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Abstract

Shared mobility systems like car sharing and bike sharing have become an attractive and

wide-spread type of urban mobility over the past decades. The biggest challenge regard-

ing the profitable operation of such systems is the occurring dynamic imbalance between

supply and demand, which stems from fluctuating demand patterns and spatially unbal-

anced vehicle movements. To counter these imbalances, the scientific literature so far

has focused on the supply-sided control approach by means of active vehicle relocation.

In this dissertation, demand management is proposed as a cost-efficient alternative, in

which the system’s demand side is influenced through pricing and availability control. On

the one hand, specific practice-relevant problems are addressed and solved. On the other

hand, general modeling and solution approaches are developed, which can be transferred

to related optimization problems for tactical and operational control of shared mobility

systems. Extensive numerical studies, including case studies of Europe’s largest car shar-

ing company Share Now, demonstrate that demand management can be implemented

successfully in shared mobility systems.
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Zusammenfassung

Shared Mobility Systeme wie Car Sharing und Bike Sharing sind im Laufe der letzten

Jahrzehnte zu attraktiven und weit verbreiteten Formen der urbanen Mobilität gewor-

den. Die größte Herausforderung in Bezug auf einen profitablen Betrieb dieser Systeme

besteht darin, dass sich aufgrund fluktuierender Nachfragemuster und räumlich unausge-

wogener Fahrzeugbewegungen dynamisch immer wieder Ungleichgewichte zwischen Ange-

bot und Nachfrage einstellen. Um diesen Ungleichgewichten entgegenzuwirken, wurde in

der wissenschaftlichen Literatur bis dato vor allem die angebotsseitige Steuerung durch

aktive Relokation von Fahrzeugen betrachtet. In der vorliegenden Dissertation wird mit

dem Demand Management eine kosteneffiziente Alternative vorgeschlagen, bei der durch

Preis- und Verfügbarkeitssteuerung nachfrageseitig Einfluss auf das System genommen

wird. Dabei werden zum einen konkrete praxisrelevante Problemstellungen adressiert

und gelöst, zum anderen generelle Modellierungs- und Lösungsansätze entwickelt, die auf

verwandte Optimierungsprobleme im Rahmen der taktischen und operativen Steuerung

von Shared Mobility Systemen übertragbar sind. Umfangreiche numerische Studien ein-

schließlich Fallstudien am Beispiel von Europas größtem Car Sharing Anbieter Share Now

demonstrieren, dass das Demand Management erfolgreich in Shared Mobility Systemen

eingesetzt werden kann.
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Introduction

The mega trend of urbanization as well as the fight against climate change require the

development and implementation of sustainable mobility concepts as well as their continu-

ous improvement (Maraš et al. 2019). In urban mobility, shared mobility systems (SMSs)

such as car sharing, moped sharing, bike (bicycle) sharing, and scooter sharing form one

of these mobility concepts (Laporte, Meunier, and Wolfler Calvo 2018). Over the last

decades, these SMSs have been growing rapidly (Data Bridge Market Research 2021) and

have become an established alternative to private vehicles and public transport in urban

mobility, especially in the growing metropolitan areas worldwide. In its traditional form,

the mobility service that these SMSs offer is characterized by the possibility for customers

to spontaneously rent vehicles for relatively short time frames (Ferrero et al. 2015b). The

rentals may last only several minutes and are payed on a per-minute basis. Nowadays,

this traditional mobility service offer is one of multiple mobility services within a portfolio

offered by SMS providers but it is still the most popular and widespread.

Two main types of SMSs exist and they primarily differ with regard to the flexibility

that customers have when renting a vehicle (Ataç, Obrenović, and Bierlaire 2021). In

station-based (SB) SMSs, customers are required to pick-up and drop-off vehicles at certain

pre-defined stations. These SB SMSs have the longest history in practice, which, for car

sharing, e.g., dates back to the 1940s (Shaheen, Sperling, and Wagner 1998). In contrast,

the more modern and more flexible free-floating (FF) SMSs allow customers to pick-up

and drop-off vehicles at any public parking spot within a certain operating area. These

FF SMSs have grown rapidly during the last two decades. For example, the first FF car

sharing system was put into practice only in the late 2000s, but, nevertheless, FF car

sharing has become the dominant variant which nowadays is much more popular than SB

car sharing (Shaheen, Cohen, and Jaffee 2018).

The specific designs of the existing SMSs in terms of, e.g., user experience or user-

provider interaction are subject to continuous change. This change is mostly enabled

by technological developments and often comes along with adjustments regarding the

portfolio of mobility services offered. For example, in the history of SMSs, the most

influential technological developments concerned the proliferation of mobile devices as

well as the communication means between these devices, the provider’s central platform,

and the vehicles of the SMS fleet. These technological developments enabled the evolution

from SB SMSs to the FF SMSs, as described above. Today’s adjustments regarding the

offered mobility services are often enabled by the constantly increasing amount of data

which is available to SMS providers. This in particular holds for FF SMS, in which the

provider collects a large amount of data on a disaggregated level. For example, the data

of customers opening a provider’s mobile application can be used to derive demand data

including a precise location and time stamp. Further, the disaggregated data allows to
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extract information regarding the customer choice behavior, e.g., from the analysis of a

customer’s specific choice situation before a rental. This knowledge can then be leveraged

during operations and allows to expand the mobility service portfolio. A recent example

of such mobility service portfolio expansion is that FF SMSs providers started to offer

trip planning (Share Now 2022). That is, customers can make reservations several days in

advance, including the specification of departure location and time. The FF SMS provider

then guarantees the availability of a vehicle for this customer. A profitable operation of

this mobility service offer requires accurate forecasts about the availability of vehicles

at the location and time of the chosen departure and, thus, historic disaggregated data.

For the future, the most revolutionary changes regarding SMSs can be expected with the

deployment of self-driving vehicles. With this technology, the mobility service offer in

SMSs will presumably become even more accessible and financially more attractive for

providers as well as customers. The reason is that fleet utilization will most likely increase

substantially, because fewer vehicles are required overall when they are able to pick up

customers instead of standing idle until customers arrive to pick up the vehicles.

Independent of the specific SMS design and independent of whether it is operated by a

private company or publicly owned, providers continuously strive for improvements. While

the former are inclined to increase profits, the latter strive for improving welfare-oriented

key figures, like vehicle availability or successful trips. The unvaried high actuality and

relevance of SMSs for urban mobility during the last decades also motivated the scientific

community to put great effort into the improvement of such systems. A substantial

portion of this work comes from the field of operations research which addresses decision

and optimization problems through analytical models and mathematical optimization

(Laporte, Meunier, and Wolfler Calvo 2018). Such decision and optimization problems

that arise can be classified according to their level of decision making into strategic,

tactical, and operational problems (Illgen and Höck 2019). In the literature on SMS

optimization, each of these three levels with their various specific problems has been

addressed. On the strategic level, SMS providers, e.g., decide on the cities or municipalities

in which they offer their mobility service. On the tactical level, e.g., optimal fleet sizing

or business area definition are addressed. On the operational level, e.g., relocation of

vehicles or dynamic pricing are typical levers for improving an SMS’ operations.

Despite the vast research on SMS optimization that has already been done, many

relevant research questions have not been addressed yet. This, in particular, holds for the

often more complex problems on the tactical and the operational level, as well as for the

FF SMSs for which literature originated much later than for SB SMSs. These research

gaps can mainly be explained with the above named continuous and rapid changes of

SMSs in practice such that novel decision and optimization problems continuously arise.

Besides these rapid changes, another reason for the existence of relevant research gaps

is that research partly considers problems which are rather far from reality such that
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relevant questions often remain unanswered.

A research gap of particular importance concerns the demand management in SMSs,

i.e., improving operations through demand-sided control like pricing or availability control.

While supply-sided control, primarily through (active) vehicle relocation, has been covered

in depth in the literature (Brendel and Kolbe 2017), demand-sided control has not. The

reason that demand-sided control is particularly important for SMS providers is its cost-

efficiency compared to supply-sided control: In the former, no direct costs occur when

prices are changed or when vehicles are made unavailable for rental. In the latter, in

contrast, direct costs occur when vehicles are relocated by staff or third party providers.

A potential drawback of demand-sided control is that effects are not as predictable as

those of supply-sided control, because effects on the SMS in the former are rather indirect

and subject to the uncertainty related to customer choices. However, the great potential

of demand management in SMS has been demonstrated in first works. Still, due to the

reasons outlined above, many relevant operational problems in the context of demand

management in SMSs have not been covered in the literature yet. This dissertation

contributes to the literature by closing multiple of these research gaps.

From a broader perspective, the general approach of this dissertation – to improve

operations in SMSs through demand management – is in accordance with the general

developments in research and practice. These developments date back to the 1970s when

the discipline of revenue management had its origins (Klein et al. 2020). Historically de-

veloped first for the control of sales processes through pricing and availability control in

the airline industry, the central concepts of revenue management were quickly expanded

to other service sectors like the hotel industry. The simple reason for the expansion across

various other industries is the huge success story related to the implementation of rev-

enue management techniques. In the traditional applications of revenue management, the

sole objective during the sales process is to maximize revenue. This is because variable

costs are considered negligible compared to the large fixed costs that airlines or hotels

encounter (Talluri and van Ryzin 2004, Chapter 1). In other applications which devel-

oped more recently, in contrast, variable costs have a non-negligible impact on the profit.

Prominent examples are related to e-commerce and the involved delivery of goods, like

in attended home delivery. In these applications, a cost-efficient fulfillment is key for

profitable operations. Since the control of the sales process also impacts these fulfillment

costs, e.g., when delivery time slots are priced differently, not only revenues but also vari-

able fulfillment costs need to be considered in the control. According to recent literature,

it is this additional consideration of variable (and not individually attributable) costs

during the sales process which makes the difference between demand management and

traditional revenue management (Agatz et al. 2013). In SMSs, the logistic costs related to

improving the spatial distribution of the vehicle fleet indeed play an important role for the

operations of the system. Thus, in this dissertation, the denotation of the term demand
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management as described above is followed. However, it should be noted, that there is no

consensus regarding the relation between demand management and revenue management

in the literature. While some authors denote the two terms as synonyms, some others

subsume the latter under the former. Overall, the increasing trend of applying demand

management also in SMSs – including this dissertation – is a further step within the more

general expansion of techniques originating from traditional revenue management.

To summarize, enabled by technological developments and increasing data availability,

SMSs and in particular the more modern FF SMSs are constantly and rapidly changing.

This also effects the portfolio of mobility services offered. Mainly due to these rapid

changes in practice, many relevant optimization problems, especially regarding the SMSs’

operations, have not been addressed in the literature yet. In particular, the application

of demand management which is based on traditional revenue management techniques

has not received much attention yet. However, it is a promising path, because sales

on the revenue side and logistics on the cost side are (implicitly) influenced by demand

management. Moreover, in comparison to traditional supply-sided control approaches in

SMSs, demand management itself is comparably cost-efficient and, thus, attractive for

SMS providers.

The main objective of this dissertation is to develop and to enable mathematical

optimization-based approaches which improve operations of SMSs, thereby focusing on

demand management through pricing and availability control. While some parts of the

work apply to SMSs in general, others focus on FF SMSs and their particularities. The

specific control approaches proposed in this dissertation address problems that have not

been discussed in the literature yet. While these problems are strongly motivated by

specific applications in car sharing, they are considered more generally, making this dis-

sertation more broadly relevant to SMSs as a whole. At the same time, the work is

theoretically well-founded and applies as well as advances state-of-the-art methodology.

To assess the specific control approaches and the theoretical contributions, numerical

studies with regard to the improvement of the SMSs’ operations are performed, most im-

portantly with regard to profit. These evaluations include real-world case studies which

are based on historic data from practice.

This dissertation is structured in two main parts: In Part I, the research papers which

form the core of this work are put into a common overall context. More specifically,

these papers are thematically classified into the literature on SMSs and their respective

contributions are outlined. Part II contains the research papers, including their respective

appendix and list of references. The dissertation closes with a summary and conclusion,

followed by the merged list of references.



Part I
Thematic Classification of Research Papers in the Literature
and Outline of Contributions
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I Classification of Research Papers in the Literature

and Outline of Contributions

In this part, the research papers of Part II are classified in the literature on SMSs. First,

in Chapter I.1, the terminology and scope with regard to the term shared mobility system

in this dissertation is clarified. Moreover, the different types of SMSs discussed in the

literature are described. Additionally, a brief summary of the historic development of

SMSs in practice and literature is given. Second, in Chapter I.2, the different levels of

decision making within the literature on SMS optimization as well as their related specific

optimization problems are presented. On this basis, the concept of demand management

and its relation to pricing and availability control is introduced. Third, in Chapter I.3,

the actual classification of the research papers is made. For each research paper, its

delimitation from the literature as well as its contributions are discussed.

I.1 Shared Mobility Systems

There are different meanings for the term shared mobility system in the literature. Within

the scope of this dissertation, the term refers to a certain type of mobility service in

which a provider supplies and maintains a fleet of vehicles which can then be rented by

the users. In this sense, the vehicles are not owned by individual private persons but are

shared amongst them. Most prominent examples of such SMSs are car sharing and bike

sharing, but also moped sharing and scooter sharing have gained high popularity in recent

years. Fore example, the largest and most prominent car sharing companies are Zipcar in

the United states and Share Now in Europe. These mobility services are designed as an

alternative to private vehicles and public transport in the urban mobility. The concept of

SMSs as described above has certain characteristics with traditional rental services like

car rental in common. However, the decisive difference is that vehicles in SMSs can be

rented spontaneously and for short time frames: In its original form, SMS rentals may last

only a few minutes and the service is charged on a per-minute rate. In traditional rental

services, in contrast, the rentals typically last for at least one day and require a preceding

reservation. The above designation of this mobility service as shared mobility system is,

e.g., used in the often-cited review papers by Laporte, Meunier, and Wolfler Calvo (2015)

and Laporte, Meunier, and Wolfler Calvo (2018), but also in works that consider specific

optimization problems, such as Pfrommer et al. (2014) who consider pricing optimization

in a bike sharing system. An alternative term that some authors use for this mobility

service is vehicle sharing systems, e.g., in Ataç, Obrenović, and Bierlaire (2021).

Another common meaning for the term shared mobility system which is not used in this

dissertation comprehends the term more broadly. In particular, it comprises additional

mobility service offers, e.g., the concept of on-demand ride-hailing which is applied by
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well-known companies like Uber and Lyft. Here, the main difference to the mobility service

described above is that it is a two-sided market with two types of customers, i.e., riders and

drivers (Feng, Kong, and Wang 2021). Also, the vehicles are typically the drivers’ personal

ones and not fleet vehicles as in a typical car sharing system. Differences further exist

with regard to the most relevant operational problems discussed in the literature. Fore

example, in on-demand ride-hailing, literature mainly focuses on the platform’s problem

to assign rider requests to drivers (Ma, Fang and Parkes 2021). Yet another concept that

is sometimes subsumed under the term SMS is the concept of ride-sharing. Two variants

have evolved, one in which private persons give other users of the system with similar

itineraries a ride (e.g., Stiglic et al. (2016)) and another type in which vehicles, drivers,

and operation are managed by a central company, similar to a taxi service (e.g., Lin et al.

(2012)). Thus, with regard to the optimization of operations in shared mobility systems

(in the sense used in this dissertation, i.e., car sharing etc.), on-demand ride-hailing and

ride-sharing are not comparable.

The mobility service of SMSs which is covered in this work can be further distinguished

into different types according to three main criteria. With regard to the operation of SMSs

as well as its optimization, these criteria have important implications, because different

problems arise in the different SMS types and their specific characteristics have to be

accurately considered in the optimization models.

• Spatial flexibility: As stated in the introduction, rentals in station-based (SB) SMSs

have to start and end at predefined locations, i.e., the stations. In free-floating (FF)

SMSs, in contrast, there is more spatial flexibility, meaning that rentals can start

and end at any public parking spot within the operating area (Ataç, Obrenović, and

Bierlaire 2021).

• Trip-related flexibility: In a one-way (OW) SMSs, there is no limitation to the trip-

related flexibility, meaning that any combination of locations for start and end of a

rental is permitted. In a two-way (TW) SMSs, in contrast, a rental has to end at

the same location where it began. Thus, the latter is also denoted as a round-trip

system. Usually, the differentiation between OW and TW SMSs is only made for

SB SMSs, because the concept of FF SMSs always incorporates the idea of a OW

SMS (Illgen and Höck 2019).

• Vehicle type: Evidently, the vehicle type is another criterion to distinguish SMSs.

As stated above, car and bike sharing systems are the most established ones but

also moped and scooter sharing systems became wide-spread in recent years (Ataç,

Obrenović, and Bierlaire 2021).

Historically, SMSs have their origin in Europe. Already in the late 1940s, the first known

(SB) car sharing system was put into practice in Switzerland (Shaheen, Sperling, and
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Wagner 1998). However, car sharing became popular much later, i.e., in the early 1990s.

Since then, car sharing has been growing worldwide (Shaheen and Cohen 2007). This

holds in particular for FF car sharing systems (Shaheen, Cohen, and Jaffee 2018). Bike

sharing systems were tested first in the 1960s in the Netherlands. Similarly to car sharing,

also bike sharing took several decades to become widely used, i.e., only in the 2000s

(DeMaio 2009). While SB bike sharing systems are still the most prominent variant, also

FF systems have emerged globally in recent years. This rather long finding phases for car

and bike sharing can be explained with the fact that communication technology developed

decisively during this time which enabled the successful operation of such SMSs. For

example, the first generation of bike sharing systems had no ability to retrace users and,

as a consequence, suffered under vandalism (DeMaio 2009). Communication technology

developments partly solved this issue and it also improved the usability which supported

the popularity growth of SMSs. In today’s SMSs, the communication between customers

and providers via applications on mobile devices, e.g., to rent a vehicle, is substantially

simplified compared to the first SMSs where communication took place primarily via

telephone. This technological development also enabled the comparably fast expansion

of SMSs which use other vehicle types than cars and bikes, notably mopeds and electric

scooters.

The scientific literature on the optimization of SMSs developed with a considerable

temporal delay to the historical developments in practice described above. According to

the review paper on SMSs by Laporte, Meunier, and Wolfler Calvo (2018), the first two

papers on optimization stem from the late 2000s with Martens (2007) studying policies

initiatives to promote the use of bike sharing systems and Kek et al. (2009) developing a

decision support system for vehicle relocation in car sharing systems. Only in the 2010s,

the SMS optimization literature gained momentum. Laporte, Meunier, and Wolfler Calvo

(2018) report around 40 papers that were published between 2010 and 2015. A more

recent review paper on SMSs (denoted as vehicle sharing systems) in general is Ataç,

Obrenović, and Bierlaire (2021), but since the literature is growing with increasing speed,

recent review paper often limit their scope to certain types of SMSs or even specific

problems within a certain type of SMS. For example, Golalikhani et al. (2021a) focus

on car sharing optimization in their review paper while Illgen and Höck (2019) focus on

relocation in OW car sharing.

For the future, a continuous change of SMSs can be expected and these developments

come along with unanswered research questions such that the literature on SMS opti-

mization is expected to grow as well. As outlined in the introduction, one example which

expands the mobility service portfolio concerns the possibility to plan trips in advance.

While rentals in SMSs traditionally could only be made spontaneously, i.e., without an

extensive prior reservation, SMS providers now begin to allow that reservations can be

made days in advance. Another recent change regarding the mobility service portfolio
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concerns the extension of rental duration. While the offer originally focused on rather

short-term rentals of around 15 to 30 minutes, larger SMS providers already offer rentals

that last several days. As a consequence, borders between the former distinct concepts

of shared mobility companies (e.g. car sharing) and vehicle rental companies (e.g. car

rental) become blurred. From a broader perspective, this can be seen as a general trend

that former distinct mobility service concepts merge increasingly. With a deployment of

self-driving vehicles, it is most likely that today’s different concepts like FF car sharing,

on-demand ride-hailing, and centralized ride-sharing will increasingly merge. The un-

derlying driver of this development is that fleet utilization can presumably be increased

substantially compared to today. In fact, a relatively low fleet utilization is one of the

main problems that SMSs face nowadays and a more efficient usage of resources is not

only economically but also ecologically beneficial.

Strategic Tactical Operational

SMS type

Location

Fleet dimensioning

Operating area definition

Station posit.

Relocation

Pricing

Availability control

Demand

management

Figure 1: Examples of optimization problems in SMSs on different decision making levels.
Demand management approaches are highlighted. Adapted from Illgen and Höck (2019)

I.2 Demand Management

The specific SMS optimization problems can be differentiated according to the level of

decision making. Typically, three levels of decision making are considered, i.e., the strate-

gic, the tactical, and the operational level (Laporte, Meunier, and Wolfler Calvo 2018,

Ataç, Obrenović, and Bierlaire 2021). Sometimes, the latter two are considered as one

level (Illgen and Höck 2019). Examples of specific optimization problems and their clas-

sification to the decision making levels are depicted in Figure 1. On the strategic level,

an SMS provider, e.g., decides on the location (city or municipality) where the service
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is offered and which type, SB SMS or FF SMS, is more suitable. On the tactical level

in a SB SMS, the provider, e.g., decides on the positioning of the stations. As depicted,

certain optimization problems cannot be clearly assigned to one of the levels. For ex-

ample, the optimization of the fleet dimensioning can be either considered as a strategic

or tactical problem, depending on the scope of the decision, e.g., whether only the fleet

size is determined or whether its composition with different vehicle models is considered.

Typical optimization problems on the tactical and operational level are relocation and

pricing. Depending on whether the pricing is differentiated (static), i.e., optimized in an

offline manner, or dynamic, i.e., optimized in an online manner, the problem can be either

considered as a tactical or operational level problem.

As described by Illgen and Höck (2019), the decisions on different levels influence each

other. For example, the decision on the location where an SMS is put into place influences

the fleet dimensioning. The latter influences the overall supply of vehicles and, thus,

has implications for pricing. This dependence, however, is not unilateral. Instead, e.g.,

the possibility to increase profits though pricing impacts the fleet dimensioning decision

which then influences the choice of the location. In Figure 1, these bilateral dependencies

between the problems on different decision making levels is represented by the arrows.

This dissertation focuses on demand management in SMSs. As stated in the intro-

duction, demand management is considered as an evolution of revenue management in

the recent literature (Agatz et al. 2013). Both, in principle, provide the same techniques

for the control of sales processes with the objective to maximize profit and the specific

techniques can be distinguished between quantitiy-based approaches like availability con-

trol and price-based approaches like pricing (Talluri and van Ryzin 2004, Part I and II).

The difference between demand management and revenue management lies in the nature

of the domains to which the techniques are applied. In traditional domains like the air-

line industry where revenue management has its origins, variable costs can be neglected,

because they are small in comparison to the large fixed costs (Talluri and van Ryzin

2004, Chapter 1). Profit maximization, thus, is nearly equivalent to revenue maximiza-

tion which explains where the term revenue management stems from. A recent series of

papers that surveys scientific developments in revenue management was done by Strauss,

Klein, Steinhardt (2018) and Klein et al. (2020). In domains where variable costs cannot

be neglected because, e.g., because logistics costs related to the fulfillment of goods are

considerably high, the control of the sales process also effects these logistics costs (Agatz

et al. 2013). In these applications, the term demand management is preferred in the recent

literature like, e.g., Fleckenstein, Klein, and Steinhardt (2021) or Klein and Steinhardt

(2021), and this dissertation follows this denotation. Since the control of sales processes is

an activity which is performed on the tactical and operational decision making level, the

demand management is classified accordingly in Figure 1. The specific control approaches

that this dissertation focuses on, pricing and availability control, are highlighted.
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I.3 Classification and Contributions

The research papers in this dissertation address a number of relevant research gaps,

thereby focussing on demand management approaches, i.e., pricing and availability con-

trol. The classification of the research papers in the literature, also with regard to the type

of SMSs they apply to, is summarized in Figure 2 and will be discussed in the following.

For each research paper, the delimitation from the literature as well as the contribu-

tions to the literature are outlined.

Tactical Operational

Pricing

SB:

FF:

Availability control

SB:

FF:

Demand

management
P1, P3

P1, P3

P3

P2, P3

P3

P3

P3, P4

P3, P4

Figure 2: Thematic classification of research papers

I.3.1 Differentiated Pricing of Shared Mobility Systems Considering Network

Effects (Paper P1)

Paper P1 addresses a differentiated pricing problem for SMSs which is widely spread

in practice but which has not been covered from a scientific perspective before. In the

considered problem, the SMS provider seeks for profit-maximizing minute prices which

can be differentiated spatially and temporally, i.e., prices can differ for the different SMS’

locations and the multiple periods in which the considered time frame is discretized into.

The pricing problem is formulated in a generic manner which allows to apply model and

solution approach to both SB and FF SMSs. Differentiated pricing, also denoted as

static pricing, in contrast to dynamic pricing means that prices are pre-computed in an

offline optimization. For this reason, Paper P1 is classified in Figure 2 as a work that

addresses a pricing problem on the tactical decision making level, even though central

components of the work, like the optimization model and the solution approach, can be

easily integrated in dynamic (online) pricing optimization. For SMS providers in practice,

such differentiated pricing typically is the first step towards more advanced pricing that

goes beyond the de facto industry standard of constant uniform pricing. The reason is

that differentiated pricing with its pre-computed prices has fewer technical requirements

than online price optimization and, more importantly, it is an important intermediate

step to make customers get used to price differentiation.
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The research paper closes multiple research gaps which are of particular importance

for practice. First of all, the considered pricing problem distinguishes itself from existing

works by a much more realistic problem formulation which concerns several aspects of the

problem. This can be traced to the fact that this work bases on a close collaboration with

Share Now, Europe’s largest FF SMS provider. Most importantly, the work is the first

to consider origin-based pricing. In contrast to, e.g., trip-based pricing, the minute price

which applies to a specific rental only depends on the spatio-temporal origin of the rentals,

i.e., on location and time of the rental’s departure. With regard to the applicability of the

pricing this is decisive, because origin-based prices can transparently be communicated

to the customer. In fact, the research paper shows that trip-based pricing which has

been primarily considered in the literature is not applied in practice at all. In contrast,

origin-based pricing is applied and, thus, is the much more relevant.

Considering origin-based pricing in the modeling in combination with discrete price

points from which the provider can choose – again, this is a practice-relevant requirement

to simplify communication to the customer – has far-reaching consequences: The degree to

which the provider can impact the SMS is comparably limited. Therefore, it is particularly

important to foresee the impact that the pricing has on the development of the system’s

state, i.e., on the spatial distribution of vehicles. The model proposed in the research

paper achieves this by considering the SMS as a spatio-temporal network with nodes that

represent a location-period combination. The vehicles of the fleet ”flow” through this

network. The research paper demonstrates that the consideration of the spatio-temporal

interaction between supply and demand – the network effects – in the pricing is decisive

for the solution quality and, thus, the profitability of pricing decisions.

Another aspect which stands out is that the degree to which the provider can determine

rentals is modeled much more realistically. The proposed model in the research paper

replicates that the provider can only decide on the prices and that rentals realize implicitly

as a consequence of the prices, the resulting demand, and the available vehicles. In

particular, the SMS provider has no means of availability control which would allow to

deny certain trips or to decide which rentals realize in case of over-demand. Again, the

proposed model captures reality much more accurately than existing works.

On a more technical level, the work stands our from the literature on SMS optimization

by providing insights about the mathematical complexity (NP-hardness) of the considered

pricing problem. In fact, the research paper comprises the first formal proof regarding

computational complexity in the related literature which is a non refutable argument for

the development of a heuristic solution approach.

Regarding methodology, this work demonstrates how approximate dynamic program-

ming (ADP) can be used as a decomposition technique to develop a scalable solution

approach which allows to solve instances of real-life size while still considering the net-

work effects. This approach takes the problem’s computational complexity into account
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by decomposing the overall problem temporally into multiple subproblems. At the same

time, the network effects are considered implicitly in each sub-problem through specifi-

cally designed value function approximations that allow to capture, e.g., the decreasing

marginal value of vehicles in a particular location-period node.

A number of managerial insights for SMS providers are derived from extensive numer-

ical studies including a real-life case study. Most importantly, the research paper reveals

that origin-based pricing indeed is an effective pricing mechanism which outperforms the

de facto standard of constant uniform pricing substantially in terms of profits generated.

For SMS provides, this is an important insight, as this pricing mechanism can be im-

plemented relatively easy and is the first step towards more advanced (dynamic) pricing

mechanisms.

I.3.2 Customer-Centric Dynamic Pricing for Shared Mobility Systems

(Paper P2)

Paper P2 covers a dynamic pricing problem and proposes the concept of customer-centric

pricing with which the work distinguishes itself from the existing literature. Due to the

online optimization nature of the problem, this research paper is classified in Figure 2 on

the operational decision making level and it is designed for modern FF SMSs. In contrast

to Paper P1 which covers a wide-spread pricing problem already existent in practice but

not addressed in the literature, Paper P2 considers a specific innovative dynamic pricing

mechanism which is enabled by the growing data availability on a disaggregated level.

The research paper contributes in multiple ways to the existing literature. First of

all, the concept of customer-centric pricing is proposed. This concept leverages on the

detailed knowledge that FF SMS providers have in terms of the customers’ location at

the moment they consider renting a vehicle, as well as the knowledge in terms of the

customers’ choice behavior. In particular, the often-stated fact in the literature that the

distance between a customer and the available vehicles plays an important role in the

customers’ decision making is explicitly incorporated in the pricing optimization.

This concept of customer-centric dynamic pricing exploits the fact that customers have

a maximum willingness-to-walk, i.e., only available vehicles which do not stand further

away than this maximum walking distance are part of a customer’s consideration set.

The online price optimization therefore only needs to determine profit-maximizing prices

for all vehicles of this consideration set. As a consequence, the online pricing problem

is substantially reduced compared to a traditional vehicle-based pricing in which prices

for all vehicles have to be determined. This is because prices need to be set before the

information where the customer arrives becomes available. In the pricing optimization, the

objective is composed of the immediate expected profit which results from the (potential)

customer’s decision to rent one of the vehicles as well as an expected future profit which

is approximated for the different vehicle distributions that may realize. The possible
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state transitions in the online problem are the customer choices which are formalized by

a corresponding customer choice model. The proposed pricing approach in the research

paper is generic in the sense that any specific choice model can be integrated.

It should be noted that customer-centric pricing is not equivalent to personalized pric-

ing in the sense that socio-demographic customer characteristics are used or that an indi-

vidual willingness-to-walk is exploited. Instead, only the location of a customer’s device

is decisive, such that the pricing is rather a dynamic location-based price differentiation

than a personalized pricing.

Another contribution relates to the approach how historic data that is readily available

in practice can be used to integrate anticipation in the pricing optimization. Technically,

the approach is based on a non-parametric value function approximation in which data

points of historic profits that vehicles generated can be integrated. More specifically,

these data points contain the information of observed vehicle locations and times as well

as the profit they generated until the end of some defined time frame. The benefit of

designing the approach based on this non-parametric value function approximation is that

the required data is readily available in practice. At the same time, the pricing approach

is well-founded on theoretical thoughts, because it is based on a dynamic programming

formulation. With regard to the practical application, this allows to compute decisive

quantities like approximate values of vehicles recurringly in an online manner before a

customer arrival, i.e., before the actual pricing optimization needs to be performed. With

regard to runtime, this design to separate the anticipation problem from the online pricing

problem is an important feature.

As for the pricing problem covered in Paper P1, several decisive aspects of the pricing

problem are designed to consider the real-world problem accurately. For example, the

pricing is also origin-based such that a rental’s destination does not need to be known

when taking the pricing decision. Further, prices can only be selected from a discrete set

of price points. Thus, also Paper P2 distinguishes itself from the literature in the sense

that applicability for practice is guaranteed.

Based on extensive numerical studies which also comprise a real-life case study, the

research paper demonstrates that the proposed customer-centric dynamic pricing dom-

inates all of the benchmark approaches with regard to the profit realized, including a

state-of-the-art approach from the literature. Multiple managerial insights are derived

from these results, e.g., that customer-centric dynamic pricing is particularly effective if

there is a high spatial variation of demand within the FF SMS. Also, profit increases can

be realized while maintaining the overall amount of rentals that realize – a service-oriented

metric that SMS providers often consider because successfully realized rentals are closely

related to customer satisfaction.
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I.3.3 Matching Functions for Free-Floating Shared Mobility System Opti-

mization to Capture Maximum Walking Distances (Paper P3)

Paper P3 addresses that optimization models for FF SMSs and SB SMSs need to differ

with regard to the decisive component which determines how many rentals realize in an

SMS. The required differences and the far-reaching consequences when neglecting them

have been entirely overlooked so far in the literature. The research paper first reveals the

issues that arise when FF SMSs are simply modeled like SB SMSs, which is the state-

of-the art approach. Second, to solve these issues, the research paper proposes the novel

idea to use matching functions in FF SMSs optimization models which allow to predict

the realized rentals much more accurately.

Prior to this research paper, the only matching function existent in the literature

– even though not denoted as such – assumed an extremely simplified matching process

between supply and demand. More specifically, this (implicit) ”state-of-the-art” matching

function assumes that the minimum of supply and demand in a certain location and

period determines the number of rentals. While this assumption is valid for SB SMSs,

realized rentals in a FF SMSs are overestimated substantially in general. The research

paper shows that matching functions suitable for FF SMSs need to consider additional

influencing factors in order to model realized rentals accurately. In particular, it is shown

that they need to consider spatial influencing factors to the matching process of supply and

demand, like the customers’ maximum walking distances and the zone sizes. In addition,

temporal influencing factors like a subsequent arrival of customers play an important role.

The research paper develops two such novel matching functions.

Methodically, these matching functions are derived from a stylized matching process

that takes all of these influencing factors into account. This theoretical approach allows to

precisely name the differences between the matching functions regarding their underlying

assumptions. Based on analytical thoughts and formal proofs, the matching functions and

their mathematical properties are discussed. These discussions also show that the different

functions are suitable for the integration into different types of optimization models. One

of them can be losslessly linearized and, thus, is suitable for the integration in the many

optimization models from the literature which are formulated as mixed integer linear

programs.

Extensive numerical studies are performed to compare the novel matching functions

with the state-of-the-art benchmark regarding their capability to predict rentals accu-

rately. On the one hand, these studies are performed in a stylized setting which considers

one zone and one period, in order to isolate the matching process from other potential

effects. On the other hand, an entire FF SMS with multiple zones is considered over an

entire day with multiple periods to demonstrate effects of the matching modeling in real-

life size settings. The spatial expansions of the systems are varied. The numerical results
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show clearly that the realized rentals are modeled much more accurately with the novel

matching functions while the state-of-the-art benchmark in general overestimates the ac-

tual number of rentals. This allows to conclude that only the novel matching function are

suitable for FF SMSs in general.

Further numerical studies are performed which underline that consequences of inac-

curate matching modeling can be far-reaching and costly: In a pricing optimization case

study based on real-life data, the research paper demonstrates that more accurate rental

predictions by improved matching modeling also improve decision making. While the price

optimization with the state-of-the-art matching function overestimates supply-demand

matching substantially and, thus, sets too high prices on average, the price optimization

with improved matching modeling leads so much lower prices and overall to substantially

higher profits.

Overall, the most profound contribution of this research paper is that the developed

matching functions build a bridge between optimization models for FF SMSs and those

for SB SMSs. This allows to adapt optimization models that have been designed for SB

SMSs to make them applicable for FF SMSs. Given that the literature on SB SMSs is

more extensive due to historic developments, this is an important outcome for existing

and future research, as well as for FF SMSs provider in practice.

The topic of accurate matching modeling and the specific matching functions designed

are relevant for optimization models on the tactical as well as operational level. The

case study in the research paper considers an exemplary pricing problem but matching

functions are not limited to a specific control application. Thus, Paper P3 is classified

accordingly in Figure 2.

I.3.4 Block Now or Relocate Later? Availability Control of Short-Term

Rentals in Shared Mobility Systems Considering Long-Term Rental

Reservations (Paper P4)

Paper P4 covers an availability control problem that is based on most recent developments

in FF SMSs through which customers have the possibility to plan trips in advance. Tradi-

tionally, SMSs were designed for spontaneous short-term rentals. Most recently, modern

FF SMSs additionally began to offer customers to make reservations for long-term rentals

several days in advance, including specification of location and time of departure. To

guarantee the service when such reservation is made, providers can either block a suitable

vehicle in advance of the departure, i.e., make it unavailable for spontaneous short-term

rentals, or they can relocate a vehicle on short notice to the required location. In the

research paper, this trade-off between opportunity costs due to potentially lost short-

term rental profits and relocation costs is formalized in an optimization problem with

the objective to maximize profits. The research paper focuses on the online availability

control of the short-term rentals under given long-term rental reservations, thus, on an
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operational control problem. While the considered problem is motivated by the develop-

ments in FF SMSs, the developed models and solution approaches are also applicable to

SB SMS. Hence, Paper P4 is classified accordingly in Figure 2.

The research paper demonstrates formally that this availability control problem can

be considered as a modified overbooking problem from the revenue management liter-

ature. In fact, the problem is a mirrored overbooking problem in the sense that the

decisive characteristics of the problem are exactly the opposite to traditional overbooking

problems from the literature. For example, regarding the state definition and the state

transitions, the number of sold quantities in a traditional overbooking problem increases

when products are made available. In contrast, in the problem at hand, the number of

available vehicles decreases when the short-term rentals are made available. Accordingly,

denied service costs in traditional overbooking occur when the capacity is exceeded. In the

problem at hand, in contrast, relocation costs occur when required vehicles are undercut.

Methodically, the problem is formulated as a stochastic dynamic problem. Based on an

analytical formulation of the problem, the optimal policy is derived. This optimal policy

can be calculated though a backward iteration algorithm. Further, two additional policies

are proposed which base on the problem’s static equivalent and a risk-averse policy. The

former has the advantage that fewer parameters regarding the system’s dynamics are

required. More specifically, this means, e.g., that the SMS provider does not need to have

period-specific customer arrival probabilities but that aggregated probabilities until the

due date are sufficient. The latter is a simple heuristic which entirely prevents the risk

of having to relocate vehicles on short notice. The advantage of this policy is that it can

easily be implemented in practice.

Based on extensive numerical studies, the three policies are compared. This is done

by systematically varying the problem’s most important influencing factors, like, e.g., the

number of required vehicles which are reserved for long-term rentals or the relocation

costs. Derived from these numerical studies, the research paper discusses a number of

managerial insights. In particular the work reveals under which conditions the rather

simple static as well as the risk-averse heuristic can be applied – an important insight for

practice.

Overall, the described problem which the research paper addresses is a new problem

in FF SMSs which has not been discussed in the literature yet. Thus, a relevant research

gap and an important problem for practice has been covered by this work. Moreover,

the research paper can be considered as one of the first works which considers the recent

development in practice that the mobility service offer by SMSs companies and by rental

companies are increasingly intertwining.
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Abstract: Over the last decades, shared mobility systems have become an integral part of inner-
city mobility. Modern systems allow one-way rentals, i.e., customers can drop off the
vehicle at a different location to where they began their trip. A prominent example is
car sharing. Indeed, this work was motivated by the insight we gained in collaborating
closely with Europe’s largest car sharing provider, Share Now. In car sharing, as well
as in shared mobility systems in general, pricing optimization has turned out to be a
promising means of increasing profit while challenged by limited vehicle supply and
asymmetric demand across time and space. Thus, in practice, providers increasingly
use minute pricing that is differentiated according to where a rental originates, i.e.,
considering its location and the time of day. In research, however, such approaches
have not been considered yet.
In this paper, we therefore introduce the corresponding origin-based differentiated,
profit-maximizing pricing problem for shared mobility systems. The problem is to
determine spatially and temporally differentiated minute prices, taking network effects
on the supply side as well as several practice relevant aspects into account. Based on
a deterministic network flow model, we formulate the problem as a mixed-integer
linear program and prove that it is NP-hard. For its solution, we propose a temporal
decomposition approach based on approximate dynamic programming. The approach
integrates a value function approximation to incorporate future profits and account
for network effects. Extensive computational experiments demonstrate the benefits
of capturing such effects in pricing generally, as well as showing our value function
approximation’s ability to anticipate them precisely. Further, in a case study based
on Share Now data from Florence in Italy, we observe profit increases of around 9%
compared to constant uniform minute prices, which are still the de facto industry
standard.

Keywords: Shared Mobility Systems, Car Sharing, Differentiated Pricing, Origin-Based Pricing,
Supply-Side Spatio-Temporal Network Effects, Approximate Dynamic Programming,
Optimization

Remark: An explanatory note regarding the individual shares of contribution by all au-

thors in quantitative and qualitative form is attached in Appendix A.1. In particular,

the substantial individual contribution of Matthias Soppert, author of this dissertation,

is outlined.
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1 Introduction

Shared mobility systems (SMSs) such as car sharing or bike sharing offer flexible short-

term rentals in many major cities of the world. Globally, the number of car sharing vehicles

has increased from 11,500 in 2006 to 112,000 in 2015, with 427,000 cars forecast for 2025

(ACEA and Frost & Sullivan 2016). In terms of annual growth, projections for the global

car sharing market were recently at 30%. Also, bike sharing systems have experienced a

strong market growth of 20% per year (Roland Berger Strategy Consultants 2014). Their

increasing importance, as well as the challenge to operate such systems profitably, have

led to an ongoing academic interest, as survey papers by Jorge and Correia (2013) and

Laporte, Meunier, and Wolfler Calvo (2018), among others, demonstrate.

As the fleet is the most important cost driver, high utilization is key to profitably

operating an SMS. This, however, is difficult to achieve due to existing imbalances between

supply and demand. First, customers’ demand varies across time and space. Second, a

rental not only instantly decreases available capacity at its origin, but also influences

future supply across the whole system. These supply-side network effects result from

the fact that modern systems mostly allow one-way trips, that is, the customer does not

need to return the vehicle to the same location as where the trip originated. A practical

consequence is that in most real-world systems, because of asymmetric demand, rental

vehicles tend to accumulate at certain locations, usually in the city’s outskirts.

The described imbalances are widely addressed by supply-oriented operational control

mechanisms such as vehicle relocation. However, as relocations are quite costly, pricing has

been identified as a promising demand-oriented means in practice as well as in research.

Most recently, Huang et al. (2020) have compare relocation and pricing optimization (also

see Di Febbraro, Sacco, and Saeednia (2012), Jorge, Molnar, and de Almeida Correia

(2015), Lippoldt, Niels, and Bogenberger (2018, 2019)). While the existing research tends

to focus on pricing problems with a high degree of details and high pricing flexibility,

current practical implementations strive for simple, more restrictive pricing mechanisms

that are more easily applied and communicated to customers. Interestingly, the restriction

to simple pricing mechanisms while network effects prevail, turns out to create its own

challenges.

Three dimensions characterize pricing mechanisms for SMSs, all of which impact the

mentioned trade-off between flexibility and practicability, as explicated below.

• Pricing basis: The first pricing dimension concerns the basis on which rental fees are

calculated. The rental duration is usually central. Usage-based pricing, for example

with prices in cents per minute, is most commonly used, therefore we focus on this

in our work. The final rental fee is then determined by the rental duration and

the price that is valid at the start of the journey. In addition, some SMS providers

offer package pricing for long rentals of multiple hours, fixed rental fees, or monthly
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membership fees that are not linked to usage.

• Spatio-temporal pricing features: The second pricing dimension refers to whether

the SMS provider sets prices depending on a rental’s time and the location of start

(origin), end (destination) or a combination of these (trip). Note that in this ter-

minology, origin and destination consider both spatial and temporal aspects, i.e.,

two rentals that begin at the same location, but at different times of the day, have

different origins. Trip-based pricing mechanisms use prices which depend on origin

as well as destination, allowing a very detailed level of pricing. By contrast, origin-

based and destination-based mechanisms only depend on the origin or destination,

respectively. Although trip-based pricing may seem most powerful, there are several

practical disadvantages. First, the customer’s destination is usually unknown in ad-

vance (Lippoldt, Niels, and Bogenberger 2018, 2019). Second, pricing mechanisms

that include the destination become much more complicated (Lippoldt, Niels, and

Bogenberger 2018). Third, prices need to be transparently communicated to the

customer before a rental. Attempts to prepare all origin-destination combinations

in a price table are impractical. The SMS provider then would have to ask a user to

(truthfully) disclose the intended destination, which would considerably change the

user experience of most real SMSs and thus would be unacceptable in most practical

settings. Due to these drawbacks, trip-based pricing seems not to be realizable in

practice, and we are not aware of a single SMS provider who has actually imple-

mented such trip-based pricing (see Appendix I). This paper, therefore, focuses on

origin-based pricing as a mechanism most commonly used in current practice, be-

cause the SMS provider then requires less information than otherwise. It also entails

a more efficient user-provider interaction process and fairly simple implementation.

• State dependency: The third pricing dimension distinguishes between dynamic and

differentiated pricing. Dynamic pricing mechanisms determine prices in real-time

and have the theoretical advantage of recurrently adjusting prices to the current

state of the system, in particular the current spatial vehicle distribution. Differen-

tiated pricing mechanisms also allow for temporal and spatial price variations, but

prices are determined offline and do not depend on the current state of the system

(Agatz et al. 2013). Note that some authors use the term static pricing for this

pricing mechanism (Waserhole and Jost 2012). For SMSs, these differentiated pric-

ing mechanisms, on which we focus in this paper, are preferred in practice. This is

mainly because differentiated mechanisms are easier to implement and again, quite

importantly, easy to communicate transparently to customers, for example via price

tables.

The problem we consider in this paper can therefore be summarized as follows: A one-way

SMS provider applies origin-based differentiated pricing by varying minute prices across
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different locations and depending on the time of day in order to scale demand. Con-

sistent with the common situation in practice, there are no parallel operational steering

means beyond pricing (pure pricing assumption). In particular, there is no availability

control, i.e., whenever vehicle and customer match, a rental results. However, if at a

certain location and point in time, demand exceeds supply, demand for all destinations is

served proportionally (proportional demand fulfilment assumption) and excess demand is

lost. This can be interpreted as customers with different destinations arriving in random

order. Resulting rentals evoke network effects in the aforementioned sense of influencing

supply at their destinations later in the day. To ensure simple and transparent customer

communication, prices must originate from a predefined discrete price set. Given this

setting, the optimization task is now to set prices optimally for all location-time combi-

nations, with the SMS provider’s overall objective being profit maximization. We refer to

this optimization problem as the origin-based differentiated pricing problem (OBDPP) in

SMSs.

Given its broad relevance to practice and across all SMS types, it is remarkable that

the problem has not yet been addressed in the academic literature. Our contributions,

more precisely, are the following:

• To the best of our knowledge, we are the first to focus on origin-based differenti-

ated pricing, which is highly relevant for various SMS types in practice because the

corresponding pricing mechanism is transparent to the customer and relatively easy

for the provider to implement. In addition, we include other novel problem char-

acteristics such as a realistic modeling of the SMS provider’s control ability. The

problem’s practical relevance is ensured by, among other things, close cooperation

we have established with Share Now, Europe’s largest car sharing provider operating

in eight countries and 16 cities (Share Now 2021).

• Second, we prove that the problem is NP-hard and therefore computationally in-

tractable for real-life instances. While some authors (e.g. Waserhole and Jost (2012),

Ren et al. (2019)) discuss the computational effort SMS pricing problems require,

to the best of our knowledge, we are the first to derive a formal proof of computa-

tional complexity for such a problem, to validly justify the development of solution

heuristics.

• Third, we develop a problem-specific, temporal decomposition heuristic based on

approximate dynamic programming (ADP). The approach is scalable and appli-

cable to real-world problems. Its integrated value function approximation (VFA)

anticipates the network effects of the entire problem endogenously in the optimiza-

tion, although only parts of the original problem are explicitly optimized during

the decomposition. This is enabled by specifying piece-wise linear VFAs that re-

flect the available vehicles’ decreasing marginal value while maintaining linearity for
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efficiently integrating it in the decomposed optimization problems.

• Fourth, we generate a number of relevant managerial insights based on extensive

computational experiments with different problem sizes, considering many relevant

parameter settings and demand patterns, and on a real-world case study of Share

Now. In particular, we demonstrate that origin-based pricing is capable of sub-

stantially increasing profit compared to the de facto industry standard of constant

uniform pricing. Further, we show that our approach can adequately capture both

short-term and long-term network effects due to its VFA.

The remainder of the paper is organized as follows. In Section 2, we review the relevant

literature, focusing on pricing problems. In Section 3, we formalize the origin-based dif-

ferentiated pricing problem, derive its model formulation, and discuss its complexity. We

present the proposed solution approach in Section 4. Section 5 contains the computational

experiments, and Section 6 presents the Share Now case study. Based on the obtained

results, Section 7 discusses the managerial insights we derived. Section 8 concludes the

paper and gives an outlook on future research. The appendix contains the complexity

proof, as well as additional data and results for the computational experiments and case

study.

2 Literature Review

General overviews on SMS problems have been given in survey papers on bike sharing (e.g.

DeMaio (2009), Fishman, Washington, and Haworth (2013), Ricci (2015)), car sharing

(e.g. Jorge and Correia (2013), Ferrero et al. (2015a), Ferrero et al. (2015b), Illgen and

Höck (2019)), and shared mobility in general (e.g. Laporte, Meunier, and Wolfler Calvo

(2015, 2018)). We begin by reviewing the literature on differentiated pricing problems

in Section 2.1 and dynamic pricing problems in Section 2.2. Then, we give a detailed

delineation of our work from the papers most closely related in Section 2.3. Please note

that since most pricing mechanisms are not limited to a single SMS type like bike sharing

or car sharing, we refrain from mentioning whether the authors considered a specific SMS

type. Also, we do not state explicitly whether the authors considered other optimization

problems besides pricing, such as fleet sizing or relocation.

2.1 Differentiated Pricing

The literature on optimizing differentiated pricing for SMSs focuses on trip-based pricing.

Waserhole and Jost (2012) propose a fluid approximation for the revenue-maximizing

trip-based pricing problem, which is the limit of the stochastic model when demand and

supply are scaled to infinity. In another paper from the same research group, Waserhole,

Jost, and Brauner (2012) present a model optimizing revenue in a single scenario, that is,
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they focus on solving the discrete problem with perfect hindsight information. This can

be used to derive an upper bound for the stochastic problem. They also consider pick-up

and drop-off fees. To our knowledge, this paper is the only one in the related literature

that has investigated computational complexity.

