Problem 5.1

Figure 5.4: Solutions to Problem 5.1 for mx = 8, my = 8, N = 100

times seem to increase at a slower pace with these two approaches than with the rest

when increasing the numbers of spatial and time nodes.
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The solution is depicted in Figure 5.4 for mx = 8, my = 8 and N = 100 and two

regularization parameters: γ = 10−8 and γ = 10−2. Following the disussion in ([41],

Section 7.1.1), when a control appears linearly in an optimal control problem, we can

either get a bang-bang solution (i.e. the control switches from upper to lower bound)

or a singular control. This behavior is defined by the switching function, defined for

(OCP) as

Γ(x, λ) = λ>f ′u(x, u). (5.6)

Note that if u appears linearly in f(x, u), then f ′u(x, u) depends only on x. In that

case, we have that the optimal control u∗ follows

u∗(t) =


umin if Γ(x∗(t), λ∗(t)) > 0,

umax if Γ(x∗(t), λ∗(t)) < 0,

undefined if Γ(x∗(t), λ∗(t)) > 0,

(5.7)

Figure 5.5: Switching functions for Problem 5.1 for mx = 8, my = 8, N = 100

The obtained switching functions, plotted in Figure 5.5, suggest a bang-singular-bang

structure when γ = 0, where the control is at its upper bound at the first time node

and at its lower bound at the last one, with a singular arc in between. While the middle

values of the switching function are not exactly at 0 by a small margin between 10−6
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and 10−4, due most likely to small numerical errors, it is clear that they are centered

very close to 0, and the lowest or most negative value is at the first node while the

highest is at the last one. Therefore, the oscillations in the solution when γ is close to

0 can be expected since there is no convergence analysis on what happens in singular

arcs, although there are techniques to better deal with this type of solutions [134].

This serves as well to highlight the importance of the Hessians being positive definite

for the performance of the optimizer: with γ = 10−8, the matrix is quasi-singular,

which produces a much more irregular solution than in the case of γ = 10−2. This

can be appreciated as well in the profile of the switching functions for each solution.

The multipliers associated to the discretized dynamic constraints for each state, λi(t)

for i = 0, ...,mx ·my, are depicted in Figure 5.6. Since the states and control bound

constraints are inactive almost everywhere in the solution, their associated multipli-

ers µ are constantly 0 almost everywhere due to the complementarity condition (2.7).

These are the discrete multipliers as described by the discrete local minimum prin-

ciple in Chapter 2 and interpreted thereafter as discrete versions of their continuous

counterparts in (OCP).

Figure 5.6: Multipliers for Problem 5.1 for mx = 8, my = 8, N = 100
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5.4 Nonlinear PDE problem

We increase the complexity of the problem by considering the following nonlinear

optimal control problem from [47, 107] with a slight variation for the controls. The

goal is to obtain a certain temperature trajectory over a given rectangular domain

[0, xmax]× [0, ymax]. The PDE includes now a non-linear source term S(T ) given by

S(T ) = Smaxe
−β1/(β2+T ),

for some specified Smax, β1, β2 ≥ 0. The objective is for the temperature to follow a

specified trajectory τ(t), t ∈ [t0, tf ], in a sub-domain Ω = [x0, xmax]× [y0, ymax], where

0 < x0 < xmax, 0 < y0 < ymax. The controls are now different for each sides of the

domain and depend on the spatial variables as well: u1(t, x) and u2(t, y). The optimal

control problem is formulated as

Problem 5.2. Minimize∫ tf

t0

∫
Ω

(T (x, y, tf )− τ(t))2 d(x, y) dt+∫ tf

t0

∫ xmax

0

γu1(t, x)2 dxdt+

∫ tf

t0

∫ ymax

0

γu2(t, y)2 dydt

w.r.t. u1(t, x), u2(t, y), subject to the constraints

∂T

∂t
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ S(T ),

T (x, 0, t)− λ∂T
∂y

(x, 0, t) = u1(t, x),

T (0, y, t)− λ∂T
∂x

(0, y, t) = u2(t, y),

∂T

∂x
(xmax, y, t) = 0,

∂T

∂y
(x, ymax, t) = 0,

T (x, y, 0) = T0,

0 ≤ T (x, y, t) ≤ Tmax,

0 ≤ u1(t, x) ≤ umax,

0 ≤ u2(t, y) ≤ umax,

for all t ∈ [t0, tf ], (x, y) ∈ [x0, xmax]× [y0, ymax].
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x

y

0
0

xmax

ymax

x0

y0

Ω

Figure 5.7: Spatial domain for Problem 5.2 with sub-domain Ω

The same space discretization methodology applied to the previous problem can be

applied here, including the source term S(T ) in the ODE system and discretizing the

controls u1(t, x), u2(t, y) along their spatial dimension as well, generating a series of

controls discretized in space:

u1i(t) := u1(t, xi), i = 0, ...,mx,

u2j(t) := u2(t, yj), j = 0, ...,my.

