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Abstract

Context. ESA’s Rosetta mission was launched from Kourou in 2004 to enter the orbit of
the Jupiter-family-comet Churyumov-Gerasimenko after a ten-year journey through the solar
system. The orbiter accompanied the comet on its way through the solar system for more
than two years.

Aim. The aim of the work "The Gravitational Field of Comet Churyumov-Gerasimenko from
Radio Science and Optical Data Combined Orbit Determination" is the precise determination
of the comet’s gravitational field parameters. The main topic is the processing of optical data
from the navigation camera and the camera system OSIRIS, which were on board the space-
craft Rosetta.

Methods. The techniques developed and combined allow the accurate estimation of the
camera position at the time of image acquisition. First, for the search of corresponding im-
age points, the Scale Invariant Feature Transform (SIFT) is combined with Polynomial Least
Squares Matching and a correction for the change in illumination conditions. Bundle Adjust-
ment is used to estimate the position of the camera as well as the triangulated points on the
surface of the comet, and the noise in the image data is modeled according to the t-distribution.
This makes the method particularly robust against false measurements, so-called outliers.
The positions of the camera at the time of the image acquisition provide a decisive contribution
to the determination of the orbit of the spacecraft relative to the comet nucleus. Already estab-
lished methods of Radio Science Investigations (RSI) for orbit determination from frequency
and time-of-flight measurements can thus be improved in their accuracy. The uncertainties in
the spacecraft’s orbit are reduced, which at the same time leads to a more accurate estimate
of the comet’s gravitational field parameters. In addition, the developed methods can be used
to gain insights into the rotational properties of the comet.

Results. With the developed methods, 1.93 x 10% points on the comet’s surface were auto-
matically detected in 10975 images and their position was measured 36.88 x 10% times with
subpixel precision. All images used originate from orbits within 35 kilometers of the comet’s
nucleus. The reprojection error of the triangulated points results in 0.6 pixel RMS, achiev-
ing subpixel accuracy in the bundle adjustment. The average uncertainty of the resulting
camera positions is 7 meters across all images and 3.7 meters in the close orbits at the end
of the mission in 2016. Before perihelion, an increase in the rotation period from 12.4040
to 12.4060 £ 0.0001h can be measured from September 2014 to February 2015 due to comet
outgassing. After perihelion, a decreasing rotation period from 12.0607 to 12.0567 4+ 0.0001h
is observed from February to September 2016. Additional periods in a rotation mode beyond
the main inertial axes could not be confirmed. From orbital integration of the spacecraft, a
gravity field in spherical harmonics up to degree and order 4 could be determined. Within the
uncertainties all gravity field coefficients are in the range of a homogeneous density distribu-
tion within the nucleus. With GM = 665.71 & 0.43 m3s~2 in August 2016, the total mass of
the comet could be determined based on optical data. When combined with the established
methods from Doppler measurements, this results in a reduction of the uncertainties of the
gravity field parameters to 53 % of the initial values.

Conclusions. With this work a method is presented, which allows the estimation of physical
parameters of the comet Churyumov-Gerasimenko from optical data received from the orbiter.
In agreement with other publications, the interior of the nucleus is characterized by a homoge-
neous density distribution. This is in good agreement with current theories on the formation
of the solar system.



Kurzfassung

Kontext. Die ESA Mission Rosetta wurde 2004 von Kourou gestartet, um nach einer zehn-
jahrigen Reise durch das Sonnensystem in die Umlaufbahn des Jupiter-Familien-Kometen
Churyumov-Gerasimenko einzutreten. Der Orbiter begleitete den Kometen mehr als zwei
Jahre auf seinem Weg durch das Sonnensystem.

Ziel. Das Ziel der Arbeit ,,The Gravitational Field of Comet Churyumov-Gerasimenko from
Radio Science and Optical Data Combined Orbit Determination* ist die genaue Bestimmung
der Schwerefeldparameter des Kometen. Hauptthema ist dabei die Verwendung von optischen
Daten der Navigationskamera sowie des Kamerasystems OSIRIS, welche sich an Bord der
Raumsonde Rosetta befanden.

Methoden. Es werden Verfahren entwickelt und kombiniert, welche die genaue Schéatzung der
Kameraposition zum Zeitpunkt der Aufnahme ermdglichen. Fiir die Suche korrespondieren-
der Bildpunkte wird zunéchst die Scale Invariant Feature Transform (SIFT) mit Polynomial
Least Squares Matching und einer Korrektur fiir verdnderliche Lichtverhéltnisse kombiniert.
Zur Schatzung der Position der Kamera sowie der triangulierten Punkte auf der Oberflache
des Kometen wird Bundle Adjustment genutzt, wobei das Rauschen in den Bilddaten entspre-
chend der t-Verteilung modelliert ist. Dies macht das Verfahren besonders robust gegeniiber
Falschmessungen, sogenannten ,,Outliers®. Die dabei gewonnenen Positionen der Kamera zu
den Zeitpunkten der Bildaufnahme liefern einen entscheidenden Beitrag dazu, den Orbit der
Raumsonde relativ zum Kometenkern zu bestimmen. Bereits etablierte Methoden von Radio
Science Investigations (RSI) zur Bahnberechnung aus Frequenz- und Lichtlaufzeitmessungen
kénnen dadurch in ihrer Genauigkeit verbessert werden. Die Unsicherheiten im Orbit der
Raumsonde werden reduziert, was zugleich zu einer genaueren Schiatzung der Schwerefeldpara-
meter des Kometen fithrt. Zusétzlich lassen sich mit den entwickelten Methoden Erkenntnisse
iiber die Rotationseigenschaften des Kometen gewinnen.

Ergebnisse. Mit den entwickelten Methoden wurden automatisiert 1.93 x 106 Punkte auf
der Kometenoberfliche in 10975 Aufnahmen detektiert und deren Koordinaten in 36.88 x 106
Bildpunkten subpixelgenau vermessen. Alle verwendeten Aufnahmen stammen aus Bahnen
innerhalb von 35 Kilometern Abstand zum Kometenkern. Der Reprojektionsfehler der trian-
gulierten Punkte resultiert in 0.6 Pixel RMS, womit Subpixelgenauigkeit im Bundle Adjust-
ment erreicht wird. Die durchschnittliche Unsicherheit der resultierenden Kamerapositionen
betragt iiber alle Aufnahmen hinweg 7 Meter und 3.7 Meter in den nahen Orbits am Ende
der Mission im Jahr 2016. Vor Perihel kann von September 2014 bis Februar 2015 aufgrund
der Kometenausgasung ein Anstieg der Rotationsperiode von 12.4040 auf 12.4060 + 0.0001h
gemessen werden. Nach Perihel wird von Februar bis September 2016 eine sinkende Rotati-
onsperiode von 12.0607 auf 12.0567 4+ 0.0001h beobachtet. Zusétzliche Perioden jenseits der
Haupttragheitsachsen konnten nicht bestétigt werden. Aus Bahnintegration der Raumsonde
konnte ein Schwerefeld in Kugelfldchenfunktionen bis Grad und Ordnung 4 ermittelt werden.
Innerhalb der Unsicherheiten liegen alle Schwerefeldkoeffizienten im Bereich einer homogenen
Dichteverteilung innerhalb des Nukleus. Mit GM = 665.71 & 0.43 m3s~2 im August 2016
konnte die Gesamtmasse des Kometen basierend auf optischen Daten ermittelt werden. Bei
Kombination mit den etablierten Methoden aus Dopplermessungen ergibt sich eine Verringe-
rung der Unsicherheiten der Schwerefeldparameter auf 53 % der Ausgangswerte.
Zusammenfassung. Mit dieser Arbeit wird eine Methode vorgestellt, welche die Schatzung
physikalischer Parameter des Kometen Churyumov-Gerasimenko aus optischen Daten des Or-
biters ermoglicht. Das Innere des Nukleus ist dabei iibereinstimmend mit anderen Publikatio-
nen von einer homogenen Dichteverteilung geprigt. Dies steht in guter Ubereinstimmung mit
giangigen Theorien zur Entstehung des Sonnensystems.
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1. Introduction, Motivation, and Goal

In the early stages of the solar system, a rotating disk of dust and gas surrounded
its center of mass and slowly but continuously lost homogeneity. About 4.6 billion
years later, one observes a dynamic system with the Sun in its center and multiple
dense objects surrounding it, such as planets and dwarf planets as well as asteroids and

comets.

From a rotating disk until the stage of a dynamic solar system as it may be ob-
served today, many unanswered questions about the physical processes remain. How
did the planets form in detail? Why does planet Earth have such a big amount of
liquid water? When investigating processes that formed the planets billions of years
ago, a well-established method is the detailed analysis of geologic material. However,
since Earth is an active planet, the material found is of limited value because it went
through reforming processes a couple of times. To account for this, it is helpful to
analyze the structure and composition of primordial objects like asteroids and comets,
since they may contain unchanged material from the first stage of solar system develop-
ment [111][15]. They provide information about its chemical composition as well as how
the material has compounded and formed these objects [81][112]. With the ambitious
goal to find answers to questions like those and many more, in 2004, ESA successfully

launched the Rosetta mission for a meeting with comet 67P/ Churyumov-Gerasimenko.

The wide field of scientific objectives for the mission may be seen through the various
instruments onboard the orbiter, starting from multiple camera systems over detailed
particle analysis up to the landing unit “Philae”, to name just a few of them. One scien-
tific goal addresses fundamental aspects of cometary physics, such as the gravitational

field, mass, bulk density, and the internal structure of the nucleus [94].

Information about the inner mass distribution is of great value for fundamental physics
as it may support the basic theory in our understanding of solar system evolution. It
can be revealed from a precise analysis of the gravitational field, which may be described
by gravitational coefficients in spherical or ellipsoidal harmonics. Thus, the estimation
of the cometary mass together with its gravitational coefficients is one of the main goals

for the Radio Science Investigations (RSI) experiment [94].

To get a detailed understanding of the gravitational field, the analysis of spacecraft
acceleration caused by the target body is necessary. It may be estimated from the
processing of Doppler shifts in the up- and downlink frequency, caused by changes in
relative velocity along the signal line of sight. The functionality of this method has

been proven in multiple previous applications, such as the flybys at Mercury, Uranus,



Neptune and the Galilean satellites at Jupiter. Further measurements were obtained at
Phobos, Eros, Mathilde, Lutetia, Steins and comet P/Wild-2 [94].

However, the comet Churyumov-Gerasimenko offers additional challenges to this pro-
cedure. Here, the spacecraft was established orbiting the target body for a long period
instead of a flyby comparable to previous applications. The gravitational influence of
67P is generally small, since the nucleus size is smaller than 5km and its density appears
to be small as well. Furthermore, due to the comet’s outgassing activity, an additional
non-gravitational force resulting from particle impulse on the spacecraft causes perturb-

ing accelerations that need to be distinguished from the target body’s gravity.

To overcome challenges such as these, an additional measurement for the spacecraft
trajectory around the nucleus is obtained from optical data [113][114][93]. The Rosetta
NAvcaMm, as well as the Optical, Spectroscopic, and Infrared Remote Imaging System
(OsIRIS), frequently took images of the comet during the orbiting phases of the mission.
Besides the many stunning features and details in those images, they also provide the
possibility to obtain the position of the spacecraft at the particular point in time when
an image was taken. This information is of great value in determining the influence of

the gravitational field on the spacecraft trajectory.

In this dissertation, a method is introduced that processes images from the Rosetta
mission in a way, that the relative spacecraft-position can be extracted from it. These
positions, in turn, can then be combined with the RSI established method of mass and
gravitational coefficient estimation in a way that existing solutions can be improved
to a higher level of accuracy. The methods and techniques used, as well as a detailed

summary of all the results, will be discussed in this work.

1.1. The Rosetta Mission

The Rosetta spacecraft was launched by an Ariane-5 on 2 March 2004 from Kourou.
To join the orbit for an escort of comet Churyumov-Gerasimenko, four gravity assist
maneuvers were accomplished - three from Earth and one from Mars (Figure 1). On
its journey, Rosetta also flew past two asteroids. It passed Steins on 5 September 2008
and Lutetia on 10 July 2010. While orbiting beyond the main asteroid belt, Rosetta
was the first spacecraft that was solely powered from solar cells. For this reason, it had
to enter deep space hibernation in June 2011. The spacecraft woke up in January 2014
and arrived at Comet 67P/ Churyumov-Gerasimenko in August 2014. On 12 November
2014, the lander Philae was detached from the spacecraft and slowly descended to the

cometary surface.



Figure 1: Images of Rosetta’s 14 meter-long solar array taken by the CIVA camera on
Rosetta’s lander Philae. Mars is visible in the background on the left image,
which was taken during the gravity assist flyby in February 2007. On the right
hand side, comet Churyumov-Gerasimenko can be seen in the background

on an image that was taken more than seven years later in October 2014.

ESA /Rosetta/Philae/CIVA [31].

Rosetta escorted the comet towards perihelion and on its way back to the orbit of
Jupiter. The mission ended with a controlled descent of the spacecraft to the cometary

surface. A time line with the most important events of the Rosetta mission can be found
in Table 1.

Mo

Figure 2: An illustration of Rosetta orbiting the comet Churyumov-Gerasimenko.
Sources: spacecraft - ESA/ATG medialab / comet image - ESA/Rosetta/-
NAVCAM [31].



The spacecraft bus measured 2.8 x 2.1 x 2.0 meter with two 14 meter long solar panels
(Figure 2). It was equipped with a variety of instruments for remote sensing and radio
science to study the composition, mass distribution, and dust flux of the comet’s nu-
cleus. Additionally, the comet’s plasma environment and its interaction with the solar
wind was investigated. The instruments onboard Rosetta were mounted on one side
of the spacecraft, which typically faced the comet during the escort. Until its release,
the lander Philae was carried on the opposite side to the large high-gain antenna. The
information in this subsection was taken from [31][109]. Detailed descriptions of the

Rosetta payload can be found in [102].

13 November 2007
05 September 2008
13 November 2009
10 July 2010

08 June 2011

20 January 2014
06 August 2014

12 November 2014
13 August 2015

12 December 2015
30 September 2016

Date Event

2 March 2004 Launch

4 March 2005 1st Earth flyby
25 February 2007 Mars flyby

2nd Earth flyby

Flyby - asteroid Steins

3rd Earth flyby

Flyby - asteroid Lutetia

Enter deep space hibernation
Exit deep space hibernation

100 km from comet 67P - arrival
Release and landing of Philae
Perihelion

End of nominal mission

End of mission extension

Table 1: Key events during the Rosetta mission [31].

1.2. Problem Description and Emphasis

When a spacecraft transmits a signal towards an antenna located at the surface of the
Earth, established methods accurately predict the radio frequency that is expected to
be measured at that ground station. If all other contributions to the radio signal are
known, an observed change in the signal frequency can be associated to the Doppler
shift caused by velocity changes of the spacecraft. If the velocity change is caused by

the gravitational acceleration through the target body, the mass as well as gravitational



coefficients may be estimated from it. RSI has been able to determine the mass of

asteroid Lutetia from Rosetta’s flyby with an error of 1 % using this method [3].

However, the Doppler shift only gives evidence of velocity changes along the signal’s
line of sight. Accelerations perpendicular to the signal’s line of sight can not be ob-
served in the measured frequency. Additionally, at the beginning of the measurement,
the position of the spacecraft relative to the target body must be estimated, if no fur-
ther information is available. More difficulties can arise from the influence of Earth’s

atmosphere on the radio signal.

Another important problem is the uncertainty in the orbit of the target body relative
to the solar system. The forces acting on a comet may not be described from the grav-
itational influence of solar system bodies alone, since its outgassing continuously adds
perturbations to its orbit and, therefore, significantly changes its trajectory on its way
through the solar system. This phenomenon, in turn, can lead to higher uncertainties
concerning the target body’s and the orbiter’s position relative to Earth, adding an ad-
ditional offset between measured and predicted frequency. Hence, the frequency changes
caused by an outgassing-induced orbital change of the comet must be distinguished from

those induced by spacecraft acceleration through cometary gravity alone.

At this point, optical data can improve the solution to a higher level of accuracy,
since it provides three-dimensional information about the spacecraft’s position at the
time when an image was taken [105][91][66]. Thus, the data enables the determination of
both the relative position of the spacecraft as well as the gravitational acceleration in all
directions when comparing the changes in spacecraft position obtained from consecutive

image series, irrespective of the downlink signal’s line of sight.

From the Rosetta mission, large sets of scientific data are accessible for the Naviga-
tion Camera (NAvCcAM) as well as the OsIRIS Narrow Angle Camera (OSINAC) and
Wide Angle Camera (OSIWAC). These images can be filtered and processed in multiple
ways, covering a wide spectrum of possible scientific goals. However, with terabytes of
optical data available, the cost in terms of computation time can quickly grow to an
unacceptable amount, if the type of processing is not adapted to a specific scientific goal.
Therefore, through development of the associated methods and routines, it is important
to define a specific point of view regarding what exactly defines the outcome that is

needed from the data.

For this purpose, one important consideration arises especially from a comet, because
one observes an actively changing surface throughout the mission. Thus, when carrying

out a three-dimensional reconstruction, one always reconstructs an object that is chang-



ing over time - and, therefore, obtains a built-in uncertainty for landmarks. The first row

in Figure 3 shows two images several months prior perihelion in August 2014 and January

2015.

-a

Figure 3: Changes on the cometary surface visible through-

out the Rosetta mission [28].

This
timeframe is of great value
for estimating the gravita-
tional field of the comet,
because in between orbits
were flown in close prox-
imity. Therefore, opti-
cal reconstruction from im-
ages like these is needed
to get an improved so-
lution. However, sig-
nificant changes on the
cometary surface appeared
during that time, poten-
tially leading to inaccura-
cies in estimation of three-
dimensional geometry. Re-
garding longer time frames
and according to [28], parts
of the cometary surface
changed in elevation up to
several meters during the
mission (Figure 4). If a

landmark is defined in such

an area, the associated change in its position can also influence the corresponding recon-

structed spacecraft orbit, possibly leading to errors in the precise orbit determination

process.

Last but not least, the comet constantly changes its rotational period, which offers

additional challenges to navigation, since the rotational state must be estimated as a

part of the relative orbit determination process and cannot just be assumed as constant.

Summarized, a constantly changing object with a previously unknown relative posi-

tion, orientation, and scale accompanied by a continuously changing rotational period

represents a challenging environment to improve the orbit reconstruction with optical

data. Hence, the reconstruction from key point correspondences in combi-

nation with a robust statistical approach is the method of choice for this work.



Corresponding key points will be detected in the imagery data and, in this way, images
are linked relative to each other, yielding relative geometric information. Thus, there
is no requirement for a fixed three-dimensional model of the comet to achieve the in-
formation that is needed: the relative position and orientation of the camera reference

frame at the time when an image was taken.

Figure 4: Changes in cometary surface elevation due to outgassing activity [28].

The key points detected and matched to each other through a series of images only
depend on the received sensor data itself, thus minimizing the need for assumptions,
such as the albedo of the cometary surface. In the end, only minimized residuals for the
reprojected tie points lead to an optimal solution for the relative geometric reprojection
problem. In this way, the orbit accuracy can be improved without the need for a fixed

model of comet 67P which is altering its surface slowly over time.

Another important goal of this work is to have the computational process running
based on a high level of automation. A minimum requirement of attention and interfer-

ence from the user is wanted, since thousands of images need to be processed.

1.3. Subdivision in Areas of Interest

Broadly, the development of routines and methods in this work may be subdivided into
three major steps. First, distinctive points in the images must be automatically detected
and matched. The result of this step is a list of key points observed in multiple images,

measured in two-dimensional coordinates together with the associated uncertainties.

After corresponding keypoints were detected within the imagery data, in a second
step, the relative geometry between the observing cameras and the key points on the

cometary surface can be estimated. Besides the position of the orbiter, also the location



of the key points on the cometary surface is determined through triangulation and

updated as additional measurements are taken into account (Figure 5). Hence, no a

priori knowledge concerning the shape of the target body is necessary.

Feature Detection
and Matching
(FDAM)

l

Corresponding key
points within images

2]

1

Computation of 3D structure
using a Robust Sparse Bundle
Adjustment (RSTBA)

l

Relative position and
orientation of the orbiter

The result still has degrees
of freedom (center of mass

B

Doppler data

Optical data

l

Physical parameters
GM, Cmn, shape,
rotational period,

/ rotation / scale). center of mass

Figure 5: The three main areas of interest from left to right: The feature detection and
matching algorithm (FDAM) together with robust sparse bundle adjustment
(RSTBA) leading to the main goal of this work, the estimation of physical
parameters of comet 67P [52].

In the third and last step of methods developed within this work, physical parameters
of the comet can be revealed from the previously estimated geometric relationship. In
combination with the simulation of Doppler data from the radio carrier links of the
spacecraft’s Telemetry, Tracking and Command subsystem, the improvement in the

accuracy through the combination of both methods will be shown.

1.3.1. Feature Detection and Matching - FDAM

The main goal for this part is the detection of maximally repeatable and stable key
points - i.e., the maximum number of possible observations per key point with the highest
possible, subpixel accuracy. The method also must be robust with respect to significant
changes in relative scale or illumination. Two-dimensional uncertainty estimates should

be available for each key point measurement. This first part is referred to as the “feature



detection and matching” (FDAM) algorithm and is described in subsection 3.1.

1.3.2. Robust Bundle Adjustment - RSTBA

The technique that estimates relative geometry of the cameras and surface points out

of the measurements obtained from the FDAM algorithm is called bundle adjustment.

Figure 6: Significant alterations of cometary landmarks
from August 2014 until June 2016 including a 30
meters sized boulder-like feature that has moved

from its origin by more than 100 meters [28].

The main challenge in this
approach is, that outliers
must be considered in the
data from FDAM. Gen-
erally, outliers can arise,
for example, from signifi-
cant changes in illumina-
tion or just in parts of
the cometary surface that
are very similar but, in
fact, do not refer to the
same point. On top of
this, parts of the cometary
surface were actually mov-
ing. If the boulder-like
feature in the image pair
C of Figure 6 gets de-
tected by the FDAM al-
gorithm and is being mea-
sured in the two consec-
utive images, it now re-
lates to a new position on
the surface and can con-
sequently cause errors in
the estimation process. Ac-
cordingly, the existence of
outliers cannot be avoided.
For this reason, a robust al-
gorithm that automatically

filters outliers in the three-

dimensional estimation process is needed. The associated part of this work is called
“robust bundle adjustment”, RSTBA and is thoroughly discussed in subsection 3.2.



1.3.3. Cometary Parameter Estimation

The result that can be obtained from the RSTBA bundle adjustment is pure relative ge-
ometric information; it is reconstructed in a body-fixed frame without any physical prop-
erties. There is only a reprojected geometric relation resulting from minimized residuals
in the optical data, thus leaving seven open degrees of freedom. Three of them arise from
translation, three from rotation, and one from scale ambiguity (Figure 7). To determine
the position of the spacecraft
relative to the comet with the

correct scale, some additional

measurement that is referred

to as “ground-truth” is nec-

essary, i.e., the exact loca-

Similarity

tion of features visible in the
optical data must be known.
However, when arriving at a
comet, there is no fixed mea-
surement on the “ground” of
67P available that could de-
fine the absolute position, ori-
Figure 7: From projective optical data alone, the overall entation, and scale of the
scale of an observed scene cannot be deter-

scene visible in the images.
mined [52].

Hence, the positions of the
landmarks need to be defined based on the orbit of the spacecraft relative to the comet.
Because of this, the reconstructed orbit is constrained with the correct scale through the
combination of the geometry derived from optical data with the Doppler and ranging
measurements from the radio carrier links. Accordingly, the third main section of meth-
ods and algorithms in this work combines the pure geometric relation from FDAM and
RSTBA with real cometary physics and, in this way, leads to improved solutions for
the spacecraft orbit together with physical parameters, such as total mass, bulk density,
the gravitational field, and the rotational state of the comet. The used methods are

described in subsection 3.3.

In section 4, all results obtained within this work are explained, and discussed. This
includes the interim results from FDAM and RSTBA together with the main goal of
this work, the gravitational field of comet 67P. Here, an orbit solution from simulated
Doppler data alone is compared to a solution combined with optical data, estimating the

expected improvement in accuracy. Section 4 also includes topics about the evolution

10



of the rotational period and the search for non-principal-axis rotation.

In this introduction, the three areas that are crucial to achieve the main goal of this
work were introduced. Additionally, a brief review of the Rosetta mission was given.
In the next section, all definitions and theoretical aspects that are necessary for the

development of the methods in subsections 3.1, 3.2 and 3.3 are explained.
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2. Definitions and Theory

In the following section, all theoretical aspects which are fundamental to the methods
used in this work will be discussed. All related equations will be briefly set up and
explained together with the corresponding definitions. Within the given references,
amplifying information and more detailed explanations may be found. The reader of
this document may also continue with section 3 to obtain a common theme about what
actually was implemented in all components of the software and then step back into

section two if questions concerning the related theory arise.