The following papers apply a certainty equivalent approach that replaces stochastic

quantities (i.e. rentals) with a deterministic value (Bertsektas 2019, Chapter 2.3.2). Jorge,

Molnar, and de Almeida Correia (2015) use a continuous (expected) demand function and

round rentals to the next integer value in the model. They formulate a profit-maximizing

trip-based pricing problem as mixed-integer nonlinear program and propose an iterated

local search meta-heuristic solution approach. Building on this work, Ren et al. (2019)

integrate the vehicle-grid interaction of electric vehicles into the model, and use a non-

linear solver for the resulting problem. The next two papers simply require rentals to be

integral values not exceeding a continuous demand function. Xu, Meng, and Liu (2018)

formulate a mixed-integer nonlinear and non-convex program. On this basis, they develop

a computationally tractable convex model which has the same objective in the optimum,

and solve the latter arbitrarily close to optimality. Huang et al. (2020) use a deterministic,

continuous demand function. They discuss two pricing approaches that they compare to

relocation. While the first is a classic trip-based pricing approach, the second involves

simultaneously optimizing pick-up and drop-off fees. They formulate mixed-integer non-

linear programs and solve them with a combined rolling horizon and iterated local search

heuristic, which the authors point out can also be applied in a dynamic context.

Lu et al. (2021) use yet another formulation, i.e., a bi-level nonlinear program based

on a fluid approximation in which the provider determines profit-maximizing prices on

the upper level. The lower level’s objective minimizes customers’ total cost by a binary

choice between two modes of transportation, namely shared vehicles and private cars. In

an odd interpretation of a discrete choice model, rentals are additionally bounded from

above by a logit model. The authors transform the bi-level problem to a single-level one

using Karush-Kuhn-Tucker conditions, and heuristically solve it with a genetic algorithm.

Finally, there are two other more distant lines of work, parallel to the aforementioned.

One analytically investigated the steady state of highly stylized, stationary settings with

time-invariant demand using techniques from closed-queuing networks. Waserhole and

Jost (2016) maximize the number of trips taken, assuming null travel time. They ap-

proximate the problem and show a bound for the solution quality. In a working paper,

Banerjee, Freund, and Lykouris (2016) basically extended this result using a different

proof and approximation techniques. A second parallel line of work considered pricing in

SMSs but without optimization. For example, Brendel et al. (2017) developed a frame-

work for a decision support system that could help to define contingent areas with low

or high demand. The provider can then manually choose pick-up and drop-off discounts

and fees for these areas.
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2.2 Dynamic Pricing

Dynamic pricing problems make up the majority of pricing problems considered in the

literature on SMSs. We structure the discussion along the spatio-temporal pricing features

(second dimension introduced in Section 1). We begin with the dynamic mechanisms that

exclusively use either origin-based or destination-based pricing. Next we refer to a class of

approaches that simultaneously considers dynamic origin- and destination-based pricing,

after which we discuss those using classic trip-based pricing.

Giorgione, Ciari, and Viti (2019) are the first scholars to have considered pure origin-

based dynamic pricing. They analyze a dynamic pricing policy which links the price to

the availability of vehicles at a rental’s origin and demonstrate the advantage of dynamic

pricing over a constant uniform price. Neijmeijer et al. (2020) propose an optimization

model that dynamically adjusts prices with the objective to balance vehicles’ idle times

while minimizing incentive costs. In a real-life free-floating SMS, the authors demonstrate

the effectiveness of origin-based pricing incentives. Most recently, Hardt and Bogenberger

(2021) as well as Müller et al. (2021) proposed dynamic origin-based pricing approaches

for free-floating SMSs, both with the objective to maximize profit. The former use a

model predictive control approach which recurrently optimizes prices for subareas of the

operating area. The latter propose customer-centric pricing where prices are optimized

individually for each customer, thereby considering the available vehicles within a cus-

tomer’s reach as well as the choice behavior.

Destination-based dynamic pricing was first investigated by Di Febbraro, Sacco, and

Saeednia (2012). In a first step, they determine a service maximizing fleet distribution,

while the second step determines optimal drop-off discounts that incentivize customers

to return their vehicle to a specific destination. Following up on this work, Di Febbraro,

Sacco, and Saeednia (2019) changed the second step’s objective to profit maximization.

Brendel, Brauer, and Hildebrandt (2016) proposed a dynamic drop-off incentive for users

who accept the option of returning their vehicle to a different location than that initially

intended. Pfrommer et al. (2014) suggest a model predictive control approach. The

objective is a weighted sum of the deviation from an optimal vehicle distribution and

the cost of incentive payments. Wagner et al. (2015) propose a system that dynamically

suggests alternative rental destinations, and incentivizes customers with free minutes.

Chemla et al. (2013) consider a service maximizing fleet utilization, measured by successful

and unsuccessful intended customer interactions like finding an available vehicle. They

suggest dynamic drop-off fees to influence customer behavior. Marecek, Shorten, and Yu

(2016) propose a dynamic pricing scheme that derives drop-off fees to incentivize drivers

to distribute cars more evenly.

Some authors simultaneously consider dynamic origin- and destination-based pricing.

Singla et al. (2015) investigate the problem of minimizing customers’ dissatisfaction about
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not finding an available vehicle or parking slot under a given budget restriction. They

propose dynamic pick-up and drop-off fees to incentivize users to choose an alternative

origin or destination. Kamatani, Nakata, and Arai (2019) take a reinforcement learning

approach to derive dynamic pick-up and drop-off fees with the objective of maximizing

fleet utilization. Wang and Ma (2019) consider the objective of keeping inventories in a

certain range, and they determine dynamic pick-up and drop-off rewards and charges by

a quadratic programming formulation.

Finally, there are papers that use a dynamic trip-based pricing mechanism. Barth,

Todd, and Xue (2004) consider maximizing fleet utilization by incentivizing customers

with the same journey to share a ride or to split up and use multiple vehicles. Prices

are reduced according to a simple rule-based mechanism without any optimization. For

example, if two users are asked to take two cars, each pays half-price. Angelopoulos

et al. (2016) consider the problem of dynamically setting budget-constrained trip-based

incentives in an SMS to balance the vehicle inventory. The approach uses graph-theoretic

modeling and proposes a heuristic method to solve the resulting weighted packing prob-

lem. Haider et al. (2018) dynamically set trip-based prices to minimize the number of

unbalanced stations, that is, SMS stations with a surplus or lack of vehicles, to ease

the subsequent need to reposition using trucks. In their bi-level programming approach,

the upper level sets prices and minimizes the imbalance, while the lower level represents

customers’ cost minimization route choices. They convert the problem to a single-level

problem, and propose a heuristic which iteratively adjusts prices and customer decisions.

2.3 Delineation from Closest Related Work

In this section, we discuss that the closest related works cannot be simply adapted to

meet the given characteristics of the origin-based differentiated pricing problem this paper

considers.

Among the papers discussed here, which all focus on trip-based pricing, we identify

two groups that differ regarding the modeling of demand and rentals. For both groups, we

have to conclude that central structural differences impede an inclusion of the OBDPP’s

characteristics.

The first group of papers does not distinguish between demand and rentals. It en-

compasses Jorge, Molnar, and de Almeida Correia (2015), Ren et al. (2019), Waserhole

and Jost (2012), as well as Haider et al. (2018) who study differentiated and dynamic

trip-based pricing. The former three consider unrestricted, continuous prices that scale

demand. Thus, it is always optimal to set prices such that capacity is not scarce and,

so that demand will equal rentals. The key issue is that with the restricted and espe-

cially discrete price points prevalent in practice, this equivalence of demand and rentals

no longer holds and is usually even infeasible. Allowing for discrete prices requires a
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differentiation between demand and rentals, as well as explicitly incorporating the pure

pricing and proportional demand fulfillment assumptions. Thus it would require major

modeling changes.

By contrast, Haider et al. (2018) do not scale demand by continuous prices; they only

influence customers’ route choices in a bi-level problem with an infinite fleet size. More-

over, their model is optimistic, that is, if customers are indifferent, the provider chooses

the itinerary for them. While including discrete prices with demand scaling, profit max-

imization, and origin-based pricing in their model seems possible, this alone would yield

an entirely new model. However, there are two key issues. First, incorporating a limited

fleet size would also necessitate accounting for the pure pricing assumption. Second, the

problem that we consider with its proportional demand fulfillment assumption is neither

optimistic nor pessimistic. As optimistic approaches are usually the most tractable ones,

including these two assumptions appears to be complex.

The second group of papers encompasses Xu, Meng, and Liu (2018), Lu et al. (2021),

and Huang et al. (2020), who distinguish between demand and rentals in their models,

but do not satisfy the pure pricing and proportional demand fulfillment assumptions. Xu,

Meng, and Liu (2018) and Huang et al. (2020) include demand scaling with continuous

prices. Their models bound rentals only from above by supply and demand. Thus, the

provider can freely choose the number of rentals going to the different destinations up

to these bounds, as it is beneficial in the long term. This violates the pure pricing and

proportional demand fulfilment assumptions. An extension of their models that includes

the assumptions in respective constraints seems possible, but the changes would be so

extensive that basically any network flow model could be used.

Slightly similar to Haider et al. (2018), Lu et al. (2021) do not scale total demand

by continuous prices, but only influence customers’ mode choices on the lower level of

their bi-level problem, where they work with the assumption of customers collectively

minimizing cost. As in Haider et al. (2018), the key issue is that the model is optimistic.

If customers’ costs are the same for carsharing and private cars on a trip, the provider can

choose the number of customers up to the logit model’s bound. Even more importantly,

if this holds for several trips, the provider can freely choose the number of customers for

each trip. Again, there is no clear path to include the two assumptions.

Note that the work of Giorgione, Ciari, and Viti (2019) is not closely related. Although

they do analyze a pure origin-based pricing problem, they do so without pricing optimiza-

tion, without considering network effects, and in a dynamic context which fundamentally

differs from the differentiated pricing problem that we analyze.
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3 The Origin-Based Differentiated Pricing Problem

in Shared Mobility Systems

In this section, we define and analyze the origin-based differentiated pricing problem in

SMSs (OBDPP). Section 3.1 formally states the problem and introduces the notation.

In Section 3.2, we present a mixed-integer linear programming formulation for the OB-

DPP based on a fluid network flow model. Section 3.3 investigates the computational

complexity of the problem.

3.1 Problem Statement and Notation

We take the perspective of a one-way SMS provider whose task is to apply differentiated

pricing to determine minute prices over a given time interval, for example, one day. The

SMS consists of locations Z = {1, 2, . . . , Z}. The considered time interval is discretized

into periods T = {0, 1, . . . , T−1}. For all rentals which originate at a specific combination

of location i ∈ Z and period t ∈ T the same minute price pit is charged, regardless of

a trip’s destination (origin-based pricing). The minute prices have to be selected from

M given price points pm ∈ R+
0 with m ∈ M = {1, 2 . . . ,M}. Now, the provider’s

objective is to set the prices such that they maximize the profit generated from the

resulting rentals over the given time interval. The corresponding solution to the problem

– i.e., the optimized prices – can be presented in the form of a price table, as shown in

Table 1.

On a more detailed level, additional key aspects of the problem definition are the

assumptions regarding demand, rental realization, and system dynamics, which we now

discuss in more detail.

• Demand: We considered the demand and its dependence on the price points on an

aggregate level as described, for example, in Talluri and van Ryzin (2004, Chapter

7.3). More specifically, the base demand for every location-location-time combina-

tion – from location i to location j at period t – is given by dijt ∈ R+
0 and builds

the base demand matrix d = [dijt]Z×Z×T . Each entry is scaled by an i-j-t spe-

cific sensitivity factor fm
ijt, depending on the price pm, to obtain the actual demand

dmijt = dijt · fm
ijt. The price where fm

ijt = 1 and thereby dmijt = dijt is denoted as base

price.

• Rental realization: The rentals rmit that realize for a specific origin, meaning a

location-time (i-t) combination, and price pit, are determined by the minimum of

the available vehicle count ait and the prevailing actual demand, meaning rmit =

min(ait,
∑

j∈Z dmijt). Note that this implicit realization of rentals based on the pre-

vailing supply and demand implies that the SMS provider can only influence rentals
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via prices (pure pricing assumption). We assume that rentals at period t in location

i, that is, rmit , split up proportionally to demand regarding their destination into

the i-j-t specific rentals rmijt. This means that we model rmijt as a fraction of rmit

proportional to dmijt/
∑

j∈Z dmijt (proportional demand fulfillment assumption). We

assume rentals have a variable costs per minute c ∈ R+
0 .

• Dynamics: We think of the SMS dynamics as a sequential process with successive

periods, as it is done in practice and commonly found in the literature, for example

in Xu, Meng, and Liu (2018). More precisely, we assume that rentals start at the

beginning of a period and the vehicles, at latest, always become available again at

the beginning of the respective next period. The average rental duration lij ∈ R+
0

(in minutes) is shorter than the period length, but can vary according to the spatial

distance between different locations i-j.

Finally, note that the initial vehicle distribution at the beginning of the considered time

interval (beginning of the day) âi0 for every location i is given as a consequence of regular

relocation activity (usually performed during the night). Thus, fixed costs related to these

regular relocations are out of the problem’s scope.

T
0 1 2 . . . T − 1

Z

1 p10 p11 p12 . . . p1(T−1)

2 p20 p21 p22 . . . p2(T−1)

. . . . . . . . . . . . . . . . . .
Z pZ0 pZ1 pZ2 . . . pZ(T−1)

Table 1: Structure of the origin-based
differentiated price table
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Figure 1: Structure of the spatio-temporal network
(columns: time periods, rows: locations)

3.2 Mathematical Model

We formulate the OBDPP based on a deterministic network flow problem in which vehicles

move through a spatio-temporal network (Figure 1). The resulting fluid model considers

expected values of the vehicle movements and available vehicles in the SMS. Deterministic

models for pricing decisions are standard in pricing and revenue management (Talluri and

van Ryzin 2004, Chapter 3.3.1), and are also applied in SMS optimization (see e.g., Illgen

and Höck (2019), Waserhole and Jost (2012)).

The model contains multiple continuous variables: As depicted in Figure 1, rentals

from location i to location j in period t that are charged with minute price pm are

represented by the continuous variable rmijt; these build the elements of the vector r =
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[rmijt]Z×Z×T×M . Vehicles that are not rented in location i at period t and therefore remain

in that location are represented by the continuous variable sit and are the elements of

s = [sit]Z×T . The number of vehicles at the beginning of a period t in a certain location i is

represented by the continuous variable ait with the corresponding vector a = [ait]Z×(T+1).

Additionally, the model contains the following binary decision variables. The pricing

decisions build the elements of y = [ymit ]Z×T×M . A specific decision variable ymit takes

the value 1, if and only if price pm is set in location i at period t. To formulate all

necessary constraints – in particular that vehicle movements and availabilities are the

result of existing demand and selected prices (see pure pricing and proportional demand

fulfillment assumptions in Sections 1 and 3.1) – additional auxiliary binary variables are

required, represented by q = [qit]Z×T .

Based on the decision variables and the parameters defined so far, the model can be

stated as a mixed-integer linear program as follows:

max
y,q,r,a,s

∑

t∈T

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) (1)

s.t. ait =
∑

j∈Z

∑

m∈M
rmijt + sit ∀i ∈ Z, t ∈ T (2)

∑

i∈Z

∑

m∈M
rmijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (3)

ai0 = âi0 ∀i ∈ Z (4)
∑

m∈M
ymit = 1 ∀i ∈ Z, t ∈ T (5)

rmijt ≤ dmijt · ymit ∀i, j ∈ Z, t ∈ T ,m ∈M (6)

rmijt ≤ dmijt/
∑

k∈Z
dmikt · ait ∀i, j ∈ Z, t ∈ T ,m ∈M (7)

∑

j∈Z

∑

m∈M
dmijt · ymit − ait ≤ M̄ · qit ∀i ∈ Z, t ∈ T (8)

∑

j∈Z

∑

m∈M
−dmijt · ymit + ait ≤ M̄ · (1− qit) ∀i ∈ Z, t ∈ T (9)

∑

m∈M
dmijt · ymit ≤

∑

m∈M
rmijt + M̄ · qit ∀i, j ∈ Z, t ∈ T (10)

sit ≤ M̄ · (1− qit) ∀i ∈ Z, t ∈ T (11)

ymit ∈ {0, 1} ∀i ∈ Z, t ∈ T ,m ∈M (12)

qit ∈ {0, 1} ∀i ∈ Z, t ∈ T (13)

rmijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T ,m ∈M (14)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (15)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (16)
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The objective function (1) maximizes the contribution margin across all periods and

results from the rentals at different prices minus the variable costs. Note that since

decisions related to fixed costs cannot be made at this point and are therefore out of scope,

maximizing the contribution margin is equivalent to optimizing profit here. Constraints

(2) and (3) form the flow conservation that ensure a constant fleet size at all periods. More

precisely, (2) connect the available vehicles ait in location i at the beginning of period t to

the rentals at all possible prices rmijt that originate at this specific spatio-temporal node,

plus the vehicles not rented sit. Constraints (3) determine the available vehicles at the

beginning of the next period aj(t+1) by summing up the arriving rentals and the vehicles

not moved. Clearly, (2) and (3) could be formulated in one set of constraints; however,

the description of the solution approach in Section 4 becomes more comprehensible with

an explicit decision variable ait. The initial vehicle distribution is set by constraints (4).

Constraints (5) ensure that at every location-time combination only one price pm is set.

Constraints (6) and (7) define upper bounds on the rentals, depending on whether

demand or supply limits the rentals. For every i-j-t combination, constraints (6) limit the

rentals observed at a certain price to the actual demand at this price. Additionally, these

constraints ensure that only those variables rmijt whose corresponding price p
m was selected

can be positive. Constraints (7) limit the rentals to the number of available vehicles for

every location-time combination. More specifically, the rentals from location i to location

j at period t and price pm must not exceed the fraction dmijt/
∑

k∈Z dmikt · ait of available
vehicles. The factor dmijt/

∑
k∈Z dmikt splits the available vehicles proportionally into vehicle

flows according to the demand relation.

The next constraints (8) to (11) are necessary to enforce lower bounds on the rentals,

which thereby ensure that if pit = pm, rentals realize according to rit = min(ait,
∑

j∈Z dmijt)

(see pure pricing and proportional demand fulfillment assumptions in Sections 1 and 3.1;

see Soppert et al. (2021b) for detailed discussions on matching functions that determine

rit, including variants to the min-operator applied here). They incorporate a sufficiently

large number M̄ . Constraints (8) and (9) force qit to 1, if the demand exceeds the available

vehicles, and to zero otherwise. Now, if demand exceeds the supply, such that qit = 1,

constraints (11) ensure that all available vehicles are rented. In the other case where

qit = 0, constraints (10) set the demand as a lower bound for the rentals. As described

in the review of the closest related literature in Section 2.3, to the best of our knowledge,

none of the existing works on SMS pricing optimization enforces such lower bounds on

the rentals. Consequently, these models have a degree of freedom which allows them to

reject certain rentals. They therefore do not adequately reflect the real decision problem.

Note that from a technical viewpoint, the OBDPP falls into the class of deterministic

sequential decision problems, which are characterized by the fact that they can be divided

into stages (see e.g. Winston and Goldberg (2004, Chapter 18.2)). In the OBDPP, these

stages correspond to the multiple time periods. The corresponding model given in (1)
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to (16) has the same structure as the general deterministic sequential decision problem

stated, e.g., in Powell (2011, Chapter 4.8.4).

3.3 Computational Complexity

Theorem. The origin-based differentiated pricing optimization problem in SMSs (OB-

DPP) (1)-(16) is NP-hard.

Proof. See Appendix A.

The proof is performed by polynomial-time reduction of the three-satisfiability problem

(3-SAT), which is well-known to be NP-hard (Garey and Johnson 1990), to the OBDPP.

In 3-SAT, multiple clauses of 3 literals each build a Boolean formula, where the clauses

are connected by conjunctions and the literals in each clause by disjunctions, meaning

that the formula is in conjunctive normal form (CNF). 3-SAT now asks whether a given

3-CNF formula is satisfiable, thus asking whether there exists a consistent truth assign-

ment of TRUE/FALSE to the literals, such that the formula is TRUE. The idea of the proof

is to construct an OBDPP instance where location-time combinations correspond to a

3-SAT instance’s clauses. For each location-time combination, the price selection corre-

sponds to the selection of a literal that is guaranteed to be TRUE. For the constructed

OBDPP instance, determining the optimal solution implies deciding satisfiability of the

corresponding 3-SAT instance.

4 Approximate Dynamic Programming Decomposi-

tion Approach

Given that the OBDPP is NP-hard, in this section, we develop a problem-specific heuristic

approach for its solution. More precisely, we propose a decomposition approach based

on approximate dynamic programming (ADP). We start by explaining the theoretical

foundation of the approach in Section 4.1, followed by its formal description in Section

4.2. In Section 4.3, we describe the specific design of the VFA which is a central element

of the approach. We explain the estimation process of the VFA parameters in Section 4.4.

4.1 Theoretical Foundation

The solution approach builds on the general idea of using ADP as a decomposition tech-

nique. As Powell (2011) noted, while ADP is known as a solution framework for solving

stochastic dynamic decision problems, it can also be applied as a decomposition technique

for deterministic sequential decision problems (Powell 2011, Chapter 4.8.4), like the OB-

DPP. Through this technique, multiple smaller problems are solved instead of the original
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large problem, with each smaller problem containing a VFA that attempts to compensate

for the neglected parts of the original problem (see also Powell (2009, 2016)). These VFAs

are functions of the decision variables, such that the profits-to-come they approximate are

endogenously incorporated within the optimization of the smaller problems. Powell points

out that ADP decomposition approaches in principle allow to solve extremely large math-

ematical programs, which even modern commercial solvers find difficult, but the challenge

is to design effective, problem-specific VFAs that yield adequate solution quality.

The ADP decomposition approach we developed for the OBDPP in this study implies

a time-based decomposition of the original problem. That is, while in the original problem

(1)-(16), all periods t ∈ T are optimized simultaneously, our approach is based on the

iterative solution of multiple smaller and adapted versions of the original problem (termed

substitute problem). More precisely, the approach loops chronologically across all periods

τ ∈ T , and for each τ , a substitute problem with fewer explicitly considered periods

(termed horizon) but with a period-specific VFA at the end of the horizon is optimized.

It is important to note that the ADP decomposition approach goes beyond the basic

rolling horizon solution approach for deterministic sequential decision problems, as it is

described, e.g., by Grossmann (2012). In fact, the key idea is to integrate sophisticated

VFAs which allow us to implicitly consider all remaining parts of the original problem

which are not considered explicitly in the optimized substitute problem. In our case,

these VFAs are functions of the vehicle distribution (decision variables in the substitute

problems) such that for any resulting vehicle distribution at the end of the horizon, the

approximated profit-to-come is endogenously incorporated in the optimization. Thereby,

the ADP decomposition approach has an obvious advantage over the basic rolling-horizon

approach and comes along with the theoretical potential, in case of perfect VFAs, to

indeed find the optimal solution of the overall problem. We describe the details of the

approach next.

4.2 Formal Description

We begin the more formal description of the ADP decomposition approach by formalizing

the substitute problem at a specific period τ . To reduce the problem size, the number of

explicitly modeled periods in the substitute problem at period τ is limited to the horizon

length H that has to be prespecified. For a certain H, the explicitly considered periods in

the substitute problem at τ are the elements of the horizon Hτ = {τ, τ + 1, . . . ,min(τ +

H−1, T−1)}. In other words, this means that periods t < τ and t > min(τ+H−1, T−1)
are not considered explicitly and that the number of periods in the substitute problem

can also be fewer than H in case it would otherwise exceed T − 1. To compensate for

the reduction of explicitly considered periods, the VFA is additionally integrated in the

objective function.
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To obtain a formulation of the substitute problem on the basis of the original OBDPP

(1)-(16), it must be adapted to the considered periods in Hτ and the VFA should be

integrated. For that purpose, the decision variable vectors y,q, r, a, s are replaced by

τ -specific vectors with appropriate time-dimension, that is yHτ = [ymit ]Z×Hτ×M , qHτ =

[qit]Z×Hτ×M , rHτ = [rmijt]Z×Z×Hτ×M , sHτ = [sit]Z×Hτ , where Hτ = min(H,T − τ − 1), and

aHτ = [ait]Z×(Hτ+1)×M , respectively. For each horizon Hτ with τ ∈ T , a corresponding

substitute problem with initial vehicle distribution âτ is then given by the following MILP:

max
yHτ ,qHτ ,

rHτ ,aHτ ,sHτ

∑

t∈Hτ

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) + 1{τ+H<T−1} · V̄τ+H(aτ+H) (17)

s.t. Constraints (2)-(3), (5)-(15) with T replaced by Hτ , (18)

and (16) with {0, 1, . . . , T} replaced by {τ, τ + 1, . . . ,min(τ +H,T )}

Constraints (4) with vehicle distribution âτ (19)

Constraints depending on choice of V̄τ+H(aτ+H). (20)

Compared to the original OBDPP (1)-(16), the objective function in the substitute prob-

lem (17) contains the additional VFA V̄τ+H(aτ+H). For each substitute problem, the

function V̄τ+H(aτ+H) approximates the value at the end of the horizon (that is, from

period t = τ + H until the end of the day), referring to the optimal profit-to-come in

the original problem for the remaining periods Rτ+H = {τ + H, τ + H + 1, . . . , T − 1}.
Since the VFA depends on the vehicle distribution aτ+H = [ai(τ+H)]Z×1, the approximated

profit-to-come is endogenously incorporated in the optimization of the substitute problem.

More formally, the link between the approximation V̄τ+H(aτ+H) and the original problem

for a certain period t = τ +H under the respective constraints is

V̄τ+H(aτ+H) ≈ max
yRτ+H

,qRτ+H
,rRτ+H

,
aRτ+H

,sRτ+H

∑

t∈Rτ+H

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c), (21)

again with adapted vectors of decision variables that now contain the respective variables

for all remaining periods t ∈ Rτ+H . Note that the indicator function 1{τ+H<T−1} in (17)

ensures that the VFA is not used beyond the last period of the original problem. We

present the details of the VFA design, as well as of determining the function parameters

in Section 4.3 and Section 4.4, respectively.

Further, while constraints (18) in the substitute problem in principle correspond to

the original constraints (2)-(3) and (5)-(16), they now account for the new time periods

considered explicitly, meaning that T is replaced by Hτ and {0, 1, . . . , T} is replaced

by {τ, τ + 1, . . . ,min(τ + H,T )}. Likewise, constraints (19) concerning the substitute

problem’s initial vehicle distribution remain largely unchanged from (4), but the initial

vehicle distribution âτ = [âiτ ]Z×1 at τ now is the distribution at the beginning of the

substitute problem’s horizon. Depending on the specific choice of the VFA V̄τ+H(aτ+H),

additional constraints might be necessary (constraints (20)). We discuss these regarding
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our specific VFA design in Section 4.3.

Given the formulation of the substitute problem, we can now solve the original problem

using the decomposition approach by chronologically looping over T , from τ = 0 to

τ = T − 1. In each iteration, we solve a substitute problem (17)-(20) at period τ with

horizon Hτ . For τ = 0, the vehicle distribution is initialized with the vehicle distribution

of the original problem â0. For all other substitute problems at τ > 0, the respective initial

vehicle distribution âτ is determined by the vehicle distribution aτ that realized after one

period in the previous substitute problem with horizon Hτ−1. The prices pτ = [piτ ]Z×1

that result from the optimization for the first period of each substitute problem at τ

are the final prices to be recorded in column τ of the price table (see Table 1), while

all other calculated prices are discarded. Similarly, vehicle distributions are computed

for the entire horizon, but only the vehicle distribution aτ+1 of the next period τ + 1 is

used as initial vehicle distribution âτ+1 for the next substitute problem. Note that, from

a technical perspective, already calculated future prices and spatial vehicle distributions

can be used as part of a warm start solution in the following substitute problem to speed

up the overall solution process.

The general ADP decomposition approach is depicted as pseudo-code in Algorithm 1.

The substitute problem including VFA given by (17)-(20) can be solved using a standard

MIP solver. Remember that it is not fully specified yet. We still need to choose a specific

VFA to be integrated in objective (17) and add its corresponding constraints as indicated

by (20). We describe our choice of this VFA and the corresponding elements to add in

the next subsection. The computation times for the entire process of pricing solution

determination are discussed in Appendix D.

Algorithm 1 Approximate dynamic programming decomposition approach

- start with initial vehicle distribution â0 according to original problem
for τ = 0 to τ = T − 1 do
- solve substitute problem including VFA (17)-(20) with respective horizon Hτ

- store prices pτ in price table
- update initial vehicle distribution: âτ+1 ← aτ+1

end for

4.3 Design of the Value Function Approximation

Here we propose and discuss a problem-specific VFA to be used for V̄τ+H in (17) and state

the additional constraints it requires (cf. (20)). The main focus in our VFA design is to

effectively approximate the network effects of the OBDPP. Please remember that the idea

is to use the VFA to be able to evaluate any vehicle distribution that might arise in the

substitute problem.
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Basically, the VFA V̄τ+H can be any function that maps the decision variables at the

end of the horizon to the desired value. In general, three alternative VFA types can

be used in ADP, namely lookup tables, non-parametric value functions, and parametric

value functions (Powell 2011, Chapter 6). We decided to follow the latter type, i.e., a

parametric approach, because, different to the others, it can be incorporated in our MILP

framework without excessively using auxiliary variables.

The choice of a specific VFA depends on two aspects. First, and most importantly,

the VFA should be a good approximation of the true value function and capture all

properties relevant for decision making. The second is tractability. As we integrate the

VFA into a MILP, we aim as much as possible to reduce the additional complexity that

inevitably results from the VFA integration with its additional decision variables and

potential constraints. The first step of the VFA design is known as feature selection in

the ADP realm. It determines the variables (a subset of the state) of which the VFA

is a function. The vehicle distribution aτ+H is the natural choice, as it is central to

the SMS’s state, and determines the potential for future rentals. The second step that

defines the actual function is a bit more complicated. The key property here is that

each additional vehicle in a specific location at time τ + H has a positive additional

value, but as the number of vehicles increases, the marginal value of each additional

available vehicle decreases. This is because the finite demand causes saturation and

limits the profit that can be realized with additional vehicles, also taking future demand

at other locations through network effects into account. Thus, a concave function seems

appropriate. Regarding tractability, linearity in the vehicle distribution aτ+H is desirable.

Combining these arguments and computational tests, we propose a piecewise linear

function of the number of vehicles in each location at time τ +H. Additional constraints

ensure concavity. Thus, the VFA captures the decreasing marginal value of available

vehicles and retains linearity. In particular, the VFA (incorporated in the substitute

problem (17)-(20)) is the following Z-dimensional piecewise linear function with K pieces

in each dimension.

V̄τ+H(aτ+H) :=
∑

i∈Z

∑

k∈K
v̄ki(τ+H) ·∆aki(τ+H) + v̄constτ+H (22)

Technically speaking, the VFA (22) for a specific period τ +H is a function of the respec-

tive spatial vehicle distribution aτ+H and additive over the Z locations. For a specific

location i, the present vehicles ai(τ+H) are divided into K buckets that each represent a

common marginal value per vehicle and correspond to the pieces of the piecewise linear

function. The number of vehicles in these buckets is modeled by additional decision vari-

ables ∆aki(τ+H) (=pieces) with ai(τ+H) =
∑

k∈K ∆aki(τ+H) ∀i ∈ Z, where K = {1, . . . , K}.
Thus, a specific share ∆aki(τ+H) of the vehicles at location i, period (τ + H) now corre-

sponds to piece k and contributes with the respective marginal value v̄ki(τ+H) to the overall
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value of the VFA. Additionally, the VFA contains the time specific constant v̄constτ+H .

The VFA parameters, meaning v̄ki(τ+H) for i ∈ Z, τ + H ∈ T , k ∈ K as well as v̄constτ+H

for (τ + H) ∈ T , are derived in an estimation process that we describe in Section 4.4.

Due to the decreasing marginal value of vehicles discussed above, during estimation, we

enforce concavity of the function in each dimension i by requiring v̄ki(τ+H) ≥ v̄k+1
i(τ+H) ∀i ∈

Z and ∀k ∈ {1, . . . , K − 1}. Further, we require v̄ki(τ+H) ≥ 0 ∀i ∈ Z, k ∈ K and v̄constτ+H ≥ 0

for obvious reasons.

As a side note, for an efficient VFA of our problem, considering i-t-specific parameters

v̄ki(τ+H) is indeed decisive. The intuition behind this is that a vehicle’s value depends

on both location and time. In particular, parameters that were only time-specific would

result in a valuation of the fleet at the end of the horizon which is identical for all possible

fleet distributions.

Now, to plug the VFA (22) into the substitute problem (17)-(20) for period τ with

horizon Hτ , we obviously substitute (22) into the objective function (17). Moreover,

additional continuous and non-negative decision variables ∆aki(τ+H) ∀i ∈ Z, k ∈ K are

introduced. To ensure a correct evaluation of the vehicle distribution at+H with (22), the

following additional constraints need to be integrated in the substitute problem for (20):

ai(τ+H) =
∑

k∈K
∆aki(τ+H) ∀i ∈ Z (20a)

∆aki(τ+H) ≤ ∆ã ∀i ∈ Z, ∀k ∈ {1, 2, . . . ,K − 1} (20b)

Constraints (20a) ensure that the ∆aki(τ+H) indeed sum up to the vehicle count. By con-

straints (20b), the number of vehicles in each bucket, except for the last bucket (∆aKi(τ+H)),

is limited to the respective predefined bucket size ∆ã. Note that because of the concavity

of the VFA, the buckets are ”automatically” filled in the correct order, beginning with

k = 1.

To solve the substitute problem (17)-(20) incorporating this VFA, we still need values

for its parameters. We describe their estimation in the next subsection.

4.4 Parameter Estimation

The estimation process we propose for the VFA parameters is performed before we loop

over the time periods and iteratively solve the substitute problems as described in Sections

4.1 and 4.2. We followed the traditional idea of parameter estimation based on observed

data, which, in our case, is artificial sample data generated from simulations, as common

in ADP-based approaches. For the purpose of sample generation, we exploit that for a

given spatial vehicle distribution at a certain period and with a given price table for the

remaining periods, the resulting rentals of the remaining periods and thus the correspond-

ing profit-to-come are easily calculated algorithmically. This profit-to-come evaluation is
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computationally efficient, even for real-life instances. The overall process can roughly be

outlined as follows: First, we generate samples of vehicle distributions. Second, for each

sample, we calculate the resulting profit-to-come. Finally, this data is used to estimate

the VFA parameters by an adapted least squares estimation procedure.

More formally, for each period (τ + H) ∈ {1, 2, . . . , T − 1}, multiple samples n ∈
N = {1, 2, . . . , N} of vehicle distributions ân

τ+H = [âni(τ+H)]Z×1 are drawn by randomly

splitting up the fleet among the Z locations. For each of these vehicle distribution samples

ân
τ+H, a corresponding profit-to-come V̂ n

τ+H(â
n
τ+H) is determined by evaluating a known

(suboptimal) price table, for example one that only consists of a constant uniform price,

over the remaining periods. This could be done by applying a solver to evaluate the

original problem (1)-(16) with fixed prices for the remaining periods in Rτ+H , but an

equivalent algorithmic solution is straightforward and much faster. Moreover, for each

vehicle distribution the number of vehicles in each bucket ∆ân
τ+H = [∆âk,ni(τ+H)]Z×1×K×N

is calculated. In particular, for each location, we simply assign as many vehicles as possible

up to the bucket size ∆âk,ni(τ+H) to a bucket and then continue with the next with increased

k.

Given the resulting sample data, the respective parameters v̄τ+H = [v̄ki(τ+H)]Z×1×K

and v̄constτ+H from the VFA (22) are simultaneously determined by constrained least squares

estimation, that is, a variant of ordinary least squares estimation with additional equality

and inequality constraints. More precisely, we minimize the mean squared error over the

N generated data points by the following quadratic optimization problem:

min
v̄τ+H,v̄const

τ+H

1

N

∑

n∈N
(V̂ n

τ+H(ânτ+H)− V̄ n
τ+H(∆âni(τ+H)))

2 (23)

s.t. V̄ n
τ+H(∆âni(τ+H)) =

∑

i∈Z

∑

k∈K
v̄ki(τ+H) ·∆âk,ni(τ+H) + v̄constτ+H ∀n ∈ N (24)

v̄ki(τ+H) ≥ 0 ∀i ∈ Z, k ∈ K (25)

v̄constτ+H ≥ 0 (26)

v̄ki(τ+H) ≥ v̄k+1
i(τ+H) ∀i ∈ Z, k ∈ {1, 2, . . . ,K − 1}. (27)

The error minimized in (23) is the mean of the squared difference between the observed

(evaluated) profits-to-come V̂ n
τ+H and the profits-to-come V̄ n

τ+H predicted with (22) (iden-

tical to (24)), for the respective observed (randomly drawn) spatial vehicle distribution,

over all samples N . Constraints (25)-(26) ensure the non-negativity of the parameters

and constraints (27) ensure the VFA’s concavity. Remember that v̄τ+H and v̄constτ+H are

parameters in their eventual use as parts of the VFA in the substitute problem (17)-(20),

but here in (23)-(27), they are the decision variables to be determined.

Note that the parameter estimation is performed individually for each period (τ+H) ∈
T , but simultaneously over all Z locations each (τ+H) such that spatio-temporal interde-

pendencies are captured by the VFA parameters. The process is depicted as pseudo-code
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in Algorithm 2. We solve (23)-(27) using a standard MIP solver. Computation times for

the parameter estimation process are discussed in Appendix D.

Algorithm 2 Parameter estimation algorithm
for (τ +H) = 1 to T − 1 do

for n = 1 to N do
- randomly divide fleet into spatial vehicle distribution ânτ+H

- determine profit-to-come V̂ n
τ+H by algorithmic evaluation of original problem (1)-(16)

for remaining periods Rτ+H with known (suboptimal) price solution
- for each location, calculate number of vehicles in each bucket (∆ânτ+H)

end for
- determine VFA parameters v̄τ+H and v̄constτ+H by (23)-(27)

end for

5 Computational Experiments

We investigate the performance of the ADP decomposition approach presented in Section

4 in comprehensive computational experiments. We vary the most relevant influencing

factors systematically to triangulate the approach’s performance. Section 5.1 introduces

the scenarios and parameter values. In Section 5.2, we state all solution approaches that

we investigate – including benchmarks – as well as the metrics we use for their evaluation.

In Section 5.3, we present and discuss the computational results.

5.1 Scenarios and Parameters

We consider three settings of a free-floating SMS that primarily differ in the number of

zones (=locations) – Z = 9, Z = 16 and Z = 25 – but also regarding the demand pattern.

The process used to generate the base demand matrix d with values for all zone-zone-

period combinations allows to incorporate typical demand characteristics that we observed

in practice, namely a typical demand pattern over the course of the day and differentiation

between zone types, like city center zones or peripheral zones (see, for example Reiss and

Bogenberger (2016)). The exact procedure is explained in Appendix B. The remaining

parameters are constant over all three settings: we discretize the time interval of one day

into T = 48 periods of 30 minutes each, in line with practice and literature (see, e.g.,

Kaspi et al. (2016) and Ferrero et al. (2015b)). The parameters âi0 = 2 ∀i ∈ Z represent

a realistic number of vehicles per zone. We select the M = 3 price points pm according

to typical prices in practice and literature (see, e.g. Lippoldt, Niels, and Bogenberger

(2018)): we choose a base price of p(2) = 30 ct/min and price differences of 20% to the

low and high price, such that p(1) = 24 ct/min and p(3) = 36 ct/min. The corresponding

sensitivity factors f
(1)
ijt = 1.25, f

(2)
ijt = 1, f

(3)
ijt = 0.75 ∀i, j ∈ Z, t ∈ T are chosen according
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description configurations

ADP-H ADP decomposition approach with horizon length H ADP-1, ADP-4, ADP-8

CUP benchmark: constant uniform pricing -

OPT benchmark: optimal pricing -

UB benchmark: best upper bound after a computation time limit -

ROL-H benchmark: rolling-horizon approach with horizon length H ROL-1, ROL-4, ROL-8

Table 2: Overview of solution approaches investigated

to observations from practice. Variable costs of c = 7.5 ct/min made up 25% of the base

price. The average rental time was set to lij = 15 min ∀i, j ∈ Z, again in line with

literature (see e.g. Xu, Meng, and Liu (2018)) and after discussions with our practice

partner.

To generate different scenarios within a setting, the overall demand level can be ad-

justed by the demand-supply-ratio δ, which determines the ratio of the maximum period

demand during the day d̄ and the fleet size
∑

i∈Z âi0. While the fleet size remains con-

stant for all scenarios within a setting, the overall demand varies according to δ, i.e.,

d̄ =
∑

i∈Z âi0 · δ. The required (base) demand of a scenario for every location-location-

period combination dijt is then simply determined by scaling d̄ according to the given

demand pattern which is defined by ratios of the dijt amongst one another. As a re-

sult, d̄ = maxt(
∑

i,j∈Z dijt) holds. We use demand patterns that replicate typical spatio-

temporal differences, e.g., that show the two characteristic demand peaks over the course

of a day, as observed in practice by our practice partner (also see Figure 9b in the case

study). This is typical for SMSs and has been similarly reported in many other studies,

such as Reiss and Bogenberger (2016). Note that although the maximum period demand

only reflects the demand of a single period, it is a representative, yet simple, metric for

the overall demand, because all SMSs in practice show a comparable course of demand

across the day. The demand-supply-ratios we use are δ ∈ {2/6, 4/6, 6/6, 8/6}. Further,

as already mentioned, each combination of a certain setting with a specific δ forms a

scenario.

5.2 Investigated Solution Approaches and Evaluation Metrics

Here, we describe the solution approaches that we investigate. Besides our ADP de-

composition approach with three different configurations, we investigate four benchmark

approaches, of which one again has three configurations (the approaches are summarized

in Table 2):

• ADP-H is the ADP decomposition solution approach we presented in Section 4, and

is configured with different horizon lengths H (ADP-1, ADP-4, ADP-8).

• CUP denotes a lower benchmark using constant uniform pricing. Due to its wide
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adoption over all SMS types, this pricing can be considered as the de facto standard

applied in practice. Here we used the base price pit = p(2) for all i ∈ Z and t ∈ T .

• OPT denotes the optimal solution of the OBDPP in which all 48 periods are opti-

mized simultaneously. It provides an upper bound. This benchmark can be calcu-

lated for some of the scenarios.

• UB denotes the best known upper bound that the solver returned after a computa-

tion time limit.

• ROL-H is a basic rolling-horizon approach. In the context of our work, it is best

described as a variant of the ADP decomposition approach without the VFA at the

end of the horizon, that is, V̄τ+H = 0 ∀(τ +H) ∈ T . We considered this benchmark

in order to analyze the impact of the VFA in our approach. Like ADP-H, it can

be configured for different horizon lengths H (ROL-1, ROL-4, ROL-8). Note that

this benchmark with H = 1 represents the myopic solution that only considers one

period in each substitute problem without anticipating any network effects.

Each combination of scenario and solution approach configuration forms a test instance in

our experiments. Table 7 in Appendix C summarizes the test instances that we evaluate.

Regarding the VFA, we define the parameters that specify the structure of the function

and the estimation process as follows. The number of buckets (pieces) is K = 10 and

the bucket size is ∆ã = 2. For each scenario, we perform the parameter estimation as

described in Section 4.4 on N = 10, 000 samples. In each period (τ+H) ∈ T , we randomly

generate the initial vehicle distribution ân
τ+H following the Dirichlet distribution and use

the CUP solution for evaluating the original problem (1)-(16) for the remaining periods

in Rτ+h to obtain V̂ n(ân
τ+H).

We use various metrics to evaluate the solution approaches and to discuss further

insights. We describe these metrics in the following exposition. We summarize them in

Table 3, as well as formally define them in Table 8 in Appendix C. Profit (PRrel
(·) ), revenue

(RV rel
(·) ) and rentals (RT rel

(·) ) are stated as relative improvements to the respective value

from the uniform pricing solution. Depending on the analysis, we consider the overall

improvements across all periods t ∈ T (for example PRrel) or one particular period t (for

example PRrel
t ). Further, we consider the proportion of location-time combinations in

which a particular price pm is selected (P prop
(·) ) and the proportion of rentals that occur at

price pm (RT prop
(·) ) for all periods t ∈ T (P prop

pm , RT prop
pm ) as well as for a specific period t

(P prop
pmt , RT prop

pmt ).

We implement the algorithms in Python 3.7 and solve all MILPs with Gurobi 9.0.2.

In all scenarios with 9 zones, we set the target optimality gap to zero in Gurobi and no

time limit in any of the approaches is imposed. In all scenarios with 16 and 25 zones,

the time limit is set at one hour for the substitute problems of the ADP-H and ROL-H

approaches and at 48 hours for UB. Additionally, we use the CUP solution as a warm
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description variant

PRrel relative profit increase w.r.t. CUP time-specific: PRrel
t

RV rel relative revenue increase w.r.t. CUP time-specific: RV rel
t

RT rel relative rentals increase w.r.t. CUP time-specific: RT rel
t

P prop
pm proportion of price pm in pricing solution time-specific: P prop

pmt

RT prop
pm proportion of rentals at price pm in pricing solution time-specific: RT prop

pmt

Table 3: Evaluation metrics

start solution in all instances. We execute our computations on a workstation with two

Intel Xeon E7-8890 v3 2.5 Gigahertz processors with a total of 36 cores, and 512 Gigabyte

RAM.

5.3 Results

In the following subsections, we present and discuss our computational results. First, we

determine how much improvement is possible beyond myopic pricing (ROL-1) (Section

5.3.1). Next, we investigate how much of this potential can be realized with the ADP-H

and ROL-H approaches (Section 5.3.2) and in this context we show the importance of

the VFA by comparing ADP-H to ROL-H. Then, we discuss the impact of accounting

for network effects on the pricing (Section 5.3.3) and intuitively illustrate how the VFA

captures network effects, as well as the future value of available vehicles (Section 5.3.4).

Finally, we analyze the robustness of the results by considering a stochastic environment

(Section 5.3.5).

We discuss the results for all demand-supply-ratios δ here, but depict only those of

the profit for δ =2/6, illustratively. All other results are depicted in Appendices E (9-

zone setting) and F (16- and 25-zones settings). Computation times are discussed in

Appendix D.

5.3.1 Improvement Potential over Myopic Pricing

We begin by identifying the improvement potential over myopic pricing, that is, the

relative difference in profit PRrel between the myopic (ROL-1) and upper benchmarks.

For the 9-zones setting, we use the optimal (OPT) solution as upper benchmark. For the

16- and 25-zones setting, the optimal solution can not be determined in reasonable time,

therefore we use the best known upper bound (UB) as benchmark. The idea is that the

range between the lower and upper benchmarks is an upper bound on the potential of

PRrel that can be achieved by the ADP decomposition approach. We consider the latter

approach in Section 5.3.2.

This potential is graphically given in Figure 2. It depicts the profit obtained with the

different solution approaches (for the later considered ADP-H and ROL-H in dependence
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Figure 2: Relative profit increase in settings with 9, 16, and 25 zones. Demand-supply-ratio
δ = 2/6.

of the horizon lengths H on the horizontal axis) relative to the profit with CUP, which

the 0%-line marks. The profits obtained by OPT and UB are horizontal lines as they do

not depend on H. We observe that OPT and UB yield a profit increase of about 15%

over CUP. The myopic solution ROL-1 provides about 5% more profit than CUP. Thus,

the potential improvement over myopic pricing is about 10 percentage points. Note that

we return to Figure 2 in the following subsection to discuss the other results included.

Figure 14 in Appendix E depicts the results for all scenarios with δ from 2/6 to 8/6

(rows) in the 9-zones setting. The potential for improvement between ROL-1 and OPT

decreases from 10.1 percentage points for δ =2/6 to 2.3 percentage points for δ =8/6. Note

that especially the scenarios with δ <6/6 are relevant for practice (Section 6.1). The above

results are also valid for the 16- and 25-zones settings (see Figure 15 in Appendix F).

What makes the difference between the scenarios, is obviously the relevance of network

effect anticipation, because ROL-1 considers only one period in each substitute problem

and includes no VFA, and therefore no network effects. The intuition is that in high-

demand scenarios (large δ) there is almost always demand for an available vehicle, because

the demand is never the limiting factor. In low-demand scenarios, however, vehicles

remain unused more often. This conclusion is supported by the comparison of rentals

(RT rel) in the third column of Figure 14 which shows a substantial difference of 3.8

percentage points between ROL-1 and OPT for δ =2/6, and almost no difference for

δ =8/6.

5.3.2 Performance of the ADP Decomposition Approach

After identifying the potential of up to 10 percentage points for improvement over the

myopic solution ROL-1, we now analyze the performance of the proposed ADP decompo-

sition approach (ADP-H). To do so, we revisit Figure 2a and consider the profit PRrel of

ADP-1, ADP-4, and ADP-8. In the 9-zones setting, we observe that as the horizon length

H increases, PRrel increases from 11.4% (ADP-1) to 15.1% (ADP-8). Additionally, the

improvement potential identified in Section 5.3.1, is almost entirely exploited. The results
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for the 16- and 25-zones settings are similar. An additional profit increase does not neces-

sarily go hand in hand with a revenue RV rel and rentals RT rel increase, as depicted for the

9-zones setting in the second and third columns of Figure 14 in Appendix E. Sometimes

profit increases because of a quantity effect when the differentiated pricing enables more

rentals while the average price remains more or less constant. The underlying reason is

a better positioning of vehicles due to the network effect consideration. At other times

profit increases because of a price effect at rather constant rentals with increase average

price or even at fewer rentals when the average price decreases under-proportionally.

Again referring to Figure 2a, we see that the integrated VFA in ADP-1 and ADP-4

has a substantial benefit of 5.8 and 2.4 percentage points over their ROL-H counterparts.