Note that the number of control functions as they would appear in the ODE system

discretized in space is (mx + 1) + (my + 1), and it increases with every increase in the

number of spatial nodes.

The discretized boundary conditions are reformulated again to obtain the values out-

side of the boundary as follows:

Ti,−1 =
2∆x

λ
(u1i(t)− Ti0) + Ti1, i = 0, ...,mx,

T−1,j =
2∆y

λ
(u2j(t)− T0j) + T1j, j = 0, ...,my.

For this test, we use the constants λ = 0.5, α = 1.0, Smax = 0.5, β1 = 0.2, β2 = 0.05,

T0 = 0, Tmax = 0.7, γ = 10−3, umax = 1.0, and the boundaries for the domains

t0 = 0, tf = 2, xmax = 0.8, ymax = 1.6, x0 = 0.6, y0 = 0.6. The desired temperature
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trajectory is defined by

τ(t) =



0, 0 < t ≤ 0.2

1.25(t− 0.2), 0.2 < t ≤ 0.6;

0.5, 0.6 < t ≤ 1.0;

0.5− 0.75(t− 1.0), 1.0 < t ≤ 1.4;

0.2, 1.4 < t ≤ 2.0.

Case mx ×my N Number of Number of LS

states nx controls nu size

1 8 × 8 50 81 18 19278

2 12 × 12 50 169 26 38454

3 16 × 16 50 289 34 64158

4 20 × 20 50 441 42 96390

5 8 × 8 100 81 18 38178

6 8 × 8 200 81 18 75978

7 8 × 8 300 81 18 113778

8 8 × 8 400 81 18 151578

Table 5.2: Problem size for test cases on discretized Problem 5.2

We used approaches (L1) and (L4) from the last subsection, since they proved to be

the most efficient for the quadratic problem, and a feasibility and optimality tolerance

of 10−6. Note that due to the nonlinearity of the problem, it is required to provide first

derivative and Hessian values in every iteration to define the linear system (5.1) in the

nonsmooth Newton method (in the quadratic case, the derivatives remain constant),

which are provided by the symbolic differentiation module.

We experimented once again with several cases for the number of space and time

discretization nodes, this time trying to test the capacity of the solvers even further.

Table 5.2 shows an overview of the sizes of resulting optimal control problems after

space discretization, as well as the sizes of resulting NLPs after time discretization.

It is worth mentioning that while the grid sizes might not seem too large, going up to

20 × 20, the number of the optimal control problem states and controls increases to

values that would pose a challenge to any standard solver.
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Case mx ×my N CPU time CPU time Objective Iterations

approach (L1) approach (L4) function

1 8 × 8 50 16.71 s 7.81 s 7.41 ×10−4 11

2 12 × 12 50 120.65 s 57.80 s 8.99 ×10−4 11

3 16 × 16 50 542.05 s 220.18 s 1.18 ×10−3 10

4 20 × 20 50 1602.94 s 790.79 s 1.38 ×10−3 10

5 8 × 8 100 38.02 s 19.63 s 7.38 ×10−4 12

6 8 × 8 200 80.45 s 42.40 s 7.28 ×10−4 13

7 8 × 8 300 137.35 s 69.72 s 7.27 ×10−4 14

8 8 × 8 400 182.61 s 95.32 s 7.27 ×10−4 14

Table 5.3: Computational results for Problem 5.2

Figure 5.8: Computational times for Cases 1-4 and for Cases 5-8

Computational results and objective function values can be found in Table 5.3. Once

again, the effect of increasing the grid size in Cases 1-4 yields higher CPU times than

increasing the number of time points in Cases 5-8. This effect is clearly depicted

in Figure 5.8: when incrementing the number of spatial nodes, the computational

times grow in a superlinear manner, whereas when incrementing the number of time

nodes, they grow linearly. It is also interesting to notice that the computational times
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Figure 5.9: Solution for Case 5: mx = 8, my = 8, N = 100

using approach (L1) were around twice as large as using approach (L4), which is why

the halved times for approach (L1) are also plotted for comparison. Furthermore,

the performance in terms of objective function values is also slightly affected by the

increases in the spatial nodes, which is not the case when the time nodes are increased,

see again Table 5.3.

For reference and comparison, in [47, 107] a simpler version of this problem with a

single control is solved with a modified multiple shooting method. For a grid size

of 16 × 16 as in Case 3 and 60 time nodes, this method required 6283 seconds of

computation time. While one-on-one comparisons cannot be made due to other vari-

ables that can affect the CPU times, the 220 seconds that approach (L4) took for

Case 3 and given the added complexity of the problem considered here gives further

proof that full discretization with structure exploitation offers a vast advantage in

efficiency compared to reduced discretization approaches with solvers for small and

dense problems.

