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a b s t r a c t 

Shared mobility systems have become a frequently used inner-city mobility option. In particular, free- 

floating shared mobility systems are experiencing strong growth compared to station-based systems. For 

both, many approaches have been proposed to optimize operations, e.g., through pricing and vehicle re- 

location. To date, however, optimization models for free-floating shared mobility systems have simply 

adopted key assumptions from station-based models. This refers, in particular, to the models’ part that 

formalizes how rentals realize depending on available vehicles and arriving customers, i.e., how supply 

and demand match. However, this adoption results in simplifications that do not adequately account for 

the unique characteristics of free-floating systems, leading to overestimated rentals, suboptimal decisions, 

and lost profits. 

In this paper, we address the issue of accurate optimization model formulation for free-floating systems. 

Thereby, we build on the state-of-the-art concept of considering a spatial discretization of the operating 

area into zones. We formally derive two novel analytical matching functions specifically suited for free- 

floating system optimization, incorporating additional parameters besides supply and demand, such as 

customers’ maximum walking distance and zone sizes. We investigate their properties, like their lineariz- 

ability and integrability into existing optimization models. Our computational study shows that the two 

functions’ accuracy can be up to 20 times higher than the existing approach. In addition, in a pricing case 

study based on data of Share Now, Europe’s largest free-floating car sharing provider, we demonstrate 

that more profitable pricing decisions are made. Most importantly, our work enables the adaptation of 

station-based optimization models to free-floating systems. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Shared mobility systems (SMSs) such as car sharing and bike 

haring systems have become an integral part of the inner-city 

obility. Globally, the shared mobility market today has a size of 

pproximately 250 bn. USD and is projected to grow annually by 

round 25% the next years ( Data Bridge Market Research, 2021 ). 

mong the two general concepts of free-floating (FF) and station- 
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ased (SB) systems ( Lu, Chen, & Shen, 2017 ), especially FF SMSs 

xperienced considerable growth during the last decade ( Shaheen, 

ohen, & Jaffee, 2018 ). The decisive difference between FF SMSs 

nd SB SMSs is that pick-up and drop-off locations for vehicles are 

ot limited to certain predefined locations – the stations in an SB 

MS. Instead, in an FF SMS, vehicles are free-floating within some 

redefined operating area and can be dropped-off (and picked-up) 

t any publicly accessible location. 

The optimization of SMSs, e.g. with regard to pricing and relo- 

ation, has been studied extensively in the literature, summarized 

.g. in review papers on car sharing by Ferrero, Perboli, Vesco, Ca- 

ati, & Gobbato (2015a) and on SMSs in general by Laporte, Me- 

nier, & Wolfler Calvo (2018) , Ataç, Obrenovi ́c, & Bierlair (2021) . 

owever, in the body of works addressing operational optimiza- 

ion problems with endogenous modeling of rentals, FF SMSs –
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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espite their dominance in practice – have not been adequately 

onsidered. Instead, up to now, FF SMSs are treated like SB SMSs 

compare e.g. Haider, Nikolaev, Kang, & Kwon, 2018; Jorge, Molnar, 

 Correia, 2015 for SB SMSs and Hardt & Bogenberger, 2021; Lu, 

orreia, Zhao, Liang, & Lv, 2021 for FF SMSs). However, as it turned 

ut in a close collaboration with Share Now, Europe’s largest FF car 

haring provider operating in 16 cities in 8 countries ( Share Now, 

021 ), ignoring the difference between both concepts in the opti- 

ization models can result in an overestimation of rentals in the 

F SMS, suboptimal decisions and substantial profit losses. In this 

ork, we address and solve this fundamental issue of inaccurate 

entals modeling in FF SMS optimization models. 

To give an idea of the causes of this issue, we first need 

o consider how SMS optimization models are usually formu- 

ated: Regarding space, it is the state-of-the-art approach in lit- 

rature and practice to discretize the operating area of an FF 

MS into zones – the counterpart of stations in an SB SMS (e.g. 

eijmeijer, Schulte, Tierney, Polinder, & Negenborn, 2020; Weikl & 

ogenberger, 2016 ). Regarding time, the considered time frame is 

iscretized into periods for both SB and FF SMSs. The SMSs are 

escribed and optimized on this level of aggregation, i.e. relevant 

ata (e.g. demand) is collected, and optimization models are for- 

ulated on this location -period level (station-period in SB SMSs, 

one-period in FF SMSs). Typically, these optimization models are 

ixed-integer (linear) programs based on network flow formula- 

ions for both SB (e.g. Jorge et al., 2015 ) and FF (e.g. Lu et al., 2017 )

MSs. 

Now, a central component of these optimization models is the 

ormalization on the location-period level how rentals realize in 

ependence of the number of available vehicles and the number 

f arriving customers – i.e., how supply and demand match . The 

xisting SB and FF SMS optimization models rely on the implicit 

ssumption that rentals are determined by the minimum of supply 

nd demand . While the realization of rentals can be modeled well 

ith this matching function in an SB SMS, applying the same sim- 

lified assumption to FF SMSs can cause substantial errors. Con- 

ider e.g. a station -period combination in an SB SMS with one (ex- 

ected) available vehicle and one (expected) arriving customer. In 

his SB SMS, it is valid to assume that one (expected) rental real- 

zes. For the same situation in an FF SMS in contrast, an accurate 

atching function must differ: When the zone is large, the avail- 

ble vehicle is not necessarily within reach of the customer, be- 

ause the zone has a spatial expansion and customers have a max- 

mum willingness-to-walk (e.g. Herrmann, Schulte, & Voß, 2014 ). 

hus, at most one – for a large zone, much less than one – (ex- 

ected) rental results. Note that we explicitly write “(expected)”, 

ecause even though realizations of supply, demand and rentals 

re discrete values in reality, they can be (and often are) modeled 

ontinuously. 

A presumably simple solution is to apply a finer spatial dis- 

retization scheme to the FF SMS, i.e. to define many small zones 

uch that a customer can reach any vehicle in the respective zone, 

nd then use the matching function to determine rentals as in an 

B SMS. This, however, simply substitutes the problem of a vehi- 

le being too far away in a large zone by other problems, which 

ecome more severe with decreasing zone size: Most importantly, 

efining many small zones is problematic, because observed data 

oints of demand and supply that in reality resulted in a rental 

re more likely to be assigned to neighboring zones such that 

here would not be a matching in the FF SMS model. This ag- 

regation error is related to the modifiable areal unit problem (see, 

.g., Manley, 2019 ) which summarizes that statistical results, such 

s mean values, variance, and correlations do depend on the spe- 

ific discretization scheme. Typical discretization schemes in liter- 

ture and practice use zones in the order of several square kilo- 

eters (e.g. Weikl & Bogenberger, 2016 ) and for these zone area 
1195
izes, the described issue regarding the supply-demand matching 

ue to the customers’ maximum walking distance indeed prevails. 

hese larger zone area sizes also have the practical advantage that 

he typically resulting fifty to hundred zones have a count which 

s still manageable for the staff of the SMS provider and that the 

ptimization models which scale with the zone count do not grow 

oo large. All of the named aspects already show that the deci- 

ion on appropriate discretization schemes (including count, size 

nd shape of zones) for FF SMSs is very complex. In fact, there 

s no single best definition of the discretization scheme. Thus, in 

ur work, we consider a certain discretization scheme as given , and 

e address the search for accurate matching functions for FF SMSs 

hat adapt to the given circumstances. 

Clearly, any matching process can be replicated arbitrarily ex- 

ct with stochastic simulations that consider discrete supply, de- 

and, and resulting rentals. However, we are interested in ana- 

ytical functions that output expected rentals (continuous values) 

nd that can be integrated in the existing SMS optimization mod- 

ls from the literature. Therefore, to solve the issue of inaccurate 

atching modeling in FF SMS optimization models, we first for- 

ulate a general matching function that replicates the matching 

rocess within an FF SMS and incorporates its specific character- 

stics. Based on this, we then formally derive two novel match- 

ng functions which are specifically suited for FF SMS optimization 

odels. We also formalize what is assumed in the existing litera- 

ure so far by a third matching function and show that only the 

wo novel matching functions can widely be applied to FF SMSs, 

nd that their integration in FF SMS optimization models improves 

ecision making. 

To properly distinguish our work from the literature, two 

treams are of particular importance. First, matching functions 

ave a long history in macroeconomics , mostly focusing on la- 

or markets and with the intention to explain unemployment 

e.g. Petrongolo & Pissarides, 2001 ). Some extensions also consider 

atching functions in transportation systems, such as taxi systems 

e.g. Buchholz, 2019 ). However, as we discuss in more detail in 

ection 2 , matching functions that incorporate the specifics of FF 

MSs have not been discussed yet. Moreover, in contrast to this 

iterature stream, our focus eventually lies on the formulation of 

ptimization models, such that we have a different view on match- 

ng functions and their requirements: For example, the matching 

unctions’ linearizability and integrability in an overall FF SMS op- 

imization model is of particular importance in our case, but irrel- 

vant in the existing literature. Second, the development of match- 

ng functions for FF SMSs in our work must not be mixed up with 

he development of so-called matching algorithms in platform-based 

MSs such as on-demand ride-hailing , like Uber or Lyft (e.g. Yan, 

hu, Korolko, & Woodard, 2020 ). In the latter, a central platform 

aces the problem to assign customer requests most efficiently to 

vailable drivers. Since the customer’s GPS coordinates are shared 

ith the driver after the assignment happened, the ride realizes 

ith certainty and, thus, there is no need for matching functions 

n the sense explained above. In contrast to the matching algo- 

ithms in platform-based SMSs, the provider of the SMSs that we 

onsider cannot explicitly decide on the assignment of vehicles to 

ustomers as customers choose vehicles themselves. Instead, the 

atching functions formalize how many rentals are expected to re- 

lize within some location-period combination, given supply, de- 

and, and other relevant parameters. 

The contributions of this paper are as follows: 

• To the best of our knowledge, we are the first to reveal the ne- 

cessity to formulate SB and FF SMS optimization models dif- 

ferently. We show that more sophisticated matching functions 

improve FF SMSs models and the decisions resulting from opti- 

mization. 
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• Second, we derive two novel matching functions for FF SMSs, 

which take into account the customers’ sequential arrival, their 

maximum walking distance, and the size of the zone. These 

functions differ regarding their mathematical properties and 

can be integrated in different types of optimization models –

one into the widespread linear network flow-based SMS opti- 

mization models, allowing to adapt a variety of existing SB SMS 

optimization models to FF SMSs. 
• Third, we formalize a third matching function that reflects the 

assumptions made (implicitly) in the SMS optimization litera- 

ture, i.e. that (expected) rentals correspond to the minimum 

of (expected) supply and demand. We demonstrate that this 

benchmark does not yield accurate rentals estimations for FF 

SMSs in general. Our analytical investigation of this function’s 

properties shows that this shortcoming cannot be remedied by 

artificially partitioning zones for which data is given into mul- 

tiple smaller zones. 
• Fourth, in a computational study, we demonstrate that the 

rental prediction accuracy of the novel functions in an FF SMS 

is substantially higher than the benchmark function. This is be- 

cause the novel matching functions adapt to the given circum- 

stances, in particular to different zones sizes. 
• Fifth, in a case study based on real-life data, we integrate 

one of the novel matching functions into an existing pricing 

optimization framework and demonstrate significant profit in- 

creases that can be ascribed solely to the more accurate match- 

ing modeling. 

Overall, this work primarily contributes to the literature on FF 

MS optimization from the operations research stream of litera- 

ure. We build a bridge between the optimization of SB and FF 

MSs, in the sense that, by the approaches presented in this paper, 

xisting optimization approaches that were specifically designed 

or SB SMSs can straightforwardly be generalized to make them 

pplicable for FF SMSs as well. 

The remainder of the paper is structured as follows. In 

ection 2 , we review the related literature. Section 3 discusses the 

ovel as well as the benchmark matching functions. Section 4 con- 

ains the numerical study considering the rentals prediction accu- 

acy. In Section 5 , we assess the importance of accurate matching 

odeling in optimization problems by considering a pricing op- 

imization case study. Section 6 covers managerial insights, con- 

ludes the paper and gives an outlook. 

. Literature 

The literature on SMS optimization is broad and covers deci- 

ion making at strategic, tactical and operational levels ( Laporte 

t al., 2018 ). Various review papers on bike sharing ( DeMaio, 2009; 

ishman, Washington, & Haworth, 2013; Ricci, 2015 ) and car shar- 

ng ( Brendel & Kolbe, 2017; Ferrero et al., 2015a; Ferrero, Per- 

oli, Vesco, Musso, & Pacifici, 2015b; Golalikhani, Oliveira, Car- 

avilla, Oliveira, & Antunes, 2021a; Golalikhani, Oliveira, Carravilla, 

liveira, & Pisinger, 2021b; Illgen & Höck, 2019; Jorge & Correia, 

013 ) summarize the literature. Our work contributes to the tacti- 

al (e.g. fleet sizing) and operational (e.g. relocation or pricing) lev- 

ls where matching functions are (implicitly) used and, as we will 

ee, more advanced matching functions are required for FF SMSs. 

Until now, matching functions for SMSs and the necessity of 

odeling FF SMSs differently than SB SMSs has not been dis- 

ussed in the literature. On the contrary, the literature is divided 

n whether any differences need to be made between optimiza- 

ion models of SB and FF SMSs and we explore these views in 

ection 2.1 . In Section 2.2 , we provide an overview on SMS opti-

ization problems with a focus on the wide spread approaches 

ormulated as time-expanded networks. These works are rele- 
1196 
ant because existing assumptions regarding matching can be con- 

luded from their optimization models and these works are the 

nes where our novel matching functions can be integrated in. In 

ection 2.3 , we review the literature on matching functions from 

acroeconomics. In Section 2.4 , we briefly review two other re- 

ated literature streams, namely agent-based FF SMS simulations 

nd empirical studies, as these works implicitly provide insights 

egarding relevant parameters for matching functions. 

Note that, as explained in Section 1 , we do not consider 

latform-based mobility offers like on-demand ride-hailing that as- 

ign customer requests to vehicles (e.g. Boysen, Briskorn, & Schw- 

rdfeger, 2019; Yan et al., 2020 ), because the nature of these prob- 

ems differs fundamentally from those in the SMSs that we con- 

ider (car sharing etc.). 