In this work, the following notation standard will be used. The column vectors x € R"
and row vectors x' € R” with scalar-valued entries z; are written in bold letters, and

matrices A € R™*" are written in capitalized non-bold letters as

XT:[$1,$2,...,ZEn], (1)
X1 aix - Qip

X = , A= (2)
Tn Am1  *°° Amn

2.1. Celestial Mechanics Definitions

In this subsection, all celestial mechanics related definitions that are needed within this

work are described.

2.1.1. Reference Frames
International Celestial Reference Frame ICRF

The position of the ecliptic and the central Earth equator to the standard epoch on
1 January 2000 at 12 noon UT1 are used to define the orientation of the International
Celestial Reference Frame (ICRF) coordinate system. The first coordinate at this time
is aligned towards the mean vernal equinox, the second towards the increasing obliquity.
This coordinate system is rotation-free. The origin lies in the barycenter of the solar
system. The actual alignment of the reference frame is based on observations of extra-
galactic reference points, which implies a small difference from equatorial coordinates.
For all results derived within this work, however, this difference is negligible. Comet

orbit integration was performed in this coordinate system [85].
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International Terrestrial Reference Frame ITRF

The International Terrestrial Reference Frame ITRF is an Earth-fixed rotating coordi-
nate system. It has its origin in the center of gravity of the Earth. The I'TRF is defined
by the true equatorial plane. The first coordinate is aligned in the direction of the in-
tersection between the equatorial plane and the Greenwich meridian. This coordinate

frame is used to compute the position and relative motion of ground stations [85][3].

Cheops Frame Definition for 67P

In order to be able to use one common reference frame for the Rosetta mission target
67P/ C-G, the so called Cheops reference frame (Figure 9) was defined following
the first results about the cometary rotation and center of mass. It was initially based
upon the analysis of images that were acquired in August and September of 2014 [34].

Prominent landmarks were chosen to define zero longitude and latitude (Figure 8).

Figure 8: From left to right: boulder-like features in the Cheops, Hatmehit, and Seth
region defining the Cheops Reference Frame [34][99].

These landmarks are assumed to be large enough to not undergo significant positional
changes during the mission. For the definition of zero longitude, i.e., the orientation of
the x-axis, the boulder-like feature in the Cheops region on the 67P/ C-Gs big lobe
was selected. Its spherical coordinates were fixed to 142.35° right-hand-rule eastern
longitude and —0.28° latitude. The center of a secondary boulder-like feature near the
equator on the opposite lobe in the Hatmehit region was fixed at 354.69° longitude and
3.48° latitude. Last, the center of the third feature in the Seth region was at 157.82°
longitude and 71.99° latitude. The Frame is body-fixed and rotates with the comet,
however not at a fixed rate. The observed changes in the rotational period of the 67P/
C-G will be discussed thoroughly in Chapter 4. More information about the Cheops
Frame definition can be found in [34][99].
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Figure 9: The cometary shape, position, and orientation in the Cheops Reference Frame
[99][100].

Rosetta Mechanical Spacecraft Frame

The Rosetta mechanical spacecraft Frame (Figure 10) is defined by its +Z axis, which
is perpendicular to the launch vehicle interface plane, and points toward the payload

side.

e Payload
et Line of Sight

Figure 10: The Rosetta mechanical spacecraft frame [27].

15



The +X axis is perpendicular to the High Gain Antenna (HGA) mounting plane and
points towards it parallel to the antenna mounting axis. The +Y axis completes the
right-handed frame. The origin of this frame is the launch vehicle interface point. Note
that the origin of the Rosetta spacecraft frame may also be defined as the spacecraft’s
center of Gravity, which changes during the mission. The center of the Rosetta mechan-

ical spacecraft frame, however, remains unchanged. More information can be found in
27].

2.1.2. Time

A multitude of historically grown concepts of both the definition and measurement
of time have evolved in the last century. Especially in astronomical observations, time
definitions with distinct scalings arose because atomic clocks run slower when they are in
relative motion or experience gravitational influence. Therefore, time is a variable that

requires careful attention in the description of astronomical and physical phenomena
85].

In general, time may be subdivided in three timescales, Dynamical Time, Atomic Time
and Mean Solar Time or Sidereal Time. The last two are determined by the rotation
of the Earth. For example, Universal Time (UT') is defined as the time between two
meridian transits of the fictitious mean Sun. The Sidereal Time definition uses the same

principle, but measured relative to fixed stars.

When evidence of irregularities in the Earth’s rotation became apparent, additional
time bases were defined. The International Atomic Time (T'AI) is based on the SI
second defined by hyperfine radiation of cesium-133 atoms and depicts the basis for the
definition of UT'C'. The T'AI timescale does not depend on other timescales or Earth’s

rotation.

Dynamical Time, such as Ephemeris Time, depicts a number of uniform timescales
and is used as the independent variable in the equations of motion in celestial mechan-
ics. Dynamical Time includes the time variables of geocentric and barycentric ephemeris
as Terrestrial Dynamical Time (T'DT') or Terrestrial Time (77") and Barycentric Dy-
namical Time (T'DB), as well as relativistic time coordinates; for example, in the 4-
dimensional geocentric frame (Geocentric Coordinate Time TC'G) or the 4-dimensional

barycentric frame (Barycentric Coordinate Time T'C'B) [85].

In this work, only Universal Time Coordinated (UT'C') and Ephemeris Time, as re-
ferred to as Barycentric Dynamical Time, are used. To ensure that with all methods

and results in this work the basic variable of time is clearly defined for all further use,
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the corresponding definitions will be introduced.

Universal Time Coordinated (UTC)

Universal Time Coordinated (UT'C) is obtained from atomic clocks that run at the same
speed as International Atomic Time (T'AI) or Terrestrial Time (7'7"). These atomic
clocks are located at the surface of the Earth. The UT'C' time format is always within
a 0.7 seconds difference from Universal Time (UT'1). The introduction of leap seconds
ensures that this difference is not exceeded. However, this time definition is consequently
not steady. The International Earth Rotating Service (IERS) can add these leap seconds
if necessary at the end of June or December of each year. This means that the UT'C' can
only be determined for a past time. However, forecasts are also published by the IERS,

which is particularly important for planning future missions based on UT'C. With

UTC = TAI — LS, (3)

UTC can be determined from International Atomic Time and the number of leap

seconds [85][3].

For both the Rosetta NAvcAM and OSIRIS-NAC, there is a predefined time slot of
exposure to light. In this time, the pixel value evolves from photon impact on the
CCD. Thus, for each image of the two camera’s systems, a start- and stop time is given
in UT'C'. Hence, for all image-defined spacecraft positions in this work, the average

between the two values is used as a time reference.

Ephemeris Time (ET)

Ephemeris Time provides a conceptually smooth and uniform time scale. It is defined
as the number of T'D B seconds since the Greenwich noon, 1 January 2000 Barycentric
Dynamic Time, also known as the J2000 epoch. All precise solar system ephemeris are
so far based on a T'DB time scale [85]. T'DB is adjusted from Terrestrial Time (77,
which is defined based on the SI second as

TT = TDT = TAI + 32.184]s] . (4)
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With (3) one may obtain TDB from UT'C via [3]

TDB = UTC + LS + 32.184 [S} + ATDB,TT, (5)

with the difference Appp rr that evolves from the relativistic framework and depends

on the Julian Date at the time of transformation.

In this work, all processed scientific measurements are based and referenced on a UTC'
time. The transformation to the corresponding Ephemeris Time is done through the

above equations using SPICE routines.

2.2. Gravitational Forces

In the following subsection, all gravitational forces that act on the spacecraft will be

described.

2.2.1. N-Body Equation

The Newtonian equations of motion for n point masses in gravitational influence are

known as (Figure 11)

b= > B (1=1,2,3,..,n), (6)
j=Lg#i i

with

Tijj =Tj — Iy,
Ty = vy — il (7)

where G denotes the gravitational constant and M, the j-th mass of an attracting
point mass. If all ephemeris and masses of the bodies M; with (j =1,2,3,...,n, j # 1)
are known, the trajectory of the i-th point mass M; can be integrated in an inertial
frame [59][85].
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Figure 11: The definition of vectors describing the positions of attracting point masses
in (6) where r; is the vector that describes the position of the i-th point mass
in the reference frame ICRF, whereas r;; describes the position of the j-th

point mass relative to the ¢-th point mass.

2.2.2. Third-Body-Perturbations

When orbit integrations in a reference frame of a central body other than the Sun
are desired, the coordinate frame itself is now subject to gravitational acceleration and
therefore may not be considered inertial anymore. It is then necessary to distinguish
between central body acceleration and perturbing accelerations which are a result of the
gravitational acceleration of the central body reference frame. First, relative coordinates
q; can be defined with [59][60]

q; =TI; — Iy, (8)
rjj =T; —T; = qj — ; = 4, (9)
q, =1; —Iy. (10)

From (10) and (6) it can be seen that
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Z ,ujq” Z,uj (1=2,3,...,n). (11)

J=1,j#i qW

Simplifying leads to

. qzl ql q .
Qi = 3 M1 — 3,ul+ E , e <]_3> (Z:2737‘”7n)7 (12)
ai1 ) Jj=2,57#1i v q]

and with

qQirn =4q1 —q; =TI — I,

= —qQ;1 =TI; — Iy =q;,

(12) may be further simplified to [59][60]

. 1+ - di; q; .
Gi=—"—5—qG+ Y W (;-g) (1=2,3,...,n). (13)
4; j=2,5#i Qij qj

Let q, be the relative position of the spacecraft with respect to the central body
reference frame. Furthermore, let 1 be the gravitational parameter of the central body
with the assumption that the spacecraft mass can be neglected in comparison with the
central body mass, p, << p;. When modeling the force environment of the system,
forces on the spacecraft arising from celestial bodies are considered while forces on the
celestial bodies arising from the spacecraft are ignored [10]. Therefore, (13) further

simplifies to

. H1 —qr q'
I L v i N TS
qr j=2,j#r |q] 7“| qj

RO .
central body acceleration perturbing acceleration

whereby the gravitational influence of the central body p; can now be distinguished

from the forces caused by gravitational parameters of perturbing bodies ;. In [10] and

[98], methods can be found where the reference body’s ephemeris were generated using
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more than point mass gravitational modeling, such as a general relativistic framework

as well as the solar quadrupole moment.

Note, that in (14) the term for a central body is still assumed to be valid only for a
point mass. However, one of the main goals in this work is to precisely determine the
gravitational field of this central body. Thus, the influence of higher-order terms arising

from an inhomogeneous gravitational potential can no longer be neglected.

Hence. in the following subsection, the characterization of a gravitational potential

using spherical harmonics will be discussed.

2.2.3. Gravitational Potential

In potential theory, solutions to Laplace’s equation

AV =0 (15)

are subject to a broad spectrum of scientific topics in gravitation, electrostatics, fluid
dynamics, and general physics. They are called harmonic functions. Laplace’s equa-
tion is an elliptical, partial differential second-order equation. The Laplace operator in

Cartesian coordinates may be written as

A—V-V—Zg: (16)

2
R
ox;

However, for the description of a gravitational field, it can be useful to describe the
potential in spherical coordinates (Figure 12). The Laplace operator may then be written
as [75]

10 (,0 19 9 1 &
A _ 10 [ 20 _ = Z |sinf—=— 5 1
(r,0,p) . (r 0r> + Tain0 00 <Sln980> + r2sin? 0 9p?’ (17)

where 7 > 0, 6 € [0,7] and ¢ € [0,27]. Functions that fulfill both (15) and (17)
now describe the potential in spherical coordinates. Assume that the gravitational

potential only depends on some value r > 0, but not on (6, ¢). Now, the angular part
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of the equation will vanish, and all spherical surfaces become equipotential. Laplace’s

equation simplifies to [61]

AV (r) = :283 (ﬁmgﬁr)) =0, (18)

which yields the first nontrivial solution to the potential problem,

V(r)=—, (19)

where M is mass of the attracting body. This relationship is well known from the
two-body problem. Considering the Rosetta-mission, with increasing target distance, at
some point the influence of the angular terms in (17) becomes too small to be measured.
Therefore, the comet appears as a point mass when the spacecraft orbit is too far away
and the orbit solution fulfills (18). For this reason, when searching for a measurable
influence of the angular terms, special attention must be given to the closer orbits,
where higher-order terms of the gravitational potential become more pronounced and
may be measured. They are described in spherical harmonics, which will be discussed

in the following section.

2.2.4. Spherical Harmonics

It can be shown that spherical harmonics of degree [ are a solution of the angular part
A (0, ) in (17). They can be written as [85]

Ky, (1,0, ) = (i)l Py, (cos ) (Chy, cos (me) + Sy sin (me)) (20)

[=(0,1,..,00), m=(0,.,0), r>s.

Here, P, are called associated Legendre polynomials. They are defined as [85]

Pnt) = (1= ?) % < pgu), (21)
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with the Legendre polynomial of degree [

(22)

1),

1 d
20! dut
where u is the cosine of # as defined in Figure 12. The scalars Cy,,, and S, in (20) are

Radius s defines the Brillouin-Sphere, which

called gravitational potential coefficients.

Rg is the distance of the surface

)

encloses the target body with value Rg. In this work

from the target body’s center of gravity.

point that is farthest away

Figure 12: The angles defining a spherical coordinate system.

In Figure 13, Spherical Harmonics are illustrated up to degree [ = 4 on the Brillouin-

s) with Cy,, = 1, Sy, = 0 for all gravitational potential coefficients [61][85].
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Figure 13: Spherical harmonics up to degree [ = 4 from top to bottom, order m left to

right [61].
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Since the Laplace operator is linear, the radial and angular part of solutions to (17)
may be summarized to a linear combination of basis functions. Thus, the gravitational

potential of an arbitrary shaped body is written as a spherical harmonics expansion [85]

V(r,0,¢) i 2_: ( > Py, (cos ) (Chp, cos (me) + Sp sin (my)) . (23)

In this way, the true potential of the body is approximated by a series of potential
functions. Note, that the gravitational potential coefficients C},, and S, contain the
information of the inner mass distribution of the target body inside the Brillouin-Sphere.
Assuming, that the density distribution p(s) of the target body is known, the coefficients

can be obtained from [85]

Cim = Mg, (l + m)l / Rl le (COS 9) cos (m@)p( )dV (24)
Stm Mg (1 +m) /Rl Py, (cos 6) sin (me) p(s)dV, (25)
1 ifi=y,
where 0;; =
0 else.

For the Rosetta mission, the density distribution of the target body was unknown prior
to the arrival of the Orbiter. However, as previously introduced, the spacecraft orbit
is determined by the influence of the irregularly shaped comet’s gravitational potential.
Hence, for a given expansion of Spherical Harmonics, a spacecraft trajectory around the
comet may be integrated and compared to the measured one. Therefore, in an iterative
process, gravitational potential coefficients Cj,, and Sy, in (23) can be estimated up to
a certain degree [ and order m. This allows one to better understand the inner structure
of the comet. The more gravitational potential coefficients can be determined, the more

detailed information about mass distribution and inner structure can be revealed [61].

Since gravitational potential coefficients may cover wide orders of magnitude, it is
favorable to describe the gravitational field with normalized coefficients Cj,, and Sin;

they may be obtained from [85]
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_ = ) (26)
The associated Legendre polynomials may be normalized as well with
_ 92— 2+ 1) (1 —m)!
(Il 4+m)!

2.2.5. Gravitational Potential Coefficients and Moments of Inertia

In general, the gravitational potential of an arbitrary shaped body can be derived from

its density distribution inside the body’s volume via [85]

_ o [PV

lr — s

V(r) (28)

Regarding this density distribution, some special gravitational potential coefficients

are predetermined. First, it can be shown that

M@ (l + m)' M@ or m 07 ( 9>
1 50 1
Coo = M / R—%POO (cos @) cos 0p(s)dV = A /p(s)dV = 1. (30)
Furthermore, one finds that
c ! [ 5 (cost) p(s)av ! [an(s)av =2 (31)
= = z —_
10 M@R@ p M@R@ P R@ )
2
Cyn = W/Bsz cos fsin 6 cos () p(s)dV (32)
olfig
_ / (s)dV = — 1= (33)
T MeRE ) T T A RE
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Accordingly, one can write

Zo Iyz
Cpy= =L Gy = ——¥%_ 34
TRy T MgR2’ (34)
Yo ]zy
Sy = 22 Gy = — . 35
TRy TP 2MgR2, (35)

Thus, the coefficients Cyg, Co1, Ci1, S11, So1, Soo only depend on the body’s mass,
the Brillouin-Sphere, the center of mass and the off-diagonal elements in the moment
of inertia tensor. Hence, if the body-fixed coordinate system is defined with its origin
in the center of mass of the target body and the axes are co-aligned with its main
axes of inertia, all six coefficients vanish, since [z, o, 20] = 0 and [I,., I, I,,] = O.
It becomes obvious, that gravitational potential coefficients are closely related to the

body’s moments of inertia, which will become important in section 4.

Finally, if m = 0, sin (m¢) vanishes and with (25) one finds that Sjy = 0V [. Ad-
ditional information about the description of a gravitational potential can be found in
3][85][61].

2.2.6. Recursion Formulation of the Legendre Polynomials

The associated Legendre polynomials may be determined from a recursion. Beginning

from Pyy = 1, one may write P, up to the desired highest degree by [85]

1

P () = (2m = 1) (1= 4*)* Po_yn1. (36)
Now, with
Poiim(u) = (2m + 1) uPpy (u) (37)
and
Ponlt) = 1 (1= DuPa() = [+ m =D Pam(@) (39

the remaining polynomials may be determined for [ > m + 1. In Table 2, the first six

associated Legendre polynomials may be seen.

26



1 |m | Py,(u) Py (cos 6)
00 |1 1

1 10 |u cos 6

1|1 | (1=—ur)? sin 6

2 [0 | $(Bu?—1) 1(3cos?0 — 1)
2 |1 |3u(1—u®)"" | 3cosfsind

2 12 |3(1—u? 3sin? 0

Table 2: The first six associated Legendre polynomials [61].

2.3. Non-Gravitational Perturbing Forces

In this subsection, the non-gravitational forces that act on the spacecraft are described.

2.3.1. Solar Radiation Pressure

Solar radiation pressure has a significant influence on a spacecraft’s trajectory and can,
therefore, not be neglected in precise orbit determination. It results from the transfer
of momentum through impact, reflection, absorption and re-emission of photons [103].
Generally, the force acting on a spacecraft through solar radiation pressure may be

written as

Ap g

Fr= AL FA’ (39)

where Ap is the transferred impulse during time interval At. The force equals the
solar flux ¢, that passes the spacecraft area A divided by ¢, the speed of light. However,
this model is only valid with the assumption that all photons are absorbed by a surface
that is oriented perpendicular to the Sun. Ultimately, a more detailed model consid-
ers an inclined surface and, accordingly distinguishes absorption from reflection in the
respective fractions of solar radiation. The reflected portion of the radiation may then
further be subdivided into diffuse and specular reflection. The corresponding spacecraft

accelerations caused by absorption and the two types of reflection are written as
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qs A
a— — ﬁinc - ) 40
g : cos ( )msce@ (40)
24, A
Py = — LI (Pinec) —en, (41)
& SC
. qs A ( 2 )
- ﬁinc - 5 ) 42
Fq . cos ( )msC es + zeN (42)

where e denotes the unit vector towards the Sun and ey is the surface normal of
the exposed surface A. The spacecraft mass is given as mg. and v;,. denotes the angle
of radiation incidence relative to the affected surface. The three contributions can be
linearly combined by using coefficients ¢; to describe the fraction of the respective type

of acceleration and setting >, ¢; =1 Hence, one can write

P=—k ZOQSA 08 (Vinc) ((9251 + ¢9) eq + 2 <¢3 cos (Vine) + qf:) eN) ) (43)

where ro denotes the spacecraft distance from the Sun and ry is 1 AU. With the

assumption that the surface normal points straight towards the Sun, one may simplify

(43) to

2,4
=

44
r%mscce@ (44)

which leads, however, to a decreased accuracy in the orbit prediction. Since the
activity of the Sun changes the magnitude of solar flux, a scaling factor k is introduced
and adjusted as a parameter in orbit determination. Starting from 2016-08-15T09:00:13
UTC, solar radiation pressure caused a perturbing acceleration of the spacecraft of
2.31 x 10~"km s72, decreasing to 2.04 x 10~ km s=2 towards the end of the mission.
More detailed information about solar radiation pressure and its influence on orbit
determination may be found in [85][3][103][36].

2.3.2. Outgassing

Another important non-gravitational perturbing force that must be considered for the

Rosetta mission is outgassing. Especially during close flybys, precise coma drag mod-
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eling is probably the most difficult part of orbit prediction around the comet. The
outgassing flow has measurable influence on the trajectory of the spacecraft and, there-
fore, cannot be neglected. However, cometary activity in general is difficult to predict.
The direction of the cometary gas species flow as well as the density and velocity shows
diurnal variations throughout the mission. Additionally, outbursts (Figure 14) eject

cometary dust and remain active for several minutes and up to a few hours [77].

Figure 14: An OsIRIS-NAC image showing an outburst in July 2015. Copy-
right: ESA/Rosetta/MPS for Osiris Team MPS/UPD/LAM/TAA/SSO/IN-
TA/UPM/DASP/IDA — CC BY-SA 4.0

These physical processes are driven by the complex shape of the cometary nucleus
and depend on sunlight illumination angle, duration, as well as heliocentric distance.
Fortunately, the activity decreases with an increasing distance from the Sun. Since very
close orbits - which are most important for the estimation of the gravitational field of the
comet - were flown either at the beginning or towards the end of the mission, cometary
activity was moderate. However, the orbit perturbation of the outgassing flow still must
be considered for a precise orbit reconstruction. In general, the drag acceleration caused

by the cometary outgassing may be written as
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Cp

2Me.

pUVA, (45)

r=

where mg, denotes the spacecraft mass, p and v = ||v||, are the density and relative
velocity of the atmosphere and A is the affected area of the spacecraft with respect
to the velocity vector v. Starting from 2016-08-15T09:00:13 UTC, outgassing caused
a perturbing acceleration of the spacecraft up to 1.59 x 10~ ''km s=2. More detailed

information about the cometary outgassing and different model approaches can be found

in [48][11][65][70][109][69] [13][88] [44][7].

2.4. Prediction of Doppler Shift

In this work, Doppler data received from the Rosetta spacecraft is simulated. Hence,
a brief overview of the related theory will be given. More in depth derivations can be

found within the given references.

2.4.1. Radio Link

Let n be the unit vector from the position of a transmitter at transmission time t7 to

the position of a receiver at receiving time tg. Furthermore, let ¥ = ¥ and Wy =

be the normalized velocity of the receiver and transmitter at the respective point in
time. Then, the relativistic Doppler effect is obtained from [53][85][3][60][55]

ﬂzl_l_n‘yR_’—%H\I]RHg_% (46)
fo L—n- Or+ 5 [|Urlf; — B

where ®r and ®r denote the gravitational potential in the sphere of influence where
the receiver and the transmitter are located. If the receiver is located on the Earth, the
gravitational potential may be approximated via ®p = —ﬁf—g — ’;—g, where 7 denotes the
distance of the receiver to the Sun and rg the distance to the Earth respectively. Since
the receiver on the surface of the Earth is located in a non-inertial rotating system, the

potential by centrifugal acceleration must also be considered with [53][60][3]
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where wg denotes the angular velocity of the Earth and ¢ the geographical latitude

of the receiving ground station.

2.4.2. Relativity

As mentioned before in (46), normalized velocities need to be determined by summation
in barycentric and planetocentric reference frames. The velocity in the system S may

be determined through relativistic summation via [25][60][3]

V:V(l_l_\;u‘\llvl)-[V’+(7—1)-(v’-ﬁ)-ﬁ+7-u], (48)

where 1 is the unit vector of the velocity u of system S’ relative to system S, and
¥, is ¥ analogous to the definitions in (46). Accordingly, ¥,, denotes the normalized
velocity % of the body in system S’. 7 is known as the Lorentz term and is defined
as [3]

———— (49)

JI— w2

2.4.3. Effects from the Location of the Ground Station

The location of the ground station on the surface of the Earth has a significant influence
on the measured Doppler shift. The RSI established method of mass estimation covers
a wide spectrum of modeling effects that influence the position of the antenna and, in

that way, allows for precise orbit determination [3][85][8] [54].

In order to obtain residuals in the prediction of Doppler shift down to only a few
millihertz, the position of the ground station in the celestial reference frame must be
known accurately. First, for the transformation from the ITRF into the ICRF, effects
caused by precession, nutation, Earth rotation and polar motion need to be

modeled precisely.

Additionally, the displacement of the ground station within the ITRF caused by
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Tectonic plate motion is approximated by a linear model, since the crust of the
Earth is not invariable. On top of this, site displacement due to solid Earth tides
arising from the gravitational attraction of bodies external to Earth are described and
predicted. They cause a nonlinear deformation of the planet’s shape and, as a result,
induce an additional displacement of the receiver depending on the time of measurement.
Other effects like ocean loading, pole tides, atmospheric loading, thermal deformation of
the antenna, and post glacial rebound are in the order of magnitude of a few centimeters
or even millimeters. These effects are neglected and not considered in the ground station

model.