The control and the temperature obtained at the nodes in Ω against the target tra-

jectory τ(t) can be seen in Figure 5.9 for Case 5. Following the notation from Section
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Figure 5.10: Multipliers for dynamic constraints for Case 5: mx = 8, my = 8, N = 100

Figure 5.11: Multipliers for box constraints for Case 5: mx = 8, my = 8, N = 100
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5.1, the multipliers associated to the discretized dynamic constraints for each state,

λi(t) for i = 0, ...,mxmy, are depicted in Figure 5.10. As for the box constraints on

the temperature and the control, 0 ≤ Tij(t) ≤ Tmax for i = 0, ...,mx, j = 0, ...,my, and

0 ≤ u(t) ≤ umax, they are mostly inactive except for one interval in which the controls

are at their lower bound 0. Given that the multipliers µi(t) for i = 1, ..., 2(mxmy + 1)

are constantly at 0 wherever the constraints are inactive due to the complementar-

ity conditions, we depict only the non-zero multipliers in Figure 5.11 and their as-

sociated constraint functions, the only ones that do become active at some point:

−uj(t) ≤ 0, j = 1, ..., nu, scaled for a better visualization of the complementarity

between the functions and the multipliers.

From this test, we can conclude that our implemented methodology is capable of

dealing with nonlinear problems and a large number of controls without a significant

deterioration in the computational times for both approaches (L1) and (L4). We

can also observe that an increase in the number of spatial nodes can result in a

computational challenge for these algorithms, but an increase of the number of time

nodes does not present major changes in their performance or efficiency.

5.5 Re-entry temperature control problem

As previously mentioned, an accurate representation of the heating over the surface

of a vehicle during re-entry requires CFD simulations or experimental data. We can

however produce an artificial model to obtain a possible heating evolution by extending

the heating values obtained for an optimal trajectory in the previous chapter along

the surface of a re-entry capsule. The purpose here is to test the efficiency of our

method in a possible re-entry scenario with a PDE optimal control problem. Hence, we

consider the two-dimensional heat equation from (3.21) for the heat transfer through

a transversal laminar section of the TPS from the stagnation point:

ρTPS cp,TPS
∂T (t, x, y)

∂t
= λTPS

(
∂2T

∂x2
(t, x, y) +

∂2T

∂y2
(t, x, y)

)
, (5.8)

for (t, x, y) ∈ [0, tf ] × [0, Dx] × [0, Dy]. Boundary conditions are defined as in (3.23)-

(3.26), with Tcool(t, x) as control. Due to the challenges that a coupled re-entry tra-

jectory problem posed for this method, which are discussed in the next section, we

100



5.5 Re-entry temperature control problem

Figure 5.12: Input external heating q̇ext(t) from optimal trajectory in Section 4.3

used the external heating values from the optimal trajectory calculated for Solution

1 of Section 4.3 directly as an input to the heat equation, that is, from (3.11) and

(3.15):

q̇ext(t, x) := (1− rx)kE

√
ρ(h(t))

RN

v(t)3 + εσTair(h(t))4, (5.9)

where h(t), v(t) and tf are the ones obtained for said optimal trajectory, see Figure

5.12 for a representation of q̇ext(t).

A schematic representation of the discretized domain and the external and internal

cooling heat flux is depicted in Figure 5.13, with q̇ext(t, x) as defined in (5.9) and

q̇cool(t, x) from (3.27).

We follow now the method of lines through the development of [27, 136] to discretize

the equation and include a radiation term based on the Stefan-Boltzmann law (3.15)

to model the vertical radiative propagation of heat through the layers of the TPS.

With the same spatial grid as in the previous problem, we express the discretized
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Stagnation point

q̇ext(t, x)

q̇cool(t, x)

Tij

y

x

Figure 5.13: 2D section from the stagnation point with external and cooling heat flux

derivatives as:

qxij(t) = λTPS

(
Ti−1,j(t)− Tij(t)

δx

)
, (5.10)

qyij(t) = λTPS

(
Ti,j−1(t)− Tij(t)

δx

)
+ εσ(Ti,j−1(t)4 − Tij(t)4), (5.11)

i = 0, ...,mx, j = 1, ...,my − 1.