For ROL-8/ADP-8, the benefit is smaller. For smaller horizon lengths, the potential

for improvement by the VFA is obviously higher than for larger horizon lengths because

both the explicit consideration of additional periods in a longer horizon and the VFA

aim to consider the spatio-temporal network effects. As settings become larger, the ben-

efit of ADP-H over ROL-H increases, and with 16- and 25-zones even ADP-1 performs

considerably better than the ROL-8 benchmark procedure (Figures 2b and 2c)

The results for all scenarios in the 9-zones setting (Figure 14, Appendix E) and all

scenarios in the 16- and 25-zones settings (Figure 15, Appendix F) confirm the findings

discussed above. Most importantly, the profits obtained with ADP-H are at least as high

as the respective variant of ROL-H, but especially for the practice-relevant scenarios with

low δ there is substantial improvement. This demonstrates that integrating the VFAs can

partly compensate for not considering all spatio-temporal network effects explicitly. The

fewer network effects are captured within the horizon, the stronger the effect.

Another benefit of the ADP decomposition approach concerns its scalability to large

problem instances. As preliminary studies have shown, problem complexity (NP-hardness

of the OBDPP) takes its toll, and finding good solutions in reasonable time cannot be

guaranteed. By contrast, ADP-H benefits from the decomposition and can therefore cope

with the larger problem size while simultaneously considering network effects.

5.3.3 Investigation of Pricing

The differences in considering network effects of the myopic (ROL-1) and the optimal so-

lution (OPT) identified in Section 5.3.1 are also reflected in the pricing decisions, depicted

as price tables in Figures 3a and 3b for the 9-zones setting with δ =2/6. On an aggregate

level, these differences become obvious in comparing the proportions of the ROL-1 and

OPT prices PRprop in the fourth column of Figure 14 in Appendix E. For δ =2/6, for

example, the ROL-1 solution consists of 1.6% low, 76.9% base, and 21.5% high prices.

The OPT solution consists of 34.5% low, 28.7% base, and 36.8% high prices.

The better network effects are captured, the more the resulting pricing decisions re-

semble the optimal pricing, as the price tables for ADP-1 and ADP-8 depicted in Figures
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Figure 3: Pricing with different solution approaches in 9-zones setting. Demand-supply-ratio
δ =2/6.

Green: L=low price, yellow: B=base price, red: H=high price

3c and 3d demonstrate. Especially the difference between ROL-1 and ADP-1 is insightful.

Again, the aggregate price proportions P prop
pm which are depicted in Figure 14 (Appendix

E) and Figure 15 (Appendix F) underline how the network effect integration, especially

with ADP-H, affects the pricing.

5.3.4 Investigation of the Value Function Approximation

Integrating the VFA that captures the spatio-temporal network effects beyond the ex-

plicitly considered horizon’s end is an integral component of the ADP decomposition

approach. In this section, we illustrate how the VFA works and illustratively interpret

the estimated values we obtained. In particular, the following analyses demonstrate how

the VFA’s parameters reflect the demand pattern, and thus capture short-term as well as

long-term vehicle values. For ease of readability, we first repeat the VFA given in Section

4.3:

V̄τ+H(aτ+H) =
∑

i∈Z

∑

k∈K
v̄ki(τ+H) ·∆aki(τ+H) + v̄constτ+H (28)

For the sake of clearer analyses, we define its zone specific parts as

V̄ part
i(τ+H)(ai(τ+H)) =

∑

k∈K
v̄ki(τ+H) ·∆aki(τ+H) (29)

such that

V̄τ+H(aτ+H) =
∑

i∈Z
V̄ part
i(τ+H)(ai(τ+H)) + v̄constτ+H . (30)

Table 4 contains an extract of the slope parameters v̄ki(τ+H) and the constants v̄constτ+H for

two periods ((τ +H) = 16 at morning peak time and (τ +H) = 32 at evening peak time)

and two zones (center zone i = 5 and peripheral zone i = 1). The values result from the

estimation process of the scenario with Z = 9 zones and demand-supply-ratio δ =2/6.
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v̄ki(τ+H) v̄constτ+Hk = 1 k = 2 k = 3. k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

(τ +H) = 16
i = 1 9.79 2.30 1.54 1.54 1.42 1.27 0.00 0.00 0.00 0.00

140.63
i = 5 6.45 5.82 5.82 5.66 5.44 5.44 5.22 3.49 0.00 0.00

(τ +H) = 32
i = 1 3.31 3.25 3.25 3.25 3.25 3.25 3.25 0.00 0.00 0.00

1.36
i = 5 7.33 7.28 7.17 7.06 6.96 6.85 6.85 0.00 0.00 0.00

Table 4: Parameter estimates of VFA for two exemplary periods and zones

The biggest absolute difference between the respective parameters concerns the constants

with v̄const16 = 140.63 and v̄const32 = 1.36. As the value function V̄τ+H approximates the

profit-to-come from a certain period (τ + H) onwards, the difference in the constants

reflects the higher demand-to-come at an earlier time. This time dependence of v̄constτ+H

is also visible in Figure 4. The close connection to the demand-to-come is obvious from

comparing its course over the day, as depicted in Figure 5.
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The slope parameters v̄ki(τ+H) during the evening peak period (τ + H) = 32 take

larger values for the center zone i = 5 than for the peripheral zone i = 1, reflecting that

vehicles in the center have a higher value. This is because demand in the center zone

is higher during the evening peak. This is reflected in the VFA by the parts V̄1,32(a1,32)

and V̄5,32(a5,32) for zones 1 and 5, which are depicted in Figure 6b. Both curves, the solid

one representing the value in zone i = 1 and the dashed one for zone i = 5, are concave

with a positive slope in the origin and a saturation with zero slope from a certain vehicle

count ait onwards. Concavity and saturation represent the diminishing marginal value of

additional vehicles and the assumptions imposed in the estimation process.

During the morning peak period at (τ + H) = 16, the zone specific VFAs V̄i16(ai16)

for the same two zones i = 1 and i = 5 are depicted in Figure 6a. There is also concavity

and saturation, but the functions intersect. As the slope parameters in Table 4 show, the

first slope parameter for zone 1 takes higher values than the corresponding values of zone

5, meaning v̄k1,16 > v̄k5,16 for k = 1. For k > 1 however, the order of slope values switches,

such that v̄k1,16 ≤ v̄k5,16. These parameters and the resulting curves can be explained by

analyzing the demand. Figure 6c shows that at (τ + H) = 16, the demand of zone 1
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Figure 6: Parts of the VFA for two selected zones at periods 16 (a) and 32 (b), base demand
(c), and cumulated base demand (d) over the course of the day

is slightly higher than that of zone 5. The demand-to-come from (τ + H) = 16 on in

zone 5, however, is much higher, as Figure 6d displays. Because the demand after the

morning peak in zone 1 is low, putting more than two vehicles in that zone will not deliver

high value, and for more than 12 vehicles zero additional value will accrue. In contrast,

the higher demand-to-come in zone 5 will lead to a positive value for additional vehicles,

which explains the later saturation of V̄5,16(a5,16) at higher vehicle count a5,16. This shows

how the VFA reflects short-term and long-term network effects due to temporal demand

variations. Note that the magnitudes of the v̄ki(τ+H) values and v̄constτ+H values (with an

average of two vehicles per zone) in Table 4 indicate that they both represent decisive

VFA features.

5.3.5 Stochastic Demand

To analyze the robustness of the results, we additionally evaluate the pricing resulting

from different solution approaches in a stochastic environment. For this purpose, we apply

a multiplicative stochastic demand function, which is one of the standard approaches of

modeling demand as described, e.g., in Talluri and van Ryzin (2004, Chapter 7.3.4). More

precisely, base demand is now a random variable Dijt with

Dijt = ξ · dijt (31)

where ξ is a stochastic error term which is assumed to follow a normal distribution

N (1, σ2).

Based on this demand model, we evaluate all scenarios from Section 5.1, i.e., the

9-, 16- and 25-zones settings with all demand-supply-ratios δ. For each scenario, we

consider different degrees of stochasticity, expressed by different standard deviations σ ∈
{0, 0.1, 0.2, 0.3, 0.4} of the factor ξ. These values are in the range of demand uncertainties

we observed in practice. For each of the resulting combinations of scenario and degree of

stochasticity, we draw S = 1000 demand matrices ds with s ∈ {1, . . . , S} as realizations
of [Dijt]Z×Z×T and use them to evaluate the ADP-H and ROL-H solution approaches,

i.e., to evaluate the price table which was optimized for the corresponding base demand

matrix d. Appendix G contains all results with confidence intervals.
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Figure 7: Stochastic evaluation of solution approaches in 9-, 16- and 25-zones setting with
demand-supply-ratio δ = 2/6.

Figure 7 illustratively depicts the results for δ = 2/6 and the three different zone

numbers. On the vertical axis, the mean value of the relative profit increase with respect

to the CUP benchmark (0%-line) is depicted for ROL-1, ROL-8, ADP-1, and ADP-8. On

the horizontal axis, the standard deviation σ is varied.

Overall, the proposed pricing approaches and our results are robust to the stochasticity

of demand. However, all profit increases tend to decrease slightly with increasing stochas-

ticity. The more sophisticated procedures are obviously more sensitive to stochasticity

than CUP. However, these reductions in profit increase amount to at most two percentage

points compared to zero stochasticity (σ = 0) and the order of the different approaches

regarding their performance does not change with increasing stochasticity. All proposed

approaches still perform substantially better than the benchmark CUP, and as in Section

5.3.2, the anticipatory approach ADP-8 we propose is always the best.

As a technical remark, note that in the stochastic demand model, demand realization

Dijt < 0 could potentially result, in particular for high values of σ (see the corresponding

discussion in Talluri and van Ryzin (2004, Chapter 7.3.4)). We correct for this by setting

negative draws to 0. Note that the small positive bias resulting from this truncation is not

relevant to our study, as for each degree of stochasticity, we use the same 1000 scenarios

for all approaches we compare.

5.3.6 Assessment of Pricing Approaches covered in the Literature

As stated in Section 1, the OBDPP – despite its relevance for practice, which we trace to

the pricing approach’s advantages compared to others – is a novel problem which has not

been discussed in the literature yet. Thus, a direct comparison with pricing approaches

covered in the literature is not feasible. Still, in this section, we assess pricing solutions

derived from pricing approaches suggested in the literature to determine whether they

could be applied to the problem at hand.

We explained in Section 2.3 that all of the closest related studies differ from the

OBDPP on two decisive points: The existing studies consider Trip-based pricing instead

of origin-based pricing, and they do not make the two central assumptions of pure pricing



II.1 Differentiated Pricing of Shared Mobility Systems Considering Network Effects 53

2/6 4/6 6/6 8/6
δ

0%

5%

10%

15%

20%

P
R
re
l

OBDPP
OBDPP-RLX
TBDPP-RLX

(a) Z = 9

2/6 4/6 6/6 8/6
δ

0%

5%

10%

15%

20%

P
R
re
l

(b) Z = 16

2/6 4/6 6/6 8/6
δ

0%

5%

10%

15%

20%

P
R
re
l

(c) Z = 25

Figure 8: Comparison of profit obtained by pricing solutions with OBDPP, OBDPP-RLX, and
TBDPP-RLX in settings of 9, 16 and 25 zones with different demand-supply-ratios δ.

and proportional demand fulfillment (see Section 1). Therefore, we formulate two variants

of the original OBDPP model (1)-(16):

• TBDPP-RLX mimics trip-based pricing (TBDPP) as the closest related work sug-

gests (see Section 2.3). Similar to all of these studies, the model omits – or techni-

cally speaking, relaxes (RLX ) – the pure pricing and proportional demand fulfillment

assumptions that are operative in the original OBDPP model. The TBDPP-RLX

is formulated by (34)-(44) in Appendix H.

• OBDPP-RLX considers origin-based pricing as in the OBDPP but also relaxes the

pure pricing and proportional demand fulfillment assumptions. By relaxing the OB-

DPP’s two central assumptions, this model allows us to asses the two assumptions’

realistic modeling in the OBDPP in isolation. The OBDPP-RLX is formulated by

(45)-(55) in Appendix H.

To assess the pricing solutions derived from the TBDPP-RLX and the OBDPP-RLX,

we evaluate the resulting pricing solutions in the OBDPP and compare the resulting

profits with the result we achieved by solving the OBDPP with our ADP decomposition

approach (ADP-8). For the TBDPP-RLX, we determine origin-based prices from the trip-

based pricing solution as follows: In a first step, for every location-period combination,

all corresponding trip-based prices are averaged. In the second step, the nearest price

point from the given price set is determined. Regarding the solution methods for the

OBDPP-RLX and the TBDPP-RLX, all periods of the respective problems are solved

simultaneously (as for OPT and UB) with a computation time limit of 48 hours. Due

to the reduced complexity of these two problems compared to the OBDPP, they can be

solved close to optimally for all settings and scenarios: All solutions have a gap of less

than 0.5% to the respective best known upper bound.

Figure 8 states the results for the three settings with 9, 16, and 25 zones, where each

has four scenarios with different demand-supply ratios. Independent of the setting and

scenario, the pricing determined by TBDPP-RLX performs worst of all pricing approaches.

Also, the pricing determined by OBDPP-RLX is consistently worse than the one that
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OBDPP determined. In terms profit PRrel (percentage points w.r.t. CUP), pricing

solutions delivered by OBDPP-RLX perform 0.1 to 7.2 percentage points worse than

those of ADP-8, and the ones delivered by TBDPP-RLX perform 7.8 to 12.8 percentage

points worse than those of ADP-8. This is because the OBDPP-RLX, and especially

the TBDPP-RLX, suppose too high an influence on the resulting rentals than is possible

in reality. Without the pure pricing and proportional demand fulfillment assumptions,

the models can perform a kind of availability control (see Section 1). This means that

rentals do not – as in reality – realize solely from dependence on the prevailing supply and

demand, but that the model can decide to reject certain rentals and to favor others that

have specific destinations. For the TBDPP-RLX, this effect is even stronger, because the

model can influence demand more flexibly with trip-based prices (location-location-period

level), while in reality prices are limited to being origin-based (location-period level).

Overall, these results clearly justify two findings: First, pricing approaches such as

those suggested in the literature (TBDPP-RLX), cannot be applied to determine prices

for the OBDPP. Second, the exact modeling of the two central assumptions as they are

prevalent in the reality of the OBDPP is indeed decisive in determining the best possible

pricing solutions.

Note that these results do not allow any statements regarding the effectiveness of

origin-based pricing in comparison to actual trip-based pricing of an SMS. Clearly, if an

SMS provider were able to put trip-based pricing into practice, this cannot perform worse

than origin-based pricing, simply due to the additional flexibility. However, as explained

in Section 1, practice – for very good reasons – exclusively applies origin-based pricing.

6 Case Study

In this section, we consider a real-world scenario that reflects the origin-based differen-

tiated pricing optimization of Share Now for a weekday in Florence, Italy. On the one

hand, this case study allows us to conclude results and managerial insights in an instance

of real-world size. On the other hand, compared to the rather stylized scenarios given

in Section 5, all parameters in this case study are based on real historic data which was

collected over several months at Share Now. We introduce the scenario in Section 6.1 and

discuss the results in Section 6.2.

6.1 Scenario and Parameters

Share Now’s area of operation in Florence is divided into 59 zones, as shown in Figure 9a.

To respect the non-disclosure agreement, we only share values for demand and rentals that

are normalized to the maximum period demand max(dt), where dt =
∑

i,j∈Z dijt. Figure

9b depicts the normalized base demand (dt/max(dt) ∀t ∈ T ), as well as the resulting
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Figure 9: Share Now scenario in Florence, Italy

normalized rentals with the uniform pricing solution (
∑

i,j∈Z r
(2)
ijt /max(dt)∀t ∈ T ) during

the course of the day. The day is discretized into 48 periods of 30 minutes each. The

demand curve shows the typical pattern with two peaks at the rush hour times, in the

morning at t = 17 (08:30) and in the evening at t = 39 (21:30), with the lowest level during

the night at t = 8 (04:00). The rental curve follows the general course of the demand

curve, with less pronounced peaks. During the night, the difference between demand and

rentals is smaller than during the day. This can be explained by the higher availability

of vehicles during the night, implying that potential customers almost always find an

available vehicle. During the day, in particular during peak times, the probability that

demand results in a rental is lower due to the relatively high number of vehicles in use.

Note that the demand-supply-ratio in this scenario is approximately δ = 0.7, which is in

the range of scenarios with δ < 1 on which we focused in the computational experiments

we described in Section 5.

Demand parameters are obtained from data Share Now recorded in April and May

2018. More precisely, the base demand matrix d with entries dijt results from unconstrain-

ing the constrained demand, i.e., the observed rentals. Unconstraining is a standard issue

in revenue management (see, e.g., Talluri and van Ryzin (2004, Chapter 9.4)). We chose

all other parameters as in the computational experiments (Section 5.1). The only dif-

ference concerns the VFA design and its parameter estimation process. We increased

the number of pieces to K = 20 to adapt to the larger fleet size. Finally, we compared

our ADP decomposition approach’s results in the ADP-4 configuration to the myopic

benchmark ROL-1.

6.2 Results

Section 6.2.1 discusses the profit increase from ADP-4. Section 6.2.2 analyzes the resulting

pricing decisions, rentals, and revenue.
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real-life
scenario

solution
approach

change w.r.t. CUP P prop
pm RT prop

pm

PRrel RV rel RT rel low base high low base high

Florence,
59 zones

ROL-1 3.9% 0.9% -8.2% 11.1% 45.7% 43.2% 8.5% 33.5% 58.1%
ADP-1 7.0% 4.1% -4.4% 8.8% 54.0% 37.1% 6.0% 43.2% 50.8%
ROL-4 6.8% 4.0% -4.3% 8.4% 56.1% 35.5% 5.4% 45.5% 49.1%
ADP-4 9.2% 6.2% -2.8% 13.7% 45.3% 41.0% 6.4% 41.1% 52.5%

Table 5: Results from real-life scenario in Florence, Italy
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Figure 10: Prices (a) and rentals (b) over the course of the day (ADP-4)

6.2.1 Profit

Table 5 summarizes the PRrel results for the Florence scenario. With our ADP decompo-

sition approach (ADP-4), the profit improvement PRrel is 9.2%. Thus, the explicit and

implicit consideration of network effects in ADP-4 realized an additional improvement of

5.3 percentage points compared to the myopic solution ROL-1, and an improvement of

2.4 percentage points over the ROL-4 benchmark. These results demonstrate the scala-

bility of our solution approach to real-life scenarios and show a substantial improvement

potential compared to the de facto standard of CUP through network effect consideration.

6.2.2 Pricing Decisions, Rentals, Revenue

We now analyze the effect of optimization on the pricing decisions, the rentals, as well

as the revenue. Figure 10a depicts the PRprop
pmt results of ADP-4 during the course of the

day and shows that the prices vary considerably. The largest proportion of highly priced

rentals is set at demand peak times t = 17 and t = 40. At non-peak times, the base price

accounts for the largest proportion of rentals, with an exception in the very first period

only. Table 5 shows the price proportions P prop
pm over the whole day. We observe that, on

average, ADP-4 leads to higher prices compared to the CUP benchmark, lower average

prices compared to the myopic solution ROL-1 and comparable prices with ROL-4.

To gain more insight, we now illustratively consider four zones in more detail. Figure

11 depicts absolute demand, absolute available vehicles, and the prices of the ADP de-

composition solution ADP-4 over all periods for the four zones with indexes 2, 7, 49, and

59. Zones 2 and 59 are characterized by relatively low demand, zone 49 has the highest
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Figure 11: Base demand (a), available vehicles (b) and prices (c) in four selected zones
(ADP-4)

Green: L=low price, yellow: B=base price, red: H=high price

demand of the four, and zone 7’s demand lies approximately halfway between the two

extremes. During the first half of the day, especially during the morning peak time, zone

2 has relatively many vehicles available – more than the demand requires. This results

in low prices at the beginning of the day and a declining vehicle count towards midday.

During the evening peak, the levels of supply and demand are largely balanced and high

prices are set. Zone 7 shows the typical demand pattern, with two peaks that exceed

the available vehicle count at these times. The resulting prices also show this shortage of

vehicles at peak times, as high prices are set during these periods. Zone 49 has a higher

demand than vehicle supply during most periods of the day, and therefore often has high

prices. The only exception is during the morning peak, when many vehicles arrive in that

zone and lower prices are set to compensate for the oversupply. Zone 59 is characterized

by relatively low demand and only a few available vehicles throughout the day, with high

prices at peak times and low prices in the first periods. These observations show that the

resulting pricing decisions differ considerably in their patterns. To some extent they can

be explained by current supply and demand, but regarding the above-mentioned differ-

ences between the P prop
pm of the myopic benchmark and the ADP decomposition approach,

they are also the result of network effect considerations.

Table 5 shows that RT rel decreases by 8.2% with the myopic solution and by 2.8%

with the ADP decomposition approach solution, while RV rel increases by 0.9% and 6.2%,

respectively. Considering these figures in combination with the P prop
pm discussed above,

the additional PRrel increase through network effect consideration of ADP-4 with respect

to ROL-1 is a result of overall lower prices with more rentals and revenue. Figure 10b

displays the RT prop
pmt of ADP-4. Their courses over the day resemble the courses of the

respective PRprop
pmt . More precisely, during peak times most of the rentals take place at a
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high price and in almost all other times most rentals are at the base price.

To summarize the results of the case study of Share Now in Florence, our solution

approach generates considerably higher profits compared to the de facto standard of

constant uniform prices and, more importantly, to the myopic benchmark. In fact, our

solution even gets quite close to a theoretical upper bound. This increase is realized

by a considerable price differentiation that allows for generating more revenue with fewer

rentals in comparison to CUP at base price. High prices exploit the higher demand at peak

times, and the larger proportion of low and base prices under network effect consideration

allows for creating a more favorable fleet distribution and more rentals compared to the

myopic solution.

7 Managerial Insights

The systematic computational experiments (abbreviated below as experiments) of OB-

DPP scenarios given in Section 5 in combination with the analyses of the Share Now case

study (abbreviated below as case) given in Section 6 reveal important managerial insights

for shared mobility providers, which we summarize in this section.

Benefit of origin-based differentiated minute pricing : The results demonstrate that

origin-based differentiated minute pricing is more advantageous than constant uniform

pricing which is still the de facto industry standard. With our approximate dynamic

programming decomposition solution approach, profits consistently increased through-

out the considered instances, i.e., in both experiments (10% to 15%) and in the case

(9%). For SMS providers, this is an insightful outcome, because origin-based differenti-

ated minute prices are the first natural extension going beyond constant uniform prices.

This is mainly because compared to other pricing mechanisms, origin-based differentiated

pricing is relatively simple to implement, does not require upfront information about a

trip’s destination, and, very importantly, is easy to communicate to customers.

Scalability requires sophisticated solution approaches : The problem is computationally

complex. More precisely, determining profit-maximizing pricing solutions is NP-hard.

This is reflected by the fact that a straightforward solution using out-of-the-box commer-

cial solvers is not possible. The supposedly obvious idea of directly solving the pricing

problem in an integrated way, i.e., simultaneously for all locations and in a reasonable

time frame (e.g. a day), already fails for the smallest SMS that consists of only a few

dozens locations. The standard next step is temporal decomposition, i.e., considering

multiple smaller problems with fewer periods instead of the entire day. This has a reason-

able run time, but in general lacks in solution quality. We show that more sophisticated

approaches are necessary and possible, thereby striking a balance between the ideas of

integrated and decomposed problem solving. In particular, our approximate dynamic pro-

gramming decomposition approach provides a computationally tractable means for SMS
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providers applicable in instances of real-life size.

Importance of network effect consideration: The consideration of network effects is

decisive for high-quality solutions. Our results demonstrate that SMSs are characterized

by a complex interaction between supply and demand. Consequently, vehicle values dif-

fer considerably across locations and time. Further, additional available vehicles at the

same location and time have a decreasing marginal value because of limited demand. In

contrast to straightforward pricing approaches like a myopic optimization, our approxi-

mate dynamic programming decomposition approach yields very good solutions that are

close to an upper bound for the optimal solution. Key is its design for and ability to

capture these network effects. This led to a profit increase over myopic pricing of up to

9.4 percentage points in the experiments, and up to 5.3 percentage points in the case.

Please note that these profit improvements depend on the instance. Especially for ra-

tios of supply and demand prevalent in practice, there is a considerable improvement.

Marginal vehicle values vary considerably in the range of 0 to 9.8 monetary units, which

is equivalent to 2-3 rentals at base price where profit is 3.4 monetary units. For SMS

providers, the different marginal vehicle values provide a means of quantifying short- and

long-term network effects, and they are also informative for other planning tasks, such as

relocation.

Profit increase due to price and quantity effect : Profit maximization is not always

equivalent to an increase in rentals. In the experiments, we indeed observed an increase

of both profit and rentals for the best solutions we found. In the case, however, the profit

increase was realized with less rentals and higher prices. For SMS providers this is an

important observation, as it also affects other service-oriented metrics like the availability

of vehicles.

High degree of price differentiation: Finally, we observe that the best pricing solutions

have a high degree of differentiation across time and space. In the case, for example, over

all location-time combinations, we have an average of 15% low, 45% base, and 40% high

prices. These proportions do not remain constant throughout the day. A deeper analysis

of the price table revealed that some zones have high prices during the morning and

evening rush hours, while others have lower prices at these times. We showed that these

different pricing patterns result from the supply and demand level in these zones over time,

but are also a consequence of network effects. All these aspects indicate that the optimal

price tables are complex. From a customer perspective, switching from constant uniform

pricing to origin-based differentiated minute pricing means that prices now vary frequently.

Therefore, it is important for SMS providers to accompany the introduction of origin-based

minute price differentiation with a communications campaign that thoroughly explains

the reasons for and benefits of the new approach, i.e., to ensure customer satisfaction and

loyalty.
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8 Conclusion and Outlook

Motivated by our collaboration with Share Now, in this paper we defined and analyzed

the problem of origin-based differentiated pricing for SMSs. The paper has addressed the

problem of determining spatially and temporally differentiated origin-based minute prices

to maximize profit. Despite such price differentiation increasingly being adopted in prac-

tice, the research literature has not yet focused on these origin-based pricing mechanisms.

To model the SMS, we proposed a mixed-integer linear program based on a fluid for-

mulation in which vehicle movements are described as flows through a spatio-temporal

network. It naturally incorporates network effects, that is, the complex interactions be-

tween the moving vehicle supply and varying demand in an SMS. The problem turns out

to be NP-hard, thus, heuristic solution approaches are warranted. We therefore proposed

an approach that simultaneously scales to real-life scenarios and approximately incorpo-

rates the network effects. We designed the approach in such a way that it combines the

benefits of decomposition on the one hand and VFA from the realm of approximate dy-

namic programming on the other. The decomposition allows providers to quickly solve

multiple smaller problems with limited time horizons instead of the original problem that

simultaneously considers all periods. At the end of the considered horizon, a VFA allows

for endogenously incorporating the profit-to-come in dependence of any resulting vehicle

distribution.

Extensive computational experiments with a varying number of zones, demand pat-

terns, and overall demand levels demonstrated the benefit of our approach. It considerably

improves profit (up to 15%) compared to the de facto standard of constant uniform prices,

as well as compared to a myopic benchmark without consideration of network effects (up

to 10 percentage points). In settings where the optimal solution can be determined, our

approach finds a solution close to optimality. The resulting price tables show high simi-

larity to the optimal price tables, in contrast to the price tables from the myopic pricing

approach. We further demonstrated that the proposed VFA structure can reflect the de-

creasing marginal value of vehicles, which allows taking into account both short-term and

long-term network effects.

In a real-life case study based on Share Now data, we demonstrated the scalability and

performance of our solution approach. Profits increase 9% with respect to the de facto

industry standard, although rentals decrease by 3%, leading to higher vehicle availability

and 6% more revenue – two additional important operative indicators for SMS providers.

Therefore, this illustrates that profit increases can result from price and quantity effect, to

the extent that profit increases can also realize with reduced rentals. A detailed analysis

of prices showed considerable differentiation across the location-time combinations and

that there are various price patterns in the different zones. SMS providers should bear

this in mind when introducing origin-based differentiated minute pricing, as frequent price
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changes could affect the customer experience. Also, the consideration of network effects in

our approach causes an overall price reduction compared to the myopic solution, resulting

in more rentals and revenue. Considering both profit and pricing, we conclude that simple

pricing rules cannot exploit the total potential for increased profit. We refer the reader

to Section 7 for a generalized discussion of managerial insights that follow from jointly

considering our computational experiments and the case.

To summarize, this work demonstrates the potential of origin-based differentiated

minute pricing in SMSs and the importance of considering network effects. Our ADP de-

composition approach provides a scalable means for integrating these effects successfully.

Based on the presented results and methodology, we believe there are several promising

directions for future work. First, the fleet of car sharing providers typically consists of dif-

ferent vehicle types that could be represented in a formulation based on multi-commodity

network flow problems. Second, although our approach has already proved to be robust

in a stochastic setting, developing approaches explicitly based on stochastic optimization

models could be another useful way of extending our work and potentially further im-

proving the promising results. Third, we believe that integrating VFAs in the vast field

of other tactical and operational decision-making problems in SMSs is promising. This

applies in particular to dynamic problems that require decision making in real-time, and

reveals the problem of provider-based relocation, potentially in combination with pricing,

as a relevant topic for future work.
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A Proof of NP-hardness

We prove the NP-hardness of the OBDPP (1)-(16) by polynomial-time reduction of the

three-satisfiability problem (3-SAT) to the OBDPP.

We begin with the definition of 3-SAT. Let X = {x1, . . . , xn} be a set of n Boolean

variables. A literal is a Boolean variable xn or its negation x̄n. A k-CNF (conjunctive

normal form) formula is a logic expression, consisting of a conjunction (AND,∧) of C

clauses, where each clause is a disjunction (OR,∨) of k literals. Such a k-CNF formula

F (x1, . . . , xn) is satisfiable if a truth assignment α : X → {TRUE, FALSE}n exists for which

F (α) = TRUE. For example, F = (x1∨ x̄2∨x3)∧ (x1∨x2∨ x̄4)∧ (x̄1∨ x̄3∨x4), is a 3-CNF

formula with four variables and three clauses. The 3-SAT problem is the following: Given

a 3-CNF formula F, is F satisfiable?

The core idea of the proof is to construct an OBDPP instance where prices correspond

to literals of the 3-SAT problem. The OBDPP instance is constructed such that optimal

profit equals a known upper bound if and only if the corresponding 3-SAT is satisfiable.

To understand this underlying idea, think of 3-SAT as the problem of selecting one

literal per clause that is guaranteed to be TRUE. The other two literals in each clause

can be given by the selected ones, if they share a variable (i.e. xn and x̄n). Otherwise,

they are arbitrary. Of course, the selection must be consistent (i.e. selecting a literal

with x1 = TRUE and another with x̄1 = TRUE would be contradictory). Each clause now

corresponds to a location-period combination i-t that must be priced in the OBDPP

instance. Also, the selection of the literal m as guaranteed to be TRUE corresponds to the

selection of price point pm in the location-period combination (i.e. ymit = 1). Overall, the

OBDPP instance is constructed to ensure optimal profit reaches a known upper bound

if and only if the selected literals are not contradictory. Thus, satisfiability of the 3-SAT

instance is equivalent to the existence of a pricing that reaches the upper bound in the

OBDPP instance.

More precisely, consider the following reduction from 3-SAT to the OBDPP. Let

x1, . . . , xn be n Boolean variables and F be a formula in 3-CNF consisting of C clauses

and literals λc′m:

F =

C∧

c′=1

(λc′1 ∨ λc′2 ∨ λc′3). (32)

Inspired by Roch, Savard, and Marcotte (2005), who consider a toll pricing problem, we

construct an OBDPP subnetwork for each clause, as shown in Figure 12. The subnetwork

consists of three time steps t, t+1, t+2 and at least five locations. Figure 12 illustratively

depicts eight locations k′, l′, . . . , r′. Only the arcs on which the flow of vehicles can be

positive are represented. Each of the three solid arcs outgoing from the l′-t node represents

one literal λc′m which corresponds to price yml′t = 1. The dashed arcs represent the sit arcs
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Figure 12: Subnetwork corresponding to clause (λc′1 ∨ λc′2 ∨ λc′3)

for vehicles not moved (compare Figure 1) and, thus, remaining at their location i. The

thin solid, thick solid and dot-dashed arcs represent the rmijt arcs for rented vehicles.

The demand on the thin solid arcs is denoted by d̄c′ , and
¯̄d on the thick solid arcs.

While d̄c′ can vary over different subnetworks, ¯̄d is constant. The specific choice of these

demand parameters depends on the instance, as we explain below. We always set dmijt = 1

for each dot-dashed arc.

Only the thick solid arcs represent the rentals that have a positive contribution to

the objective, i.e., the rental duration (compare OBDPP objective function (1)) is set to

zero for all location-location combinations, except for ll′k′ = 1. All three minute prices

are p(1) = p(2) = p(3) = 1 and the variable minute cost is c = 0. With these parameters,

every rental that realizes between the locations l′ and k′ has a profit of 1, and for all other

location-location combinations it is 0.

Note that because exactly one price is set at the l′-t node, exactly one of the thin

solid paths has a positive flow in the subnetwork. Remember that if price pm is selected

at the l′-t node, the corresponding literal λc′m is TRUE. It is important to keep in mind
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that this is an implication, not equivalence: If the price at the l′-t node is not pm, the

literal λc′m is irrelevant regarding satisfiability (we already have another TRUE one in that

clause) and could be TRUE or FALSE. Note that if λc′m = x̄n, then xn = FALSE. Each of

the thin solid paths in a subnetwork can have up to 3(C − c′) corresponding dot-dashed

paths (3 for every subnetwork with larger c′), that is, they have the same price index.

Figure 12 illustrates one corresponding dot-dashed arc per solid arc.

The 3-SAT reduction is performed by connecting multiple subnetworks in series, as

shown in Figure 13. When connecting the subnetworks, we introduce an additional set of

rental arcs represented by dotted arcs and with dmijt = 1 ∀m ∈M and lij = 0. Each dash-

dotted arc that originates in a subnetwork requires a corresponding dotted arc that closes

the path between two clauses. We denote these paths as interclause paths. They connect

every pair of literals corresponding to a variable and its negation, where a contradiction

might arise. The idea is that if the first literal (at the origin of the interclause path) is

guaranteed to be TRUE, vehicles flow over the path. If the second literal (at the destination

of the path) is guaranteed to be TRUE, vehicles will flow over the corresponding thin solid

arc. If both are TRUE, and we therefore have a contradiction, we have excess vehicles at

the node where the aforementioned thin solid arc and the dotted arc end and will lose

profit, which makes attaining the bound impossible. In Figure 13 four interclause paths

originate in node i = 2, t = 0 and one originates in node i = 2 and t = 2.

We already stated the parameters pm, c, lij, and dmijt for the dotted arcs above. Re-

garding the other parameters, we set d̄c′ = 1 for the last and second to last clauses C and

C−1, meaning d̄C = d̄C−1 = 1. We now iterate backwards over the clauses from c′ = C−2
to c′ = 1. For each of these clauses with c′ < C−1, we set d̄c′ = d̄c′+1+maxm∈M{z(c′+1)m}.
The fleet size is set to â2,0 = d̄1 +maxm∈M{z1m}. Note that with this choice of demand

parameters and fleet size, the available vehicles a2,2(c′−1) for each subnetwork c′ are suf-

ficient for the possible rentals in all periods t ≥ c′, independent of the set prices. Note

further, that an inconsistent selection of guaranteed literals thus leads to more vehicles

than demand in the destination node of an interclause path. For all thick solid arcs, the

demand is set to the fleet size, meaning ¯̄d = â2,0. Finally, the demand for the first and

last arc of all interclause paths is set to 1 for all prices, meaning dmijt = 1 ∀m ∈M.

In our example, this implies d̄3 = d̄2 = 1. As clause 2 has only one assignment

restriction, with clause 3 for price y
(3)
2,2, we set d̄1 = 1 + 1. In the first clause, we set

maxm∈M{z1m} = 2, because price y
(3)
2,0 has two assignment restrictions with clauses 2 and

3. The fleet size is â2,0 = 2 + 2. Now consider the following inconsistent selection of

guaranteed literals: y
(1)
2,0 = y

(1)
2,4 = 1 (inconsistent because x1 = x̄1 = TRUE). Then, we have

a3,5 = 2 and since d̄3 = 1, one vehicle would remain unused, meaning s3,t = 1 for t = 5, 6.

Since our choice of parameters causes a profit of 1 for every rental between locations

i = 2 and i = 1 (see above), and our setup of the network allows every vehicle of the fleet

to realize at most 1 rental from i = 2 to i = 1, a profit that equals the fleet size is an
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Figure 13: An instance of the OBDPP for the formula
(x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x4). An optimal solution with prices

y
(2)
2,0 = y

(2)
2,2 = y

(2)
2,4 = 1 attains the upper profit bound. The corresponding assignment
x2 = x3 = TRUE with arbitrary x1 and x4 is satisfiable.
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upper bound. We claim that F is satisfiable if and only if the optimal profit is equal to

that bound. Formally, we show that the following equivalence holds:

F is satisfiable ⇐⇒ ∃y such that
∑

t∈T

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) = â2,0. (33)

⇐: Assume that the optimal profit is equal to the fleet size. As each vehicle can only flow

once over a thick solid arc where it earns a profit of 1, this is the upper bound. Obviously,

no vehicle must end up in a node where it remains unused, and thus will not be rented at

a profit, otherwise the upper bound cannot be reached. Now assume we were inconsistent

and the pricing corresponded to guaranteeing literals with a variable and its negation.

Then, the number of vehicles at the destination node of the corresponding interclause

path would exceed demand, and some vehicles would remain unused until the end of the

horizon. They would not flow over a thick solid arc and earn no profit. This yields a

contradiction. Therefore a pricing with a profit attaining the bound must correspond to

a consistent assignment, and F is satisfiable.

⇒: Conversely, if F is satisfiable, a satisfying assignment exists. There, at least one

literal per clause is TRUE. For each clause, we pick a price that corresponds to a TRUE literal

(if there are several, we take an arbitrary one). Because the assignment is consistent, we

will never pick contradicting literals and there are never more vehicles in a node than the

outgoing demand. Thus, all vehicles of the fleet are being rented at some period from

location i = 2 to i = 1 with a profit of 1, and the upper bound is reached.

We now analyze the OBDPP construction’s computational complexity. First, we con-

sider the size of the network. It consists of T = 2C + 2 periods; in our example in Figure

13 there are two periods each for the C = 3 clauses with t = 0, . . . , 5 and two additional

periods t = 6, 7. The number of locations is, at most, Z = 2 + 3(C − 1) + (3C)2 and

depends on the number of clauses and interclause paths. The first two locations are re-

quired for the rentals with a positive profit, in our example i = 1, 2. Independent of

the interclause arcs, the first and last clauses require three locations, one for each price

and i = 3, 4, 5 in our example. For every additional clause, three additional locations are

required, here i = 6, 7, 8. For each interclause path, an additional location is required,

and the number of interclause paths is bounded by (3C)2. In our example, there are five

interclause paths with locations i = 9, . . . , 13. The entire network thereby consists of

Z · T = O(C3) spatio-temporal nodes. Note that while considering the interclause paths

in the network construction, we count and store the number of outgoing paths for every

clause c′ and price m in zc′m.

Overall, because all of the above operations are polynomial in C, the construction of

the OBDPP instance is polynomially bounded in C. This completes the proof. □
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B Base Demand Matrix Generation

In this section, we describe the generation process of the base demand matrices that

we used in the computational experiments in Section 5. The base demand matrix for

a specific scenario is defined by d = [dijt]Z×Z×T , where each element dijt represents the

base demand from zone i to zone j in period t (Section 3.1). The process of base demand

matrix generation has two general steps. First, the period demand dt in the course of the

day, meaning ∀t ∈ T , is determined. Second, the specific dijt values are calculated. The

two steps are elaborated in the following.

• We determine dt ∀t ∈ T by specifying dt for some of the periods U ⊆ T in relation

to the maximum period demand max(dt) and subsequently use linear interpolation

to calculate dt for all other periods T \ U .

More precisely, we first decide on the period τ with maximum period demand and

determine this dτ = max(dt) based on the fleet size â0 and the respective scenario-

specific demand-supply-ratio δ (Section 5.1), i.e., dτ = â0/δ. In our scenarios, in

order to replicate the demand patterns observed in practice, we chose the maximum

period demand to occur at the evening peak τ = 36 (18:00h).

Second, we define a set of periods U ⊆ T with |U| = U , for which the period demand

dt ∀t ∈ U is defined in relation to the maximum period demand dτ , i.e., dt = ut · dτ .
In our settings, to replicate the typical course of demand, we define U = 4 period

demands: the evening peak t = 36 with u36 = 100%, the night low t = 8 (04:00)

with u8 = 10%, the morning peak t = 16 (08:00) with u16 = 80%, and midday

t = 24 (12:00h) with u24 = 60%.

Third, the remaining dt ∀t ∈ T \ U are calculated by linear interpolation, where for

some t ∈ T \ U the dt values of the respective next smaller and larger t ∈ U are

used as supporting points. At this point, the absolute period demand dt ∀t ∈ T is

defined.

• We calculate the specific base demand matrix entries dijt based on dt in a hierarchical

process where the demand streams are first determined on an aggregate zone-type

level. Subsequently, we specify the demand streams for the original zones, which

allows us to replicate typical demand patterns observed in practice.

More precisely, in order to replicate typical demand streams observed in practice,

we first define Q = {1, 2, . . . , Q} different zone types. Each of the original Z zones

is assigned to one of the zone types with an injective mapping, resulting in Q sets

of zones Zq ⊆ Z ∀q ∈ Q, with
⋂Q

q=1Zq = ∅ and
⋃Q

q=1Zq = Z. In our scenarios, we

define Q = 4 zone types, which we denote center, inner, outer, peripheral.
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Second, for each of the U periods defined above, a typical demand pattern can now

be defined on the zone type level by specifying proportions of the respective dt for

every zone-type-zone-type combination. Table 6 depicts an example from one of our

scenarios, in which we chose the parameters to reflect that most of the demand at

the morning peak t = 16 is directed from the non-center zones to the center zones.

Note that the proportions sum up to 100%, such that at this point, the absolute

demand values dxyt for all Q·Q·U zone-type x ∈ Q to zone-type y ∈ Q combinations

are defined for all periods t ∈ U .

Third, considering the number of zones in a specific zone-type, meaning |Qq|, the
absolute demand values dijt for all Z · Z · U original zones for all periods t ∈ U
are calculated. For example, a specific dxyt with x, y ∈ Q has to be divided into

multiple dijt with i ∈ Zx and j ∈ Zy according to dijt = dxyt/(|Zx| · |Zy|).

Fourth, the remaining dijt ∀i, j ∈ Z, t ∈ T \U are calculated by linear interpolation

between the supporting points dijt∀i, j ∈ Z, t ∈ U . More precisely, for a specific i-j-

t combination with t ∈ T \ U , the surrounding dijt with the respective next smaller

and next larger t ∈ U are used as supporting points. The interpolation is linear in

the number of periods that separate the dijt to be calculated from the respective

two supporting points.

destination zone type
center inner outer peripheral

origin
zone
type

center 0.05 0.1 0.025 0.025
inner 0.1 0.05 0.025 0.025
outer 0.15 0.1 0.025 0.025

peripheral 0.15 0.1 0.025 0.025

Table 6: Example of demand proportions for zone types at morning peak t = 16
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C Test Instances and Evaluation Metrics

scenarios with number of zones and demand-supply-ratio
solution
approach

time
limit

9 16 25
2/6 4/6 6/6 8/6 12/6 2/6 4/6 6/6 8/6 12/6 2/6 4/6 6/6 8/6 12/6

ADP-1, ROL-1 none x x x x x
ADP-4, ROL-4 none x x x x x
ADP-8, ROL-8 none x x x x x

OPT none x x x x x
UB 48h x x

ADP-1, ROL-1 48×1h x x x x x x x x x x
ADP-4, ROL-4 48×1h x x x x x x x x x x
ADP-8, ROL-8 48×1h x x x x x x x x x x

CUP none x x x x x x x x x x x x x x x

Table 7: Considered test instances

metric all periods t ∈ T , (* price pm) period t, (* price pm)

PRrel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rmijt·l·(pm−c)∑

t∈T
∑

i,j∈Z r
(2)
ijt ·l·(p(2)−c)

− 1
∑

i,j∈Z
∑

m∈M rmijt·l·(pm−c)∑
i,j∈Z r

(2)
ijt ·l·(p(2)−c)

− 1

RV rel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rmijt·l·pm∑

t∈T
∑

i,j∈Z r
(2)
ijt ·l·p(2)

− 1
∑

i,j∈Z
∑

m∈M rmijt·l·pm∑
i,j∈Z r

(2)
ijt ·l·p(2)

− 1

RT rel
(·)

∑
t∈T

∑
i,j∈Z

∑
m∈M rmijt∑

t∈T
∑

i,j∈Z r
(2)
ijt

− 1
∑

i,j∈Z
∑

m∈M rmijt∑
i,j∈Z r

(2)
ijt

− 1

P prop
(·) *

∑
t∈T

∑
i∈Z ymit∑

t∈T
∑

i∈Z
∑

q∈M yqit

∑
i∈Z ymit∑

i∈Z
∑

q∈M yqit

RT prop
(·) *

∑
t∈T

∑
i,j∈Z rmijt∑

t∈T
∑

i,j∈Z
∑

q∈M rqijt

∑
i,j∈Z rmijt∑

i,j∈Z
∑

q∈M rqijt

Table 8: Evaluation metrics used

D Computation Times for VFA Parameter Estima-

tion

As explained in Section 4.2, the entire process of determining pricing solutions requires a

parameter estimation (Algorithm 4, Section 4.4) and subsequently the ADP decomposi-

tion approach (Algorithm 4). Here, we consider the computation times for the parameter

estimation. Algorithm 4 shows that for every period this parameter estimation has two

general components. The first is to generate samples of vehicles’ distribution and to cal-

culate a corresponding profit-to-come for every sample; the second is to determine the

VFA parameters by solving the adapted least squares problem (23)-(27). To provide more

insight on the respective computation times, we state the average computation times for

these two components, i.e., data generation and solve (23)-(27) separately in the rows of

Table 9. The idea is to generate all required data (for all periods) first, and then, in a

second step, to solve (23)-(27) for all periods.
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setting
9Z 16Z 25Z 59Z

data
generation

per data sample [sec.] 1.1 2.9 6.6 67.6
1000 samples [h.] 0.3 0.8 1.8 18.7

solve (23)-(27) total process [sec.] 27.8 46.9 67.9 195.8

Table 9: Computational times for data generation and parameter estimation

The data generation for all periods’ computation time with each 1000 samples that we

used lies between less than one hour for the 9-zones setting and roughly 19 hours for the

Florence case study which has 59 zones. Solving (23)-(27) for all periods requires, at its

maximum, several minutes, because (23)-(27) is a quadratic programming problem which

can be solved efficiently by standard solvers.

As explained in Section 1, the OBDPP is an off-line pricing problem, where – as

for every off-line problem – the overall computation time for determining a solution is

not crucial, while the solution quality is indeed decisive. Of course, even for off-line

problems, the computation time needs to be reasonable, so that application in practice

is possible. For the considered problem and the proposed approach, the following is

given: Considering the computation times in Table 9 and the maximum duration of

determining a pricing solution with our ADP decomposition approach, which was 48

hours (see Section 5.1), prices are obtained in less than three days. In practice, the applied

pricing solutions are kept stable for several months to ensure that an adapted demand

pattern can be observed with statistical significance. Only then can a recalculation of

prices be reasonable. Thus, the overall computation time does not pose any limitations

for practice. Moreover, the presented computation times for generating the data can

be considered as an upper bound for this process step, since all samples were generated

sequentially, while a complete parallelization was possible. This means that the data

generation is limited by the potential for parallelization and not by the generation of a

sample data point, which in the Florence example, on average, requires only 67.6 seconds.
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E Small Setting - 9 Zones - Additional Results
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Figure 14: Relative increase of profit (PRrel), revenue (RV rel), rentals (RT rel) and price
proportions (P prop

pm ) in 9-zones setting.