.1. Station-Based vs. free-floating shared mobility system 

ptimization 

SB SMSs have a relatively long history in practice – the first 

B car sharing system was installed in 1948 in Switzerland (called 

efage) ( Shaheen, Sperling, & Wagner, 1998 ). In contrast, the con- 

ept of FF SMSs, which today largely relies on the usage of mobile 

hones and GPS tracking only became technically realizable much 

ater and arguably was first put into practice with an FF car sharing 

ystem in 2008 in Germany ( Ciari, Bock, & Balmer, 2014 ) (called 

ar2go which ten years later became Share Now). This temporal 

elay of FF SMSs is reflected in the literature, where the major- 

ty of papers consider SB SMSs. For example, in the general survey 

aper on SMSs, Laporte, Meunier, & Wolfler Calvo (2015) entirely 

ocus on SB SMSs, while their updated survey a few years later ex- 

licitly differs between SB and FF SMSs ( Laporte et al., 2018 ). 

Regarding the optimization of these SMSs, there are different 

iews in the literature on whether SB and FF SMSs can be consid- 

red identical or not: Some authors state that SB and FF SMSs can 

e treated identically . As stated in Section 1 , this view is based on

he fact that the state-of-the-art approach in literature and prac- 

ice regarding the modeling of FF SMSs is to discretize the oper- 

ting area into zones (e.g. Neijmeijer et al., 2020; Weikl & Bogen- 

erger, 2016 ). Thus, it is tempting to equate stations and zones. 

or example, in their review paper on relocations in one-way car 

haring, Illgen & Höck (2019) argue that “free-floating operation ar- 

as are usually partitioned into smaller zones that serve as virtual 

tations, such that the VReP [vehicle relocation problem] can be 

pplied perfectly for relocations that occur between those zones 

nstead of from station to station”. Similarly, Lu et al. (2021) who 

onsider combined relocation and pricing on the performance of 

ne-way car sharing systems, implicitly state that SB and FF SMSs 

an be considered identically, as they use the decisive terms “sta- 

ions” and “zones” interchangeably. 

The only researchers we know of who represent a more differ- 

ntiated view are from Bogenberger’s group. Weikl & Bogenberger 

2015) e.g. consider relocation optimization for FF SMSs. On the 

ne hand, they state that from a technical viewpoint, SB SMS opti- 

ization models can be transferred to FF SMSs by “dividing the 

perating area into station-like zones.” On the other hand, they 

tate that “transferring the existing relocation models for station- 

ased systems to free-floating car sharing systems is however re- 

tricted” and they give multiple reasons related to the considered 

elocation problem (see also Weikl & Bogenberger, 2013 ). The au- 

hors e.g. argue that zone-level relocation decisions are not specific 

nough for FF SMSs because vehicles have specific positions. An- 

ther argument concerns the optimization model, since zones of FF 

MSs “do not have strict capacity limits” in contrast to stations in 

B SMSs. To address these issues, the authors define “macroscopic 

ones” which are separated into “microscopic zones”. The reloca- 

ion decisions on macroscopic level are determined by optimiza- 
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ion while the decisions on microscopic level are rule-based. Note 

hat in the models of Weikl & Bogenberger (2013) and Weikl & 

ogenberger (2015) , the issue of accurate matching modeling does 

ot arise, because the optimal number of vehicles per zone which 

s affected by the relocation decisions is given and rentals are not 

odeled endogenously (see also Section 2.2 ). 

In our work, we demonstrate that SB and FF SMS optimiza- 

ion models indeed need to differ. While Weikl & Bogenberger 

2015) focus on relocation, in this paper we address the essen- 

ial issue of matching modeling, which is necessary for all opti- 

ization models in which rentals are endogenously modeled. We 

n particular show that once that data is collected on some de- 

ned zone level, artificially subdividing this zone into multiple 

ub-zones which correspond to stations of an SB SMS does not ad- 

ress the issue of inaccurate rentals predictions ( Section 3 ). 

.2. Network flow-based shared mobility system optimization models 

The dynamically changing, imbalanced distribution between 

vailable and demanded vehicles is a well-known challenge of 

MSs ( Jorge & Correia, 2013; Lippoldt, Niels, & Bogenberger, 2019; 

olnar & Correia, 2019 ). Most tactical and operational optimization 

pproaches seek to address this problem in order to optimize for 

he actual service- or monetary-related goal. To that end, the pro- 

osed approaches typically consider the interaction of supply and 

emand over the entire SMS by modeling the system with a time- 

xpanded network, where rentals and relocations are described 

y flows. Note that not all network flow-based SMS models con- 

ider rentals endogenously . For example, papers on relocation typ- 

cally consider the desired number of vehicles at different spatio- 

emporal network nodes as given, and model only the operator- 

ased vehicle movements ( = relocations) to serve this demand as 

etwork flows. The matching functions in this work determine the 

ser-based vehicle movements ( = rentals) in dependence of supply, 

emand and other parameters. Accordingly, they are only relevant 

or optimization models with endogenous rentals which we focus 

n in the following. 

Among these works, we identify three groups. First, works that 

onsider SB SMSs (e.g. Haider et al., 2018; Jorge et al., 2015 ), sec-

nd, works that consider FF SMSs (e.g. Hardt & Bogenberger, 2021; 

u et al., 2017; Lu et al., 2021 ), and third, works that consider

MSs in general (e.g. Correia & Antunes, 2012; Soppert, Steinhardt, 

üller, & Gönsch, 2022 ), by speaking of locations instead of stations 

r zones . Among the first and second group, several works do not 

se the term station-based or free-floating explicitly, but their prob- 

em description and modeling where they use the terms station or 

one allows to classify them. 

To the best of our knowledge, the issue of supply and demand 

atching in FF SMSs has not been addressed in any of these works, 

r elsewhere in the literature. Still, the above works model the 

elation between supply, demand, and rentals, such that assump- 

ions regarding the matching modeling within a specific location- 

eriod are implicitly revealed: All of the above-named works use 

he concept that rentals are the minimum of demand and sup- 

ly. Other parameters that may affect the matching are not con- 

idered. To the best of our knowledge, there are only two works 

n the above-named groups ( Hardt & Bogenberger, 2021; Soppert 

t al., 2022 ) that explicitly model (expected) rentals to equal the 

inimum of (expected) supply and (expected) demand (always 

dd “(expected)” in the following). All other works formulate con- 

traints that only limit rentals to this minimum because they pro- 

ose optimistic optimization models in the sense that the opera- 

or can deny a rental although there is supply and demand (see 

oppert et al., 2022 for further discussions). 

To summarize the SMS literature regarding matching modeling, 

ne can conclude from the optimization models that it is current 
1197 
ractice to (explicitly or implicitly) assume that rentals are deter- 

ined by the minimum of supply and demand and this simplistic 

ssumption is applied to both SB and FF SMSs. With regard to the 

hree groups in the literature identified above, our contribution is 

o develop matching functions that allow to apply SB SMS models 

o FF SMS models (first group) and to improve FF and unspecified 

MS models (second and third group). 

Even if supply and demand matching has not been considered 

xplicitly, the above works impose requirements on the match- 

ng functions that we develop. For one thing, the matching func- 

ions need to be compatible with a spatio-temporal discretiza- 

ion and shall be seamlessly integratable into these SMS models. 

ore specifically, the matching functions’ in- and output need to 

e compatible with the overall SMS models from literature. For 

nother, many approaches are formulated as linear optimization 

roblems. Therefore, linear matching functions that retain the lin- 

arity of the overall model have an additional value for the gener- 

lizability of existing literature. 

.3. Matching functions 

Analytical formulations that describe the formation of new rela- 

ionships, i.e. matches , from unmatched agents are denoted as ( ag- 

regate ) matching functions and have originally been discussed in 

acroeconomics, often in the context of stylized (labor) markets. 

he motivation to formulate these matching functions is to explain 

coordination failures” that e.g. “explain the existence of unem- 

loyment” (despite job availability) through “the modeling of fric- 

ions ” which derive e.g. from “information imperfections” or “het- 

rogeneities” ( Petrongolo & Pissarides, 2001 ). In their survey paper 

n matching functions, Petrongolo & Pissarides (2001) state that 

or labor markets the simplest matching function m is of the form 

 = m (U, V ) , where M is the number of jobs that result during a

iven time interval in dependence of unemployed workers U and 

acant jobs V . Different underlying mechanisms of the matching 

rocess, called microfoundations , are assumed that lead to differ- 

nt matching functions. For example, the earliest works by Butters 

1977) and Hall (1979) formulate matches based on an urn-ball mi- 

rofoundation, where (in labor market context) workers randomly 

end applications (balls) to job vacancies (urns). Under the sim- 

lest assumption that “U workers know exactly the location of 

ob V vacancies”, that workers “send one application each”, and 

hat “a vacancy [...] selects an applicant at random”, the result- 

ng matching function becomes M = V · [1 − (1 − 1 /V ) U ] which can

e approximated by M = V · [1 − e −U/V ] ( Petrongolo & Pissarides, 

001 ). 

In the context of transportation, the matching between cus- 

omers and drivers in taxi systems has been analyzed by Bian 

2018) , Buchholz (2019) , Fréchette, Lizzeri, & Salz (2018) as well 

s Ata, Barjesteh, & Kumar (2019) . The matching functions of the 

rst two are based on the works named above, have the same 

tructural form, and are only slightly modified, e.g. by a “location 

pecific parameter” ( Bian, 2018 ) that allows to calibrate to spa- 

ial heterogeneities. A particular matching function that holds “in 

he absence of frictions” is M = min (U, V ) ( Petrongolo & Pissarides, 

001 ), also denoted as “perfect matching” ( Bian, 2018 ) or “friction- 

ess matching” ( Buchholz, 2019 ), which in the latter is used to de- 

cribe the search process by taxis for customers at airports. 

In contrast, Fréchette et al. (2018) as well as Ata et al. 

2019) use fundamentally different approaches to derive matching 

unctions for taxi systems. Fréchette et al. (2018) picture differ- 

nt areas of a city where each area consists of a grid of locations 

hat represent street corners. A matching function is approximated 

hrough a simulation in which customers and drivers appear ran- 

omly on these locations. Customers wait for some time before 

hey leave and whenever a driver arrives at a location where a 
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ustomer is waiting a match realizes. Ata et al. (2019) propose an 

nalytical approach in which they draw the number of customers 

nd drivers each from a Binomial distribution and then derive the 

xpected number of matches by taking the minimum of both val- 

es. To find a tractable approximation, the authors use the Nor- 

al distribution and linear approximations to obtain the eventual 

atching function. 

To the best of our knowledge, matching functions for FF SMSs 

ave not yet been discussed in the literature. In our work, we 

ll this gap by deriving matching functions which are based on 

F SMSs specifics ( microfoundations ), such as zone sizes and cus- 

omers’ willingness-to-walk. These parts of our work contribute to 

he matching functions literature. However, since we focus on FF 

MS optimization – during development of the functions as well as 

n a pricing optimization case study – we overall see our contri- 

ution with regard to the SMS optimization literature from opera- 

ions research. E.g. other than in the matching function literature, 

dditional properties for the newly developed functions, like e.g. 

he integrability into optimization models, are of particular inter- 

st in our work. In Section 3 , we establish the connection between 

he developed matching functions and literature and e.g. discuss 

nder which conditions the frictionless matching mentioned above 

an be applied to FF SMSs. 

.4. Further related literature streams 

The first related literature stream uses agent-based simulations 

o derive insights on SMSs. Typical applications are e.g. the evalu- 

tion of SMSs within a multi-commodity transportation network 

 Ciari, Balac, & Axhausen, 2016; Heilig, Mallig, Schröder, Kager- 

auer, & Vortisch, 2018; Li, Liao, Timmermans, Huang, & Zhou, 

018 ), the impact of specific (parking) pricing rules ( Balac, Ciari, 

 Axhausen, 2017; Ciari, Balac, & Balmer, 2015 ), or the inter- 

lay of competing SMS providers ( Balac, Becker, Ciari, & Axhausen, 

019 ). Because of the system’s description on agent level, in- 

luding customer behavior and exact vehicle positioning, match- 

ng is indeed considered in these simulations. However, an an- 

lytical formalization of the matching, in particular on location- 

eriod level, as required for the integration into network flow- 

ased optimization problems, is not given. Another application of 

gent-based simulations is to serve as a heuristic solution ap- 

roach for network flow optimization problems that we consider 

n our work (see e.g. Cocca, Giordano, Mellia, & Vassio, 2019 ), but 

lso in this case no analytical formulations of the matching is 

rovided. 

The second related literature stream deals with empirical stud- 

es on FF SMS. These works provide requirements for and rele- 

ant parameters of suitable matching functions. From several stud- 

es one can conclude that matching functions have to consider 

patio-temporal differences of an SMS. For example, Reiss & Bo- 

enberger (2016) simulate a bike sharing system based on empiri- 

al data and identify different demand patterns for weekdays and 

eekends, as well as for different locations and times of the day. 

ardt (2018) also reports different spatio-temporal demand pat- 

erns and furthermore identifies differences regarding the result- 

ng rentals, drop-offs, and availabilities within the operating area. 

egarding relevant parameters on the customers’ decision for the 

atching functions in FF SMSs, literature especially mentions the 

istance/walking time to the vehicles as well as the pricing. For ex- 

mple, Wu, Le Vine, Sivakumar, & Polak (2019) investigate the user 

ehavior with a stated-choice experiment considering for exam- 

le walking time, willingness to pay, and socio-demographical fea- 

ures. Niels & Bogenberger (2017) analyze app openings and book- 

ng data from a car sharing system. Among other results, they re- 

ort a high influence of the distance to available vehicles on the 

ustomers’ decision. 
1198 
. Modeling rentals in FF SMS optimization problems 

In this section, we propose and discuss two novel analyti- 

al matching functions to model rentals in FF SMS optimiza- 

ion problems. Further, we formalize a third one which reflects 

he matching as it is currently assumed in the SMS optimiza- 

ion literature and which will serve as a benchmark later in 

he computational study. In Section 3.1 , we begin by discussing 

he required output as well as reasonable inputs for the match- 

ng functions. Section 3.2 presents a generic stylized match- 

ng process and a corresponding generic matching function on 

hich all specific matching functions are based. In Section 3.3 , 

e systematically derive the different functions, along with their 

pecific underlying assumptions. Section 3.4 discusses mathe- 

atical properties and Section 3.5 the potential of being inte- 

rated into linear optimization problems for each of the matching 

unctions. 

