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Abstract

Memory forensics is an important branch of digital forensics. Different concepts
empower practitioners to perform deep analysis of potentially compromised systems
by dissecting the acquired volatile memory of a target. The field mainly evolved
in recent years and relies on the ambitious development of interfaces to extract
and interpret structural information. In contrary, memory carving, also denoted
as unstructured analysis, encompasses the extraction of artefacts or objects based
on signatures or patterns. With the introduction of frameworks responsible for the
complex structural interpretation of an acquired dump, researchers began to further
expand the field, understandably shifting focus towards structured methodologies.

Even if structured analysis undoubtedly creates the foundation for deep insights
into an acquired system, the overall concept bares some pitfalls and major implemen-
tation efforts. The multilayered and complex interpretation reveals much care and
constant maintenance. This need has been further increased by shorter operating sys-
tem release cycles. In addition, the analysis could suffer from various inconsistencies
(memory smearing) of structural information, caused by the non-atomic acquisition of
a running system. The degree of atomicity usually depends on the depicted method
of acquisition, e.g., the acquisition via software tools, hardware appliances or virtu-
alization features. Another eligible argument in favour of carving-based extraction
is the potential compromise of structural information by an adversary, which seems
to be a viable argument considering recent research in anti-memory-forensics. In a
nutshell, mentioning just a small portion of a large variety of different obstacles, it
should be desirable to back structured analysis by additional concepts of unstructured
analysis and to introduce different concepts of data reduction similar to those in disk
forensics. Therefore, this research investigates the transferability of Approximate
Matching concepts to the field of memory forensics. Those functions are usually used
to determine the similarity between two input files.

After giving a broad systematization of the field in terms of different criteria of
research, we will discuss the transferability of existing schemes by the introduction of
several contributions: First, we inspect the possibility of fast differentiating between
code and data with the help of a new approach called Approximate Disassembling. In
other terms, we introduce a concept for x86-64 code fragment carving. The approach
will be the entry point for further discussions and extensions to existing Approximate
Matching implementations. Second, we discuss the possible integration of our previ-
ously introduced dispatcher into an existing Approximate Matching technique. The
required adaptations to the implementation and parametrization will be outlined.
The approach will be discussed in the course of inspecting a raw memory image,
i.e, for the task of identifying the running kernel version and different applications.
Third, we introduce the possibility of extending an existing Approximate Matching
technique with contextual extraction capabilities. In detail, techniques to carve the
function start offset via common prologue sequence have been reassessed for our
specific domain. Fourth, we inspect different and fairly new concepts of storing and
handling extracted artefacts. The evaluation and assessment aspects of the different
approaches is often denoted as Database Lookup Problem. In detail, we discuss the
different implementations under aspects like common block filtration and deduplica-
tion. Last, we inspect the capabilities of our considered approaches in the course of
binary matching. In detail, we adapt previously introduced techniques and discuss
the performance in contrast to predominant Approximate Matching approaches.
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Zusammenfassung

Das Feld der Speicherforensik ist ein wichtiger Zweig der digitalen Forensik. Ver-
schiedene Konzepte ermoglichen es Praktikern, detaillierte Analysen von potenziell
kompromittierten Systemen durchzufiihren, indem sie den fliichtigen Speicher eines
Ziels auswerten. Das Feld hat sich in den letzten Jahren stark weiterentwickelt und
stiitzt sich auf die ambitionierte Entwicklung von Schnittstellen zur Extraktion und
Interpretation von Strukturinformationen. Im Gegensatz dazu umfasst Memory
Carving, auch als unstrukturierte Analyse bezeichnet, die Extraktion von Artefakten
oder Objekten basierend auf Signaturen oder Mustern. Mit der Einfithrung von
Frameworks, die fiir die komplexe strukturelle Interpretation eines erzeugten Dumps
verantwortlich sind, begannen Forscher, das Feld weiter auszubauen, wobei sich der
Fokus verstandlicherweise auf strukturierte Methoden verlagerte.

Auch wenn die strukturierte Analyse zweifelsohne die Grundlage fiir tiefe Ein-
blicke in ein erfasstes System schafft, birgt das Gesamtkonzept einige Fallstricke
und grofien Implementierungsaufwand. Dariiber hinaus kann die Analyse unter
verschiedenen Inkonsistenzen (Memory Smearing) der Strukturinformationen leiden,
die beispielsweise durch die nicht-atomare Erfassung eines laufenden Systems verur-
sacht werden. Der Grad der Atomaritidt hangt in der Regel von der dargestellten
Erfassungsmethode ab, zum Beispiel der Erfassung per Software-Tools, Hardware-
Appliances oder Virtualisierungsfunktionen. Ein weiteres zuldssiges Argument fiir
die Carving-basierte Extraktion ist die potenzielle Kompromittierung von Struk-
turinformationen durch einen Angreifer, was angesichts der jiingsten Forschungen
im Bereich der Anti-Memory-Forensik ein tragfiahiges Argument zu sein scheint.
Zusammenfassend lédsst sich sagen, dass es, um nur einen kleinen Ausschnitt aus
einer Vielzahl verschiedener Hindernisse zu nennen, wiinschenswert wire, die struk-
turierte Analyse durch zusétzliche Konzepte der unstrukturierten Analyse zu unter-
stiitzen und verschiedene Konzepte der Datenreduktion einzufiihren. Daher wird in
dieser Arbeit die Ubertragbarkeit von Approximate Matching Funktionen auf den
Bereich der Speicherforensik untersucht. Diese Funktionen werden normalerweise
verwendet, um die Ahnlichkeit zwischen zwei Eingabedateien zu bestimmen.