Another important effect that must be considered is the influence of the atmosphere
the signal travels through. Molecules, atoms, ions, and electrons in the atmosphere
are known to cause interactions with electromagnetic radiation in terms of direction,
velocity, polarization, and strength of the respective signal. Thus, one main interfering
impact on the two-way-radio link is a path delay caused by the reduced speed of light
in the atmosphere in comparison to the speed of light in vacuum. The subsequently
raised changes in frequency need to be removed from the received data to obtain the
pure changes in spacecraft velocity out of a Doppler shift. Here, contributions caused

by the troposphere and the ionosphere must be distinguished.

All models, methods and approximations used to describe the interference effects
that arise from the position of the receiver on Earth can be found in [85][3]. In these
documents, a detailed overview of all implementations is given. Since this work is
considered to be an extension of the already established method of RSI, these methods

will not be discussed at a greater level of detail here.

2.5. Principles of Projective Geometry

A key topic of this work is the estimation of relative geometry from optical data. An
in-depth overview of the related theory will be given in this subsection. The definitions,

terms and equations are mainly taken from [52].

2.5.1. Homogeneous Representation of Lines

Homogeneous lines and points are important quantities in projective geometry. A ho-

mogeneous line in R? may be written as [52]
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ar +by+c=0. (50)

Note, that in this notation az + by +c = 0 and kaz + kby + kc = 0 represent the same

line. Thus, any vector

k(a,b,c)', Vk#£0 (51)

represents an equivalence class known as homogeneous vectors [52].

2.5.2. Homogeneous Representation of Points

Since the point x = (a:,y)T € R? can only be a subset to the homogeneous line
1 = (a,b, C)T if the condition ax + by + ¢ = 0 is fulfilled, one may choose the repre-

sentation [52]

(2,4,1) (a,b,¢)" = (2,y,1)1 = 0. (52)

In this notation, the point x = (2,y)" € R? is expressed in homogeneous coordi-

nates. Note, that for any non-zero scalar k one may write [52]

(kz, ky, k)1 = 0. (53)

Hence, the homogeneous vector x = (1, x9, :1:3)T € R3 represents the point

2
(i—;, %) € R? [52]. This notation is often needed in conjunction with projective space

and will be used throughout this document.

2.5.3. Camera Matrix

The camera matrix may generally be written in the form
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p
P=1 pa pa D pau | = p2T . (54)
P

P31 P32 P33 P34 T

It can be decomposed into a product of matrices as explained in the following. Starting
with the most simple case by using the basic pinhole camera model, a point in space
Xeam = (X, Y, Z )T defined in the camera coordinate frame is mapped to the point x
that lies on the image plane where a line between the point X, ,,, and the camera center

¢ meets the image plane [52].

principal axis
image plane

camera
center

Figure 15: Reprojection of point X, into the image plane [52].

. . T . X Y T
It may be seen from Figure 15 that the point (X,Y,Z)" is mapped to ( 715 f) .
By ignoring the final image coordinate f for this case, one obtains the central projection

mapping from world to image coordinates

X Y\T
XY, 2 (15.05) (55)

which is a mapping from Euclidean 3-space R? to Euclidean 2-space R%2. The camera
center is also called the center of projection or optical center. The line perpendicular
to the image plane that joins the camera center is called the principal axis or principal
ray (Figure 15). This principal axis meets the image plane at the principal point p.
When using homogeneous vectors in the description of projective geometry, then central

projection as seen in the subsection before may be expressed as [52]

34



X
X fooolfy
Yol=fo ool | (56)
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where the world point X,y is represented as a homogeneous 4-d-vector (X, Y, Z, 1)T,

x is a homogeneous 3-d-vector, and P is the 3 X 4 homogeneous camera projection

matrix, compactly written as

x = PXcam,
P =diag(f f,1)[1]0]. (57)

2.5.4. Calibration Matrix

Assuming, that the coordinates of the image origin are not at the principal point, then

the mapping (55) is amended by the offset (p,, py)T, and one may write

.
.2 (1 et ) (58)

where (p,, py)T denotes the coordinates of the principal point in world coordinates

and (o, yO)T in pixel coordinates, respectively (Figure 16).

Yeam

yA X cam

Figure 16: Definition of the principal point [52].
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Expression (56) may now be written in its homogeneous notation [52]

X
fY+Zp, |=]10 f p, O 7 | (59)
Z 0 0 1 O
1
and further decomposed by
with the calibration matrix
I 0 ps
K=10 f py |- (61)
0 0 1

In this notation, the image coordinates are expressed in the same units as the world
coordinates. However, in a practical application, the coordinates of key points are
measured in pixel dimensions, which means that the pixel size of a CCD camera needs
to be taken into account. Assume, that the number of pixels per unit distance in image
coordinates is m, and m, in the respective coordinate directions. As a result, the

calibration matrix becomes [52]

a, 0 xo
K= 0 ay Yo y (62)
0 0 1

where the entries a, = fm,, a, = fm,, vo = myp, and yo = m,p, are now expressed

in terms of pixel coordinates.
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2.5.5. Camera Position and Pointing

Up to this point, the notation X ., was used to clarify that the camera is located at
the origin of a Euclidean coordinate system where the principal axis points down the Z-
axis. This coordinate system will be called camera coordinate frame throughout this
document. However, for a multiple view geometry application, it is useful to describe
the world points in a fixed world coordinate frame, where the camera is defined by its

respective camera matrix related via a non-homogeneous translation C and a rotation

R (Figure 17).

Ycﬂm
[/ ’
C ot Zoum
/ Q
Xeam
18]
Y
X

Figure 17: Rotation and translation of the camera reference frame [52].

Presupposing that X isa non-homogeneous coordinate of a 3D-world point and Xeam
denotes the same point in a translated and rotated camera coordinate frame, then one

may write

Xeam =R (X = C). (63)

This relation can also be expressed in its homogeneous form as [52]

R —-RC
0 1

R —-RC

Xcam =
0 1

= N

Combined with (60), one can write [52]
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x:KR[I\—C]X, (65)

with X now being expressed in the world coordinate frame. It may be observed that
the pinhole camera model has nine degrees of freedom: three for K, three for R, and
three for C. These degrees of freedom are subdivided into internal camera parameters,
which are contained in K, as well as external camera parameters, contained in the camera
orientation R and in the non homogeneous position C. To further shorten the notation

for the camera matrix, one may define

t .= —RC, (66)

which leads to the general notation for the camera matrix [52]

P=K[R|t]. (67)

This notation will be used throughout this document. Note that one important quan-
tity for this work - the relative position C of the camera - is included here and is thus

a part of the camera matrix P.

2.5.6. Fundamental Matrix

If a feature is detected in two images, the point correspondence defines a plane by the
two camera centers as well as the point on the cometary surface that is observed with

both cameras (Figure 18). This plane is called the epipolar plane.

The line connecting the two camera centers C; and C, is called the baseline. As
can be seen in Figure 19, this plane intersects with the respective image plane of both

cameras. The resulting intersection line is called the epipolar line.

Note, that any point X that lies on the line connecting the camera center and the
reprojection x in the left camera’s image plane will be subset to this epipolar line as

long as it is in the field of view of camera two.
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e

epipolar plane 7T \

Figure 18: The epipolar plane 7 defined through the cometary surface point X, and the

two camera centers C; and Ca with reprojections x; and xa [52].

X,

Figure 19: The epipolar line 1’ and epipoles e and €’. Any reprojection of point X along

epipolar line
for x

the epipolar line I in image two results in the same reprojection x in image
one [52].

This geometric relationship (Figure 18) may be expressed algebraically via represen-
tation [52]

X;Fxl =0, (68)

where F is called the fundamental matrix, a 3 x 3 homogeneous matrix of rank 2. If
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for a pair of cameras (P, P’) a fundamental matrix F can be found, then FT describes the
relation of the opposite pair (P’, P). Furthermore, the corresponding epipolar lines may
be obtained via I’ = Fx and 1 = F'x/, where 1’ denotes the epipolar line in the second
image defined by the point x in the first image as well as the opposite way, respectively.

Assuming, that the pair of cameras is defined as

Pr=K[I1|0o] , P,=K[R|t], (69)

then the fundamental matrix may be obtained from

F=KT[t], RK'=K R[R"t| K, (70)

where [t], denotes a skew-symmetric matrix as described in appendix A.4. The full

derivation can be found in [52].

2.5.7. Normalized Coordinates and Essential Matrix

If the calibration of a camera is known, then the image coordinates of a feature measured
on the camera CCD may be converted into normalized coordinates. The idea of this
approach is to remove all degrees of freedom that depend on the internal parameters of
a camera from the related equations of epipolar geometry. Granting that a camera is
defined as P = K [ R ‘ t } with the relation x = PX, then the inverse of the calibration

matrix may be applied to the image coordinates as

% =K 'x, (71)

with X now being expressed in normalized coordinates. The camera matrix becomes
K™1P = { R ‘ t } and is called a normalized camera matrix. The effects of the
known calibration are now removed. For this case, the former fundamental matrix

may be transformed via
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E = K'FK, (72)

and is now called an essential matrix. It is still a homogeneous quantity like the
fundamental matrix. The relation between two independent measurements of the same

3D homogeneous world point now becomes

RIE&, =0, (73)

equivalent to (68) but expressed in normalized coordinates [52]. If a pair of normalized

camera matrices is defined as

Pi=[1]o] . P.=[RJt]. (74)

the essential matrix may be obtained from

E=[t,R=R[RTt| . (75)

respectively. Note that the images that have been processed in this work were always
obtained from the same camera within one specific dataset. In other words, there are no
tie point correspondences between two different camera systems, such as NAVCAM and
OsiNAc. Hence, unnecessary degrees of freedom can be removed from all contributing
equations and algorithms. The notation of normalized coordinates, normalized
camera matrices, and essential matrices will be used throughout this document

and for all implemented software packages, respectively.

2.5.8. Essential Matrix Decomposition

The decomposition of an essential matrix into E = [t],, R may be used to find a camera
position from optical data alone. In the case where insufficient a priori information about
the spacecraft position relative to the target body is available, this technique may be

used to obtain a first estimate of the camera’s optical center position. From this point,
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one may continue with a bundle adjustment technique as explained in subsection 3.2 to
refine the result. Remember that the essential matrix is a product of a skew-symmetric

matrix and a rotation matrix, E = [t], R. Now one can additionally define the matrices

0
01, (76)
1

where 7 is also skew-symmetric as [t],, and W is orthogonal as R, respectively. An-

X
other important property of an essential matrix is that two of its singular values are
equal and the third one is zero. The respective proof can be found in [52]. Thus, the

SVD of E may be written as

E = U diag(1,1,0) V. (77)

Now let S be any skew symmetric matrix. The block decomposition of a skew-
symmetric matrix is S = UZUT, where U must be an orthogonal matrix. The corre-
sponding proof can also be found in [52]. On the other hand, a rotation matrix may be
decomposed as R = UR'V', where R’ can be any arbitrary rotation matrix. Therefore,

in order to extract [t], and R from a given essential matrix E without any additional

X

knowledge, all the above findings may be summarized as

E = Udiag(1,1,0) VI = SR = (UZU") (UR'V") = U (ZR") V". (78)

With ZR' = diag (1,1,0) and R’ being a rotation matrix, it follows that R’ = W

or R = WT except for sign. Hence, one may summarize that if E = [t] R =
U diag (1,1,0) VT, then
[t], =UZUT , R=UWV' orR=UW'V". (79)

Presupposing that the first camera is set to P; = [ I ‘ 0 }, this leads to four possible

solutions (Figure 20) for the second camera Py, which are given as [52]
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Py=[ UWVT | +us | or [ UWVT | —uy | (80)
or [ UWTVT | 4ug | or [ UWTVT | —ug |,

where t equals the third column of U, denoted as ug = U (0,0, 1)T and stays undeter-

mined in sign.

P, Py P, Py

(a)

(d)

Figure 20: The decomposition of an essential matrix has four possible solutions for the
camera matrices. Camera P; remains fixed, whereas camera P, has two
possible rotations and translations according to (80). In the bottom row
camera Py is rotated 180° about the baseline. Note that only in case (a) the
tie point lies in front of both cameras; obviously, this should be the solution

of choice [52].

Note that this set of equations is not unambiguous in sign and scale, which means that
there are four possible solutions in geometry and even an infinite number of solutions
in scale. Thus, if a reconstruction is attempted from optical data alone, additional
constraints need to be defined. The full derivation of this subsection can be found in
[52].
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2.5.9. Triangulation

Linear triangulation is a good method for providing a first estimate in the 3D recon-
struction process, despite knowing that it does not exactly satisfy geometric relations.
However, it can be used as a starting point for nonlinear triangulation with higher

precision or in order to provide initial values for bundle adjustment.

Let X € R* be the homogeneous description of a point X € R?. Let (x,x’) be the
corresponding measurements of X in two different images, described by the respective

camera matrices (P, P’) with

x =PX, x' =P'X. (81)

Now, the cross product x x (PX) = 0 can be used to find three equations per tie

point measurement. Writing the cross product out results in [52]

(57X) - (07X)
(67X - (07X)

(57%) 1 (577X)

Il
o o o
—~
0
R
S~—

where p'T are the rows of P. In (82), two equations are linearly independent, respec-
tively. After applying the same step to the second measurement x’ = P’X, the now
combined system of four linearly independent equations may be solved from AX = 0
with

ap®T —p'T
yp’T —p”"

A=| P P | (83)
p”T

y'p”°T —

which provides a first estimate of the homogeneous vector X € R*, and describes a

tie point on the cometary surface that is visible in two images.
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Nonlinear Triangulation

After the first estimate of the point X obtained through linear triangulation in (83), a
nonlinear algorithm can refine the triangulation result. The noisy measurement {x,x’}

does not necessarily fulfill the epipolar constraint ' TEx = 0.

Figure 21: Presence of noise in the measurements x and x’ of the point X € R? in two
different views C and C’. This noise results in differences between measure-
ment and reprojection - the reprojection error d(x,%),d (x/,%X'). It can
be seen that reprojected rays from imperfect measurements do not intersect
[52].

Instead, the correct reprojected position of the image points is {X, %'}, lying close to
the measured points {x,x’} and satisfying the constraint  TEX = 0 exactly (Figure
21). Thus, the cost function [52]

C(x,x)=d(x,%)°+d (x,%) (84)

can be minimized with respect to the epipolar condition ®TEX = 0, providing the
maximum likelihood estimate (MLE) for X up to numerical accuracy. In [52], an optimal
solution to the triangulation problem is provided, using a polynomial of degree six and
solving non-iteratively for the MLE solution precisely. However, within this work, all
optical reconstruction is refined through the process of bundle adjustment in the end.
This technique will be thoroughly explained in subsection 3.2. With bundle adjustment,
the camera parameters will subsequently be adjusted as well; they will be updated
together with the coordinates of the formerly triangulated surface points. Therefore, in
order to provide initial values, the above discussed methods are sufficient at this point.

Advanced techniques of triangulation and further information may be found in [51].
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2.6. Instrument Reference Frames, Calibration, and Boresight

In the following subsection, definitions are given that are needed to describe the function

and orientation of the scientific instruments used within this work.

2.6.1. Rosetta NAVCAM Instrument and Image Frame

The Rosetta Navigation Camera has two identical cameras - a nominal and a redundant
one. The optical heads protrude from the main body of the spacecraft, containing the
optical system, the CCD detector, and the electronics required to operate the CCD [30].
The field of view of each camera is 5 degrees. The CCD detectors have 1024x1024 pixels

with a broad spectral sensitivity in the visible range.
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| i e
" S

Reference hole

Figure 22: Definition of the Rosetta NAVCAM-A instrument reference frame [27]

In this work, only images recorded by the nominal unit NAVCAM-A are processed,
since during the comet phase of the mission, this camera was used almost exclusively
[42]. The corresponding instrument frame (Figure 22) is defined by the +7Z axis pointing
along the camera boresight. It is nominally co-aligned with the spacecraft’s (s/c) +Z
axis and oriented in view direction. The +X axis is parallel to the apparent image
columns and nominally co-aligned with the s/c +X axis. The +Y axis completes a
right-hand frame; it is nominally parallel to the apparent image lines and co-aligned
with the s/c +Y axis. The origin of the frame is located at the camera focal point
[41]. The coordinates of the NAVCAM-A unit with respect to the center of the Rosetta
mechanical spacecraft frame are [ —0.973, 0.174, 1.971 ] meters [27].

46



The image appears as stored in the CCD pixels on the detector. The columns are
parallel to the X-axis and thus oriented vertically in the images. Their count starts with
zero in the lower left image corner, where the line and column number counts increase
with increasing coordinate value (Figure 23). The optical path leads to an inversion of
the image coordinates with respect to the optical axis. As a result, to obtain the correct
orientation of the scene in space, the image must be rotated by 180 degrees around the
boresight [40].

CAM1 2007-02-24T18:32:32
1024x1024

X=1023

Y=0 Y=1023

Figure 23: NAvCAM Image Orientation - CCD-Coordinates Example: Mars Swing-By
24 February 2007 [39].

2.6.2. OSIRIS Narrow Angle Camera Instrument and Image Frame

The OSIRIS camera system combines a narrow angle camera (OSIRIS-NAC) and a wide
angle camera (OSIRIS-WAC). However, within this work, no images of the wide angle
camera were processed. Therefore, only the reference frame of the OSIRIS narrow angle

camera is explained.

The OSIRIS-NAC covers a field of view of 2.18 degrees with a CCD of 2048x2048
pixels and thus has a much better resolution than the NAvcAM. The corresponding
instrument frame is defined in accordance with the NAVCAM frame. The +Z axis points
along the camera boresight, the +X axis is parallel to the apparent image columns and

the +Y axis completes the right-hand frame. All axes are nominally co-aligned with the
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spacecraft-axes, and their origin is located at the camera focal point. For the OSIRIS-
NACc, there are two different reference frames, the mirror frame, and the nominal unit
reference frame [27]. The latter has a significant rotation and its origin is located at
the OSIRIS-NAC reference hole, which is different to the focal point (Figure 24). In
this work, only the OSIRIS-NAC mirror frame with the origin in the focal point is used
for geometric processing. The focal point of the OSINAC is [ —1.233, —0.157, 1.390 |
meters with respect to the Rosetta mechanical spacecraft frame [27]. The OSIRIS-
NAC image frame is defined in accordance with the NAVCAM image frame; it can be
seen in Figure 25. Detailed information about the OSIRIS system may be found in
[57][108][64][58][18][90][17].
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Figure 24: OsIRIS-NAC mirror frame and OSIRIS-NAC nominal unit reference frame [27].
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Figure 25: OsIRIS-NAC image reference frame definitions [18].
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2.6.3. Instrument Boresight Alignment

The actual alignment of the camera boresights with respect to the mechanical spacecraft
frame shows small deviations from nominal alignment and was determined by in-flight
calibration. The actual NAVCAM-A boresight direction is specified in [33] as an offset
from the s/c +7 axis along X s/c by —0.02678 and along Y s/c by = —0.17210 degrees.
The difference may also be expressed as a corresponding pixel value, inducing an offset
of =~ 35 pixels from the image center. Consequently, when aiming for subpixel accuracy
in optical reconstruction, the correct reference frame must be chosen carefully. The

nominal alignment matrix of NAVCAM-A can be found in [32].

For the Osiris Narrow Angle Camera Frame, the offset in boresight alignment is
smaller, but still not negligible. It has an offset from the s/c +7 axis along X s/c by
—0.027 and along Y s/c by = 0.013 degrees, which means about 27 pixel units. In Figure
26, the instrument boresights of OSIRIS-NAC and NAVCAM-A as well as boresights of

other Rosetta instruments are shown.
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Figure 26: Detail of instrument boresights. +Z s/c points into the page [33].

2.6.4. Geometric Directional Calibration and Accuracy

Another important problem to be considered when transforming 3D-world points de-

scribed in the Cheops reference frame introduced in subsection 2.1.1 into an image
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plane coordinate frame is the nonlinear directional distortion caused by the respective
camera system. For example, the distortion at the edge of the NAvCAM field-of-view is
in the order of 1%, which means about 10 pixel units [40]. For a given pixel position
(i,7) on the camera CCD, the corresponding direction in the NAVCAM-A camera frame
is determined by [32]:

1) Converting the pixel position into a linear position relative to image center:

pe = 0.013 (i — 511),
py = 0.013 (j — 511) (85)

2) Applying radial distortion correction to the relative linear position:

Prooe =Pz (142 (D2 4+12))
Dycorr = Py (1 t ¢y (pi + pi)) ; (86)

3) Computing vector (d,d,,d,) and normalizing, where

pl’Corr
d, =~
fo
pyCorr
d = -, 87
Y fy ( )
d, =1,

with the radial distortion correction parameters

c; = —0.00012044038,

¢y, = —0.000114420733, (88)
and the focal length
fe = 152.5159,
fy = 152.4949. (89)

This algorithm is known to have a remaining geometric error up to about one pixel
over the full CCD [32].

For the OSIrRIS-NAC, a geometric calibration curve is also available. The camera
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distortion is corrected over the full field of view. The correction values are fitted to a
two dimensional, third-order polynomial. The undistorted pixel positions (X,,Y,) are

expressed as a function of the actual image coordinates by [37]

Xu = Z kngX(Z)YOJ
i?j
Y, =k, XY{. (90)

Z.7j

The full table of third-order polynomial fit coefficients for distortion removal (k%j, kyi,j)
may be found in [37] or in appendix A.6. After the removal of the radial distortion, an
error up to 0.35 pixels remains for the OsIrRIS-NAC. For the OSIrRIS-WAC, an error up
to 0.5 pixels remains in the image data. For the precise orbit determination purpose in
this work, only OSIRIS-NAC images were processed. The remaining nonlinear distortion
error distribution of OSIRIS-NAC and OSIRIS-WAC may be seen in Figure 27.

0.5 pix

Figure 27: NAc distortion correction error (0, 0 pix bottom left) / WAC distortion cor-
rection error (0, 0 pix bottom right) [37][68].

2.7. Statistical Theory

In all scientific measurements in this work, the data has to be considered affected by
some random error such as noise and so called outliers, i.e, incorrect measurements that
result in large deviations from expected values. On top of this, the measurements may

contain systematic errors, such as the remaining geometric calibration error of a camera.

One common approach to overcome random errors is to assume that the noise in these

kinds of measurements is to be determined by some known statistical distribution. The
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problem is then to find a solution which is best from a statistical point of view. Therefore,
the maximum likelihood estimation has the goal of finding a mathematical model
from which observations in a dataset of known statistical characteristics would be most
likely. Generally, the method can be used for any estimation problem where one can

presume a joint probability density function for the observations [6].

To further specify the problem, the most likely model parametrized by n elements
in vector m for a set of m observations in vector d must be found. Once the model
m is defined from a physical or geometrical point of view, for each observation d; a
probability density function f(d;, m) may be assumed. This PDF generally will vary,
depending on m. The joint probability density for a vector of observations d is then

written as

m

f(d,m) = fi(di,m) - fo(da,m) ... i (dpn, m) = [] fi (di;m), (91)

i=1

where the values of f (d, m) are probability densities. Since the probability of an exact
particular dataset is zero, a small box around that dataset must be considered. Then,
the probability of this data is approximately proportional to the probability density
f(d,m) itself. In this way, the likelihood function may be defined accordingly as

m

L(d,m)= f(d,m) = H fi (d;;m), (92)

i=1

where d is fixed and m is a set of variable parameters that can be adjusted in a way
that the model is relatively likely to result in the data d. The maximum likelihood
principle is then to select the model m that maximizes the likelihood function L (m, d).
If the assumption can be made that errors in the data are independent and normally
distributed with expected value zero, the probability density for the i-th observation

may be written as

e : : (93)

with the standard deviation o; of the i-th observation d; and the matrix G from the
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discrete inverse problem

Gm =d, (94)

with residuals r = d — Gm. The likelihood function may now be written as

1 m <(di(G;“)i)2)
Ldm) = — e J[e \ *
2

95
@) (95)

m
i=1 01 i=1

Maximizing the likelihood depending on the set of parameters m equals minimizing
the associated negative log likelihood, since the logarithm is a monotonically increasing

function. Eliminating the constant yields

(di—<cm>i)2>

2

m _ m o 12
nin — g e (@~ (Gm),)"
=1

=2 2(0.2

=1 7

(96)

While searching for a minimum, the constant 2 can be eliminated as well and with

11 1
W = diag ( > G, = WG, d, = Wd, (97)

) )
01 02 Om

one finds the now weighted system of equations which may be written as

It has the least squares solution

m, = (G1C.)  Cld.. (99)

Now,
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™ (d; — (Gmy,),)”
Iy — Gom, |2 = S0 %= (G (100)

i—1 0;

and the least squares solution to G,m = d,, provides the maximum likelihood
estimate for the model m. For the computation of the associated covariance, one may

make use of

1

Cov(m) = (G1,G,) (101)

if noise in the data is independent and normally distributed with the expected value

of zero. In the case of the data not being multivariate, one may further simplify to

Cov (m) = o (GTG)_l : (102)

In nonlinear regression, matrix G is replaced by the Jacobian matrix J of a nonlinear
function G (m). The discrete inverse problem from (94) is then the linearized relation-
ship between the iteration step of the model parameters Am and the respective change
in the objective function AF (m), as described in (124). In this case, the covariance
matrix changes with each step. However, this requires some approximations, which will

be explained in the following.