.1. Output and inputs 

We begin by stating the output of the matching functions: As 

iscussed in Sections 1 and 2.2 , SMS optimization models are typ- 

cally formulated based on network flow formulations, consisting 

f multiple locations and periods. In these SMS models, vehicle 

ovements, i.e., rentals and relocations, have a certain location- 

eriod origin as well as a certain location-period destination. To fit 

n these network flow SMS models, a compatible matching func- 

ion’s output simply needs to quantify the (expected) number of 

entals r that originate in a certain location and period. Conversely, 

t is not determined by the matching function how the rentals that 

ealize in a specific origin split into different destinations, as this 

an be covered by other components of the overall SMS network 

ow model (see Section 3.5 ). 

We continue with stating reasonable inputs for the matching 

unctions: Clearly, the rentals depend on the number of available 

ehicles and arriving customers in a given location and period. 

herefore, these quantities, which we denote as a and d, are in- 

uts. However, when considering the realization of rentals in an FF 

MS, two additionally necessary parameters become immediately 

pparent, namely the maximum distance that customers are will- 

ng to walk and the size of the zone. With a maximum walking 

istance in the order of several hundred meters (e.g. Herrmann 

t al., 2014; Niels & Bogenberger, 2017 ), and a typical zone size 

f several square kilometers (e.g. Müller, Correia, & Bogenberger, 

017; Weikl & Bogenberger, 2016 ), it is clear that an available ve- 

icle is not necessarily within reach of a customer, even if the 

ustomer and vehicle are in the same zone. In order to formalize 

he matching functions based on these two additional parameters, 

e define A w as the size of the area within walking distance and 

 z as the size of the zone. The matching functions therewith be- 

ome a function of the discussed inputs and parameters, meaning 

 = r A w ,A z (a, d) . 

.2. Preliminaries: Generic matching 

.2.1. Stylized matching process 

As discussed above, matching functions for network flow-based 

MS optimization models require to describe the rentals r on 

ocation-period level , given a and d. In contrast, the actual match- 

ng process in reality is independent of the artificial spatio- 

emporal discretization and underlies dynamics that take place 

ithin the period. In this section, we therefore introduce a styl- 

zed matching process that considers the requirements imposed 

y the discretization in the SMS model as well as the intent 

o formalize analytical functions that replicate the real match- 

ng process as accurately as possible. We take the following as- 
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umptions for the stylized matching process on location-period 

evel: 

• All vehicles a become available at the beginning and customers 

d arrive sequentially during the period. More precisely, the a 

vehicles are first distributed over the zone. Second, the d cus- 

tomers arrive sequentially and potentially rent one of the ve- 

hicles each. Both a and d have zero variance, meaning that 

these are deterministic values in the matching process. We 

assume homogeneity of the zone, such that the exact loca- 

tions of vehicles and customers are drawn from a uniform dis- 

tribution. To formalize the process and in particular its in- 

termediate states, we denote the remaining customers to ar- 

rive during a period as ˆ d and the remaining available vehicles 

as ˆ a . 
• Each of the remaining available vehicles belongs to a corre- 

sponding part of the zone, meaning that the vehicle would 

be within reach for an arriving customer from this part. We 

say that a vehicle covers a part of the zone area and we de- 

note the size of the area that is covered by ˆ a vehicles all to- 

gether as A ˆ a . The size of the marginally covered area by the 

ˆ a th vehicle is denoted as �A ˆ a . The matching functions differ 

in their assumption how the vehicles are spatially distributed 

and how additional vehicles cover additional parts of the 

zone. 

Note that it is reasonable to define the marginal coverage of 

 vehicle �A ˆ a in dependence of the walking area A w of a cus- 

omer : As stated above, we assume homogeneity of a zone such 

hat the probability of any location within the zone to lie within 

 w is equal. Considering a situation with one available vehicle, the 

robability that this vehicle is located within the reachable area of 

he customer A w is equivalent to the probability that the customer 

rrival location lies within the area A w which is covered by the ve- 

icle. The latter is in line with the assumption that vehicles are 

vailable from the beginning of a period and that customers arrive 

equentially. 

• For every arriving customer, there is a certain probability that 

a rental realizes. Clearly, this probability depends on the re- 

maining available vehicles ˆ a in the zone, the customer’s walking 

area A w as well as the zone area size A z . Since ˆ a and therewith

A ˆ a may change over the matching process, also this match- 

ing probability, which we denote by P A w ,A z ( ̂  a ) , generally differs 

for each of the customers. We assume that a rental realizes if 

the customer arrival position lies within the (currently) cov- 

ered zone area A ˆ a . Considering the uniform distribution for a 

customer’s exact arrival position, the probability of a match- 

ing P A w ,A z ( ̂  a ) therewith is equal to the proportion of the cov- 

ered area to the entire zone area, meaning P A w ,A z ( ̂  a ) = 

A ˆ a 
A z 
. The

matching process ends if all customers have arrived or if all ve- 

hicles have been rented. 

Note that drawing exact positions from the uniform distribu- 

ion corresponds to assuming homogeneity of the zone. We define 

 zone as the smallest considered spatial unit within an FF SMS for 

hich data is aggregated or given. This implies that no information 

n a more disaggregate level is available which would justify sep- 

rating a (heterogeneous) zone into multiple (homogeneous) ones. 

ater, in the numerical study, we vary the zone size which corre- 

ponds to different given levels of spatial data aggregation and we 

valuate the matching functions with regard to their adaptability 

o these different circumstances. 

.2.2. Generic matching function 

Given the above assumptions, the matching process within a 

ocation-period combination can be formalized by the following 
1199 
eneric matching function 

 A w ,A z ( ̂  a , 
ˆ d ) = P A w ,A z ( ̂  a ) · (1 + r A w ,A z ( ̂  a − 1 , ˆ d − 1)) 

+ (1 − P A w ,A z ( ̂  a )) · r A w ,A z ( ̂  a , ˆ d − 1) ∀ ̂  a , ˆ d ∈ Z (1a) 

 A w ,A z ( ̂  a , 0) = 0 ∀ ̂  a ∈ Z (1b) 

 A w ,A z (0 , 
ˆ d ) = 0 . ∀ d ∈ Z (1c) 

The inter-dependencies between the possible rental realizations 

nd the changing zone coverages are formulated by a recursion 

ver the customer arrivals (1a) . For every arriving customer, the 

robability that a rental realizes is P A w ,A z ( ̂  a ) . In case of a match,

ne rental is counted and the number of available vehicles is re- 

uced by one. With probability P̄ A w ,A z ( ̂  a ) = 1 − P A w ,A z ( ̂  a ) , no rental

akes place such that the subsequent customer (if existent) has the 

ame number of vehicles available, i.e. ˆ a . Independent of the out- 

ome, the number of customers to come is reduced by one, i.e. 
ˆ 
 ← 

ˆ d − 1 . The boundary conditions (1b) and (1c) ensure that the 

umber of rentals is zero if either supply or demand are zero. Note 

hat (1) is a discrete function in ˆ a and ˆ d but that its output of 

xpected rentals in general takes continuous values. In reality, of 

ourse, realizations of supply, demand, and rentals are discrete but 

ince matching functions, meaning (1) as well as all introduced in 

he following, are models that aim at replicating reality, continuous 

utputs are reasonable or even desired if interpreted as expected 

alues (see Section 3.5 ). 

In the context of an overall network flow SMS model, (1) would 

hen be integrated to calculate the resulting rentals for a specific 

ocation-period combination with corresponding vehicle count a 

nd arriving customers d, i.e., by evaluating r A w ,A z (a, d) . 

.3. Derivation of matching functions 

Based on the previously described generic matching process, we 

erive three matching functions in this section. The decisive differ- 

nce between the functions is the rate with which an additional 

ehicle covers the area of the zone. Consequently, we denote the 

hree functions as 

• degressive coverage rate matching function (DCR) ( Section 3.3.1 ), 
• constant coverage rate matching function (CCR) ( Section 3.3.2 ), 

and 
• infinite coverage rate matching function (ICR) ( Section 3.3.3 ). 

The assumptions of the DCR come closest to the real matching 

rocess, but also the other two functions, especially the CCR, have 

 range of validity, and other advantages compared to the DCR. 

.3.1. The degressive coverage rate matching function (DCR) 

The DCR results from the generic matching function (1) by 

urther specifying the matching probability P A w ,A z ( ̂  a ) . The under- 

ying assumption of the DCR is that each part of the zone is 

qually likely to belong to the area covered by a vehicle. Thus, 

he area covered by an additional vehicle comprises a part that 

s newly covered (marginally covered area) and a part that is al- 

eady covered by the other vehicles (and wasted in this sense). 

ore formally, the DCR assumes that, for a given available ve- 

icle count ˆ a , the additionally covered area �A ˆ a +1 by one ad- 

itional vehicle, meaning by the ( ̂  a + 1) st vehicle, is a fraction 

f A w . This fraction is the ratio of the not covered zone area

ith ˆ a vehicles Ā ˆ a = A z − A ˆ a to the entire zone area, meaning 

A ˆ a +1 = A w · Ā ˆ a 
A 
. 
z 
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Fig. 1. Illustrative representation of coverage by matching functions. 

Fig. 2. Schematic iso-rental curves for different matching functions and a specific A w , A z with A w < A z . 
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roposition 1. Assuming �A ˆ a +1 = A w · Ā a 
A z 
, the matching probability 

s P A w ,A z ( ̂  a ) = (1 − (1 − A w 
A z 

) ̂ a ) and the DCR is defined by 

CR: r DCR A w ,A z 
( ̂  a , ˆ d ) = (1 − (1 − A w 

A z 
) ˆ a ) · (1 + r DCR A w ,A z 

( ̂  a − 1 , ˆ d − 1)) 

+ 

(
1 − A w 

A z 

) ˆ a 

· r DCR A w ,A z 
( ̂  a , ˆ d − 1) ∀ ̂  a , ˆ d ∈ Z (2a) 

 
DCR 
A w ,A z 

( ̂  a , 0) = 0 ∀ ̂  a ∈ Z (2b) 

 
DCR 
A w ,A z 

(0 , ˆ d ) = 0 . ∀ ̂
 d ∈ Z (2c) 

We prove Proposition 1 in Appendix B. Figure 1 a illustrates the 

arginal coverage of the DCR for a = 3 vehicles. The ˆ a th vehicle 

dditionally covers A w · (1 − A w 
A z 

) ̂ a −1 . In Fig. 2 a, the DCR iso-rental 

urves are schematically depicted, indicating which a, d combina- 

ions lead to the same number of rentals. For every a, d combina- 

ion, an increase of one of the quantities always results in a higher- 

evel curve, but the increase depends on the ratio of a and d. If a is

arger than d, an increase of a causes a smaller increase of rentals 

than if a and d are identical or if d is even larger than a , and vice

ersa. 

emark. Note that for formal reasons A w ≤ A z is required such that 

he matching probability does not exceed one. Naturally, A w ≥ 0 

lso holds. For A w > A z the entire zone is always covered by the

emaining available vehicles such that every arriving customer re- 

ults in a rental as long as at least one vehicle is available. In this

ase, the matching process is rather trivial and, as we discuss later, 

t is covered by the ICR, the state-of-the-art matching function. 

his also holds for the following sections, in particular for the CCR 

hich is discussed next. 
1200 
.3.2. The constant coverage rate matching function (CCR) 

The CCR is derived from the generic matching function (1) in 

wo steps. The first step concerns the assumption regarding the 

arginal coverage by an additional vehicle and, as the name sug- 

ests, the CCR assumes a constant marginal coverage. More pre- 

isely, the marginal coverage for the ( ̂  a + 1) st vehicle is �A ˆ a +1 = 

in (A z − A ˆ a , A w · λ) with λ ∈ [0 , 1] , meaning that each additional 

ehicle additionally covers the same fraction of the walking area 

 w · λ until the residual of the zone’s covered area is smaller than 

his A w · λ, such that the next vehicle covers this residual. The fac- 
or λ allows to formulate a constant marginal coverage which im- 

licitly considers the potential overlap of the area covered by the 

ndividual vehicles (as for the DCR). In Appendix C, we show that 

or an expected number of available vehicles ā , for example deter- 

ined by historic data, λ can be analytically approximated by 

≈
1 − (1 − A w 

A z 
) ā 

A w 
A z 

· 1 
ā 

. (3) 

ith this assumption for �A ˆ a +1 , the covered area by ˆ a vehicles be- 

omes A ˆ a = min (A z , A w · λ · ˆ a ) , and P A w ,A z ( ̂  a ) = 
min (A z ,A w ·λ· ˆ a ) 

A z 
in (1a) . 

In the second step to derive the CCR, the additional assumption 

s taken that all customers have identical matching probabilities, 

uch that the former recursive formulation simplifies to 

 A w ,A z (a, d) = min 

(
min (A z , A w · λ · μ · a ) 

A z 
· d, a, d 

)
, ∀ a, d ∈ Z 

(4) 

ith μ ∈ [0 , 1] . The fraction in the first argument of the (outer)

in () -operator in (4) represents the average matching probability 

or every of the d arriving customers. μ allows to formulate the av- 

rage covered area A w · λ · μ · a , which is a fraction of A w · λ · a . In
he recursive formulations, the boundary conditions ensured that 

entals can not exceed a or d. In the explicit (4) , this is ensured by

he second and third argument of the min () -operator. (4) can be 
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implified to the final CCR 

CR: r C C R A w ,A z 
(a, d) = min 

(
A w 

A z 
· λ · μ · a · d, a, d 

)
. ∀ a, d ∈ Z (5) 

learly, μ has to depend on the amount of customers arriving. We 

how in Appendix C, that for an expected amount of customers d̄ , 

he parameter μ can be analytically approximated by 

≈ 1 

d̄ 
·

d̄ ∑ 

i =1 

(
1 − A w · λ

A z 

)i −1 

. (6) 

igure 1 b illustrates the marginal coverage of the CCR for λ = μ = 

 and a = 3 vehicles. Every vehicle additionally covers A w · λ · μ. In 

ig. 2 b, the iso-rental curves of the CCR are schematically depicted. 

n contrast to the DCR, for large values of a and/or d, an increase

f these quantities does not result in an increase of the rentals r. 