Taking into account the boundary conditions (3.23) and (3.24), where the controls are

involved in q̇cool (see (3.27)), we have

qyi0(t) = q̇ext(t, xi)− εσT 4
i0, (5.12)

qyi,my(t) = q̇cool(t, xi)− εσTiM(t)4, i = 0, ...,mx (5.13)

and from (3.26),

T−1,j = T1,j, Tmx+1,j = TN−1,j, j = 0, ...,my (5.14)

Hence, we obtain as ODE system:

ρTPS cp,TPS
∂Tij
∂t

(t) =
1

δx

(
qxij(t)− qxi+1,j(t)

)
+

1

δy

(
qyij(t)− q

y
i,j+1(t)

)
i = 0, ...,mx, j = 0, ...,my. (5.15)
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Note that the addition of the radiative heat flux in (5.11) makes these dynamics

nonlinear for all Tij(t), increasing the complexity of the problem. We approximate as

well the controls with the discretization Tcool(t, xi) ≈ ui(t), i = 0, ...,mx, which yields

a collection of mx + 1 controls. As explained in Section 3.4, the goal is to maintain

the coolant temperature ui(t) as high as possible, which is equivalent to minimizing

the sum of all (ui(t)−Tcool,max)2. Apart from lower and upper bounds on the controls,

we require that the temperature at the inner nodes Ti,my is within certain boundaries

Tin,min and Tin,max. We only require this at the inner nodes since the external heating

values are already prescribed by the optimal trajectory we obtained in Section 4.3.

Its high values make it hard to control the temperature of the whole surface, except

for the inner nodes that are closer to the cooling system. Taking all these elements

into account, the semi-discretized optimal control problem is formulated as

Problem 5.3. Minimize ∫ tf

t0

mx∑
i=0

(ui(t)− Tcool,max)2 dt

w.r.t. ui(t), i = 0, ...,mx, subject to the constraints

ρTPS cp,TPS
∂Tij
∂t

(t) =
1

δx

(
qxij(t)− qxi+1,j(t)

)
+

1

δy

(
qyij(t)− q

y
i,j+1(t)

)
,

Tin,min ≤ Ti,my(t) ≤ Tin,max,

Tcool,min ≤ ui(t) ≤ Tcool,max,

for all t ∈ [0, tf ], i = 0, ...,mx,, j = 0, ...,my.

We summarize the constants and chosen parameters for this test in Table 5.4. All

constants related to heat transfer are obtained from [80, 136], once again with the

intention of reproducing the case of the Apollo capsule using realistic values. The

remaining constants and quantities involved in (5.9) are as defined for the calculation

of q̇ext(t, x) in Section 4.3.

We chose mx = my = 10, which produces a grid of 121 space nodes, and N = 200

as number of time nodes, which results in a discretized nonlinear problem with 26532

variables and a linear system size of 59697 in the application of the nonsmooth Newton

method. Note that these choices are among the largest within the cases studied in

the previous section. The feasibility and optimality tolerance were both set to 10−6.
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Constant Value Constant Value

ρTPS 528.6 kg/m3 tf 740.54 s

cp,TPS 2742.35 J / kg K Dx 0.8 m

λp,TPS 0.242 W / K m Dy 0.07 m

αq 35 J / m2 s K Tin,min 200 K

ε 0.8 Tin,max 400 K

σ 5.67 ·10−8 J / m2 s K4 Tcool,min 14 K

r 0.03 Tcool,max 300 K

Table 5.4: Constants and parameters for Problem 5.3

Both approaches (L1) and (L4) were used again to solve the problem, and, despite

(L4) being the front-runner in terms of efficiency so far, in this case approach (L1)

proved to be a better option. The reason is that this problem has a lower number of

constraints since only the temperature at the inner nodes is bounded, unlike in the

previous test problems where all the temperature functions were constrained. Hence,

we have a substructure with a much lower number of subdiagonals for this case, which

is a big advantage for the LAPACK subroutine for banded matrices that is used in

approach (L1). This results in approach (L1) being able to solve the large linear

system in every iteration in around 3 seconds, much faster than approach (L4) which

needed around 10 seconds.

Besides the big difference in efficiency, some complications were encountered with

approach (L4) involving the convergence of the method. Due to the larger number of

time nodes and the higher complexity of this problem, approach (L4) failed to find

a solution and despite managing to reach a fairly low value of the merit function, it

was not able to reach the value of the optimality tolerance. This is likely due to the

higher numerical errors produced by this approach as opposed to solving the system

directly. With the forward-backward substitution, any numerical error is dragged and

amplified when solving every subsystem, and this effect is particularly worsened when

the number of subsystems is large, i.e. when the number of time nodes N is large.

Therefore, in terms of achieving convergence, approach (L1) can also be a better

option in some cases.

For all of these reasons, we can extract the insight that the best approach both in terms
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of convergence and efficiency depends on the problem at hand. As our goal was to

validate our method, test our approaches and try to solve a re-entry heating problem

with this methodology, experimentation with more problems is out of the scope of this

work. However, there should be interesting outcomes from the application of these

approaches to different problems.