Columns: PRrel, RV rel, RT rel, P prop
pm ;

Rows: Ascending demand-supply-ratio δ
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F Enlarged Settings - 16 and 25 Zones
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Figure 15: Relative profit increase (PRrel) and price proportions (P prop
pm )

in 16- and 25-zones settings.
Columns: Z = 16 PRrel, P prop

pm – Z = 25 PRrel, P prop
pm ;

Rows: Ascending demand-supply-ratio δ
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G Stochastic Evaluation

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 5.6 5.6 5.5 5.4 5.2 5.7 5.7 5.7 5.7 5.7 6.2 6.2 6.2 6.2 6.2
ROL-4 12.0 11.8 11.7 11.4 11.0 8.9 8.9 8.9 8.9 8.8 9.5 9.4 9.4 9.3 9.2
ROL-8 14.4 14.3 14.1 13.8 13.5 10.6 10.6 10.6 10.5 10.5 11.4 11.3 11.2 11.1 11.0
ADP-1 11.4 11.4 11.2 10.8 10.4 13.0 12.9 12.8 12.6 12.4 14.3 14.2 14.1 13.9 13.8
ADP-4 14.4 14.3 13.9 13.9 13.5 13.7 13.5 13.3 13.0 12.8 14.6 14.5 14.3 14.1 13.9
ADP-8 15.1 15.1 14.9 14.5 14.0 14.0 13.8 13.6 13.3 13.0 14.7 14.6 14.4 14.3 14.1

(a) δ = 2/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 8.1 8.1 8.0 7.9 7.8 9.5 9.5 9.4 9.3 9.2 9.0 9.0 9.0 9.0 9.0
ROL-4 12.5 12.5 12.4 12.3 12.2 12.7 12.5 12.4 12.2 12.1 12.2 12.1 12.0 11.9 11.9
ROL-8 14.0 14.0 13.9 13.8 13.7 13.4 13.3 13.2 13.0 12.8 14.1 14.0 13.9 13.8 13.7
ADP-1 13.4 13.4 13.3 13.2 13.1 14.1 14.0 13.9 13.7 13.5 14.2 14.2 14.1 14.0 13.9
ADP-4 14.0 13.9 13.8 13.6 13.4 14.8 14.6 14.4 14.1 13.9 14.7 14.6 14.4 14.3 14.1
ADP-8 13.9 14.0 13.9 13.8 13.7 14.8 14.7 14.5 14.2 14.0 14.6 14.6 14.5 14.3 14.2

(b) δ = 4/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 10.1 10.1 10.0 9.9 9.7 11.8 11.7 11.5 11.3 11.2 11.4 11.4 11.3 11.2 11.1
ROL-4 12.6 12.6 12.5 12.4 12.2 14.4 14.2 14.0 13.8 13.5 14.1 14.0 13.8 13.6 13.5
ROL-8 13.3 13.3 13.3 13.2 13.0 15.1 15.0 14.8 14.6 14.4 14.7 14.6 14.5 14.4 14.3
ADP-1 12.9 12.9 12.8 12.6 12.4 14.9 14.8 14.7 14.5 14.4 14.2 14.2 14.1 14.0 13.9
ADP-4 13.3 13.3 13.2 13.1 13.0 15.3 15.1 14.9 14.7 14.5 14.8 14.9 14.6 14.5 14.3
ADP-8 13.3 13.3 13.3 13.2 13.0 15.1 15.0 14.8 14.6 14.4 14.8 14.7 14.6 14.5 14.3

(c) δ = 6/6

Mean profit increase with respect to CUP in %
Z = 9 Z = 16 Z = 25

σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4

CUP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ROL-1 10.8 10.8 10.6 10.5 10.3 13.6 13.5 13.4 13.2 13.0 13.4 13.4 13.3 13.3 13.2
ROL-4 12.9 12.8 12.6 12.4 12.3 15.5 15.4 15.2 14.8 14.3 15.3 15.2 15.0 14.8 14.6
ROL-8 13.0 13.0 13.0 12.9 12.7 15.7 15.6 15.3 14.9 14.4 15.5 15.4 15.3 15.1 14.9
ADP-1 13.0 13.0 13.0 13.0 12.9 15.2 15.1 15.1 14.8 14.5 14.9 14.9 14.9 14.8 14.6
ADP-4 13.0 13.1 13.1 13.0 12.9 15.7 15.7 15.5 15.1 14.6 15.5 15.4 15.3 15.1 14.9
ADP-8 13.0 13.0 12.9 12.9 12.7 15.7 15.7 15.4 15.1 14.6 15.4 15.4 15.3 15.1 14.9

(d) δ = 8/6

Table 10: Mean profit increase for different demand-supply-ratios δ. For all analyzes, the
half-width of the 95% confidence interval was at most ±0.2 percentage points.
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H Model Variants

As described in Section 5.3.6, we develop two model variants for the OBDPP (1)-(16) in

the following two subsections.

Trip-based Pricing with Relaxation of Pure Pricing and Propor-

tional Demand Fulfillment

The TBDPP-RLX mimics a trip-based differentiated pricing problem (TBDPP) which

omits the two central assumptions made for the OBDPP, i.e., technically speaking, com-

pared to the OBDPP, it relaxes (RLX) the pure pricing and the proportional demand

fulfillment assumptions (see Section 1) in the model. The TBDPP-RLX is given by (34)-

(44).

Compared to the OBDPP model (1)-(16), the TBDPP-RLX model (34)-(44) delineates

as follows: The constraints (8)-(11) as well as the auxiliary binary decision variables q =

[qit]Z×T become obsolete. Constraints (8) in the OBDPP change to (40) in the TBDPP-

RLX. Since pricing is trip-based, the binary origin-based pricing decision variables y =

[ymit ]Z×T×M in the OBDPP are replaced by binary trip-based variables y = [ymijt]Z×Z×T×M

in the TBDPP.

max
y,q,r,a,s

∑

t∈T

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) (34)

s.t. ait =
∑

j∈Z

∑

m∈M
rmijt + sit ∀i ∈ Z, t ∈ T (35)

∑

i∈Z

∑

m∈M
rmijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (36)

ai0 = âi0 ∀i ∈ Z (37)
∑

m∈M
ymijt = 1 ∀i, j ∈ Z, t ∈ T (38)

rmijt ≤ dmijt · ymijt ∀i, j ∈ Z, t ∈ T ,m ∈M (39)
∑

j∈Z

∑

m∈M
rmijt ≤ ait ∀i, j ∈ Z, t ∈ T (40)

ymijt ∈ {0, 1} ∀i, j ∈ Z, t ∈ T ,m ∈M (41)

rmijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T ,m ∈M (42)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (43)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (44)
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Origin-based Pricing with Relaxation of Pure Pricing and Pro-

portional Demand Fulfillment

The OBDPP-RLX also omits/relaxes (RLX) the two central OBDPP assumptions, but

apart from this, is identical to the model for the original origin-based differentiated pricing

problem (OBDPP). The OBDPP-RLX is given by (45)-(55).

Compared to the OBDPPmodel (1)-(16), the OBDPP-RLXmodel (45)-(55) delineates

as follows: The constraints (8)-(11) as well as the auxiliary binary decision variables

q = [qit]Z×T become obsolete. Constraints (8) in the OBDPP change to (51) in the

OBDPP-RLX.

max
y,q,r,a,s

∑

t∈T

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) (45)

s.t. ait =
∑

j∈Z

∑

m∈M
rmijt + sit ∀i ∈ Z, t ∈ T (46)

∑

i∈Z

∑

m∈M
rmijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (47)

ai0 = âi0 ∀i ∈ Z (48)
∑

m∈M
ymit = 1 ∀i ∈ Z, t ∈ T (49)

rmijt ≤ dmijt · ymit ∀i, j ∈ Z, t ∈ T ,m ∈M (50)
∑

j∈Z

∑

m∈M
rmijt ≤ ait ∀i, j ∈ Z, t ∈ T (51)

ymit ∈ {0, 1} ∀i ∈ Z, t ∈ T ,m ∈M (52)

rmijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T ,m ∈M (53)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (54)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (55)

I Pricing of Shared Mobility Systems in Practice

In Section 1 where we introduce the origin-based differentiated pricing problem (OBDPP),

we explain that there are three dimensions to classify pricing mechanisms. Regarding

the second dimension, i.e., the spatio-temporal pricing features, we consider origin-based

pricing in our work, whereas the closest related studies (Section 2.3) all focus on trip-based

pricing.

To underline the relevance of this origin-based pricing, the following exposition shows

which pricing mechanisms are actually applied in practice. In particular, in Table 11 we

state how the ten largest car sharing providers worldwide do their pricing.

The status quo of SMS pricing in practice can be summarized as follows:
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Provider Location Fleet size
Pricing mechanism

Spatio-temporal pricing feature Subject of price differentiation

EvCard China 30,000 Not found
Delimobil Russia 16,000+ Origin Time

Yandex.Drive Russia 16,000 Origin Not found
Zipcar United States 12,000 No price differentiation

Share Now Germany 11,240 Origin Location and time
Flinkster Germany 6,500+ Origin Time
GoGet Australia 3,300+ Origin Time

Car Next Door Australia 3,000+ Origin Time
Cambio Germany 2,700 Origin Time
Enjoy Italy 2,670 Origin Time

Table 11: Pricing in the largest car sharing systems in practice (based on internet research)

• Practice exclusively applies origin-based pricing : Of the ten largest car sharing

providers worldwide, seven apply origin-based pricing, two do not apply price dif-

ferentiation at all, and for the remaining one we could find no information on their

basis for pricing. In other words, none of these providers applies trip-based pricing,

despite the fact that this is the dominant pricing mechanism discussed in literature.

• Share Now is pioneering in the field by differentiating prices with regard to both

location and time: Of the seven providers who do apply origin-based pricing, only

Share Now – Europe’s largest car sharing provider that operates in 16 cities in 8

countries (Share Now 2021) – differentiates prices with regard to location and time.

The remaining six providers differentiate prices only with regard to time. Hence, we

regard Share Now as a pioneer in determining prices for SMSs. The OBDPP that

we consider in this paper reflects Share Now’s problem one-to-one and the resulting

pricing solutions have been applied in practice since the end of 2019.

Additional investigations reiterate these two findings. Besides car sharing, there are sev-

eral other SMSs, such as bike sharing or scooter sharing, for which we searched the internet

thoroughly to find information on their applied pricing mechanisms. To the best of our

knowledge, not a single provider actually applies trip-based pricing. As for the car sharing

discussed above, providers either do not differentiate prices at all, or they use origin-based

pricing in which the company differentiates only with regard to time.
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Abstract: Free-floating shared mobility systems offer customers the flexibility to pick up and drop
off vehicles at any location within the business area and, thus, have become the most
popular type of shared mobility system. However, this flexibility has the drawback
that vehicles tend to accumulate at locations with low demand. To counter these
imbalances, pricing has proven to be an effective and cost-efficient means. The fact
that customers use mobile applications, combined with the fact that providers know
the exact location of each vehicle in real-time, provides new opportunities for dynamic
pricing.
In this context, we develop a pricing approach for the dynamic online problem of
a provider who determines profit-maximizing prices whenever a customer opens the
provider’s mobile application to rent a vehicle. Our pricing approach has three distin-
guishing features: First, it is customer-centric, i.e., it considers the customer’s location
as well as disaggregated choice behavior to precisely capture the effect of price and
walking distance to the available vehicles on the customer’s propensity to choose a
vehicle. Second, our pricing approach is origin-based, i.e., prices are differentiated by
location and time of rental start, which reflects the real-world situation where the rental
destination is usually unknown. Third, our model is anticipative and uses a stochastic
dynamic program to anticipate the effect of current decisions on future vehicle loca-
tions, rentals, and profits. As solution method, we propose a non-parametric value
function approximation, which offers several advantages for the application, e.g., his-
torical data can readily be used and main parameters can be pre-computed such that
the online pricing problem becomes tractable. Extensive numerical studies, includ-
ing a case study based on Share Now data, demonstrate that our approach increases
profits by up to 13% compared to existing approaches from the literature and other
benchmarks.

Keywords: Free-floating Shared Mobility System, Customer-centric Dynamic Pricing, Data-driven
Non-parametric Value Function Approximation
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1 Introduction

There are three fundamental types of Shared Mobility Systems (SMSs) which, from the

customers’ view, decisively differ with regard to the degree of flexibility they offer. In two-

way systems, customers have to return vehicles to the pick-up station, whereas in one-way

systems, customers can pick-up and drop-off the vehicle at any station. Free-floating is the

most flexible variant, as it allows customers to pick-up and drop-off vehicles at any public

parking spot in the business area of the SMS provider (e.g. Chow and Yu (2015)). For this

reason, free-floating SMSs have become the most popular type in practice (e.g. ADAC

(2020)). However, higher degrees of flexibility come with an important drawback: Due to

unbalanced demand patterns and the oscillation of the demand intensity over the course

of the day, vehicles accumulate at certain locations (usually the outskirts) over time,

while other areas lack vehicles (usually downtown). This so-called ”tide phenomenon”

(spatio-temporal demand asymmetries (Côme 2014, Jorge and Correia 2013)) is even

more pronounced for free-floating SMSs than for station-based one-way SMSs, as the

rather few stations in the latter concentrate demand and supply (Wagner et al. 2015).

Pricing is an obvious tool to counter these imbalances and to improve the system’s

profit. The idea is to nudge some customers to slightly adapt their travel plans, for

example, to use a sharing vehicle to drive from a low demand to a high demand location

(Angelopoulos et al. 2016, Brendel, Brauer, and Hildebrandt 2016). Thus, adequate

pricing can achieve a vehicle availability that assures an appropriate service level.

In modern free-floating SMSs, customers use mobile applications to interact with the

SMS. Typically, customers open the application, check prices of nearby vehicles on a map,

and finally select one (or none). This digital booking process provides much information

on a detailed level regarding the customer choice behavior, most importantly regarding

the influence of walking distance and prices. Further, SMS providers have real-time

information about each customer’s location in the moment they open the app as well as

full knowledge about the spatial fleet distribution. All these detailed information on the

disaggregate level provide opportunities for pricing. However, these opportunities have

not received attention in the literature yet.

?? ?

?

?

customer 
1

customer 
2

max. walking 
distance

(a) Provider’s pricing problem
The ”?” indicate prices to be optimized online.

0.36 0.26 0.26 
0.31

0.36 

max. walking 
distance

customer 
1

customer 
2

(b) Resulting customer’s choice situation:
Customers see different prices for the same vehicle.

Figure 1: Illustration of the first distinguishing feature of the developed pricing approach:
customer-centricity.
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In this work, we consider a profit-maximizing free-floating SMS provider’s dynamic

online pricing problem with a strong focus on applicability in practice. More precisely,

whenever a customer considers prices in the mobile application, prices need to be deter-

mined based on the currently available information. For this problem, we develop a new

pricing approach that is characterized by the following three distinguished features:

• First, the pricing problem leverages the detailed disaggregate information available

in modern free-floating SMSs, as discussed above. More specifically, we propose

the concept of customer-centric pricing, in which the SMS provider considers a cus-

tomer’s location as well as the customer choice behavior with regard to walking dis-

tances and prices in the online optimization, as illustrated in Figure 1a. This allows

to exploit that the location not only determines the vehicles within the customer’s

walking distance, but that it also impacts the customer’s utility for choosing (and

having to walk to) a certain vehicle. Since this pricing approach does not depend

on a particular choice model specification, additionally available information can be

included as well. Thus, in customer-centric pricing, the pricing is tailored to the

situational characteristics of each incoming customer request. While this can result

in one specific vehicle having different prices for different customers, as illustrated

in Figure 1b, this does not mean that pricing is personalized. More specifically, we

do not use socio-demographic characteristics such as age or income to potentially

exploit individual willingness-to-walk or individual price sensitivity. Only the loca-

tion of the customer’s device when she or he looks for vehicles is used to account

for the impact of distance to different vehicles on customer utility.

• Second, within our pricing approach, prices can be varied (solely) based on location

and time of a rental’s start, denoted as origin-based pricing. In particular, informa-

tion on a rental’s destination can not be used, because it is not available in reality:

Asking customers for their destination beforehand contradicts the spontaneous sell-

ing proposition of free-floating SMSs (Soppert et al. (2021a)). Despite its relevance,

this type of dynamic pricing has received only little attention in literature.

• Third, for the provider, it is important how prices are determined. In this respect,

our pricing approach is anticipative as it considers future profits based on dynamic

programming. By contrast, the majority of existing literature on (vehicle-based)

dynamic pricing for SMS uses intuitive business rules without formal optimization.

The papers using mathematical models largely rely on myopic optimization models.

In addition, as we will discuss in-depth in Section 2, they can not be applied to the

problem we consider for various other reasons. The ways we design the anticipation

allows to use historic data that is readily available in practice.
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The pricing problem and our approach’s practical relevance is ensured by, among other

things, close cooperation with Share Now, Europe’s largest car sharing provider operating

in eight countries and 16 cities (Share Now 2021).

The contributions of our work are the following:

• We are the first to present a dynamic pricing approach for SMSs that leverages on

the detailed, disaggregate information available in modern free-floating systems. In

particular, the pricing approach is characterized by the three distinguished features

mentioned above, i.e., it is customer-centric, origin-based, and anticipative.

• We formulate the pricing problem underlying our approach as a dynamic program

which considers stochasticity of the SMS. We show that regarding the action space at

each stage of the dynamic program, only vehicles within walking distance need to be

considered, such that online pricing becomes tractable. Based on the dynamic pro-

gramming formulation, we develop an approximate dynamic programming solution

method for the online pricing problem. The approach incorporates a non-parametric

regression which allows to approximate future profits based on historical data. This

enables the pre-calculation of state-values such that the numerical operations of the

online pricing problem can be reduced to a minimum.

• We conduct several computational studies, including sensitivity analyses as well as

a case study based on Share Now data from the city of Vienna. These studies show

that our new dynamic pricing approach dominates all of the considered benchmarks

in terms of realized profit, including state-of-the-art approaches from the literature.

Further, these results are shown to be robust across the various considered settings

and parameter variations, such as different SMSs sizes, overall demand levels, and

customer preferences.

• We derive a number of relevant managerial insights from the computational studies.

In particular, we show that our pricing approach is particularly effective when there

is spatial variation in demand and that sophisticated anticipation of future states

and profits is the key. Another finding is that our pricing approach realizes higher

profits compared to the benchmarks while maintaining the overall level of rentals,

which is beneficial for service-oriented metrics of an SMS provider.

The remainder of the paper is organized as follows. In Section 2, we review the relevant

literature. Section 3 formalizes the problem. Based on this, we develop the new dynamic

pricing approach in Section 4. Section 5 contains the computational study, including a

sensitivity analysis. Section 6 presents the Share Now case study. Section 7 concludes

the paper and gives an outlook on future research. The appendix contains additional

numerical results and a list of notation.
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2 Literature Review

The literature on SMS optimization is broad, covering various types of systems, opti-

mization problems, control approaches, and methodologies. General overviews on SMS

optimization problems have been presented in survey papers on bike sharing (e.g. DeMaio

(2009), Fishman, Washington, and Haworth (2013), Ricci (2015)), car sharing (e.g. Jorge

and Correia (2013), Ferrero et al. (2015a,b), Illgen and Höck (2019)), and SMSs in general

(e.g. Laporte, Meunier, and Wolfler Calvo (2015, 2018)).

In this literature review, we focus on dynamic pricing in SMSs in the sense that

the pricing depends on the system’s current state (e.g. vehicle locations). We exclude

differentiated (or static) pricing approaches (see, e.g., Agatz et al. (2013), Soppert et al.

(2021a), and the references therein). Since there are various variants of dynamic pricing,

in Section 2.1 we first introduce a taxonomy. In Section 2.2, we use it to discuss the

relevant literature. In Section 2.3, we briefly refer to other literature streams that we do

not discuss in detail because they are related only in a broader sense.

2.1 Taxonomy for Dynamic Pricing in Shared Mobility Systems

There is a great variety of dynamic pricing approaches for SMSs. To structure them, we

propose seven dimensions that we group regarding two perspectives. The user perspective

considers how the user experiences the dynamic pricing approaches. It contains three

dimensions that are externally apparent to the customer. On the other hand, the provider

perspective includes four methodological dimensions that describe the inner mechanics of

the pricing approaches.

The user perspective comprises the following three dimensions:

(1) Type of SMS : SMSs are either free-floating or station-based. In the former, vehicle

pick-up and drop-off can take place at any publicly accessible parking spot within

some business area. In the latter, this is limited to certain dedicated locations,

usually denoted as stations.

(2) Spatio-temporal pricing features: Origin-based prices only depend on time and lo-

cation of a rental’s start. Other variants are destination-based prices (e.g. drop-off

fees) and trip-based prices, that depend on both origin and destination (see Soppert

et al. (2021a)).

(3) Focus: As explained in Section 1 and illustrated by Figure 1, our pricing approach

is customer-centric where prices depend on a customer’s location such that a vehi-

cle can have a different price for different customers. In contrast, in vehicle-based

pricing, each vehicle has the same price for all customers.
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The provider perspective comprises the following four dimensions:

(4) Methodology : Prices are either determined from business rules or derived by opti-

mization of some model.

(5) Objective: Dynamic pricing approaches either strive to improve balance in the SMS

(often regarding spatial fleet distribution) or for higher profit (lower cost).

(6) Foresight : Myopic approaches determine prices based on the current state of the

SMS. In contrast, anticipative approaches additionally consider how current deci-

sions influence the SMS’s future states or profits.

(7) Customer choice model : Customer behavior is either modeled on an aggregate or

disaggregate level. Aggregate modeling comprises demand curves or price sensitiv-

ities while in disaggregate modeling, each customer’s choice situation is considered

individually, for example using discrete choice models like the multinomial-logit

model.

2.2 Literature on Dynamic Pricing in Shared Mobility Systems

Interestingly, dynamic pricing in SMS has been covered almost exclusively by the en-

gineering and information systems communities, which often focus on architectures or

directly propose heuristic algorithms. By contrast, research from the operations research

community is scarce. Table 1 classifies the literature according to the seven dimensions

described above and carves out the key differences to our paper, which is classified in

the last row of the table. Regarding five dimensions, the following obvious observations

related to the positioning of our paper can be made:

• Type of SMS: The majority of papers considers station-based SMSs, although in

practice, free-floating SMSs have become the more popular type over the last decade

(e.g., ADAC (2020)). Our work is specifically designed for free-floating SMSs.

• Spatio-temporal pricing features: Most papers consider destination or trip-based

pricing. Only two of them consider origin-based pricing. However, origin-based

pricing is the only variant considered viable in practice, as in real-world free-floating

SMSs customers do not disclose their destination (Soppert et al. 2021a). Hence, in

our work, we consider origin-based pricing.

• Focus: Literature so far has only focused on vehicle-based pricing. With this work,

we are the first to consider customer-centric pricing.

• Objective: Profit-maximization has not been addressed in the literature yet. How-

ever, most SMS providers are private companies and profitability is decisive. Hence,

our work focuses on profitability.
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• Customer choice model: The vast majority of papers in the literature uses aggregate

modeling of customer choices. In our work, we make use of disaggregate customer

modeling, which is much more detailed.

Carving out the differences between the existing literature and our work regarding the

remaining two dimensions necessitates a more detailed discussion, that we structure by

grouping the works according to the methodology and for each group, we discuss their

approach regarding foresight.

Regarding the methodology, we first focus on the works using business rules, that,

for example, compare endogenously given thresholds to the current state of the system.

Among them, a group of anticipatory papers incorporates expected future states of the

SMS into the pricing decision. Threshold values are usually compared with the ratio of

future supply and demand at individual stations, which is derived from historical data

and the system’s current state (Brendel, Brauer, and Hildebrandt (2016), Dötterl et al.

(2017)). Wagner et al. (2015) consider exogenously given rules based on expected idle

times.

Several works that use business rules propose myopic approaches. Bianchessi, For-

mentin, and Savaresi (2013) compare the number of vehicles at a station and the mean

value of vehicles per station to determine prices. Zhang, Meng and David (2019) are

closer to operations research and capture system and customer behavior in a mathemati-

cal model. They define prices by comparing the current number of vehicles with demand

and propose a negative price that is linear in the undersupply of a rental’s destination

station. If there is no undersupply, the regular positive price applies. Barth, Todd, and

Xue (2004) propose a system that, once it recognizes an imbalance, provides incentives for

joint rides of independent customers in one car or splitting a party of customers into mul-

tiple cars. Marecek, Shorten, and Yu (2016) derive drop-off charges for vehicles depending

on the intended destination location’s distance to the nearest vehicle. Angelopoulos et al.

(2016, 2018) propose two algorithms for promoting trips based on the priorities of vehi-

cle relocates between stations. Neijmeijer et al. (2020) is difficult to classify regarding

methodology. They seek to balance vehicles’ idle times and share a MIP that minimizes

the sum of the differences in the idle times plus the costs of incentives, but apparently do

not test this MIP. Moreover, they empirically evaluate the effect of two possible discounts

on vehicles’ idle times in a scooter sharing system.

Second, we consider papers that use optimization as methodology to perform dynamic

pricing. Four of those papers use anticipatory models. Singla et al. (2015) iteratively learn

users’ reactions to the incentives offered and seek to align future demand and supply. They

evaluate using a real world survey as well as simulations. Pfrommer et al. (2014) propose

an approach that uses quadratic programming and combines user-based and provider-

based relocation. Prices are recalculated each period in a rolling horizon fashion. Ruch,

Warrington, and Morari (2014) build on Pfrommer et al. (2014) and investigate simplified
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variants that can be used to benchmark more complex approaches. Di Febbraro, Sacco,

and Saeednia (2012) aim at a supply/demand ratio of 1 at all stations. They suggest

alternative drop-off locations with a discount to customers. Assuming a given acceptance

probability for these suggestions, a simulation evaluates the benefit for vehicle availability.

Di Febbraro, Sacco, and Saeednia (2019) follow up on their earlier paper and formulate and

test corresponding optimization models. Kamatani, Nakata, and Arai (2019) optimize

thresholds by simulation-based optimization (Q-learning), while Clemente et al. (2017)

use a simulation-based heuristic (particle swarm optimization).

The remaining papers use myopic optimization models. While they overall focus on

user-based relocation, in one subsection Chemla et al. (2013) determine myopic prices

period by period. They aim at a service-maximizing fleet distribution in bike-sharing sys-

tems through user-based relocation, where customer satisfaction is measured by successful

and unsuccessful customer actions (available or non available bike, empty or full rack).

They use a linear program to determine the number of customers who change their travel

plans because of the price incentive to reach the given target inventory of vehicles for each

station. Two papers do not directly solve a mathematical model, but use it as a basis

to develop a heuristic. Haider et al. (2018) clearly belongs to the OR community and

models a bi-level program, where the upper level determines prices and minimizes vehicle

imbalance, while the lower level represents the cost-minimizing route choice of customers.

The problem is transformed into a single-level problem and a heuristic is proposed that

iteratively adjusts prices (and, in contrast to the bi-level program, contains some an-

ticipation). Wang and Ma (2019) considers the objective of keeping inventory within a

certain range for a period. For this purpose, they define lower and upper thresholds for

each station. The number of rentals from or to a station can be affected by pickup and

drop-off fees. They formulate a simple quadratic program to determine optimal dynamic

pickup and drop-off fees and solve it with a genetic algorithm.

Regarding these two dimensions, our paper falls in the class of papers using optimiza-

tion models in an anticipatory way. A unique characteristic of our approach is the method

of the mathematical modeling itself. All of the papers reviewed which use mathematical

models for determining prices use linear (e.g. Chemla et al. (2013)), or quadratic models

(e.g. Pfrommer et al. (2014), Wang and Ma (2019)). In contrast, we are the first to use

a stochastic model and approximate dynamic programming for a pricing mechanism in

SMSs.

2.3 Further Literature

There are several further literature streams which have some similarities with the con-

sidered problem and the applied methods, but which we do not discuss in detail. In

particular, this concerns the determination of relocation prices with an auction process
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for SMSs (Ghosh and Varakantham 2017). Furthermore, we do not consider papers that

do not describe the the price setting process in detail. For example, Fricker and Gast

(2016) show that user-based relocation is worthwhile, but they do not elaborate on how

the prices are calculated. Further, we do not consider pricing in ride-hailing, because of

decisive structural differences. For example, ride hailing is a two-sided market in which

supply depends on price and customers do not choose among different vehicles, but the

provider decides on the assignment of customers to drivers.

3 Problem Description and Notation

We consider a free-floating SMS provider who operates a fleet of vehicles C = {1, . . . , C}
which is distributed spatially across a continuous business area. At any given point in

time, a vehicle i ∈ C is either idle (standing available) or in use (currently rented).

Regarding the SMS’ demand, we follow the standard approach in the literature on

pricing and revenue management, by which the planning horizon (e.g. one day) is dis-

cretized into micro periods t ∈ {0, . . . , T} = T . These micro periods are w.l.o.g. defined

in a way that at most one customer request arrives and we have ∆ micro periods per

minute. The customer request arrival probability is denoted by λt. The coordinates of a

requesting customer’s specific location in the business area are random variables (XO, YO)

∼ O(t) which follow a given, time-dependent origin probability distribution O(t). Real-

izations of these random variables, meaning the coordinates where a customer opens the

mobile application, are denoted with (xO, yO). We neglect the (usually very short) time

the customer needs to walk to a vehicle and, for simplicity, assume that every rental has

a duration of l minutes such that the termination time of a rental starting in period t is

τ = t+ l ·∆. The provider incurs variable costs per minute of c (e.g. for fuel).

Besides the above described customer request arrival within one micro period, it is pos-

sible that a rental of a vehicle which departed before the current period t (more specifically

by a customer who arrived at t− l ·∆) terminates in t. Similarly to the customer origin

probability distribution O(t), whenever a rental terminates, its destination coordinates

(XD, YD) are random variables which follow a given destination probability distribution

D(St), i.e., (XD, YD) ∼ D(St). D(St) depends on the state St explained below. In partic-

ular, to capture typical traffic flows, it depends on where the customer who terminates a

rental has originated. Realizations of these random variables are denoted with (xD, yD).

Regarding the SMS provider’s pricing decisions, we assume that the provider seeks to

maximize profits by means of dynamic pricing. More precisely, when a customer opens the

mobile application to look for available vehicles in micro period t, the SMS provider needs

to display prices p⃗t for all vehicles which the customer views on the map. As explained in

Section 1, prices are origin-based per-minute prices and they are chosen from the discrete

finite price setM.
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Subsequently, customers make their choices. The vehicle chosen by a customer is

denoted by the random variable I with realizations i. The customer choice behavior is

formalized as follows: Customers have a (fixed) maximum willingness to walk d̄, meaning

that a customer only considers idle vehicles i for which the walking distance di between

the customer’s current location (xO, yO) and the idle vehicle is smaller than this radius,

i.e., the consideration set is CxO,yO = {i ∈ C | di ≤ d̄ ∧ τi = 0} (τi is explained below,

it contains the information whether a vehicle is idle or in use). This is a well-known

behavior of customers in SMSs and has been reported in multiple studies (e.g. Niels

and Bogenberger (2017)). Customer’s decisions obviously depend on the prices p⃗t. More

specifically, we assume that the customer’s choice probability qi for vehicle i ∈ CxO,yO

follows a known choice model and depends on the prices and the distances of the vehicles

within reach, i.e. CxO,yO . The probability of not choosing any of the available vehicles

is denoted by q0. Note that our problem formulation is generic in this regard, meaning

that arbitrary choice models providing these probabilities can be used. In the numerical

studies, we apply a multinomial-logit model.

Finally, we define states and state transitions of the SMS as follows: The SMS’s state

St = (x⃗, y⃗, τ⃗) at the beginning of period t consists of the C × 1 vectors x⃗, y⃗, and τ⃗ .

The vectors x⃗ and y⃗ contain the coordinates of all vehicles of the fleet, i.e. xi and yi

∀i ∈ C, respectively. More specifically, for an idle vehicle they contain the coordinates

of its location. For a rented vehicle, they contain where the currently driving customer

has requested the rental (i.e. the location where the customer initially opened the mobile

application). The vector τ⃗ contains the rental termination times for all vehicles, with the

value 0 indicating a vehicle standing idle.

The transition function describes the evolution of the system from state St at the

beginning of period t to state St+1 at the beginning of period t + 1. It depends on the

current state St and the following realizations of random variables: the arriving customer’s

location (xO, yO), the chosen vehicle i (0 indicates the customer decides against renting a

vehicle), and the return location (xD, yD) if a vehicle is returned (0 indicates no return),

i.e.,

St+1 = St+1

(
St, (xO, yO), i, (xD, yD)

)
. (1)

Please note that the probability distribution of the chosen vehicle I and therewith specific

choices i depend on p⃗t. Technically speaking, St+1 is probabilistically dependent (Powell

2011, Chapter 3) on the pricing decision p⃗t. The transitions of the state vectors are as

follows. When a customer selects a vehicle i, the respective entries of the vectors x⃗ and

y⃗ are filled with the customer’s origin location (xO, yO) and the arrival time is updated

to τi = t+ l ·∆. When vehicle i is returned, xi and yi change to the destination location

(xD, yD) and the corresponding τi changes back to 0.
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4 Solution Method

In this section, we describe the solution method we propose for the considered problem.

First, in Section 4.1, we formalize the problem described in the previous section with the

corresponding Bellman equation. Then, in Section 4.2, we develop our approximate dy-

namic programming solution method. Section 4.3 contains the proposed non-parametric

value function approximation, including a description how historic data is used.

4.1 Dynamic Programming Formulation

For every customer who opens the mobile application and requests prices, the provider

has the ability to optimize and display prices. Hence, in this online pricing problem, the

four steps within a micro period t are the following: (I) A customer may arrive, (II) if so,

prices are determined by the provider, and (III) a customer chooses among the available

vehicles under consideration of the offered prices. Finally, (IV) a moving vehicle that was

previously rented by another customer may return. One micro period of this process is

illustrated in Figure 2, where decision nodes are represented as squares and stochastic

nodes as circles.

Formally, the problem is a Markov decision process and the optimization problem of
this stochastic dynamic program can be formalized by the Bellman equation

V (St, t) =

λt · E
(XO,YO)
∼O(t)

[
max
p⃗t

customer arrives and chooses a vehicle︷ ︸︸ ︷
∑

i∈C(XO,YO)

qi(p⃗t) ·
(
(pi,t − c) · l + E

(XD,YD)
∼D(x⃗,y⃗,τ⃗)

[
V

(
St+1

(
St, (XO, YO), i, (XD, YD)

)
, t+ 1

)])

+

customer arrives and chooses no vehicle︷ ︸︸ ︷
q0(p⃗t) · E

(XD,YD)
∼D(x⃗,y⃗,τ⃗)

[
V

(
St+1

(
St, 0, 0, (XD, YD)

)
, t+ 1

)]]

+

no customer arrives︷ ︸︸ ︷
(1− λt) · E

(XD,YD)
∼D(x⃗,y⃗,τ⃗)

[
V

(
St+1

(
St, 0, 0, (XD, YD)

)
, t+ 1

)]

(2)

with the boundary condition V (ST , T ) = 0 ∀ST . The Bellman equation recursively calcu-

lates the expected future profit V (St, t) for being in state St at the beginning of period

t. Each micro period t corresponds to a stage in this dynamic program. In the following,

we explain the four steps (I-IV) within each stage (=micro period) in more detail and

explain how they are represented in (2).

In the first and the second line of (2), a customer arrives (step I) with probability

λt at a location (xO, yD) and in this case, the optimal price vector p⃗t for all available

vehicles is determined (step II). The customer choice process has different potential out-
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comes (step III): With probability qi(p⃗t) (first line), vehicle i is chosen, and an immediate

profit (pi,t − c) · l is obtained. A vehicle may be returned at location (xD, yD) and the

system evolves to the next state in micro period t + 1 where expected future profit is

V (St+1 (St, (xO, yO), i, (xD, yD)) , t+ 1).

With probability q0(p⃗t) (second line), no vehicle is chosen, a vehicle may be returned

at location (xD, yD), and the system evolves into the state in micro period t + 1 with

expected future profit V (St+1 (St, 0, 0, (xD, yD)) , t+ 1). The third line of the Bellman

equation considers the case – occuring with probability (1 − λt) – in which no customer

arrives, so again, only a vehicle maybe returned at location (xD, yD). Hence, we have the

same expected future profit as in the second line of the equation.

Obviously, the optimal prices which maximize profit in (2) are given by

p⃗∗t = argmax
p⃗t

∑

i∈C(xO,yO)

qi(p⃗t) ·
(
(pi,t − c) · l +Wi

(
St, (xO, yO), t

))
+ q0(p⃗t) ·W0(St, t) (3)

with

Wi

(
St, (xO, yO), t

)
= E

(XD,YD)
∼D(x⃗,y⃗,τ⃗)

[
V

(
St+1

(
St, (xO, yO), i, (XD, YD), t+ 1

))]
∀i ∈ CxO,yO , (4)

W0(St, t) = E
(XD,YD)
∼D(x⃗,y⃗,τ⃗)

[
V

(
St+1

(
St, 0, 0, (XD, YD), t+ 1

))]
. (5)

However, since our pricing approach is customer-centric, we know the customer’s consid-
eration set C(xO,yO) and only the prices for the idle vehicles i ∈ C(xO,yO) within reach of the
current customer at location (xO, yO) need to be optimized, as the choice probabilities
only depend on them (see Section 3, Figure 1a). Thus, instead of the C × 1 vector p⃗t,
a different price vector p⃗t,(xO,yO) with only |C(xO,yO)| × 1 entries (a subset of the entries
of the original price vector) needs to be optimized. More specifically, this new p⃗t,(xO,yO)

contains the entries i of p⃗t,(xO,yO), for which i ∈ C(xO,yO). More specifically, the action
space reduces from pricing all idle vehicles of the fleet to a handful and the online pricing
problem becomes

p⃗∗t,(xO,yO) = argmax
p⃗t,(xO,yO)

∑

i∈C(xO,yO)

qi(p⃗t) ·
(
(pi,t − c) · l +Wi

(
St, (xO, yO), t

))
+q0(p⃗t) ·W0(St, t). (6)

4.2 Approximate Dynamic Programming Solution Method

Theoretically, the dynamic program (2) can be solved optimally using backwards induc-

tion. However – even with the reduced action space – due to the infinite number of

possible spatial vehicle distributions in the continuous business area, V (·) can not be cal-

culated exactly (curse of dimensionality, see, e.g., (Powell 2011, Chapter 1.2)). We use

approximate dynamic programming to obtain a tractable solution method and exploit the



II.2 Customer-Centric Dynamic Pricing for Shared Mobility Systems 94

Figure 2: Illustration of dynamic pricing problem

fact that we are only interested in the price decisions p⃗∗t,(xO,yO), i.e., the solution of (6).

In particular, we approximate the values Wi,W0 of the stochastic nodes immediately

after a customer’s decision (step III) and before the return location of a potential rental

termination becomes known (see Figure 2). This allows to reduce the size of the online

pricing problem tremendously by only optimizing one period explicitly while still taking

into account the customer choice behavior. Graphically, this corresponds to ”trimming”

the decision tree in Figure 2 after step III. The challenge, however, is to find accurate

approximations W̃i, W̃0 for Wi, W0, respectively. Our approximation is based on the key

simplification that V and, thus, W is additive in the values of all vehicles. Clearly, a vehi-

cle’s value (=expected future profit until the end of the time horizon) depends on whether

it remains standing idle at its current location or whether it departs to another location

through a rental. Hence, for a certain vehicle j, we denote these approximate vehicle-

specific values as w̃idle
j and w̃depart

j , respectively. With this assumption, the approximated

values W̃i and W̃0, thus, can be obtained by

Wi ≈ W̃i =
∑

j∈C(xO,yO)\{i}

w̃idle
j + w̃depart

i ∀i ∈ C(xO,yO), (7)

W0 ≈ W̃0 =
∑

j∈C(xO,yO)

w̃idle
j . (8)

The idea in (7) is that the value of the state after vehicle i has been chosen (Wi) is

approximately the sum of the values of the remaining idling vehicles from the consideration

set C(xO,yO), plus the value of the departing (=chosen) vehicle i. Accordingly in (8), the

state value when no vehicle was chosen (W0) is approximately the sum of all idling vehicles

from C(xO,yO). Note that due to the above-stated assumption that a state value is the sum
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of vehicle values, the vehicle values for all vehicles which are not part of the consideration

set C(xO,yO) become irrelevant. The reason is that these values are constant for all outcomes

of the current customer’s choice process and, thus, do not impact the decision in the online

pricing problem (6).

Hence, this online pricing problem (6) solved in step II becomes

p⃗∗t,(xO,yO) ≈ argmax
p⃗t,(xO,yO)

∑

i∈CxO,yO

qi(p⃗t) ·
(
(pi,t − c) · l + W̃i) + q0(p⃗t) · W̃0. (9)

4.3 Non-parametric Value Function Approximation

In this subsection, we describe the specific approach for obtaining the values w̃idle
j and

w̃depart
j . We first give an overview of our approach in Section 4.3.1. Then, we present the

details of data selection and the kernel function used in Section 4.3.2.

4.3.1 General Idea

The approximate vehicle values w̃idle
j and w̃depart

j for a vehicle j are determined by a

non-parametric value function approximation (see (Powell 2011, Chapter 8.4)) for an

introduction to this technique). Building on this technique, our approach is as follows.

The values w̃idle
j and w̃depart

j are calculated as weighted averages across corresponding data

points k from historic and/or simulated data that reflects current system behavior. That

is, for an idle vehicle, w̃idle
j is a weighted average of corresponding idle vehicle values ŵidle

k

in the data and w̃depart
j is a weighted average of corresponding departing vehicle values

ŵdepart
k in the data. More specifically,

w̃s
j =

∑

k∈Ks
j

κsk,j · ŵs
k ∀j ∈ CxO,yO , s ∈ {idle, depart}, (10)

where κidle
k and κdepart

k are the weights that capture how ”similar” a specific data point k

is to vehicle j (see next subsection for details). The sets Kidle
j and Kdepart

j represent the

sets of observations relevant to approximate the value of vehicle j (see next subsection

for details).

To explain the process of obtaining these values ŵidle
k and ŵdepart

k from data, we assume

for the following illustration w.l.o.g. that the problem’s time horizon is one day and

that we dispose of data that only comprises one specific date. For each vehicle, we

know over the day when and where it was standing idle, when it departed, and how

much profit the corresponding rental generated, as well as when and where each rental

terminated. Figure 3 illustrates such ”paths” in the historic data, consisting of idle times

(thick blue/red lines) and rentals (thin blue/red arrows) exemplarily for two vehicles (red

and blue). For now, consider only the temporal dimension on the horizontal axis. The

remainder of this figure (with the spatial dimension on the vertical axis) is explained in



II.2 Customer-Centric Dynamic Pricing for Shared Mobility Systems 96

the next subsection. Thus, for any given point in time, we can determine the current

status of each vehicle from this data, and the required values ŵidle
k and ŵdepart

k capture

the – loosely speaking – profit the vehicle generates from this point in time onwards until

the end of the day.

Obviously, robustness improves with increased amount of data available, and, thus,

one would combine data from multiple comparable historic/simulated dates, for example

from multiple identical days of the week. Then, regarding a data’s timestamps, only the

time (and not the date) is relevant and observations from different dates are considered

as different vehicles.

The described non-parametric value function approximation has two decisive benefits

for practice. First, historical data can readily be used. Second, the approximate vehicle

values can continuously be pre-computed such that they do not need to be determined in

the moment the pricing problem (9) needs to be solved.
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Figure 3: Illustration of historic data considered for evaluation of vehicle j

4.3.2 Data Selection and Kernel Function

The remaining part to fully specify our approach is the determination of the sets Kidle
j

and Kdepart
j relevant for the evaluation of vehicle j from the sets of all data points Kidle

and Kdepart , as well as the weights κidle
j,k and κdepart

j,k .

Regarding departing vehicles, the set of all data points Kdepart = {(ŵdepart
k , ok, tk)}

consists of data points k with location ok and time tk of the departure event. The value

ŵdepart
k is the profit earned by this vehicle after the rental that started at tk (this is

necessary for consistency with (9)) until the end of the horizon.

As mentioned above, one central idea is to approximate values for departing vehicles

based on ”similar” data points. Since all events in the free-floating SMS are characterized

by a certain location and time, it is reasonable to integrate the spatial as well as the

temporal dimension in the metric that measures ”similarity”. To determine Kdepart
j for a

vehicle j whose value is to be approximated (with location oj = (xj, yj) and at time tj),
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we define the following filter:

Kdepart
j =

{
k ∈ Kdepart

∣∣∣∣ ζ · |tj − tk|+ |oj − ok| ≤ h

}
. (11)

where |tj − tk| is some temporal distance, |oj − ok| is some spatial distance, ζ is a scaling

parameter, and h is a bandwidth. This idea of a spatio-temporal ”similarity” and a

bandwidth h which can be though of as a (stretched) circle is illustrated in Figure 3b.

The black (diagonally striped) vehicle at a certain location at 8:00 h is to be evaluated.

The departure event data points are the red and blue circles. According to the filter, only

data points (red and blue circles within the semicircle) within radius h (black dotted) are

to be considered and marked by a black circle.

For the idle vehicles, this step is slightly more complex, because data points on idle

vehicles Kidle = {(ŵidle
k , ok, t̄k)} refer to the time intervals t̄k when the vehicles stood idle

(the horizontal thick lines in Figure 3a). For an interval t̄k, data point k has the future

value ŵidle
k that equals the profit earned by this vehicle after the interval until the end

of the horizon (there is obviously no profit during the interval). To determine distance

in time, we need to compare these intervals with the point in time tj of the vehicle to

evaluate. To do so, from each interval, we consider the point in time closest to tj. More

formally, the set of relevant observations to evaluate an idle vehicle j (depicted as red and

blue crosses in the figure) is

Kidle
j =

{
(ŵidle, ok, tk)

∣∣∣∣ ∃ (ŵidle, ok, t̄k) ∈ Kidle ∧ tk = argmin
t′k∈t̄k

|t′k − tj |

∧ ζ · |tj − tk|+ |oj − ok| ≤ h

}
.

(12)

Next, the weights κs
k,j for every historical/simulated data point k ∈ Ks

j ∀s ∈ {idle, depart}
are determined with a kernel function K. As described above, a scaling ensures that the

weights sum to one. In particular, we use

κsj,k =
Ks

j,k

∑|Ks
j,k|

i=1 Kidle
i

∀k ∈ Ks
j,k, s ∈ {idle, depart}. (13)

As kernel function, we use the following Epanechnikov kernel function (Powell 2011, Chap-

ter 3.7.2)

Ks
j,k =

3

4
·

(
1−

(
dj,k
h

)2
)
∀k ∈ Ks

j,k, s ∈ {idle, depart} (14)

with

dj,k =
√
(ζ · (tj − tk))2 + (|oj − ok|)2 ∀k ∈ Ks

j,k, s ∈ {idle, depart}. (15)
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Figure 4: Normalized demand over the course of the day (SMALL, MEDIUM, LARGE)

5 Computational Studies

In this section, we evaluate our new dynamic pricing approach in comparison to different

other pricing approaches. In Section 5.1, we introduce the study’s setup including settings

and parameters we are going to investigate, followed by the description of the considered

pricing approaches. Section 5.2 presents and discusses the main results. In Section 5.3,

we perform a sensitivity analysis.

5.1 Setup

5.1.1 Settings and Parameters

We consider three settings that differ mainly in the size of the business area and the

number of vehicles (SMALL, MEDIUM and LARGE). The area of the SMALL setting

has a size of 9 km² and is equipped with 18 vehicles (MEDIUM 16 km² and 32 vehicles,

LARGE 25 km² and 50 vehicles, all areas are quadratic). The planning horizon is one day

and at the beginning, all vehicles are randomly uniformly distributed across the business

area. The demand patterns we use replicate what is observed in practice. Demand

intensity varies over the course of the day with two peaks (Figure 4, see, e.g., Reiss and

Bogenberger (2016)). Furthermore, in line with practice, there is also a spatial variation

of demand, for example, between the city center and peripheral areas. This is modeled

by the density (pdf) of the origin probability distribution O(t) (see Section 3), which is

exemplarily shown for all settings and two different times (8:00 h, 16:00 h) in Figure 5.

The destination probability distribution for a customer who departed in the center is

exemplarily shown for all settings and at two different times in Figure 22 in the appendix.

Each of the three settings is examined for three different overall demand levels, which

differ in the demand-supply ratio (DSR). The DSR is the maximum period demand (sec-

ond peak) divided by the fleet size. We consider the values {1
3
, 2
3
, 1} by scaling demand

appropriately.

The other parameters are constant throughout all three settings: M = 3 price points

(prices for short) pm ∈ M are predefined with regard to typical prices in practice: We



II.2 Customer-Centric Dynamic Pricing for Shared Mobility Systems 99

(a) 8:00 h, SMALL (b) 8:00 h, MEDIUM (c) 8:00 h, LARGE

(d) 16:00 h, SMALL (e) 16:00 h, MEDIUM (f) 16:00 h, LARGE

Figure 5: Exemplary density (pdf) of customer arrivals (demand) over business area

chose a base price per minute of p2 = 0.31 €/min and a price differences of 0.05 €/min to

the so-called low and high prices, so that p1 = 0.26 €/min and p3 = 0.36 €/min. Variable

costs are c = 0.07 €/min. The rental time is set to l = 15 min, in line with, for example,

Xu, Meng, and Liu (2018) and the discussions with our industry partner. Further, we

assume a willingness to walk of d̄ = 500 m.

5.1.2 Customer Choice Model

As described in Section 3, a customer at position (xO, yO) chooses among the vehicles

i ∈ CxO,yO within reach and may also decide not to rent (no choice option), which is

denoted by i = 0. In the numerical study, customer choice behavior follows a multinomial-

logit model (see e.g. (Train 2009, Chapter 3)). Accordingly, the choice probabilities qi

depend on the alternatives’ deterministic utilities ui for the customer:

qi =
eui

∑
n∈CxO,yO

∪{0} un
. (16)

The deterministic utility ui of a vehicle i depends on its price pi and its distance to

the customer di. This utility function follows from our analyses of the customer choice

behavior at Share Now:

ui = βprice · pi + βdistance · di. (17)

The no-choice option has utility u0 = ASC0. These assumptions imply homogeneous

customers and that customers decide solely based on current circumstances (myopic be-

havior), i.e. they do not act strategically (see, e.g., Gallego and van Ryzin (1997) and

(Talluri and van Ryzin 2004, Chapter 5.1.4) for discussions of strategic customers).
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5.1.3 Pricing Approaches

We evaluate our new approach as well as six benchmarks:

• CUCE: Our customer-centric pricing approach determines dynamic prices for each

arriving customer by considering the current state and future vehicle values (see

Section 4).

• BASE: Constant uniform pricing, where pit is the base price for all vehicles i ∈ C
and micro periods t ∈ T . Due to its wide adoption over all SMS types, this pricing

can be considered as the de facto standard in practice.

• LOW: Constant uniform pricing, where pit is the low price for all i ∈ C, t ∈ T .

• HIGH: Constant uniform pricing, where pit is the high price for all i ∈ C, t ∈ T .

• MYOP: Myopic version of CUCE without anticipation: w̃idle
i = w̃depart

i = 0 for all

i ∈ C(xO,yO), resulting in W̃i = W̃0 = 0 for all i ∈ C(xO,yO).

• HEUR: Heuristic improvement of MYOP. Instead of w̃idle
i = 0, w̃idle

i equals the

average profit per minute across all vehicles for all i ∈ C(xO,yO). This only affects

the difference between choosing any vehicle and no vehicle. However, there is no

distinction in the valuation of the idle vehicles w̃idle
i . The idea is to compare the

average profit per minute and vehicle for the rental time of l minutes with the

current expected profit.

• RUBA: Rule-based pricing approach, in which the business area is partitioned into

zones that can be thought of as stations, as it is common in the literature. To

obtain prices for the vehicles in each zone, we follow the approach of Bianchessi,

Formentin, and Savaresi (2013) who compare the number of vehicles in each zone

to the average number of available vehicles in all zones. If the number of vehicles

in a zone falls below the average number of available vehicles, the price of the

vehicles in the zone is increased and the magnitude of the increase depends on the

severity of the imbalance. Vice versa, if the number of idle vehicles rises above the

average number of available vehicles, the price is decreased. Whereas in the original

approach continuous prices are used, we require discrete prices for the considered

problem. Thus, in a further step, the calculated continuous prices are discretized

by rounding to the nearest price point.