.3.3. The infinite coverage rate matching function (ICR) 

As the name suggests, the ICR assumes an infinite cover- 

ge by every additional vehicle (no friction). More precisely, the 

arginal coverage for the ( ̂  a + 1) st vehicle is �A ˆ a +1 = min (A z −
 ˆ a , A z ) , meaning that the entire zone is covered as long as there is

t least one vehicle available. With this assumption, P A w ,A z ( ̂  a ) = 1 

or every arriving customer as long as there is at least one vehicle 

vailable. Then, the ICR in dependence of a and d can be formal- 

zed by 

CR: r ICR A w ,A z 
(a, d) = r ICR (a, d) = min (a, d) . ∀ a, d ∈ Z (7) 

igure 1 c illustrates the coverage of the zone according to the 

CR for a ≥ 1 vehicles, showing that the entire zone is covered. In 

ig. 2 c, the iso-rental curves of the ICR are schematically depicted. 

f a is greater or equal to d, an increase of a does not result in

n increase of the rentals r, and vice versa. The iso-rental curves 

emonstrate that the ICR follows the characteristics of a Leontief 

roduction ( Fandel, 1991 , Chapter 4). 

Regarding the relation between the matching functions, one can 

tate the following: When the first argument in the min () -operator 

n (5) is not restrictive, the CCR (5) and the ICR (7) become iden-

ical. This first argument is not restrictive if λ · μ · A w 
A z 

· a ≥ 1 or λ ·
· A w 

A z 
· d ≥ 1 . Further, the ICR is a special case of the DCR: When

 w = A z , P A w ,A z ( ̂  a ) = 1 for every customer in the DCR (2) such that

entals realize until all vehicles are taken, or all customers have 

rrived – exactly as in the ICR (7) . In the schematic depiction of 

so-rental curves of the DCR in Fig. 2 a, the curves take the form

f the ICR in Fig. 2 c if P a = 1 for every customer. As stated in

ection 3.3.1 , the DCR is not defined for A w > A z . Similarly, the

erivation of λ and μ for the CCR in Section 3.3.2 assumes A w ≤ A z . 

owever, more general formulations of these two matching func- 

ions that would also capture the case of A w > A z would return 

entals as for A w = A z , i.e. like the ICR, because A w = A z already

aptures the case where the entire zone is covered by the avail- 

ble vehicles. 

emark. As discussed in Sections 1 and 2.2 , it is current practice in

he SMS optimization literature to determine rentals for a specific 

ocation-period combination by the minimum of the available ve- 

icles and arriving customers (also known as “perfect/frictionless 

atching”, see Section 2.3 ). Literature applies this (implicit) as- 

umption to model both SB as well as FF SMSs. The ICR (7) is the

ormalization of this assumption such that the ICR could be con- 

idered as the state-of-the-art matching function, even if not dis- 

ussed as such in the SMS literature. Clearly, since the ICR does 

ot consider A w and A z , the ICR in general overestimates the actual 

atching when applied to model an FF SMS for which A w < A z . In

he numerical studies in Section 4 , we use the ICR as a benchmark

o evaluate the DCR and CCR. 
1201
Note that in an SB SMS, where available vehicles and arriving 

ustomers refer to a specific station, the issue of overestimating 

entals due to the neglection of spatial parameters A w and A z de- 

cribed above does not occur. Note further that the link between 

B and FF SMSs in the context of matching modeling can be es- 

ablished by considering an extreme case of the zone area size: A 

tation of an SB SMS can be considered as a zone in an FF SMS of

nfinitely small size – a point zone. In this point zone, the expected 

entals can be correctly described by the ICR (7) . 

.4. Properties 

In this section, we discuss mathematical properties of the three 

atching functions r M 

A w ,A z 
(a, d) with M ∈ { DC R, C C R, IC R } . This anal-

sis is common in the matching function literature, as it allows to 

ssess the plausibility of the derived functions by verifying desir- 

ble properties and to analytically derive limitations of the func- 

ions’ applicability. Properties 1 and 2 can be considered as stan- 

ard boundary conditions for matching functions. Properties 3 and 

 are related to the special case of “perfect/ frictionless” match- 

ng (see Section 2.3 ) in FF SMSs. Properties 5 and 6 are specific for

atching functions in FF SMSs, while especially the latter also im- 

acts the formulation of overall optimization models for FF SMSs –

 particularly relevant aspect in our work (see also Section 3.5 ). 

roperty 1 – Zero rentals boundary conditions. If either demand 

r supply are zero, no rentals realize. Formally, we have r M 

A w ,A z 
(a, d) =

 if a = 0 or d = 0 . 

his property verifies an intuitive boundary condition: The absence 

f available vehicles or customers. Clearly, the DCR, the CCR, and 

he ICR fulfill this property. 

roperty 2 – Supply and demand limits. If the number of avail- 

ble vehicles becomes infinitely large, the realized rentals equal de- 

and, and vice versa. Formally, we have r M 

A w ,A z 
(a, d) = d for a → ∞

nd r M 

A w ,A z 
(a, d) = a for d → ∞ , respectively. . 

his property verifies an intuitive boundary condition in the abun- 

ance of available vehicles or customers. Clearly, the CCR and the 

CR fulfill this property. For the DCR, consider that if a → ∞ , also

ˆ  → ∞ and that the probability of a matching P A w ,A z ( ̂  a ) = (1 − (1 −
A w 
A z 

) ̂ a ) → 1 in (2a) , for realistic parameters where A w ≤ A z . If this is

rue for every arriving customer d , r M = d . For d → ∞ , the recur-

ion in (2a) is executed until all vehicles a are taken because we 

ave P A w ,A z ( ̂  a ) > 0 ∀ ̂  a > 0 . 

roperty 3 – Matching with certainty for entire zone cover- 

ge. If the vehicles cover the entire zone area, the next arriving cus- 

omer certainly finds a vehicle and a rental results. Formally, we have 
∂ 
∂d 

r M 

A w ,A z 
(a, d) = 1 if A a = A z . 

his intuitive property covers constellations in which matching in 

n FF SMS works as matching in SB SMS. For the DCR, A a = A z re-

uires the special case that A z = A w , and in this case, P A w ,A z (a ) = 1

or every arriving customer, as long as there is at least one vehicle 

vailable. For the CCR, A a = A z means that A w · λ · μ · a = A z such

hat the first argument of the min () -operator is not restrictive and 

n additional demand results in an additional rental. The ICR ful- 

lls this property by definition. 

roperty 4 – No matching for zero zone coverage. If the vehicles 

over an infinitely small zone area or the zone area grows to infinity, 

here is no matching. More precisely, every additional customer re- 

ults in zero additional rentals. Formally, we have ∂ 
∂d 

r M 

A w ,A z 
(a, d) = 0 

or A a → 0 or A z → ∞ . 

his property is the opposite of the aforementioned one. Compared 

o the walking distance, distances are so long that there are no 

entals. 
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For the DCR, both of the extreme cases result in P A w ,A z (a ) → 0

uch that an additional customer does not increase the expected 

entals. For the CCR, the first argument of the min () -operator be- 

omes zero such this property is fulfilled. The ICR does not fulfill 

his property and in contrast predicts an additional rental for every 

ustomer, given an available vehicle, no matter what sizes A w and 

 z take. 

roperty 5 – Supply and demand symmetry. The matching func- 

ion is symmetric regarding supply and demand. Formally, we have 

 
M 

A w ,A z 
(a, d) = r M 

A w ,A z 
(d, a ) . 

bviously, the CCR and the ICR both fulfill this property. We prove 

ymmetry of the DCR in Appendix D. 

It follows from the proof, that the DCR can be formulated by 

nterchanging ˆ a and ˆ d in (2) which yields 

 
DCR 
A w ,A z 

( ̂  d , ̂  a ) = (1 − (1 − A w 

A z 
) 
ˆ d ) · (1 + r A w ,A z ( ̂

 d − 1 , ̂  a − 1)) 

+(1 − A w 

A z 
) 
ˆ d · r DCR A w ,A z 

( ̂  d , ̂  a − 1) ∀ ̂  a , ˆ d ∈ Z (8a) 

 
DCR 
A w ,A z 

( ̂  d , 0) = 0 ∀ ̂
 d ∈ Z (8b) 

 
DCR 
A w ,A z 

(0 , ̂  a ) = 0 . ∀ ̂  a ∈ Z (8c) 

The intuition of this alternative DCR formulation (8) is exactly 

nverse to the one described in Section 3.2.1 : A customer covers a 

ertain fraction of the zone and every part of the zone is equally 

ikely to belong to the marginally covered area by an additional 

ustomer. The positions where the available vehicles are located 

re sequentially drawn at random from a uniform distribution. For 

ach drawn vehicle, the probability that it is rented is determined 

y the respective proportion of the covered zone at the time it is 

rawn. As for the DCR formulation (2) , the process ends if either 

he rentals realized equal the initial customer count, or if all vehi- 

le appearances were drawn. 

roperty 6 – Independence to zone partitioning. For the ICR, the 

xpected number of rentals does not change if a homogeneous zone 

s artificially sub-divided into multiple sub-zones. Formally, if a zone 

f zone area size ˆ A z is partitioned into Z sub-zones, r ICR 
A w , ̂ A z 

(a, d) = Z ·
 
ICR 

A w , ̂ A z /Z 
( a Z , 

d 
Z ) holds . 

roperty 6 states that artificially partitioning a zone into multiple 

ub-zones does not change the overall expected number of rentals 

or the ICR. Consider that the collected data on the zone level is 

iven by a , d, and ˆ A z . A w is also given. When data is collected on

his zone level, the only reasonable assumption is that this zone 

s homogeneous, such that a and d would be divided proportion- 

lly to obtain the respective quantities for the Z smaller sub-zones, 

.e. a Z and 
d 
Z . Consequently, the resulting rentals for the ICR in each 

ub-zone are the rentals of the original zone divided by Z. Since 

here are Z of these sub-zones, overall, the amount of rentals re- 

ains the same. 

This property is the reason for the fact that the issue of inaccu- 

ate matching modeling cannot be simply solved by partitioning a 

one artificially into multiple smaller sub-zones of the ’right’ size 

or the ICR (see the corresponding statement in Section 1 ). This 

roperty is illustrated with a numerical example in Appendix I. 

ote that an analogous property holds for the DCR and CCR, which 

onsiders the probabilities of all combinations of possible discrete 

istributions of a and d over the sub-zones and then applies the 

atching functions on these sub-zones. 

.5. Integration in linear optimization problems 

As described in Sections 1 and 2.2 , a lot of work has been done

n the literature to cover the various SMS optimization problems 
1202 
ased on network flow modeling. Mostly, the resulting formula- 

ions are mixed-integer linear programs (MILP). As explained, our 

ork particularly focuses on the optimization models of FF SMSss 

nd in this section, we therefore discuss whether the introduced 

atching functions can be linearized losslessly , such that an exact 

ntegration in a typical MILP is possible. 

The decisive characteristic of spatio-temporal network flow for- 

ulations, illustrated in Figure 14 in Appendix A, is a set of con- 

traints that describe the flow conservation in the network. With 

iscrete locations i, j, k ∈ Z , and periods t ∈ T , the flow conserva-

ion constraints can be formulated as 

 

i ∈Z 
r i jt + s jt = 

∑ 

k ∈Z 
r jk (t+1) + s j(t+1) ∀ j ∈ Z, t ∈ T , (9) 

here r i jt describe the rentals from location i to j in period t , and 

 jt describe the vehicles that remain unused at location j in pe- 

iod t . Now, the number of rentals originating at a location i , given

y r it = 

∑ 

j∈Z r i jt , are assumend to realize according to a specific 

atching function, depending on the number of available vehicles 

 it and the arriving customers d it = 

∑ 

j∈Z d i jt . Therefore, the logic 
f the matching functions to determine r it has to be formulated 

y means of additional constraints within the MILP formulation. 

ote that additional constraints are required to derive the i - j - t - 

pecific rentals r i jt from the r it -values, but this is out of scope of 

he matching itself. 

Note further that, in contrast to d it , the quantities r it and a it 
re decision variables in the MILP. In certainty equivalent formu- 

ations (based on expected values), these decision variables are 

ontinuous, meaning a it , r it ∈ R 
+ 
0 

∀ i ∈ Z, t ∈ T . In the following, we

herefore discuss for each of the initial matching functions from 

ection 3.3 , whether the range of values Z for a it and d it can be

eplaced by R 
+ 
0 
, how the functions are formulated for a specific 

 - t -combination, and whether a lossless integration in a MILP for- 

ulation is possible. 

.5.1. DCR 

For a specific i - t combination, the DCR (2) becomes 

 
DCR 
it,A w ,A z 

( ̂  a it , ˆ d it ) = (1 − (1 − A w 

A z 
) ˆ a it ) · (1 + r DCR it,A w ,A z 

( ̂  a it − 1 , ˆ d it − 1)) 

+ (1 − A w 

A z 
) ˆ a it · r DCR it,A w ,A z 

( ̂  a it , ˆ d it − 1) ∀ ̂  a it , ˆ d it ∈ Z (10a) 

 
DCR 
it,A w ,A z 

( ̂  a it , 0) = 0 ∀ ̂  a it ∈ Z (10b) 

 
DCR 
it,A w ,A z 

(0 , ˆ d it ) = 0 . ∀ ̂
 d it ∈ Z (10c) 

Due to the recursive formulation of the DCR (10) which is only 

efined for discrete values ˆ a it , ˆ d it ∈ Z , the range of values for ˆ a it 
nd ˆ d it , and therewith also for r DCR 

it,A w ,A z 
( ̂  a it , ˆ d it ) , cannot be replaced

y the continuous range R 
+ 
0 
. Figure 3 a depicts (10) schematically 

for A w < A z ). For a given demand level d it , it illustrates how the

ealized rentals r DCR 
it,A w ,A z 

(a it , d it ) depend on the number of initially 

vailable vehicles a it . Every additional vehicle increases the ex- 

ected rentals with decreasing margin such that the demand is the 

imit of the function. 

Clearly, since for a given a it , d it , (10) is a discrete function in

 it ∈ Z ∀ i ∈ Z, t ∈ T , the DCR can not be losslessly linearized and
ntegrated in a MILP formulation. Note, however, that the DCR 

ay find application in (non-linear) optimization approaches with 

iscrete a it ∈ Z , such as for example in an approach based on a

arkov decision process (MDP). 