Zunichst untersuchen wir die Moglichkeit der schnellen Unterscheidung zwis-
chen Code und Daten mit Hilfe eines neuen Ansatzes namens Approximate Disas-
sembling. Mit anderen Worten, wir stellen ein Konzept fiir das x86-64 Codefragment
Carving vor. Der Ansatz wird der Einstiegspunkt fiir weitere Diskussionen und Er-
weiterungen bestehender Approximate Matching-Implementierungen sein. Zweitens
diskutieren wir die mogliche Integration unseres vorgestellten Dispatchers in ein
bestehendes Approximate Matching-Verfahren. Die erforderlichen Anpassungen an
der Implementierung und Parametrisierung werden skizziert. Der Ansatz wird im
Zuge der Inspektion eines Rohspeicherabbilds diskutiert, d. h. fiir die Aufgabe, die
laufende Kernelversion und verschiedene Anwendungen zu identifizieren. Drittens
stellen wir die Moglichkeit vor, ein bestehendes Approximate Matching-Verfahren
um kontextuelle Extraktionsmoglichkeiten zu erweitern. Im Detail wurden Techniken
zum Carven des Funktionsstart-Offsets per Prologsequenzen fiir unsere spezifische
Domaéne neu bewertet. Viertens untersuchen wir verschiedene und junge Konzepte
zur Speicherung und Handhabung von extrahierten Artefakten. Die Auswertungs-
und Bewertungsaspekte der verschiedenen Ansétze werden oft als Database Lookup
Problem bezeichnet. Im Detail diskutieren wir die verschiedenen Implementierun-
gen unter Aspekten wie gemeinsamer Blockfilterung und Deduplizierung. Zuletzt



untersuchen wir die Fahigkeiten der von uns betrachteten Ansitze im Zuge des Ab-
gleichs von Programmdateien. Im Detail adaptieren wir zuvor eingefiihrte Techniken
und diskutieren die Performanz im Gegensatz zu vorherrschenden Approximate
Matching Ansatzen.
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INTRODUCTION

1.1 MOTIVATION

In the course of Digital Forensics and Incident Response (DFIR) the acquisition and
analysis of volatile memory have gained significant attention by practitioners and re-
searchers in recent years. The examination of the previously acquired memory of a
running system gives deep insights into the state of a machine and empowers the in-
vestigation of recently performed actions and processes. The academic community
mainly focused on the field of structured memory forensics. As the name suggests, this
branch of memory forensics is based on the extensive extraction and interpretation
of Operating System (OS) related memory structures. It should be clear that infer-
ences gained from the analysis of the core implementations of the target should be
very precise and more meaningful than any technique of unstructured memory foren-
sics. However, the context of application, the complexity, and the variety of different
interpretation levels introduce several long-lasting challenges.

The detection, the processing, and the analysis of OS and application related
structures is based on the costly process of maintenance and updating the operability
of tools and frameworks, where the overall problem is often denoted as semantic gap
(Dolan-Gavitt et al., 2011). Thus, maintenance and community-driven expertise is
a fundamental building block for the long-term utility of those complex, based-on-
heuristics, and multi-layered frameworks. Often, the stability and applicability is
influenced by eligible updates or changes to the core functionalities of the operating
system itself. In addition, the interpretation could be hindered by erroneous im-
ages due to acquisition errors, also known as memory smearing (Pagani, Fedorov, and
Balzarotti, 2019). This leads to inconsistencies and errors within the chain of inter-
pretation by the memory forensics frameworks. In advances to foundational work
done to lift an acquired dump into an interpretational state, examiners and practi-
tioners are often responsible for creating the overlaying space of domain-knowledge
backed plugins. Most often, those plugins introduce additional components and ex-
tensions to the underlying frameworks, which are mainly responsible for the process
of heavy lifting until final interpretation.

Besides inferences not possible with classical disk- or file system forensics, ob-
fuscated malicious software (malware) and evasive actions could barely hide their
traces within the states of a target system reflected by its internal state in memory.
Thus, memory forensics plays an important role in the current digital forensics com-
munity and research. However, adversary forces realize the capabilities of live- or
post-mortem memory forensics. Recent research underlined the feasibility of anti-
memory-forensics techniques, which could slow down, complicate, prevent, or attack



2 INTRODUCTION

the overall forensical soundness of an analysis (Block and Dewald, 2019).

With the increasing size of main memory, White et al. (White, Schatz, and Foo,
2013) formulate requirements for investigating a memory image and postulate that
methods of data reduction (similar to those in disk forensics) are eligible. In the
field of disk forensics Approximate Matching algorithms (a.k.a. similarity hashing
or fuzzy hashing) represent a robust and performant instrument to differentiate be-
tween known and unknown data fragments (Breitinger et al., 2014). However, White
et al. claim that Approximate Matching algorithms are not suitable in the course of
memory forensics, as code in memory always differs from its version on disk.