2.7.1. Additional Aspects arising from Nonlinear Regression

Solving nonlinear inverse problems with the concept of least squares is probably one of
the most commonly used methods in a broad variety of applications in technical or nature
science. However, some simplifications, approximations, and assumptions are included
in this approach. Therefore, it is even more important to get a thorough understanding
of what these assumptions are and how they might affect the solution. For any arbitrary
set of data, a somewhat nonlinear model may be found that fits these measurements and
creates small residuals. However, a good model needs to fulfill some additional criteria.
Therefore, in the following, some important notes on nonlinear optimization used in this

work will be discussed. Assuming, that the nonlinear scalar valued function
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G(m,x'i)—di)Q

f(m):g;< .

(103)

is twice continuously differentiable, the Taylor series approximation may be formu-

lated as

f (mO + s) ~ f (mo) +Vf (mO)T S + ;STV2f <m0> S. (104)

By neglecting the second order term, one may approximate the gradient of f by

Vf(m®+s)~ Vf(m)+V2f (m®)s (105)

and equal this term to zero, since at minimum m* the condition V f (m*) = 0 must
be fulfilled. This leads to

Vif (mO) s=-Vf (mO) . (106)

Solving this system of equations for step s leads to Newton’s method for mini-

mizing f (m) [6]. Now, with the definitions

fi (m)

F(m) = f2(:m) , (107)
fm (m)

fi(m) = G OI) (108

the gradient vector elements of f (m) may be written as
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Vf(m)jzf:ZVfi(m)jF(m)j, (109)

or simplified in matrix notation by

Vf (m) = 2 (m)" F (m), (110)
with the Jacobian matrix
Ofitm) = 9fi(m)
oma Omn
J(m) = P : (111)
Afm(m)  Ofm(m)
67711 amn

The left side of (106) at parameter vector m and without the step s may be expressed

as

V() = 30V (f (m)?) = 3 ), (12

where H' (m) is the Hessian Matrix of f; (m)®. It is defined as

Z. 0 (fz’ (m)Z)
i (m) = = o "
- aij <2fz‘ (m) a;;f;:)) .
(G )

and thus, one may summarize
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V2f(m)=2J(m) J(m)+Q(m), (116)

where

_22]2 ) V2f; (m) . (117)

In the Gauss-Newton method, the term Q (m) is assumed to be small and the

Hessian Matrix is approximated by

V2f(m)~2J(m)" J(m). (118)

With this approximation and the iteration step s = (m"“r1 — mk) = An, equation

(106) may be rewritten as

)3 () () = () R (11

In the method of Levenberg-Marquardt, an additional parameter A is introduced

to insure convergence. It completes the equation to

(J (m*)"J (m*) + AI) Am =3 (m") F (m*). (120)

Thus, for large values of A, the relation

J(m*) 3 (m*) + AL~ AL (121)

ensures small but certain convergence; whereas, for small values of A\, one obtains the
Gauss-Newton method with fast but uncertain convergence. Accordingly, the step
size of A, changes with the regularization parameter A\. In each iterative step, the

decrease of the objective function f (m) can be evaluated, and the parameter A\ can be
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adjusted. If a covariance matrix X4 of the observations d is available, the weights o;
from equation (108) can be found squared as the variances on the main diagonal of g,

and (120) can be written shortened as

(ITSg" T+ A1) A = =I5 e, (122)

where the residuals €; = G (m, z;) — d; are the differences between the observations d;
and the model G (m, ;). The associated variances ¢? of the observations can be found
on the main diagonal of ¥4q. In the case of nonlinear regression, there is no longer a
linear relationship between the data and the parameters m from the estimation model.
Accordingly, the assumption of multivariate, normally distributed model parameters is

now an approximation through local linearization of the nonlinear function F (m) with
[6]

F(m"+ Ap) ~F(m*) +J(m*) Ap, (123)

where small perturbations in the data are assumed to result in small perturbations in
the model m. With this approximation, the linearized relationship for changes in F (m)

and m becomes

Ap ~ J (m*) Ap, (124)

and the covariance matrix may be obtained from

-1

Cov (m*) ~ (J(m")"J (m")) (125)

which is in accordance with (101), however based on simplifications that were neces-
sary because the problem is nonlinear. Hence, it is important to understand that the
covariance matrix together with the uncertainties of the estimated parameters result
from two critical approximations. First, the term Q (m) was assumed to be small and

was dropped. Second, the model f(m) was linearized around m*. Depending on the
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problem, these two approximations can be problematic and cause incorrect interpreta-

tions of parameter uncertainties and the parameters themselves.

As soon as combinations of model parameters are considered, additionally, parameter
correlation can affect the solution. The confidence intervals for the parameters may then
be significantly larger than the intervals for the ones that are considered individually.

The confidence region is an n-dimensional error ellipsoid, defined by the inequality

(mye — m*) Cov (m*)_1 (Mypye — M*) < A% (126)

where A? can be a percentile of the y? distribution with n degrees of freedom, chosen,
for example, to be within 99%. The error ellipsoid’s principal axis may then be found

from the eigenvalue problem

Cov (m*)~" = PTAP, (127)

where A contains the eigenvalues {A1, A2, ..., A\, } on its main diagonal, and P con-
tains the eigenvectors, associated to the error ellipsoid’s principal axes, respectively.
The 99% confidence ellipsoid’s semiaxis lengths x; in the principal axes directions may

then be found via

L i=(1,2,...n). (128)

This confidence ellipsoid may thereafter be projected back into the m* coordinate

system, which yields the parameter uncertainties in case of correlated parameters.

2.7.2. Tikhonov-Regularization

In the context of finding a model that describes the trajectory of the spacecraft around
the comet, parameters are spread widely regarding their influence on the spacecraft orbit,
reaching from stronger inputs like perturbation gravitational forces or solar pressure

down to tiny changes caused by wheel offloadings. The inverse solution
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A=—(JTT+A1) e, (129)

may become unstable if one or more of the singular values s; in (JTJ + AI) is small.
The least squares problem may, therefore, become ill-posed. The positive effect obtained
from a Tikhonov-Regularization is that an ill-posed problem may be solved as less
sensitive to noise-data by giving larger weight to larger singular values and lower weight
to small singular values. After a singular value decomposition, the generalized solution

of an inverse problem JA = ¢ may be expressed as [6]

—1 —177T - (U‘,z)T €
A=J"e=VS U e:Z Vo (130)
=1 i
With the SVD of J in (129) one finds that [6]
(VSTUTUSVT + M) A = (VSTSVT + AI) A = VSTUTe, (131)

Hence, the solution of the non singular system of equations (131) deduces to [6]

S
A: L i ].2
P (152)
where
2
S.
P = 1
/ 24+ A (133)

is called filter factor and fulfills the relation that f; ~ 1if s; > Aand f; = 0if s; < A.
In between, the effect reduces the relative contribution of the smaller singular values to

the solution.

Estimation and statistical aspects are core considerations for this thesis. The cor-

rect interpretation is crucial for all results. Iterative parameter estimation and inverse
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problems will be important topics for three main areas within this work: the accurate
measurement of features within the camera CCD, the estimation of projective geome-
try, and the determination of cometary parameters. Especially, when the trajectory of
a spacecraft is obtained from the estimated gravitational field, parameter correlations
become important and affect the solution. This problem will be thoroughly discussed
in section 4. The content of this subsection was mainly taken from [6], a more detailed

description of statistical aspects may be found within this reference.

This concludes chapter 2 — the theoretical fundamentals within this work. The next
chapters will give an overview of what was implemented, and the results that could be

derived.
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3. Numerical Implementation

In this work, MATLAB and FORTRAN routines were developed with the goal of gravita-
tional field estimation based on optical data. The following chapter gives an overview of
which methods and algorithms were used, and how they were combined. All three main
software components — the feature detection and matching algorithm, robust sparse
bundle adjustment and the software for the estimation of cometary parameters — will

be thoroughly described here.

3.1. Feature Detection and Matching Algorithm

As introduced in section 1, the goal of this part of the software is to automatically detect
and match tie points that are maximally repeatable together with the highest possible
accuracy of the measurement within the imagery data. According to [12], the quality of

the matching results generally depends on:
1. the greyvalue distribution of image functions (texture, image gradients),
2. the selection of transformation functions for matching,
3. the patch size of the template (reference window),
4. the amount of geometric distortion between both images,
5. the quality of initial values, especially for shift parameters.

For the first point, a well-established method that can be used to find areas with fa-
vorable and distinctive greyvalue distributions is the scale invariant feature transform
(SIFT). It automatically detects features in the optical data and tracks them over a
consecutive image series while being robust against changes in rotation and scale as well
as moderate illumination changes. Since automated image processing is needed with
thousands of images available, the detection part of the SIFT algorithm is used to find

distinctive features that are visible in multiple images.

For the second point, regarding the transformation function for the matching part, a
least squares technique is used and will be explained in subsection 3.1.2. The remaining
criteria in the above listed items of matching quality will be discussed in subsections
3.1.2 - 3.1.5. Since SIFT initially finds the key points in the imagery data for the
feature detection and matching algorithm (FDAM), it will be briefly explained in the

following.
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3.1.1. Scale Invariant Feature Transform (SIFT)

According to [80][84][79], the maxima and minima found using a scale-normalized Lapla-
cian of Gaussian image function 02V?G produce the most stable image features for
key point matching. SIFT uses a close approximation to that function, called the
difference-of-Gaussian (DoG) scale space. Since the detection of maximum stable and
repeatable image features is needed for FDAM, this is the initial method of choice for
the algorithm.

The basic principle of the method is Gaussian filtering of camera images at multiple

scales. First, an input image is repeatedly convolved with a variable-scale Gaussian
kernel, G(z,y, o), defined as [80]

G(z,y,0) ! e(_xz"#). (134)

27 o?

The repeated convolution of the initial image with the Gaussian kernel leads to an
increased blurring after each convolution. The resulting images are then stored in the

Gaussian scale space L(x,y, o) of the input image via
L(z,y,0) = G(z,y,0) = I(z,y), (135)

where * is the convolution operation and I(z,y) is the input image in pixel coordinates
x and y, for NAvCAM and OSINAC defined as in Figures 23 and 25, subsection 2.1.1.
After this initial step, neighboring images in the Gaussian scale space are subtracted to
create D(x,y, o), the Difference-of-Gaussian (DoG) scale space (Figure 28). It may be
obtained from [80][79]

D(x,y,0) = (G(z,y,ko) — G(z,y,0)) * I(x,y) (136)
= L(z,y,ko) — L(z,y,0).

It can be seen that the DoG scale space images are separated in scale by a constant factor
k. After o has become twice the initial value in the repeated convolution operation, the
block of the Gaussian scale space is now considered a full octave. The last image is then
down-sampled by a factor of 2, which leads to a significant reduction in computation time
while no information in the measurement is lost, since the input image was increasingly
blurred from the repeated convolution. As suggested in [80], o is chosen to be 1.6 and

the scale factor is determined from k = 2§, where s denotes the number of blurred
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images per octave. These values are obtained from empirical tests described in [80].

\;ﬁ—»
Scale ﬁ ?ﬁ
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Figure 28: The creation of the Gaussian and difference-of-Gaussian (DoG) scale space

from an input image [80].

Figure 29: From left to right: An input image extract of the cometary surface taken

by the Rosetta NAvcAM in 2014 followed by three corresponding images in
the DoG scale space. In each octave, the respective first level is shown. The
down-sampling between the first three octaves can be seen in the three images

on the right side.

In Figure 29 it can be seen, that the increasingly blurred images create extrema on dif-
ferent scales; this approximates a camera taking images in the same area of the cometary
surface from a continuously increasing distance. Thus, the method is capable of finding
key point matches in images taken from different orbits. This makes it an excellent
starting point for the FDAM algorithm; however, the advantage is not unlimited when
differences in scale become too large. On top of this, note that the boulder-type feature

in the bottom right of the image extract creates a lot of extrema around its shadow.
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Since shadows are moving relative to the angle of sunlight incidence, this problem needs

to be accounted for and will be covered later.

After the difference-of-Gaussian scale space was created, pixels are compared with
their neighboring pixels, including the adjacent scale images. If a pixel turns out to
have a minimum or maximum value compared to its 26 neighbors, it is initially detected

as a distinctive feature (Figure 30).

Figure 30: Left: A variable scale difference-of-Gaussian function. Right: Detection of
distinctive features from extrema when compared to 26 neighboring values

in the difference-of-Gaussian (DoG) scale space [80].

After the features were detected as previously described, some of them need to be
rejected again. In order to generally avoid unstable responses to edges in images - such
as sharp corners of shadows with large gradients in one direction and small perpendicular

gradients - the ratio r of eigenvalues «, 8

a=rp, (137)
obtained from the Hessian matrix
Dx:c DCE
H= [ 4 ] , (138)
ny Dyy

can be used together with the trace and the determinant (appendix A.3) of H
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tr (H)?  (r+1)°
det (H) = r

(139)

in order to define a threshold for rejection of those key points. For the localization
of the remaining features with sub-pixel accuracy, a Taylor expansion of the DoG scale-
space function up to quadratic terms may be used. It has its origin at the sample point

that was previously detected and may be written as [80]

X+ -X ——X. (140)
X X

The derivative of this approximation with respect to x = (z,y,0) can be set to zero
and hence, the subpixel-accurate location of the extremum X can be determined from
[30]

. 9*D\ ' oD
%= (ax> o (141)

If the offset of the extremum is more than 0.5 pixel from the sample point location
in any dimension, the interpolation is carried out from the closer sample point [80]. In
a last step, additional unstable extrema with low contrast can be rejected through the
definition of a threshold that discards key points with a small DoG scale space function

value.

After the key point detection, localization, and rejection process, descriptor arrays
are assigned to those points that remain in the selection (Figure 32). The descriptor is
determined by the main gradient direction and magnitude around the key point. It is
then used as a reference in comparison with other key points and enables the method
to be invariant to image rotation. Hereafter, the local image gradients in a certain
region around the key point are added to a descriptor array for each feature. A nearest

neighbor search in the descriptor space finally allows for matching of the key points.

However, since the key point matching process in FDAM uses a different technique,
this part of SIFT will not be explained at a greater level of detail within this work. More
information about SIFT and its implementation can be found in [80][115][110][83][86].
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In Figure 31, the subpixel accurate localization of key points in the DoG scale space
extrema can be seen. The scale space is the result of the repeated convolution of
the input image with the difference-of-Gaussian image function and thus depends on

differences (gradients) in the initial image greyvalues.

Figure 31: Top row, left side: NAVCAM input image extract. Right side: Detected key
points within the data. It can be seen, that the method favors key points in
regions where higher image gradients are present. As a consequence, rather
flat areas on the surface lead to less detections. Bottom row: Subpixel-
accurate location of key points within the DoG scale space by the SIFT key

point detector.
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Figure 32: Design of the SIFT descriptor - after computation, the locally evaluated
image gradients are summarized in histograms and compared in a nearest

neighbor search for matching [80].
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The greyvalues, in turn, are a measure of the number of photons that impacted the
respective pixel on the camera CCD during exposure time; they depend on the illumi-
nation conditions and reflectance of the cometary surface. However, since illumination
changes over consecutive images, the maximum in the DoG scale space generated from
a distinctive feature on the cometary surface in one image can arise with an offset pixel
value in a second image if, for example, the angle of incidence changes. Thus, SIFT is
only used for initial detection. A more accurate matching algorithm that is robust with

respect to illumination changes will be introduced later in subsection 3.1.6.

Figure 33: The input image familiar from Figures 29 and 31 (left side) after a full de-
tection and matching cycle with a second image (right side) based on SIFT
alone. It is clearly visible that outliers are still present which might affect

the solution later.

After the initial key point detection and matching, outliers are still present in the cor-
respondences (Figure 33). Generally, as previously introduced, the existence of outliers
cannot be avoided in key point matching algorithms, regardless of the method of choice.
However, a multitude of possible approaches and techniques for outlier removal is avail-
able in computer vision related literature. One common first approach to overcome the
problem is to make use of relative geometric information, such as derived from epipolar
geometry. The relationship known from equations (68), (72), and (73) - introduced in
section 2 - can be used as a starting point. If orbit and attitude data is already available,
the a priori geometric information may be used to get an initial estimate for E from (75)

and then define a threshold € in order to discard all matches that fulfill the inequality

% EX) > e (142)

69



In this way, wrong correspondences that do not fulfill the epipolar constraint (73) can
be rejected. However, as described in Figure 19, outliers close to the epipolar lines still
remain in the solution with this approach. Thus, additional constraints are needed and
will be introduced in subsection 3.1.4. Figures 35 and 34 show the initial detection and
matching results by SIFT together with a first outlier removal applied, as described,
with (142). The method was tested both with images of 67P as well as on the surface
of Jupiter’s moon Europa (Figure 34). The latter shows the method’s capability of

finding key point correspondences over different scales.

Figure 34: Application of SIFT to images where the same area of Europa is visible in

different resolutions [67].

3.1.2. Least Squares Matching on a Polynomial Basis

In the last subsection, it was shown that SIFT is one of the best tools available to detect
stable, repeatable, and distinctive features in imagery data. However, extrema detected
in scale space via this method depend on the illumination angle. Furthermore, the
gradients used for feature matching in the descriptor array also change with illumination.
For this reason, if the angle of incidence changes by too many degrees in between images,
the SIFT algorithm starts to fail. The conclusion is that, for the specific application
within this work, SIFT is very useful for the detection of recognizable features on

the cometary surface; however, it needs to be supported by an additional method in
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Figure 35: Initial key point matching on the cometary surface, enabling the first step in
the FDAM algorithm introduced in this work.

the matching process. Here, a least squares matching based on a polynomial
geometric transformation function is the method of choice, because it is convenient

especially in the presence of a curved surface as it is observed at comet 67P (Figure 37).

Assume that after the initial SIFT detection and matching step a number of point
correspondences - so called tie points - are available between two input images. Now,
small image patches may be extracted around these tie points by a predefined number of
pixels in both image coordinate directions. The two image patches can be described as
two scalar-valued greyvalue functions {¢’,¢”} that depend on two coordinate functions

each. They can be written as

g @y, 9" (@ y"). (143)

Note that the coordinates of the second patch can be written as a function of the

coordinates in patch one [12],

J;N — fw ('Ij’yl) , yl/ — fy (:L,/’y/> ) (144)

As introduced in subsection 2.7, the measurements of the pixel greyvalues must be
considered to be affected by random noise. Hence, consider the normal distributed noise
functions €’ (2',y') ,¢” (", y") in both images. Now, the geometric model between both

image functions may be written as
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g (@ y)+e (@ y) =g" (fo (y), fy (0, 9) + € (2" ") . (145)

Here, the greyvalues of ¢” (f, («',y), f, (',y)) can be interpolated by using splines,
since the geometric transformation function has non-integer numbers. Additionally, a

two parameter linear contrast stretching yields

g @ y)+e @ y)=ro+ri-g"(fo (@ y), f, (")) +e" (2", y"). (146)

The observation equation can now be defined as

l (IE/, y/) +v ('Tla y/) =To + ry- g// (f:t (xla y/) 7fy (x/a y/)) - g/ (33'/, y/) ) (147)

where the noise functions ¢’ (2/,y"), €’ (2”,y"”) have been substituted to

v(@y) = (@ y) — e (2" y"). (148)

As introduced in (144), the coordinate functions for both image patches may be
defined depending on each other. To find the respective transformation functions, least
squares matching is a widely used method in computer vision, whereby commonly
affine transformations of the patch coordinates are used [99][45][46]. However, [12] has
shown in several tests that affine and projective transformations can yield systematic
errors for the measured tie point coordinates. For example, the projective approach is

only geometrically correct as long as the object surface is a plane.
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Figure 36: An example of geometric distortions of a synthetic input image patch. It

illustrates, that surface patches with curvature can be modeled more accu-

rately through polynomial geometric transformations [12].

Hence, if the surface visible in the image patches is subject to curvature, the geomet-
ric model covered through affine or projective transformation is insufficient (Figure 36).
With [12], a novel approach, including an advanced least squares matching algorithm,
was introduced. It uses polynomial geometric transformations and, in this way,
allows for a highly accurate reconstruction of curved surfaces (Figure 37). Addition-
ally, it allows for smaller parameter correlations within the estimation of the geometric
transformation whereas only four additional parameters need to be added in

comparison with the projective approach.

-11125i {
0,200 g
0,275
-0,350
0,425
-o‘smL matching: projective . -U‘SOUL matching: polynomial

Figure 37: Relative error in three-dimensional reconstruction of a curved surface in com-
parison with calibrated data from the study accomplished in [12]. Note that
in areas of more pronounced curvature, polynomial matching significantly

improves the solution.

Since small solar system bodies such as 67P are irregularly shaped, the strong cur-

vature of the surface must be considered in key point matching. Hence, the geometric
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transformation within the coordinates of the extracted image patches is carried out
on a polynomial basis within this work, as suggested in [12]. The respective

transformation functions may be written as

$// _ fz (x/’ y/) _ aijx/(jfi)y/(z‘)’ (149)

M-
M-

<
Il
=)
~
Il
=)

y'=fy @y = bija' U=y,

-
M-

<
I
o
~
I
o

where the parameter n defines the polynomial order and is set to n = 2, as suggested
by the authors of [12]. This results in twelve parameters (agg, @10, @11, @20, a21, a22)
and (boo, b1o, b11, bao, bo1, baa) to be estimated for the geometric transformation model
as well as two additional parameters (19, 1) that must be determined for the radiometric
transformation. Applied to the observation equation in (147), the linearized correction

equation may be written as [12]

L) o y) =rd+00 g (£ ), £) (@ y)

(2 (2 Y+ (2

+ (55;) daso + (gj;) dag; + (552) dag

+ (35;;) dboo + <§§1/;> dbyo + (gg’l:) dbny (150)
+ (352()) dbyg + @)92/;) dbyy + (gi/ 2) dbss

+ (gﬁ:) dro + (gﬁ:) dry — ¢ (/1)

The partial derivatives contain the product of the outer and inner function of the

second image patch ¢”° (z”,4”). The outer function derivatives correspond to the image

gradients

ag//O (ZL‘”, y//) agllo (ZL‘”, y//)
9z = T’ gy = T? (151)
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whereas the inner function derivatives correspond to the geometric transformation

model. Thus, the differential quotients of all fourteen unknowns may be written as [12]

09"\ _ . 99" (" y") 09"\ _ . 09" ("y")

E)aoo v ox" ’ 8a10 t ox" '

99"\ _ . 9" (=", y") ag"\ 99" (2", y") "

day, ) ox" Y dag | L oz )

09"\ _ . 09" "y") 09"\ _ . 09" ("y")

8&21 . ox" v 8a22 L ox" Y

dg" 99" («",y") dg" dg" («",y")
=7 =p =) 152

(8[)00) " 8y ’ 8b10 BN 8y T ( 5 )
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From this point, the equation system of linearized correction equations may be formed
as [45]

1+ v = Jx, (153)

with the Jacobian matrix J € R™" x € R", and (I, v) € R™, where m denotes
the number of pixels in the image patch, and u is the number of unknown parameters
- fourteen in total for this particular implementation. The matching of the two image
patches may then be computed iteratively using a standard least squares approach as

described in subsection 2.7 via

(JTPI)x = —J"PL, (154)

where P denotes a weight matrix. If necessary, pixels close to the key point observation
or possible dark pixels can be given a specific weight in this matrix. Through each

iteration step in (154), the covariance matrix ¥z may be obtained from [45]
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Sz =62 (7P3) (155)

with the variance factor 62 and residual vector v defined as

62 = —v'Pv, (156)

v=Jx—1 (157)

where the redundancy r = n — u is the difference between the number of observations
n (i.e., the number of pixels in the patch) and the number of parameters used for
the transformation. The advantage of this knowledge is that, from the beginning, key
point matching uncertainties within the sensor data are available for further use in the
bundle adjustment. Hence, measurements with small uncertainties can be weighted
higher than those with larger ones, improving the solution in projective geometry by
giving the better measurements more importance. In this way, the overall uncertainties
concerning the camera position become smaller as well, and the global solution for the
physical parameters of the comet may be obtained with a higher accuracy in the end.

The standard deviations

Oax = Oagy, (158)

Ay = Obgo» (159)

are of particular interest because they describe the precision of the matching location
within the two patches. When analyzing contributing parameters in (155), one may
generally conclude, that the uncertainties of the match point locations will become
larger if less observations are made or more fitting parameters are used. Furthermore,

small residuals improve the uncertainties to a smaller value.