As for any function, an approximate linearization is possible in 

rinciple also for the DCR. However, the question is how accurate 
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Fig. 3. Schematic representation of matching functions. 
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uch a linearization is and, in the context of a MILP, how this im- 

acts the number of decision variables and constraints. A reason- 

ble way to linearize the DCR would be to define a piecewise lin- 

ar function with supporting points for every a it ∈ Z , for which the 

xact r it is known. This would correspond to a function that con- 

ects the dots in Fig. 3 a. While this is possible in theory, it would

equire a large number of additional auxiliary variables in a MILP 

n order to determine which piece of this function is active. Thus, 

e do not see this as a promising path. 

.5.2. CCR 

In the CCR (5) , the range of values for a, d, and r C C R 
A w ,A z 

(a, d) can

e replaced by R 
+ 
0 
. For a specific i - t combination, the CCR becomes 

 
C C R 
it,A w ,A z 

(a it , d it ) = min (λ · μ · A w 
A z 

· d it · a it , a it , d it ) . ∀ a it , d it ∈ R 
+ 
0 

(11) 

ince λ, μ, A w , A z and d it are parameters, one can pre-compute 

hether the first or the second argument of the min () -operator 

s smaller. We define this i - t -specific pre-computed parameter as 

it = min (λ · μ · A w 
A z 

· d it , 1) (12) 

nd therewith obtain 

 
C C R 
it,A w ,A z 

(a it , d it ) = min (γit · a it , d it ) , ∀ a it , d it ∈ R 
+ 
0 (13) 

hich is schematically depicted in Fig. 3 b. It illustrates that for the 

CR (13) , the number of expected rentals r C C R 
it,A w ,A z 

(a it , d it ) is a piece-

ise linear function of a it with two pieces, where d it determines 

he height of the horizontal second piece. As long as a it ≤ d it 
γit 

, an 

ncrease of a it results in the same marginal increase of rentals. This 

arginal increase is determined by the slope parameter γit , deter- 

ined with (12) or tuned (based on simulations or the DCR) to 

btain an overall good fit for a certain range of expected a it , d it .

or a it > 

d it 
γit 

, an increase of a it does not increase r 
C C R 
it,A w ,A z 

(a it , d it ) . 

The CCR (13) can be losslessly linearized and integrated in a 

ILP formulation with a set of auxiliary variables and correspond- 

ng constraints. Depending on the actual a it , these constraints de- 

ermine which part of the piecewise linear function needs to be 

ctive. The model (44)–(58) in Appendix F that we apply in the 

ase study in Section 5 is an example of a CCR integrated into a

ILP for a differentiated pricing optimization problem. 

.5.3. ICR 

In the ICR (7) , the range of values for a, d, and r ICR (a, d) can be

eplaced by R 
+ 
0 
. For a specific i - t combination, the ICR (7) becomes 

 
ICR 
it (a it , d it ) = min (a it , d it ) , ∀ a it , d it ∈ R 

+ 
0 (14) 

hich is schematically depicted in Fig. 3 c. Like for the CCR, the 

umber of expected rentals r ICR 
it 

(a it , d it ) in the ICR is a piecewise
1203 
inear function of the initially available vehicles count a it with two 

ieces where d it determines the height of the horizontal second 

iece. In contrast to the CCR, the slope of the first piece is γit = 1

uch that every additional a it results in a rental, as long as a it ≤ d it .

Analogously to the CCR, a set of auxiliary variables and cor- 

esponding constraints enables a lossless integration of (14) in a 

ILP. Examples for the integration of the ICR in SMS optimiza- 

ion problems are Hardt & Bogenberger (2021) for relocation and 

oppert et al. (2022) for pricing. 

. Computational study 

In this section, we evaluate the rental prediction accuracy of 

he three matching functions DCR, CCR, and ICR introduced in 

ection 3.3 . We consider two general settings, i.e. the single zone 

ingle period setting and the multiple zones multiple periods setting, 

iscussed in Section 4.1 and 4.2 , respectively. The subsections for 

ach setting are organized as follows. We begin with an introduc- 

ion of the setting ( 4.1.1 resp. 4.2.1 ), followed by the description 

f a simulation which serves as a benchmark ( 4.1.2 resp. 4.2.2 ), 

he parameter configurations ( 4.1.3 resp. 4.2.3 ), and the evaluation 

etrics ( 4.1.4 resp. 4.2.4 ). The last subsections discuss the results 

 4.1.5 resp. 4.2.5 ). 

.1. Single zone single period setting 

.1.1. Setting 

The single zone single period (SZSP) setting is a stylized setting 

here the FF SMS, as the name suggests, consists of one single 

one and one single period. The purpose of this setting is to isolate 

he assessment of the rental prediction accuracy, and to eliminate 

otential effects that would result from replicating a real FF SMS 

onsisting of more than one zone and multiple periods. For each 

onsidered parameter configuration , characterized by a given num- 

er of available vehicles a at the beginning of the period, a given 

umber of customers to arrive d, and a specific choice of walk- 

ng area A w and zone area A z size, r 
M 

A w ,A z 
(a, d) is evaluated for the

ifferent matching functions M ∈ { DC R, C C R, IC R } . The outputs are
ompared to a benchmark from a stochastic dynamic simulation, 

escribed next. 

.1.2. Simulation benchmark 

The simulation of the SZSP-setting is consistent with the 

eneric matching process described in Section 3.2 , i.e. vehicles are 

vailable at the beginning of the considered period, while cus- 

omers arrive sequentially during the period. For each considered 

arameter configuration, we derive the benchmark by perform- 

ng multiple simulation runs n ∈ N = { 1 , 2 , . . . , N} that each yield
 rental observation r n . 

At the beginning of each simulation run n , a given number of 

vailable vehicles a is distributed within a squared zone of size A z . 

n line with the assumptions from Section 3.2.1 , a zone is homo- 

eneous and consequently, the location of each vehicle is drawn 
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Fig. 4. Run of SZSP-scenario with A z = 1 km 
2 
in retrospective ( a = 10 , d = 10 ). 
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rom a uniform distribution. A given number of customers then ar- 

ive sequentially and their respective point of appearance is drawn 

rom a uniform distribution as well. The customers have a max- 

mum walking distance (corresponding to A w ) and the assump- 

ion is that if there is at least one vehicle within reach, the clos- 

st one is rented. This vehicle is then removed and the rental is 

ecorded. Independent of the actual rental outcome, the number of 

ustomers to come is reduced by one and the process is repeated 

ntil all d customers have arrived. The simulation process for one 

imulation run is summarized as pseudo code in Algorithm 2 in 

ppendix E. 

To clarify the setup, consider Fig. 4 that depicts a single sim- 

lation run of the SZSP-setting with A z = 1 km 

2 
in retrospective. 

he a = 10 initially available vehicles are represented as blue tri- 

ngles, and the d = 10 customers, that arrived sequentially during 

he run, are represented by red dots with their respective walking 

rea, depicted as red circles. One of the vehicles, the one in the 

ower left corner of the zone, was out of reach for all customers. 

onsequently, this vehicle has not been rented in this simulation 

un. Note, however, that even though all other vehicles lay within 

t least one of the red circles, they were not necessarily rented, be- 

ause the respective customer might have taken a different vehicle. 

ince Fig. 4 does not show the temporal sequence of the run, some 

f the vehicles depicted have not been available for the customers 

hat arrived rather late. In fact, only r n = 6 rentals realized in this

articular run. 

Note that Fig. 4 shows that parts of the walking area may lay 

utside of the zone. The actual area of the zone which is within 

each of a customer therewith is smaller than the walking area. 

or the benchmark simulation, we exclude this effect by the fol- 

owing mechanism: Whenever a part of the walking area protrudes 

eyond the zone boundary, this part is displaced to the other side 

f the zone. The effect is that the entire walking area actually lies 

ithin the zone. Thus, our zone has a limited size, but effectively 

o border, like the surface of a sphere. 

.1.3. Parameter configurations and scenarios 

We consider the following parameter settings, with every po- 

ential combination of values defining a valid parameter configura- 

ion: 

• Available vehicles ( V SZSP ): a is selected from the discrete set 

V SZSP = { 0 , 1 , . . . , 10 } . 
• Arriving customers ( D SZSP ): d is selected from the discrete set 

D SZSP = { 0 , 1 , . . . , 10 } . 
• Walking area size ( A w ): A w is kept constant at A w = π ·

(0 . 3 km ) 2 = 0 . 28 km 
2 . The radius of 0 . 3 km represents a real-

istic maximum walking distance ( Herrmann et al., 2014 ). 
• Zone area size ( A z ): A z is selected from the discrete set A z =

{ 0 . 5 km 
2 
, 1 km 

2 
, 2 km 

2 
, 4 km 

2 } , representing the typical range
1204 
of zone size values from literature (e.g. Müller et al., 2017; 

Weikl & Bogenberger, 2016 ) and practice. 

We use the term SZSP- scenario to refer to parameter settings 

aving the same value of A z , i.e., we group all resulting parameter 

onfigurations for a specific A z to belong to one scenario. Note that 

n this stylized setting there is no supply or demand uncertainty, 

eaning that a and d have no variance within a scenario but are 

eterministic values. We perform N = 100 simulation runs for ev- 

ry parameter setting. 

.1.4. Evaluation metrics 

We use the following metrics to assess the rentals prediction 

ccuracy: 

• Rentals ( RT ): The expected absolute rentals RT predicted by 

the matching functions are simply r̄ = r M 

A w ,A z 
(a, d) with M ∈ 

{ DC R, C C R, IC R } . With regard to the simulation benchmark, the

corresponding value is obtained from averaging over the simu- 

lations runs, i.e., r̄ N = 
1 
N 

∑ 

n ∈N r n . 
• Rentals’ mean error ( RT ME ): The mean absolute error RT ME be- 

tween the expected rentals r̄ predicted by a matching func- 

tion and the N observations of the simulation benchmark r n is 

RT ME = r̄ − r̄ N . 
• Rentals’ mean relative error ( RT MRE ) [%] : The mean relative er- 

ror RT MRE between the expected rentals r̄ predicted by a match- 

ing function and the N observations of the simulation bench- 

mark r n is RT 
MRE = ( ̄r − r̄ N ) / ̄r N · 100 . 

.1.5. Results 

We begin by investigating the predicted and observed abso- 

ute rentals RT on an aggregate level. Therefore, we consider Fig. 5 

hich provides a first impression of how the different matching 

unctions predict rentals and how the rentals observed in the sim- 

lation benchmark depend on supply, on demand, as well as on 

he zone area size. In each of the subfigures, the vertical axis of the 

urface plot represents expected and observed rentals RT for the 

atching functions and the simulation benchmark, respectively. 

he horizontal axes represent a ∈ V SZSP and d ∈ V SZPZ , respectively. 
he two rows depict the results of the SZSP-scenarios A z = 1 km 

2 

nd A z = 2 km 

2 
. The respective graphs for all scenarios, i.e. for all

 z ∈ A z , are depicted in Figure 16 in Appendix G. The columns 

epict the mean of the simulation benchmark (SIM), and the ex- 

ected rentals predicted by DCR, CCR, and ICR. From considering 

ig. 5 , the following observations can be made, which partly relate 

o the properties discussed in Section 3.4 .: 

• For all matching functions, the surfaces are bounded to RT = 

0 for all a - d combinations where a = 0 or d = 0 (see Property

1). All graphs increase monotonically in a and in d, which is 

reasonable, since additional vehicles/ additional customers can 

never, ceteris paribus, decrease but may increase the (expected) 

rentals. 
• While the surfaces of the DCR resemble the SIM benchmarks in 

their general shape of being strictly concave in a and d, espe- 

cially the ICR but also the CCR differ as they both run into satu- 

ration if one of the inputs is fixed and the other increased (see 

Property 2). The ICR has the characteristic shape of a Leontief 

production, consisting of two planes that intersect on the diag- 

onal between a - and d-axis. The CCR takes this shape for large 

values of a and d. On this a - d -diagonal, the surface of SIM and 

DCR is strictly concave. The ICR grows linearly on this diagonal 

and for the CCR, the first part of the diagonal is strictly convex 

and then grows linearly from some point on. For all matching 

functions, the surfaces are symmetric on the diagonal between 

a - and d-axis (see Property 5). 
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Fig. 5. Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two SZSP-scenarios. 

Fig. 6. Exemplary mean (SIM) and predicted (DCR, CCR, ICR) rentals RT in two SZSP-scenarios. 
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• Comparing the respective observed and predicted rentals for 

a = 10 and d = 10 reveals, that all matching functions overesti- 

mate the SIM results at this point, but that the DCR prediction 

is better than the ICR and CCR. Considering the surfaces overall, 

as well as the concave and convex shapes of the surfaces on the 

diagonal discussed above, indicates that the DCR approximates 

the SIM best, followed by the CCR and then the ICR. 

We continue the discussion of results by comparing the rental 

urves RT for specific values of the demand ˆ d , depicted in Fig. 6 .

hese graphs which are common to depict matching functions can 

e thought of as corresponding vertical cuts through the surface 
1205 
lots in Fig. 5 . Again, the two rows depict the SZSP-scenarios with 

 z = 1 km 

2 
and A z = 2 km 

2 
. The respective graphs for all A z ∈ A z ,

re depicted in Figure 17 in Appendix G. The columns correspond 

o different demands ˆ d . The simulation (SIM) results are depicted 

y a black solid line, the results of ICR in dashed blue, CCR in dot-

ed red, and DCR in dotdashed green. The following observations 

an be made: 

• As illustrated in Fig. 3 in Section 3.5 , the DCR is strictly concave

in a , while both ICR and CCR take the form of a piecewise linear

function with a positive slope piece anchored at the origin and 

a second horizontal piece. 
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Fig. 7. Exemplary mean absolute error RT ME in two SZSP-scenarios. 
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• The expected rentals predicted by the DCR are almost identi- 

cal to the average SIM results, for all a - ̂ d combinations and all 

A z . The characteristic strictly concave shape of SIM is perfectly 

modeled by the DCR. The CCR underestimates SIM for small 

values of a and ˆ d . For large values, it overestimates this bench- 

mark. As above, for large a and ˆ d , the CCR and the ICR do not

differ (see Figures 17(a2)-17(a4) in Appendix G). 
• The ICR overestimates the SIM rentals for all a - ̂ d combinations. 