1.2 RESEARCH QUESTIONS AND CONTRIBUTIONS

Considering the introductory motivation, this research further inspects the applica-
bility of Approximate Matching in the field of memory forensics. Summarized and
simplified, in this work we argue if concepts and techniques of existing schemes
may be transferred from disk or network forensics to the field of memory forensics.
Thus, the overall and general research could be formulated by a single and generic
research question.

RQ: Is it possible to strengthen main memory analysis by successfully transferring concepts
of Approximate Matching to the domain of memory analysis?

We further split the overall research question into smaller partial questions and
shortly introduce our own contributions with respect to each question.

SYSTEMATIZATION OF KNOWLEDGE. As the field mainly evolved within the
last decade, we need to outline recent research efforts and differentiate academic
publications in terms of research criteria and research ambitions. A broad system-
atization of knowledge should further delimit our contributions from existing work
and give a better impression of the field’s status quo.

RQ1: Which memory analysis methods have been proposed and what are their main proper-
ties in terms of type, scope, and context of application?

A committed community of forensics practitioners and scientific researches try to
keep pace with the fast-moving field of memory forensics, driven by the complexity,
increasing number and shortened update cycles of target systems. Within the last 15
years the field mainly evolved and proposed approaches of acquisition and analysis
require constant care to remain applicable over time. A first contribution of this work
is the presentation of a systematization of knowledge by considering more than 140
publications related to the field of memory forensics.

APPROXIMATE DISASSEMBLING. We differentiate between multiple stages of
research to succeed. First, a technical component is needed, which extracts and la-
bels portions of code or data out of vast amounts of unknown data. In terms of carv-
ing, differentiating extracted fragments should be possible without any structural
properties like the binary source format or the requirement of recreating a process-
context with the help of structured analysis. Differentiating between code and data
should empower to further transforming or normalizing extracted fragments.

RQ2: What are applicable and interfaceable approaches for differentiating code and data ap-
plied on a considerably large and unstructured bulk of data?
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Detecting known and unknown code structures in large sets of data is a challeng-
ing task. An example is the examination of memory dumps of an infected system.
Memory forensic frameworks rely on system-relevant information and the exami-
nation of structures which are located within a dump itself. With the constantly
increasing size of used memory, the creation of additional methods of data reduc-
tion (similar to those in disk forensics) are eligible. In the field of disk forensics,
Approximate Matching algorithms are well known. However, in the field of mem-
ory forensics, the application of those algorithms is impractical. We introduce an
approximate disassembler named approxis. In contrary to other disassemblers our
approach does not rely on an internal disassembler engine, as the system is based
on a compressed set of ground truth x86 and x86-64 assemblies. Our first prototype
shows a good computational performance and is able to detect code in large sets of
raw data. Additionally, our current implementation is able to differentiate between
architectures while disassembling. To summarize, approxis is our first step to inter-
face Approximate Matching with the field of memory forensics.

MEMORY CARVING. The integration of a preliminary processing step, as well as
the considered context of application, expectedly requires the adaptation of existing
Approximate Matching schemes. To be more specific, the transfer or application
of existing schemes on acquired memory dumps requires the adaptation of those
schemes in terms of parametrization and feature extraction.

RQ3: Under which premise could we interface or extend Approximate Matching as memory
carving technique? Which properties need to be respected and should be considered in
further implementations and parametrizations?

This research presents the fusion of two subdomains of digital forensics: (1) raw
memory analysis and (2) Approximate Matching. Specifically, we describe a proto-
type implementation named mrsh-mem that allows comparing hard drive images
as well as memory dumps and therefore can answer the question if a particular
program (installed on a hard drive) is currently running / loaded in memory. To
answer this question, we only require both dumps or access to a public repository
which provides the binaries to be tested. For our prototype, we modified an existing
Approximate Matching algorithm named mrsh-net and combined it with approxis.
Literature claims that Approximate Matching techniques are hardly applicable to
the field of memory forensics (White, Schatz, and Foo, 2013). Especially legitimate
changes to executables in memory caused by the loader prevent the application of
current bytewise Approximate Matching techniques. Our approach lowers the im-
pact of modified code in memory and shows a good computational performance.

DATABASE LOOKUP PROBLEM. The phase of feature or data chunk extraction
inevitably leads to the question of storing and handling those extracted artefacts.
Several approaches of artefact storages have been introduced in recent years in the
field of DFIR. Thus, an appropriate candidate has to be selected for our specific use
case, considering different aspects of our application.

RQ4: What are suitable candidates for storing extracted artefacts, and how is it possible to
solve important aspects like common-block-handling?