Each pricing approach is evaluated in N = 1000 simulation runs with common random

numbers and we report average values.
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(a) SMALL (b) MEDIUM (c) LARGE

Figure 6: Profit improvement over BASE

5.2 Main Results

5.2.1 Profit

We first discuss profit, whose maximization is the objective of the optimization problem

and obviously the most important metric from the provider’s perspective. The results

for all three settings and DSRs are summarized in Figure 6. All profits are presented as

relative profit improvements over the BASE pricing approach.

We observe that CUCE clearly provides the highest profit for all settings and DSRs.

Compared to BASE, CUCE shows profit improvements of up to 13%. The improvement

over LOW is 12.6 to 21.1 percentage points, over HIGH 2.0 to 5.7, over MYOP 2.1 to 5.3,

over HEUR 2.1 to 6.4, and over RUBA 3.5 to 7.8 percentage points. By contrast, LOW

performs much worse than BASE. Among the other benchmarks, RUBA performs worst

across all settings and DSRs with an improvement of often only about 3 percentage points

over BASE. For the benchmarks HIGH, MYOP, and HEUR, there is no clear order.

The fact that CUCE generates up to 5.3 percentage points higher profits than MYOP

shows that including anticipation has substantial value. However, the comparison of

CUCE and HEUR shows that it is important how anticipation is done. A simple constant

valuation for w̃idle
i as done in HEUR is not effective, since in some cases, e.g. in the SMALL

setting with DSR=2/3, MYOP performs better than HEUR .

We conclude that CUCE dominates all other pricing approaches with regard to profit

and that its anticipative design is key for the performance.

5.2.2 Prices

Now, we compare the prices resulting from the different pricing approaches. To that end,

we consider results from the SMALL setting with all three DSRs. Figure 7 shows the

relative frequency of prices for all approaches, Figure 8 illustrates the average price across

all areas during the day (we left out LOW, BASE, and HIGH that set constant prices),

and Figure 9 shows the average price for different parts of the business area from CUCE

and MYOP. The results for MEDIUM and LARGE are depicted in Appendix B.

Regarding the average price curves (Figure 8), we observe two different groups. The

average prices for MYOP and RUBA are more or less constant over time while there is a
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 7: Relative price frequency (SMALL)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 8: Average prices over the course of the day (SMALL)

clear pattern in the average prices of HEUR and CUCE. For example, the average price

of MYOP fluctuates between 0.33 and 0.35 €/min, whereas the average price of CUCE

fluctuates between 0.30 and 0.36 €/min. These results can be explained as follows: The

anticipative approaches CUCE and HEUR attempt to incentivize the use of the vehicles

in certain parts of the business area during the morning such that they become available

in other parts with high demand later during the day. This explains the comparably low

average prices of HEUR and especially CUCE during the morning. On the other hand,

the myopic approaches do not consider futures states and profits and, thus, set higher

average prices during the morning hours which are more profitable in the short term but

less profitable in the long term, as the profit results above show.

The difference in terms of pricing between anticipative and myopic approaches becomes

even more apparent when considering the temporal and spatial differences of prices by

CUCE and MYOP in Figure 9. MYOP sets relatively high average prices in all parts of

the business area throughout the entire day. In contrast, CUCE varies prices in time and

space. For example, in all peripheral parts, relatively low prices are set in the morning,

while prices in the center at the same time are comparably high. Again, the purpose of

this is to incentivize customers to drive vehicles from the outer areas to the center. In

the center there is always high demand, so the price here is always quite high.

The discussed differences in price patterns between the pricing approaches can also be

seen at the aggregate level by comparing the frequency of prices in Figure 7. While MYOP

sets only base and high prices, CUCE also sets low prices. Thus, these low prices cannot

be motivated by myopic considerations, but only by regard to future profits. The lower

profits by low prices in the morning are overcompensated by profits from later rentals.
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(a) Pricing MYOP

(b) Pricing CUCE

(c) Legend

(d) Partitioning of business area
(evaluation)

Figure 9: Average prices in different parts of the business area over the course of the day
(SMALL, DSR=2/3)

This also works in the opposite direction: CUCE also chooses high prices more often then

MYOP.

We conclude that low prices, especially during morning hours, can be used as an

incentive for customers and allow to generate higher profits at higher prices later during

the day when the vehicle distribution is better aligned with the demand. This only works

when future profits are taken into account and it is done best by CUCE among the

considered pricing approaches, because vehicle values are approximated most accurately

by CUCE – in particular their dependence on both location and time is considered.

5.2.3 Rentals

Rentals are another important metric for SMS providers, as higher rentals have a positive

impact on service level metrics. For the analysis of the rentals, we consider Figure 10,

which shows the average hourly rentals for the different pricing approaches over the course

of the day for different DSRs in the SMALL setting. The respective results for MEDIUM

and LARGE are depicted in Appendix B.

The rental curves resemble the demand curve (Figure 4) in that there is a minimum

of rentals in the morning and a maximum in the afternoon. As expected, the number

of rentals increases in the DSR and the number of rentals is lowest (highest) for HIGH

(LOW).

The rental curve for BASE is very similar to the rental curve for CUCE. This is

interesting, because although BASE and CUCE obviously result in very similar aggregated

rentals, CUCE manages to obtain considerably higher profits.
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 10: Rentals over the course of the day (SMALL)

The rental curves of MYOP lie below the ones for CUCE and BASE for all DSRs. Two

important insights can be drawn thereupon. First, myopic pricing leads to a significant

decrease in the number of rentals compared to the uniform base price, but an improvement

in profit. Second, including anticipation, as in CUCE compared to the MYOP, leads to

an increase in the number of rentals and at the same time to an increase in profit. Thus,

besides the increased profit, CUCE arguably provides better service to customers. This

effect is higher for higher demand levels (DSRs).

5.3 Sensitivity Analysis

We examine the robustness of the above results regarding different demand preferences

which, for example, vary across cities. In particular, we first examine whether the dom-

inance of CUCE discussed above holds if the spatial and temporal variation of demand

intensity is less pronounced (Section 5.3.1). Second, the impact of customer preference

variation regarding price sensitivity and disutility from walking is discussed in Section

5.3.2.

A common standard demand pattern serves as a basis for parameter variations in both

parts of the sensitivity analysis. We use the demand pattern of the SMALL setting for

DSR=2/3 from above, depicted in the top right of Figure 11.

5.3.1 Variation of Spatial and Temporal Demand Intensity

5.3.1.1 Parameter Variations

In addition to the standard demand pattern, we define four additional demand patterns

which range from spatial and temporally homogeneous demand intensity to spatially

and temporally heterogeneous heterogeneous demand intensity (the standard demand

pattern), as illustrated in Figure 11. In the most homogeneous demand pattern, there

is no spatial and no temporal variation at all (bottom left in Figure 11). In the most

heterogeneous demand pattern, there is a high spatial and temporal variation, as observed

in practice (top right in Figure 11, standard demand pattern). More over, we also consider

patterns with only spatial or temporal and intermediate variation.
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Figure 11: Demand patterns with differing degrees of temporal and spatial variation (areas as
defined in Figure 9d, SMALL, DSR=2/3, *standard demand pattern (see Figures 5b, 5e))

Figure 12: Profit improvement over BASE (SMALL, DSR=2/3)

5.3.1.2 Results

As in Section 5.2, we discuss profit, prices, and rentals.

Regarding profit, there is a clear impact of spatial and temporal demand variation

(Figure 12). The superiority of CUCE over the benchmark pricing approaches is more

pronounced the more variation there is. For example, CUCE performs about 5 percentage

points better than MYOP in the standard demand pattern with high spatial and temporal

demand variation. When there is no such variation both approaches perform identically.

The results in Figure 12 additionally reveal that the spatial variation is the main driver of

CUCE’s advantage: CUCE performs around 3 percentage points better than MYOP when

there is only spatial variation but the approaches perform identically when there is only

temporal variation. However, as the results for medium and high spatio-temporal demand

variation show, CUCE leverages most on its anticipation when there is both spatial and

temporal demand variation, as it is observed in practice. Overall, the dominance of CUCE

as discussed in Section 5.2 can be confirmed and CUCE proves to be robust against spatial
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(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 13: Relative price frequency (SMALL, DSR=2/3)

(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 14: Average prices over the course of the day (SMALL, DSR=2/3)

and temporal demand variation.

Regarding prices, we again depict the relative frequency of prices (Figure 13) as well as

average prices over the day (Figure 14). As above, we observe that the pricing approaches

without anticipation (MYOP and RUBA), have relatively small price variation, compared

to the ones with anticipation (CUCE and HEUR). However, the degree of price variation

depends on the demand pattern. For example, with medium spatial and temporal demand

variation, the average prices of CUCE over the day have a pattern similar to the ones

described in Section 5.2.2 and they fluctuate between 0.32 €/min and 0.35 €/min (Figure

14b) but there is almost no price fluctuation when there is no spatio-temporal demand

variation (Figure 14c). Again, the spatial demand variation has higher influence on the

results. When there is high spatial demand variation, prices of CUCE fluctuate between

0.32 €/min and 0.35 €/min (Figure 14d), while with temporal demand fluctuation, av-

erage prices only fluctuate between 0.35 €/min and 0.36 €/min and no low prices are set

(Figure 14d). The main insight here is that more sophisticated pricing approaches only

make sense when there is some degree of demand variation and especially spatial demand

variation. Only under these circumstances an anticipative pricing approach like CUCE

can use low prices (with reduced profits) to incentivize customers for an overall increased

profit in the SMS.

Regarding rentals, the hourly rentals depicted in Figure 15 confirm the results in

Section 5.2.3 and the findings discussed above, in particular that with CUCE more rentals

realize compared to MYOP when there is spatial demand variation.
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(a) High temporal
variation

(b) Medium spatial and temporal
variation

(c) No spatial and temporal
variation

(d) High spatial
variation

Figure 15: Rentals over the course of the day (SMALL, DSR=2/3)

Setting βdistance βprice ASCNoChoice

walking distance sensitive -10 -7.5 -5
price sensitive -7.5 -10 -5

walking distance and price sensitive -10 -10 -5

Table 2: Parameter variations

5.3.2 Variation of Customer Preferences

5.3.2.1 Parameter Variations

In this section, we again use the standard demand pattern (SMALL, DSR=2/3). We

define three choice patterns in which we alter the parameters βdistance and βprice of the

multinomial-logit model which describes the customer choice behavior (see Section 5.1.2).

As we are not allowed to disclose the choice parameters estimated on Share Now data, we

now use three new choice patterns (Table 2). The first choice pattern (walking distance

sensitive) is similar to the real values we estimated on Share Now data. Here, a walking

distance of 1 km has a higher impact on the customer’s utility than a price of 1 €/min.

In the second choice pattern (price sensitive), the price is more important for the cus-

tomer than the walking distance. In the last parameter variation, the customer is both

walking distance and price sensitive. Please note that also customers always care about

distance and price, for simplicity, we name the patterns according to the more pronounced

sensitivity. For each choice pattern, we vary the DSR as in Section 5.2.

5.3.2.2 Results

Again, we discuss profit, prices, and rentals.

Regarding profit, we consider Figure 16. CUCE clearly outperforms all other pricing

approaches across all choice patterns and all DSRs. Compared to MYOP, CUCE yields a

profit increase of up to 7.1 percentage points. However, there are substantial differences in

the results between the three choice patterns. For example, with price sensitive customers,

the improvements of all approaches over BASE are comparably low (which CUCE’s the

highest at 10%). With walking distance sensitive customers, improvements reach up to

11.6%.
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Figure 16: Profit improvement over BASE (SMALL, DSR=2/3)

(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 17: Relative price frequency (SMALL, DSR=2/3)

Regarding prices, we once again consider the relative frequency of prices (Figure 17)

and the average prices over the course of the day (Figure 18). There are clear differences

in the average price between the choice patterns. For example, the average prices vary the

most for all pricing approaches in the choice pattern with price and distance sensitivity.

For example, with CUCE, the average price exceeds 0.35 €/min for all choice patterns

around noon. In the pattern with price and distance sensitivity, the average price for

CUCE falls below 0.30 €/min during the night. We do not see this variation in the

other two choice patterns. The average price for CUCE for the walking distance sensitive

pattern does not fall below 0.31 €/min and the average price for the price sensitive

pattern does not fall below 0.31 €/min. These differences are also evident when looking

at the frequencies of prices. Comparing MYOP, HEUR, and CUCE for all patterns, the

frequency of low prices is – as expected – largest in the pattern with walking distance and

price sensitivity (43% for HEUR, 18% for CUCE). It is lower in the pattern with price

sensitivity (23% for HEUR, 16% for CUCE) and lowest with walking distance sensitivity

(17% for HEUR, 13% for CUCE). This shows that the optimization-based approaches

succeed in adapting to customer behavior. By contrast, RUBA always has a similar

frequency of prices.

The rental curves are depicted in Figure 19. Obviously rentals increase in demand

(DSR). There are no clear differences between the three choice patterns.

In conclusion, we recommend CUCE independent of customer preferences. It consid-

erably improves profits and consistently provides the best result (significant at the 95%

confidence level).
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(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 18: Average prices over the course of the day (SMALL, DSR=2/3)

(a) Walking distance sensitive (b) Price sensitive (c) Walking dist. and price sensitive

Figure 19: Rentals over the course of the day (SMALL, DSR=2/3)

6 Case Study – Share Now in Vienna, Austria

In this section, we consider a real-world setting that reflects the origin-based dynamic

pricing optimization of Share Now for a weekday in Vienna, Austria. On the one hand,

this case study allows to conclude results and managerial insights in an instance of real-

world size. On the other hand, all parameters in this case study are based on real historic

data which was collected over several months at Share Now. We introduce the scenario

in Section 6.1 and discuss the results in Section 6.2.

6.1 Setting and Parameters

To respect the non-disclosure agreement, we do not share the exact origin and destination

probability distributions O(t) and D(St), respectively. Instead, we present the course of

the aggregate demand across the entire business area in terms of a normalized demand

which is normalized to the maximum period demand (at base price) in Figure 20b. De-

mand parameters are obtained from data Share Now recorded during six month in 2018.

We unconstrained the constrained demand, i.e., the observed rentals. Unconstraining is

a standard issue in revenue management (see, e.g., Talluri and van Ryzin (2004, Chapter

9.4)).

The demand curve (Figure 20b) shows the typical pattern with two peaks at the rush

hour times, in the morning at 8:30 h and in the evening at 18:30 h, with the lowest level

during the night at 3:00 h. The demand-supply-ratio is approximately DSR=0.2, which

is similar to the scenario with DSR=1/3 above. We chose all other parameters as in

the computational experiments (Section 5.1.1). Due to the very good performance of the
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(a) Business area (b) Normalized demand

Figure 20: Share Now in Vienna, Austria

(a) Profit impr. over
BASE

(b) Rentals over the course of the day (c) Average prices over the course of
the day

(d) Relative price frequency

Figure 21: Results for case study Vienna

CUCE pricing approach in the sensitivity analysis, only this pricing approach and some

benchmarks (BASE, LOW, HIGH, MYOP) are used for the case study.

6.2 Results

We first consider the profit of the different approaches (Figure 21a). Again, LOW leads to

a reduction in profit compared to BASE. The approaches HIGH and MYOP deliver almost

identical profits. As in the numerical study, CUCE obtains the best result. Compared

to MYOP (6.1% better than BASE), CUCE’s solution is more than 2 percentage points

better in profit.

Overall, the rental curves (Figure 21b) follow the general course of the demand curve,

with less pronounced peaks. During the night, the difference between demand and rentals

is smaller than during the day. This can be explained by the higher availability of vehicles

during the night, implying that potential customers almost always find an available vehi-

cle. During the day, in particular during peak times, the probability that demand results

in a rental is lower due to the relatively high number of vehicles in use. Regarding the

pricing approaches, Figure 21b shows that LOW leads to the most rentals. Just below

this is the curve of BASE.

The average price (Figure 21c) of MYOP is always above the average price of CUCE

and very close to the high price, except for the last periods. Thus, the rental curves

(Figure 21b) of HIGH and MYOP are almost identical and the rental curve of CUCE is

above them. This can also be seen in the frequency the prices (Figure 21d). Thus, most

(94%) of MYOP’s prices are the high price. Comparing CUCE and MYOP, the frequency
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of the base price is larger (9% CUCE, 6% MYOP). Furthermore, low prices are also more

frequent (7% CUCE, 0% MYOP). Therefore, the case study confirms that CUCE is a

viable pricing approach that can handle real-world problem instances.

7 Conclusion

In modern free-floating SMSs, providers have access to disaggregate real-time data re-

garding the locations of vehicles as well as of customers who open the mobile application

to look for available vehicles. In this work, we demonstrate that this information can be

leveraged in dynamic pricing to increase profitability. In the customer-centric dynamic

pricing approach that we develop, the customers’ location as well as their behavior regard-

ing walking distances and prices is explicitly taken into consideration in the online price

optimization. Thus, vehicles can have different prices for customers who are requesting

the price information at the same time but from different locations. Further, the specific

pricing approach that we consider relies on origin-based per-minute prices. This origin-

based feature is decisive for practice, because the information of a customer’s intended

destination is usually not available in practice and its enquiry would contradict the spon-

taneous nature of free-floating SMSs. The third distinguishing feature of the developed

pricing approach is that it is anticipative, i.e., that future expected profits resulting from

different spatial vehicle fleet distributions are taken into consideration.

We formally define the provider’s online pricing problem as a Markov decision process

and formulate the corresponding dynamic program by stating the corresponding Bellman

equation. We show that in our approach, with regard to the action space of the pricing

problem, only the vehicles within a customer’s maximum walking distance have to be

considered. Nevertheless, the dynamic program cannot be solved to optimality by classical

backwards induction due to the curse of dimensionality which, in our case, is (above all)

caused by the state space containing the location of every vehicle in the business area.

To solve the online pricing problem, we develop a solution method based on approxi-

mate dynamic programming. We approximate state values representing expected future

profits that occur after the current customer’s decision, such that the current customer’s

choice behavior can still be considered explicitly with a disaggregated choice model in

the optimization – in our case by a multinomial-logit model. We take the assumption

that state values are additive in the vehicle values which represent the profits that indi-

vidual vehicles are expected to realize until the end of the considered time horizon. As

a consequence of this assumption, vehicles which are not part of the current customer’s

consideration set can be neglected for the calculation of the state values, as they do not

change their state for any possible choice and, thus, do not influence the online pricing

optimization. To approximate the vehicle values, we propose a non-parametric value func-

tion approximation. This type of approximation has two main benefits for implementation
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in practice. First, historical data can easily be used for the approximation and, second,

approximate vehicle values can be pre-computed such that the numerical operations of

the online pricing problem can be reduced to a minimum.

In an extensive computational study with varying size of business area and fleet as well

as varying demand patterns and overall demand levels, we demonstrate the advantages

of our dynamic pricing approach compared to various benchmarks, including one from

the literature and a myopic variant of customer-centric dynamic pricing. The new pricing

approach outperforms all benchmarks significantly and considerably. It improves profits

by up to 8.2% compared to the de facto standard in practice of constant uniform prices, as

well as up to 5.3 percentage points compared to myopic dynamic pricing. From the latter,

we conclude that the accurate approximation of our pricing approach is decisive for its

performance. Compared to the benchmark from the literature, our approach obtains up

to 7.8 percentage points more profit. The numerical results of a real-life case study based

on Share Now data from Vienna confirm the benefit of customer-centric and anticipative

pricing and demonstrate the scalability of our approach.

With a sensitivity analysis, we show that our results are robust regarding the decisive

parameters of the customer choice behavior and we derive valuable managerial insights.

We vary the influence of price and distance on the customers’ utility of a vehicle and show

that our pricing approach still always performs best in terms of profit. A detailed analysis

indicates that this is because the new pricing approach leads to a higher variation of prices

over different parts of the business area compared to a myopic pricing. The reason is the

consideration of future vehicle locations and rentals. Thus, for example, our approach

already raises prices in an area in the early morning if it anticipates a shortage of vehicles

around noon. It would be very tedious to comprehensively mimic this anticipation with,

e.g., simple pricing rules. An analysis of spatial and temporal variations in demand shows

that spatial variation, in contrast to temporal variation, has a stronger effect on the

importance of anticipation. For an SMS provider this means that if there is no spatial

demand variation, it is not necessary to anticipate the future in the pricing and rather

straightforward approaches are sufficient – even a uniform pricing may be appropriate.

If, however, there are already small spatial differences, it is worthwhile to anticipate the

future. Another important insight for SMS providers is that our dynamic pricing approach

manages to increase profits while maintaining the overall number of rentals that realize.

This is important, since many service-related metrics that strive for customer satisfaction

are related to a high number of rentals.

To summarize, our new customer-centric, origin-based, and anticipative dynamic pric-

ing approach for free-floating SMSs performs considerably well in comparison to existing

approaches in terms of the relevant performance metrics. The non-parametric value func-

tion approximation solution method provides a scalable means to successfully account for

the future evolution of the SMS based on current decisions, and allows to integrate dis-
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aggregated historical and real-time data which is readily available in practice for modern

free-floating SMSs.

There are several reasonable paths for future research to extend our work. Incorpo-

rating additional features such as idle-times in the vehicle value approximation would

allow to assess whether the results can be improved even more. Regarding the scope of

the problem, a combined optimization of pricing and provider-based vehicle relocation

would be insightful. Finally, an isolated comparison of a customer-centric approach with

a correspondingly constructed vehicle-based approach could provide additional insights

and triangulation.
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A Probability Density Functions

(a) 8:00 h, SMALL (b) 8:00 h, MEDIUM (c) 8:00 h, LARGE

(d) 16:00 h, SMALL (e) 16:00 h, MEDIUM (f) 16:00 h, LARGE

Figure 22: Density (pdf) of destinations over business area for downtown

B Results for MEDIUM and LARGE setting

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 23: Average prices over the course of the day (MEDIUM)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 24: Average prices over the course of the day (LARGE)
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(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 25: Relative price frequency (MEDIUM)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 26: Relative price frequency (LARGE)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 27: Rentals over the course of the day (MEDIUM)

(a) DSR=1/3 (b) DSR=2/3 (c) DSR=1

Figure 28: Rentals over the course of the day (LARGE)
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Abstract: Shared mobility systems such as car sharing have become a frequently used inner-city
mobility option. In particular, free-floating shared mobility systems are experiencing
strong growth compared to station-based systems. For both types, many approaches
have been proposed to optimize operations, e.g., through pricing and vehicle relocation.
To date, however, optimization models for free-floating shared mobility systems have
simply adopted key assumptions from station-based models. This refers, in particular,
to the part of the optimization model that formalizes how rentals are realized depending
on available vehicles and arriving customers, i.e., how supply and demand match.
However, this adaption results in a simplification that does not adequately account for
the unique characteristics of free-floating systems, leading to overestimated rentals,
suboptimal decisions, and lost profits.
In this paper, we address the crucial issue of accurate optimization model formulation
for free-floating systems. We formally derive two novel analytical matching functions
specifically suited for free-floating system optimization, incorporating additional pa-
rameters besides supply and demand, such as customers’ maximum walking distance
and zone sizes. We investigate their properties, like their linearizability and the inte-
grability into existing optimization models. An extensive computational study shows
that the two functions’ accuracy can be up to 20 times higher than the existing ap-
proach. In addition, in a real-world price optimization case study based on data of
Share Now, Europe’s largest free-floating car sharing provider, we demonstrate that
more profitable pricing decisions are made. Most importantly, our work enables the
adaptation of station-based optimization models to free-floating systems.
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1 Introduction

Shared mobility systems (SMSs) such as car sharing and bike sharing systems have become

an integral part of the inner-city mobility. Globally, the shared mobility market today has

a size of approximately 250 bn. USD and is projected to grow annually by around 25%

the next years (Data Bridge Market Research 2021). Among the two general concepts of

free-floating (FF) and station-based (SB) systems (Lu, Chen, and Shen 2017), especially

FF SMSs experienced considerable growth during the last decade (Shaheen, Cohen, and

Jaffee 2018). The decisive difference between FF SMSs and SB SMSs is that pick-up and

drop-off locations for vehicles are not limited to certain predefined locations – the stations

in an SB SMS. Instead, in an FF SMS, vehicles are free-floating within some predefined

operating area and can be dropped-off (and picked-up) at any publicly accessible location.

The optimization of SMSs, e.g. with regard to pricing and relocation, has been studied

extensively in the literature, summarized e.g. in review papers on car sharing by Ferrero

et al. (2015a) and on SMSs in general by Laporte, Meunier, and Wolfler Calvo (2018),

Ataç, Obrenović, and Bierlaire (2021). However, in the body of works addressing oper-

ational optimization problems with endogenous modeling of rentals, FF SMSs – despite

their dominance in practice – have not been adequately considered. Instead, up to now,

FF SMSs are treated like SB SMSs (compare e.g. Jorge, Molnar, and de Almeida Correia

(2015), Haider et al. (2018) for SB SMSs and Lu et al. (2021), Hardt and Bogenberger

(2021) for FF SMSs). However, as it turned out in a close collaboration with Share Now,

Europe’s largest FF car sharing provider operating in 16 cities in 8 countries (Share Now

2021), ignoring the difference between both concepts in the optimization models can result

in an overestimation of rentals in the FF SMS, suboptimal decisions and substantial profit

losses. In this work, we address and solve this fundamental issue of inaccurate rentals

modeling in FF SMS optimization models.

To give an idea of the causes of this issue, we first need to consider how SMS optimiza-

tion models are usually formulated: Regarding space, the operating area of an FF SMS

is discretized into zones – the counterpart of stations in an SB SMS. Regarding time, the

considered time frame is discretized into periods for both SB and FF SMSs. The SMSs

are described and optimized on this level of aggregation, i.e. relevant data (e.g. demand)

is collected, and optimization models are formulated on this location-period level (station-

period in SB SMSs, zone-period in FF SMSs). Typically, these optimization models are

based on a network flow formulation for both SB (e.g. Jorge, Molnar, and de Almeida

Correia (2015)) and FF (e.g. Lu, Chen, and Shen (2017)) SMSs.

Now, a central component of these optimization models is the formalization on the

location-period level how rentals realize in dependence of the number of available vehicles

and the number of arriving customers – i.e., how supply and demand match. The existing

SB and FF SMS optimization models rely on the implicit assumption that rentals are
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determined by the minimum of supply and demand. While the realization of rentals can

be modeled well with this matching function in an SB SMS, applying the same simplified

assumption to FF SMSs can cause substantial errors. Consider e.g. a station-period

combination in an SB SMS with one (expected) available vehicle and one (expected)

arriving customer. In this SB SMS, it is valid to assume that one (expected) rental

realizes. For the same situation in an FF SMS in contrast, an accurate matching function

must differ: When the zone is large, the available vehicle is not necessarily within reach of

the customer, because the zone has a spatial expansion and customers have a maximum

willingness-to-walk (e.g. Herrmann, Schulte, and Voß (2014)). Thus, at most one – for a

large zone, much less than one – rental results.

A presumably simple solution is to define many small zones in an FF SMS so that a

customer can reach any vehicle in the respective zone, and then model rentals as in an

SB SMS. This, however, simply substitutes the problem of a vehicle being too far away

by other problems, which become more severe with decreasing zone size: The smaller

the zones, the bigger the discretization errors because demand and supply are discrete

and arrive randomly in reality. Moreover, creating many small zones is problematic,

because demand and supply that in reality would result in a rental may be separated into

different zones. Literature and practice use zones in the order of several square kilometers

(e.g. Weikl and Bogenberger (2016)) and for these zone area sizes, the described issue

indeed prevails. These zone area sizes also have the practical advantage that the typically

resulting fifty to hundred zones have a count which is still manageable for the staff of the

SMS provider and that the optimization models which scale with the zone count do not

grow too large.

Clearly, any matching process can be replicated arbitrarily exact with stochastic sim-

ulations. However, we are interested in analytical functions that can be integrated in

the existing SMS optimization models from the literature. Therefore, to solve the issue

of inaccurate matching modeling in FF SMS optimization models, we first formulate a

general matching function that replicates the matching process within a FF SMS and

incorporates its specific characteristics. Based on this, we then formally derive two novel

matching functions which are specifically suited to FF SMS optimization models. We also

formalize what is assumed in the existing literature so far by a third matching function

and show that only the two novel matching functions can widely be applied to FF SMSs,

and that their integration in FF SMS optimization models improves decision making.

To properly distinguish our work from the literature, two streams are of particular

importance. First, matching functions have a long history in macroeconomics, mostly fo-

cusing on labor markets and with the intention to explain unemployment (e.g. Petrongolo

and Pissarides (2001)). Some extensions also consider matching functions in transporta-

tion systems, such as taxi systems (e.g. Buchholz (2019)). However, as we discuss in

more detail in Section 2, matching functions that incorporate the specifics of FF SMSs
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have not been discussed yet. Moreover, in contrast to this literature stream, our focus

eventually lies on the formulation of optimization models, such that we have a different

view on matching functions and their requirements: For example, the matching functions’

linearizability and integrability in an overall FF SMS optimization model is of particular

importance in our case, but irrelevant in the existing literature. Second, the develop-

ment of matching functions for FF SMSs in our work must not be mixed up with the

development of so-called matching algorithms in platform-based SMSs such as on-demand

ride-hailing, like Uber or Lyft (e.g. Yan et al. (2020)). In the latter, a central plat-

form faces the problem to assign customer requests most efficiently to available drivers.

In contrast, the provider of the SMSs that we consider can not explicitly decide on the

assignment of vehicles to customers as customers choose vehicles themselves. Instead,

the matching functions formalize how many rentals realize within some location-period

combination, given supply, demand, and other relevant parameters.

The contributions of this paper are as follows:

• To the best of our knowledge, we are the first to reveal the necessity to formulate

SB and FF SMS optimization models differently. We show that more sophisticated

matching functions improve FF SMSs models and the decisions resulting from op-

timization.

• Second, we derive two novel matching functions for FF SMSs, which take into ac-

count the customers’ sequential arrival, their maximum walking distance, and the

size of the zone. These functions differ regarding their mathematical properties and

can be integrated in different types of optimization models – one into the widespread

linear network flow-based SMS optimization models, allowing to adapt a variety of

existing SB SMS optimization models to FF SMSs.

• Third, we formalize a third matching function that reflects the assumptions made

(implicitly) in the SMS optimization literature, i.e. that rentals correspond to the

minimum of supply and demand. We demonstrate that this benchmark does not

yield accurate rentals estimations for FF SMSs in general. Our analytical investi-

gation of this function’s properties shows that this shortcoming cannot be remedied

by changing zone size, e.g. by artificially sub-dividing zones.

• Fourth, in a computational study, we demonstrate that the rental prediction accu-

racy of the novel functions in an FF SMS is substantially higher than the benchmark

function.

• Fifth, in a case study based on real-life data, we integrate one of the novel matching

functions into an existing pricing optimization framework and demonstrate signif-

icant profit increases that can be ascribed solely to the more accurate matching

modeling.
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Overall, this work primarily contributes to the literature on FF SMS optimization from

the operations research stream of literature. We build a bridge between the optimization

of SB and FF SMSs, in the sense that, by the approaches presented in this paper, existing

optimization approaches that were specifically designed for SB SMSs can straightforwardly

be generalized to make them applicable for FF SMSs as well.

The remainder of the paper is structured as follows. In Section 2, we review the

related literature. Section 3 discusses the novel as well as the benchmark matching func-

tions. Section 4 contains the numerical study considering the rentals prediction accuracy.

In Section 5, we assess the importance of accurate matching modeling in optimization

problems by considering a pricing optimization case study. Section 6 covers managerial

insights, concludes the paper and gives an outlook.

2 Literature

The literature on SMS optimization is broad and covers decision making at strategic,

tactical and operational levels (Laporte, Meunier, and Wolfler Calvo 2018). Various

review papers on bike sharing (DeMaio 2009, Fishman, Washington, and Haworth 2013,

Ricci 2015) and car sharing (Jorge and Correia 2013, Ferrero et al. 2015a,b, Brendel and

Kolbe 2017, Illgen and Höck 2019, Golalikhani et al. 2021a,b) summarize the literature.

Our work contributes to the tactical (e.g. fleet sizing) and operational (e.g. relocation or

pricing) levels where matching functions are (implicitly) used and, as we will see, more

advanced matching functions are required for FF SMSs.

Until now, matching functions for SMSs and the necessity of modeling FF SMSs

differently than SB SMSs has not been discussed in the literature. On the contrary, the

literature is divided on whether any differences need to be made between optimization

models of SB and FF SMSs and we explore these views in Section 2.1. In Section 2.2,

we provide an overview on SMS optimization problems with a focus on the wide spread

approaches formulates as time-expanded networks. These works are relevant because

existing assumptions regarding matching can be concluded from their optimization models

and these works are the ones where our novel matching functions can be integrated in.

In Section 2.3, we review the literature on matching functions from macroeconomics. In

Section 2.4, we briefly review two other related literature streams, namely agent-based

FF SMS simulations and empirical studies, as these works implicitly provide insights

regarding relevant parameters for matching functions.

Note that, as explained in Section 1, we do not consider platform-based SMSs that

match/assign customer requests to vehicles (e.g. Boysen, Briskorn, and Schwerdfeger

(2019), Yan et al. (2020)).
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2.1 Station-Based vs. Free-Floating Shared Mobility System

Optimization

SB SMSs have a relatively long history in practice – the first SB car sharing system was

installed in 1948 in Switzerland (called Sefage) (Shaheen, Sperling, and Wagner 1998).

In contrast, the concept of FF SMSs, which today largely relies on the usage of mobile

phones and GPS tracking only became technically realizable much later and arguably was

first put into practice with a FF car sharing system in 2008 in Germany (Ciari, Bock, and

Balmer 2014) (called car2go which ten years later became Share Now). This temporal

delay of FF SMSs is reflected in the literature, where the majority of papers consider SB

SMSs. For example, in the general survey paper on SMSs, Laporte, Meunier, and Wolfler

Calvo (2015) entirely focus on SB SMSs, while their updated survey a few years later

explicitly differs between SB and FF SMSs (Laporte, Meunier, and Wolfler Calvo 2018).

Regarding the optimization of these SMSs, there are different views in the literature

on whether SB and FF SMSs can be considered identical or not.

Some authors state that SB and FF SMSs can be treated identically. For example, in

their review paper on relocations in one-way car sharing, Illgen and Höck (2019) argue

that ”free-floating operation areas are usually partitioned into smaller zones that serve as

virtual stations, such that the VReP [vehicle relocation problem] can be applied perfectly

for relocations that occur between those zones instead of from station to station”. Simi-

larly, Lu et al. (2021) who consider combined relocation and pricing on the performance

of one-way car sharing systems, implicitly state that SB and FF SMSs can be considered

identically, as they use the decisive terms ”stations” and ”zones” interchangeably.

The only researchers we know of who represent a more differentiated view are from

Bogenberger’s group. Weikl and Bogenberger (2015) e.g. consider relocation optimization

for FF SMSs. On the one hand, they state that from a technical viewpoint, SB SMS

optimization models can be transferred to FF SMSs by ”dividing the operating area

into station-like zones.” On the other hand, they state that ”transferring the existing

relocation models for station-based systems to free-floating car sharing systems is however

restricted” and they give multiple reasons related to the considered relocation problem

(see also Weikl and Bogenberger (2013)). The authors e.g. argue that zone-level relocation

decisions are not specific enough for FF SMSs because vehicles have specific positions.

Another argument concerns the optimization model, since zones of FF SMSs ”do not

have strict capacity limits” in contrast to stations in SB SMSs. To address these issues,

the authors define ”macroscopic zones” which are separated into ”microscopic zones”.

The relocation decisions on macroscopic level are determined by optimization while the

decisions on microscopic level are rule-based. Note that in the models of Weikl and

Bogenberger (2013) and Weikl and Bogenberger (2015), the issue of accurate matching

modeling does not arise, because the optimal number of vehicles per zone which is affected
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by the relocation decisions is given and rentals are not modeled endogenously (see also

Section 2.2).

In our work, we demonstrate that SB and FF SMS optimization models indeed need to

differ. While Weikl and Bogenberger (2015) focus on relocation, in this paper we address

the essential issue of matching modeling, which is necessary for all optimization models

in which rentals are endogenously modeled. We in particular show that once that data is

collected on some defined zone level, artificially subdividing this zone into multiple sub-

zones which correspond to stations of an SB SMS does not address the issue of inaccurate

rentals predictions (Section 3).

2.2 Network Flow-Based Shared Mobility System Optimization

Models

The dynamically changing, imbalanced distribution between available and demanded ve-

hicles is a well-known challenge of SMSs (Jorge and Correia 2013, Lippoldt, Niels, and

Bogenberger 2019, Molnar and Correia 2019). Most tactical and operational optimiza-

tion approaches seek to address this problem in order to optimize for the actual service-

or monetary-related goal. To that end, the proposed approaches typically consider the

interaction of supply and demand over the entire SMS by modeling the system with a time-

expanded network, where rentals and relocations are described by flows. Note that not all

network flow-based SMS models consider rentals endogenously. For example, papers on

relocation typically consider the desired number of vehicles at different spatio-temporal

network nodes as given, and model only the operator-based vehicle movements (=relo-

cations) to serve this demand as network flows. The matching functions in this work

determine the user-based vehicle movements (=rentals) in dependence of supply, demand

and other parameters. Accordingly, they are only relevant for optimization models with

endogenous rentals which we focus on in the following.

Among these works, we identify three groups. First, works that consider SB SMSs

(e.g. Jorge, Molnar, and de Almeida Correia (2015), Haider et al. (2018)), second, works

that consider FF SMSs (e.g. Lu, Chen, and Shen (2017), Lu et al. (2021), Hardt and

Bogenberger (2021)), and third, works that consider SMSs in general (e.g. Correia and

Antunes (2012), Soppert et al. (2021a)), by speaking of locations instead of stations or

zones. Among the first and second group, several works do not use the term station-based

or free-floating explicitly, but their problem description and modeling where they use the

terms station or zone allows to classify them.

To the best of our knowledge, the issue of supply and demand matching in FF SMSs has

not been addressed in any of these works, or elsewhere in the literature. Still, the above

works model the relation between supply, demand, and rentals, such that assumptions

regarding the matching modeling within a specific location-period are implicitly revealed:
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All of the above-named works use the concept that rentals are the minimum of demand

and supply. Other parameters that may affect the matching are not considered. To the

best of our knowledge, there are only two works in the above-named groups (Soppert et al.

(2021a), Hardt and Bogenberger (2021)) that explicitly model (expected) rentals to equal

the minimum of (expected) supply and (expected) demand (always add ”(expected)”

in the following). All other works formulate constraints that only limit rentals to this

minimum because they propose optimistic optimization models in the sense that the

operator can deny a rental although there is supply and demand (see Soppert et al.

(2021a) for further discussions).

To summarize the SMS literature regarding matching modeling, one can conclude from

the optimization models that it is current practice to (explicitly or implicitly) assume

that rentals are determined by the minimum of supply and demand and this simplistic

assumption is applied to both SB and FF SMSs. With regard to the three groups in the

literature identified above, our contribution is to develop matching functions that allow to

apply SB SMS models to FF SMS models (first group) and to improve FF and unspecified

SMS models (second and third group).

Even if supply and demand matching has not been considered explicitly, the above

works impose requirements on the matching functions that we develop. For one thing,

the matching functions need to be compatible with a spatio-temporal discretization and

shall be seamlessly integratable into these SMS models. More specifically, the matching

functions’ in- and output need to be compatible with the overall SMS models from lit-

erature. For another, many approaches are formulated as linear optimization problems.

Therefore, linear matching functions that retain the linearity of the overall model have

an additional value for the generalizability of existing literature.

2.3 Matching Functions

Analytical formulations that describe the formation of new relationships, i.e. matches,

from unmatched agents are denoted as (aggregate) matching functions and have originally

been discussed in macroeconomics, often in the context of stylized (labor) markets. The

motivation to formulate these matching functions is to explain ”coordination failures”

that e.g. ”explain the existance of unemployment” (despite job availability) through ”the

modeling of frictions” which derive e.g. from ”information imperfections” or ”hetero-

geneities” (Petrongolo and Pissarides 2001). In their survey paper on matching functions,

Petrongolo and Pissarides (2001) state that for labor markets the simplest matching func-

tion m is of the form M = m(U, V ), where M is the number of jobs that result during a

given time interval in dependence of unemployed workers U and vacant jobs V . Different

underlying mechanisms of the matching process, called microfoundations, are assumed

that lead to different matching functions. For example, the earliest works by Butters
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(1977) and Hall (1979) formulate matches based on an urn-ball microfoundation, where

(in labor market context) workers randomly send applications (balls) to job vacancies

(urns). Under the simplest assumption that ”U workers know exactly the location of job

V vacancies”, that workers ”send one application each”, and that ”a vacancy [...] selects

an applicant at random”, the resulting matching function becomesM = V ·[1−(1−1/V )U ]

which can be approximated by M = V · [1− e−U/V ] (Petrongolo and Pissarides 2001).

In the context of transportation, the matching between customers and drivers in taxi

systems has been analyzed by Bian (2018), Buchholz (2019), Fréchette, Lizzeri, and Salz

(2018) as well as Ata, Barjesteh, and Kumar (2019). The matching functions of the

first two are based on the works named above, have the same structural form, and are

only slightly modified, e.g. by a ”location specific parameter” (Bian 2018) that allows

to calibrate to spatial heterogeneities. A particular matching function that holds ”in the

absence of frictions” is M = min(U, V ) (Petrongolo and Pissarides 2001), also denoted as

”perfect matching” (Bian 2018) or ”frictionless matching” (Buchholz 2019), which in the

latter is used to describe the search process by taxis for customers at airports.

In contrast, Fréchette, Lizzeri, and Salz (2018) as well as Ata, Barjesteh, and Kumar

(2019) use fundamentally different approaches to derive matching functions for taxi sys-

tems. Fréchette, Lizzeri, and Salz (2018) picture different areas of a city where each area

consists of a grid of locations that represent street corners. A matching function is approx-

imated through a simulation in which customers and drivers appear randomly on these

locations. Customers wait for some time before they leave and whenever a driver arrives

at a location where a customers is waiting a match realizes. Ata, Barjesteh, and Kumar

(2019) propose an analytical approach in which they draw the number of customers and

drivers each from a Binomial distribution and then derive the expected number of matches

by taking the minimum of both values. To find a tractable approximation, the authors

use the Normal distribution and linear approximations to obtain the eventual matching

function.

To the best of our knowledge, matching functions for FF SMSs have not yet been

discussed in the literature. In our work, we fill this gap by deriving matching functions

which are based on FF SMSs specifics (microfoundations), such as zone sizes and cus-

tomers’ willingness-to-walk. These parts of our work contribute to the matching functions

literature. However, since we focus on FF SMS optimization – during development of the

functions as well as in a pricing optimization case study – we overall see our contribu-

tion with regard to the SMS optimization literature from operations research. E.g. other

than in the matching function literature, additional properties for the newly developed

functions, like e.g. the integrability into optimization models, are of particular interest

in our work. In Section 3, we establish the connection between the developed matching

functions and literature and e.g. discuss under which conditions the frictionless matching

mentioned above can be applied to FF SMSs.
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2.4 Further Related Literature Streams

The first related literature stream uses agent-based simulations to derive insights on SMSs.

Typical applications are e.g. the evaluation of SMSs within a multi-commodity trans-

portation network (Ciari, Balac, and Axhausen 2016, Li et al. 2018, Heilig et al. 2018),

the impact of specific (parking) pricing rules (Ciari, Balac, and Balmer 2015, Balac, Ciari,

and Axhausen 2017), or the interplay of competing SMS providers (Balac et al. 2019).

Because of the system’s description on agent level, including customer behavior and exact

vehicle positioning, matching is indeed considered in these simulations. However, an an-

alytical formalization of the matching, in particular on location-period level, as required

for the integration into network flow-based optimization problems, is not given.

The second related literature stream deals with empirical studies on FF SMS. These

works provide requirements for and relevant parameters of suitable matching functions.

From several studies one can conclude that matching functions have to consider spatio-

temporal differences of an SMS. For example, Reiss and Bogenberger (2016) simulate a

bike sharing system based on empirical data and identify different demand patterns for

weekdays and weekends, as well as for different locations and times of the day. Hardt

(2018) also reports different spatio-temporal demand patterns and furthermore identifies

differences regarding the resulting rentals, drop-offs, and availabilities within the operating

area. Regarding relevant parameters on the customers’ decision for the matching functions

in FF SMSs, literature especially mentions the distance/walking time to the vehicles as

well as the pricing. For example, Wu et al. (2019) investigate the user behavior with a

stated-choice experiment considering for example walking time, willingness to pay, and

socio-demographical features. Niels and Bogenberger (2017) analyze app openings and

booking data from a car sharing system. Among other results, they report a high influence

of the distance to available vehicles on the customers’ decision.

3 Modeling Rentals in FF SMS Optimization Prob-

lems

In this section, we propose and discuss two novel analytical matching functions to model

rentals in FF SMS optimization problems. Further, we formalize a third one which re-

flects the matching as it is currently assumed in the SMS optimization literature and

which will serve as a benchmark later in the computational study. In Section 3.1, we

begin by discussing the required output as well as reasonable inputs for the matching

functions. Section 3.2 presents a generic stylized matching process and a corresponding

generic matching function on which all specific matching functions are based. In Section

3.3, we systematically derive the different functions, along with their specific underlying

assumptions. Section 3.4 discusses mathematical properties and Section 3.5 the potential
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of being integrated into linear optimization problems for each of the matching functions.

3.1 Output and Inputs

We begin by stating the output of the matching functions: As discussed in Sections

1 and 2.2, SMS optimization models are typically formulated based on network flow

formulations, consisting of multiple locations and periods. In these SMS models, vehicle

movements, i.e., rentals and relocations, have a certain location-period origin as well as a

certain location-period destination. To fit in these network flow SMS models, a compatible

matching function’s output simply needs to quantify the (expected) number of rentals r

that originate in a certain location and period. Conversely, it is not determined by the

matching function how the rentals that realize in a specific origin split into different

destinations, as this can be covered by other components of the overall SMS network flow

model (see Section 3.5).

We continue with stating reasonable inputs for the matching functions: Clearly, the

rentals depend on the number of available vehicles and arriving customers in a given

location and period. Therefore, these quantities, which we denote as a and d, are inputs.

However, when considering the realization of rentals in an FF SMS, two additionally

necessary parameters become immediately apparent, namely the maximum distance that

customers are willing to walk and the size of the zone. With a maximum walking distance

in the order of several hundred meters (e.g. Herrmann, Schulte, and Voß (2014), Niels

and Bogenberger (2017)), and a typical zone size of several square kilometers (e.g. Weikl

and Bogenberger (2016), Müller, Correia, and Bogenberger (2017)), it is clear that an

available vehicle is not necessarily within reach of a customer, even if the customer and

vehicle are in the same zone. In order to formalize the matching functions based on these

two additional parameters, we define Aw as the size of the area within walking distance

and Az as the size of the zone. The matching functions therewith become a function of

the discussed inputs and parameters, meaning r = rAw,Az(a, d).

3.2 Preliminaries: Generic Matching

3.2.1 Stylized Matching Process

As discussed above, matching functions for network flow-based SMS optimization mod-

els require to describe the rentals r on location-period level, given a and d. In contrast,

the actual matching process in reality is independent of the artificial spatio-temporal dis-

cretization and underlies dynamics that take place within the period. In this section,

we therefore introduce a stylized matching process that considers the requirements im-

posed by the discretization in the SMS model as well as the intent to formalize analytical

functions that replicate the real matching process as accurately as possible. We take the
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following assumptions for the stylized matching process on location-period level:

• All vehicles a become available at the beginning and customers d arrive sequentially

during the period. More precisely, the a vehicles are first distributed over the zone.

Second, the d customers arrive sequentially and potentially rent one of the vehicles

each. We assume homogeneity of the zone, such that the exact locations of vehicles

and customers are drawn from a uniform distribution. To formalize the process and

in particular it’s intermediate states, we denote the remaining customers to arrive

during a period as d̂ and the remaining available vehicles as â.

• Each of the remaining available vehicles belongs to a corresponding part of the zone,

meaning that the vehicle would be within reach for an arriving customer from this

part. We say that a vehicle covers a part of the zone area and we denote the size of

the area that is covered by â vehicles all together as Aâ. The size of the marginally

covered area by the âth vehicle is denoted as ∆Aâ. The matching functions differ

in their assumption how the vehicles are spatially distributed and how additional

vehicles cover additional parts of the zone.

Note that it is reasonable to define the marginal coverage of a vehicle ∆Aâ in

dependence of the walking area Aw of a customer : As stated above, we assume

homogeneity of a zone such that the probability of any location within the zone

to lie within Aw is equal. Considering a situation with one available vehicle, the

probability that this vehicle is located within the area within reach of the customer

Aw is equivalent to the probability that the customer arrival location lies within the

area Aw which is covered by the vehicle. The latter is in line with the assumption

that vehicles are available from the beginning of a period and that customers arrive

sequentially.

• For every arriving customer, there is a certain probability that a rental realizes.

Clearly, this probability depends on the remaining available vehicles â in the zone,

the customer’s walking area Aw as well as the zone area size Az. Since â and

therewith Aâ may change over the matching process, also this matching probability,

which we denote by PAw,Az(â), generally differs for each of the customers. We assume

that a rental realizes if the customer arrival position lies within the (currently)

covered zone area Aâ. Considering the uniform distribution for a customer’s exact

arrival position, the probability of a matching PAw,Az(â) therewith is equal to the

proportion of the covered area to the entire zone area, meaning PAw,Az(â) = Aâ

Az
.