The difference grows in the size of the zone A z and for a cer-

tain A z it reaches its maximum at a = 
ˆ d . Moreover, this max- 

imum difference grows in ˆ d . This can be explained as follows: 

The ICR assumes a perfect matching, which is appropriate if the 

zone size A z equals the walking area. However, when the zone 

becomes larger, the probability that an available vehicle is actu- 

ally in walking distance to a customer decreases. The maximum 

is at a = 
ˆ d because at this value, each customer needs to find a 

vehicle for the ICR to be exact. By contrast, imagine d = a + 1 ,

then we have an additional customer and the ICR prediction is 

still realized if one customer cannot reach a vehicle. 

In the following, we discuss the results based on the introduced 

etrics. Figure 7 and Table 3 in Appendix G contains the values of 

T ME for the DCR, CCR, and ICR for all parameter configurations, 

rouped by SZSP-scenarios A z ∈ A z . The corresponding RT 
MRE are 

epicted in Fig. 8 and Table 4 in Appendix G. 

• For the DCR, RT ME takes both positive and negative values. 

The minimum RT ME is between -0.06 ( A z = 0 . 5 km 

2 
) and -0.20

( A z = 2 km 

2 
), i.e. -3.8% and -1.0% RT MRE . The maximum RT ME 

is between 0.19 ( A z = 0 . 5 km 
2 ) and 0.40 ( A z = 1 km 

2 ), i.e. 2.9%

and 5.6% RT MRE . 
• For the CCR, RT ME also takes both positive and negative values. 

The minimum RT ME is between -0.06 ( A z = 0 . 5 km 
2 ) and -0.80

( A z = 1 km 
2 ), i.e. -13.7% and -32.0% RT MRE . The maximum RT ME 

is between 0.85 ( A z = 0 . 5 km 

2 
) and 2.20 ( A z = 1 km 

2 
), i.e. 11.9%

and 28.2% RT MRE . 
• For the ICR, RT ME only takes values greater or equal to zero. 

The maximum RT ME is 0.85 ( A z = 0 . 5 km 

2 
) and it grows to 5.75

2 MRE 
( A z = 4 km ), i.e. to 11.9% and 135.3% RT . b

1206 
The above results demonstrate that in general, the ICR matching 

unction is not suitable to predict rentals accurately in the stylized 

ZSP-setting that only considers one zone. In particular, they show 

hat only the novel matching functions are capable to adapt to dif- 

erent zone area sizes. While the prediction error diminishes when 

he zone area size equals the walking area size and might be ac- 

eptable in our scenarios with ratios of walking area and zone area 

n the approximate range A w 
A z 

≥ 1 
2 , the ICR overestimates the ob- 

erved rentals in the SIM benchmark substantially for smaller A w 
A z 

. 

ince larger zone areas are commonly used in literature as well as 

ractice and since using multiple smaller zones comes with sev- 

ral disadvantages (see Section 1 ), the ICR’s applicability is limited. 

n contrast, the CCR considers A w and A z in the matching predic- 

ion and therewith is capable of predicting the rentals in the SZSP- 

etting much more accurately, especially for smaller ratios of A w 
A z 

. 

he DCR predicts the rentals best in the SZSP-setting and in par- 

icular performs better than the CCR for ratios of around A w 
A z 

= 
1 
2 . 

verall, the adaptability of CCR and DCR to different zone sizes is 

he key advantage over the ICR. As discussed in Section 3.5 , the de-

isive disadvantage of the DCR is that it can not be losslessly inte- 

rated in a linear network flow SMS model, such that the DCR can 

ot be considered in the following numerical results of the MZMP- 

etting. 

.2. Multiple zones multiple periods setting 

.2.1. Setting 

The multiple zones multiple periods (MZMP) setting replicates an 

ntire FF SMS with Z = 59 zones Z = { 1 , 2 , . . . , Z} and T = 48 pe-

iods T = { 0 , 1 , . . . , T − 1 } of 30 min each which together replicate

ne day. The purpose of this MZMP-setting is to assess how dif- 

erent matching functions affect the overall rental prediction ac- 

uracy when supply and demand interact in an entire FF SMS. In 

his setting, only the size of the zones A z changes over the parame- 

er configurations , replicating multiple FF SMSs with identical zone 

umber but with different sizes of the operating area. Think of 

ities with the same number of inhabitants, but spread over areas 

f different sizes, i.e. with different densities. The MZMP-setting is 

ased on a real-life FF SMS: The vehicle fleet is initially distributed 
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Fig. 8. Exemplary mean relative error RT MRE in two SZSP-scenarios. 
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ver the zones in line with historical data from Share Now. Cus- 

omers arrive according to a demand pattern over the different 

ones and periods, which is obtained from historical data as well. 

ore precisely, for every zone i ∈ Z , ˆ a i 0 defines the initial vehicle 

ount and for every zone-zone-period combination ( i - j - t combina- 

ion with i, j ∈ Z, t ∈ T ), the demand d i jt is given. 

Due to the non-disclosure agreement with our practice part- 

er, we do not state these parameters above explicitly. However, 

he following general statements regarding the data used can be 

ade. Data sources for estimating the demand are primarily the 

ealized app openings as well as the realized rentals. Every data 

oint of an app opening contains information regarding location 

nd time. Clearly, not every single app opening can be counted 

s an individual demand, e.g. because a customer might simply 

heck a payment history or might check vehicle availability mul- 

iple times before the actual booking. However, with much data 

nd experience, the provider can estimate the actual demand from 

hese app openings. These data points are then mapped to a given 

iscretization scheme, meaning to zone-period combinations. Aver- 

ge values over multiple identical days can then be derived. To ob- 

ain the demand data for every zone-zone-period combination, i.e. 

he expected destinations for the demand originating at a certain 

one-period, the proportions of rentals that realize can be used as 

 proxy for the demand proportions. Clearly, rentals only reflect the 

erved (constrained) demand, which is why unconstraining tech- 

iques can come into place (see e.g. Talluri & van Ryzin, 2004 , 

hapter 9.4). Similar to the demand on zone-period level, the ini- 

ial vehicle count can be obtained by mapping and averaging data 

oints of available vehicles to the respective zone-period. 

As in the SZSP-setting, the benchmark in the MZMP-setting 

tems from a stochastic dynamic simulation, with the difference 

hat the rentals that evolve over one entire day throughout the 

ntire SMS are considered. The latter also implies that, in con- 

rast to the SZSP-setting, the matching functions can no longer be 

irectly evaluated for a given parameter configuration. Therefore, 

o evaluate the matching functions, we integrate the two func- 

ions which can be losslessly linearized – the CCR and the ICR –

n an FF SMS model that is based on a linear network flow for- 

ulation, as described in Section 3.5 . In each zone-period com- 

ination, the rentals realize according to the respective match- 
1207 
ng function r C C R 
it,A w ,A z 

(a it , d it ) and r 
ICR 
it,A w ,A z 

(a it , d it ) . The constraints of

he network flow formulation ensure that these rentals r M 

it 
with 

 ∈ { C C R, IC R } split into the different r M 

i jt 
in proportion to the given

emand pattern, meaning r M 

i jt 
= 

d i jt 
d it 

· r M 

it 
∀ i, j ∈ Z, t ∈ T . Therewith,

he rentals that realize over all zones and periods according to a 

pecific matching function can be derived. 

.2.2. Simulation benchmark 

For a specific parameter configuration of the MZMP-setting, we 

erive the respective benchmark by performing multiple simula- 

ion runs n ∈ N = { 1 , 2 , . . . , N} that each yield a rental observation
 i jt,n for every zone-zone-period combination ( i - j - t combination 

ith i, j ∈ Z, t ∈ T ). Primarily, we consider the observed rentals on

he period-level, meaning r t,n = 

∑ 

i ∈Z 
∑ 

j∈Z r i jt,n . 
At the beginning of each run, the vehicle fleet is initialized ac- 

ording to the initial spatial vehicle distribution ˆ a 0 = [ ̂  a i 0 ] Z×1 . Each 

one then exactly contains the number of vehicles as defined in ˆ a 0 , 

nd the precise location within a zone for each of the vehicles is 

andomly determined from the uniform distribution. The customer 

rrival process follows a Poisson process P λt 
in which the intensity 

t varies for the periods and equals the demand in the respec- 

ive period, meaning λt = 

∑ 

i ∈Z 
∑ 

j∈Z d i jt / 30 (unit of λt is [1/min]). 

he inter-arrival time �τ until a new customer arrives is sam- 

led from the exponential distribution �τ ∼ Exp (λt ) . Whenever a 

ustomer arrives in period t , the customer’s origin zone i is deter- 

ined by roulette wheel selection, i.e. the probability for arrival in 

 is P 
origin 
it 

= 

∑ 

j∈Z d i jt / 
∑ 

i ∈Z 
∑ 

j∈Z d i jt (see previous section for de- 
and pattern d i jt ). The customer’s exact origin location is deter- 

ined by uniform distribution of positions within the origin zone. 

ll available vehicles within the walking distance of 0 . 3 km are 

etermined and, if there is at least one vehicle within reach, the 

ustomer chooses the closest one for rental. Note that, in contrast 

o the assumptions in the SZSP-setting (end of Section 4.1.2 ), cus- 

omers may now cross the border of a zone and take a vehicle 

rom a neighboring one. If there is no vehicle within reach, the 

ustomer leaves the system without further consideration. In case 

f a rental that originates at a certain i - t -combination, the destina- 

ion zone is again determined by roulette wheel selection, i.e. the 

robability for destination zone j is P dest inat ion 
jt 

= d i jt / 
∑ 

k ∈Z d ikt . All 



M. Soppert et al. European Journal of Operational Research 305 (2023) 1194–1214 

Fig. 9. Scenario with MZMP and Z = 59 , A z = 1 km 
2 
, A o = 59 km 
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entals have a duration of 15 min and immediately become avail- 

ble as soon as a rental is terminated. Note that here, in con- 

rast to the SZSP-simulation, not all vehicles are necessarily avail- 

ble at the beginning of a period. The customer’s exact destina- 

ion location is determined by uniform distribution of positions 

ithin the destination zone. This process of customer arrival sam- 

ling and potential rental determination is executed until the cu- 

ulated arrival time over all customers exceeds the considered day 

max = 48 · 30 min. One simulation run is depicted as pseudo code 

n Algorithm 1 . 

lgorithm 1 MZMP simulation (one run n ∈ N ). 

- initialize simulation time τ = 0 

- initialize rental count r t,n = 0 ∀ t ∈ T 
- distribute vehicles randomly according to ˆ a 0 
- initialize set of available vehicles V a v ail abl e with all vehicles 

- initialize set of currently rented vehicles V rented = ∅ 
while τ < τmax do 

- draw inter-arrival time �τ from exponential distribution 

�τ ∼ Exp (λt ) 

- update simulation time τ ← τ + �τ
if vehicles in V rented have arrival time < τ then 

- remove respective vehicles from V rented 
- add respective vehicles to V a v ail abl e 

end if 

- determine current period t

- determine customer’s origin zone i with probabilities 

P 
origin 
it 

∀ i ∈ Z

- determine customer’s exact origin location within origin 

zone i by uniform distribution 

- determine distances to vehicles in V a v ail abl e 
if at least one vehicle in walking distance then 

- choose closest vehicle from V a v ail abl e 
- remove chosen vehicle from V a v ail abl e 
- add chosen vehicle to V rented 
- record rental: r t,n ← r t,n + 1 

- determine destination zone j with probabilities 

P dest inat ion 
jt 

∀ j ∈ Z

- determine customer’s exact destination location within j 

destination zone by uniform distribution 

end if 

end while 

To clarify the setup, consider Fig. 9 a that depicts a snapshot of 

 single simulation run. In the simulation, the zones are squares 

f the same size and in this particular parameter configuration, 
1208 
 z = 1 km 

2 
for all zones. Note that since the considered FF SMS 

onsists of 59 zones, the five zones represented in the top row on 

he right are out of the simulation’s scope. The vehicles are repre- 

ented as blue triangles, and the currently rented vehicles are de- 

icted at the rental origin with a dotted line that ends at the rental 

estination. One customer arrived in the considered instance, rep- 

esented by the red dot with walking area, depicted as red cir- 

le. For this particular customer, no available vehicle was within 

each. Figure 9 b depicts the demand and the resulting rentals av- 

raged over all N runs in the course of the day. More specifically, 

he dotted black curve represents the aggregate demand over all 

ones for every single period t ∈ T , meaning d t = 

∑ 

i ∈Z 
∑ 

j∈Z d i jt .
he solid black curve represents the mean aggregate rentals over 

ll zones for every single period t ∈ T , meaning r̄ t,N = 
1 
N 

∑ 

n ∈N r t,N .
his rentals curve for various parameter configurations serves as a 

enchmark to evaluate the rentals prediction of the matching func- 

ions qualitatively. 

.2.3. Parameter configurations and scenarios 

We consider the following parameter values: 

• Available vehicles ( V M ZM P ): The initial fleet distribution V M ZM P 

remains constant over all studies and it is chosen according to 

real-life data. The overall fleet size is 
∑ 

j∈Z ˆ a i 0 = 201 and for the 

individual zones, the initial vehicle count lays in the interval 

ˆ a i 0 ∈ [0 , 10] ∀ i ∈ Z . 
• Arriving customers ( V M ZM P ): The pattern of arriving customers 

V M ZM P remains constant over all studies and it is chosen ac- 

cording to real-life data. The d i jt values vary in the interval 

d i jt ∈ [0 , 18] ∀ i, j ∈ Z, t ∈ T . 
• Walking area size ( A w ): As in the SZSP-setting, the size of 

the reachable area by walking is kept constant at A w = π ·
(0 . 3 km ) 2 = 0 . 28 km 

2 . 
• Zone area size ( A z ): We obtain four scenarios by considering 

the sizes of the zone area A z = { 0 . 5 km 

2 
, 1 km 

2 
, 2 km 

2 
, 4 km 

2 } .
This can be considered as different cities with the same fleet 

and demand, but spread over operating areas of different size , 

i.e. A o = 29 . 5 km 

2 
to A o = 236 km 

2 
. Note that the number of

zones remains identical in each scenario. In Appendix I, in con- 

trast, we consider a setting in which a given operating area is 

partitioned into a different number of multiple zones. 