One concept to deal with data overload is data reduction, which essentially means
separating the wheat from the chaff, e.g., to filter in forensically relevant data. Promi-
nent techniques in the context of data reduction are hash-based solutions. Data re-
duction is achieved because hash values (of possibly large data input) are much
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smaller than the original input. Today’s approaches of storing hash-based data frag-
ments range from large scale multithreaded databases to simple Bloom filter repre-
sentations. One main focus was put on the field of Approximate Matching, where
sorting is a problem due to the fuzzy nature of the approximate hashes. A crucial
step during digital forensic analysis is to achieve fast query times during lookup
(e.g., against a blacklist), especially in the scope of small or ordinary resource avail-
ability. However, a comparison within different database and lookup approaches
is considerably hard, as most techniques partially differ in considered use-case and
integrated features, respectively. We discuss, reassess and extend three widespread
lookup strategies suitable for storing hash-based fragments: Hashdatabase for hash-
based carving, hierarchical Bloom filter trees, and flat hash maps (Garfinkel and
McCarrin, 2015; Lillis, Breitinger, and Scanlon, 2017). We outline the capabilities
of the different approaches, integrate new extensions, discuss possible features and
perform a detailed evaluation with a special focus on runtime efficiency. Our results
reveal major advantages for fhmap in case of runtime performance and applicability.
Hbft showed a comparable runtime efficiency in case of lookups, but suffers from pit-
falls with respect to extensibility and maintenance. Finally, hashdb performs worst
in case of a single core environment in all evaluation scenarios. However, hashdb
is the only candidate which offers full parallelization, transactional features, and a
Single-level storage.

CODE CARVING. As it should be clear, hashing fragments of code-related struc-
tures is more or less strongly-related to code-similarity analysis or code-reuse de-
tection. Thus, another important aspect is the adaptation of binary-analysis specific
contextual extraction approaches, i.e., for the task of contextual feature or chunk ex-
traction. We need to inspect the transferability of contextual feature extraction tech-
niques and their integrability in terms of Context-Triggered Piecewise-Hash (CTPH)
techniques.

RQ5: Is it possible to improve or replace existing contextual trigger functions of common
(CTPH-based) Approximate Matching with better suited techniques?

In the field of memory carving, the context-unaware detection of function bound-
aries could lead to meaningful insights. For instance, in the field of binary analysis,
those structures yield further inference, e.g., identifying binaries known to be bad.
However, recent publications discuss different strategies for the problem of function
boundary detection and consider it to be a difficult problem (Andriesse, Slowinska,
and Bos, 2017). One of the reasons is that the detection process depends on a quantity
of parameters including the used architecture, programming language and compiler
parameters. Initially, a typical memory carving approach transfers the paradigm
of signature-based detection techniques from the mass storage analysis to memory
analysis. To automate and generalise the signature matching, signature-based recog-
nition approaches have been extended by machine learning algorithms. We reassess
the application of recently discussed machine learning based function detection ap-
proaches in our context. We analyse current approaches in the context of memory
carving with respect to both their efficiency and their effectiveness. Additionally, we
discuss the capabilities of different function start identification techniques by reduc-
ing the features to vectorised mnemonics.

BINARY MATCHING. As many Approximate Matching schemes are often dis-
cussed as appropriate tools for matching similar malicious or benign binaries, the
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evaluation of our proposed adaptations should be additionally evaluated in this
strongly related field.

RQ6: Can we transfer the newly introduced concepts to the field of binary matching?

Recent research showed major weaknesses of predominant fuzzy hashing tech-
niques in the case of measuring the similarity of executables (Pagani, Dell’Amico,
and Balzarotti, 2018). To summarize, known Context-Triggered Piecewise-Hashing
approaches are not very reliable for the task of binary comparisons, as even be-
nign changes heavily impact the underlying byte representation of an original bi-
nary. Modifications could be caused by benign or malicious source code changes,
different compilers, and changed compiler settings. Approaches based on the ex-
traction of statistically improbable features (Roussev, 2010) or n-gram histograms
(Oliver, Cheng, and Chen, 2013) showed a better detection performance in case of
inexactly matching binaries with varying build settings or source code modifications.
However, the inexact matching of binaries lacks the ability to give more exact infer-
ences, i.e., the ability to highlight offsets changed on a byte-level or slight variations
within a modified binary. We present a new scheme called apx-bin, considering re-
cent research results mainly for the task of binary analysis and binary matching. Our
approach unites exact and inexact matching capabilities. A first comparison of our
approach against four different fuzzy hashing techniques showed major advantages
in nearly all of the mentioned scenarios. Previous research underlines the volatile
nature of schemes in different scenarios. In contrast, our scheme is more robust and
shows stable results across all considered scenarios.

1.3 THESIS OUTLINE

The mentioned research topics of this thesis are structured as follows:

* Give an overview of relevant fields of research:

In Chapter 2 we provide a generous introduction into two important aspects
of our own research: Approximate Matching and Binary Analysis. Each sec-
tion provides a compact overview, a discussion of the current state of the art,
relevant publications, and how they further influenced our own contributions.
In each section, we will introduce the relevant publications and their cross de-
pendencies within the scientific and, especially, the DFIR community. In the
course of Approximate Matching, we will discuss the preliminary use cases,
the possible distinctness of the differing approaches, as well as the applicabil-
ity in the field of binary matching. In addition, we will introduce a well-known
problem of the community, the Database Lookup Problem (DLP). Afterwards,
we will inspect two well-known problems taken over from the field of binary
analysis: the Function Detection Problem (FDP), as well as the Code Detection
Problem (CDP). In addition, the concept for generating a correct and sound
ground truth dataset is discussed.