The matching process ends if all customers have arrived or if all vehicles have been

rented.
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3.2.2 Generic Matching Function

Given the above assumptions, the matching process within a location-period combination

can be formalized by the following generic matching function

rAw,Az(â, d̂) = PAw,Az(â) · (1 + rAw,Az(â− 1, d̂− 1))

+ (1− PAw,Az(â)) · rAw,Az(â, d̂− 1) ∀â, d̂ ∈ Z (1a)

rAw,Az(â, 0) = 0 ∀â ∈ Z (1b)

rAw,Az(0, d̂) = 0. ∀d ∈ Z (1c)

The inter-dependencies between the possible rental realizations and the changing zone

coverages are formulated by a recursion over the customer arrivals (1a). For every arriving

customer, the probability that a rental realizes is PAw,Az(â). In case of a match, one rental

is counted and the number of available vehicles is reduced by one. With probability

P̄Aw,Az(â) = 1 − PAw,Az(â), no rental takes place such that the subsequent customer (if

existent) has the same number of vehicles available, i.e. â. Independent of the outcome,

the number of customers to come is reduced by one, i.e. d̂ ← d̂ − 1. The boundary

conditions (1b) and (1c) ensure that the number of rentals is zero if either supply or

demand are zero.

In the context of an overall network-flow SMS model, (1) would then be integrated to

calculate the resulting rentals for a specific location-period combination with correspond-

ing vehicle count a and arriving customers d, i.e., by evaluating rAw,Az(a, d).

3.3 Derivation of Matching Functions

Based on the previously described generic matching process, we derive three matching

functions in this section. The decisive difference between the functions is the rate with

which an additional vehicle covers the area of the zone. Consequently, we denote the three

functions as

• degressive coverage rate matching function (DCR) (Section 3.3.1),

• constant coverage rate matching function (CCR) (Section 3.3.2), and

• infinite coverage rate matching function (ICR) (Section 3.3.3).

The assumptions of the DCR come closest to the real matching process, but also the

other two functions, especially the CCR, have a range of validity, and other advantages

compared to the DCR.

3.3.1 The Degressive Coverage Rate matching function (DCR)

The DCR results from the generic matching function (1) by further specifying the match-

ing probability PAw,Az(â). The underlying assumption of the DCR is that each part of
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Figure 1: Illustrative representation of coverage by matching functions
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Figure 2: Schematic iso-rental curves for different matching functions and a specific Aw, Az

with Aw < Az

the zone is equally likely to belong to the area covered by a vehicle. Thus, the area cov-

ered by an additional vehicle comprises a part that is newly covered (marginally covered

area) and a part that is already covered by the other vehicles (and wasted in this sense).

More formally, the DCR assumes that, for a given available vehicle count â, the addition-

ally covered area ∆Aâ+1 by one additional vehicle, meaning by the (â + 1)st vehicle, is

a fraction of Aw. This fraction is the ratio of the not covered zone area with â vehicles

Āâ = Az − Aâ to the entire zone area, meaning ∆Aâ+1 = Aw · Āâ

Az
.

Proposition 1. Assuming ∆Aâ+1 = Aw · Āa

Az
, the matching probability is PAw,Az(â) =

(1− (1− Aw

Az
)â) and the DCR is defined by

DCR: rDCR
Aw,Az

(â, d̂) = (1− (1− Aw

Az
)â) · (1 + rDCR

Aw,Az
(â− 1, d̂− 1))

+ (1− Aw

Az
)â · rDCR

Aw,Az
(â, d̂− 1) ∀â, d̂ ∈ Z (2a)

rDCR
Aw,Az

(â, 0) = 0 ∀â ∈ Z (2b)

rDCR
Aw,Az

(0, d̂) = 0. ∀d̂ ∈ Z (2c)

We prove Proposition 1 in Appendix B. Figure 1a illustrates the marginal coverage of the

DCR for a = 3 vehicles. The âth vehicle additionally covers Aw ·(1− Aw

Az
)â−1. In Figure 2a,

the DCR iso-rental curves are schematically depicted, indicating which a, d combinations

lead to the same number of rentals. For every a, d combination, an increase of one of the

quantities always results in a higher-level curve, but the increase depends on the ratio of
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a and d. If a is larger than d, an increase of a causes a smaller increase of rentals r than

if a and d are identical or if d is even larger than a, and vice versa.

3.3.2 The Constant Coverage Rate matching function (CCR)

The CCR is derived from the generic matching function (1) in two steps. The first step

concerns the assumption regarding the marginal coverage by an additional vehicle and,

as the name suggests, the CCR assumes a constant marginal coverage. More precisely,

the marginal coverage for the (â + 1)st vehicle is ∆Aâ+1 = min(Az − Aâ, Aw · λ) with

λ ∈ [0, 1], meaning that each additional vehicle additionally covers the same fraction of

the walking area Aw · λ until the residual of the zone’s covered area is smaller than this

Aw · λ, such that the next vehicle covers this residual. The factor λ allows to formulate

a constant marginal coverage which implicitly considers the potential overlap of the area

covered by the individual vehicles (as for the DCR). In Appendix C, we show that for an

expected number of available vehicles ā, for example determined by historic data, λ can

be analytically approximated by

λ ≈
1− (1− Aw

Az
)ā

Aw
Az

· 1
ā
. (3)

With this assumption for ∆Aâ+1, the covered area by â vehicles becomesAâ = min(Az, Aw·
λ · â), and PAw,Az(â) =

min(Az ,Aw·λ·â)
Az

in (1a).

In the second step to derive the CCR, the additional assumption is taken that all cus-

tomers have identical matching probabilities, such that the former recursive formulation

simplifies to

rAw,Az(a, d) = min(
min(Az, Aw · λ · µ · a)

Az
· d, a, d), ∀a, d ∈ Z (4)

with µ ∈ [0, 1]. The fraction in the first argument of the (outer) min()-operator in (4)

represents the average matching probability for every of the d arriving customers. µ allows

to formulate the average covered area Aw · λ · µ · a, which is a fraction of Aw · λ · a. In

the recursive formulations, the boundary conditions ensured that rentals can not exceed

a or d. In the explicit (4), this is ensured by the second and third argument of the

min()-operator. (4) can be simplified to the final CCR

CCR: rCCR
Aw,Az

(a, d) = min(
Aw

Az
· λ · µ · a · d, a, d). ∀a, d ∈ Z (5)

Clearly, µ has to depend on the amount of customers arriving. We show in Appendix

C, that for an expected amount of customers d̄, the parameter µ can be analytically

approximated by

µ ≈ 1

d̄
·

d̄∑

i=1

(1− Aw · λ
Az

)i−1. (6)
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Figure 1b illustrates the marginal coverage of the CCR for λ = µ = 1 and a = 3 vehicles.

Every vehicle additionally covers Aw ·λ ·µ. In Figure 2b, the iso-rental curves of the CCR

are schematically depicted. In contrast to the DCR, for large values of a and/or d, an

increase of these quantities does not result in an increase of the rentals r.

3.3.3 The Infinite Coverage Rate matching function (ICR)

As the name suggests, the ICR assumes an infinite coverage by every additional vehicle

(no friction). More precisely, the marginal coverage for the (â + 1)st vehicle is ∆Aâ+1 =

min(Az −Aâ, Az), meaning that the entire zone is covered as long as there is at least one

vehicle available. With this assumption, PAw,Az(â) = 1 for every arriving customer as

long as there is at least one vehicle available. Then, the ICR in dependence of a and d

can be formalized by

ICR: rICR
Aw,Az

(a, d) = rICR(a, d) = min(a, d). ∀a, d ∈ Z (7)

Figure 1c illustrates the coverage of the zone according to the ICR for a ≥ 1 vehicles,

showing that the entire zone is covered. In Figure 2c, the iso-rental curves of the ICR are

schematically depicted. If a is greater or equal to d, an increase of a does not result in an

increase of the rentals r, and vice versa. The iso-rental curves demonstrate that the ICR

follows the characteristics of a Leontief production.

Regarding the relation between the matching functions, one can state the following:

When the first argument in the min()-operator in (5) is not restrictive, the CCR (5) and

the ICR (7) become identical. This first argument is not restrictive if λ · µ · Aw

Az
· a ≥ 1 or

λ · µ · Aw

Az
· d ≥ 1. The ICR is a special case of the DCR: When Aw = Az, PAw,Az(â) = 1

for every customer in the DCR (2) such that rentals realize until all vehicles are taken,

or all customers have arrived – exactly as in the ICR (7). In the schematic depiction of

iso-rental curves of the DCR in Figure 2a, the curves take the form of the ICR in Figure

2c if Pa = 1 for every customer.

Remark. As discussed in Sections 1 and 2.2, it is current practice in the SMS optimiza-

tion literature to determine rentals for a specific location-period combination by the min-

imum of the available vehicles and arriving customers (also known as ”perfect/frictionless

matching”, see Section 2.3). Literature applies this (implicit) assumption to model both

SB as well as FF SMSs. The ICR (7) is the formalization of this assumption such that the

ICR could be considered as the state-of-the-art matching function, even if not discussed

as such in the SMS literature. Clearly, since the ICR does not consider Aw and Az, the

ICR in general overestimates the actual matching when applied to model an FF SMS for

which Aw < Az. In the numerical studies in Section 4, we use the ICR as a benchmark

to evaluate the DCR and CCR.
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Note that in an SB SMS, where available vehicles and arriving customers refer to

a specific station, the issue of overestimating rentals due to the neglection of spatial

parameters Aw and Az described above does not occur. Note further that the link between

SB and FF SMSs in the context of matching modeling can be established by considering

an extreme case of the zone area size: A station of an SB SMS can be considered as a

zone in an FF SMS of infinitely small size – a point zone. In this point zone, the expected

rentals can be correctly described by the ICR (7).

3.4 Properties

In this section, we discuss mathematical properties of the three matching functions

rMAw,Az
(a, d) with M ∈ {DCR,CCR, ICR}. This analysis is common in the matching

function literature, as it allows to assess the plausibility of the derived functions by veri-

fying desirable properties and to analytically derive limitations of the functions’ applicabil-

ity. Properties 1 and 2 can be considered as standard boundary conditions for matching

functions. Properties 3 and 4 are related to the special case of ”perfect/ frictionless”

matching (see Section 2.3) in FF SMSs. Properties 5 and 6 are specific for matching

functions in FF SMSs, while especially the latter also impacts the formulation of overall

optimization models for FF SMSs – a particularly relevant aspect in our work (see also

Section 3.5).

Property 1 – Zero rentals boundary conditions. If either demand or supply are

zero, no rentals realize. Formally, we have rMAw,Az
(a, d) = 0 if a = 0 or d = 0.

This property verifies an intuitive boundary condition: The absence of available vehicles

or customers. Clearly, the DCR, the CCR, and the ICR fulfill this property.

Property 2 – Supply and demand limits. If the number of available vehicles be-

comes infinitely large, the realized rentals equal demand, and vice versa. Formally, we

have rMAw,Az
(a, d) = d for a→∞ and rMAw,Az

(a, d) = a for d→∞, respectively.

This property verifies an intuitive boundary condition in the abundance of available

vehicles or customers. Clearly, the CCR and the ICR fulfill this property. For the

DCR, consider that if a → ∞, also â → ∞ and that the probability of a matching

PAw,Az(â) = (1 − (1 − Aw

Az
)â) → 1 in (2a), for realistic parameters where Aw ≤ Az. If

this is true for every arriving customer d, rM = d. For d → ∞, the recursion in (2a) is

executed until all vehicles a are taken because we have PAw,Az(â) > 0 ∀â > 0.

Property 3 – Matching with certainty for entire zone coverage. If the vehicles

cover the entire zone area, the next arriving customer certainly finds a vehicle and a rental

results. Formally, we have ∂
∂d
rMAw,Az

(a, d) = 1 if Aa = Az.
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This intuitive property covers constellations in which matching in an FF SMS works as

matching in SB SMS. For the DCR, Aa = Az requires the special case that Az = Aw, and

in this case, PAw,Az(a) = 1 for every arriving customer, as long as there is at least one

vehicle available. For the CCR, Aa = Az means that Aw · λ ·µ · a = Az such that the first

argument of the min()-operator is not restrictive and an additional demand results in an

additional rental. The ICR fulfills this property by definition.

Property 4 – No matching for zero zone coverage. If the vehicles cover an in-

finitely small zone area or the zone area grows to infinity, there is no matching. More

precisely, every additional customer results in zero additional rentals. Formally, we have
∂
∂d
rMAw,Az

(a, d) = 0 for Aa → 0 or Az →∞.

This property is the opposite of the aforementioned one. Compared to the walking dis-

tance, distances are so long that there are no rentals.

For the DCR, both of the extreme cases result in PAw,Az(a) → 0 such that an addi-

tional customer does not increase the expected rentals. For the CCR, the first argument

of the min()-operator becomes zero such this property is fulfilled. The ICR does not fulfill

this property and in contrast predicts an additional rental for every customer, given an

available vehicle, no matter what sizes Aw and Az take.

Property 5 – Supply and demand symmetry. The matching function is symmetric

regarding supply and demand. Formally, we have rMAw,Az
(a, d) = rMAw,Az

(d, a).

Obviously, the CCR and the ICR both fulfill this property. We prove symmetry of the

DCR in Appendix D and only outline the idea of the proof in the following. To simplify

notation in this outline, we use r(a, d) and r(d, a) instead of rDCR
Aw,Az

(â, d̂) and rDCR
Aw,Az

(d̂, â)

here, so we prove r(a, d) = r(d, a).

The proof is by induction over n = a + d. In the base cases, we show that r(a, d) =

r(d, a) for n = 0 and n = 1. This is straightforward, using the boundary conditions.

In the induction step, we show that if r(a, d) = r(d, a) for n − 2 and n − 1 (induction

hypothesis), symmetry also holds for n.

The key idea of the proof is illustrated by the two subfigures in Figure 3. Each

shows a grid of a-d combinations where every node represents the value of the respective

r(a, d). The dotted line on the diagonal represents the symmetry axis. The three dashed

lines on the secondary diagonals illustrate the procedure of the induction: Every n has

a corresponding secondary diagonal where symmetry holds, illustrated for n = 0, n = 1,

and n = 2. The induction step can be interpreted as an upward shift of the secondary

diagonal, using the previous secondary diagonals.

Illustratively, we need to prove equality of a node and its symmetric counterpart which

results from mirroring the original node on the diagonal. Without loss of generality, we
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define nodes I and I′ to correspond to r(a, d) and r(d, a), respectively. We prove equality

for these two (general) nodes I and I′. The other nodes denoted by roman numbers

illustrate which nodes – in dependence of I and I′ – are used to show this equality. The

proof consists of three steps:

(1) First, we show that node I can be expressed as a sum with summands corresponding

to nodes III′, IV′, V′, and VI′ – the nodes within the dashed square in Figure 3a.

(2) Second, we analogously show that node I′ can be expressed as a sum with summands

corresponding to nodes III, IV, V, and VI – the nodes within the dashed square in

Figure 3b.

(3) Third, we show equality of the two resulting sums which completes the proof.

More precisely, two different operations are performed (multiple times) within these three

steps: Applying the recursion of the DCR and using the symmetry property in the induc-

tion hypothesis. In step (1) of the proof (consider the DCR (2a)), applying the recursion

for r(a, d) (I) yields a sum with two summands, one with r(a, d − 1) (II) and one with

r(a−1, d−1) (III), as illustrated in Figure 3a. Since the induction hypothesis supposes that

the symmetry property holds for n−1 and n−2, nodes II and III have corresponding coun-

terpart nodes II′ with r(d−1, a) = r(a, d−1) and III′ with r(d−1, a−1) = r(a−1, d−1).

Subsequently applying recursion for both nodes II′ and III′ yields a sum with four sum-

mands, i.e. one each corresponding to nodes III′, IV′, V′, and VI′. Analogously in step (2)

of the proof, starting with node I′ yields a sum with summands corresponding to nodes

III, IV, V, and VI, as illustrated in Figure 3b. Finally, in step (3) of the proof, we then

again use the induction hypothesis (twice) and show that the two resulting sums of r(a, d)

and r(d, a) are equal. This completes the proof. □

In Appendix D, we show r(a, d) = r(d, a) by means of equivalent transformations and

by using three lemmata which we also prove in Appendix D. It follows from the proof,

that the DCR can be formulated by interchanging â and d̂ in (2) which yields

rDCR
Aw,Az

(d̂, â) = (1− (1− Aw

Az
)d̂) · (1 + rAw,Az(d̂− 1, â− 1))

+ (1− Aw

Az
)d̂ · rDCR

Aw,Az
(d̂, â− 1) ∀â, d̂ ∈ Z (8a)

rDCR
Aw,Az

(d̂, 0) = 0 ∀d̂ ∈ Z (8b)

rDCR
Aw,Az

(0, â) = 0. ∀â ∈ Z (8c)

The intuition of this alternative DCR formulation (8) is exactly inverse to the one de-

scribed in Section 3.2.1: A customer covers a certain fraction of the zone and every part

of the zone is equally likely to belong to the marginally covered area by an additional

customer. The positions where the available vehicles are located are sequentially drawn

at random from a uniform distribution. For each drawn vehicle, the probability that it
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Figure 3: Illustration of the DCR symmetry proof (see Property 5)

is rented is determined by the respective proportion of the covered zone at the time it

is drawn. As for the DCR formulation (2), the process ends if either the rentals realized

equal the initial customer count, or if all vehicle appearances were drawn.

Property 6 – Independence to zone partitioning. For the ICR and the CCR, the

expected number of rentals does not change if a homogeneous zone is artificially sub-divided

into multiple sub-zones. Formally, if a zone of zone area size Âz is partitioned into Z

sub-zones, rM
′

Aw,Âz
(a, d) = Z · rM ′

Aw,Âz/Z
( a
Z
, d
Z
) holds, where M ′ = {CCR, ICR}.

Property 6 states that artificially splitting a zone into multiple sub-zones does not change

the overall expected number of rentals for the ICR and CCR. Consider that the collected

data on the zone level is given by a, d, and Âz. Aw is also given. When data is collected

on this zone level, the only reasonable assumption is that this zone is homogeneous, such

that a and d would be divided proportionally to obtain the respective quantities for the

Z smaller sub-zones, i.e. a
Z
and d

Z
. Consequently, the resulting rentals for the ICR and

the CCR in each sub-zone are the rentals of the original zone divided by Z. Since there

are Z of these sub-zones, overall, the amount of rentals remains the same.

This property is the reason for the fact that the issue of inaccurate matching modeling

cannot be simply solved by partitioning a zone artificially into multiple smaller sub-zones

of the ’right’ size for the ICR (see the corresponding statement in Section 1). Note

that an analogous property holds for the DCR, which considers the probabilities of all

combinations of possible discrete distributions of a and d over the sub-zones and then

applies the DCR on these sub-zones.
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3.5 Integration in Linear Optimization Problems

As described in Sections 1 and 2.2, a lot of work has been done in the literature to

cover the various SMS optimization problems based on network flow modeling. Mostly,

the resulting formulations are mixed-integer linear programs (MILP). As explained, our

work particularly focuses on the optimization models of FF SMSss and in this section, we

therefore discuss whether the introduced matching functions can be linearized losslessly,

such that an exact integration in a typical MILP is possible.

The decisive characteristic of spatio-temporal network flow formulations, illustrated

in Figure 11 in Appendix A, is a set of constraints that describe the flow conservation in

the network. With discrete locations i, j, k ∈ Z, and periods t ∈ T , the flow conservation

constraints can be formulated as

∑

i∈Z
rijt + sjt =

∑

k∈Z
rjk(t+1) + sj(t+1) ∀j ∈ Z, t ∈ T , (9)

where rijt describe the rentals from location i to j in period t, and sjt describe the vehicles

that remain unused at location j in period t. Now, the number of rentals originating at

a location i, given by rit =
∑

j∈Z rijt, are assumend to realize according to a specific

matching function, depending on the number of available vehicles ait and the arriving

customers dit =
∑

j∈Z dijt. Therefore, the logic of the matching functions to determine

rit has to be formulated by means of additional constraints within the MILP formulation.

Note that further constraints are required to derive the i-j-t-specific rentals rijt from the

rit-values, but this is out of scope of the matching itself.

Note that, in contrast to dit, the quantities rit and ait are decision variables in the

MILP. In expected values formulations, these decision variables are continuous, meaning

ait, rit ∈ R+
0 ∀i ∈ Z, t ∈ T . In the following, we therefore discuss for each of the initial

matching functions from Section 3.3, whether the range of values Z for ait and dit can

be replaced by R+
0 , how the functions are formulated for a specific i-t-combination, and

whether a lossless integration in a MILP formulation is possible.

3.5.1 DCR

For a specific i-t combination, the DCR (2) becomes

rDCR
it,Aw,Az

(âit, d̂it) = (1− (1− Aw

Az
)âit) · (1 + rDCR

it,Aw,Az
(âit − 1, d̂it − 1))

+ (1− Aw

Az
)âit · rDCR

it,Aw,Az
(âit, d̂it − 1) ∀âit, d̂it ∈ Z (10a)

rDCR
it,Aw,Az

(âit, 0) = 0 ∀âit ∈ Z (10b)

rDCR
it,Aw,Az

(0, d̂it) = 0. ∀d̂it ∈ Z (10c)
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Figure 4: Schematic representation of matching functions

Due to the recursive formulation of the DCR (10), the range of values for âit and d̂it,

and therewith also for rDCR
it,Aw,Az

(âit, d̂it), cannot be replaced by R+
0 . Figure 4a depicts (10)

schematically (for Aw < Az). For a given demand level dit, it illustrates how the realized

rentals rDCR
it,Aw,Az

(ait, dit) depend on the number of initially available vehicles ait. Every

additional vehicle increases the expected rentals with decreasing margin such that the

demand is the limit of the function.

Clearly, since for a given ait, dit, (10) is a discrete function in ait ∈ Z ∀i ∈ Z, t ∈ T ,
the DCR can not be losslessly linearized and integrated in a MILP formulation. Note,

however, that the DCR may find application in (non-linear) optimization approaches with

discrete ait ∈ Z, such as for example in an approach based on a Markov decision process

(MDP).

3.5.2 CCR

In the CCR (5), the range of values for a, d, and rCCR
Aw,Az

(a, d) can be replaced by R+
0 . For

a specific i-t combination, the CCR becomes

rCCR
it,Aw,Az

(ait, dit) = min(λ · µ · Aw

Az
· dit · ait, ait, dit). ∀ait, dit ∈ R+

0 (11)

Since λ, µ,Aw, Az and dit are parameters, one can pre-compute whether the first or the

second argument of the min()-operator is smaller. We define this i-t-specific pre-computed

parameter as

γit = min(λ · µ · Aw

Az
· dit, 1) (12)

and therewith obtain

rCCR
it,Aw,Az

(ait, dit) = min(γit · ait, dit), ∀ait, dit ∈ R+
0 (13)

which is schematically depicted in Figure 4b. It illustrates that for the CCR (13), the

number of expected rentals rCCR
it,Aw,Az

(ait, dit) is a piecewise linear function of ait with two

pieces, where dit determines the height of the horizontal second piece. As long as ait ≤ dit
γit
,

an increase of ait results in the same marginal increase of rentals. This marginal increase
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is determined by slope parameter γit from (12). For ait >
dit
γit
, an increase of ait does not

increase rCCR
it,Aw,Az

(ait, dit).

The CCR (13) can be losslessly linearized and integrated in a MILP formulation with

a set of auxiliary variables and corresponding constraints. Depending on the actual ait,

these constraints determine which part of the piecewise linear function needs to be active.

The model (44)-(58) in Appendix E that we apply in the case study in Section 5 is

an example of a CCR integrated into a MILP for a differentiated pricing optimization

problem.

3.5.3 ICR

In the ICR (7), the range of values for a, d, and rICR(a, d) can be replaced by R+
0 . For a

specific i-t combination, the ICR (7) becomes

rICR
it (ait, dit) = min(ait, dit), ∀ait, dit ∈ R+

0 (14)

which is schematically depicted in Figure 4c. Like for the CCR, the number of expected

rentals rICR
it (ait, dit) in the ICR is a piecewise linear function of the initially available

vehicles count ait with two pieces where dit determines the height of the horizontal second

piece. In contrast to the CCR, the slope of the first piece is γit = 1 such that every

additional ait results in a rental, as long as ait ≤ dit.

Analogously to the CCR, a set of auxiliary variables and corresponding constraints

enables a lossless integration of (14) in a MILP. Examples for the integration of the ICR in

SMS optimization problems are Hardt and Bogenberger (2021) for relocation and Soppert

et al. (2021a) for pricing.

4 Computational Study

In this section, we evaluate the rental prediction accuracy of the three matching functions

DCR, CCR, and ICR introduced in Section 3.3. We consider two general settings, i.e. the

single zone single period (SZSP) setting and the multiple zones multiple periods (MZMP)

setting, discussed in Section 4.1 and 4.2, respectively. The subsections for each setting

are organized as follows. We begin with an introduction of the setting (4.1.1 resp. 4.2.1),

followed by the description of a simulation which serves as a benchmark (4.1.2 resp. 4.2.2),

the parameter configurations (4.1.3 resp. 4.2.3), and the evaluation metrics (4.1.4 resp.

4.2.4). The last subsections discuss the results (4.1.5, 4.1.6 resp. 4.2.5).
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4.1 Single Zone Single Period Setting

4.1.1 Setting

The single zone single period (SZSP) setting is a stylized setting where the FF SMS, as

the name suggests, consists of one single zone and one single period. The purpose of this

setting is to isolate the assessment of the rental prediction accuracy, and to eliminate

potential effects that would result from replicating a real FF SMS consisting of more than

one zone and multiple periods. For each considered parameter configuration, characterized

by a given number of available vehicles a at the beginning of the period, a given number

of customers to arrive d, and a specific choice of walking area Aw and zone area Az size,

rMAw,Az
(a, d) is evaluated for the different matching functions M ∈ {DCR,CCR, ICR}.

The outputs are compared to a benchmark from a stochastic dynamic simulation, de-

scribed next.

4.1.2 Simulation Benchmark

The simulation of the SZSP-setting is consistent with the generic matching process de-

scribed in Section 3.2, i.e. vehicles are available at the beginning of the considered pe-

riod, while customers arrive sequentially during the period. For each considered pa-

rameter configuration, we derive the benchmark by performing multiple simulation runs

n ∈ N = {1, 2, . . . , N} that each yield a rental observation rn.

At the beginning of each simulation run n, a given number of available vehicles a is

distributed within a squared zone of size Az. In line with the assumptions from Section

3.2.1, a zone is homogeneous and consequently, the location of each vehicle is drawn

from a uniform distribution. A given number of customers then arrive sequentially and

their respective point of appearance is drawn from a uniform distribution as well. The

customers have a maximum walking distance (corresponding to Aw) and the assumption

is that if there is at least one vehicle within reach, the closest one is rented. This vehicle

is then removed and the rental is recorded. Independent of the actual rental outcome,

the number of customers to come is reduced by one and the process is repeated until all

d customers have arrived. The simulation process for one simulation run is summarized

as pseudo code in Algorithm 3.

The resulting mean rentals after N = 100 simulation runs are illustrated in Figure 5a,

for all combinations of initial vehicles and arriving customers. We use these surface plots

to evaluate the rentals prediction of the matching functions qualitatively.

To clarify the setup, consider Figure 5b that depicts a single simulation run of the

SZSP-setting with Az = 1 km2 in retrospective. The a = 10 initially available vehicles

are represented as blue triangles, and the d = 10 customers, that arrived sequentially

during the run, are represented by red dots with their respective walking area, depicted
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(b) Run in retrospective (a = 10, d = 10)

Figure 5: SZSP-scenario with Az = 1 km2

as red circles. One of the vehicles, the one in the lower left corner of the zone, was

out of reach for all customers. Consequently, this vehicle has not been rented in this

simulation run. Note, however, that even though all other vehicles lay within at least

one of the red circles, they were not necessarily rented. Since Figure 5b does not show

the temporal sequence of the run, some of the vehicles depicted have not been available

for the customers that arrived rather late. In fact, only rn = 6 rentals realized in this

particular run.

Note that Figure 5b shows that parts of the walking area may lay outside of the zone.

The actual area of the zone which is within reach of a customer therewith is smaller than

the walking area. For the benchmark simulation, we exclude this effect by the following

mechanism: Whenever a part of the walking area protrudes beyond the zone boundary,

this part is displaced to the other side of the zone. The effect is that the entire walking

area actually lies within the zone. Thus, our zone has a limited size, but effectively no

border, like the surface of a sphere.

Algorithm 3 SZSP simulation (one run n ∈ N )
- draw position for each of the a vehicles from uniform distribution
- initialize rental count: rn = 0
- initialize customers to come d̂ = d
while d̂ > 0 do

- draw arrival position of customer from uniform distribution
- determine distance to vehicles
if at least one vehicle in walking distance then

- choose closest vehicle
- remove chosen vehicle
- record rental: rn ← rn + 1

end if
- reduce customers to come: d̂← d̂− 1

end while

4.1.3 Parameter Configurations and Scenarios

We consider the following parameter settings, with every potential combination of values

defining a valid parameter configuration:
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• Available vehicles (VSZSP ): a is selected from the discrete set VSZSP = {0, 1, . . . , 10}.

• Arriving customers (DSZSP ): d is selected from the discrete setDSZSP = {0, 1, . . . , 10}.

• Walking area size (Aw): Aw is kept constant at Aw = π · (0.3km)2 = 0.28 km2.

The radius of 0.3km represents a realistic maximum walking distance (Herrmann,

Schulte, and Voß 2014).

• Zone area size (Az): Az is selected from the discrete set Az = {0.5 km2, 1 km2,

2 km2, 4 km2}, representing the typical range of zone size values from literature

(e.g. Weikl and Bogenberger (2016), Müller, Correia, and Bogenberger (2017)) and

practice.

We use the term SZSP-scenario to refer to parameter settings having the same value of

Az, i.e., we group all resulting parameter configurations for a specific Az to belong to one

scenario. We perform N = 100 simulation runs for every parameter setting.

4.1.4 Evaluation Metrics

We use the following metrics to assess the rentals prediction accuracy:

• Rentals (RT ): The expected absolute rentals RT predicted by the matching func-

tions are simply r̄ = rMAw,Az
(a, d) with M ∈ {DCR,CCR, ICR}. With regard to

the simulation benchmark, the corresponding value is obtained from averaging over

the simulations runs, i.e., r̄N = 1
N

∑
n∈N rn.

• Rentals’ mean error (RTME): The mean absolute error RTME between the expected

rentals r̄ predicted by a matching function and the N observations of the simulation

benchmark rn is RTME = r̄ − r̄N .

• Rentals’ mean relative error (RTMRE) [%]: The mean relative error RTMRE between

the expected rentals r̄ predicted by a matching function and the N observations of

the simulation benchmark rn is RTMRE = (r̄ − r̄N)/r̄N · 100.

4.1.5 Qualitative Results

We begin by investigating the predicted and observed absolute rentals RT on an aggre-

gate level. Therefore, we consider Figure 6 which provides a first impression of how the

different matching functions predict rentals and how the rentals observed in the simula-

tion benchmark depend on supply, on demand, as well as on the zone area size. In each

of the subfigures, the vertical axis of the surface plot represents expected and observed

rentals RT for the matching functions and the simulation benchmark, respectively. The

horizontal axes represent a ∈ VSZSP and d ∈ VSZPZ , respectively. The two rows depict

the results of the SZSP-scenarios Az = 1 km2 and Az = 2 km2. The respective graphs for

all scenarios, i.e. for all Az ∈ Az, are depicted in Figure 12 in Appendix F. The columns
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depict the mean of the simulation benchmark (SIM), and the expected rentals predicted

by DCR, CCR, and ICR. We begin our qualitative study of Figure 6 with a look at the

general shape of the surface plots and relate the observations to the properties discussed

in Section 3.4:

• For all matching functions, the surfaces are bounded to RT = 0 for all a-d combi-

nations where a = 0 or d = 0 (see Property 1). All graphs increase monotonically

in a and in d, which is reasonable, since additional vehicles/ additional customers

can never, ceteris paribus, decrease but may increase the (expected) rentals.

• While the surfaces of the DCR resemble the SIM benchmarks in their general shape

of being strictly concave in a and d, especially the ICR but also the CCR differ as

they both run into saturation if one of the inputs is fixed and the other increased

(see Property 2). The ICR has the characteristic shape of a Leontief production,

consisting of two planes that intersect on the diagonal between a- and d-axis. The

CCR takes this shape for large values of a and d. On this a-d-diagonal, the surface

of SIM and DCR is strictly concave. The ICR grows linearly on this diagonal and

for the CCR, the first part of the diagonal is strictly convex and then grows linearly

from some point on. For all matching functions, the surfaces are symmetric on the

diagonal between a- and d-axis (see Property 5).

• Comparing the respective observed and predicted rentals for a = 10 and d = 10

reveals, that all matching functions overestimate the SIM results at this point, but

that the DCR prediction is better than the ICR and CCR. Considering the surfaces

overall, as well as the concave and convex shapes of the surfaces on the diagonal

discussed above, indicates that the DCR approximates the SIM best, followed by

the CCR and then the ICR.

We continue the qualitative investigation by comparing the rental curves RT for specific

values of the demand d̂, depicted in Figure 7. These graphs which are common to depict

matching functions can be thought of as corresponding vertical cuts through the surface

plots in Figure 6. Again, the two rows depict the SZSP-scenarios with Az = 1 km2

and Az = 2 km2. The respective graphs for all Az ∈ Az, are depicted in Figure 13

in Appendix F. The columns correspond to different demands d̂. The simulation (SIM)

results are depicted by a black solid line, the results of ICR in dashed blue, CCR in dotted

red, and DCR in dotdashed green. The following qualitative insights can be drawn:

• As illustrated in Figure 4 in Section 3.5, the DCR is strictly concave in a, while

both ICR and CCR take the form of a piecewise linear function with a positive slope

piece anchored at the origin and a second horizontal piece.

• The expected rentals predicted by the DCR are almost identical to the average SIM

results, for all a-d̂ combinations and all Az. The characteristic strictly concave shape
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Figure 6: Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two
SZSP-scenarios.

of SIM is perfectly modeled by the DCR. The CCR underestimates SIM for small

values of a and d̂. For large values, it overestimates this benchmark. As above, for

large a and d̂, the CCR and the ICR do not differ (see Figures 13(a2)-13(a4) in

Appendix F).

• The ICR overestimates the SIM rentals for all a-d̂ combinations. The difference

grows in the size of the zone Az and for a certain Az it reaches its maximum at

a = d̂. Moreover, this maximum difference grows in d̂. This can be explained as

follows: The ICR assumes a perfect matching, which is appropriate if the zone size

Az equals the walking area. However, when the zone becomes larger, the probability

that an available vehicle is actually in walking distance to a customer decreases. The

maximum is at a = d̂ because at this value, each customer needs to find a vehicle

for the ICR to be exact. By contrast, imagine d = a+1, then we have an additional

customer and the ICR prediction is still realized if one customer cannot reach a

vehicle.

4.1.6 Quantitative Results

In the following, we summarize the most relevant quantitative results. Table 3 in Ap-

pendix F contains the values of RTME for the DCR, CCR, and ICR for all parameter

configurations, grouped by SZSP-scenarios Az ∈ Az. The corresponding RTMRE are

depicted in Table 4 in Appendix F.

• For the DCR, RTME takes both positive and negative values. The minimum RTME

is between -0.06 (Az = 0.5 km2) and -0.20 (Az = 2 km2), i.e. -3.8% and -1.0%
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Figure 7: Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two
SZSP-scenarios.

RTMRE. The maximum RTME is between 0.19 (Az = 0.5 km2) and 0.40 (Az =

1 km2), i.e. 2.9% and 5.6% RTMRE.

• For the CCR, RTME also takes both positive and negative values. The minimum

RTME is between -0.06 (Az = 0.5 km2) and -0.80 (Az = 1 km2), i.e. -13.7% and

-32.0% RTMRE. The maximum RTME is between 0.85 (Az = 0.5 km2) and 2.20

(Az = 1 km2), i.e. 11.9% and 28.2% RTMRE.

• For the ICR, RTME only takes values greater or equal to zero. The maximum

RTME is 0.85 (Az = 0.5 km2) and it grows to 5.75 (Az = 4 km2), i.e. to 11.9% and

135.3% RTMRE.

The above results demonstrate that in general, the ICR matching function is not suitable

to predict rentals accurately in the stylized SZSP-setting that only considers one zone.

While the prediction error might be acceptable in our scenarios with ratios of walking

area and zone area in the approximate range Aw

Az
≥ 1

2
, the ICR overestimates the observed

rentals in the SIM benchmark substantially for smaller Aw

Az
. The CCR considers Aw and Az

in the matching prediction and therewith is capable of predicting the rentals in the SZSP-

setting much more accurately, especially for smaller ratios of Aw

Az
. The DCR predicts the

rentals best in the SZSP-setting and in particular performs better than the CCR for ratios

of around Aw

Az
= 1

2
. As discussed in Section 3.5, the decisive disadvantage of the DCR is

that it can not be losslessly integrated in a linear network flow SMS model, such that the

DCR can not be considered in the following numerical results of the MZMP-setting.
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4.2 Multiple Zones Multiple Periods Setting

4.2.1 Setting

The multiple zones multiple periods (MZMP) setting replicates an entire FF SMS with

Z = 59 zones Z = {1, 2, . . . , Z} and T = 48 periods T = {0, 1, . . . , T − 1} of 30 minutes

each which together replicate one day. The purpose of this MZMP-setting is to assess

how different matching functions affect the overall rental prediction accuracy when supply

and demand interact in an entire FF SMS. In this setting, only the size of the zones Az

changes over the parameter configurations, replicating multiple FF SMSs with identical

zone number but with different sizes of the operating area. Think of cities with the same

number of inhabitants, but spread over areas of different sizes, i.e. with different densities.

The MZMP-setting is based on a real-life FF SMS: The vehicle fleet is initially distributed

over the zones in line with historical data from Share Now. Customers arrive according to

a demand pattern over the different zones and periods, which is obtained from historical

data as well. More precisely, for every zone i ∈ Z, âi0 defines the initial vehicle count

and for every zone-zone-period combination (i-j-t combination with i, j ∈ Z, t ∈ T ), the
demand dijt is given. Note that due to the non-disclosure agreement with our practice

partner, we do not state these parameters explicitly.

As in the SZSP-setting, the benchmark in the MZMP-setting stems from a stochastic

dynamic simulation, with the difference that the rentals that evolve over one entire day

throughout the entire SMS are considered. The latter also implies that, in contrast to

the SZSP-setting, the matching functions can no longer be directly evaluated for a given

parameter configuration. Therefore, to evaluate the matching functions, we integrate

the two functions which can be losslessly linearized – the CCR and the ICR – in an FF

SMS model that is based on a linear network flow formulation, as described in Section

3.5. In each zone-period combination, the rentals realize according to the respective

matching function rCCR
it,Aw,Az

(ait, dit) and rICR
it,Aw,Az

(ait, dit). The constraints of the network

flow formulation ensure that these rentals rMit with M ∈ {CCR, ICR} split into the

different rMijt in proportion to the given demand pattern, meaning rMijt =
dijt
dit
· rMit ∀i, j ∈

Z, t ∈ T . Therewith, the rentals that realize over all zones and periods according to a

specific matching function can be derived.

4.2.2 Simulation Benchmark

For a specific parameter configuration of the MZMP-setting, we derive the respective

benchmark by performing multiple simulation runs n ∈ N = {1, 2, . . . , N} that each

yield a rental observation rijt,n for every zone-zone-period combination (i-j-t combination

with i, j ∈ Z, t ∈ T ). Primarily, we consider the observed rentals on the period-level,

meaning rt,n =
∑

i∈Z
∑

j∈Z rijt,n.
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Figure 8: Scenario with MZMP and Az = 1 km2, Ao = 59 km2

At the beginning of each run, the vehicle fleet is initialized according to the initial

spatial vehicle distribution â0 = [âi0]Z×1. Each zone then exactly contains the number of

vehicles as defined in â0, and the precise location within a zone for each of the vehicles

is randomly determined from the uniform distribution. The customer arrival process

follows a Poisson process Pλt in which the intensity λt varies for the periods and equals

the demand in the respective period, meaning λt =
∑

i∈Z
∑

j∈Z dijt/30 (unit of λt is

[1/min]). The inter-arrival time ∆τ until a new customer arrives is sampled from the

exponential distribution ∆τ ∼ Exp(λt). Whenever a customer arrives in period t, the

customer’s origin zone i is determined by roulette wheel selection, i.e. the probability for

arrival in i is P origin
it =

∑
j∈Z dijt/

∑
i∈Z
∑

j∈Z dijt. The customer’s exact origin location

is determined by uniform distribution of positions within the origin zone. All available

vehicles within the walking distance of 0.3km are determined and, if there is at least one

vehicle within reach, the customer chooses the closest one for rental. If not, the customer

leaves the system without further consideration. In case of a rental that originates at

a certain i-t-combination, the destination zone is again determined by roulette wheel

selection, i.e. the probability for destination zone j is P destination
jt = dijt/

∑
k∈Z dikt. All

rentals have a duration of 15 min. and immediately become available as soon as a rental

is terminated. Note that here, in contrast to the SZSP-simulation, not all vehicles are

necessarily available at the beginning of a period. The customer’s exact destination

location is determined by uniform distribution of positions within the destination zone.

This process of customer arrival sampling and potential rental determination is executed

until the cumulated arrival time over all customers exceeds the considered day τmax =

48 · 30 [min]. One simulation run is depicted as pseudo code in Algorithm 4.

To clarify the setup, consider Figure 8a that depicts a snapshot of a single simulation

run. In the simulation, the zones are squares of the same size and in this particular

parameter configuration, Az = 1 km2 for all zones. Note that since the considered FF

SMS consists of 59 zones, the five zones represented in the top row on the right are

out of the simulation’s scope. The vehicles are represented as blue triangles, and the
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currently rented vehicles are depicted at the rental origin with a dotted line that ends at

the rental destination. One customer arrived in the considered instance, represented by

the red dot with walking area, depicted as red circle. For this particular customer, no

available vehicle was within reach. Figure 8b depicts the demand and the resulting rentals

averaged over all N runs in the course of the day. More specifically, the dotted black curve

represents the aggregate demand over all zones for every single period t ∈ T , meaning

dt =
∑

i∈Z
∑

j∈Z dijt. The solid black curve represents the mean aggregate rentals over all

zones for every single period t ∈ T , meaning r̄t,N = 1
N

∑
n∈N rt,N . This rentals curve for

various parameter configurations serves as a benchmark to evaluate the rentals prediction

of the matching functions qualitatively.

Algorithm 4 MZMP simulation (one run n ∈ N )
- initialize simulation time τ = 0
- initialize rental count rt,n = 0 ∀t ∈ T
- distribute vehicles randomly according to â0
- initialize set of available vehicles Vavailable with all vehicles
- initialize set of currently rented vehicles Vrented = ∅
while τ < τmax do

- draw inter-arrival time ∆τ from exponential distribution ∆τ ∼ Exp(λt)
- update simulation time τ ← τ +∆τ
if vehicles in Vrented have arrival time < τ then

- remove respective vehicles from Vrented

- add respective vehicles to Vavailable

end if
- determine current period t
- determine customer’s origin zone i with probabilities P origin

it ∀i ∈ Z
- determine customer’s exact origin location within origin zone i by uniform distribution
- determine distances to vehicles in Vavailable

if at least one vehicle in walking distance then
- choose closest vehicle from Vavailable

- remove chosen vehicle from Vavailable

- add chosen vehicle to Vrented

- record rental: rt,n ← rt,n + 1
- determine destination zone j with probabilities P destination

jt ∀j ∈ Z
- determine customer’s exact destination location within j destination zone by uniform distribu-
tion

end if
end while

4.2.3 Parameter Configurations and Scenarios

We consider the following parameter values:

• Available vehicles (VMZMP ): The initial fleet distribution VMZMP remains constant

over all studies and it is chosen according to real-life data. The overall fleet size is∑
j∈Z âi0 = 201 and for the individual zones, the initial vehicle count lays in the

interval âi0 ∈ [0, 10] ∀i ∈ Z.
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• Arriving customers (VMZMP ): The pattern of arriving customers VMZMP remains

constant over all studies and it is chosen according to real-life data. The dijt values

vary in the interval dijt ∈ [0, 18] ∀i, j ∈ Z, t ∈ T .

• Walking area size (Aw): As in the SZSP-setting, the size of the reachable area by

walking is kept constant at Aw = π · (0.3km)2 = 0.28 km2.

• Zone area size (Az): We obtain four scenarios by considering the sizes of the zone

area Az = {0.5 km2, 1 km2, 2 km2, 4 km2}, i.e. cities with the same fleet and de-

mand, but spread over operating areas of Ao = 29.5 km2 to Ao = 236 km2.

We perform N = 100 simulation runs for every variant, meaning for every matching

function in each parameter configuration (here equivalent to scenario).

4.2.4 Evaluation Metrics

Analogous to the SZSP-setting, we use several metrics to assess the rentals prediction

accuracy. Different from above, all metrics here are time-specific:

• Rentals (RTt): The period-specific absolute rentals RTt are determined as follows

for the simulation and the matching functions. The mean observed rentals in the

simulation for a specific period t are r̄t,N = 1
N

∑
n∈N

∑
i∈Z
∑

j∈Z rijt,n. The predicted

rentals by the network flow-based model with integrated matching function for a

specific period t are r̄t =
∑

i∈Z
∑

j∈Z rijt.

• Rentals mean error (RTME
t ): The period-specific mean absolute error RTME

t be-

tween the predicted rentals by the network flow-based model with integrated match-

ing function r̄t and the mean observed rentals in the simulation r̄t,N is RTME
t =

r̄t − r̄t,N .

• Rentals mean relative error (RTMRE
t ) [%]: The period-specific mean relative error

RTMRE
t between the predicted rentals by the network flow-based model with inte-

grated matching function r̄t and the mean observed rentals in the simulation r̄t,N is

RTMRE = (r̄t − r̄t,N)/r̄t,N · 100.

4.2.5 Results

Figure 9 depicts the mean rentals RTt for the simulation benchmark (SIM) and the pre-

dicted rentals by the two linear network flow formulations with CCR and ICR in the

course of the day for the four MZMP-scenarios with Az = 0.5 km2, 1 km2, 2 km2, and

4 km2. In Tables 5 and 6 in Appendix G, the corresponding mean errors RTME
t and

mean relative errors RTMRE
t are depicted. The most relevant results can be summarized

as follows:
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Figure 9: Mean (SIM) and predicted (CCR, ICR) rentals RT in MZMP-scenarios with
different zone and operating area sizes Az, Ao

• The rental curves follow the typical demand pattern with two peaks around 8:00

and 19:00.

• Despite the identical demand pattern in all scenarios, the SIM benchmark of RTt

(solid black) varies substantially. As the city considered becomes less dense (mim-

icked by increasing c.p. Az), the number of rentals quickly decreases (by a factor

of more than 10) from Az = 0.5 to Az = 4. This can be explained as follows:

For small Az (dense cities), customers’ walking area is comparatively larger. This

increases the matching probability because – given the same number of vehicles in

the operating area – they can walk to more vehicles. By contrast, with large Az

(low density), the available vehicles are spread over large distances and customers

more often do not find a vehicle in their walking distance.

• The predicted ICR rentals are identical in all scenarios, because the ICR is inde-

pendent of Az (see (7)). While for Az = 0.5 km2, the overall rental curve inciden-

tally resembles the SIM benchmark, it increasingly overestimates the benchmark

with growing Az. Already for Az = 1 km2, the ICR rental predictions are far

from the SIM benchmark. The mean error RTME
t lies between [-17.7, 10.7] for

Az = 0.5 km2, [1.5, 48.2] for Az = 1 km2, [4.7, 86.3] for Az = 2 km2, and [6.0,

105.2] for Az = 4 km2. In the periods between morning and evening peak, the mean

relative error RTMRE
t lies in the range of [-19.3%, 14.0%] for Az = 0.5 km2, [18.9%,

92.9%] for Az = 1 km2, [21.7%, 478.7%] for Az = 2 km2, and [870.8%, 2199.6%] for

Az = 4 km2.

• The CCR rentals curve resembles the the SIM benchmark for all Az (densities).

The mean error RTME
t lies between [-17.2, 8.7] for Az = 0.5 km2, [-8.7, 41.0] for

Az = 1 km2, [-2.9, 4.2] for Az = 2 km2, and [-3.1, 1.0] for Az = 4 km2. In the periods

between morning and evening peak, the mean relative error RTMRE
t lies in the range

of [-19.2%, 11.2%] for Az = 0.5 km2, [-13.7%, 2.2%] for Az = 1 km2, [-11.3%, 30.5%]

for Az = 2 km2, and [-32.9%, 24.1%] for Az = 4 km2. In comparison to the ICR,

the curve changes with varying zone size Az, demonstrating the CCR’s capability

to adapt to scenarios with high and low density also in the MZMP-setting.
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As in the SZSP-setting, also the above results in the MZMP-setting demonstrate that

the ICR in general is not suitable to predict rentals accurately and that the CCR in

contrast is capable of adapting to different densities. For the Az = 0.5 km2 scenario

(high density), both ICR and CCR provide good rentals predictions. For larger Az (low

density), however, the ICR substantially overestimates the SIM benchmark by a factor

of approximately 2 in the Az = 1 km2 scenario and up to a factor of approximately 20 in

the Az = 4 km2 scenario, while the error RTMRE
t of CCR remains in a relatively narrow

range of up to approximately 30% at the most. It may be tempting to wrongly think

that Az = 0.5 is a good value for the ICR. Rather, where the ICR has a good overall

fit depends on the whole setting and cannot be determined in advance. Moreover, even

though the ICR provides a good estimate at the overall level, this is because of errors at

the zone level cancelling out. However, the zone level is important for decision making,

as we will see in the next section.

5 Pricing Optimization Case Study

In this section, we evaluate the performance of the CCR and ICR matching functions in

an FF SMS optimization problem. To that end, we present a pricing optimization case

study based on Share Now data and assess whether more accurate rental predictions can

result in better pricing decisions and eventually higher profits (more precisely contribution

margin). The problem that we consider is a differentiated pricing problem for SMS that

was discussed in Soppert et al. (2021a) and for which a MILP, based on a network flow

formulation, with ICR matching function was proposed. We adapt the MILP formulation

by integrating the CCR. For the different instances considered in this case study, we derive

pricing solutions with both of the MILP models and evaluate them in a simulation study.