Note, that the image gradients {g,,g,} found as a factor in each entry of the
Jacobian matrix J in (152) and (155) especially improve the solution to a more accurate
result. This may be understood as a measure of distinctiveness between the pixel values,

which allows for a more precise geometric transformation and constraint.

For a better explanation, imagine an area on the comet that is flat and produces the

same pixel value over the entire image patch to be matched - the precise determination
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of a tie point obviously would be impossible, as it could be on any place within the
patch. Thus, it is of great interest to search for gradients within the imagery data in
order to reduce the tie point uncertainties and, in this way, improve the solution for the
respective camera position.

At this point, remember Figure 31 from subsection 3.1.1 - “The Scale Invariant Feature
Transform”. It becomes clearly visible that SIFT is helpful for the detection of key
points within areas of the cometary surface that precisely fulfill the requirements for ac-
curate key point matching, since it favors imagery data that includes the presence

of gradients.

Template Patch Size, Geometric Distortion, and Initial Value Quality

Remember the list of matching quality criteria as introduced in subsection 3.1. The
first two items were discussed thoroughly and are covered via the SIFT detection

principle as well as the advanced polynomial geometric transformation.

The third item - the patch size of the template is determined according to publications
[99][12][45][26][56][47][107]. The best results could be obtained with small image patches
of 20 pixels in size for the Rosetta NaAvCcAM and 24 pixels for the OSINAC. Note that,
depending on the distance between comet and spacecraft, fewer pixels in the patches

are used for matching if the resolution decreases.

The fourth point - the amount of geometric distortion between image patches - is
purely based on an empirical and statistical approach. First, the cometary surface is
irregularly shaped, and thus, geometric distortions can be versatile depending on the
location of the tie point or the relative camera positioning. On top of this, estimates of tie
point location accuracy, as well as the iterative improvement of the objective function,
are available and can be used to discard matches with a large amount of geometric
distortion. Last but not least, a statistical approach that is robust with respect to
outliers and corrupted measurements will be used and give measurements with

decreased quality less weight.

However, the last item - the quality of initial values for the tie point location
and orientation - is important to consider and crucial for a least squares matching
result. After the initial localization and matching step is carried out through SIFT, the
assumption should be that there exists a subpixel accurate estimate for the tie point
location within the image patch. Therefore, initial values in terms of shift parameters
should already be fairly precise. However, the existence of outliers must still be consid-

ered within the data. Hence, the accuracy of initial values obtained from SIFT can be
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used as an additional measure in order to discard low quality tie points. In other words,
the step of additionally applying polynomial least squares matching after SIFT
is a way to confirm good matches for further use or to discard wrong correspondences,
such as corrupted measurements caused, for example, by a moving shadow. In practice,

a combined threshold from
1. the cost function convergence ratio,
2. uncertainties in both image coordinates, and
3. required key point shift

after least squares matching is used in order to confirm the SIFT obtained tie points

and simultaneously refine the accuracy of the measurement.

3.1.3. Tie Point Reprojection

After the application of SIFT and polynomial least squares matching, an addi-
tional measure for the tie point quality exists. This measure arises from laws of projective
geometry in combination with the question of whether the tie point that was successfully
detected between two images can be found in a third, independent image as well. How-
ever, this approach does not depend on the quality of the matched tie point alone. First
- obviously - the area of the cometary surface containing the key point must be visible
and illuminated in the third image. Second, geometric distortion, as well as differences
in relative scale, may not be very large. The most important requirement, however,
is the accuracy of available a priori information of the relative position and
pointing of the respective camera for all three images involved. A selection of suit-
able techniques applicable for small solar system bodies on how to gather sufficient a
priori information within the camera matrix parameters will be discussed in subsection
3.1.5.

Remember the reprojection equation (65) from subsection 2.5.5. If after a triangula-
tion, the homogeneous vector of a tie point on the cometary surface is known, it can
be reprojected into any image plane in that the point is expected to be visible. After
application of the inverse algorithm from (85) through (89), in theory, pixel coordinates
should be available and a third, independent image patch can be extracted around these

coordinates for least squares matching with simultaneous tie point validation.

However, if the knowledge of the homogeneous coordinate or the accuracy within
the respective camera matrix in (65) is insufficient, the now corrupted reprojection will

lead to a decreased quality of initial values for least squares matching and thus will not
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enable a third, independent, and confirming key point match. All conditions necessary to
enable a successful tie point validation via this method will be discussed in the following

sections.

3.1.4. Conditions for Triangulation

Figure 38 shows an important geometric relationship that evolves from triangulation.
It can be seen that the more parallel the rays are, the less accurate the results from a
triangulation can be expected to be. Note however, that this is in direct contrast to

what is known to be a good condition for least squares matching.

Remember from subsection 3.1.2 that the less geometric distortion present between
two image patches, the greater the likelihood that more accurate matching results can
be expected. A low geometric distortion between image patches, however, evolves from
small changes in the relative position of the camera, which means that the rays become
more parallel, in turn. In other words: as conditions for triangulation improve, the
prerequisites for precise key point matching deteriorate. On the contrary, if the rays are
too parallel, the least squares matching of an image patch will admittedly have a precise
result due to the small geometric distortion. However, the subsequently triangulated tie
point may result in a large error in the relative position. If it gets reprojected into a
third, independent image, the resulting pixel values may now be too far off, leading to

insufficient initial values in order to confirm a good match within the third image.

Figure 38: The uncertainty volume of a triangulated point depends on the angular rela-
tionship of the pointing direction between two observing cameras as well as
on the uncertainty of the respective measurements in pixel space. As the de-
tection line of sight becomes more parallel, the uncertainty volume increases

[52].

Therefore, the combination of least squares matching with triangulation and

reprojection for tie point validation through additional, independent measurements
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provides a good compromise between sufficient matching conditions and relative collo-
cation for the subsequent three-dimensional structure estimation process. If the final
result after a full matching, triangulation, and reprojection leads to pixel values
that enable the extraction of a suitable image patch in independent images, the condi-
tions for all three operations obviously were sufficient and within limits. In this way, the
key point can successfully be confirmed as stable and repeatedly observable. There-
fore, key points that cannot be confirmed in at least one additional image
through the method described above are rejected. The a priori knowledge of
camera parameters is also confirmed through this approach, since the camera pose is

crucial for the triangulation and reprojection result.

3.1.5. A Priori Knowledge for the Camera Pose

One important requirement for the above description of tie point matching and acquisi-
tion is sufficient a priori knowledge of the camera pose. If prior to the application
of the FDAM algorithm only the images are available without additional information,
the method cannot be used, as described, in combination with triangulation and repro-
jection, because of lacking geometric information. Hence, some enabling steps prior to
that procedure are necessary, depending on the available data within the respective small

body mission. Multiple approaches exist in order to achieve the necessary preconditions
for FDAM.

SPICE Kernels

SPICE (Spacecraft, Planet, Instrument, C-Matrix, Event) is a software package that has
been developed by the Navigation Ancillary Information Facility (NAIF) as part of the
Jet Propulsion Laboratory (JPL). Kernels are accessible for multiple missions within
this framework, providing a multitude of useful information. One excerpt of available
information within the kernels is the position and orientation of reference frames that
have been defined for a respective mission, such as spacecraft or instrument frames.
Thus, for example, at a specific value in Ephemeris Time, the position and orientation

of the NAvVCAM instrument frame is accessible for the Rosetta mission.

This information can be used to obtain a camera matrix as described in (67) and
carry out the triangulation and reprojection operation as previously described. The
data available through SPICE kernels showed a high degree of accuracy in order to
support FDAM in the acquisition of tie point matches. The necessity for correction of

triangulated and reprojected tie points within the imagery data was well within 5 pixels
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for the majority of tie points. Reprojection was also applied with surface points available
from shape models to validate the accuracy of the spacecraft orientation and the orbit
described through SPICE. In Figure 40, an example of the difference between reprojected
and corrected tie points is given. Prior to the application of FDAM, additional steps
to increase the accuracy of the available orbit data were not necessary. Thus, SPICE
kernel obtained data is used for all required initial values within this work.

More information will be provided in section 4.

Optical Data Alone

Reconstruction of the relative spacecraft position and the surface points is also possible
from images of the target body alone, without any amplifying data available prior to the
first estimation step. A common starting point is to use Speed Up Robust Features
(SURF) - a method that is very similar to SIFT in its working principle, however,
it has a significantly decreased cost in terms of computation time while only minor
degradations in accuracy must be expected [9]. Tt is accessible, for example, in MATLAB.
With SURF, a large number of tie point matches can be obtained between multiple
images in a fairly short period of time. Key points detected within one single image
can be matched to multiple observations in consecutive images. Hence, tie points can
already be measured in more than just two views, allowing for a first multiple view

geometry estimate.

This set of tie point correspondences may still contain a fairly high amount of outliers.
However, in [52] a method is described that allows to get an estimate of an essential
matrix from tie point matches in the presence of outliers. By using a random sample
consensus (RANSAC) algorithm, randomly chosen sets of tie point correspondences
are initially selected. For each set of correspondences, a linear system of equations that
results from the epipolar constraint & TEX = 0 can be solved. Starting with one pair of

points X = (£, 7, 1)T and ®' = (2,7, 1)T, the epipolar constraint can be written as [52]

ey + 2'jern + ¥ ers + §'ieq + G Jeas + §'eas + Tezr + Gesa + e33 = 0. (160)

It follows that for a set of n correspondences, the linear set of equations can be written
as [52]
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where e denotes the vector of arrayed matrix elements e;; of the essential matrix E.
By solving this linear system of equations for at least 8 measurements, a first estimate of
an essential matrix can be obtained. Remember from subsection 2.5.8, that two singular
values of the essential matrix must be equal and the third one equals zero. Since the
measurements in (161) are expected to be affected by noise, the result will not exactly
fulfill this requirement. However, since the SVD of the obtained essential matrix is given
by E = UDV', where D = diag (a, b, ¢) with a > b > ¢, an essential matrix E = UﬁVT
may be found by setting D = diag ((a +b)/2, (a4 b)/2,0). This matrix E fulfills the
requirements of an essential matrix and simultaneously is the closest Frobenius norm
solution to the matrix E that was initially obtained from (161). The Frobenius norm of

the difference between the two matrices is defined as [52]

. Jii (ei; — e3;)". (162)

For each randomly chosen set of tie point correspondences, this procedure is repeated,
and the resulting essential matrix E is used to evaluate the epipolar constraint for all
acquired tie point matches between the two images. In this way, outliers can be identified
iteratively and rejected. In the end, an essential matrix that provides a maximum
likelihood estimate can be obtained from a least squares solution from all measurements

that remain in the selection.

This method can be used to obtain first estimates of essential matrices between multi-
ple image pairs, improving the knowledge in relative geometry iteratively and rejecting
most corrupted measurements with the help of epipolar constraints. After a first esti-
mate of an essential matrix exists, in the next step, the matrix can be decomposed, and

camera matrices can be obtained as described in subsection 2.5.8 (Figure 20).

The intermediate result now represents multiple estimates of camera poses as well as
all tie point measurements within the imagery data, still including a specific amount of
outliers. However, in subsection 3.2.7, a robust algorithm is introduced that produces

accurate geometric results despite the presence of outliers.
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Summarized, the usage of SURF together with RANSAC followed by essential
matrix decomposition and robust bundle adjustment allows for the estimation of
initial values to let FDAM begin producing more accurate results in a second iteration.
If orbit reconstruction from optical data without a priori information is desired, this
initial iteration step becomes necessary. However, for the Rosetta mission, SPICE kernels
already deliver products with a high degree of accuracy. Regarding the reconstruction

from optical data alone, a lot of possibilities and techniques are described in [52].

3.1.6. Block Matching and Light Correction

One goal for this work is to find maximum repeatable key points with a high number
of possible observations. In fact, from a statistical point of view, the more observations
of a tie point that can be made from multiple views, the smaller uncertainties can be
expected in both the tie point position as well as the camera pose. Therefore, multiple

observations are desired.

In parallel, however, a minimum of elevation or shape modeling is desired, since the
cometary surface and elevation was undergoing significant changes throughout

the mission as introduced in section 1 and analyzed in [29].

In order to achieve this goal, a good compromise is a block matching of multiple
image patches with basic light correction. As described in subsection 3.1.3, a tie
point can be triangulated and reprojected into multiple image planes after its successful

detection and matching (Figure 39 left side).

As described in subsection 3.1.2, within the full image patch coordinates, a function
2" = fo (2", y),y" = f, (2',y) is available and describes the geometric transformation
for each pixel of the patch. Consequently, surface point triangulation is not only
possible at the center of the image patch. A predefined number of points located on the
outer edge of the reference patch can be triangulated in addition to the actual tie point

located at the center.

These points define a reference grid and, therefore, can be used to obtain a first
estimate of the relative orientation of the surface patch with respect to the observing

camera (Figure 39, right side).
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Figure 39: Left: Triangulated and reprojected tie point, acquired through SIFT from
the two images in the left upper corner, taken at closest distance. The re-
projected observations can be seen from different views. Right: Final tie
point matches (green) obtained with the FDAM algorithm, covering differ-
ences in scale from 9.8km up to 33.7km target center distance. The reference
grid (red) highlights the differences in relative scale and orientation. The
images were acquired during the prelanding and the comet escort phase by

the Rosetta NAVCAM between September 2014 and January 2015.

Knowledge about the relative orientation of the observed surface area within the im-
age patch is valuable for two main reasons. First, in conjunction with the assumption
of a specific reflectance function, slopes for each pixel value of the image patch may
be estimated, if the relative direction of sunlight incidence is known. Second, as previ-
ously introduced, the knowledge of initial values is essential for a successful least squares
matching. With the triangulation and reprojection of the reference grid into an addi-
tional image, not only the shift parameters are known for initial values, but also an
affine transformation can be predefined through start values. Thus, rotation and linear
stretching of the patch are already preconditioned. This technique significantly im-
proved the number of successful match acquisitions through various scales and
geometric distortions (Figure 46). Figure 40 shows subpixel-accurate tie point matches
over significant scale differences, corresponding to the image patches extracted from
Figure 39. Still, a minor amount of outliers can affect the solution. This remaining
percentage of corrupted measurements will be covered through a robust statistical ap-
proach within the bundle adjustment. More information on the average performance of
FDAM will be given in section 4.
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Figure 40: Left: Point reprojection (red) and least squares matching corrected tie point
measurement (green) within the extracted image patch. Right: Geometri-
cally transformed image patches, resulting in the tie point measurement. It

can be seen how changes in resolution affect the solution.

Reflectance Models

After a block of multiple image patches through various scales and rotations was suc-
cessfully matched as described above, changing illumination conditions can still affect
the accuracy of the solution. Here, a physical model that allows for the prediction of
projected pixel brightness can improve the accuracy within the location of the tie point.
Imagine an illuminated sphere as illustrated in Figure 41. If the observing camera and
the sphere remain stationary between two consecutive images, the angle of sunlight in-
cidence, however, changes clockwise by 90 degrees, the maximum brightness caused by
the reflection from that feature would now appear on top of the projection instead of on
the left side, as currently illustrated. Hence, the maximum greyvalue will be measured
somewhere different within the CCD, even if the sphere itself is still located at the same
relative position; this can lead to an offset in the measured position of the tie point,

despite nothing has changed except for the illumination conditions.

The basic idea concerning how to overcome this problem is to have some model
that predicts where the maximum brightness would appear if the changes in relative
illumination were known. To be precise, not only the new position of the maximum but

also the entire distribution of greyvalues depending on altering illumination conditions
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are of interest here. Thus, the necessity of knowledge about reflectance depending on
surface characteristics, as well as relative geometry of the camera and the Sun, becomes

apparent. In principle, the reprojected brightness Iy (x) within a pixel may be written
as [38][24]

Ik (x) = Axa(x)R (a, i, €) + Py, (163)

where Ay is a multiplier for the scaling of the imagery data, a(x) is the surface albedo,
and Py is a background term that can be added to compensate for background haze.
Ay is a function of the Sun distance, cam-
era conversion, and the integration time for
the respective image. The camera conver-
sion depends on how the intensity of the in-
coming flux on the pixel CCD is converted
to the pixel signal rate. However, a linear
contrast stretching is already estimated for
the whole image patch block through pa-
rameters {rg,71} in (146). The phase an-
gle together with the surface albedo is as-
sumed constant over the small image patch.
No additional phase dependency is neces-

sary, since only relative brightness is used.

Thus, for simplicity of the algorithm, no pa-

Figure 41: Lambertian reflectance model |, eter estimation for Ay, a(x) and ®y in

on the left, Lommel-Seeliger (163) is carried out. Only two parameters

reflectance on the right with describing the slopes within the reflectance

phase angles a = 30° top and
a = 60° bottom [35].

function are estimated for each pixel of the

previously aligned patch block.

In general, R (a7, €) depends on three angles that are important quantities whenever
photoclinometry is used (Figure 42). The angle of incidence i is the angle between
the surface normal n and the incidence vector i towards the Sun. The angle of emission
e is the angle between the surface normal n and the vector e that points towards the
observing camera. Another important quantity is the phase angle «, which is defined
as the angle between sunlight incidence i and reflected photons towards the camera

vector e.
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Figure 42: Definition of angles on a surface element [24].

In order to describe the amount of sunlight reflected depending on the three an-
gles, many reflectance models exist. Lambertian reflectance Ry, and Lommel-Seeliger

reflectance Ryg are defined as [24]

Ry (i) =n-i=cos (i), (164)

. n-i cos (i)
Rus (i, €) n-(i+e) cos(i)+cos(e)

where Lambertian reflectance only depends on the angle of incidence and models
pure diffuse reflection. Rpg additionally depends on the angle of emission. The effects
of the two reflectance functions are illustrated in Figure 41. The reflectance of a surface
element may now be expressed as a linear combination R («, 1, e) of the two reflectance

functions. It can be written as

R (a,i,e) = (1 = L(a)) Ry (1) + L () Rys (4, €) (165)

where McEwen’s lunar L-function in (165) can be approximated by [38][21][23]

L(a) = e (&), (166)

This describes a gradual transition from Lambertian reflectance to Lommel-Seeliger

reflectance, depending on the phase angle a.

The orientation of the surface normal n must be known in order to predict pixel
brightness from the two reflectance terms. It can be described from two parameters:

the slopes Vh =t = (t1,t3) within the part of cometary surface that is visible in each
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pixel of the image patch block. If the slopes are known, the surface normal can be

obtained from

N

n=—(1+t2+6%) | t | (167)

The cosine that results from the two angles of incidence i and emission e in (164) may
be expressed as [3§]
i i
cos (i) = 21Tt (168)
(L4t +1°)?
ez — el — ety

(14112 + t5?)

cos (e) = T
2

It follows that R (a,4,e) in (165) only depends on the a priori knowledge about the
vectors towards the Sun and the spacecraft together with the slopes Vh =t = (¢, 15).
With all the definitions and terms described above, for each pixel within the aligned
patch block, the slopes (1, %2) can be estimated while minimizing the difference between
predicted and measured pixel brightness. After this procedure, a map of the slopes
exists that describes projected pixel brightness based on (163). Hence, a full height map

can be reconstructed by solving for the linear system of equations [24][63][74]

tn = : 169
1(,5) N (169)
o — hz‘,j_g — 4}7)2'7]‘_1 + 3hi,j
Q(ZJ) 2A ’

where A denotes the distance between two adjacent points along the coordinates of
the height map grid. However, within this work, generally no full map reconstruc-
tion from photoclinometry is carried out. The knowledge of the slopes is only
used to have a prediction available of what greyvalues can be expected in pixels that
show the same area of cometary surface within a different image with altering illumi-
nation conditions. The least squares matching process as described in subsection 3.1.2
in principle does not change within this approach; however, the reference patch with
highest resolution on the bottom of the block now has greyvalues which are adapted
to the altering illumination conditions of the other patches. With this method
implemented, the uncertainties of the tie point measurement can be reduced, however,
this heavily depends on the amount of changes in {«, i, e}. If the illumination conditions

remain similar, no major improvements can be expected while computational cost is still
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increased. For this reason, the user of the FDAM software package can choose whether
the light correction according to (165) is favorable for a specific problem or not and dis-
able or enable the option prior to the computation process. For all NAVCAM images that
were processed within this work, the light correction method was successfully applied.
Figure 43 shows the improvement in uncertainties along the image coordinates together
with the decrease of the objective function through the application of light correction

to 3000 test measurements.
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Figure 43: The upper two subplots: Uncertainties in pixel coordinates along the image
dimensions with (green) and without (black) light correction according to
(165). It can be seen, that for some measurements, there is a significant
improvement, whereas for others there is almost none due to small changes
in illumination conditions. Bottom: Improvement in the decrease of the

objective function.

With light correction, the tie point uncertainties on average decreased to about
65% in comparison to the tie point matches obtained without it. The objective function
on average decreased to about 75%. The cost in terms of computation time is about
twice the time required to obtain tie point matches from polynomial least squares

matching alone.

As introduced before, a full reconstruction is also possible using this method. How-
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ever, additional assumptions and model parameters are then necessary. In particular,
changing surface conditions - which are to be expected at a comet - are problematic.
Nevertheless, especially if surface reconstruction or digital elevation models are desired,
stereophotoclinometry leads to favorable results [19][16]. Thus, the software pack-
age FDAM at least provides a small additional tool that allows for basic reconstruction
using stereophotoclinometry. Figures 44 and 45 show the comparison between mea-
sured and simulated projected pixel brightness together with the corresponding estimate

of an elevation model.

Figure 44: Left: OSINAC image patch original. Right: Reprojected brightness model

from Lambertian and Lommel-Seeliger reflectance.

[m] © o

Figure 45: Reconstruction of cometary surface from OSINAC 2016 final descent images
with a resolution of 5cm. Changing illumination conditions from various

directions can be simulated using the slopes in this model.

The result was obtained from images acquired by the OSINAC during the phase of
Rosetta’s final descent in September 2016. The small maplet is processed from fifteen

consecutive images and has a resolution of 5cm per pixel. The image patch has a size
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of about 10 x 10 meters and thus reveals cometary surface properties at a high level
of detail. The corresponding reconstruction of the cometary surface could be obtained
with the highest possible resolution and can help to confirm results of the Bistatic Radar

Experiment by enabling the estimation of surface roughness at a centimeter level.

9.911 [km] S o 18.42 [km]

28.95 [km] ' 33.83 [km]

Figure 46: Tie point measurements on the cometary surface obtained from FDAM in
2014. The method provides robust results covering different angles and dis-
tances. Within the images at greater distances, only the corresponding tie-

points to the first image are shown.

In the case of the gravitational field determination, however, only the precise camera
positions are of interest. Therefore, within FDAM, the prediction of greyvalues is used
only to account for changing illumination conditions. Three-dimensional reconstruction
is carried out from stereophotogrammetry alone. The most promising method to

achieve this goal is bundle adjustment, which will be thoroughly explained in the
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next subsection. Figure 46 shows a final example of results obtained from FDAM.

3.2. Robust Bundle Adjustment

After the imagery data has been processed as described in subsection 3.1, the next
step is the estimation of relative geometry between camera positions and tie points on
the cometary surface. As a prerequisite, there exists the FDAM derived measurement

vector with column entries

tie point number ¢ € N with i = (1,2, ...,n),

« image number j € N with j = (1,2,...,m),

o image plane measurement x;; € R? in z- and y-direction, pixel coordinates,

o image plane measurement z;; € R? in 2- and y-direction, normalized coordinates,
e 1o uncertainty in x-direction,

e 1o uncertainty in y-direction,

for each measurement. The normalized coordinates are obtained from (85) through
(89) for all NAvCcAM images and (71) for OSINAC images, respectively, since OSINAC
Level 4 products are already corrected for nonlinear distortion. Additionally, start
values are available for both the surface points and the camera matrices from

triangulation and SPICE.

In this subsection, an additional notation standard is introduced, because vectors and
matrices are arrayed. A partitioned vector X € R™" of sub-vectors x; € R" will be

written capitalized and bold as

X = (XI,X—QI—,--- ,XT)T. (170)

m

Arrayed matrices remain capitalized non-bold and can be written as

A, (AL 0 o 0]
A 0 Ay .

AT AL AT = | 77 | diag(A) =] . 7 . an)
: : .00
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Consider the set of 3D points on the cometary surface x;, which is viewed by a set of
cameras with matrices P;. Denoted by z;;, the coordinates of the i-th point are seen by
the j-th camera. The objective is then to solve the following reconstruction problem:
Given the set of image coordinates z;; obtained through FDAM, find the set of camera

matrices P; and points x; such that z;; = P;x;.

However, the reprojection will not exactly match the measurement z;;, since the image
measurements are noisy. Hence, the goal is to estimate camera matrices and 3D points,
which project to the image plane and simultaneously minimize the 2D distance between
the reprojected and measured image points for each view in which the 3D point appears.
The iterative estimation of structure through minimization of the reprojection error

[52]

eij = Zij — Pin, (172)
. 2
min ) _ [lei;l; (173)
ij

is called bundle adjustment — the simultaneous adjustment of a bundle of rays be-
tween each camera center and the set of 3D points. This method provides a maximum
likelihood estimate for both the surface point and the camera positions. Additionally,
the method allows for the assignment of individual covariances to each measurement and
can include estimates of a priori information and constraints on camera parameters or

point positions.