* Give an overview of the field of memory forensics:
In Chapter 3 we will give a systematic overview of the field of memory foren-
sics which has been advanced by a variety of publications and approaches. We
focus on concepts of unstructured analysis and previous work discussing the
application of Approximate Matching in the field of memory analysis.

e Tackling the problem of code/data discrimination:
In Chapter 4 we will introduce a concept for discriminating code and data by
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considering large amounts of acquired and unknown data, named approxis.
The underlying concept of approximate disassembling or dispatching a byte
stream will be evaluated in three different scenarios: differentiating code and
data, differentiating the architecture, and differentiating the compiler (and par-
tially the version of the compiler).

Introduce Approximate Matching to the field of memory carving:

In Chapter 5 we will present and discuss the possible integration of approxis
into an existing Approximate Matching scheme. The overall goal is to extract
loaded executables within memory; e.g., for determining specific executed ap-
plications or kernel versions.

Discuss replacements for pseudo-random based trigger functions (PRF):

In Chapter 6 the possible adaptation of different function detection approaches
is inspected. In detail the applicability of Recurrent Neural Network (RNN)
or Weighted Prefix Tree (WPT) is discussed in the course of context-sensitive
chunk extraction within existing CTPH approaches.

Reassess different approaches to store and maintain extracted artefacts:
In Chapter 7 we will revisit the Database Lookup Problem and reassess three
different approaches in terms of utility and performance.

Discuss the introduced Dispatcher in the context of binary matching:

In Chapter 8 we inspect the capabilities of an improved feature extraction
phase via approximate disassembling in the course of binary matching. We
therefore evaluate our approach by the adoption of three different scenarios.
In addition, we create an own adversary set of evaluation binaries and bench-
mark our own approach against four predominant fuzzy hashing techniques.

In Chapter 9 we conclude the thesis.
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BACKGROUND AND RELATED WORK

The following chapter discusses the basic and related background of this thesis, as
well as previous research efforts in overlapping disciplines of research.

¢ In Section 2.1, we give a broad overview of Approximate Matching (AM) con-
cepts, also known as fuzzy hashing. We give a short overview of relevant pub-
lications, specific implementations, and selected approaches previously dis-
cussed in the field of malware or binary matching. In addition, we introduce
another important aspect of AM: The Database Lookup Problem.

* In Section 2.2, we introduce problems strongly related to the field of binary
analysis: The problem of correctly disassembling the x86-64 instruction set,
differentiating code from data, and the detection of function boundaries of
stripped binaries.

2.1 APPROXIMATE MATCHING

The following Subsection 2.1.1 gives a short introduction into Approximate Match-
ing and some of its major manifestations. Besides the basic idea and considered
fields of application, the diverse implementations could differ heavily by their un-
derlying concepts and implementations. To understand and better differentiate the
concepts, we have to briefly introduce the considered approaches and their differ-
ences. Therefore, we first give a short summary of the concepts, research paths,
and well-known implementations. Subsequently, we shortly introduce in Subsection
2.1.2 amajor field of application of today’s Approximate Matching concepts: match-
ing, identifying, or clustering (malicious) binaries. Finally, we inspect in Subsec-
tion 2.1.3 one major issue of Approximate Matching suffers in general, the database
lookup problem and the overall handling of block hashes.

2.1.1 Approaches and Taxonomy

Approximate Matching (a.k.a. Fuzzy Hashing) is a so-called Similarity Preserving
Hash Function (SPHF). In contrast to cryptographic hash functions, those functions
determine the similarity of two files. Introduced more than a decade ago to deal with
spam, Approximate Matching is now considered to solve different (digital) forensic
challenges. Approximate Matching is a rather new area of digital forensics and can
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FIGURE 2.1: Approximate Matching: Simplified concept.

be seen as the counterpart to traditional (cryptographic) hash functions, i.e., Approx-
imate Matching algorithms return similar fingerprints for similar inputs. In the fol-
lowing paragraphs we summarize the most relevant approaches and aspects for our
research. In the case of cryptographic hash functions (e.g., SHA-256) small changes
on an input drastically changes the final output digest. This is also denoted as the
avalanche effect. To detect similar files, even after small changes have been applied
on an exact copy, similarity preserving hash functions have been developed. As can
be seen in Figure 2.1, schemes create a similarity digest of an input stream and can
be used to generate a similarity score between two files. Most often a scheme con-
sists of two separated functions: a function to create the digest and a function to
compare two digests. The National Institute of Standards and Technology (INIST)
defines four possible use cases that Approximate Matching techniques could deal
with: similarity detection (1), cross-sharing detection (2), embedded object detection
(3), and fragmentation detection (4) (Breitinger et al., 2014).

A SHORT HISTORY OF APPROXIMATE MATCHING. In recent years plenty of
different approaches have discussed different concepts of providing a similarity pre-
serving hash function in different domains of DFIR. Introducing all of the different
concepts is out of the scope of this work. Figure 2.2 gives a simplified overview
of relevant publications and approaches with a focus on binary matching and mal-
ware detection. A more comprehensive overview and a technical taxonomy is pro-
vided by Harichandran et al. (Harichandran, Breitinger, and Baggili, 2016). The
coloured nodes describe publications proposing new or adapted concepts (light/-
dark red nodes), publications which focus on an overall assessment or summary
of existing approaches (green nodes) and publications which discuss Approximate
Matching in the context of malware or binary matching (yellow nodes).