The differentiated pricing problem and its original as well as the adapted mathematical

modeling are introduced in Section 5.1. Section 5.2 discusses the setup of the simulation

study we use to evaluate the different pricing solutions. In Section 5.3, we introduce the

considered parameter configurations as well as the metrics we use. Section 5.4 discusses

the obtained results.

5.1 Problem Statement and Mathematical Modeling

The origin-based differentiated pricing problem (OBDPP) in SMSs, as defined in Soppert

et al. (2021a), is a pricing problem in which spatially and temporally differentiated minute

prices have to be determined, to maximize the contribution margin of an SMS. More

precisely, an SMS is discretized into Z different locations Z = {1, 2, . . . , Z} and the

considered time span of one day is discretized into T periods T = {0, 1, . . . , T − 1}.
For every i-t combination with i ∈ Z, t ∈ T , a minute price pit is to be chosen from a
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given price set P = {p1, p1, . . . , pM} with corresponding price indicesM = {1, 2, . . . ,M}.
Origin-based refers to the fact that, in contrast to a trip-based pricing mechanism for

example, all rentals that begin in a certain i-t combination, are charged with the same

minute price pit. Note that differentiated (=static), in contrast to dynamic (see Agatz

et al. (2013)), refers to a pricing approach where prices do not depend on components of

the current state of the system that are unobservable by the clients, such as current fleet

distribution, but can be pre-computed and pre-published. The OBDPP assumes supply

and demand matching according to the ICR.

The OBDPP can be modeled by a MILP which is based on a deterministic network

flow formulation where expected vehicle movements are represented by flows in a spatio-

temporal network, as depicted in Figure 11. Vehicle flows consist of actual rentals rmijt

from location i ∈ Z to j ∈ Z in period t ∈ T and at price pm with index m ∈ M (solid

arcs), or unused vehicles sit that remain in the same location i ∈ Z at period t ∈ T
(dashed arcs). For every i-j-t combination, the respective basic demand dijt is assumed

to scale with the i-j-t-specific sensitivity factor fm
ijt, depending on the price pm, to the

actual demand dmijt = dijt · fm
ijt. The main components of the OBDPP MILP formulation

are as follows:

• An objective function that maximizes the contribution margin from rentals that

realize at different prices over the entire spatio-temporal network, meaning∑
i,j∈Z

∑
t∈T
∑

m∈M rmijt · lij · (pm − c), where lij is the average rental duration and

c represents the variable costs per minute.

• Flow conservation constraints of the form (9) as described in Section 3.5 which

ensure that the fleet of vehicles remains constant in every period and that, for a

certain i-t-combination, the available vehicles either remain unused or get rented.

• Constraints ensuring that for pit exactly one of the prices from the price list P is

chosen for every i-t-combination. If price pm is chosen, the respective binary variable

ymit is one.

• A set of constraints that determines the realization of rentals. The overall rentals

for every i-t combination are determined according to the ICR. These rentals split

into the i-j-t-specific rentals, proportionally according to the demand, as described

in Section 6.

The constraints in the OBDPPMILP formulation that ensure rentals realization according

to the ICR can easily be replaced by corresponding constraints for the CCR. We state the

resulting full MILP formulation in Appendix E. The constraints that are new compared

to Soppert et al. (2021a) are (49)-(54). To differentiate in the following, we denote

the original problem by OBDPP-ICR and the adapted with CCR matching function by

OBDPP-CCR.
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5.2 Simulation Evaluation

To evaluate and compare the performance of the optimization results, i.e., of the prices

obtained from either optimizing using OBDPP-ICR or OBDPP-CCR, we perform a sim-

ulation study. Each run of the simulation reflects a potential real-world evolvement of

the system over the considered day given the calculated pricing solutions. In essence, the

simulation is in line with the one we used to calculate the simulation benchmarks for the

MZMP-setting in Section 4.2.2. We only need to adapt it to allow for different prices

and their effect on the demand. As described, the customer arrival process in the MZMP

simulation follows a Poisson process Pλt with intensity λt that depends on the demand in

the respective period. According to the assumption in the OBDPP, described in Section

5.1, the demand now depends on the chosen prices. Therefore, λt has to be calculated

according to the pricing solution, meaning λt =
∑

i∈Z
∑

j∈Z dmijt/30, where d
m
ijt = dijt · fm

ijt

and fm
ijt depends on the price pit. Accordingly, the probability for an arriving customer

in period t to arrive in zone i has to be updated to P origin
it =

∑
j∈Z dmijt/

∑
i∈Z
∑

j∈Z dmijt.

In case of a rental originating in a certain i-t-combination, the probability to have target

zone j is P destination
jt = dmijt/

∑
k∈Z dmikt. Every pricing solution is evaluated with N = 100

simulation runs.

5.3 Parameter Configurations, Scenarios, and Evaluation Met-

rics

The case study builds on the MZMP-setting introduced in Section 4.2.1. The number

of zones and periods, the initial vehicle distribution, and the overall demand pattern

are chosen as in the MZMP-setting. Again, we consider the two scenarios with Az ∈
{0.5 km2, 1 km2, 2 km2, 4 km2} (high to low density with operating area sizes of Ao =

29.5 km2 to Ao = 236 km2). The additional parameters are chosen according to Soppert

et al. (2021a), that is, prices of p1 = 24 cent/min, p2 = 30 cent/min, p3 = 36 cent/min,

denoted as low, base, and high price. The corresponding price sensitivities are f 1
ijt =

1.25, f 2
ijt = 1, f 3

ijt = 0.75 ∀i, j ∈ Z, t ∈ T . Variable costs of c = 7.5 cent/min make up

25% of the base price. The rental time is lij = 15 min.

The results obtained by a uniform pricing with the base price, that is, without price

differentiation, (BASE) serve as a benchmark for the ones by a price optimization (OPT)

with OBDPP-ICR or OBDPP-CCR. In addition to the metrics defined in Section 4.2.4,

we consider the following metrics:

• Relative rentals increase (RT rel [%]): The RT rel between rental observations with

optimized pricing RTOPT
n and the rental observations with base pricing RTBASE

n is

defined as RT rel = (
∑N

n=1RTOPT
n −

∑N
n=1RTBASE

n )/
∑N

n=1RTBASE
n · 100.
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Az

[
km2

]
OBDPP-

PRprop
m change w.r.t. BASE

low base high RT rel RV rel CM rel

0.5
ICR 17.1% 62.8% 20.1% -4.3% -0.1% 1.2%
CCR 19.9% 61.1% 19.0% -3.7% 0.6% 2.1%

1
ICR 17.1% 62.8% 20.1% -3.4% 0.4% 1.6%
CCR 34.1% 54.0% 11.1% 1.8% 3.6% 4.2%

2
ICR 17.1% 62.8% 20.1% -3.2% 0.6% 1.8%
CCR 16.3% 80.3% 3.5% 3.5% 4.3% 4.6%

4
ICR 17.1% 62.8% 20.1% -5.7% -1.9% -0.6%
CCR 0.0% 98.9% 1.1% -1.3% 0.7% 1.4%

Table 1: Simulation results of pricing solutions from OBDPP-ICR and -CCR with different
Az ∈ Az.

• Relative revenue increase (RV rel [%]): The RV rel between revenue observations with

optimized pricing RV OPT
n and revenue observations with base pricing RV BASE

n is

defined as RV rel = (
∑N

n=1RV OPT
n −

∑N
n=1RV BASE

n )/
∑N

n=1RV BASE
n · 100.

• Relative contribution margin increase (CM rel [%]): The CM rel between contribution

margin observations with optimized pricing CMOPT
n and the contribution margin

observations with base pricing CMBASE
n is defined as

CM rel = (
∑N

n=1CMOPT
n −

∑N
n=1CMBASE

n )/
∑N

n=1CMBASE
n · 100.

• Proportion of prices (PRprop
m [%]): For a particular price pm, the PRprop

m defines the

proportion of this price to all prices of a certain pricing solutions, i.e.,

PRprop
m =

∑Z
i=1

∑T−1
t=0 ymit /(Z · T ) · 100.

Note that RT
(·)
n , RV

(·)
n , and CM

(·)
n denote the respective quantity observed in one entire

simulation run, meaning the sum over all zones and periods.

5.4 Results

In Table 1, the results for the evaluated pricing solutions, generated by OBDPP-ICR and

OBDPP-CCR for MZMP-scenarios with Az = 0.5 km2, 1 km2, 2 km2, 4 km2 are summa-

rized. Table 7 in Appendix G additionally depicts the corresponding confidence intervals

that demonstrate the statistical significance of the respective CM rel results.

• The PRprop
m results for all scenarios demonstrate, that the prices in the solution

obtained with the OBDPP-ICR are higher on average than those obtained with the

OBDPP-CCR. For Az = 0.5 km2, the difference in the price levels is smaller than

2 percentage points, but it grows with increasing Az up to almost 20 percentage

points for Az = 4 km2. Exemplary, the two pricing solutions of OBDPP-ICR and

OBDPP-CCR for Az = 2 km2 are depicted in Figure 10. Clearly, the OBDPP-ICR

solution contains more high prices around the morning and evening demand peak,

meaning around the periods 16 and 36. Only few of the zones, for example zone 7

and zone 49 have relatively many high prices in both solutions.
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(b) OBDPP-CCR

Figure 10: Low (L), base (B), and high (H) prices in case study scenario with Az = 2 km2

• As a consequence of the higher prices in the OBDPP-ICR solution, fewer rentals

(RT rel) realize in the simulation. The decrease in rentals depends on the scenario

and lies between 0.6 percentage points for Az = 0.5 km2 and to 6.7 percentage

points for Az = 2 km2.

• The revenue (RV rel) obtained by the OBDPP-CCR solution is higher than the one

resulting from the OBDPP-ICR in all scenarios. The gap lies in the range of 0.7

percentage points for Az = 0.5 km2 and 3.7 percentage points for Az = 2 km2.

• Most importantly, the contribution margin CM rel, which is the objective of the

pricing optimization, is significantly higher with the OBDPP-CCR pricing solution

than with the OBDPP-ICR. The difference lies between 0.9 percentage points (Az =

0.5 km2) and 2.8 (Az = 2 km2) percentage points. Remember that for Az = 0.5 km2,

the overall rentals prediction of ICR was very accurate. The fact that even here

an increase of 0.9 percentage points by using the CCR is possible shows that this

coincidental overall accuracy does not necessarily translate to good decisions. First,

errors at the zone level may cancel out. Second, supply and demand are endogeneous

in the optimization model, and, thus, zones which have the ”appropriate” parameter

combination in the ICR may no longer have in the optimal solution.

To summarize the results of the case study, the OBDPP-CCR with improved matching

modeling compared to the OBDPP-ICR yields pricing solutions that generate signifi-

cantly higher contribution margins. The overestimation of rentals by the ICR causes the

OBDPP-ICR to predict too many rentals in general and therewith also too many rentals

when high prices are set. The optimal pricing solution according to the OBDPP-ICR

therefore sets too many high prices which cause a reduction of rentals and a decrease
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in contribution margin when compared to the optimal pricing solution according to the

OBDPP-CCR. These results demonstrate that an accurate matching modeling that con-

siders the specific characteristics of FF SMS is highly relevant for optimizing operations.

6 Managerial Insights and Conclusion

In this paper, motivated by the insights gained in a close collaboration with Europe’s

largest FF car sharing provider Share Now, we examined the modeling of supply and

demand matching in FF SMSs. Despite the fact that the realization of rentals is central to

the accuracy of an SMS model, matching functions for SMSs have not been discussed in the

literature yet and as a consequence, optimization models for SB and FF SMSs have been

identical in this regard. With the development of matching functions that consider the

central influencing factors specifically relevant for FF SMSs, such as customers’ maximum

walking distance and zone sizes, our work builds a bridge between the optimization models

for SB and those for FF SMSs. This allows to adapt optimization models designed for

SB to FF SMSs.

In the following, we structure the conclusions from our findings and the related man-

agerial insights according to two central aspects, namely (1) the development and the

analytical as well as computational assessment of accurate matching functions for FF

SMSs and (2) the integration of the functions into FF SMS optimization approaches and

the investigation of benefits that result from that.

With regard to (1), the methodological approach of developing accurate matching

functions for FF SMSs was to formalize a generic, stylized matching process first and,

based upon this, to systematically derive three matching functions in a second step.

According to their assumptions regarding how vehicles cover the zone area, we termed

the matching functions degressive, constant, and infinite coverage rate matching function

(DCR, CCR, and ICR). While the DCR and CCR are novel matching functions, the

ICR with its extremely simplified assumptions can be considered as the state-of-the-art

matching function, even if not explicitly discussed as such in the SMS literature. In

an extensive computational study, we compared the rental prediction accuracy by the

matching functions in two settings – the first considering the rentals realization process

isolated in a single zone and single period, and the second covering an entire FF SMS

network consisting of multiple zones and periods.

The numerical results in the single zone single period setting revealed that the ICR

in general overestimates rental: The maximum relative rental prediction errors lie in the

range of 10% to more than 100%, depending on the zone size. With the CCR and DCR,

the rentals prediction is a lot more accurate: For the CCR, the relative rental prediction

errors lie in the range of -30% to 30% and for the DCR in the range of -5% to 5%. In

the setting with multiple zones and multiple periods, the relative rental prediction error
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with the ICR can (in one period) grow up to 100%-500% for medium sized and above

2000% for larger zones. For the CCR, the maximum relative rental prediction error in

the relevant periods where many vehicles move lies between -15% and 30% for medium

sized and between -30% and 25% for larger zones. These results support the finding that

the ICR cannot accurately describe matching in an FF SMS in general and that novel

matching functions, like the CCR and DCR are required.

Besides the numerical analyses, we also investigated the matching functions analyti-

cally. Most importantly, we demonstrated that only the CCR and DCR have a rentals

limit value of zero when the walking distance approaches zero or the zone area grows in-

finitely large. This demonstrates mathematically that these two functions behave mean-

ingfully with regard to the spatial parameters relevant in FF SMS. Among other theoret-

ical results, we also showed analytically that the ICR is a special case of the CCR and

DCR for extreme cases of large walking distance and/or small zone area size, meaning

that in such situations, even the ICR could have some validity for FF SMS.

Several important insights can be concluded from these numerical and analytical re-

sults. First, to accurately describe the matching between supply and demand in an

FF SMS, multiple relevant parameters have to be considered. Besides the sheer num-

ber of available vehicles and arriving customers, the zone size, the customers’ maximum

willingness-to-walk, successively arriving customers as well as the decreasing marginal

zone coverage by additional vehicles play a decisive role. Second, the results show that

only the DCR and CCR are suitable for modeling FF SMSs in general, because they do

consider all of the above parameters explicitly or implicitly. The ICR in contrast has

the structural problem to neglect these additionally relevant parameters and to severely

overestimate rentals. Third, the necessity for more comprehensive matching functions

depends on the zone sizes and the area within walking distance of the customers. All of

the above insights reveal that the previously mentioned and so far unconsidered aspect of

matching modeling is indeed central for managing FF SMSs and that matching modeling

needs to be considered in the modeling and control of FF SMSs.

Regarding the second central aspect of our work, (2) the integration of the matching

functions into FF SMS optimization approaches and the investigation of resulting benefits,

we demonstrated that the CCR, opposed to the DCR, can easily be losslessly linearized.

Given the vast literature on SMS optimization that use linear network flow-based for-

mulations, this allows the adaption of the many existing optimization approaches to be

generalized such that they can be applied to both SB as well as FF SMSs. To analyze the

potential benefits resulting from that, as an example, we considered a pricing optimization

approach from literature in a case study based on real data from Share Now.

The numerical results from the case study show that, compared to the pricing solution

with the ICR, in the pricing solution from the CCR model high prices are chosen a lot

less frequently, i.e. by a factor of 20. Low prices are chosen a lot more frequently, i.e. by
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a factor of 2 in the CCR pricing solution, such that the different matching functions do

actually impact the decision making. The better pricing decisions with the CCR cause

significant contribution margin gains over the overall too high prices caused by the overes-

timation of rentals in the ICR pricing solution. The difference in the resulting contribution

margin increase with respect to the base price benchmark was up to 3 percentage points

(corresponding to an increase by factors of 1.8 to 2.6) with the pricing solution obtained

by the CCR, compared to the ICR – an effect than can be solely ascribed to the more

accurate matching modeling (and, thus, in a sense comes for free, compared to marketing

or a fleet increase).

The main insight to derive from the pricing optimization case study is that the more

accurate matching modeling of the CCR also effects the decision making in a way that

benefits the overall objective. Since other FF SMS optimization problems, such as relo-

cation or fleet sizing problems, also rely on accurate rental predictions, it is clear that

they would also be affected by an overestimation of rentals. Therefore, it is a managerial

task to assess the potential problem of rental overestimation based on the findings in this

work and to initiate the recommended adaptions if necessary.

Taking the presented results and insights with regard to (1) and (2) into account, we

believe that there are promising directions for future work. First, the consideration of

inter-zone movements by customers as well as boundary effects at the borders of an oper-

ating area might yield improvement potential when considered in the matching modeling.

Second, an empirical study that focuses on matching in FF SMS would have the potential

to identify additional relevant factors, such as for example zone-specific characteristics like

its shape or its street network. Third, it would be insightful to quantify the importance

of accurate matching modeling in a different FF SMS optimization problem, for example

a relocation problem.
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Figure 11: Spatio-temporal network

B DCR Proof

Proof. If the zone does not contain any vehicles, A0 = 0 and Ā0 = Az, such that the

first vehicle, according to the assumption, covers

∆A1 = Aw ·
Az

Az
= Aw. (15)

The remaining uncovered area with one vehicle is Ā1 = Az − Aw and the additionally

covered area by the second vehicle is

∆A2 = Aw ·
Az −Aw

Az
= Aw · (1−

Aw

Az
). (16)

The âth vehicle additionally covers

∆Aâ = Aw · (1−
Aw

Az
)â−1 ∀â ∈ Z+. (17)

The total covered area Aâ by â vehicles then is

Aâ =
â∑

n=1

∆An =
â−1∑

n=0

∆An+1 = Aw ·
â−1∑

n=0

(1− Aw

Az
)n (18a)

= Aw ·
1− (1− Aw

Az
)â

1− (1− Aw
Az

)
= Az · (1− (1− Aw

Az
)â), (18b)

where the fourth equation stems from reformulating the partial sum of the geometric

series (with Aw ̸= 0). Therewith, PAw,Az(â) =
Aâ

Az
= (1− (1− Aw

Az
)â) and substituting this

in (1a) yields (2a). □
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C CCR Parameter Approximation

In this section, we show that the parameters λ and µ, which we introduced in Section

3.3.2 can be analytically approximated.

We begin with λ. Following the DCR assumption of degressive coverage of the zone

by additional vehicles according to ∆Aa = Aw · (1 − Aw

Az
)a−1, one can reformulate Aa as

follows.

Aa =

a∑

i=1

∆Ai = Aw ·
a∑

i=1

(1− Aw

Az
)i−1 (19)

= Aw ·
a−1∑

i=0

(1− Aw

Az
)i = Aw ·

1− (1− Aw
Az

)a

1− (1− Aw
Az

)
(20)

= Aw ·
1− (1− Aw

Az
)a

Aw
Az

(21)

For a known average available vehicle count ā, for example obtained from historical data

or preliminary tests in an optimization model, we can formulate

Aa ≈ Aw · λ · a, (22)

where

λ =
1− (1− Aw

Az
)ā

Aw
Az

· 1
ā
. (23)

Note that (21) could clearly be further simplified but the way we define λ and use it

in (22) allows to interpret λ as the fraction of Aw which is in average covered by every

additional vehicle.

In the following we derive µ which allows to formulate an average matching probability

for every customer and the explicit formulation of the CCR (4). Therefore, we consider a

certainty equivalent model of the matching process which can be formulated as

rAw,Az(a, d) =

d∑

i=1

Pi =

d∑

i=1

min(Di, Az)

Az
, (24)

where Pi denotes the matching probability and Di the area covered by the remaining

available vehicles when the ith customer arrives. In this expectation model, the coverage

changes for every customer according to Di+1 = Di−Pi ·∆D, where ∆D is the marginal

coverage by one vehicle.

We first consider the case that Di ≤ Az, such that the first argument of the min()-

operator in (24) is restrictive, therewith Di+1 = Di · (1− ∆D
Az

), and the expectation model
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becomes

rAw,Az(a, d) =
D1

Az
·

d∑

i=1

(1− ∆D

Az
)i−1. (25)

With ∆D = Aw · λ and D1 = Aw · λ · a this yields

rAw,Az(a, d) =
Aw

Az
· λ · a ·

d∑

i=1

(1− Aw · λ
Az

)i−1, (26)

where the last factor can be approximated by µ · d with a known average d̄ and

µ ≈ 1

d̄
·

d̄∑

i=1

(1− Aw · λ
Az

)i−1, (27)

such that (26) becomes

rAw,Az(a, d) =
Aw

Az
· λ · µ · a · d. (28)

Above, we considered that Di ≤ Az but with the constant coverage assumption ∆D =

Aw ·λ this is not given in general such that the rentals could exceed the arriving customers.

Furthermore, the assumption of an average matching probability neglects that all vehicles

might be taken for some of the arriving customers such that the rentals could exceed the

initial available vehicles count. Therefore, we need to introduce these two constraints

back in the expectation model and obtain

rAw,Az(a, d) = min(
Aw

Az
· λ · µ · a · d, a, d), (29)

which is exactly the CCR matching function in (5).

D Symmetry Proof of DCR

To prove symmetry of the DCR (2), we need to show

rDCR
it,Aw,Az

(âit, d̂it) = rDCR
it,Aw,Az

(d̂it, âit). (30)

To simplify notation, we use r(a, d) and r(d, a) instead of rDCR
it,Aw,Az

(âit, d̂it) and

rDCR
it,Aw,Az

(d̂it, âit) here, so we need to show

r(a, d) = r(d, a). (31)

Further, we introduce α = (1− Aw

Az
), such that the original DCR (2) results in

r(a, d) = (1− αa) · (1 + r(a− 1, d− 1)) + αa · r(a, d− 1) (32)
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r(a, 0) = 0 ∀a ∈ Z (33)

r(0, d) = 0. ∀d ∈ Z (34)

The proof is performed by induction over n = a+ d.

Base Cases: r(a, d) = r(d, a) for a+ d = 0 and a+ d = 1.

a+ d = 0: According to the boundary conditions (33) and (34),

r(a, d) = r(d, a) = 0 if a = d = 0.

a+ d = 1: According to the boundary conditions (33) and (34),

r(a, d) = r(d, a) = 0 if a = 0 or d = 0.

Induction Hypothesis. r(a, d) = r(d, a) for a + d = n − 2 and a + d = n − 1, with

n ∈ Z.

Induction Step. If r(a, d) = r(d, a) for a + d = n − 2 and a + d = n − 1, then

r(a, d) = r(d, a) for a+ d = n ∀n ∈ Z.

We first prove three lemmata which we then apply to prove the induction step.

Lemma 1.

αa−1 + αa−1 · r(a− 2, d− 2)− αa−1 · r(a− 1, d− 2)

= αd−1 + αd−1 · r(a− 2, d− 2)− αd−1 · r(a− 2, d− 1) (35)

According to the induction hypothesis, symmetry holds for a + d = n − 2, i.e. r(a −
1, d− 1) = r(d− 1, a− 1). Starting with this, we show Lemma 1 by means of equivalent

transformations.

r(a− 1, d− 1) = r(d− 1, a− 1)

⇐⇒ (1− αa−1) · (1 + r(a− 2, d− 2)) + αa−1 · r(a− 1, d− 2)

= (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2)

⇐⇒ (1− αa−1) + (1− αa−1) · r(a− 2, d− 2) + αa−1 · r(a− 1, d− 2)

= (1− αd−1) + (1− αd−1) · r(a− 2, d− 2) + αd−1 · r(d− 1, a− 2)

⇐⇒ αa−1 + αa−1 · r(a− 2, d− 2)− αa−1 · r(a− 1, d− 2)

= αd−1 + αd−1 · r(a− 2, d− 2)− αd−1 · r(a− 2, d− 1) □ (36)

Lemma 2.

r(a, d) = (1− αa) + (1− αd−1)

+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)

+ (1− αa) · αd−1 · r(d− 1, a− 2)
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+ αa · (1− αd−1) · r(d− 2, a− 1)

+ αa · αd−1 · r(d− 1, a− 1) (37)

We prove Lemma 2 by starting with the recursion of r(a, d):

r(a, d) = (1− αa) · (1 + r(a− 1, d− 1)) + αa · r(a, d− 1) (38)

We want so substitute r(a−1, d−1) and r(a, d−1) in (38) and therefore apply symmetry

according to the induction hypothesis for a+ d = n− 2 and a+ d = n− 1:

r(a− 1, d− 1) = r(d− 1, a− 1)

= (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2) (39)

r(a, d− 1) = r(d− 1, a)

= (1− αd−1) · (1 + r(d− 2, a− 1)) + αd−1 · r(d− 1, a− 1) (40)

We now substitute (39) and (40) in (38) and simplify the summands without r(·, ·):

r(a, d) = (1− αa) ·
[
1 + (1− αd−1) · (1 + r(d− 2, a− 2)) + αd−1 · r(d− 1, a− 2)

]

+ αa ·
[
(1− αd−1) · (1 + r(d− 2, a− 1)) + αd−1 · r(d− 1, a− 1)

]

= (1− αa) + (1− αa) · (1− αd−1) + αa · (1− αd−1)

+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)

+ (1− αa) · αd−1 · r(d− 1, a− 2)

+ αa · (1− αd−1) · r(d− 2, a− 1)

+ αa · αd−1 · r(d− 1, a− 1)

= (1− αa) + (1− αd−1)

+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)

+ (1− αa) · αd−1 · r(d− 1, a− 2)

+ αa · (1− αd−1) · r(d− 2, a− 1)

+ αa · αd−1 · r(d− 1, a− 1) □ (41)

Lemma 3.

r(d, a) = (1− αd) + (1− αa−1)

+ (1− αd) · (1− αa−1) · r(a− 2, d− 2)

+ (1− αd) · αa−1 · r(a− 1, d− 2)

+ αd · (1− αa−1) · r(a− 2, d− 1)

+ αd · αa−1 · r(a− 1, d− 1) (42)
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The proof of Lemma 3 is analogous to Lemma 2, beginning with r(d, a). □

Proof of Induction Step.
We show r(a, d) = r(d, a), by means of equivalent transformations and by using Lemmata
1-3.

r(a, d)

= (Lemma 2)

(1− αa) + (1− αd−1)

+ (1− αa) · (1− αd−1) · r(d− 2, a− 2)

+ (1− αa) · αd−1 · r(d− 1, a− 2)

+ αa · (1− αd−1) · r(d− 2, a− 1)

+ αa · αd−1 · r(d− 1, a− 1)

= (Rearrangement)

(1− αa) + (1− αd−1)

+ r(a− 2, d− 2)− αd−1 · r(a− 2, d− 2)− αa · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)

+ αd−1 · r(a− 2, d− 1)− αa+d−1 · r(a− 2, d− 1)

+ αa · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)

+ αa+d−1 · r(a− 1, d− 1)

= (Use Lemma 1 to substitute summands with αd−1)

(1− αa) + (1− αa−1)

+ r(a− 2, d− 2)− αa−1 · r(a− 2, d− 2)− αa · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)

+ αa−1 · r(a− 1, d− 2)− αa+d−1 · r(a− 2, d− 1)

+ αa · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)

+ αa+d−1 · r(a− 1, d− 1)

= (Use Lemma 1 multiplied with α to substitute summands with αa)

(1− αd) + (1− αa−1)

+ r(a− 2, d− 2)− αa−1 · r(a− 2, d− 2)− αd · r(a− 2, d− 2) + αa+d−1 · r(a− 2, d− 2)

+ αa−1 · r(a− 1, d− 2)− αa+d−1 · r(a− 1, d− 2)

+ αd · r(a− 2, d− 1)− αa+d−1 · r(a− 2, d− 1)

+ αa+d−1 · r(a− 1, d− 1)

= (Rearrangement)

(1− αd) + (1− αa−1)

+ (1− αd) · (1− αa−1) · r(a− 2, d− 2)

+ (1− αd) · αa−1 · r(a− 1, d− 2)

+ αd · (1− αa−1) · r(a− 2, d− 1)

+ αd · αa−1 · r(a− 1, d− 1)

= (Lemma 3)

r(d, a) (43)

This completes the proof. □
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E The Origin-Based Differentiated Pricing Problem

in Free-Floating Shared Mobility Systems

To allows for the optimization of FF SMSs, we in this section integrate the CCR in the

origin-based differentiated pricing problem (OBDPP) in SMSs as defined by (Soppert

et al. 2021a) that assumes matching according to the ICR, here denoted as OBDPP-

ICR. We denote the resulting problem with CCR (44)-(58) the OBDPP-CCR. Table 2

summarizes the nomenclature.

max
y,q,r,a,s

∑

t∈T

∑

i∈Z

∑

j∈Z

∑

m∈M
rmijt · lij · (pm − c) (44)

s.t. ait =
∑

j∈Z

∑

m∈M
rmijt + sit ∀i ∈ Z, t ∈ T (45)

∑

i∈Z

∑

m∈M
rmijt + sjt = aj(t+1) ∀j ∈ Z, t ∈ T (46)

ai0 = âi0 ∀i ∈ Z (47)
∑

m∈M
ymit = 1 ∀i ∈ Z, t ∈ T (48)

rmijt ≤ dmijt · ymit ∀i, j ∈ Z, t ∈ T ,m ∈M (49)

rmijt ≤ dmijt/
∑

k∈Z
dmikt · γmit · ait ∀i, j ∈ Z, t ∈ T ,m ∈M (50)

∑

j∈Z
dmijt · ymit − γmit · ait ≤ M̄ · qmit ∀i ∈ Z, t ∈ T ,m ∈M (51)

∑

j∈Z
−dmijt · ymit + γmit · ait ≤ M̄ · (1− qmit ) ∀i ∈ Z, t ∈ T ,m ∈M (52)

dmijt · ymit ≤ rmijt + M̄ · qmit ∀i, j ∈ Z, t ∈ T ,m ∈M (53)

dmijt/
∑

k∈Z
dmikt · γmit · ait ≤ rmijt + M̄ · (1− qmit )

+ M̄ · (1− ymit ) ∀i, j ∈ Z, t ∈ T ,m ∈M (54)

ymit , q
m
it ∈ {0, 1} ∀i ∈ Z, t ∈ T ,m ∈M (55)

rmijt ∈ R+
0 ∀i, j ∈ Z, t ∈ T ,m ∈M (56)

sit ∈ R+
0 ∀i ∈ Z, t ∈ T (57)

ait ∈ R+
0 ∀i ∈ Z, t ∈ {0, 1, . . . , T} (58)

The central decision variables are y = [ymit ]Z×T×M where ymit is binary and takes the value

1, if and only if price pm with m ∈ M was set in location i ∈ Z at period t ∈ T . The

continuous decision variables a = [ait]Z×(T+1) describe the number of available vehicles for

a certain i-t combination. r = [rmijt]Z×Z×T×M is the vector of rentals where the continuous

decision variable rmijt describes the rentals at price pm that realize from location i to

location j during period t. s = [sit]Z×T describes the vehicles that remain unused in a
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certain i-t combination and these decision variables are continuous as well. The vector

of auxiliary decision variables q = [qmit ]Z×T×M is required to set the ensure the rentals

realization according to the CCR (11).

The objective function (44) maximizes the contribution margin of the SMS. It considers

the revenue which is generated by the rentals of duration lij at price pm, minus the

respective variable costs per minute c. Constraints (45) and (46) formulate the flow

balance, where in (45), for example, the available vehicles are either rented or remain in

the same location. With Constraints (47), the vehicle count for all locations i ∈ Z is

initialized by âi0. Constraints (48) ensure, that only one price can be set for a certain

location-time combination.

All other constraints form the linearized CCR. Constraints (49) and (50) are the upper

bounds and represent the horizontal, and the first piece, respectively, from Figure 4b. Note

that if the first piece of the CCR is restrictive, meaning (50) is restrictive, the rentals split

proportionally according to the demand, analogous to OBDPP-ICR. Note further that if

a certain price is not set, (49) forces the respective rentals to be zero. The lower bounds

on the rentals have to be set in dependence of which price is set and which part of the

piecewise linear function is active. Therefore constraints (51) and (52) ensure that the

auxiliary variable qmit is 1, if and only if price pm was set at the respective i-t combination

and if and only if the first piece shall be active. In this case, when qmit = 1 and ymit = 1

the respective constraint (54) puts a lower bound on the rentals. If qmit = 0 and ymit = 1,

the respective constraint (53) is active. The difference to the original OBDPP consists in

the introduction of γm
it , the adaption of the auxiliary variables q, now dependent on m

and with different meaning, and the respective constraints (50)-(54).

The original OBDPP-ICR was proven to be NP-hard (Soppert et al. 2021a). Since

the ICR is a special case of the CCR, obviously, also the OBDPP-ICR is a special case of

the OBDPP-CCR. The OBDPP-CCR therewith is NP-hard as well.
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(Decision) variables
ait vehicles available in i at t, ait ∈ R+

0

rmijt vehicles rented from i to j during t when price m was set, rmijt ∈ R+
0

sit vehicles not rented, meaning vehicles that remain in i during t, sit ∈ R+
0

ymit pricing decision variable, describing if price m is set in i at t, ymit ∈ {0, 1}
qmit auxiliary variable, qmit ∈ {0, 1}

Sets
Z set of stations
T set of time periods
M set of price indices
y = {ymit ∀i ∈ Z, t ∈ T ,m ∈M}
q = {qmit ∀i ∈ Z, t ∈ T ,m ∈M}
r = {rmijt ∀i, j ∈ Z, t ∈ T ,m ∈M}
s = {sit ∀i ∈ Z, t ∈ T }

Parameters and indices
i, j, k ∈ Z location index
t ∈ T period index
m ∈M price index
pm price
fm
ijt sensitivity for price pm for i-j-t combination
dijt basic demand from i to j during t at base price
dmijt actual demand from i to j during t for price pm, dmijt = dijt · fm

ijt

âi0 initial number of available vehicles in i
c variable costs per minute
lij average duration of rental in minutes from i to j
M̄ sufficiently large number

Table 2: List of (decision) variables, sets, parameters and indices for the
OBDPP-CCR (44)-(58)
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F Single Zone, Single Period Setting -

Additional Results
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Figure 12: Mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in SZSP-scenarios with
Az = 0.5 km2, 1 km2, 2 km2, 4 km2
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Figure 13: Mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in SZSP-scenarios with
Az = 0.5 km2, 1 km2, 2 km2, 4 km2 and demand values d̂ = 2, 4, 6, 8
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Table 3: RTME in different SZSP-scenarios with varying Az for DCR, CCR, and ICR
a) Az = 0.5 km2, b) Az = 1 km2, c) Az = 2 km2, d) Az = 4 km2
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H Case Study - Additional Results

Az

[
km2

]
OBDPP-

RT RV CM
l.b. mean u.b. l.b. mean u.b. l.b. mean u.b.

0.5
ICR 2895.8 2908.3 2920.7 13591.1 13651.2 13711.3 10333.2 10379.4 10425.6
CCR 2912.9 2925.2 2937.5 13697.3 13755.2 13813.1 10420.2 10464.3 10508.5

1
ICR 1776.7 1788.5 1800.3 8309.4 8365.4 8421.3 6310.6 6353.3 6396.1
CCR 1874.3 1885.2 1896.1 8585.9 8636.8 8687.6 6477.2 6515.9 6554.7

2
ICR 692.2 698.7 705.1 3236.5 3267.2 3298.0 2457.7 2481.2 2504.7
CCR 741.1 747.4 753.6 3359.4 3388.5 3417.5 2525.6 2547.7 2569.7

4
ICR 200.3 203.5 206.6 938.5 953.1 967.8 713.1 724.2 735.4
CCR 210.2 213.0 215.9 964.7 978.2 991.7 728.3 738.5 748.8

Table 7: Mean and 95% confidence interval for RT , RV , and CM of pricing solutions of
OBDPP-ICR and OBDPP-CCR for MZMP-settings with Az = 0.5 km2, 1 km2, 2 km2, 4 km2

evaluated in simulation
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1 Introduction

Shared mobility systems (SMSs) like car sharing and bike sharing systems have long since

become a frequently used alternative to private vehicles and public transport in today’s

urban mobility. The global shared mobility market has a size of approximately USD 250

bn., with a projected annual growth rate of around 25% (Data Bridge Market Research

2021). Free-floating (FF) SMSs with flexible pick-up and drop-off locations within some

operating area – in comparison to the station-based (SB) SMSs (Lu, Chen, and Shen

2018) – have become the most popular and prevalent SMS type (Shaheen, Cohen, and

Jaffee 2018).

The traditional mobility service offered by FF SMS providers are short-term rentals

(STRs), where customers spontaneously rent a vehicle for trips that typically last 15-

30 minutes (Ferrero et al. 2015b). However, for use-cases in which customers want to

plan a trip in advance, e.g., to get a flight or for week-end trips, this service has the big

disadvantage that vehicles can only be reserved several minutes (typically 30 minutes)

in advance and, thus, that customers have no guarantee that a suitable vehicle will be

available when needed. Independent from these specific use cases, studies have shown that

longer reservation times and reservation-based systems improve user satisfaction (Molnar

and Correia 2019) as well as the system’s performance with regard to the serviced demand

and fleet utilization, e.g., Alfian et al. (2015), Boyaci et al. (2017), Repoux et al. (2019).

To extend the use-cases and thereby attract new customers as well as to improve

system performance, FF SMS providers like Share Now – Europe’s largest FF car sharing

provider – most recently have begun to offer an additional mobility service besides the

spontaneous STRs: Customers can now reserve vehicles for long-term rentals (LTRs)

that last several hours or days, including a specification of the desired rental’s departure

location and time. These reservations have to be made at least 24 hours in advance.

Figure 1 depicts screenshots of the reservation process for such LTRs from the Share

Now application (Share Now 2022). In the main view that customers see when opening

the application, depicted in Figure 1a, customers can now click the ”plan trip” button

for LTR reservations, besides clicking the available vehicles for traditional spontaneous

STRs. Then, the modalities for LTR reservations are explained on multiple views – two

of them are exemplarily depicted in Figures 1b and 1c. In the last view in Figure 1d,

customers enter the desired departure location and time of the LTR.

For customers, these LTR reservations now allow to reliably plan trips. However, for

the provider, novel challenges regarding the operational control of the system arise due

to the vehicle availability guarantee that the provider gives to the customers who make

an LTR reservation. To ensure this vehicle availability, the provider has two principle

operational means. One option before the LTR’s departure is that the provider blocks a

suitable vehicle which is located near the required position, i.e., to make it unavailable
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(a) Main view: Click ”Plan
trip” for LTR reservation

(b) First information view
regarding modalities

(c) Second information view
regarding modalities

(d) Reservation view: Enter
departure location and time

Figure 1: Extract of LTR reservation process in Share Now mobile application (Share Now
2022).

for future STRs. The other option is that the provider actively relocates a suitable

vehicle to the required location shortly before the required time. Clearly, making a vehicle

unavailable for STRs may cause lost profits, such that the provider is inclined to delay this

decision as close to the LTR’s departure time as possible. On the other hand, delaying

the unavailability decision increases the risk that all available vehicles are indeed taken

for STRs and that a costly relocation is required. The stochastic dynamic arrival of

STR customers as well as potential rental terminations near the considered location –

which worsen or improve the provider’s situation, respectively – complicate the decision

making. The described trade-off between lost profits and relocation costs forms a novel

stochastic dynamic operational control problem which has not received attention in the

SMS optimization literature yet. In this work, we fill this literature gap.

The contributions of this paper are as follows:

• We are the first to formally define and address the SMS provider’s profit maximiza-

tion problem of STR availability control under the consideration of LTR reserva-

tions.

• We show that the problem can be considered as a modified overbooking problem

from the revenue management literature and discuss the differences between classical

overbooking and necessary modification to match the problem at hand.

• We formulate the exact model for the stochastic dynamic problem which can be

used to derive the optimal policy. In addition, we formulate a policy based on

the problem’s static equivalent which requires fewer parameters regarding the sys-

tem’s dynamics. Finally, we propose a heuristic risk-averse policy which is easy to

implement in practice.

• Based on an extensive and systematic computational study, we generate managerial
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insights regarding a profitable and practice-oriented implementation of STR avail-

ability control under the consideration of LTR reservations. For example, we show

that the performance of the static as well as the risk-averse policy heavily depend

on the specific instances of the problem, but that their application is indeed justified

under certain circumstances.

In addition, from a broader perspective, this work can be considered as one of the first that

addresses the recent trend in urban mobility by which the traditionally different mobility

service offers of SMS providers and rental companies increasingly intertwine. One the one

hand, the LTR reservations resemble the traditional mobility offer from rental companies.

On the other hand, traditional rental companies like, e.g., Sixt, recently started expanding

their mobility service portfolio with Sixt Share towards spontaneous STRs (Sixt 2022).

The remainder of the paper is structured as follows. In Section 2, we review the

related literature. Section 3 contains the problem definition. In Section 4, we present the

solution approaches. Section 5 contains the computational study as well as a discussion

of managerial insights. In Section 6, we conclude the work and give an outlook for future

work.

2 Literature Review

In the following summary of the relevant literature, we focus on two streams. In Section

2.1, we begin by briefly establishing the link between the literature on SMS optimization

in general and the considered availability control problem. Then, we discuss the closest

related works in three groups. This literature is relevant because it either explains why

LTRs are reasonable to offer by SMS providers, or because specific availability control

problems in SMSs are addressed. In Section 2.2, we give an overview on the overbooking

literature and point out the works of particular relevance to our problem. The literature

on overbooking is relevant because, as we will discuss in Section 3.2, the problem at hand

can be considered as a modified overbooking problem and because the developed policies

are based on this observation.

2.1 Availability Control in Shared Mobility Systems with Reser-

vations

The literature on SMS optimization covers various problems on strategic, tactical and

operational levels (Laporte, Meunier, and Wolfler Calvo 2018, Ataç, Obrenović, and Bier-

laire 2021). The problem that we consider in this work is an operational problem, as the

availability control of short-term rentals is performed dynamically in an online fashion.

There are several review papers that summarize the literature for specific types of SMSs,

i.e., for bike sharing (DeMaio 2009, Fishman, Washington, and Haworth 2013, Ricci 2015)
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and car sharing (Jorge and Correia 2013, Ferrero et al. 2015a,b, Brendel et al. 2017, Illgen

and Höck 2019, Golalikhani et al. 2021a,b). Although our work is motivated by most

recent developments in car sharing, the methods we develop can in principle be applied

to all types of SMSs.

In the following, we focus on the discussion of three groups of related works. The first

group of papers (1) reveals the benefit of reservation-based systems. These works do not

consider reservations of LTRs specifically, but they explain why offering this additional

mobility service of LTRs in combination with a reservation-based system is reasonable for

SMS providers. The second group of papers (2) considers availability control in SMSs in

the context of parking reservation control. While the specific problem differs decisively

from the one considered in this work, the general control approach to use availability

control is similar. Third, we discuss the only paper (3) that considers a similar problem

to ours, by addressing availability control to guarantee the service for vehicle reservations.

We discuss for each group how our work relates to this.

Regarding the benefit of reservation-based systems (1), Alfian et al. (2015) compare

”reservation based” and ”instant access” one-way car sharing systems based on a discrete

event simulation. The results show that the reservation-based system outperforms the

system without reservation in terms of utilization. In a subsequent paper in which the

authors focus on relocation, these results are confirmed (Alfian et al. 2017). Boyaci et al.

(2017) combine the techniques of discrete event simulation and mathematical optimiza-

tion to optimize vehicle and personnel relocation in a car sharing system. The authors

compared two configurations of the considered system, one with reservation and one with-

out. In line with the works above, their results show that the system with reservations

is more efficient in terms of utilization. In Repoux et al. (2019), the optimization model

from Boyaci et al. (2017) is adapted to the specifics of the considered car sharing system

in which not only the vehicle, but also a destination parking spot need to be reserved. The

results show that taking reservation information into account increases the served demand.

Finally, Nourinejad and Roorda (2016) consider a fleet sizing optimization problem. In

a sensitivity analysis, they analyze the impact of reservation time and show that longer

reservation times have a positive effect on the required fleet size. Clearly, this result is in

line with the utilization benefits reported in the works discussed before.

With regard to this first group of related literature (1), our work can be considered as

complementary: While the works above consider the effect of allowing for reservations in

an SMS (and their optimization), our work considers the subsequent availability control

of rentals (STRs) when such reservations (LTRs) have been accepted. Note that the works

above do not consider the control of STRs. For example, in the simulation of Alfian

et al. (2015) with ”instant access”, a customer’s desired trip realizes whenever a vehicle

is available. Thus, one could imagine controlling LTR reservations with the approaches

above first and controlling the STR availability with the approaches proposed in our work
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in a subsequent step.

Regarding the availability control in parking reservation control in one-way SMSs (2),

Kaspi, Raviv, and Tzur (2014) address the problem where users state their destination

and a suitable parking space is reserved, if available. This parking reservation policy is

compared to a policy without parking reservation analytically based on a Markov model,

and numerically in a simulation based on real-world data. The results show that the

parking reservation system outperforms the benchmark in terms of the number of rides as

well as the time that users spend in the SMS. In Kaspi et al. (2016), additional parking

reservation policies are suggested and compared to the one from the previous work. The

results confirm the effectiveness of parking reservation policies in general.

Despite the fact that a different problem in SMS control is addressed in this second

group of papers (2), these works can be considered as related to ours in the sense that

availability control is used. They demonstrate that availability control can be an effective

means in the operational control of SMSs. Note that this control means is not the only

option for SMSs. In particular, incentive mechanisms like pricing are prominent alter-

natives (see e.g., Jorge, Molnar, and de Almeida Correia (2015), Huang et al. (2020),

Soppert et al. (2021a), Müller et al. (2021)).

Regarding (3), to the best of our knowledge, Molnar and Correia (2019) is the only

work that deals with improving operations of a FF SMS by applying availability con-

trol to guarantee the service for ”long-term vehicle reservations”. The authors state that

allowing longer reservations times (beyond the typical 30 minutes) would improve user

satisfaction and, thus, would in principle be desired. However, as they emphasize, the

simple strategy to only accept reservations (for LTRs in our work) for which a vehicle

stands available nearby and to ”lock” this vehicle immediately (w.r.t. future STRs in our

work) ”comes at the cost of idling vehicles” which results in ”decreasing the revenue”.

To address this problem, the authors propose an operational control mechanism called

”Relocations-Based Reservation” which combines blocking (STRs) with relocation and

which allows to accept (LTR) reservations even if a vehicle does not stand readily avail-

able at the desired location. By this mechanism, the time from which on a suitable vehicle

is locked is postponed closer to the departure time of the reserved vehicle and if no such

vehicle is (or becomes) available, a relocation is performed. The objective is to improve

service quality while maintaining profitability. Two parameters are optimized, i.e., the

maximum time span that reservations can be placed prior to the rental’s desired start

time and the minimum distance that a vehicle is guaranteed to be available for the re-

served rental. Methodically, the authors use simulation-based optimization by simulating

the SMS and optimizing the parameters using an iterated local search metaheuristic. The

numerical studies show that their novel ”Relocations-Based Reservation” control mecha-

nism substantially outperforms the simple benchmark of restricted reservation acceptance

combined with immediate vehicle blocking.
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Our work differs in two decisive aspects from Molnar and Correia (2019): First, re-

garding the specific problem formulation, we focus on the availability control of the STRs

and consider LTR reservations as given. In Molnar and Correia (2019), in contrast, the

focus is on the LTR reservations. More specifically, the authors develop a mechanism

which ”allows substantially longer reservation times” and in which the LTR customers

need to ”walk the shortest possible distance to the reserved vehicle”. Another important

influencing factor in the proposed mechanism is the ”response time”. It defines the time

before the desired LTR departure at which a suitable vehicle is ”locked” or a relocation is

performed. The authors fix this parameter such that there is ”enough time for a reloca-

tion, even under the most pessimistic traffic conditions”. While not discussed explicitly,

this fixed response time, in essence, defines the STR availability control policy: Suitable

vehicles are made available until the response time and ”locked” from the response time

onward. In contrast to our work, this STR availability control is not optimized, but results

directly from the fixed response time parameter. Thus, our approach can be used as a

complementary control mechanism, as for the above named works of the first related liter-

ature group: The control of LTRs could be based on the mechanism proposed by Molnar

and Correia (2019), while the subsequent STR availability control is performed based on

the optimization approach that we propose in this work. The second major distinction

of our work concerns the methodological approach which differs fundamentally. While

Molnar and Correia (2019) use a simulation-based optimization, our approach is based

on analytical models. We first show that the problem can be considered as a ”mirrored”

overbooking problem and establish links to the overbooking literature. Based on this, we

derive two analytical models, i.e., a dynamic and a static one. This analytical approach

provides relevant insights in the problem structure and the dynamic model yields the

optimal policy for the considered problem.

2.2 Overbooking

As stated in Section 1 and above, the problem at hand can be considered as a modi-

fied overbooking problem (Section 3.2). In fact, the analytical derivation of policies in

Section 4 is based on this observation, such that the literature on overbooking which is

presented in the following is relevant for this work. We begin with a general classifica-

tion of overbooking in the literature, explain its objective as well as its general concept,

followed by stating how specific problems and control approaches can be classified more

precisely. Then, we briefly state theoretical differences between different policies, before

the considered problem which will be introduced in Section 3 as well as the policies that

are developed in Section 4 are classified accordingly.

Regarding the general classification in literature, overbooking is one of the four key

areas of revenue management (also known as yield management), namely forecasting,
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overbooking, seat inventory control, and pricing (McGill and van Ryzin 1999). In their

survey paper, McGill and van Ryzin (1999) give an an overview on the research in revenue

management and they show that overbooking has the longest research history and dates

back to the late 1960s. According to Karaesmen and van Ryzin (2004), research in these

four areas progressed almost independently for a long time until joint pricing and capacity

control problems were first studied by Bitran and Caldentey (2003) and Côté, Marcotte,

and Savard (2003).