However, depending on the number of tie points and views, the bundle adjustment
framework can rapidly grow to become a large minimization problem because of the
number of parameters involved. Nevertheless, the method still runs quite efficiently
when implemented carefully. Since the pose of one single view has no influence on the
measurements in consecutive images, one may take advantage of the lack of interaction
between parameters. Hence, computational cost can be reduced significantly through
the generation of sparsity patterns within the iterative solver. All related considerations

and implementation details will be discussed in the next subsection.

3.2.1. Sparse Bundle Adjustment Framework

Remember from subsection 2.7 that the augmented normal equations for the Levenberg-

Marquardt iteration method with the regularization parameter A can be formulated as
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(TS T+ A1) A = =J75; e, (174)

where J denotes the Jacobi-matrix 0f /OP, and ¢ is the vector of residuals defined by
¢ = f(P) — Z. Here, Z denotes the arrayed measurement vector and P the arrayed
parameter vector of the nonlinear projective model defined by a function f (P). The
accuracy of the measurement vector Z is essential for the accurate determination of
camera positions. A measure for this is the variance o2, which can be found in the main

diagonal of the measurement vector’s associated covariance matrix >z, obtained from
(155).

The function f (P) includes the projective camera model (74) as well as minimum
parametrizations of homogeneous 3D-points and camera parameters, such as rotations

and translations.

Consider, that the parameter vector P may be partitioned into arrayed vectors A and
B with P = (AT, BT)T, where A relates to those parameters describing all the camera
poses, whereas B relates to the description of 3D surface points. The goal is then to find
parameters (A,B) that minimize the objective function F'(A,B) = 3, ||€”H§ With
the subdivision of the parameters P = (AT, BT)T, the Jacobian may also be divided

into Jacobian submatrices [52]

0Z
A= [M] :
07

where Z = f (P) denotes the reprojected normalized tie point coordinates depending

on parameters (A, B). The linear system of equations JA = ¢ can now be written as

=e. (176)

From this point, the normal equations of the Gauss-Newton iteration method
JTYZYJA = —JT8, e may be formulated as [52]
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Aa
Ap

AT PA ATY'B
B'Y,'A BTY,'B

ATY e

. 177
BT, e (177)

In order to introduce the regularization parameter A of the Levenberg-Marquardt
method in (174), the main diagonal of this matrix is multiplied by a factor 1+ \. Com-
pared to the normal equations of the Gauss-Newton iteration method, the term I is
added. When A is small, the Levenberg-Marquardt algorithm becomes basically the
same as the Gauss-Newton method, and the iteration quickly converges in the neighbor-
hood of the solution. However, if A is large, the augmented normal equations become
AMA = —JT3 €, which results in small iteration steps A, that converge more carefully

towards the solution and eventually lead to a decrease in the cost function.

The matrices complemented by the regularization parameter will be denoted by
U* = (ATE;A)* and V* = (BTZ;B)*. In this way, the notation may be shortened to
[52]

[ A ATY e €
. S I R I (178)
WT v || Ag BT, e -
.
Consider now the measurement vector subdivided into Z; = (lej, Zy, ... ,zlj) with
T
7 = (ZlT, Zl. ..., Z;) , where z;; denotes the measurement of the i-th point in the

j-th image. Additionally, consider the partitioning of the parameter vectors A =
T T T

(alT,agT, e ,aL) and B = (bI, bl ... ,bD with P = (AT, BT) corresponding to

the subdivision of the measurement vector Z. Knowing that the projection Z;; only

depends on the parameters of the j-th camera and the i-th surface point, one may set
[52]

% = 0 unless j = k,

8ak

%55 _ ) unless i — k (179)
oby, v

in the augmented normal equations of the algorithm. This results in the majority of
entries in the Jacobian matrices A and B being zero. Thus, a significant improvement

concerning computational loads can be achieved by taking advantage of the sparsity
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of the linear system of equations. The resulting Jacobian matrices have a predefined
sparsity pattern, which will be explained in the following. Referring to (179), one finds
that B; = [fﬁj / 8B] becomes a block diagonal matrix [52]

Bj = dlag (Blja B2j7 ce 7Bn]) s where Bz] = 82”/8b1 (180)

Consequently, A; = [6@]- / aaj} may be arrayed as [78]

Aj = [AIW A-2rj7 :

.. ,Alj}-r 5 where Aij = 82ij/8aj. (181)

Since the measurements Z; are independent and, therefore, uncorrelated, ¥z, also has

a diagonal structure of the form

Yz, = diag (Y., sy Vay ) (182)

In the following, an example of five surface points seen in three views will be given.
It will be considered that each point is visible in all views. The corresponding Jacobian

matrix for a sparse bundle adjustment then has the form
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[ Ay 0 0 |Bn 0 0
Ay By
Asy 0 By 0
Ay Bu
Axy 0 0 0 0 Bs1
0 Ay 0 B 0 0
Agy Baa
J=[A|B]= : Aso : 0 By 0 |- (183)
Ao Bi2
0 Asy 0 0 0 Bs2
0 0 Az | B 0 0
A3 Bos
Ass 0 Bss 0
Ay Buys
0 0 Ass 0 0 Bss |

The matrices in the previously defined shortened notation (178) without the regular-
ization factor A denoted by the * can now be computed with reduced computational

cost via

Uy =Y AT Ay, j=(12,...,m), (184)
=1
j=1
Wi = ALY By (186)
[/ A 7 Y

With the example of five points measured in three views, the left side of the normal

equations JTX,J then has the form

97



U, 0 0
0 U, 0 W
Iyl =1] 0 0 Us . (187)
Vi 0 0
Va
wT 0 Vs 0
Vi
i 0 0 Vs |

Equation (178) is now multiplied from the left by the matrix

I —Wv*t!
0 I

which yields

U — WV*IwWT 0
wT V*

Aa

A (188)

B [ €A — WV*_IEB ]

€B

Since the top right hand block of the matrix on the left side in the augmented normal

- - _ (AT AT T)\'
equations (188) now has vanished, one may compute first Ay = (Aal, JAV Aam)
from

T T T\"
SAA:<e1,e2,...,em> ) (189)
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where S € R™*™ is a block matrix with blocks S;y

ZYUWT +Us, j=(1,2,....,m), (190)
- ZYUWZE if j # k, (191)
=1
Y =W, Vil (192)

The right side of (189) can be obtained from

= €aj — ZYUEbw j=1(1,2,....,m), (193)

with
ZAU zweljv j = (1727 "'7m)a (194)
ZBZJ Z; 62]7 Z = (1727 an) . (195)

After this step, each Ay, in turn can be obtained from

Abi = V;kil (ebi - ZW;A%) y 1= (1, 2, ,?”L) . (196)
j=1

3.2.2. Covariance

The associated covariance matrix of the estimated parameters generally can be obtained

from the pseudo-inverse
Ty-17\"
Sp = (JT551) (197)
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More information about the pseudo-inverse of a matrix can be found in appendix A.5.
For the subsequent orbit determination process, it is important to know the uncertainties
of the derived camera positions. Hence, the values on the main diagonal of ¥4 are of

special interest. They can be obtained from

$a=[U-WvIwT]", (198)

which equals ST, but without the regularization parameter A. A more in depth deriva-

tion of subsections 3.2.1 and 3.2.2 may be found in [52].

3.2.3. Parametrization Constraints

As formerly discussed, the parameters of the observing camera are estimated simulta-
neously along with the position of the surface points in the bundle adjustment. To be
more precise, the position and the rotation of the camera - in one word the camera
pose - concludes the total of six camera parameters a; for each view j = (1,2,...,m)
that need to be adjusted. For the surface points in parallel, there are three coordinates
in b; per point i = (1,2, ...,n) that need to be estimated. However, remember from (54),
that each camera matrix has twelve entries and the reprojection equation (65) includes
the surface points expressed in homogeneous vectors with four entries. Adjusting all
these entries as parameters in bundle adjustment would lead to an overparametrized

optimization problem.

Imagine that for a given parameter set, a change in the values of the parameters
would not necessarily change the underlying projective geometry and thus would have
no effect on the cost function. In other words, an infinite number of parameter values
would be possible in order to describe the same projective relationship. This problem

is called gauge freedom and is thoroughly discussed in [52][82][1].

A good example - as mentioned in section 1 - is the overall scale of an observed
scene in homogeneous vectors; it is undetermined and, thus, subject to gauge freedom if
the parameter set is not chosen carefully. Gauge freedom in the parametrization of an
optimization problem causes the normal equations to be singular and, hence, allows for
multiple solutions or leads to a slower convergence. Similarly, evaluating the covariance
matrix of an estimated homogeneous vector is without result, unless the scale of the
vector is constrained. Therefore, the question about what defines a good parametrization

is very important in bundle adjustment. Generally, it should be singularity-free, locally

100



continuous, differentiable and one-to-one — in other words, a diffeomorphism. Hence,
the parametrizations of camera position, camera rotation, and surface points will

be explained in the next subsections.

3.2.4. Parametrization of Angle-Axis-Rotations

The idea of the angle-axis representation is about finding a parametrization of rotations
in space with only three parameters. The rotation matrix may be defined from a vector
t via the mapping t — R (t) which is obtained from the Euler-function of a skew-

symmetric matrix [1][52]

] [t | [ [
R(t) =e" =1+t], + ST i VTR (199)
2 . 12
=T+ [¢] [£] +HWJQX—HWJQX—HquX+ (200)
x 2! 3! 4!
: - 2
= T+ sin [[t]| [§]+ (1 —cos|lt]) [] (201)
where [t]? = —[t]2[t], = —[t|]® m _» and t denotes a unit vector in the direction

of t. The resulting rotation matrix R (t) represents a rotation through an angle ||t||
about the axis defined by the vector t; it fulfills the relation R (t)”' = R (—t) for
inverse rotations. To find a mapping from a given rotation matrix to the angle-axis

representation, reference appendix A.4 definition (239) for

tr ([E]X) =0, (202)
[t]% = ttT — [1t]°L, (203)

i () =0 (201)

Together with (201), it can be seen that the sin||t|| term can not be found within
the main diagonal entries of R. Hence, the angle ||t| and the rotation axis t may be

determined from

2cos|t|| =tr (R) — 1, (205)
2sin|[t]|t = (Rs2 — Ras, Ras — Rat, Rar — Ruz) ", (206)
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where t denotes the eigenvector corresponding to the unit eigenvalue of R, which can

be found via

R-1)t=0. (207)

The angle ||t|| should be calculated by using a two-argument arctan function, for ex-
ample atan2, since computation from arcsin or arccos alone is numerically unstable.
Remember from (65), that homogeneous points on the image plane are calculated via
multiplication with the camera matrix P, which contains twice the rotation R (t). In
order to reduce computational load in the bundle adjustment algorithm, the part involv-
ing the computation of the full rotation matrix in each iteration step may be omitted.

From equation (201), one sees that [52]

. A A 2
R (t) = T+sin [[t]| [§] + (1= cos]|t]) [¢]
sin ||t]| 1 — cos |t]|

et e 208

X 7

and, thus, the multiplication of a rotation matrix R (t) with a vector x may be carried
out without the full derivation of R (t) via [52]

sin ||t 1 —cos ||t
R(6)x = [T+ S0t gy oy Lo cosbl ot
[t ]l
in ||t 1— t
Slﬁﬂ” Iy « lﬁj;“”t X (6 X ) . (209)

3.2.5. Parametrization of Homogeneous Vectors from Quaternions

Another method for the parametrization of three-dimensional rotations is given through
quaternions. However, they can also be a useful tool for the parametrization of homo-
geneous vectors. The surface of 67P may be described as a set of homogeneous points.
A homogeneous vector q € R* corresponding to a point in 3D space x € R? may be

parametrized through t by using the quaternion notation [52]

t o q= [sinc (“;”) tT, cos (”;“)]T (210)
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This is a redundant representation in that it contains four parameters where only
three need to be adjusted. In this way, and for computational purposes, it is possible
to represent homogeneous vectors in projective space with a minimum number of
parameters, similar to the angle-axis representation for the parametrization of a rota-
tion. The mapping t <> q maps the parameters smoothly and one-to-one onto the set
of quaternions q. Therefore, it provides an optimal parametrization for homogeneous

points in an iterative optimization process like bundle adjustment [52].

In order to find a transformation back from the quaternion notation q = (q1, g2, g3, q4)
to the vector t, define qi3 == (q1, g2, g3). Then, together with qi3 = ||q13/|G13, t can be
determined through [52]

t
sl _ (1)

qa 2
t =2 I8 ictan (H(l13||> : (211)
laus]l 2qa

3.2.6. Parametrization of the n-Sphere

In this subsection, the parametrization of the camera reference frame’s translation is dis-
cussed. Remember from subsection 3.2.3 that the overall scale in homogeneous vectors
is undetermined and, thus, subject to gauge freedom. Although minimum parametriza-
tions for rotations of the camera and the homogeneous coordinates of tie points on the
cometary surface were given through subsections (3.2.4) and (3.2.5), this problem has
still not been taken care of up to this point. Consider the result of a bundle adjustment

with n points seen in m views

Pi=[R[t;]. j=(1.2..m). (212)

If no additional constraints are defined, the framework still has seven open degrees of
freedom: three for the position of the overall scene in space, three for the rotation, and
one for the scale. The first six open degrees of freedom can easily be removed by fixing

one of the views
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Pr=[Ri|t ] (213)

In other words, the parameters for the translation and the rotation of P; are excluded
from the iterative estimation process, they remain fixed and thus define the position and
rotation of the overall scene. In practice, the camera with the most tie point observations
is chosen for this, since in this way the computational cost is reduced to the minimum.
Moreover, the camera position with the highest number of observations has the highest
influence to constrain the bundle. However, the set of relative translations t; , Vj > 1
still is subject to scale ambiguity. One method to fix this last open degree of freedom is

to set

.
T, =1, with T =[t],t],-t]] . (214)

However, all t; , V5 > 1 would change their values while optimizing the objective
and consequently violate the constraint defined through (214) by each iteration step in
the Levenberg-Marquardt algorithm. Here, a method from [52] allows one to adjust T
with a given Jacobian matrix in a way that the constraint (214) remains valid after
the update. This operation can be achieved by taking advantage of the properties of a

Housholder matrix.

Consider a sphere of dimension N, which consists of the set with (N + 1) arrayed
parameter vectors a; of unit length, ||A]|, = 1. Only the translation parameters in a,

will be considered. Let Hya) be a Householder matrix defined as [52]

.
A\"A%
Hyay=1-2—, 215
(a) TV (215)
Hya)A = (0,0,...0,1)", (216)
where
v(A)=A=x[Al,e, (217)
er, = (1,0,...0,0)". (218)

Multiplication of H, with a vector x is most efficiently carried out through
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@. (219)

Hx=x-2

Now, consider the cost function F'(A,B) that originally depends on the parameter
set A € R?" which contains three translation parameters for each view j = (1,2,...m)
and is subject to scale ambiguity. Here, the fixed camera already has been excluded.
With the transformation [52]

A= Hv(A)f (Y) S Rfﬂm—l, (220)

fly)= lsinc (Hy2||> y', cos (”g”)]T (221)

the Jacobian matrix may be computed with respect to a minimal parameter set y via

[52]

A_0Z _0LOA _ 07 1]o].

= - =" -""H, 222
gy  O0Ady oA W (222)
It can be seen that, for this approach, no additional Jacobian computation is necessary.
The scale constraint in (214) can be achieved by multiplication with a Householder
matrix. With this implementation, the parameter set is unambiguous in scale and

hence gauge freedom can finally be removed from the framework.

However - as a logical consequence - the sparsity structure in (187) is lost for all
translations, since the updates in camera positions depend on each other to maintain
the overall constraint ||A|l, = 1. Hence, depending on the number of views involved,

the computational cost can grow heavily after this step.

Another possibility to remove gauge freedom in the camera translations is to add
a priori information to the bundle adjustment framework. This method will be

explained in more detail in subsection 3.2.8.

The inclusion of a priori information requires fairly accurate knowledge of the camera
positions before the estimation process; however, this cannot be assumed as granted
in any case. Therefore, the bundle adjustment software package developed within this

work allows the user to choose, prior to the iteration, whether there shall be a mini-
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mum parametrization as described in this subsection, or if the overall scale shall be

determined by adding a priori information, maintaining the sparsity structure in
(187).

3.2.7. Robust Student’s t Approach in the Presence of Outliers

In all bundle adjustment related discussions up to this point, the assumption has been,
that measurements obtained through the FDAM algorithm are affected by normal
distributed noise only. Generally, and as introduced in subsection 2.7, any least squares
optimization is only valid under this assumption. However, as discussed in subsection
3.1.6, noisy measurements - so called outliers - still have to be considered to be present
within a small percentage of the data. In general, it is virtually impossible to ensure that
automated algorithms always generate correct tie point correspondences, especially in
a challenging environment like comet 67P. Here, illumination conditions are constantly

changing while distinctive features are altering or even moving (Figure 47).

6.463 [km]

Figure 47: Key points detected within close proximity orbits in 2016. Each key point
visible on the right hand side is detected and measured in at least 10 addi-
tional images from 2016. In the lower right of the image pair, the 30 meter
sized boulder like feature that moved more than 100 meters on the cometary
surface during perihelion can be seen. Its original position is also marked in
the image. The feature was already introduced in subsection 1.3.2 (Figure
6) as a motivation for the necessity of robustness in bundle adjustment and

now carries multiple tie points.
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The problem with geometry estimation in the presence of outliers is that they don’t

follow along any a priori known statistical distribution [5].

Despite the fact that there might not be many outliers left, even a single mismatch in
the least squares bundle adjustment can lead to a large phantom error that dominates
other valid data and, as a result, drags single camera centers hundreds of meters away
from the true position (Figure 49). Hence, close attention must be paid to the treatment

of outliers to obtain a reliable solution for the camera positions.

One common approach is to make use of so called o-edit rules. It is assumed in this
method that, after one ore more iterations of the bundle adjustment, observations that
exceed a predefined threshold in reprojection residuals are removed from the data [23].
Typically, measurements that exceed a range between 1 and 2 standard deviations are
discarded. This approach can be problematic however, since the noisy measurements

still affect the initial iteration step - which is then, in turn, used to identify outliers.

In [5], a method that shows superior stability and accuracy is introduced. With
this approach, the reprojection error in pixel space is modeled as distributed along the
Student’s t-distribution. The idea behind this method is that extreme observations -
such as outliers - are much more likely in the Student’s t model than in the Gaussian
model. The main reason for this is that the Student’s t-distribution has much thicker

tails than a Gaussian distribution (Figure 48).

——N(0,1)
— T

0.25

p(x)

0.15

Figure 48: A comparison between the Gaussian distribution with standard deviation

o = 1 and expected value zero and the t-distribution for one and three
degrees of freedom. It can be seen, that the Student’s t-distribution has

thicker tails than a Gaussian distribution.
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Hence, large residuals will not affect the overall solution as much as in the least squares
approach. In all empirical tests within this work, the method showed superior results
in comparison with the least squares bundle adjustment or o-edit rules in the presence

of outliers (Figure 49).

With the mean parameter u, the number of degrees of freedom s and the dimension

m of the residual vector €, the generalized Student’s t-distribution is

NI

() e — gl "
P {elw) = r (%) Det [msR] (1 i s ) . 229)

Here, R is a positive definite matrix and v/R describes a Choleski factor with \/P_{\/ﬁT =
R. T'(z) denotes the Gamma function as defined in appendix A.1. In (223), the norm
of a vector u € RN is defined as ||ul|y := vVuTMu, where M € RN*YN denotes a positive

definite matrix. Now, the minimization of the negative log likelihood

—logp ({e;}) — logp ({a) —a;}) —logp ({b! — b;}) (224)

is equivalent to maximizing the likelihood of the statistical model. With all terms
discarded that do not depend on {a;} and {b;}, the derived objective is [5]

1 1 .
P) =5 5 (s 2w |14l — 2(a b | (225)

(i.j)€€ Sij

1 1
+§ Z (Tj + 6) log [1 + E||a;) — aj||éj1]
j
1 10 9
+§ Z (qi + 3) lOg 1 + g‘|bz — bin>i_1 s
with £ being the control network of indices, which means that if (¢, j) € £, then feature

i is detected in image j. The measurement z;; is obtained from FDAM and Z (a;, b;)

denotes the associated reprojection from the camera model as described in subsection
3.2.1. It follows, that
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zij = 2(a;, b;) + € (226)

where ¢;; describes the reprojection error, but is now assumed to be distributed ac-
cording to the Student’s t-distribution. The second and the third term in (225)
may be used to take ground truth or a priori orbit information into account. Here, a?
denotes known camera parameters such as position and pointing, whereas by contains
ground control points, and the matrices {2; and ®; are the associated covariances. The
values {s;;,7;,¢} € N are known degrees of freedom within the statistical model associ-
ated with the observations z;;, prior camera parameters a?, and ground control points
bY. The constants 2, 6, and 3 in each term denote the dimensions of pixel coordinates,

camera parameters, and surface points, respectively.

With the objective F'(P) now being defined through (225), the previously described
Levenberg-Marquardt method is applied to converge to a solution for P. Matrix (187)
is then augmented by

HE = (j’f)T Sz (3%) + diag ({fQ;}) + diag ({gF®:}) + AL, (227)

and changes with each iteration step k. Remember also the partitioned Jacobian
matrix from (176). Within the Student’s t approach, the entries of the Jacobian are
now multiplied with updated individual weights, dependent on the respective residuals

after each iteration. Denote the weighted Jacobian matrices by

b= A% | B |, (228)
ik k Ak
Aij = piinjv (229)
Rk k pk
By; = pi;Bij- (230)

Finally, the weighted entries in the Jacobian matrices A¥ and BF are deduced to
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K Sij +2

pz = A Y
R\ TR E R A YR D) S
ij
0; = , (231)
o P

ko ¢ +3
TR [N

Note that within this work, no ground control points are used, and thus, all ®; related

terms may simply be set to 0. Therefore, the last term in (225) vanishes.

In Figure 49, the result of a performance test is shown. For an FDAM derived
dataset including more than 600 camera positions, the algorithm initially converged from
original data. Thereafter, the relative geometry obtained was considered to fit the “true”
geometry without any errors to enable the test. In other words, z;; =y (aj,b;), € 0
was set, meaning that the reprojections were assumed to equal the measurements exactly.
In the next step, to allow for a realistic test, normally distributed noise with a ¢ obtained
from the convergence with original data was added to these measurements. Thereafter,
a percentage of outliers was added on top. The outliers were simulated as equally
distributed false measurements, meaning that they could randomly carry any arbitrary
pixel value covering the whole CCD of the camera. Finally, another random error of
+50 [m] was added to the camera positions to simulate small errors in the a priori camera
knowledge for the test. In this way, it was assumed that the available orbit relative to

the comet is still subject to minor inaccuracies.

Now, the least squares algorithm could run in comparison with the Student’s t ap-
proach in a clean but artificially noise affected environment, while the “true” geometry
was known. In Figure 49, it can be seen that the Student’s t method clearly outperforms
least squares bundle adjustment. With 0.1% outliers being present in the data, the ma-
jority of the camera positions still resulted in an error of less than £10 [m], which means
that a significant improvement in the accuracy of the camera positions could
be observed. Even with 0.5% outliers, which equals one outlier per image on average,
the method still converges towards the correct solution with acceptable results. Note
that from empirical observations of the reprojection residuals, it can be assumed that
the data obtained through FDAM contains less than 0.1% outliers.
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Figure 49: Grey: Artificially and randomly corrupted a priori camera positions with
a maximum error of £50[m]. Orange: Corrected camera positions after
Student’s t algorithm convergence. Green: Corrected camera positions after
least squares convergence. Top: No outliers lead to the same result for the
Student’s t and the least squares approach with comparable computational

cost. Center: 0.1% generated outliers. Bottom: 0.5% generated outliers.

For least squares bundle adjustment, with 0.1% outliers present, already an acceptable
solution could no longer be achieved. With 0.5% outliers present, some of the camera
positions were dragged hundreds of meters or even kilometers apart. In [5][4], it was
shown, that in empirical studies the Student’s t approach outperformed least squares
bundle adjustment even if the latter was carried out with preprocessed data, meaning
that outliers were removed based on some o—edit rule. In other words, leaving outliers
within the data and starting a Student’s t bundle adjustment resulted in more accu-
rate estimation than when removing outliers and carrying out the least-squares bundle

adjustment approach.