As can be seen, research on Approximate Matching already began in 2002 with
the creation of the spamsum approach (Tridgell, 2002) to handle the arising amount
of spam. The original spamsum algorithm was an important building block for fur-
ther research and future provided concepts. Even today, ssdeep proposed in 2006
plays an important role in academia, the IT industry, and IT security in general (Ko-
rnblum, 2006). About the same time, Roussev et al. proposed two of their concepts
md5bloom (Roussev et al., 2006) and mrsh (Roussev, Richard III, and Marziale, 2007).
The different approaches and a previous study about the extraction of common fea-
tures in binary data (Roussev, 2009) finally lead to a new approach called Similarity
Digest Hashing (SDHASH) (Roussev, 2010) which is mainly based on the extraction
of statistically improbable features.
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malware matching.
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FIGURE 2.3: Approximate Matching approaches differed by steps of
processing (similar to Ren, 2015).

In the following years, several publications proposed concepts of evaluation, at-
tacks and improvements of existing approaches (Roussev, 2011; Breitinger, Baier,
and Beckingham, 2012; Breitinger and Baier, 2012a; Baier and Breitinger, 2011; Bre-
itinger, Stivaktakis, and Roussev, 2014; Breitinger and Roussev, 2014; Breitinger, Sti-
vaktakis, and Baier, 2013). Most of them led to new or improved concepts, for exam-
ple mrsh-v2, a derivative of the original Multi-Resolution Similarity Hash (MRSH)
approach (Breitinger and Baier, 2012b).

We will give further insights and an detailed explanation of mrsh-v2 and its un-
derlying concept throughout this section, as we used the present implementation for
our own extensions and implementations. Besides the original mrsh-v2 implemen-
tation, additional modifications have been proposed. For example the adaptation in
the course of detecting files via network analysis (Breitinger and Baggili, 2014) and
handling the database lookup problem via the integration of Cuckoo-Filters (Gupta
and Breitinger, 2015) or Hierarchical Bloom Filter Tree (HBFT) (Lillis, Breitinger, and
Scanlon, 2017). In addition to general fuzzy hashing concepts like ssdeep and sd-
hash, Oliver, Cheng, and Chen, 2013 of Trend-Micro proposed a locality sensitive
hashing scheme called Trend Micro Locality Sensitive Hash (TLSH) with an addi-
tional focus robustness in the field of malware analysis. Additional work underlined
the robustness of tlsh considering advanced attacks like randomization (Oliver, For-
man, and Cheng, 2014).

A future research path mainly focused on the applicability of fuzzy hashing for
the task of identifying or matching malicious software (French and Casey, 2012;
Azab et al., 2014; Li et al., 2015; Upchurch and Zhou, 2015). The contradictory and
conflicting conclusions of previous research lead Pagani et al. (Pagani, Dell’Amico,
and Balzarotti, 2018) to a detailed inspection of the different schemes in the context
of matching executable binaries via Approximate Matching. The authors proposed
different scenarios to evaluate and assess the four predominant schemes: ssdeep,
sdhash, mrsh-v2 and tlsh. We will further introduce the discussion and conflicting
findings of the mentioned publications in Subsection 2.1.2.

DIFFERING SCHEMES. The schemes for creating similarity preserving digests
vary in a broad sense and are difficult to formalize in a uniform way. An approach
could be described by its underlying steps of processing: the selection of features and
the creation of the digest. In the following we will briefly discuss the main concepts of
the different schemes, similarly to its visualization shown in Figure 2.3:

¢ In the case of ssdeep (Kornblum, 2006) and mrsh-v2 (Breitinger and Baier,
2012b) the concept of CTPH mainly relies on the extraction of chunks by the
utilization of context-based patterns (e.g., the utilization of a pseudo-random
function). Those chunks are afterwards hashed as a sequence and stored into a
similarity digest. A digest could be represented as a concatenation of the hash
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values (ssdeep) or as Bloom filters (mrsh-v2). In the case of ssdeep, the Lev-
enshtein distance is used to compare two digests with each other. In the case
of mrsh-v2 the Hamming distance is used to compare two or multiple Bloom
filters.

* In contrast, sdhash (Roussev, 2010) is based on the extraction of statistically
improbable features with a length of 64 bytes. The identified bag of features
are hashed into a Bloom filter. The distance between two digests is also deter-
mined with the Hamming distance.

¢ QOliver, Cheng, and Chen (2013) proposed the Trend Micro’s Locality Sensitive
Hashing (TLSH), a scheme also considered in the field of binary analysis. The
scheme extracts six triplets of 5-byte windows in a sliding window fashion.
Thus, a large amount of relatively small features are extracted. The bag of fea-
tures is afterwards hashed into a frequency-based representation. Quantile-
based analysis helps to damp variances beside the n-gram based extraction. A
distance score is calculated by additionally considering identical files and the
file size.

An overview of the different concepts can be seen in Figure2.3. In the case of
ssdeep and mrsh-v2 chunks are extracted as fixed sequences and further processed. In
the case of tlsh and sdhash bags of extracted triplets (tlsh) or bags of extracted blocks
(sdhash) are processed, respectively. It should be clear that bags do not consider the
order of elements. In contrast, sequences consider the order of elements inside of a
chunk. The schemes could utilize different score ranges and measurements. Where
tlsh utilizes a distance range from 0 (identical files) to 1000+, the remaining schemes
(i.e., ssdeep, mrsh-v2 and sdhash) utilize a score between 0 and 100 (where higher
is more similar). The score of tlsh could be normalized to range between 0 and 100.
The thresholds could vary and should be adopted to a specific use case.