Figure 5.14: Solution of Problem 5.3

The problem was solved by approach (L1) in 270.79 s, after 69 iterations. The solution

is depicted in Figure 5.14: the temperatures for the different layers j = 0, ...,my−1 are

depicted in a red-to-black gradient, the constrained inner temperatures Ti,my in green,

and the controls in blue. The bounds on the controls and the upper bound on inner

temperatures Ti,my are also plotted. Despite the efforts made for a clear representation

of the solution, the temperatures are unfortunately not easy to distinguish from one

another since their values overlap; however, it can be noticed that there are several

distinct layers which represent the temperatures Tij, i = 0, ...,mx for all nodes at a

certain depth yj in the TPS. Within each layer, it can be noticed that the temperatures

vary within a lower and upper bound. The highest temperature evolution in each layer

corresponds to the spatial node in that layer closer to the stagnation point, and the

lowest temperature to the furthest from the stagnation point, as it could be expected.

We can clearly see that there is a first time arc during which the temperature rises
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and reaches almost 1500 K in the exterior, and there is a quick decrease thereafter

and until the end of the time interval (this reproduces the behavior of the prescribed

external heating, see Figure 5.12). During the first time arc, the controls or cooling

temperatures are used to lower the temperature of the inner nodes to keep it from

rising over the upper boundary Tin,max = 400 K. It can also be noticed that some of

the controls are at their lower bound of 14 K for a longer time period than others:

this depends once again on which horizontal node they correspond to and its distance

to the stagnation point. The ones closer to the stagnation point suffer a higher heat

load and therefore, they need more cooling.

Figure 5.15: Multipliers λi for dynamic constraints of the discretized Problem 5.3

106



5.5 Re-entry temperature control problem

Figure 5.16: Multipliers for state box constraints of the discretized Problem 5.3

Figure 5.17: Multipliers for control box constraints of the discretized Problem 5.3
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It is also worth noticing that in the latter part of the time interval, when the external

heating is lower, all the controls return to their maximum boundary, which means that

the cooling system does not need to be activated and is therefore ”deactivated” by

setting the controlled cooling temperatures to their highest bound. In fact, the inner

temperatures decrease at the end with no effect from the cooling system. Hence, this

solution provides the minimum decrease in the cooling temperatures in order to keep

the temperature at the inner nodes below their upper boundary, which corresponds

as well to the minimum use of coolant, as explained in Section 3.4.

The discretized Lagrange multipliers λi, i = 0, ...,mxmy are depicted in Figure 5.15,

separated between the external, middle and interior layers for better visualization

(notice the differences in the scales on the y-axis) and following the same color code

as in Figure 5.14 for a better association to their corresponding temperature states.

The jumps in some of them are likely due to the state constraints Ti,my(t) ≤ Tin,max

becoming active. As for the multipliers associated to the box constraints µi, we

depict once again only those that become non-zero at some point: those associated to

the box constraints on the states Ti,my ≤ Tin,max in Figure 5.16 and on the controls

Tcool,min ≤ ui in Figure 5.17. Once again, the dynamics of the states are recognizable in

their corresponding multipliers and the complementarity conditions are clearly being

satisfied by the box constraints and their associated multipliers, as expected from the

interpretation of the discrete local minimum principle in Section 2.3.

Finally, we include the values of the merit function Θ(Zk) (2.15) and the step-size

αk (see Algorithm 2.5) for each iteration k in Figure 5.18 in order to depict the

superlinear convergence of the method established by Theorem 2.4. Despite the large

merit function value for the initial guess (around 2 · 105), the method manages to

eventually reach a very fast convergence, as can be observed in the last iterations.

5.6 Discussion of results and limitations

It was made clear in the last chapter that a reduced discretization approach with

a solver such as OCPID-DAE1 is easily able to solve a coupled ODE-PDE re-entry

trajectory problem, as long as not many controls are involved. It was not the case in

the problems we considered in Section 4.3, with only two controls for the trajectory
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Figure 5.18: Progress of the nonsmooth Newton method on Problem 5.3

governing both the aerodynamics in the ODE system and the temperature variables

in the PDE. However, when we consider PDEs in two (or more) dimensions where the

controls depend on the spatial variables as well, the number of controls can increase

after spatial discretization. Since OCPID-DAE1 uses a linear solver for small, dense

problems, it can run into problems when the number of controls is large.