For this reason, within this work, the Student’s t approach is the method of
choice. All camera positions that will be used to support the estimation of cometary
gravitational coefficients were obtained with this method. In this way, a challenging
optical scenario with a continuously changing object is countered by a robust statis-
tical approach, leading to reliable results despite the presence of some outliers. More
information can be found in [52][1][106][5][4][97]]20].
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3.2.8. Gauge Freedom within the Student’s t Approach

In subsection 3.2.6, a method was introduced which counters the problem that in re-
construction from optical data alone, the overall scale is undetermined. By fixing one
camera and setting constraints so that the norm of all translations must not change
between iteration steps, the scale was constrained with added computational cost, since
the sparsity structure in the Levenberg-Marquardt algorithm was partially lost. How-
ever, in (225), an additional possibility arises to counter gauge freedom in the bundle

adjustment process. The term

1 1
+§Z(TJ+6)IOg 1+T*Ha§)—aj‘|?r1 4+ ... (232)
j J ’

is used to add a priori information on the camera position. Using this approach
has two advantages: First, the sparsity structure in (187) can be maintained, since the
Jacobian is not multiplied with a Householder matrix. Second, (232) enables for the
simultaneous estimation of cometary parameters together with the pure geometric op-
timization of reprojection error, since a? contains camera positions that resulted from
an orbit determination. Together with the covariance €2; of the camera position and
orientation, the full Bayesian probability framework can be maintained. In this way, a
robust bundle adjustment can be combined with the estimation of the cometary rotation
and gravitational field, while the sparsity of the framework is retained. Thus, this ap-
proach is the method of choice to determine the overall scale of the optimization
problem. The method in subsection 3.2.6, however, can still be necessary, if the data of

the orbit is known to be imprecise or simply not available.

3.3. Cometary Parameter Estimation

Since one goal of this work is the estimation of the gravitational field of the comet, the
development of an orbit determination software was necessary. FExisting RSI routines
were subsequently extended whereas, in some particular applications, new routines were
developed. The following subsection gives a brief overview about what was developed

and how the results in section 4 were generated.
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3.3.1. Time Frame

As introduced in subsection 2.2.4, the coefficients of the gravitational field have increas-
ing influence on the spacecraft’s trajectory, the closer the spacecraft gets to the cometary
surface. Hence, the choice of the respective mission phase is crucial for the results. For
this reason, the closest data arcs in August and September 2016 were chosen for evalu-
ation. The close proximity of the spacecraft to the comet was driven by the search of
the lander Philae, whose position on the cometary surface was still not determined up
to that point in time. The lander search finally resulted in a success (Figure 50), when

the lander could be detected at its final rest within an OSIRIS-NAC image.

Figure 50: An OSINAC image showing the landing unit Philae at its final rest. Copy-
right: ESA /Rosetta/MPS for Osiris Team MPS/UPD/LAM/TAA/SSO/IN-
TA/UPM/DASP/IDA

Unfortunately, due to the lander search, the closest proximity of the spacecraft was in
the same area above the cometary surface through most of the arcs. Hence, in the end,
the estimated gravitational field might be biased towards the side of Philae’s position.
A total of 28 consecutive data arcs were processed, starting from 2016-08-15T09:00:13
UTC. For the evolution of the rotational period, longer time frames including 2014, 2015
and 2016 were evaluated. For this purpose however, orbit data from the SPICE toolkit

were used to compare the optical data derived position of the spacecraft in the body
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fixed frame with the SPICE position in the inertial frame.

3.3.2. Gravitational Forces

The Sun, Pluto, and all eight planets, including their moons, were considered as per-
turbing gravitational forces acting on the spacecraft. The equation of motion was then
integrated in a J2000 oriented reference frame using the solver ode45 which is available
in MATLAB. The reference frame has its origin in the center of gravity of 67P, however,
it is non-rotating. Since 67P’s center of gravity itself is subject to acceleration within
the solar system, the comet centered reference frame must be considered non-inertial.
Therefore, perturbing accelerations that act on the spacecraft were considered according
to (14).

3.3.3. Orbit Control Mode (OCM) and Wheel Offloadings (WoL)

For the purpose of precise orbit determination, the time frame of the mission must be
subdivided into data arcs. During the orbiting phases of the mission, the thrusters of the
spacecraft were used frequently [92]. When a thruster is active, a significant perturbing
force has an influence on the spacecraft trajectory. During that time, it is difficult to
distinguish the acceleration caused by cometary gravity from the Av induced by the
thrusters. The usage of the twelve pairs of thrusters can be categorized in orbit con-
trol mode and wheel offloading. The first type includes orbit correction maneuvers
to keep the spacecraft on the reference orbit or to set a new reference orbit. Wheel
offloadings are only used to rundown the angular momentum of the reaction wheels in-
side the spacecraft; they are carried out more frequently, but have less fuel consumption
and consequently result in a smaller Av. For this reason, no orbit determination
is carried out during OCMs; however, for gravity field estimations, during
WolLs the orbit integration is continued. In order to compensate for the resulting
Av, the small differences in the spacecraft velocity are scaled within the orbit determi-
nation tool. Since the influence of the Wolis is very small, the Tikhonov-regularization
as described in subsection 2.7.2 was fully implemented and led to a more stable iteration

of the Levenberg-Marquardt algorithm.

3.3.4. Outgassing

The most difficult perturbing force in orbit prediction around the comet is outgassing.

In general, the flow direction of the gas species is away from the cometary nucleus. The
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resulting force mainly acts radial from the cometary nucleus, which is similar to the
parameter GM, however, in opposite direction. Hence, the perturbing force is directly
correlated with the GM value in (23), which is part of the estimated parameters as well.
If the outgassing perturbing force is estimated too low, as a consequence, the cometary

mass will also be underestimated.

An instrument on Rosetta that successfully obtained outgassing related measure-
ments at the comet is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis
(ROSINA). Its main objective is to determine the major atmospheric and ionospheric
compositions in the coma and to investigate the gas dynamics around the comet [109].
It has two mass spectrometers, the Reflectron-type Time-Of-Flight mass spectrome-
ter (RTOF), and the Double Focusing Mass Spectrometer (DFMS), which are capable
of measuring ions and neutrals. Additionally, it contains the COmet Pressure Sensor
(COPS), which has two pressure/density gauges: the nude gauge and the ram gauge.
The nude gauge has an almost spherical field of view and measures the total neutral
pressure of the coma, whereas the ram gauge measures the ram pressure. If the ram
gauge is pointing opposite to the direction of the outgassing flow, information about the
gas velocity can be revealed from the ratio between the ram gauge and the nude gauge

pressure measurement. More information about ROSINA can be found in [109][2].

Figure 51 shows ROSINA measurements acquired during the 28 data arcs of interest,
starting in 2016-08-15T09:00:13 UTC. The upper subplot shows the spacecraft distance
with respect to the cometary nucleus, including each start point of the 28 arcs together
with all wheel offloadings that have an influence on the optical measurements processed
within this work. In the bottom plot, ROSINA derived data can be seen. Apparently,
the particle density around the spacecraft increases by more than a factor of 10 when
the spacecraft is close to the nucleus. Additionally, it becomes clear that the gas velocity
is not constant and decreases in close proximity. The sublimated gas from the cometary
surface accelerates in radial adiabatic expansion [13]. In this way, it converges towards a
relative velocity, equally above all points on the nucleus surface, called the terminal ve-
locity. This convergence process is known to happen very quickly, with the gas reaching
the terminal velocity after a few nucleus radii. It is assumed that the terminal velocity
varies around 600m/s at 3.5AU up to 800m/s close to perihelion in [13], larger ranges
from 400m/s up to more than 1000m/s are described in [109]. It is commonly assumed
that Rosetta operates in a range relative to the nucleus, where the terminal velocity is
already reached. Figure 51, however, illustrates that for the very close orbits towards
the end of the mission, this assumption is not valid. Note that the ratio of ram gauge
to nude gauge pressure - which is proportional to the average gas flow velocity around

the spacecraft - is not available through all times of interest.

115



O  Start of Arc
20 ¢ O WolL

—— S/C Distance
5L a & A A A A A A A a AR ¢
©) Q 0
= d \o \® P |P P o) d
2 lOC- o of of o o o ¢ D o7 TP of ¢ &F
5 -
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
[days]
151
— ROSINA Density/1E14
ROSINA RG/NG
10 -
Wy IR o
O 1 : 1
0 5 10 15 20 25 30 35 40
[days]

Figure 51: Top: The spacecraft distance during the close orbits beginning at 2016-08-
15T09:00:13 UTC including the start of the data arcs and wheel offloadings.
Bottom: Derived COPS density and the ratio of the ROSINA Ram Gauge
to Nude Gauge.

Another interesting finding is that ROSINA is able to measure the consumed fuel
particles of the individual spacecraft thrusters around the spacecraft. Around days 20
and 28, sudden density peaks can be seen in the lower plot of Figure 51. Note that the

peaks appear at times when Wolis were executed, which is visible in the upper plot.

In this case, however, the measured gas velocity is influenced from both the cometary
outgassing and the thruster particles. Since at times not only cometary atmosphere
particles are measured, and additionally, velocity measurements are not available over
the entire time frame, both the gas velocity and density measurements need to

be smoothed and extrapolated.

In order to account for this within the implementation of the drag force model, the
particle density and gas velocity data points are fitted to a spherical harmonics expan-
sion. In this way, the measurements visible in Figure 51 are smoothed and extrapolated.

The result can be seen in Figure 52. Note that the extrapolated gas velocity is available
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over the entire time frame, and the peaks in particle density vanished.
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Figure 52:

e bes b,

Top: NAvVCAM images (green) and OSINAC images (red) which were taken
beginning at 2016-08-15T09:00:13 UTC. Center: Cosine between the space-
craft solar array normal and the vector from the comet center of mass to-
wards the spacecraft / the vector towards the Sun. Bottom: Extrapolated
and smoothed ROSINA data.

Figure 52 also shows the cosine between the spacecraft solar array normal and the

vector from the comet center of mass towards the spacecraft. Any time this value is

not equal to zero, the solar arrays expose an increased area towards the outgassing flow.

The same principle applies to the high gain antenna, however, with a much smaller area

being exposed. Especially when the spacecraft is in close proximity, these values do not
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equal zero, leading to additional drag force.

In order to model the drag force correctly, the gas velocity is assumed to be around
550m/s with variations proportional to the changes in the RG/NG ratio. This base
velocity reference is taken from [109], who analyzed the outgassing velocity from mea-
surements in October 2014. In this way, only the drag coefficient Cp in (45) must be
scaled over all 28 arcs, with the affected area A being proportional to the exposed area
of the solar arrays, the spacecraft bus, and the high gain antenna. Hence, the need for
additional parameters that must be estimated can be minimized. The velocity vector
of the outgassing flow is always assumed along the axis between the comet center of
mass and the spacecraft, which is certainly not correct when the spacecraft is close to
one of the two lobes [22]. Additionally, outbursts are not modeled within the spherical
harmonics smoothing. The implementation within this work reflects the best knowl-
edge available from the ROSINA measurements, however, a more advanced model
of the flow direction in the cometary atmosphere including outbursts prob-
ably could further enhance the precise orbit determination results in future
research. More information about ROSINA and COPS can be found in [2][104].

3.3.5. Solar Radiation Pressure

The solar radiation pressure is scaled as one single parameter over the entire time frame.
In Figure 52, it can be seen that the cosine between the spacecraft solar array normal
and the Sun is constant. The panels are continuously pointing straight towards the Sun.
As a result, the majority of terms in (43) vanishes, and solar drag can be assumed as
almost constant. Attempts at scaling one solar radiation pressure parameter per arc led

to 28 almost equal values, strengthening the assumption that one parameter is sufficient.

3.3.6. Rotational Parameters

Over the entire mission, comet Churyumov-Gerasimenko was continuously changing its
rotational parameters due to outgassing processes. Within a time frame of 40 days, it
is no longer valid to assume that the rotational period is constant; this will be shown
more in depth in section 4. Hence, for the precise orbit determination purpose, four
parameters are scaled to describe a third order polynomial interpolating the changes in
the comet’s angular velocity. Prior to this step, Euler’s rotation equations (235) were
numerically solved to confirm that a third order polynomial is sufficient for the desig-
nated time frame and no non-principal axis rotation must be considered for this period.

In this way, computational cost could be reduced significantly. However, within the or-
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bit determination tool, the rotational state of the target body may also be determined

by a full integration of (235), if necessary.

3.3.7. Initial State

The initial state vector is taken from the SPICE toolkit as a start value and then adjusted

iteratively through six parameters per data arc.

This concludes section 3 — the description of the numerical implementations within

this work. All derived results will be explained in the following chapter.
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4. Results

In this section, all results that were derived within this work will be explained and

discussed.

4.1. Feature Detection and Matching

As described in section 1, at comet 67P, higher order terms of the cometary gravitational
potential have a statistically significant influence only with a target center distance less
than about 30km. Since prolonged mission phases and hence many images were taken
outside of this criterion, the processing of optical data acquired outside 35km target
center distance was omitted. Images between 30km and 35km were still considered
in order to keep consecutive image series from orbits that just transitioned inside 30
km from a greater distance. The closer the comet moved towards the Sun, the more
intense the outgassing activity was. This scenario led to the spacecraft orbiting at a
larger, safe distance from the comet, well outside 35km target center distance. As a
consequence, almost no images from 2015 were processed, except for a few in January
and February. Since the cometary surface was undergoing significant changes during
perihelion (Figures 3, 4, and 6), no feature matching was carried out between images

taken prior and post perihelion.

NavcAM OsIRIS-NAC

2014/15 2016 2014/15 2016
measurements # 7469531 9921474 3882613 15606864
surface points 283897 430606 257450 960546
images 2769 3380 1722 3104
start time 14-09-09T02:04 | 16-02-19T04:20 | 14-09-09T03:20 | 16-02-24T07:06
stop time 15-02-14T20:00 | 16-09-30T00:59 | 15-02-14T20:04 | 16-09-30T08:51
mean # / point 26.3 23.0 15.1 16.3
mean # / image 2697.5 2935.3 2254.7 5027.9
mean 30 — 0.50px 0.49px 0.37px 0.51px
mean 30 — y 0.39px 0.37px 0.28px 0.42px
mean convergence 35% 33% 36% 42%

Table 3: Summary of all processed imagery datasets. A total of 10975 camera positions

for orbit determination could be determined from this data.

Additionally, no cross feature matching was carried out between OSIRIS-NAC and
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NAVCAM images because of significant differences in scale and systematic directional
calibration offsets within the different filters of the OSIRIS-NAC. As a result, a total of
four datasets of imagery data have been processed in this work. Table 3 summarizes
the used data. It can be seen that each surface point is observed in multiple images,
on average between 15 and 26 observations, but up to more than 100 observations in
some cases. Additionally, tie point measurements on average are below 0.5 pixels within
the 30 a priori uncertainty estimate. The objective function in polynomial least squares
matching decreases by more than 50 percent on average, indicating good convergence of
the method within the SIFT detected key points. On average, more than 2000 measure-
ments can be obtained per image. Within the processed data, on average, 61 minutes
passed between two consecutive images of the NAVCAM while the minimum duration in
between was 177 seconds. Regarding the OSIRIS-NAC, on average, 67 minutes passed
between two images while the minimum duration could only be 6 seconds. Overall,
1.93 x 10° surface points are observed in 36.88 x 10° subpixel accurate measurements
from 10975 images, obtained through the fully automated algorithm FDAM in widely

altering scales, reaching from 4km up to the 35km target center distance.

Robust Bundle Adjustment

After the processing of all imagery data, robust sparse bundle adjustment was carried out
with all four datasets. Due to the high number of parameters involved through millions
of surface points and thousands of images, it becomes necessary to take advantage of
the problem’s sparsity structure as described in subsection 3.2.1. After the bundle
adjustment eventually converged, the objective function and reprojection error together
with the required changes in the camera positions and the derived surface point cloud
could be evaluated. Figure 53 illustrates the total correction distance required per

camera position in order to achieve convergence for the bundle of rays.
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Figure 53: Correction of camera positions for the Navcam 2014/15 dataset.
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The convergence ratio of the reprojection error from equation (225) is 18.7% for the
Navcam 2014/15 and 11.5% for the Navcam 2016 dataset, respectively, indicating a
good convergence and improvement from the start values obtained via the SPICE toolkit

in conjunction with triangulation of the surface points.

Figure 54 shows a comparable result. Maximum corrections are in the order of 60m,
and, on average not more than 15m correction is needed for convergence. This result is

clear evidence that the SPICE orbit already has a high level of precision.

Interestingly, at some mission phases, larger corrections seem to be necessary in order
to fit the data. Possible reasons for this are outbursts, differences in relative distance,
or challenging conditions for optical navigation, such as altering phase angles or general
non-optimal illumination conditions. However, note that the observed changes cannot
be assigned to a specific orbit in each case, because for the purpose of parametrization,
one camera position remains fixed in the process of bundle adjustment; camera positions

close to the fixed one can result in smaller corrections.

16-03-15 16-05-10 16-06-24
date [yy-mm-dd]

Figure 54: Correction of camera positions for the NaAvcAM 2016 dataset.

Figures 55, 56 and 57 show the combined surface points of all datasets mentioned in
Table 3. The point cloud markedly reflects the bilobate shape of the comet (Figure 58).
All keypoints visible were detected, triangulated, and corrected through FDAM and
RSTBA. It can be seen that the SIFT algorithm favors areas that create gradients in
the imagery data, as introduced in subsection 3.1. Hence, for example, Figure 55 shows
less detections in the neck region of the comet. In general, the changing illumination
conditions between 2014 and 2016 caused the feature detection algorithm to favor dif-
ferent areas of the cometary surface. The images in 2016 allowed for more key point
detections, because the spacecraft operated in comet proximity over a longer timeframe
and, on average, in closer orbits. This led to a higher level of detail and more distinctive

features within in the imagery data.
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Figure 55: Corrected distinctive surface points combined for all datasets. Each point is
visible and measured subpixel-accurate in at least 10 additional images. The

+7 axis points out of the image plane.

The accuracy of the method introduced within this work can be evaluated by analyzing
the remaining reprojection error after convergence. For both the NAvcam 2014 /15
and 2016 dataset, the root mean square reprojection error is 0.6 pixels, confirming that
subpixel accuracy could be achieved. In [23], the RMS accuracy of a state of the art
algorithm for the Rosetta mission is given to be 0.7 pixels, indicating that the SIFT
tie point detection in conjunction with polynomial least squares matching and
the Student’s t robust bundle adjustment leads to an improvement in accuracy.
Additionally, a considerably larger database of tie points was used to generate the results
within this work. The uncertainties for the camera position on average are in the range
of 7 meters for all images processed. For the very close orbits in 2016, the average

uncertainty of the camera positions is 3.7 meters.

For the OSIRIS-NAC datasets, the same procedure was applied. Figures 59 and 60
show the required changes in camera position in order to achieve convergence of the

reprojection error.
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Figure 56: Corrected distinctive surface points. All points were automatically detected
by FDAM, triangulated, and precisely located in bundle adjustment. The

+Y axis points out of the image plane.

Figure 57: Corrected distinctive surface points from Figures 55 and 56. The +X axis

points out of the image plane.
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Figure 58: A comparison to the corrected surface points in Figures 55, 56, and 57: The
image of comet Churyumov-Gerasimenko taken on 5 August 2014 from a
distance of 123km. The view is reconstructed from three images through or-
ange, blue and near-IR filters. Spectra beyond human vision are made visible.
Copyright: ESA/Rosetta/MPS for OsIris Team MPS/UPD/LAM/IAA/S-
SO/INTA/UPM/DASP/IDA /Daniel Machacek

It is observable, that the scientific OSIRIS camera system was not primarily used
for navigational purposes. Frequently, a series of consecutive images was taken with
different filters in a fairly short amount of time. This led to the spacecraft not traveling
far during that period, so images are often corrected towards positions close by. This
effect can clearly be seen in Figures 59 and 60 when comparing to the camera corrections

shown in Figures 53 and 54.

In order to find tie points within the OSIRIS imagery data, no additional tie point

search was applied for reasons of computational cost. Instead, the tie points found within
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the NAvCAM datasets were used as start values and searched for within the OSIRIS
images. This is the reason why much stronger convergence ratios of 2.3% and 2.7%
could be observed in bundle adjustment. The root mean square of the reprojection error
remained at 1.21 pixels after convergence. However, the a priori estimate of the match
uncertainties is well below one pixel (Table 3). This can be explained by the following
reasons. First, in the case of the OSIRIS images, directionally calibrated products were
used. In these files, the directions are corrected for nonlinear distortions and new pixel
values are generated through a two-dimensional linear interpolation. Since the real pixel
brightness cannot be assumed to change linearly with the direction, a small error occurs

with this approach.
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Figure 59: Correction of camera positions for the OSIRIS-NAC 2014/15 dataset.
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Figure 60: Correction of camera positions for the OSIRIS-NAC 2016 dataset.

Additionally, in [68], a camera distortion and boresight correction update was given.
It states that, depending on temperature and filter, offsets in the pixel direction up to
10 pixels have been observed. The given correction values for the filter-caused direc-

tional changes were considered within this work; however, changes through variations in
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temperature were not modeled. Summarized, with 1.21 pixels RMS after convergence,
a directional error remains. However, due to the small field of view and the higher reso-
lution of 2048 pixels, the directional accuracy is still higher than for the NAvcam
data.

4.3. Cometary Parameters
4.3.1. Evolution of the Rotational Period

The outgassing induced evolution of the rotational period of the comet was widely
discussed in many publications [62][87][71][76][100]. From the optical data processed
within this work, the rotational period of the comet is determined precisely. Since the
reconstruction from optical data results in camera positions in a body fixed frame, the
results can be compared to the orbit in the J2000, and the rotational parameters can
be derived. Figures 61 and 63 show the changes during the time frame when spacecraft
positions were obtained from bundle adjustment. The evolution of the rotational period

P(t) is fitted by a polynomial of degree three, written as

P(t) = 23: cnt”, (233)

where t = (etimage — €to) /10% describes the time interval in Ephemeris Time seconds
after the first processed camera image, but scaled by a factor of 1E-8 for numerical
stability. The resulting polynomial coefficients ¢, for the 2014/15 and 2016 datasets can
be found in Table 4. The first images for the respective datasets were taken at UTC
2014-09-09T02:04:34, and UTC 2016-02-19T04:20:27. The two polynomials describe the
rotational period until 14 February 2015 and 30 September 2016, respectively.

¢, 2014/15 cn 2016
12.4040 £ 0.0001 | 12.0607 £ 0.0001
0.0097 £ 0.0003 | —0.0429 £ 0.0003
—0.0992 £ 0.0037 | 0.1796 £ 0.0020
0.9799 £ 0.0125 | —0.3298 £+ 0.0048

w N = O3

Table 4: Polynomial coefficients for the description of the rotational period of comet

67P within the time frame of camera observations processed within this work.
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Interestingly, in 2014/15, the rotational motion of the comet initially slowed down
instead of showing an acceleration. However, after the time frame plotted in Figure 61,
the comet soon underwent a significant angular acceleration. With the largest moment
of inertia I, = 1.89 x 10! kg m? as stated in [62], a decelerating torque between
—1.38 x 10* kg m? s72 at 3.3 AU and —8.12 x 10* kg m? s2 at 2.3 AU on 14 February
2015 can be observed with the 2014/15 dataset.
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Figure 61: Evolution of the rotational period in 2014/15, beginning at 2014-09-

09T02:04:34 UTC. During the time frame, when the spacecraft was orbiting

in close proximity to the comet, an increase in the period can be observed.

In [65], it was shown why the period initially increases during the approach of the
comet towards the Sun; it has its maximum shortly before the equinox and then drops
rapidly during perihelion passage. The measured deceleration mainly depends on the
shape of the nucleus, leading to varying areas with the highest torque efficiency on the
cometary surface, as the comet continues to close towards the Sun (Figure 62). By using
a detailed shape model of the comet, the authors of [65] have shown how the orientation
and the distance from the center of mass for each model facet affects the overall torque
distribution that acts on the comet. The result and analysis in their study is in good

agreement with the results that could be derived within this work.
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Figure 62: An illustration taken from the study accomplished in [65]. Blue areas decel-
erate, red areas accelerate the angular velocity of the comet. Top: Torque
distribution on 20 January 2015, in this timeframe, the changes in the ro-
tational period of the comet could be observed within this work. Bottom:
Torque distribution at perihelion, significant changes can be seen; the dimen-

sion is torque per area [65].

Periods between 12.4060 £+ 0.0001h in 2015 and 12.0567 4+ 0.0001h in 2016 could
be observed from the data processed within this work. With the 2016 dataset, an
accelerating torque between 9.74 x 10* kg m? s72 at 2.4 AU and 2.34 x 10* kg m? s2
at 3.8 AU on 30 September 2016 can be observed. Note that even after more than one
year after perihelion, a significant angular acceleration in the rotational period of the

comet is still measurable (Figure 63).
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Figure 63: The changes of the rotational period measured in 2016, beginning at 2016-
02-197T04:20:27 UTC.