MRSH-V2 AND CTPH. From a high level perspective, Approximate Matching
algorithms work as follow. First, the algorithm identifies features where a feature is
usually a substring of the complete input (e.g., chunks of a particular length). These
chunks are then mapped via (cryptographic) hash functions. Lastly, these shorter
strings are then used to build a fingerprint / similarity digest.

For instance, let us have a closer look at algorithms of the mrsh family which
form the basis for this work. These algorithms (e.g., mrsh-v2 Breitinger and Baier,
2012b) consider only the underlying byte sequence of a given input (no interpre-
tation of the byte sequence). The given sequence is divided into chunks of size b
(common values are 64 < b < 320 bytes) . To do so, the algorithm uses a sliding
window that rolls through the sequence byte-by-byte and considers 7 consecutive
bytes at a time. This window is then hashed using a Pseudo Random Function (PRF)
which returns a value between 0 and b — 1. If b == 0, the end of a chunk is identified.
As a consequence, if PRF behaves pseudo random, each chunk has approximately
the size of b bytes. Once the end of a chunk is identified, a Chunk Hash Function
(CHF) is used to compress the sequence (common CHFs are MD5, SHA or FNV-1a).
Lastly, all chunk hashes are translated into a final fingerprint where different algo-
rithms use different concepts. In the case of mrsh-net, a single large Bloom filter is
used which is explained in the following paragraph (Breitinger and Baggili, 2014).

A Bloom Filter is a space-efficient, probabilistic data structure invented by Burton
Howard Bloom in 1970 that consists of an array of m bits all set to zero (Bloom,
1970). In order to insert an element s € S into a Bloom filter, s is hashed using a
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hash function that returns values |(s)| > k - log,(m) bits!. Then, the numeric offset
represented by the first log, (m) bits is used to set the corresponding bit in the Bloom
filter; the second log,(m) bits are used to set the corresponding bit in the Bloom
filter; this is repeated k times. For instance, assuming Bloom filter size m = 64 = 2°
and k = 2, h(s) should return a hash value of at least (2 - log2(64) =) 12 bits, e.g.,
011011 101101. Given that 011011y;, = 274, and 101101;;, = 45,,., bits 27 and 45 of
the Bloom filter are set to one. To verify whether an element s’ is in a given Bloom
filter, it is hashed with the same hash function h. If all corresponding bits in the
Bloom filter are set to one, the element was inserted into the Bloom filter with a
certain probability (there is a chance for a false positive). If one of the bits is zero,
the element was never inserted into the Bloom filter (there are not false negatives).
Specifically, the false positive rate of a Bloom filter is influenced by three parameters:
the size of the filter m, the amount of elements which are inserted into the filter n and
the number of set bits per element k. The probability for a false positive can then be
estimated with the formulas illustrated in Equation 2.1,

Ppp = <1— [1—;]“)](% (1—e_k”/m>k

= (1 - p)k, with (2.1)

1 kn
p—l—(l—m> ,

where p is the probability of a bit being 0, after all n elements have been inserted
(Breitinger, 2014). In order to create the final fingerprint, the first k - log, (m) bits of the
chunk hashes are utilized to set the corresponding bits in the Bloom filter. In other
words, for each chunk k bits are set in the Bloom filter. A summary of the parameters
is provided in Table 2.1.

Parameter \ Description

b Denotes the approximated chunk size

m Denotes the Bloom filter size in bits

n Number of elements inserted into a Bloom filter

k Number of used sub-hashes; each sub-hash defines a bit in the corre-
sponding Bloom filter

TABLE 2.1: Parameters of mrsh-net and their description.

The created fingerprints can be used to estimate the similarity score between two
given files. Different Approximate Matching approaches create different fingerprints
and thus utilize different techniques for similarity calculation. In the course of mrsh
derivatives which utilize Bloom filters as similarity digest, the Hamming distance as
metric is used.

SUMMARY. As concepts of schemes differ heavily, the inference of the similarity
measurements has to be discussed. The short insight into some schemes emphasizes
the fact that obtained scores need to be considered differently. For example, a high
value of similarity in the case of mrsh-v2 states a high similarity in the case of com-
pletely identical byte sequences. A user has to consider that such a score gives more

Note, the original work suggests to use k different hash functions each returning a value between
0 and m — 1. However, we use single hash functions and therefore our explanation differs slightly.
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exact inferences, although it is error-prone in the case of even small changes. It could
be questioned if reducing the capabilities of different schemes to the task of match-
ing two binaries (e.g., binary x equal to binary z) is always sufficient or if we should
strive for a more diversified attestation (e.g., in which offsets have been adapted).

RELEVANCE. Obviously, the application of Approximate Matching concepts to
the field of memory forensics requires the adaptation of existing schemes. Schemes
implicitly damp occurring effects like fragmentation (virtual memory), partially load-
ing (lazy evaluation), or patching (loader). However, components of additional carv-
ing should be considered. We will further inspect past efforts and discussions of
whether Approximate Matching is applicable to the field of memory forensics in
Section 3.