To illustrate this issue, we show in Table 5.5 a comparison between the computational

times for OCPID-DAE1 and approaches (L1) and (L4) with some of the smallest

nonlinear PDE problem cases from Section 5.4. All the methods ran for the same

number of iterations, which was the number of iterations that approaches (L1) and

(L4) took to converge for each case, between 10 and 13. Besides the clear disadvantage

in the computational times and their rapid growth even when the time nodes are

increased for the same problem, OCPID-DAE1 did not manage to converge after

1000 iterations for any of the cases.
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mx ×my N
Full discretization OCPID-DAE1

LS size CPU time (L1) CPU time (L4) LS size CPU time

4 × 4 50 6630 1.19 s 1.05 s 500 18.60 s

4 × 4 100 13130 2.32 s 2.02 s 1000 46.23 s

8 × 8 50 19278 16.71 s 7.81 s 900 171.82 s

8 × 8 100 38178 38.02 s 19.63 s 1800 436.16 s

Table 5.5: Computational times for Problem 5.1 with approaches (L1), (L4) and

OCPID-DAE1

However, it should also be mentioned that our full discretization with a nonsmooth

Newton method strategy did not converge either when trying to find solutions to

re-entry trajectory problems. The cause of this seems to be the high nonlinearity of

these problems and the ill-conditioned matrices they yield in every iteration. In fact,

optimal control re-entry problems with heating as a constraint or objective function

are considered as examples of ill-conditioned systems to test modified Newton methods

in [14, 26]. According to [26, 121], for ill-conditioned problems, the Newton direction

and the steepest-descent direction of the merit function (2.15) are almost orthogonal,

which leads to very small stepsizes and an extremely slow convergence.

We reproduced this slow and stagnated convergence behavior while trying for solving

a simple re-entry trajectory problem with a coupled PDE and minimizing the heating,

as the one solved in Section 4.3. We show the behavior through this example, but

it is also reproduced in different scenarios and variations of the problem. It ran for

55 iterations and stopped when stepsize α reached a value under the set threshold of

10−9, see in Figure 5.19 the evolution of the merit function Θ(Z), the stepsize α and

the matrix condition number calculated with Matlab:

cond(A) = ‖A‖ ·
∥∥A−1

∥∥ (5.16)

Some effors to improve the convergence have been made with the introduction of so-

called natural level functions in [14], and a modified Newton method that includes a

regularization of the merit function (2.15) in [72] as explained in Chapter 2 solving

the system

(V >k Vk + νkI)d = V >k F (Zk) (5.17)
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Figure 5.19: Progress of the original and modified nonsmooth Newton method on a

fully discretized re-entry problem

instead of (5.1), where νk = min{Θ(Zk),
∥∥∇Θ(Zk)

∥∥}. This new system can be more

dense and have more diagonals than the original one, which can considerably affect

the performance of the considered linear solvers. It was clear in our test that the

computational times increased due to this factor and the need to calculate the product

V >k Vk in every iteration.

The progress in the convergence function for this modified Newton method for the

first 55 iterations is also depicted in Figure 5.19: there was an initial improvement

shown in a rapid decrease of the merit function in the first 20 iterations. However, the

progress stagnated afterwards and didn’t manage to reach the convergence criteria

either after 1000 iterations with the same tendency. This behavior is consistent with

the one from the unmodified method given that the parameter νk that modifies the

linear system depends on the value of the merit function Θ(Zk), and both methods are

the same when νk = 0. Therefore, we can see clearly that when Θ(Zk) reaches lower

values, the condition number and stepsize have a similar behavior for both methods.

Moreover, from a theoretical point of view, superlinear convergence with this modi-

fication (or without it) is not guaranteed by the results in [72] when non-singularity

cannot be assumed for the generalized Jacobian V ∗ ∈ ∂F (Z∗) at the accumulation
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point Z∗ generated by this method. In Figure 5.19 we can see that the modified

method tries to converge to a point with a very high condition number cond(V ∗), and

the very high condition numbers of cond(Vk) in the last iterations mean that these ma-

trices are nearly singular, which suggests V ∗ could be singular or very ill-conditioned.

Another challenge is that practical problems are often large, highly nonlinear and ill-

conditioned and therefore exhibit a small neighborhood of convergence [121], which

leads to the problem of finding a close enough starting point. An integrated, feasible

solution was used for these problems, but it seems it was not a good enough initial

guess to reach convergence. Due to the complexity of our re-entry trajectory problems,

this is not a trivial task and it can be a time consuming extra step, which defeats our

purpose of finding efficient methods to solve these problems.

Therefore, we can conclude that a full discretization approach with the nonsmooth

Newton method is not the best option for re-entry trajectory problems, but it can

be useful and efficient to solve large-scale and discretized PDE optimal control prob-

lems in the context of re-entry. Since OCPID-DAE1 can fail when trying to solve

these problems but it can find solutions for re-entry trajectory problems robustly and

efficiently, these two approaches complement each other well.
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This thesis studies different discretization methods and nonlinear optimization al-

gorithms for optimal control problems, including the implementation of a structure

exploitation methodology for fully discretized optimal control problems, with an ap-

plication to minimizing heating during atmospheric re-entry.