4.3.2. Non-Principal Axis Rotation

As the spacecraft came closer to the comet, no signs of multiple periodicity could be
found from approach observations with the OSIRIS cameras on Rosetta [87]. Shortly
after the arrival of Rosetta at the comet, however, a non-principal axis rotation mode
was presumed after first data analysis [100]. For navigational purpose, the authors of
[43] had hoped and explicitly searched for a small torque-free nutation motion, since
it would have helped to accurately determine the inertia matrix and center of mass.
However, they came to the conclusion that any free nutation motion had to be within
the noise. The same has applied for this work. Repeated attempts to find a non-principal
axis rotational period within the data were not successful. However, a cone size of 0.14
degrees, as stated in [99], has been precluded, since it would have caused residuals of

more than 50 meters in the camera positions (Figure 66).
Since the final orbit reconstruction has a residual RMS of 4.13 meters, this magni-

tude of non-principal axis rotation would be visible in the data. Additionally, the stated
period of 10.7 days requires moments of inertia that differ significantly from those of a
homogeneous density distribution [49]. However, up to degree and order four of gravita-
tional coefficients, the comet appears to have a predominantly homogeneous structure

and density distribution inside the nucleus, as it will be shown in subsection 4.3.3.

131



Ol T T T T T T T T T

A X
Ay
Az
0.06 7

0.08

0.04 .

002« .. .. i P

[km]

0028 0 DR ¢ . i
0.04 . .
-0.06 | .

-0.08 4

_0. 1 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

days

Figure 64: Residuals of OSINAC and NAVCAM camera positions after iterative inte-
gration of the euler equations over 50 days in 2014, beginning at 2014-09-
09T02:04:34 UTC.

When searching for a non-principal axis rotation, the rotational period is usually av-
eraged over a specific period, and the orientation of the spin axis is estimated. However,
Figure 67 shows a significant problem within this approach. If the rotational period
of the comet is held constant within a model, whereas the comet actually changes its
angular velocity, additional periods appear in the residuals. After only 10 days, the first
amplitudes can be seen. If the orbital plane of the spacecraft around the comet is not
perpendicular to the spin axis, this can easily be confused with a periodically changing
rotation axis of the target body. The reason for this effect is the constantly changing

rotational period of the comet.

In order to overcome the problem, the euler equations (235) as defined in the appendix
A.2 were fully integrated to derive the changes in the rotational period and search
for any non-principal axis rotation mode. For the simulation, the moments of inertia
I, =0.95 x 10" kg m?, I, = 1.76 x 10" kg m?, I, = 1.89 x 10" kg m? as stated in [62]
were used. The result can be seen in Figures 64 and 65, which show the residuals in the
position of the spacecraft for the 2014/15 and the 2016 datasets relative to the comet

without any non-principal axis rotation being necessary. The root mean square error
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Figure 65: Residuals of OSINAC and NAVCAM camera positions after iterative inte-
gration of the euler equations over 60 days in 2016, beginning at 2016-04-
19T04:20:27 UTC.

is in the order of 6 meters and probably will further decrease, as in Figure 72, after a
full orbit reconstruction. Hence, any significant torque-free nutation cone would appear
within this data, as illustrated in Figure 66. Here, the rotation axis has been rotated
artificially by only 0.1 degrees. This change is smaller than the radius of the cone that
was presumed and stated in [100]. However, it already results in significant additional

periods that are markedly visible within the data.

The Euler equations have fully been solved for time frames of 50 days in 2014 (Figure
64) and 60 days in 2016 (Figure 65), showing no evidence for an excited rotational state.
The orientation of the rotational axis changed throughout the mission, especially during
perihelion. However, since no star-tracking is carried out within this work, the absolute
orientation of the rotational axis with respect to the J2000 frame and its changes from
2014 until 2016 will not be discussed here.

4.3.3. The Gravitational Field

The gravitational field and the total mass of the comet has been discussed in several

publications [89]. From the radio science investigations team, gravitational coefficients
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Figure 66: Residuals of OSINAC and NAVCAM camera positions beginning at 2014-09-
09T02:04:34 UTC with a rotational axis that is artificially rotated by 0.1
degrees - only about two thirds of the amount of non-principal axis rotation
that was presumed in [100]. It can be seen, that a non-principal axis rotation
mode with a higher amplitude than this would be visible within the data

processed within this work.

up to degree and order two have been estimated [96][95]. In [44], the Rosetta navigation
team computed a gravity field up to degree and order five from the close orbits in 2016.
However, altering solutions of the gravitational field were obtained for different orbits,
showing inconsistencies, especially in the higher order terms. The solution provided by
the navigation team was primarily used for the navigation around the comet. Within
this work, a full orbit reconstruction has been carried out as previously described in

subsection 3.3.2.

Over a time frame of 42 days, the closest orbits towards the very end of the mission
were integrated. In this way, and concerning parameter correlation, the mass of the
comet could be estimated as GM = 665.71 & 0.43 m3s~2. This value is slightly lower
but, within the error bars of the result in [44], stated as GM = 665.92 + 0.30 m?s—2
with 1o. Note that all uncertainties of physical parameters have been given as 30 or
within a 99% confidence ellipsoid throughout this document. Hence, a smaller value of

uncertainty could be obtained.

Figure 71 shows the obtained coefficients for a spherical harmonics expansion of the

gravitational field of the comet up to degree and order four. As explained in subsection
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Figure 67: Without torque: Evolution of the error in relative spacecraft position for
a constant rotational period. After only 10 days, an error resulting in an
additional visible period can be seen; after 60 days, more than 0.8km error

in the spacecraft position results.

2.2.5, the values of (Cyo, C11, Si1, Ca1, Sa1, S22) are zero, since the body fixed frame
containing all optical data is adjusted in a way that the origin of the resulting coordinate
system is defined in the center of gravity of the comet and aligned along the axes of the
main moments of inertia. Figures 68 and 69 illustrate the results of the gravitational

field estimation.

The influence of coefficients up to degree and order seven could be shown with the
optical data derived within this work, however, correlations become more pronounced
if too many parameters are adjusted iteratively. Hence, the parameter uncertainties
quickly grow to 100% and, therefore, gravitational field solutions with a degree and
order higher than four are not realistic. Note, that within this work, the gravitational
field of the comet is derived from optical data alone. Therefore, after the method has
successfully been combined with Doppler and ranging data, higher order terms of the

gravitational field might be revealed.

135



km?s2<107

Figure 68: The gravitational potential of the comet as it appears at a distance of 3.5km.
The bilobate shape of the comet is reflected markedly in the appearance of

its gravitational field. In this plot, the small lobe appears on the left.
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Figure 69: The gravitational potential of the comet plotted on a sphere with a radius of
3.5km.
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Important quantities that enlarge the uncertainties of the estimated gravitational field
parameters are wheel offloadings as introduced in subsection 3.3.3. In theory, during
WoLs, the thrusters are active in a way that only a momentum is induced to stabilize
the attitude of the spacecraft while running down the angular momentum of the reaction
wheels inside. Hence, no acceleration should influence the trajectory of the spacecraft
if the activity of the thrusters would be perfect. However, from a practical perspective,
small imperfections result in small accelerations. Since the amount of the unplanned
induced Av is unknown, the gravitational field of the comet was estimated both with and
without the consideration of the 42 parameters that are necessary to adjust the WolLs.
The two different results can be seen in Figures 70 and 71. Both parameter estimations
show a gravitational field that is close to the expected one for a homogeneous density
distribution. However, as soon as WolLs are not considered, parameter correlations

become less pronounced and smaller uncertainties can be obtained.
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Figure 70: Without wheel offloadings: The normalized spherical harmonics coeffi-
cients of the gravitational field determined within this work. R was chosen
to be 2.65 km. Note that almost all coefficients, including their uncertainties,
are close within in the region of a homogeneous mass distribution inside the

nucleus.
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The difference in the respective residuals of camera positions is shown in Figures 72
and 73. For both parametrizations, no major changes in the residuals can be observed.
The root mean square increases only from 4.06 to 4.13 meters, which strengthens the
assumption that the WoLs resulted in negligible influence on the trajectory of the orbiter
around the nucleus. However, as soon as Doppler data will be involved, the consideration
of WoLs can be necessary again, since the Doppler measurement is very sensitive to
changes in the relative velocity up to millimeters per second. Hence, the choice to

adjust the WoLs remains in the software that was developed within this work.
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Figure 71: Including wheel offloadings: The normalized spherical harmonics coef-
ficients of the gravitational field determined within this work. Only minor
changes can be observed, however, the error bars are markedly enlarged when

compared to Figure 70, where no WoLis have been adjusted.

In Figures 72 and 73, the residuals after 42 days of orbit integration are shown. A total
of 500 NavcaM and 200 OSIRIS-INAC images has been used to determine the spacecraft
position relative to the comet. Gravitational field coefficients from a homogeneous
density distribution were used as start values prior to the iteration; they were generated

from the SHAP7 shape model, which was prepared from OSIRIS images [50][99][100]. The
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usage of start values for a homogeneous nucleus significantly improved the orbit
reconstruction residuals even prior to iteration. The derived gravitational field

parameters together with the associated uncertainties can be found in Table 5.
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Figure 72: Including wheel offloadings: The residuals after convergence of the pre-
cise orbit determination tool. 28 consecutive data arcs were integrated using
the derived gravitational field shown in Figure 68, starting from 2016-08-
15T09:00:13 UTC. The root mean square residual between the reconstructed
orbit trajectory and bundle adjustment derived camera position is 4.06 me-

ters.

4.3.4. Combination with RSI Doppler Data

Besides the development of routines for the processing of optical data acquired during
the Rosetta mission, another scientific goal of this work was the combination of the

derived data with existing routines of the radio science investigations team (RSI).

All related tools were implemented in FORTRAN subroutines, complementing existing
Doppler data by three-dimensional optical measurements relative to the comet. To

stabilize the iterative estimation process, the Tikhonov regularization, as described in

139



subsection 2.7.2, was implemented. Software tests for data arcs from July 2016 showed
clear improvements in the stability and accuracy of the algorithm. Both the
Doppler frequency residuals and the parameter uncertainties decreased as soon as optical

data was used additionally.
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Figure 73: Without wheel offloadings: The same residuals as in Figure 72, but
without the parametrization of Wolis. The result beginning at 2016-08-
15T09:00:13 UTC does not show major changes, and the root mean square
residual between the reconstructed orbit trajectory and bundle adjustment
derived camera position is 4.13 meters. The 42 Wol. parameters cause larger

uncertainties while only a RMS improvement of 0.07 meters is the result.

However, the combined iteration of Doppler data together with optical data still suffers
from an interesting effect that evolves especially from the nature of a comet: The orbit
relative to the solar system is subject to significant non-gravitational perturbation due to
the cometary outgassing. Consequently, the position of the comet in SPICE kernels shows
deviations from its true position. These deviations currently add a significant offset
between the predicted and received frequency. For this reason, new subroutines

are being developed by RSI which allow for a more accurate recalculation of Churyumov-
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Gerasimenko’s orbit through the solar system. Hence, results from Doppler- and optical

data combined processing will be published soon in the future.

Value Model 3-0 Corr. Corr. Corr.
optical | optical | Doppler | combined

GM x107% | 6.6571 0.0013 | 0.0043 | 0.0196 | 0.0024
Cs -0.0354 | -0.0344 | 0.0007 | 0.0029 | 0.0018 0.0010
Coo 0.0458 | 0.0446 | 0.0011 | 0.0045 | 0.0023 0.0012
Cso -0.0052 | -0.0073 | 0.0010 | 0.0037 | 0.0023 0.0013
Cs1 0.0096 | 0.0058 | 0.0010 | 0.0035 | 0.0024 0.0015
Cso 0.0087 | 0.0102 | 0.0007 | 0.0020 | 0.0026 0.0011
Cs3 -0.0069 | -0.0022 | 0.0012 | 0.0044 | 0.0027 0.0015
Cyo 0.0063 | 0.0040 | 0.0014 | 0.0053 | 0.0026 0.0016
Cu -0.0034 | 0.0001 | 0.0013 | 0.0056 | 0.0029 0.0016
Ciyo -0.0043 | -0.0054 | 0.0011 | 0.0040 | 0.0029 0.0015
Clys 0.0038 | -0.0005 | 0.0009 | 0.0035 | 0.0029 0.0016
Cyy 0.0089 | 0.0047 | 0.0012 | 0.0047 | 0.0029 0.0016
S31 -0.0023 | -0.0054 | 0.0009 | 0.0037 | 0.0029 0.0014
S3o -0.0030 | -0.0064 | 0.0010 | 0.0035 | 0.0024 0.0012
S33 0.0203 | 0.018 | 0.0013 | 0.0052 | 0.0025 0.0014
S 0.0006 | -0.0009 | 0.0011 | 0.0043 | 0.0031 0.0017
Syo 0.0003 | -0.0021 | 0.0010 | 0.0038 | 0.0030 0.0015
Su3 -0.0004 | -0.0008 | 0.0010 | 0.0036 | 0.0029 0.0015
S 0.0014 | 0.0030 | 0.0015 | 0.0059 | 0.0028 0.0016

Table 5: An overview of the estimated parameters and the associated uncertainties.
Bold entries reflect real results derived within the work, non-bold
entries result from simulations or simplifications and give an overview of what
can be expected after the combination of Doppler data and optical data. The
last four columns show the uncertainties of the estimated parameters; only for
the last three rows, parameter correlation was considered. The L2-norm of the
gravitational coefficient uncertainties decreases to a value of 53%, if the optical

data processed within this work is used additionally to Doppler data.

In order to obtain an estimate of the improvement through the combination of Doppler
data with optical data, however, within this work, an application was developed that
simulates Doppler data from (46) with the assumption, that the orbit of the comet was
known more precisely than currently. The received frequency was modeled with artificial

Gaussian distributed noise of 3 millihertz at times when real measurements were made.
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From this simulation, it could be derived that the uncertainty of the gravitational field
parameters on average decreased to a value of 53%, as soon as optical data was used
additionally. Hence, once the orbit of the comet through the solar system will be known
more accurately, a more precise estimate of the cometary gravitational field can be
expected. Table 5 reflects the results and the uncertainties resulting from the different

measurement methods, and through their combination.

The gravitational field estimated within this work only shows small deviations from an
expected appearance for a homogeneous density distribution inside the nucleus. How-
ever, some uncertainties in Figure 70 are close to reveal small inhomogeneities. As soon
as the uncertainties are replaced by the ones that can be expected from the last row in
Table 5 through the combination of optical data with Doppler data, more details about

the inner structure of comet Churyumov-Gerasimenko will be known.

In general, however, a predominantly homogeneous density distribution inside the
nucleus confirms fundamental aspects in the theory of solar system evolution. It is
presumed that comets have formed from gravitational and streaming instabilities in
solar nebula clouds of millimeter- to centimeter sized agglomerates [15]. Pebbles of this

size could be made visible through the CIVA images sent from the lander Philae.

Most likely, the origin of Churyumov-Gerasimenko is the Kuiper belt; this region is
far away from the Sun, which results in low orbital velocities of particles. Thus, impacts
and collisions with high velocity are very unlikely; contacts of matter in the Kuiper belt
occur slowly. Additionally, no thermal or aqueous alterations affect the material [14].
Hence, before becoming a Jupiter-family comet, the nucleus of Churyumov-Gerasimenko

formed at a large solar distance in cold and smooth low velocity conditions.

With the processes described above, no major inhomogeneities within the cometary
material can be expected - a homogeneous density distribution inside the nucleus is most
likely. Hence, with the results derived within this work, a small part in the theory of

solar system evolution can be confirmed.
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5. Conclusion and Outlook

The main goal of this work was the development of methods which enable the extraction
of the camera position relative to a target body based on images taken during the orbit
of the spacecraft. Once the spacecraft positions were derived with smallest possible
uncertainties, they should be combined with existing routines of the Radio Science
Investigations experiment to obtain estimates of the physical properties of the target
body with an improved accuracy. The main small-body for the test and evaluation of

all components was the target of the Rosetta mission, comet Churyumov-Gerasimenko.

The software that has been developed was subdivided into three main components:
The feature detection and matching algorithm, robust sparse bundle adjustment and the
collection of all tools for physical parameter estimation. All subroutines were designed
in a way that each software component is modular and exchangeable. Hence, each
algorithm can easily be adapted to a new mission, such as Lucy or Hera, for example.
Lucy was launched on 16 October 2021 and will visit different asteroids including Jupiter
trojans. Hera is planned to visit the asteroid Didymos; it is going to evaluate the
effects of the impact from the Double Asteroid Redirection Test (DART) on it’s satellite

Dimorphos.

For the first algorithm that detects features and tracks them over consecutive image
series, a novel combination of methods was introduced. Distinctive features initially
were automatically detected by the scale invariant feature transform and subsequently
matched with a least squares matching approach based on polynomials. From the tri-
angulated and subsequently reprojected surface reference grid into multiple camera ref-
erence frames, a block matching could be obtained. It allowed for more than hundred
observations of single surface points from a broad variety of illumination conditions,
viewing angles, and scales. The matching process enables a subpixel-accurate determi-
nation of the tie point location within the image frame. Depending on the scenario and
the amount of change in illumination conditions, the user of the software package can
additionally enable light correction — a method that predicts reprojected pixel brightness

depending on surface illumination, and based on the combination of reflectance models.

Additionally, a routine that enables the construction of a digital elevation model
from surface reflectance was implemented. This tool allowed for the reconstruction of a
surface element with a resolution of less than 5 cm, acquired from OSIRIS-NAC images
taken during Rosetta’s final descent in 2016. The result can be helpful to constrain
the cometary surface roughness for the bistatic radar experiment executed with the RSI

experiment in 2014.
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To obtain the spacecraft position from the subpixel-accurate tie point measurements,
a sparse bundle adjustment technique was used, which is robust with respect to cor-
rupted measurements. The main difference is, that in comparison with commonly used
robust methods no outlier removal with a o-edit rule is necessary within the approach.
Instead, the statistical model is adapted by assuming that the noise is determined by
the Student’s t-distribution. This leads to superior stability and accuracy in compar-
ison with methods that utilize o-edit rules, since outliers are much more likely within
the Student’s t-distribution. Since the iterative estimation problem of the bundle ad-
justment with 36.88 x 10° optical measurements results in a large computational cost,
the sparsity of the problem was used and all computational expensive routines were

implemented on a cluster.

The Student’s t bundle adjustment resulted in a reprojection RMS of 0.6 pixels.
Hence, it could be confirmed, that subpixel accuracy was reached within the developed
feature detection and matching software. The algorithm results in a higher accuracy
than the state of the art method introduced in [24], resulting in a reprojection RMS
of 0.7 pixels. Additionally, 1.93 x 10° surface points were used instead of the 10481
landmarks used by flight dynamics. The mean 1o uncertainty for all NAVCAM derived
positions is 10 meters, and 5 meters for the OSINAC respectively. The mean uncertainty
for NAVCAM images taken in the close orbits during the end of mission phase is 3.7
meters. Single OSINAC images resulted in uncertainties smaller than 1 meter. Hence,
a spacecraft position uncertainty on a centimeter level could be reached within several
images. The combination of the derived spacecraft positions with existing RSI routines
showed a clear improvement in both the stability and the accuracy within the iterative

estimation software.

The third part of software was developed to estimate physical parameters of the
comet. An increase of the rotational period in 2014 as well as a decrease in 2016 could
accurately be determined, confirming predictions that were published prior to the arrival
at the comet. Interestingly, towards the end of the mission in September 2016 at 3.8
AU, the comet still shows a significant angular acceleration, indicating that cometary
outgassing is still an important effect to consider during that period. No evidence of a

non-principal axis rotation could be found.

An estimate of the gravitational field of the comet up to degree and order four of grav-
itational field coefficients in spherical harmonics could successfully be derived. It could
be shown, that the higher order terms still have a measurable influence on the space-
craft’s trajectory within the uncertainties of the derived camera positions. The solution

covers 28 data arcs over 42 days during the end of mission phase with a RMS resid-
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ual of 4.13 meters in the reconstructed orbit when compared to the derived spacecraft
positions. As expected and predicted in previous publications, the comet appears to
have a predominantly homogeneous density distribution inside the nucleus. The result

confirms the basic theory of solar system evolution.

The optical data processed within this work will be complemented by the ranging-
and Doppler data, which is currently being processed by the RSI team. These additional
measurements will help to decorrelate the gravitational field parameters and to better
constrain the solution as it was shown in section 4. With the theory, the developed
novel methods and algorithms, and the results discussed within this work, the basis for a
more accurate determination of the gravitational field parameters of comet Churyumov-

Gerasimenko was successfully created.

Outlook

After the routines developed within this work have successfully been combined with
existing RSI methods, still additional research should be accomplished. First, after
a recalibration by the OSIRIS team, the OSIRIS-WAC now has a directional accuracy
comparable to the NavcAM. Hence, all OSIRIS-WAC derived images should be processed

as well and included in the orbit reconstruction.

Another important step is to use a more sophisticated model of the cometary out-
gassing, since the resulting perturbing force has a significant influence on the spacecraft

orbit, especially in close proximity.

Since the shape of the comet can better be approximated by an ellipsoid, the gravi-
tational field could be estimated from an ellipsoidal harmonics expansion in the future
[101]. Even more accurate would be a bipolar approach, which is currently being devel-

oped from the RSI scientists.

As stated before, the OSIRIS-NAC shows small differences in its directional calibra-
tion depending on the filter or the temperature. Hence, an auto-calibration method
could be used within the bundle adjustment, and therefore, maybe further improve the

reprojection RMS.

These topics would exceed the envelope of this work, however, it is definitely worth-
while to investigate them in future research and publications. Five years after Rosetta
has descended to comet Churyumov-Gerasimenko, still exciting questions are left to be

discussed.
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A. Appendix

A.1. The Gamma Function

The Gamma function is defined as

[ (z) = 7tx_1e_tdt. (234)

A.2. Euler’s Equations

In principal orthogonal coordinates, Euler’s rotation equations are defined as [72]

. 1 1
Ml :@1001 + (@3 — @2)0.)20.)3 = Ll + < — ) L2L3,
O, O
. 1 1
M2 :@QCZJQ + (@1 — @3)&)3&)1 = LQ -+ ( — ) L3L1, (235)
O3 6
. 1 1
M3 :@3w3 + (@2 - @1)W1WQ = L3 + < - ) L1L2.
©; O

Here, M; — M3 denotes the torque, ©; — ©3 the moments of inertia, L; — L3 denotes
the angular momentum, w; — w3 and w; — ws are the angular velocities and the angular
accelerations, respectively. In this work, (235) is numerically solved to determine the

rotational state of the comet.

A.3. Determinant and Trace of a Matrix

The determinant of a matrix A € R**? is a scalar value and can be obtained from [73]

ailr aig

det (A) = = Q11022 — A21012. (236)

a1 Q22

In general, for matrices A € R™*" the determinant can be obtained recursively from
73]
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det (A) = fj (=1)"* a;;S,;, (237)

=1

where a;; denotes the entry of the i—th row and the j—th column of matrix A and
S;j is the determinant of the submatrix that is obtained if the i—th row and the j—th

column of A is removed. The trace of a matrix A € R"*" can be obtained from [73]

tr (A) = Xj: Wi (238)

which equals the sum of all entries on the main diagonal of it.

A.4. Skew-Symmetric Matrices

A skew-symmetric matrix may be written as

v, =1 wv. 0 —wvy |, (239)

with the relation [52]

vxb=[v],b=(vI[b,) . (240)

In general, a matrix is symmetric if AT = A and skew-symmetric if AT = —A [52].

A.5. The Pseudo-Inverse

With the singular value decomposition A = UDVT of a matrix A € R™*" with m > n,
the pseudo-inverse A* can be obtained from
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AT =VDTUT, (241)

where Dt is defined as

Dt = (242)
D;;' otherwise.

More information can be found in [52].

A.6. OSIRIS-NAC Geometric Distortion Removal

For the OSIRIS-NAC, a geometric calibration curve is available. The correction values
are fitted to a two dimensional, third-order polynomial. The undistorted pixel positions

(X4, Y,) are expressed as a function of the actual image coordinates by [37]

XU - Z k$i,jX8ija
0]

Yo=Yk, XoYy. (243)

]

The full table of third-order polynomial fit coefficients for distortion removal can be

found in table 6 [37].
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ke

ky

W W W W NN NN PR = R 2RO OO O O

W N = O W NN K~ O W~ O W —= O

-9.09076000E+00
9.06443000E-04
-5.26902000E-07
-3.32516000E-12
1.01413000E+-00
-2.39320000E-07
1.19823000E-10
-2.01772000E-16
-4.71201000E-06
8.98608000E-12
-7.17827000E-16
2.23917000E-19
2.91214000E-10
-1.94627000E-16
2.20615000E-19
-6.87882000E-23

4.61801000E+-00
9.97063000E-01
-5.93490000E-07
1.99967000E-10
3.21866000E-03
-3.38901000E-06
1.88602000E-12
-1.95971000E-17
-6.41550000E-08
1.16434000E-10
-1.12755000E-16
3.01745000E-20
-1.06652000E-11
-4.15382000E-17
3.98303000E-20
-1.09102000E-23

Table 6: The coefficients for the removal geometric distortion [37].
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