We perform N = 100 simulation runs for every variant, meaning 

or every matching function in each parameter configuration (here 

quivalent to scenario). 
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Fig. 10. Mean (SIM) and predicted (CCR, ICR) rentals RT in MZMP-scenarios with different zone and operating area sizes A z , A o . 

Fig. 11. Mean absolute error RT ME 
t in MZMP-scenarios with different zone and operating area sizes A z , A o . 

Fig. 12. Mean relative error RT MRE 
t in MZMP-scenarios with different zone and operating area sizes A z , A o . 
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.2.4. Evaluation metrics 

Analogous to the SZSP-setting, we use several metrics to assess 

he rentals prediction accuracy. Different from above, all metrics 

ere are time-specific: 

• Rentals ( RT t ): The period-specific absolute rentals RT t are de- 

termined as follows for the simulation and the matching func- 

tions. The mean observed rentals in the simulation for a 

specific period t are r̄ t,N = 
1 
N 

∑ 

n ∈N 
∑ 

i ∈Z 
∑ 

j∈Z r i jt,n . The pre- 
dicted rentals by the network flow-based model with integrated 

matching function for a specific period t are r̄ t = 

∑ 

i ∈Z 
∑ 

j∈Z r i jt . 
• Rentals mean error ( RT ME 

t ): The period-specific mean abso- 

lute error RT ME 
t between the predicted rentals by the network 

flow-based model with integrated matching function r̄ t and the 

mean observed rentals in the simulation r̄ t,N is RT 
ME 
t = r̄ t − r̄ t,N . 

• Rentals mean relative error ( RT MRE 
t ) [%] : The period-specific 

mean relative error RT MRE 
t between the predicted rentals by 

the network flow-based model with integrated matching func- 

tion r̄ t and the mean observed rentals in the simulation r̄ t,N is 

RT MRE = ( ̄r t − r̄ t,N ) / ̄r t,N · 100 . 

.2.5. Results 

Figure 10 depicts the mean rentals RT t for the simulation bench- 

ark (SIM) and the predicted rentals by the two linear network 

ow formulations with CCR and ICR in the course of the day 

or the four MZMP-scenarios with A z = 0 . 5 km 
2 
, 1 km 

2 
, 2 km 

2 , and
1209 
 km 

2 
. In Figs. 11 , 12 and Tables 5, 6 in Appendix H, the corre-

ponding mean errors RT ME 
t and mean relative errors RT MRE 

t are 

epicted. The most relevant results can be summarized as follows: 

• The rental curves follow the typical demand pattern with two 

peaks around 8:00 and 19:00. 
• Despite the identical demand pattern in all scenarios, the SIM 

benchmark of RT t (solid black) varies substantially. As the city 

considered becomes less dense (mimicked by increasing c.p. 

A z ), the number of rentals quickly decreases (by a factor of 

more than 10) from A z = 0 . 5 km 
2 to A z = 4 km 

2 . This can be ex-

plained as follows: For small A z (dense cities), customers’ walk- 

ing area is comparatively larger. This increases the matching 

probability because – given the same number of vehicles in the 

operating area – they can walk to more vehicles. By contrast, 

with large A z (low density), the available vehicles are spread 

over large distances and customers more often do not find a 

vehicle in their walking distance. 
• The predicted ICR rentals are identical in all scenarios, because 

the ICR is independent of A z (see (7) ). While for A z = 0 . 5 km 
2 ,

the overall rental curve incidentally resembles the SIM bench- 

mark, it increasingly overestimates the benchmark with grow- 

ing A z . Already for A z = 1 km 
2 , the ICR rental predictions are far

from the SIM benchmark. The mean error RT ME 
t lies between 

[-17.7, 10.7] for A z = 0 . 5 km 

2 
, [1.5, 48.2] for A z = 1 km 

2 
, [4.7,

86.3] for A z = 2 km 
2 , and [6.0, 105.2] for A z = 4 km 

2 . In the pe-
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s
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riods between morning and evening peak, the mean relative er- 

ror RT MRE 
t lies in the range of [-19.3%, 14.0%] for A z = 0 . 5 km 

2 
,

[18.9%, 92.9%] for A z = 1 km 
2 , [21.7%, 478.7%] for A z = 2 km 

2 ,

and [870.8%, 2199.6%] for A z = 4 km 
2 . 

• The CCR rentals curve resembles the the SIM benchmark for 

all A z (densities). The mean error RT ME 
t lies between [-17.2, 

8.7] for A z = 0 . 5 km 
2 , [-8.7, 41.0] for A z = 1 km 

2 , [-2.9, 4.2]

for A z = 2 km 

2 
, and [-3.1, 1.0] for A z = 4 km 

2 
. In the periods

between morning and evening peak, the mean relative error 

RT MRE 
t lies in the range of [-19.2%, 11.2%] for A z = 0 . 5 km 

2 , [-

13.7%, 2.2%] for A z = 1 km 

2 
, [-11.3%, 30.5%] for A z = 2 km 

2 
, and

[-32.9%, 24.1%] for A z = 4 km 
2 . In comparison to the ICR, the 

curve changes with varying zone size A z , demonstrating the 

CCR’s capability to adapt to scenarios with high and low den- 

sity also in the MZMP-setting. 

As in the SZSP-setting, also the above results in the MZMP- 

etting demonstrate that the ICR in general is not suitable to pre- 

ict rentals accurately and that the CCR in contrast is capable of 

dapting to different densities. For the A z = 0 . 5 km 

2 
scenario (high 

ensity), both ICR and CCR provide good rentals predictions. For 

arger A z (low density), however, the ICR substantially overesti- 

ates the SIM benchmark by a factor of approximately 2 in the 

 z = 1 km 
2 scenario and up to a factor of approximately 20 in the 

 z = 4 km 
2 scenario, while the error RT MRE 

t of CCR remains in a 

elatively narrow range of up to approximately 30% at the most. 

t may be tempting to wrongly think that A z = 0 . 5 km 
2 always,

eaning for all possible instances, is a good value for the ICR. 

ertainly, the results (SZSP- and MZMP-setting) show that smaller 

ones which are closer to the walking area are favorable over 

arger zones with regard to the overall rental prediction accuracy 

hat can be obtained when applying the ICR. However, since cus- 

omers and vehicles in neighboring zones do not match in network 

ow formulations with discrete zones (as in the MZMP-setting), 

entals that realize in reality are increasingly neglected when hav- 

ng multiple smaller zones. This means that the increased accuracy 

ithin a zone might be overcompensated by a reduced accuracy 

cross zones. The specific results depend on the actual homogene- 

ty of the zones and whether they can in fact be considered as 

isjunct zones for which there are indeed no customers crossing 

he borders. 

. Pricing optimization case study 

In this section, we evaluate the performance of the CCR and 

CR matching functions in an FF SMS optimization problem. To 

hat end, we present a pricing optimization case study based on 

hare Now data and assess whether more accurate rental predic- 

ions can result in better pricing decisions and eventually higher 

rofits (more precisely contribution margin). The problem that we 

onsider is a differentiated pricing problem for SMS that was dis- 

ussed in Soppert et al. (2022) and for which a MILP, based on 

 network flow formulation, with ICR matching function was pro- 

osed. We adapt the MILP formulation by integrating the CCR. For 

he different instances considered in this case study, we derive 

ricing solutions with both of the MILP models and evaluate them 

n a simulation study. 

The differentiated pricing problem and its original as well as 

he adapted mathematical modeling are introduced in Section 5.1 . 

ection 5.2 discusses the setup of the simulation study we use to 

valuate the different pricing solutions. In Section 5.3 , we intro- 

uce the considered parameter configurations as well as the met- 

ics we use. Section 5.4 discusses the obtained results. 
1210 
.1. Problem statement and mathematical modeling 

The origin-based differentiated pricing problem (OBDPP) in SMSs, 

s defined in Soppert et al. (2022) , is a pricing problem in which

patially and temporally differentiated minute prices have to be 

etermined, to maximize the contribution margin of an SMS. 

ore precisely, an SMS is discretized into Z different locations 

 = { 1 , 2 , . . . , Z} and the considered time span of one day is dis-

retized into T periods T = { 0 , 1 , . . . , T − 1 } . For every i - t combi-

ation with i ∈ Z, t ∈ T , a minute price p it is to be chosen from

 given price set P = { p 1 , p 1 , . . . , p M } with corresponding price in-

ices M = { 1 , 2 , . . . , M} . Origin-based refers to the fact that, in con-
rast to a trip-based pricing mechanism for example, all rentals 

hat begin in a certain i - t combination, are charged with the same 

inute price p it . Note that differentiated ( = static ), in contrast to 

ynamic (see Agatz, Campbell, Fleischmann, Van Nunen, & Savels- 

ergh, 2013 ), refers to a pricing approach where prices do not de- 

end on components of the current state of the system that are 

nobservable by the clients, such as current fleet distribution, but 

an be pre-computed and pre-published. The OBDPP assumes sup- 

ly and demand matching according to the ICR. 

The OBDPP can be modeled by a MILP which is based on a 

eterministic network flow formulation where expected vehicle 

ovements are represented by flows in a spatio-temporal network, 

s depicted in Figure 14. Vehicle flows consist of actual rentals r m 

i jt 

rom location i ∈ Z to j ∈ Z in period t ∈ T and at price p m with

ndex m ∈ M (solid arcs), or unused vehicles s it that remain in the 

ame location i ∈ Z at period t ∈ T (dashed arcs). For every i - j - t 

ombination, the respective basic demand d i jt is assumed to scale 

ith the i - j - t -specific sensitivity factor f m 

i jt 
, depending on the price 

p m , to the actual demand d m 

i jt 
= d i jt · f m 

i jt 
. The main components of

he OBDPP MILP formulation are as follows: 

• An objective function that maximizes the contribution mar- 

gin from rentals that realize at different prices over the en- 

tire spatio-temporal network, meaning 
∑ 

i, j∈Z 
∑ 

t∈T 
∑ 

m ∈M 
r m 

i jt 
·

l i j · (p m − c) , where l i j is the average rental duration and c is 

variable cost per minute. 
• Flow conservation constraints of the form (9) as described in 

Section 3.5 which ensure that the fleet of vehicles remains con- 

stant in every period and that, for a certain i − t-combination, 

the available vehicles either remain unused or get rented. 
• Constraints ensuring that for p it exactly one of the prices from 

the price list P is chosen for every i - t -combination. If price p m 

is chosen, the respective binary variable y m 

it 
is one. 

• A set of constraints that determines the realization of rentals. 

The overall rentals for every i - t combination are determined 

according to the ICR. These rentals split into the i - j - t -specific 

rentals, proportionally according to the demand, as described 

in Appendix F . 

The constraints in the OBDPP MILP formulation that ensure 

entals realization according to the ICR can easily be replaced by 

orresponding constraints for the CCR. We state the resulting full 

ILP formulation in Appendix F. The constraints that are new com- 

ared to Soppert et al. (2022) are (49)–(54). To differentiate in the 

ollowing, we denote the original problem by OBDPP-ICR and the 

dapted with CCR matching function by OBDPP-CCR. For solving 

he OBDPP-CCR, we use the decomposition solution approach de- 

cribed in Soppert et al. (2022) which builds on the idea to solve 

ultiple smaller MILPs instead of the original one. The algorithm is 

mplemented in Python 3.7 and all MILPs are solved with Gurobi 

.0.2. As in the original paper, the algorithm runs for 48 h. The 

imulation evaluation takes approximately 8 h without any paral- 

elization. Given that the considered pricing problem (in Soppert 

t al., 2022 and, thus in this case study) is a differentiated ( = static)
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Table 1 

Simulation results of pricing solutions from OBDPP-ICR and -CCR with different 

A z ∈ A z . 

A z 
[
km 

2 
]

OBDPP- 

PR prop m change w.r.t. BASE 

low base high RT rel RV rel CM 
rel 

0.5 ICR 17.1% 62.8% 20.1% -4.3% -0.1% 1.2% 

CCR 19.9% 61.1% 19.0% -3.7% 0.6% 2.1% 

1 ICR 17.1% 62.8% 20.1% -3.4% 0.4% 1.6% 

CCR 34.1% 54.0% 11.1% 1.8% 3.6% 4.2% 

2 ICR 17.1% 62.8% 20.1% -3.2% 0.6% 1.8% 

CCR 16.3% 80.3% 3.5% 3.5% 4.3% 4.6% 

4 ICR 17.1% 62.8% 20.1% -5.7% -1.9% -0.6% 

CCR 0.0% 98.9% 1.1% -1.3% 0.7% 1.4% 

 

o

z

5

e

A  

p

v

C

 

timal solution. 
ricing problem, these computation times do not pose a restriction 

or application in practice. 

.2. Simulation evaluation 

To evaluate and compare the performance of the optimization 

esults, i.e., of the prices obtained from either optimizing using 

BDPP-ICR or OBDPP-CCR, we perform a simulation study. Each 

un of the simulation reflects a potential real-world evolvement 

f the system over the considered day given the calculated pric- 

ng solutions. In essence, the simulation is in line with the one 

e used to calculate the simulation benchmarks for the MZMP- 

etting in Section 4.2.2 . We only need to adapt it to allow for dif-

erent prices and their effect on the demand. As described, the 

ustomer arrival process in the MZMP simulation follows a Pois- 

on process P λt 
with intensity λt that depends on the demand 

n the respective period. According to the assumption in the OB- 

PP, described in Section 5.1 , the demand now depends on the 

hosen prices. Therefore, λt has to be calculated according to 

he pricing solution, meaning λt = 

∑ 

i ∈Z 
∑ 

j∈Z d m 

i jt 
/ 30 , where d m 

i jt 
= 

 i jt · f m 

i jt 
and f m 

i jt 
depends on the price p it (see Section 4.2.1 for 

emand pattern d i jt ). Accordingly, the probability for an arriving 

ustomer in period t to arrive in zone i has to be updated to 

 

origin 
it 

= 

∑ 

j∈Z d m 

i jt 
/ 
∑ 

i ∈Z 
∑ 

j∈Z d m 

i jt 
. In case of a rental originating in 

 certain i - t -combination, the probability to have target zone j is 

 
dest inat ion 
jt 

= d m 

i jt 
/ 
∑ 

k ∈Z d m 

ikt 
. Every pricing solution is evaluated with 

 = 100 simulation runs. 