First, we presented an overview of the basic concepts and results of nonlinear opti-

mization, and expanded on two types of algorithms to solve general nonlinear prob-

lems: SQP methods and nonsmooth Newton methods. Local and global algorithms

and results on both local and global convergence were recalled. As one of the major

drawbacks in the numerical application of these methods, the solvability of the linear

system yielded by each of the methods was discussed and some sufficient conditions

were presented. Then, we focused on optimal control theory, presenting the necessary

conditions of the local minimum principle for general ODE optimal control problems

with mixed control-state constraints, and discussing the numerous approaches to solv-

ing optimal control problems. The direct discretization approaches that are the basis

of the metodologies applied in this thesis are presented in detail. In particular, a

version of the discrete local minimum principle presented in [41] for general one-step

methods is described for the full discretization method. Finally, the method of lines

to obtain semidiscretized PDEs is explained in detail, and the sparsity of the yielded

ODE systems after discretization is depicted.

Before applying the described methodologies, a compilation of all the models required

to pose different re-entry problems was described in Chapter 3. Some approximations

to the US Standard Atmosphere of 1976 were considered to obtain air temperature

and pressure values, needed to calculate the aerodynamic forces and external heating.

Lift and drag were calculated with two different models based on the vehicle consid-

ered for each scenario: one for the German Sänger concept, and one for the Apollo
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capsule. Due to the infeasibility of using high accuracy simulations to calculate ex-

ternal heating, the Sutton-Graves formula was used to calculate convective heat flux,

the Stefan-Boltzmann law was used to calculate radiative heat flux, and the temper-

ature of the TPS was calculated with a standard heat equation. An active cooling

system was also considered for the problem of minimizing coolant usage under certain

temperature constraints, as defined in Chapter 5. Finally, a parametric shape model

for the Apollo capsule was described, with the intent of analyzing the effect of shape

parameters on trajectory optimization.

A first attempt towards obtaining optimal re-entry trajectories with minimum heating

was made in Chapter 4 using OCPID-DAE1. The software proved to be able to

obtain optimal trajectories robustly and efficiently for different models, scenarios and

conditions, to optimize shape parameters, and to solve coupled ODE-PDE problems

for different objective functions with the aim of minimizing both convective flux and

TPS temperature. The obtained optimal trajectories are consistent with the different

posed problems, and it was possible to find solutions in the cases where the heat

equation was fully coupled and involved in the optimization process.

Then, a structure exploitation strategy for fully discretized optimal control prob-

lems with the nonsmooth Newton method and the details of its implementation were

presented in Chapter 5. A convenient rearrangement of the variables in the fully

discretized problem using the trapezoidal rule lead to a block-banded, sparse matrix

structure that can be exploited in the linear system that needs to be solved in ev-

ery iteration. Furthermore, a block-UL factorization reduces the computational effort

by iteratively solving much smaller subsystems, and allows for the structure of the

submatrices to be exploited as well. This methodology was implemented as a C++

software including an explicit derivative generator for optimal control problems and

using sparse matrix format to store matrices for additional memory saving.

A benchmark quadratic PDE problem was used to expose the large-scale, sparse and

banded structure and substructure of such problems, and to compare the compu-

tational times required by different strategies combined with different solvers that

exploit banded and sparse structures. The tests show that using a solver for banded

matrices from LAPACK was much more efficient than using the sparse solver MA48

when solving the whole matrix. However, exploiting the substructure of the problem

with the block factorization combined with MA48 gave the best results and radically
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reduced the computational time from solving the entire system directly with MA48.

Numerical and computational results were presented for a more complex, nonlin-

ear version of the same discretized PDE problem with an increased number of con-

trols. Both the structure-exploiting approach with LAPACK and the substructure-

exploiting approach with MA48 succeeded in finding solutions for increasing time and

space grid points within reasonable computational times, which grew linearly when

increasing the number of time nodes and superlinearly when increasing the number

of space nodes. An optimal active cooling problem during re-entry using the external

heating values from the optimal trajectory calculated by OCPID-DAE1 was success-

fully solved with the first approach, while the second one ran into problems trying

to achieve convergence, most likely due to accumulated numerical errors amplified by

the forward-backward substitution. Considering the complexity and large size of the

resulting discretized problem, the solver managed to find an optimal cooling strategy

efficiently and prove the applicability of this methodology to re-entry problems with

large-scale PDEs.

The results indicate as well its superiority in terms of efficiency to a reduced discretiza-

tion approach when compared with the application of OCPID-DAE1 to a nonlinear

heat equation problem with a larger number of controls, and to the results provided

in [47, 107] using a multiple shooting method. However, as discussed in Section

5.6, while our full discretization with structure exploitation strategy clearly offers a

computational advantage in this case, it failed to solve optimal re-entry trajectory

problems due to the ill-conditioning of the matrices that poses a hard challenge for

the nonsmooth Newton method. The usual solution to this issue, a regularization of

the matrix, did not improve the convergence either. In any case, we can conclude our

analysis with an interesting insight: a reduced discretization approach can efficiently

find optimal re-entry trajectories and solve coupled ODE-PDE problems when the

number of controls is not large, and a full discretization approach is computation-

ally superior when solving problems involving a large number of controls and PDEs

of higher dimension, such as the active cooling problem considered here or potential

TPS design problems.