The objective in overbooking is to ”increase the total volume of sales in the presence

of cancellations” by ”controlling the level of reservations to balance the potential risks

of denied service against the rewards of increased sales” (Talluri and van Ryzin 2004).

This in general involves selling more quantities of a resource than the physical capacity

subsumes, i.e., to overbook. Since overbooking focusses on the sales volume, it is different

from pricing and capacity control problems in revenue management which strive for the

best mix of demand, although ”the problems of optimizing demand mix and volume are

quite related” (Talluri and van Ryzin 2004).

Overbooking problems can be distinguished further into two general categories, de-

pending in the nature of the specific problem formulation, i.e., into single-leg problems

and multi-leg (network) problems (see, e.g., Karaesmen and van Ryzin (2004)). The

latter are more complex, because different products in general may consume the same

leg-specific resources, such that a decomposition into multiple single-leg problems is not

possible. The control strategies for overbooking problems can be separated into static

and dynamic policies. In static policies, the dynamics of customer cancellations and new

reservation requests are ignored (Talluri and van Ryzin 2004). Instead, the currently best

overbooking limit, i.e., the maximum number of reservations, is determined given esti-

mates of cancellation rates from the current time until the end of the time horizon. To

account for changing state and cancellation probabilities over time, booking limits may

be recomputed periodically. In dynamic policies, in contrast, the intertemporal effects

– like customer cancellation or changing probabilities – are considered accurately in the

model.

Regarding theoretical differences between static and dynamic policies, it is clear that

the dynamic ones outperform the static ones. This is simply because all dynamical effects

are modeled precisely while the static one takes simplifications in this regard. However,

there are several reasons why in practice, static policies are indeed often favoured, e.g., in

the airline industry (Wang andWalczak 2016). According to Talluri and van Ryzin (2004),

”the simplicity, flexibility, and robustness of the simpler static models have made them

more popular in practice”, also because ”closed-form expressions for the overbooking

limits” exist for static policies, while dynamic models are formulated recursively and

require dynamic programming to obtain solutions which yield the corresponding policies.

For example, Wang and Walczak (2016) compare static and dynamic policies in an airline
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overbooking setting. In their studies, they ”illustrate the dominance of dynamic policies

over simple static policies in various scenarios” but at the same time, they state the

”challenges in estimating key inputs such as the no-show rate, the cancellation intensity

and overbooking costs” in dynamic policies.

Regarding the above described differnces in terms of overbooking problems and the

control, our work can be classified more precisely as follows. Since we consider a certain

location and time in the SMS where the reservations of LTRs are due, the considered

problem (as modified overbooking problen) is a single-leg problem. We develop a static

as well as a dynamic policy for this problem. The considered problem and hence the

developed models are related to work on ”combined capacity-control and overbooking”

(see Talluri and van Ryzin (2004, Chapter 4.4)). We establish closer links to the literature

in Section 4 when the problem and the policies have been introduced formally.

3 The Short-Term Rental Availability Control Prob-

lem

In this section, we formalize the problem we consider, which we term the short-term

availability control problem (STRAC) in SMSs in what follows. More precisely, we first

formally state this problem (Section 3.1) and, second, formulate it as a mirrored over-

booking problem (Section 3.2).

3.1 Problem Statement and Notation

An SMS provider offers two different products, i.e., short-term rentals (STRs) and long-

term rentals (LTRs). While STRs allow the customer to spontaneously rent available

vehicles for short trips, LTRs may last several hours our days and are required to be

reserved in advance. For the LTRs, the customers define departure time and location

of the rental and the provider guarantees to supply a vehicle at the chosen time and

location. This can be achieved by either blocking vehicles at the correct location before

the required time departure of a reserved LTR, meaning to make them unavailable for

STRs. Alternatively, a vehicles can be relocated on short notice to balance the missing

vehicles. For the provider, there is a trade-off between the former option which goes along

with lost STR profits and the latter option which incurs relocation costs. In the problem

that we consider, the SMS provider has already accepted one or more LTRs for a specific

time and location and now performs profit-maximizing availability control of the STRs

during the remaining time until the LTR’s departure time.

More formally, this STRAC in SMSs can be stated as follows: We consider a SMS

with multiple locations i ∈ Z within the business area and a vehicle fleet size S ∈ Z. For
a specific location j and due time t = 0, the provider has accepted a certain amount of
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LTR reservations R ∈ Z. The time horizon before this due time is defined by successive

discrete periods t ∈ T = {T, T − 1, . . . , 0}. Thus, t = T defines the beginning of this

horizon and t = 0 defines its end. Note that this discretization of time into (micro-)

periods is standard in the literature on revenue management and can be done without

loss of generality (e.g. Talluri and van Ryzin (2004, Chapter 2.5)). At t = 0, the SMS

provider has to guarantee the number of available vehicles s0 ∈ Z in j to be at least R,

i.e., s0 ≥ R. For every missing vehicle R − s0, the provider needs to relocate a vehicle

on short-notice at cost g ∈ R+ per vehicle. The number of available vehicles in j at the

beginning of each period t ∈ T , referred to by st, may change during period t as a result

of two effects:

• STR customer arrival: The number of available vehicles may decrease through the

realization of STRs. More specifically, in each period t, at most one customer arrives

with arrival probability qct . At the beginning of each period, the SMS provider can

decide to make the vehicles st ∈ Z0 unavailable for STRs (ut ∈ {0, 1}), where

0 corresponds to the unavailability decision and 1 to the availability decision. If

st = 0, no STR realizes during that period, even if a customer arrives. If vehicles

are not made unavailable at the beginning of t and there is a customer arrival in

period t, an STR with revenue rt ∈ R+ realizes and the vehicle leaves location j.

• Vehicle arrivals: The number of available vehicles may increase through vehicles

arriving from other locations. More specifically, of the S − st vehicles from other

locations i ∈ Z \ j, at ∈ Z0 arrive during period t. This at is derived in two steps.

First, we assume that, depending on the period-specific demand across the entire

business area dt, a (discrete) proportion of the S−st vehicles ismoving during period

t, i.e., is currently rented by customers. These moving vehicles are denoted as mt

with mt ∈ Z0 and mt = f(dt, S − st). Second, we assume the arrival probability

at location j during period t for each of the mt vehicles to be pt. In general, pt is

a function of instance-specific parameters such as the current vehicle distribution

or the demand pattern. Under these assumptions, the vehicle arrivals in location j

during period t can be formulated as a random variable At that follows the Binomial

distribution, i.e., At ∼ B(mt, pt). The probability of exactly at ∈ Z0 arrivals among

the mt moving vehicles is

P (At = at) =

(
mt

at

)
patt (1− pt)

mt−at , (1)

for at = 0, 1, 2, . . . ,mt.

The state transition from st to st+1 therewith depends on the availability decision ut and

the realization of the two stochastic variables – the arrival of an STR customer with

probability qct and the number of vehicle arrivals from other zones at.
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3.2 Formulation as Mirrored Overbooking Problem

The problem described in the previous subsection can be interpreted and formulated as a

modified overbooking problem. In fact, as we show in the following, it can be considered

as a ”mirrored” overbooking problem, because – intuitively – the decisive characteristics

of the problem at hand and the classical overbooking problems from the literature are

exactly the opposite.

In classical overbooking problems (Talluri and van Ryzin 2004, Chapter 4), a service

provider (e.g., airline or hotel) decides on an overbooking limit b ∈ Z up to which quan-

tities (seats or rooms) are sold. This overbooking limit can exceed the actual capacity

C ∈ Z, but denied service costs at the end of some booking horizon may arise for every

customer who cannot be served with the given capacity. The idea is that an overbooking

can be beneficial for the capacity utilization, because bookings decrease over time due

to cancellations. Thus, selling up to only C quantities would eventually result in less

capacity usage than with overbooking limit b > C. As explained in Section 2.2, dynamic

models explicitly consider the dynamics of customer cancellations and new reservation

requests (Talluri and van Ryzin 2004, Chapter 4.2), while static models consider aggre-

gated estimates of cancellation rates from the current time until the time horizon (Talluri

and van Ryzin 2004, Chapter 4.3). Overbooking and availability control (also denoted as

capacity control) are often considered jointly and corresponding static as well as dynamic

models exist (Talluri and van Ryzin 2004, Chapter 4.4).

In the following, we discuss why the problem described in Section 3.1 can be considered

as a ”mirrored” overbooking problem. We do this by discussing the relationships between

the ”classical” and the ”mirrored” problem regarding specific aspects of the problems.

These differences are visualized by stylized state changes during a time horizon in Figure

2 and can be summarized as follows:

• State transitions due to availability control: In the classical problem, making a

quantity (e.g., seat) available may increase the state’s variable value, i.e., the number

of bookings. In the mirrored problem, making a quantity (STR) available may

decrease the state’s variable value, i.e., the number of available vehicles.

• State transitions due to stochastic events: In the classical problem, cancellations

may decrease the state’s variable value, i.e., the number of bookings. In the mirrored

problem, vehicle arrivals may increase the state’s variable value, i.e., the number

of available vehicles.

• Penalty costs: In the classical problem, denied service costs arise when bookings ex-

ceed capacity. In the mirrored problem, relocation costs arise when available vehicles

fall below the required LTR vehicles.

• Overbooking and undercutting limits: In the classical problem, the overbooking limit
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is bounded from above by the demand. In the mirrored problem, the corresponding

quantity is bounded from above by the required LTR vehicles. We denote this

quantity in the mirrored problem the undercutting limit, because the required LTR

vehicles are undercut by the currently available vehicles during the booking horizon.

The development of models and corresponding policies in the next section makes use of

this analogy that the STRAC can be considered as a mirrored overbooking problem.

T 0 time t

overbooking limit

C
capacity

seat sold cancellation

u denied
services

(a) Classic overbooking problem

T 0 time t

R
required LTR vehicles

undercutting limit

short-term
rental

vehicle
arrival

b

relo-
cations

(b) ”Mirrored” overbooking problem

Figure 2: Schematic representation of sales process in classical overbooking and ”mirrored”
overbooking for short-term rental availability control in SMSs

4 Model Development and Control Policies

In this section, we model the problem and derive availability control policies. As de-

scribed in Section 3.2, the STRAC can be formulated as a mirrored overbooking problem.

Based on this observation, we propose a dynamic and a static model with corresponding

policies in Sections 4.1 and 4.2, respectively. Additionally, in Section 4.3, we introduce a

straightforward risk-averse policy.

4.1 Dynamic Model and Policy

The dynamic model of the STRAC is given by the Bellman equation

Vt(st) = E
[

max
ut∈{0,min(1,st)}

qct · rt · ut

+ qct ·
mt∑

at=0

(
mt

at

)
patt (1− pt)

mt−at · Vt−1(st − ut + at)

+(1− qct ) ·
mt∑

at=0

(
mt

at

)
patt (1− pt)

mt−at · Vt−1(st + at)

]
. (2)
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Considering the influence of the availability control decision ut on the moving vehicles,

i.e., mt = S − st − ut, the Bellman equation (2) becomes

Vt(st) = E
[

max
ut∈{0,min(1,st)}

qct · rt · ut

+ qct ·
S−st−ut∑

at=0

(
S − st − ut

at

)
patt (1− pt)

S−st−ut−at · Vt−1(st − ut + at)

+(1− qct ) ·
S−st∑

at=0

(
S − st
at

)
patt (1− pt)

S−st−at · Vt−1(st + at)

]
, (3)

in each case with boundary condition

V0(s0) = −g ·max{0, R− s0}. (4)

Equation (3) recursively formulates the expected value Vt of being in state st. More

precisely, if the provider decides at the beginning of period t that the vehicles st are made

available for STRs (ut = 1), an STR reward realizes with customer arrival probability qct .

Note that ut = 1 is only possible if st ≥ 1, otherwise ut = 0 is mandatory. In case of

st ≥ 1, ut = 1, and a customer arrival, the state transitions to st−1+at, where at depends

on the vehicle arrivals from other locations according to the Binomial distribution (see

Section 3.1). Contrary, if the provider decides for ut = 0, only the vehicle arrivals at

determine the state transition, i.e., the next state is st + at. With probability (1− qct ) no

STR customer arrives and in this case the state transitions to st+at as well. The boundary

condition (4) assigns a value to the state s0 which equals the cumulative relocation costs

at t = 0 according to the missing vehicles.

Structurally, (3) is similar to the dynamic model introduced for the ”combined alloca-

tion and overbooking problem” in Talluri and van Ryzin (2004, Chapter 4.4.3.2) which is

based on Subramanian, Stidham and Lautenbacher (1999). Besides the ”mirroring” (see

Section 3.2), the model differs regarding the temporal process of the modeled problem,

more specifically, regarding the sequence of information arrival and decision making: The

availability decision in the considered problem needs to be made before the arrival of

an STR customer, while the literature usually assumes that an accept/reject decision is

made after the customer’s reservation request. In equation (3), this is reflected by the

additional factors qct and (1 − qct ) as well as by the fact that the decision variable ut is

part of the binomial coefficient’s argument. Another difference concerns restrictions on

the decision variable: In (3), it is ensured by ut ∈ {0,min(1, st)} that the vehicle count

remains non-negative. In the dynamic model of Talluri and van Ryzin (2004, Chapter

4.4.3.2), there is no dependency of ut from st, and hence no restriction. The reason is

that an accepted request increases the number of bookings (see Section 3.2), which has no

physical limit, like st in the problem at hand.
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To determine the optimal decision for a specific period t, the two state values Vt(st)

for ut = 0 and ut = 1 need to be compared and the decision of the corresponding larger

value is taken, i.e.,

ut = argmaxVt(st). (5)

From a technical perspective, the dynamic model (3)-(4) has two state dimensions, i.e.,

the time t and the number of available vehicles st. This is because a single location and

due time is considered in an isolated manner (analogously to a ”single-leg” problem in

revenue management, see e.g., Chiang, Chen and Xu (2007)) where the dependencies to

other locations of the SMS are considered in aggregated ways. With this two-dimensional

state space, (3)-(4) can be solved exactly by dynamic programming. Note that overbook-

ing problems in general do not share this property, because ”network” problems (e.g.,

Kunnumkal and Talluri (2012)) or variants such as upgrades (e.g., Steinhardt and Gönsch

(2012)) with different products have a state or action space which grows exponentially

in the problem size. Thus, these problems often suffer from the well-known curses of

dimensionality (Powell 2016).

4.2 Static Model and Policy

As stated in Section 2.2, static overbooking models in comparison to dynamic models

neglect the dynamics in each period. More specifically, customer cancellations (arriving

vehicles), new reservations (arriving customers), and availability decisions are not con-

sidered for every period individually. Instead, an overbooking limit is determined by

considering aggregated estimates of the probabilities of cancellations (arriving vehicles)

from the current period T until the final period t = 0. Nevertheless, as also discussed

in Section 2.2, for practical applications, a static model has certain advantages over a

dynamic model.

In the following, we formulate the static counterpart of the dynamic model from the

previous section. Then, we explicitly highlight the differences between the static and the

dynamic models.

The static counterpart of (2) is

VT (sT ) = E

[
max

0≤uT≤sT
rT · uT +

mT∑

aT=0

(
mT

aT

)
paTT (1− pT )

mT−aT · V0(sT − uT + aT )

]
(6)

with the same boundary condition (4) as in the dynamic model, i.e.,

V0(s0) = −g ·max{0, R− s0}. (7)
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Equation (6) modified with mt = S − sT − uT becomes

VT (sT ) = E
[

max
0≤uT≤sT

rT · uT

+
S−st−ut∑

aT=0

(
S − st − ut

aT

)
paTT (1− pT )

S−st−ut−aT · V0(sT − uT + aT )

]
,

(8)

again with the same boundary condition (7).

For a specific time T , equation (8) formulates the expected value VT of being in state

sT ∈ Z0 explicitly (not recursively). Note that decision variables and parameters in the

dynamic model are period-specific, while they refer to the aggregated time frame from the

current period T until the final period t = 0 in the static model. The notation differs in

the subscript, e.g., ut and pt in (3) solely refer to period t, while uT and pT in (8) refer to

periods T to t = 0. The following quantities differ between (3) and (8):

• uT ∈ Z0 is the undercutting limit which determines by how many vehicles the

required LTR vehicles R can be undercut from the current period T until the final

period t = 0. Note that uT is not a binary decision variable in comparison to ut.

• mT ∈ Z0 are the moving vehicles from T until t = 0.

• pT is the arrival probability for each of the moving vehicles mT from T until t = 0.

The relation between the arrival probability in the static and the dynamic problem

is pT = 1− (1− pt)
T .

• aT ∈ Z0 are the arriving vehicles from T until t = 0.

Regarding an optimal policy, the optimal undercutting limit uT is determined with

uT = argmaxVT (sT ). (9)

Typically, static models are resolved periodically to account for changes of the state sT

and the decisive parameters mT and pT (Talluri and van Ryzin 2004, Chapter 4.2).

In contrast to the dynamic model in the previous subsection, there is no major dif-

ference to standard overbooking models in literature besides the ”mirroring”. This is

because the question whether the availability decision needs to be made before or after

the arrival of a customer does not arise in static models (compare, e.g., Talluri and van

Ryzin (2004, Chapter 4.4.3.1)). The only difference – analogous to the dynamic model –

is that the undercutting limit 0 ≤ uT ≤ sT is limited from above by the state sT , whereas

in a classical static overbooking model, it is limited by the demand.
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4.3 Risk-Averse Blocking Policy

The risk-averse blocking policy is a simple heuristic which, as the name suggests, min-

imizes or even avoids taking the risk that relocation costs arise. This is achieved by

blocking whenever the available vehicle count is equal or smaller than the required LTR

vehicle count. Formally, the policy is

ut =




1 if st > R

0 if st ≤ R.
(10)

Clearly, this policy is much simpler than the dynamic and static policy from the previous

two sections. It thus has the advantage to be easily applicable in practice. However, the

potential disadvantages in terms of expected profit losses compared to the more sophisti-

cated policies are not evident. Thus, this analysis is part of the computational study in

the next section.

5 Computational Study and Managerial Insights

In the computational study, we investigate and compare the performance of the control

policies proposed in Section 4. We introduce the setup of the study in Section 5.1. In

Section 5.2, we present the results as well as the derived managerial insights.

5.1 Setup

Certain changes of the parameters that we introduced in the problem description in Sec-

tion 3.1 have the same effect on the results. For example, increasing the arrival probability

per vehicle per period pt as well as increasing the fleet size S reduces the probability that

relocation costs occur. Similarly, increasing pt and reducing the customer arrival probabil-

ity per period qct reduce the expected relocation costs. Therefore, a full-factorial analysis

among all parameters is not necessary. Instead, we fix some of the parameters for the

entire study and vary the remaining ones systematically. More specifically, for the param-

eters which we vary, we formulate a base case with a specific parameters choice. Starting

from this base case, we vary one of the parameters to isolate the effects.

The parameters which are kept constant over the entire study are: Fleet size S = 100,

revenue per STR rt = 1 monetary units (MU), STR customer arrival probability per

period qct = 0.5. The initial amount of available vehicles in location j is set to the

amount of required LTR vehicles, i.e., sT = R. In the base case, we choose the following

parameters: Time horizon T = 500, required LTR vehicles R = 5, relocation costs g = 5,

and arrival probability per vehicle out of zone per period pt = 0.001.

We briefly reason the choice of these (fixed and base case) parameters in the following.
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The STR customer arrival probability per period qct = 0.5 can be though of as the anchor

for the study, as this parameter is central for the dynamics. Since the definition of period

lengths can always – independent on the actual demand – be adjusted to obtain qct of

this order, the decision to fix this parameter comes without loss of generality for the

results. Clearly, the expected number of arriving vehicles per period needs to be smaller

than the expected number of arriving STR customers (qct = 0.5), because otherwise the

number of vehicles monotonically increases (in expectation) and control is not difficult.

With S = 100 in combination with sT = R = 5 and pt = 0.001, there are initially

mT = S − sT = 95 vehicles out of the considered zone j and the expected amount of

vehicle arrivals per period is 0.095. rt = 1 and g = 5 yield a realistic ratio of STR revenue

and relocation costs.

Now, we state how we vary the base case parameters parameters in the study. The

results in the next section are structured along these parameter variations. The base case

parameters are highlighted bold.

• Time horizon: T ∈ [100,500, 1000] (Section 5.2.2)

• Required LTR vehicles: R ∈ [1, 2,5, 10] (Section 5.2.3)

• Relocation costs: g ∈ [1, 2,5, 10] (Section 5.2.4)

• Vehicle arrival probability: pt ∈ [0.0001, 0.0005,0.001, 0.005] (Section 5.2.5)

In total, there are twelve parameter settings (one for the base case and eleven for the

parameter variations). For every parameter setting, all three policies are evaluated in

n = 10.000 simulation runs each.

5.2 Results

The presentation and discussion of the results is structured as follows: We begin with

general statements that consider results across all parts of the study (Section 5.2.1).

Then, we state the results of the four parameter variations in the following sections in

more detail (Sections 5.2.2-5.2.5). For each of them, we first describe the results and then

discuss the corresponding managerial insights. Again, we begin with brief general results.

Regarding the presentation of the results, each of the four sections with a parameter

variation contains a corresponding table and figure (e.g., Table 1 and Figure 3 in Section

5.2.2):

• The tables show results for rentals (rent.), revenue from STRs (rev.), relocation

costs, and profit. The results derived by the optimal policy based on the dynamic

model (DYN, Section 4.1) are the mean absolute values. The results derived by

the policy based on the static model (STAT, Section 4.2) and by the risk-averse

blocking policy (RAB, Section 4.3) have two rows each. The respective first row
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shows mean absolute values, the second shows the relative change with respect to

the corresponding DYN value.

• The figures depict results for the relative profit changes with respect to the mean

DYN value. These results are visualized in the form of adapted box plots. For each

parameter setting and policy, the vertical center of the box represents the relative

difference to the DYN mean value (mean of DYN always at 0%, STAT and RAB

same values as in respective second rows in table). The top and bottom of each box

represent the respective boundaries of the 95% confidence interval. These figures

have two benefits over the compact representation of the table. First, the decisive

metric of relative profit changes is visualized in a way which allows to identify

similarities or trends across one parameter setting. Second, the representation of the

confidence intervals allows to draw conclusions regarding the statistical significance

of the results.

5.2.1 General Findings

As expected, DYN yields the highest profit in every particular parameter setting across

the entire study, which is reasonable, as it is the optimal policy. While STAT performs

up to -35.5% worse in terms of profit compared to DYN, RAB only yields up to -5.3%

profit than DYN. However, RAB does not dominate STAT, i.e., their order with regard

to the profit obtained depends on the specific parameter setting.

In comparison to DYN, STAT realizes more rentals and hence more revenue, i.e., both

in the range of -0.1% (theoretical value is ±0%, see Section 5.2.4) to +11.2%. Note that

relative rental differences and relative revenue differences always equal, because the STR

revenue rt is one of the fixed parameters (see Section 5.1). Opposed to that, RAB realizes

less rentals and revenue than DYN, i.e., in the range of 0.4% (the theoretical value is

±0%, see Section 5.2.5) to -13.6%. As expected, relocation costs for RAB are always 0

MU, because the policy is designed to avoid these.

From a managerial perspective, the results allow to conclude that applying RAB indeed

is a reasonable option. Since profit losses compared to the optimal policy are limited to

about -5%, the simplicity of RAB compared to DYN stands out and might justify its

application – at least as long as LTR reservations are still in the adoption phase and

absolute profits are still rather low compared to the traditional STR business.

5.2.2 Time Horizon

For the short time horizon with T = 100, STAT performs worst with -20.4% profit loss,

while RAB only records a loss of -0.9%. The longer the time horizon, the better STAT

performs compared to DYN and RAB. For example, for T = 1000, STAT with -1.9%

profit loss performs significantly better than RAB with -4.5%.
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Policy
T = 100 T = 500 T = 1000

rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit

DYN 9.3 9.3 0.0 9.2 49.2 49.2 0.1 49.1 99.1 99.1 0.1 99.0

STAT
10.1 10.1 2.8 7.3 50.1 50.1 2.8 47.3 99.9 99.9 2.8 97.2
9.4 % 9.4 % 6701.2 % -20.4 % 1.7 % 1.7 % 3342.6 % -3.8 % 0.8 % 0.0 % 2693.9 % -1.9 %

RAB
9.1 9.1 0.0 9.1 47.0 47.0 0.0 47.0 94.6 94.6 0.0 94.6

-1.4 % -1.4 % -100.0 % -0.9 % -4.4 % -4.4 % -100.0 % -4.2 % -4.6 % -4.6 % -100.0 % -4.5 %

Table 1: Variation of periods T .

DYN STAT RAL25

20

15

10

5

0

5

pe
r c

en
t o

f D
YN

 m
ea

n

(a) T = 100

DYN STAT RAL25

20

15

10

5

0

5

pe
r c

en
t o

f D
YN

 m
ea

n

(b) T = 500

DYN STAT RAL25

20

15

10

5

0

5

pe
r c

en
t o

f D
YN

 m
ea

n

(c) T = 1000

Figure 3: Variation of periods T .

This comparably strong horizon length-dependence of STAT’s profit is related to the

relocation costs that realize. Clearly, the optimal policy DYN (almost) and RAB avoid all

relocation costs in the short horizon setting with T = 100, while STAT has to compensate

the additional revenue from STRs with considerable relocation costs.

The reason for STAT’s comparably risk-taking control is an overestimation of vehicle

arrivals which can be traced to the neglection of the system dynamics (see Section 4.2).

For example, imagine that the best undercutting limit at the beginning of the time horizon

was uT = 3 according to STAT. This undercutting limit was calculated on the premise

that S− sT −uT = 100− 5− 3 = 92 vehicles are in other locations than j and potentially

arrive back to j during the following periods. However, only one vehicle at maximum

leaves j during the first period T , such that at most 94 vehicles may potentially arrive

back to j during the following periods.

From a managerial perspective, these results show that – if the optimal policy DYN can

not be obtained, e.g., because of the requirements for data – RAB is a robust alternative

with profit losses below 5%. STAT should not be applied for short time horizons but

should be favoured over RAB for longer time horizons.

5.2.3 Number of Required LTR Vehicles

Policy
R = 1 R = 2 R = 5 R = 10

rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit

DYN 49.4 49.4 0.0 49.4 49.6 49.6 0.0 49.5 49.2 49.2 0.1 49.1 48.4 48.4 0.2 48.2

STAT
49.7 49.7 0.8 48.8 49.9 49.9 1.4 48.5 50.1 50.1 2.8 47.3 49.7 49.7 4.1 45.6
0.5 % 0.5 % 7372.7 % -1.2 % 0.7 % 0.7 % 4817.9 % -2.0 % 1.7 % 0.0 % 3342.6 % -3.8 % 2.6 % 2.6 % 1907.8 % -5.5 %

RAB
49.2 49.2 0.0 49.2 48.6 48.6 0.0 48.6 47.0 47.0 0.0 47.0 44.6 44.6 0.0 44.6
-0.6 % -0.6 % -100.0 % -0.6 % -2.0 % -2.0 % -100.0 % -2.0 % -4.4 % -4.4 % -100.0 % -4.2 % -8.0 % -8.0 % -100.0 % -7.6 %

Table 2: Variation of required LTR vehicles R.
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Figure 4: Variation of required LTR vehicles R.

For the case of one required LTR vehicle R = 1, STAT and RAB perform only slightly

worse that the optimal policy DYN with -1.2% and -0.6%, respectively. The more vehicles

are required, the larger these profit losses become, but the order of the two suboptimal

policies changes, meaning that RAB performs comparably worse to STAT with growing

R. For R = 10, e.g., RAB has a profit loss of -7.6% to DYN while STAT is significantly

better with only -5.5%.

Clearly, this is related to the risk-averse nature of RAB. When R is high, there is more

flexibility to undercut the amount of required LTR vehicles during the time horizon. The

relocation costs obtained with DYN show that relocation costs indeed increase slightly

with growing R, meaning that undercutting and vehicle relocations indeed become more

frequent in the optimal policy. This trend can also be seen for STAT while RAB – by

construction – avoids all relocation costs. Considering the influence of the time horizon

length discussed in the previous section, one can expect that RAB becomes comparably

worse for large R and large T .

From a managerial perspective, this means that the number of required LTR vehicles

is decisive to make a decision on the availability control policy. If the LTR reservations

(and therewith R), e.g., were limited by R ≤ 5, RAB performs comparable to STAT

and can be applied with a profit loss of around -4% or below compared to DYN. Given

that RAB is fairly simple with comparably low effort of integration, accepting these small

profit losses might be a reasonable decision in practice.

5.2.4 Relocation Cost

For the case where relocation costs equal STR revenue, i.e., for g = rt = 1, DYN and

STAT are identical policies. This can be verified by looking into the actual policies (not

depicted), but it is also reasonable: With equal relocation costs and STR revenue, it is

optimal to make all vehicles available for STRs. The relative difference of -0.1% between

DYN and STAT is solely the effect of statistical variance, but in theory their difference

equals ± 0%. With growing relocation cost, STAT performs increasingly worse and for,

e.g., g = 10, it has a profit loss of -4.5%.

RAB realizes a profit loss of -5.3% for g = 1. The profit loss decreases moderately

with higher relocation costs, i.e., for g = 10 it is still at -3.9%. One can say that RAB is
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Policy
g = 1 g = 2 g = 5 g = 10

rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit

DYN 54.5 54.5 4.8 49.8 49.2 49.2 0.2 49.1 49.2 49.2 0.1 49.1 49.2 49.2 0.1 49.1

STAT
54.5 54.5 4.8 49.7 50.9 50.9 2.7 48.3 50.1 50.1 2.8 47.3 49.7 49.7 2.8 46.9
-0.1 % -0.1 % -0.4 % -0.1 % 3.5 % 3.5 % 1464.9 % -1.6 % 1.7 % 0.0 % 3342.6 % -3.8 % 1.1 % 1.1 % 4331.7 % -4.5 %

RAB
47.1 47.1 0.0 47.1 47.0 47.0 0.0 47.0 47.0 47.0 0.0 47.0 47.2 47.2 0.0 47.2

-13.6 % -13.6 % -100.0 % -5.3 % -4.5 % -4.5 % -100.0 % -4.1 % -4.4 % -4.4 % -100.0 % -4.2 % -4.0 % -4.0 % -100.0 % -3.9 %

Table 3: Variation of relocation costs g.
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Figure 5: Variation of relocation costs g.

rather robust regarding the variation of relocation costs for g = 2 or higher. Considering

revenues and costs of DYN and RAB for these higher relocation costs, this robustness can

be explained. DYN has small absolute relocation costs, such that RAB with zero costs

does not differ much in this regard. The fewer rentals and hence the lower revenue of

RAB is in the small range of -4.0% to -4.5%, which explains the robust profit decrease of

around -4.0% for these settings.

From a managerial perspective this means that the ratio of relocation costs to STR

revenue is decisive to make a decision on the policy. The setting where relocation costs

equal STR revenue is rather theoretical, but if this was indeed the case in practice, it is

optimal to never block vehicles for STRs. For small relocation costs, meaning for twice

the STR revenue, RAB should not be applied. For larger relocation costs of five times

the STR revenue or above, DYN of course performs best, but the choice between STAT

and RAB is not decisive so RAB is favourable due to its simplicity.

5.2.5 Vehicle Arrival Probability

The performance of STAT strongly depends on the arrival probability of every vehicle

not in the considered location. For a low probability of pt = 0.0001, a loss of -35.5%

realizes. For a high probability of pt = 0.0025, the loss is only -1.0%. For RAB, the trend

is opposite but, compared to STAT, losses are smaller overall. For pt = 0.0001, the profit

is comparable to DYN. For pt = 0.0025, the loss grows to -4.6%.

As discussed for the results of time horizon influence in Section 5.2.2, STAT in general

overestimates the vehicle arrivals. The results here show that this effect is particularly

strong for small vehicle arrival probabilities. As the DYN results demonstrate, for small

arrival probabilities, it is optimal not to undercut the required LTR vehicle count, because

chances are too high that no vehicle arrives and relocations indeed need to be done. Only
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Policy
pt = 0.0001 pt = 0.0005 pt = 0.001 pt = 0.0025

rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit rent. rev. costs profit

DYN 4.7 4.7 0.0 4.7 24.4 24.4 0.1 24.3 49.2 49.2 0.1 49.1 122.7 122.7 0.1 122.6

STAT
5.2 5.2 2.2 3.0 25.3 25.3 2.9 22.4 50.1 50.1 2.8 47.3 123.5 123.5 2.2 121.3

11.2 % 11.2 % - -35.5 % 3.7 % 3.7 % 2973.3 % -8.0 % 1.7 % 0.0 % 3342.6 % -3.8 % 0.7 % 0.7 % 1474.4 % -1.0 %

RAB
4.7 4.7 0.0 4.7 23.6 23.6 0.0 23.6 47.0 47.0 0.0 47.0 116.9 116.9 0.0 116.9

0.4 % 0.4 % - 0.4 % -3.5 % -3.5 % -100.0 % -3.2 % -4.4 % -4.4 % -100.0 % -4.2 % -4.7 % -4.7 % -100.0 % -4.6 %

Table 4: Variation of vehicle arrival probability pt.
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Figure 6: Variation of vehicle arrival probability pt.

for the larger arrival probabilities, the optimal policy DYN risks relocation costs (0.1 mu

for pt = 0.0025), while it apparently is optimal to entirely prevent these costs for small

arrival probabilities (0 mu for pt = 0.0001). Hence, STAT performs worse in relation to

DYN when probabilities are small.

Note that for pt = 0.0001, DYN and RAB become the identical policy of never under-

cutting the required LTR vehicle count. As a consequence, relocation costs for DYN are

also 0 MU. The difference of 0.4% between DYN and RAB is solely the effect of statistical

variance.

From a managerial perspective, this means that RAB yields a comparably robust

control which, independent of the actual arrival probability, has a profit loss of less than

-5%. If the arrival probability is low, STAT must not be used since profit losses can be

severe.

6 Conclusion

Besides the traditional spontaneous short-term rentals (STRs), recent developments in

shared mobility systems allow customers to make reservations for long-term rentals (LTRs).

With these LTR reservations, customers benefit from having the guarantee that a vehi-

cle will stand available at the requested departure location and time for the LTR. This

benefit for the customer comes with novel challenges for the SMS provider. To guarantee

the vehicle availability, the provider can either block a suitable vehicle before the LTR’s

start, meaning making in unavailable for STRs. Alternatively, the provider can relocate

a vehicle on short notice. While the former option has opportunity costs, meaning that

it potentially comes along with losses of STR revenues, the latter causes relocation costs.

In this paper, we define and investigate this short-term rental availability control problem
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(STRAC) which has not received attention in the literature so far. Our findings can be

summarized as follows.

Regarding the nature of the problem, we first show that the problem can be considered

as a ”mirrored” overbooking problem, a well-studied problem in revenue management.

Exploiting this observation, we formulate a dynamic as well as a static model for the

STRAC by adapting existing models from the overbooking literature to the problem’s

specific characteristics. Each model is an analytical formulation of the state value, i.e., a

function that assigns the expected profit. While the dynamic model is represented by a

recursive formulation (Bellman equation) which captures the dynamics of STRAC exactly,

the static model is non-recursive which simplifies the dynamics by considering them in

an aggregate manner. This means, for example, that the dynamic model recalculates

vehicle arrivals and their probabilities exactly for every possible state, while the static

model in contrast considers the aggregate potential vehicle arrivals that can realize in the

remaining time until LTRs are due.

For each of the models, we derive the corresponding control policy. In addition, we

formulate a third policy, i.e., a risk-averse policy which avoids the risk of incurring re-

location costs. The dynamic policy is the optimal policy, the other two are heuristics.

Regarding computational complexity, none of the policies poses a challenge. Even the

dynamic model can be solved efficiently, because the state-space is only two-dimensional.

Nevertheless, the optimal policy has a drawback from practical perspective: The exact

modeling of the problem’s dynamics requires accurate transition probabilities for every

potential state. In practice this data might be too difficult to collect, such that the static

model which requires much less data is advantageous in this regard.

In extensive numerical studies, we evaluate the three policies. Since some of the

STRAC’s parameters have similar influences, we fix certain parameters and vary others

systematically. More specifically, we first define a base scenario and thereupon consider

four parameter variations in which only one of the parameters is changed to isolate effects.

The main results as well as the derived managerial insights can be summarized as follows.

By construction, the dynamic policy (DYN) yields the optimal results. The order of

the static (STAT) and the risk-averse blocking (RAB) policy depends on the instance, i.e.,

they do not dominate each other. While STAT can perform up to -35.5% worse in terms of

profit compared to DYN, RAB is rather robust with only up to -7.6% less profit compared

to DYN. From a managerial perspective, applying RAB hence can be reasonable due to

its simplicity – at least in the adoption phase of LTRs where absolute profits are still

relatively small. When LTRs have become a mature product and profits related to this

product are considerable, the following results of our study should be considered by SMS

providers.

Regarding the influence of the time horizon before LTRs are due, results show that a

choice between STAT and RAB depends on the time horizon. For short time horizons,
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RAB (-0.9%) should be applied instead of STAT (-20.4%) but STAT performs significantly

better (-1.9%) than RAB (-4.5%) for long time horizons. For SMS providers this also

means that short-term control can be done by RAB with limited profit losses while long-

term control should be model-based.

Regarding the influence of the required LTR vehicles, the results show that STAT

and RAB perform similar if there are up to five required LTR vehicles (about -1% for

one to -4% for five required LTR vehicles). Only when there are more required LTR

vehicles, STAT can leverage though undercutting the required LTR vehicle count. For

SMS providers this means that as long as demand for LTRs is low and there are only few

required LTR vehicles, potential losses by applying STAT or RAB are fairly small but

with growing demand decision become more profit relevant.

Regarding the influence of the relocation cost, the results show that relocation costs

are decisive for the policy decision. For small relocation costs, meaning relocation costs

which are twice as high as STR revenue, RAB (-5.3% compared to DYN) should not

be applied as it performs significantly worse than STAT (-0.1%). For large relocation

cost, meaning ten times the STR revenue, RAB (-3.9%) is slightly better than STAT

(-4.5%). Relocation costs for different locations may vary due to spatial differences of the

fleet distribution. Since these costs impact the decision making, SMS providers should

determine them.

Regarding the influence of the vehicle arrival probability, the results show that STAT

should not be applied for low arrival probabilities (-35.5%) but that it performs only

slightly worse than DYN for high arrival probabilities (-1.0%) and for the latter better

than RAB (-4.6%). The vehicle arrival probability depends on the popularity of the

customers’ trip destination as well as the time of the day. Hence, SMS providers should

have a clear understanding on the differences of their operating area with this regard.

To summarize, in this work, we defined and systematically evaluated different policies

for the short-term rental availability control problem which recently has become relevant

in SMS practice but has not been considered in literature so far. The insights that we

derive help SMS providers to understand the problem’s characteristics and give guidance

regarding the choice of policies to be applied. Hence, our work provides the basis for

profitable decision making of shared mobility system providers when implementing short-

term rental availability control under the consideration of long-term reservations.

Based on our work and its findings, we believe there are several relevant directions

for future work. First, cancellations and no-shows of LTR reservations can be integrated.

While we consider the core of the STRAC in this work, extension as they are done in

the classical overbooking literature can be considered here as well. Second, the problem

can be extended by the previous process step of user-provider interaction, i.e., the step in

which a customer decides for or against the reservation of a LTR. While LTR reservations

are given in the problem definition of this work, it would be insightful what impact the



II.4 Block Now or Relocate Later? Avail. Control of STRs in SMSs Considering LTR Reservat. 205

pricing of these LTR reservations would have. Third, a major step in future work would

be to consider the problem on the global SMS level. In this work, we consider a particular

location in isolation which can be considered as a single-leg problem. Considering multiple

locations and their dependencies from vehicle movements would yield a network problem

which introduces major challenges regarding the problem’s computational complexity.
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Summary and Conclusion

Despite the vast literature on the optimization of shared mobility systems (SMSs), several

practice-relevant questions that arise in the context of improving operations have not been

addressed in the literature yet. On the one hand, this is due to discrepancies between

the assumptions in the literature and the business practices as well as circumstances

in reality. On the other hand, SMSs go through continuous changes, recently mainly

enabled by the increasing availability of data, which gives rise to new research questions.

Among the works that consider the optimization of SMS operations, literature has mainly

focused on supply-sided approaches so far. In particular, active vehicle relocation has been

studied in depth, because this is the most obvious and direct approach to influence an

SMS. In contrast, the alternative to use demand-sided approaches – denoted as demand

management in literature – as a control means for operational optimization has gained

attention only recently. Thus, especially regarding demand management in SMSs, a

substantial number of relevant research questions still remain unanswered.

Compared to the supply-sided approaches, demand management – as the name sug-

gests – affects the demand side of SMSs. That is, customers and their decision making are

addressed by means of pricing or availability control. Demand management is comparably

much less cost intensive than supply-sided approaches, because no direct costs are related

to changing prices or to making vehicles (un)available for rentals. Instead, the key idea

of demand management is that an intelligent incentivization influences the customers’

decisions and, thus, indirectly the SMS as a whole. Due to this cost-efficiency, demand

management aroused the interest of SMS providers in practice in recent years. Thus, con-

tinuous developments in this regard could be observed, e.g., through the implementation

of price differentiation.

This dissertation contributes to the literature by addressing several of these unan-

swered research questions concerning demand management in SMS. It is structured in

two parts. Part I puts the work in a common overall context. Part II contains the

research papers which form the core of this dissertation.

Part I begins with the development of a classification framework for demand manage-

ment problems in SMSs. The first dimension of this classification concerns the decision

making level. Specific demand management problems either belong to the tactical or

operational decision making level, depending on the frequency and nature with which de-

cisions are taken. While this distinction is not always clear-cut, offline optimization and

decision making is typically considered as a tactical level problem, while online decision

making is a strong indicator for an operational level problem. The second dimension to

classify specific demand management problems refers to the type of SMS that they apply

to, i.e., whether they apply to station-based (SB) SMSs or to free-floating (FF) SMSs.

The latter are characterized by their higher spatial flexibility and are the more modern
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type of SMS that became the dominant one in practice. This classification framework

with its two dimensions is relevant for the consideration of specific demand management

problems. Regarding the decision making level, e.g., the frequency of the decision-making

may come along with requirements for the solution approaches efficiency. Regarding the

type of the SMS, the differences between SB and FF SMSs, e.g., have consequences for

the optimization models.

Part I continues with classifying the individual research papers from Part II in the

developed framework. The first research paper (Chapter II.1) considers a differentiated

(static) pricing problem, i.e., from the tactical level, which applies to SB SMSs and FF

SMSs. The second research paper (Chapter II.2) addresses a dynamic pricing problem,

i.e., operational level, which is designed specifically for FF SMSs. The third research

paper (Chapter II.3) builds the bridge between SB SMSs and FF SMSs by focussing

on the accurate modeling of SMSs and applies to problems on the tactical as well as

operational level. The fourth research paper (Chapter II.4) covers a dynamic availability

control problem and, thus, belongs to the operational level. It applies to SB SMSs and

FF SMSs.

Part II of this dissertation contains the main results and contributions to the liter-

ature. Structured along the Chapters II.1 - II.4 and the respective research papers, the

results can be summarized as follows:

Differentiated pricing (Chapter II.1) – With regard to differentiated pricing, the results

demonstrate clearly that origin-based differentiated pricing is indeed an effective pricing

mechanism to substantially increase profits. This is not a self-evident result, because this

pricing mechanism is subject to many restrictions compared to other pricing mechanism:

In particular, the restriction that prices may only depend on a rental’s departure location

and time – the spatio-temporal pricing feature is origin-based pricing – makes the pric-

ing a lot less flexible compared to the often studied trip-based pricing. This restriction

presumably is the reason why origin-based differentiated pricing has not been addressed

in the literature before. However, it has been overlooked entirely in the literature that

this pricing mechanism corresponds to the actual business practice that occurs when SMS

providers begin to implement price differentiation based on the de facto industry stan-

dard of constant uniform pricing. The reason that this pricing mechanism is the dominant

observed in practice as well as the most natural first step for SMS providers into price

differentiation is that this pricing mechanism is transparent and easily to communicate

to customers. This makes it very practicable, especially in comparison to trip-based pric-

ing. Thus, studying this pricing mechanism has closed an important research gap of high

relevance for practice. The numerical studies performed show that, compared to constant

uniform pricing, origin-based differentiated pricing causes profit increases of around 9%.

However, this dissertation also shows that obtaining these results is not straightforward,

because the pricing problem is proved to be an NP-hard problem which cannot be solved



Summary and Conclusion 213

efficiently for real-life instances. At the same time, as demonstrated, straightforward

heuristics do not provide good solutions. Instead, the solution approach needs to con-

sider the persisting network effects accurately in order to achieve these profit gains. The

proposed solution approach builds on a temporal decomposition including value function

approximations which are capable of capturing these network effects precisely.

Dynamic pricing (Chapter II.2) – With regard to dynamic pricing, this dissertation shows

that the concept of customer-centric dynamic pricing is an innovative and effective pricing

approach for modern FF SMSs. The proposed approach has several benefits. First, the

size of the online pricing problem is reduced substantially compared to traditional vehicle-

based pricing, which has been the state-of-the-art. This is achieved by leveraging on the

fact that customers of FF SMSs have a maximum willingness to walk, such that the price

optimization can be reduced to the vehicles within the consideration set of customers.

Second, the approach allows to integrate the customer choice behavior explicitly in the

online pricing optimization. In particular, the influence of prices as well as the important

influence of walking distances can thereby be integrated in the optimization. In the nu-

merical studies performed, a multinomial-logit model was used but the proposed approach

allows to integrate any kind of choice model. Third, regarding the approximation of future

state values in the price optimization, the approach allows to integrate disaggregated data

that modern FF SMS providers possess. With the proposed non-parametric value func-

tion approximation, the decisive quantities of future vehicle values can be pre-calculated

such that the online optimization is reduced to a minimum of required operations. Thus,

overall, the customer-centric dynamic pricing approach is designed to be a scalable pricing

approach for modern FF SMSs. It allows to leverage on the growing amount of disag-

gregated data, also with regard to the customer choice behavior. The numerical studies

performed show profits are increased by up to 13% compared to benchmark approaches,

including existing pricing approaches from the literature.

Modeling of SMSs (Chapter II.3) – With regard to the modeling of SMSs which applies

to SMSs problems on the tactical and operational level, this dissertation demonstrates

that differences have to be made between SB SMSs and FF SMSs. Literature so far has

neglected that additional influencing factors have to be taken into consideration in op-

timization models for FF SMSs in order to model the realization of rentals accurately.

While the minimum of supply and demand in a certain location-period combination de-

scribes the realized rentals reasonably well in a SB SMSs, this, in general, cannot be

transferred to zone-period combination in a FF SMS without substantial modeling errors.

In particular, the customers’ maximum willingness to walk as well as the spatial expansion

of a zone in a FF SMS have to be additionally taken into consideration. To do so, this

dissertation introduces the idea of developing matching functions to model the number of

expected rentals. Based on theoretical considerations, two such novel matching models

were derived. They possess different mathematical properties and, thus, are suitable for
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the implementation into different types of optimization models. Further, the (implicitly

applied) state-of-the-art approach from literature to model supply and demand matching

was formalized in a matching model and used as a benchmark in the numerical studies.

The numerical results show that the new matching models predict the realized rentals

in a FF SMS much more accurately. The benchmark model in general overestimates re-

alized rentals substantially, because the friction introduced by the customers’ maximum

walking distances is not taken into consideration. Additionally, this dissertation shows

that an improved matching modeling also improves decision making. In an exemplary

pricing optimization case study, the more accurate matching modeling causes substantial

profit increases. Overall, the matching functions proposed in this dissertation build a

bridge between optimization models for SB SMSs and those for FF SMSs. This allows

to transfer models designed for SB SMSs to FF SMSs. With regard to the historical de-

velopments in literature, this has far-reaching consequences because the literature on SB

SMSs optimization is very broad and covers many different optimization problems which

also arise in FF SMSs.

Dynamic availability control (Chapter II.4) – With regard to dynamic availability control

of short-term rentals under given long-term rental reservations, this dissertation shows

that an optimization-based control can make substantial differences in terms of profit

realizations compared to reasonable benchmark approaches. The constant changes that

SMSs go through in practice most recently caused the traditional mobility service offers by

SMSs providers and those of traditional rental companies to intertwine. In this context,

SMS providers started offering reservations for long-term rentals, including the possibility

for customers to choose the departure location and time of a rental. This dissertation

proposes an availability control approach to improve operations for this problem. A the-

oretical analysis reveals parallels to overbooking problems from the revenue management

literature, in particular, that the problem at hand can be considered as a mirrored over-

booking problem. Besides the optimal policy which was derived analytically from the

formulation of the stochastic-dynamic problem, a policy based on the problem’s static

equivalent as well as a risk-averse heuristic was designed. The results show under which

conditions the simpler policies perform comparably to the dynamic policy and when sub-

stantial profit losses can be expected. In particular the influence of the decisive problem

characteristics, such as the remaining time before the long-term rentals begin or the re-

location costs, are analyzed. This knowledge about a profitable control for the problem

enables SMS providers to improve their operations for these kind of mobility service offers

and to extent them.

Overall, the results presented in this dissertation clearly show that demand manage-

ment through pricing and availability is a successful approach to improve operations in

SMSs and, thus, to increase profits. The contributions of this dissertation affect practice

and literature at the same time: Due to the fact that this work is based on a close collabo-
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ration with Share Now, the specific problems considered as well as the developed solution

approaches have a strong practice-orientation. At the same time, the contributions base

on theoretically well-founded approaches, including mathematical proofs, as well as on

the application and advancement of state-of-the-art methodology. Thus, this disserta-

tion enables the implementation of specific demand management approaches to improve

operations in SMS practice and it contributes comprehensively to the literature on SMS

optimization. The improved operations can incentivize SMS providers to expand their

mobility services, which is beneficial for urban mobility as a whole. For literature, several

research gaps have been closed, i.e., in the context of differentiated and dynamic pricing,

in availability control, with regard to the accurate modeling of SMSs, as well as regarding

solution approach methodology for complex problems in SMSs. In total, this dissertation

lays the foundation for future practice-relevant research on demand management in SMSs.
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