.3. Parameter configurations, scenarios, and evaluation metrics 

The case study builds on the MZMP-setting introduced in 

ection 4.2.1 . The number of zones and periods, the initial vehi- 

le distribution, and the overall demand pattern are chosen as in 

he MZMP-setting. Again, we consider the two scenarios with A z ∈ 

 0 . 5 km 

2 
, 1 km 

2 
, 2 km 

2 
, 4 km 

2 } (high to low density with operat- 

ng area sizes of A o = 29 . 5 km 
2 to A o = 236 km 

2 ). The additional

arameters are chosen according to Soppert et al. (2022) , that is, 

rices of p 1 = 24 cent/min, p 2 = 30 cent/min, p 3 = 36 cent/min,

enoted as low , base , and high price. The corresponding price sen- 

itivities are f 1 
i jt 

= 1 . 25 , f 2 
i jt 

= 1 , f 3 
i jt 

= 0 . 75 ∀ i, j ∈ Z, t ∈ T (derived
rom a conjoint analysis and A/B tests). Variable costs of c = 7 . 5

ent/min make up 25% of the base price. The rental time is l i j = 15

in. Note that for these parameters, one rental realizes a contri- 

ution margin per minute of 20.625 cent/min for price p 1 , 22.5 

ent/min for price p 2 , and 21.375 cent/min for price p 3 . Thus, in

 myopic optimization when there is enough supply to serve the 

emand, the base price p 2 would be chosen. 

The results obtained by a uniform pricing with the base price, 

hat is, without price differentiation, (BASE) serve as a benchmark 

or the ones by a price optimization (OPT) with OBDPP-ICR or 

BDPP-CCR. In addition to the metrics defined in Section 4.2.4 , we 

onsider the following metrics: 

• Relative rentals increase ( RT rel [ % ] ): The RT rel between rental 

observations with optimized pricing RT OPT n and the rental 

observations with base pricing RT BASE n is defined as RT rel = 

( 
∑ N 

n =1 RT 
OPT 
n − ∑ N 

n =1 RT 
BASE 
n ) / 

∑ N 
n =1 RT 

BASE 
n · 100 . 

• Relative revenue increase ( RV rel [ % ] ): The RV rel between rev- 

enue observations with optimized pricing RV OPT n and revenue 

observations with base pricing RV BASE n is defined as RV rel = 

( 
∑ N 

n =1 RV 
OPT 
n − ∑ N 

n =1 RV 
BASE 
n ) / 

∑ N 
n =1 RV 

BASE 
n · 100 . 

• Relative contribution margin increase ( CM 
rel [ % ] ): The CM 

rel 

between contribution margin observations with optimized 

pricing CM 
OPT 
n and the contribution margin observations 

with base pricing CM 
BASE 
n is defined as C M 

rel = ( 
∑ N 

n =1 C M 
OPT 
n −∑ N 

n =1 C M 
BASE 
n ) / 

∑ N 
n =1 C M 

BASE 
n · 100 . 
1211 
• Proportion of prices ( P R 
prop 
m 

[ % ] ): For a particular price p m , the

P R 
prop 
m 

defines the proportion of this price to all prices of a cer- 

tain pricing solutions, i.e., P R 
prop 
m 

= 

∑ Z 
i =1 

∑ T −1 
t=0 y 

m 

it 
/ (Z · T ) · 100 . 

Note that RT (·) n , RV (·) n , and CM 
(·) 
n denote the respective quantity 

bserved in one entire simulation run, meaning the sum over all 

ones and periods. 

.4. Results 

In Table 1 , the results for the evaluated pricing solutions, gen- 

rated by OBDPP-ICR and OBDPP-CCR for MZMP-scenarios with 

 z = 0 . 5 km 
2 
, 1 km 

2 
, 2 km 

2 
, 4 km 

2 are summarized. Table 7 in Ap-

endix H additionally depicts the corresponding confidence inter- 

als that demonstrate the statistical significance of the respective 

M 
rel results. 

• The P R 
prop 
m 

results for all scenarios demonstrate, that the prices 

in the solution obtained with the OBDPP-ICR are higher on 

average than those obtained with the OBDPP-CCR. For A z = 

0 . 5 km 
2 , the difference in the price levels is smaller than 2 

percentage points, but it grows with increasing A z up to al- 

most 20 percentage points for A z = 4 km 
2 . Exemplary, the two 

pricing solutions of OBDPP-ICR and OBDPP-CCR for A z = 2 km 
2 

are depicted in Fig. 13 . Clearly, the OBDPP-ICR solution con- 

tains more high prices around the morning and evening de- 

mand peak, meaning around the periods 16 and 36. Only few 

of the zones, for example zone 7 and zone 49 have relatively 

many high prices in both solutions. 
• As a consequence of the higher prices in the OBDPP-ICR so- 

lution, fewer rentals ( RT rel ) realize in the simulation. The de- 

crease in rentals depends on the scenario and lies between 0.6 

percentage points for A z = 0 . 5 km 
2 and to 6.7 percentage points 

for A z = 2 km 
2 . 

• The revenue ( RV rel ) obtained by the OBDPP-CCR solution is 

higher than the one resulting from the OBDPP-ICR in all sce- 

narios. The gap lies in the range of 0.7 percentage points for 

A z = 0 . 5 km 

2 
and 3.7 percentage points for A z = 2 km 

2 
. 

• Most importantly, the contribution margin CM 
rel , which is the 

objective of the pricing optimization, is significantly higher 

with the OBDPP-CCR pricing solution than with the OBDPP- 

ICR. The difference lies between 0.9 percentage points ( A z = 

0 . 5 km 
2 ) and 2.8 ( A z = 2 km 

2 ) percentage points. Remember 

that for A z = 0 . 5 km 
2 , the overall rentals prediction of ICR was

very accurate. The fact that even here an increase of 0.9 per- 

centage points by using the CCR is possible shows that this 

coincidental overall accuracy does not necessarily translate to 

good decisions. First, errors at the zone level may cancel out. 

Second, supply and demand are endogeneous in the optimiza- 

tion model, and, thus, zones which have the “appropriate” pa- 

rameter combination in the ICR may no longer have in the op- 
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Fig. 13. Low (L), base (B), and high (H) prices in case study scenario with A z = 2 km 
2 
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To summarize the results of the case study, the OBDPP-CCR 

ith improved matching modeling compared to the OBDPP-ICR 

ields pricing solutions that generate significantly higher contribu- 

ion margins. The overestimation of rentals by the ICR causes the 

BDPP-ICR to predict too many rentals in general and therewith 

lso too many rentals when high prices are set. The optimal pric- 

ng solution according to the OBDPP-ICR therefore sets too many 

igh prices which cause a reduction of rentals and a decrease in 

ontribution margin when compared to the optimal pricing solu- 

ion according to the OBDPP-CCR. These results demonstrate that 

n accurate matching modeling that considers the specific charac- 

eristics of FF SMS is highly relevant for optimizing operations. Cer- 

ainly, the specific results of an instance depend on the many pa- 

ameters (demand pattern, price sensitivities, etc.) but considering 

he results obtained in the SZSP-setting ( Section 4.1 ), the MZMP- 

etting ( Section 4.2 ) and in this case study, it seems clear that the

verestimation of rentals with the OBDPP-ICR is the root cause of 

oo high prices and the reduced profit. 

. Managerial insights and conclusion 

In this paper, motivated by the insights gained in a close col- 

aboration with Europe’s largest FF car sharing provider Share Now, 

e examined the modeling of supply and demand matching in FF 

MSs. Despite the fact that the realization of rentals is central to 

he accuracy of an SMS model, matching functions for SMSs have 

ot been discussed in the literature yet and as a consequence, op- 

imization models for SB and FF SMSs have been identical in this 

egard. With the development of matching functions that consider 

he central influencing factors specifically relevant for FF SMSs, 
1212 
uch as customers’ maximum walking distance and zone sizes, our 

ork builds a bridge between the optimization models for SB and 

hose for FF SMSs. This allows to adapt optimization models de- 

igned for SB to FF SMSs. 

In the following, we structure the conclusions from our find- 

ngs and the related managerial insights according to two central 

spects, namely (1) the development and the analytical as well as 

omputational assessment of accurate matching functions for FF 

MSs and (2) the integration of the functions into FF SMS opti- 

ization approaches and the investigation of benefits that result 

rom that. 

With regard to (1), the methodological approach of develop- 

ng accurate matching functions for FF SMSs was to formalize a 

eneric, stylized matching process first and, based upon this, to 

ystematically derive three matching functions in a second step. 

ccording to their assumptions regarding how vehicles cover the 

one area, we termed the matching functions degressive , constant , 

nd infinite coverage rate matching function (DCR, CCR, and ICR). 

hile the DCR and CCR are novel matching functions, the ICR 

ith its extremely simplified assumptions can be considered as the 

tate-of-the-art matching function, even if not explicitly discussed 

s such in the SMS literature. In an extensive computational study, 

e compared the rental prediction accuracy by the matching func- 

ions in two settings – the first considering the rentals realization 

rocess isolated in a single zone and single period, and the second 

overing an entire FF SMS network consisting of multiple zones 

nd periods. 

The numerical results in the single zone single period setting 

evealed that the ICR in general overestimates rental: The maxi- 

um relative rental prediction errors lie in the range of 10% to 
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ore than 100%, depending on the zone size. With the CCR and 

CR, the rentals prediction is a lot more accurate: For the CCR, the 

elative rental prediction errors lie in the range of -30% to 30% and 

or the DCR in the range of -5% to 5%. In the setting with multi-

le zones and multiple periods, the relative rental prediction er- 

or with the ICR can (in one period) grow up to 10 0%-50 0% for

edium sized and above 20 0 0% for larger zones. For the CCR, the 

aximum relative rental prediction error in the relevant periods 

here many vehicles move lies between -15% and 30% for medium 

ized and between -30% and 25% for larger zones. These results 

upport the finding that the ICR cannot accurately describe match- 

ng in an FF SMS in general and that novel matching functions, like 

he CCR and DCR are required. 

Besides the numerical analyses, we also investigated the match- 

ng functions analytically. Most importantly, we demonstrated that 

nly the CCR and DCR have a rentals limit value of zero when the 

alking distance approaches zero or the zone area grows infinitely 

arge. This demonstrates mathematically that these two functions 

ehave meaningfully with regard to the spatial parameters relevant 

n FF SMS. Among other theoretical results, we also showed analyt- 

cally that the ICR is a special case of the CCR and DCR for extreme

ases of large walking distance and/or small zone area size, mean- 

ng that in such situations, even the ICR could have some validity 

or FF SMS. 

Several important insights can be concluded from these numer- 

cal and analytical results. First, to accurately describe the match- 

ng between supply and demand in an FF SMS, multiple relevant 

arameters have to be considered. Besides the sheer number of 

vailable vehicles and arriving customers, the zone size, the cus- 

omers’ maximum willingness-to-walk, successively arriving cus- 

omers as well as the decreasing marginal zone coverage by ad- 

itional vehicles play a decisive role. Second, the results show that 

nly the DCR and CCR are suitable for modeling FF SMSs in gen- 

ral, because they do consider all of the above parameters explic- 

tly or implicitly. The ICR in contrast has the structural problem 

o neglect these additionally relevant parameters and to severely 

verestimate rentals. Third, the necessity for more comprehensive 

atching functions depends on the zone sizes and the area within 

alking distance of the customers. All of the above insights reveal 

hat the previously mentioned and so far unconsidered aspect of 

atching modeling is indeed central for managing FF SMSs and 

hat matching modeling needs to be considered in the modeling 

nd control of FF SMSs. 

Regarding the second central aspect of our work, (2) the inte- 

ration of the matching functions into FF SMS optimization ap- 

roaches and the investigation of resulting benefits, we demon- 

trated that the CCR, opposed to the DCR, can easily be losslessly 

inearized. Given the vast literature on SMS optimization that use 

inear network flow-based formulations, this allows the adaptation 

f the many existing optimization approaches to be generalized 

uch that they can be applied to both SB as well as FF SMSs. To

nalyze the potential benefits resulting from that, as an example, 

e considered a pricing optimization approach from literature in a 

ase study based on real data from Share Now. 

The numerical results from the case study show that, compared 

o the pricing solution with the ICR, in the pricing solution from 

he CCR model high prices are chosen a lot less frequently, i.e. by 

 factor of 20. Low prices are chosen a lot more frequently, i.e. by 

 factor of 2 in the CCR pricing solution, such that the different 

atching functions do actually impact the decision making. The 

etter pricing decisions with the CCR cause significant contribu- 

ion margin gains over the overall too high prices caused by the 

verestimation of rentals in the ICR pricing solution. The difference 

n the resulting contribution margin increase with respect to the 

ase price benchmark was up to 3 percentage points (correspond- 

ng to an increase by factors of 1.8 to 2.6) with the pricing solution 
1213 
btained by the CCR, compared to the ICR – an effect than can 

e solely ascribed to the more accurate matching modeling (and, 

hus, in a sense comes for free, compared to marketing or a fleet 

ncrease). 

The main insight to derive from the pricing optimization case 

tudy is that the more accurate matching modeling of the CCR also 

ffects the decision making in a way that benefits the overall ob- 

ective. Since other FF SMS optimization problems, such as reloca- 

ion or fleet sizing problems, also rely on accurate rental predic- 

ions, it is clear that they would also be affected by an overesti- 

ation of rentals. Therefore, it is a managerial task to assess the 

otential problem of rental overestimation based on the findings 

n this work and to initiate the recommended adaptations if nec- 

ssary. 

Taking the presented results and insights with regard to (1) and 

2) into account, we believe that there are promising directions 

or future work. First, the consideration of inter-zone movements by 

ustomers as well as boundary effects at the borders of an oper- 

ting area might yield improvement potential when considered in 

he matching modeling. Second, an empirical study that focuses on 

atching in FF SMS would have the potential to identify additional 

elevant factors, such as for example zone-specific characteristics 

ike its shape or its street network. Third, it would be insightful to 

nvestigate how FF SMSs could be modeled accurately in a spatially 

and temporally) continuous manner, with the intention to circum- 

ent the limitations that inevitably come with the current state-of- 

he-art approach of spatial (and temporal) discretization. For the 

atter, continuous optimization techniques might be suitable. Fi- 

ally, while we considered specific discretization schemes as given 

n our work, the complex question regarding the discretization it- 

elf is an important topic for future research. 
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