These results are bounded by the models and problems considered here, and further

research should explore the application of these methods to optimal control prob-

lems in different applications. In particular, more complex models of PDEs with
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applications to shape optimization and TPS design during re-entry would be of high

interest in this context. The tailoring of the structure exploitation to the particu-

lar substructure yielded by the derivatives of the dynamics and constraints of other

large-scale optimal control problems should also be considered. The iterative process

of the forward-backward substitution presents a limitation to the efficiency of the

substructure-exploiting methodology that could be improved by a parallel implemen-

tation.
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[14] H.G. Bock, E. Kostina and J.P. Schlöder. On the Role of Natural Level Func-

tions to Achieve Global Convergence for Damped Newton Methods. In: System

Modelling and Optimization, ed. by M.J.D. Powell and S. Scholtes. Springer

US: Boston, MA, 2000, pp. 51–74.

[15] A. Brandis and C. Johnston. Characterization of Stagnation-Point Heat Flux

for Earth Entry. In: 45th AIAA Plasmadynamics and Lasers Conference, 2014.

[16] A. Britzelmeier and M. Gerdts. A Nonsmooth Newton Method for Linear Model-

Predictive Control in Tracking Tasks for a Mobile Robot With Obstacle Avoid-

ance. IEEE Control Systems Letters 4 (4) (2020), pp. 886–891.

[17] M. Burger and M. Gerdts. DAE Aspects in Vehicle Dynamics and Mobile

Robotics. In: Applications of Differential-Algebraic Equations: Examples and

Benchmarks, ed. by S. Campbell, A. Ilchmann, V. Mehrmann and T. Reis.

Springer International Publishing: Cham, 2019, pp. 37–80.
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sphärische Flugsysteme, (München). 2003, pp. 51–60.

[20] E. Casas and K. Chrysafinos. Analysis of the Velocity Tracking Control Problem

for the 3D Evolutionary Navier–Stokes Equations. SIAM Journal on Control

and Optimization 54 (1) (2016), pp. 99–128.
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[32] A. Fasano, D. Hömberg and L. Panizzi. A mathematical model for case harden-

ing of steel. Mathematical Models and Methods in Applied Sciences 19 (2011).

[33] J. Fay and F. Riddell. Theory of stagnation point heat transfer in dissociated

air. Journal of the Aeronautical Sciences 25 (2) (1958), pp. 73–85.

[34] A. Fischer. A special Newton-type optimization method. Optimization 24 (3-4)

(1992), pp. 269–284.

[35] A. Fischer. Solution of Monotone Complementarity Problems with Locally Lip-

schitzian Functions. Math. Program. 76 (3) (1997), 513–532.

[36] A. Fischer and C. Kanzow. On finite termination of an iterative method for

linear complementarity problems. Mathematical Programming 74 (3) (1996),

pp. 279–292.

[37] R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, 2003.

[38] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function.

Mathematical Programming 91 (1999), pp. 239–269.

[39] R. Fletcher, S. Leyffer and P.L. Toint. On the Global Convergence of a Filter–

SQP Algorithm. SIAM Journal on Optimization 13 (1) (2002), 44–59.

[40] M. Gerdts. OCPID-DAE1 – Optimal Control and Parameter Identification with

Differential-Algebraic Equations of Index 1 - User’s Guide. Engineering Mathe-

matics, Department of Aerospace Engineering, Bundeswehr University Munich.

2013. url: http://www.optimal-control.de.

[41] M. Gerdts. Optimal Control of ODEs and DAEs. De Gruyter: Berlin/Boston,

2012.

120

http://www.optimal-control.de


[42] M. Gerdts, G. Greif and H.J. Pesch. Numerical optimal control of the wave

equation: optimal boundary control of a string to rest in finite time. Mathe-

matics and Computers in Simulation 79 (2008), pp. 1020–1032.

[43] M. Gerdts, S. Horn and S.-J. Kimmerle. Line search globalization of a semis-

mooth Newton method for operator equations in Hilbert spaces with applications

in optimal control. Journal of Industrial and Management Optimization 13(1)

(2017), pp. 47–62.

[44] M. Gerdts and M. Kunkel. A nonsmooth Newton’s method for discretized op-

timal control problems with state and control constraints. Journal of Industrial

and Management Optimization 4 (2008), pp. 247–270.

[45] M. Gerdts and I. Xausa. Avoidance Trajectories Using Reachable Sets and

Parametric Sensitivity Analysis. In: System Modeling and Optimization, ed.
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tion mit einer Euler/Grenzschichtmethode zweiter Ordnung. In: 18. STAB-

Workshop, November 2017, Göttingen.
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