2.1.2 Binary Matching

Research has discussed the utility of the schemes in the context of binary or malware
analysis. A predominant representative in this field is still ssdeep?®. In the past,
evaluations of the different approaches led to unclear results with missing insights.
Most often, matching results have been published without giving any reasoning as
to why specific schemes perform differently for specific scenarios. In addition, test
scenarios could vary widely, depending on the utilized datasets and test methodol-
ogy. An extensive overview of different research was given by Pagani, Dell’Amico,
and Balzarotti (2018). In short, French and Casey (2012) claimed that ssdeep and sd-
hash have varying capabilities to match malicious binaries. Oliver, Cheng, and Chen
(2013) and Azab et al. (2014) emphasized the utilization of tlsh over all competing ap-
proaches. The evaluation of Upchurch and Zhou (2015) disproved those results. The
application of the techniques on selected sections (i.e., on code sections only) also
showed a significant impact (Li et al., 2015). For a more detailed overview of the
different publications, their evaluations, and results we refer to Pagani, Dell’Amico,
and Balzarotti (2018).

Pagani, Dell’Amico, and Balzarotti (2018) enlightened previous observations with
more reproducible results and inferences by the utilization of controlled scenarios.
The authors inspected the capabilities of four different fuzzy hashing techniques in
the context of binary analysis: ssdeep, sdhash, mrsh-v2 and tlsh. Therefore, the au-
thors introduced three different scenarios for measuring the performance of the four
selected candidates. Afterwards, the results have been analysed and insights were
given as to why specific schemes tend to fail in specific scenarios.

In summary, tlsh and sdhash outperformed ssdeep (i.e., CTPH-based techniques)
in many of the proposed evaluation scenarios. Source code modifications or assem-
bly manipulations have small influences on tlsh and its utilized n-gram frequencies.
Varying compiler versions or options have barely any influence on sdhash. Thus,
the recommended approaches could vary for different use cases.

Those results match with previous research discussed for non-binary and binary
samples by Oliver, Forman, and Cheng (2014). The work evaluated the capabilities
of three schemes (i.e., sdhash, ssdeep and tlsh) applied on various types of randomly
manipulated data. The authors focused “on situations where the file is deliberately
modified by an adversary using randomization as the key component”. Noteworthy

2https://www.virustotal.com/ (last access 2021-08-01).
Shttps://www.nist. gov/publications/approximate-matching-definition-and-terminology

(last access 2021-08-01).
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FIGURE 2.4: Overview
of evaluation and test
scenarios proposed by
Pagani, Dell’ Amico,
and Balzarotti, 2018.
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scenarios are (benign) source code modifications and malicious obfuscations (meta-
morphism). The application of locality sensitive hashing (e.g., tlsh) showed a better
performance and was considered as more difficult to exploit.

EVALUATION SCENARIOS. Pagani, Dell’Amico, and Balzarotti (2018) examined
the different schemes through the creation of three different scenarios. An overview
of the different scenarios can be seen in Figure2.4. The first scenario Library Identifi-
cation (I) focuses on the task of detecting embedded object files inside a binary. Five
small example executables were statically-linked against five popular Linux libraries.
All executables are compared against each object file. Denoted as Object-to-Program
Comparison (1.1), the test was performed for the whole executable (.0) and the .text
segment only. The Impact of Relocation (1.2) considers relocations performed by the
linker or dynamic loader. The .text segments after relocation of library object files are
analysed. The original object file, the relocated object file, and the final executable
file are compared against each other.

The results of matching object files to statically-linked executables showed ad-
vantages for sdhash and for mrsh-v2. Due to many small files tlsh struggles. In the
case of ssdeep no single match was found. Again, sdhash showed a stable perfor-
mance in the case of matching relocated code sections. In two of three comparisons
sdhash outperformed tlsh and mrsh-v2. The case of comparing relocated object files
with the original object showed advantages for tlsh. Ssdeep again always generated
zero similarities. The authors note that the relocation changes 10 % of the object
bytes in total and thus, obviously does break most of the features. They also note
that splitting the libraries, linking only a small subset to the executable, discrepan-
cies in the file size and often occurring changes make most of the schemes fail at
least once.

The second scenario covers the detection of the same program after Re-Compilation
(I). First, the Effect of Compiler Flags (I1.1) was inspected, i.e., the program was com-
piled with different flags and the same compiler. A process, which heavily influences
the final structure of the executable on several levels (i.e., 00, O1, O2, O3, Os). Sec-
ond, the impact of compiling the same program with Different Compilers (11.2) was
inspected. The compilation process again causes problems for CTPH to recognize
matching binaries. In the case of differing compiler flags ssdeep is again the worst
performer. In contrast, sdhash yields similarity scores across all optimization levels.
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The authors outline that tlsh showed promising results by accepting a slightly in-
creased false positive rate. For larger files, all the mentioned approaches are outper-
formed by sdhash. An important observation by the authors is the fact that most of
the matches are solely dependent on constant fragments contained in data sections
(e.g., .rodata). Only in some cases, where code remains constant across different
settings, schemes are able to match code-related sections.

The third scenario covers the evaluation of Program Similarity (III). The scenario
consists of three tests which consider adaptations to the underlying code. The test
of Small Assembly Differences (II1.1) randomly inserts an increasing amount of NOP
instructions into a binary (i.e., ssh-client). Moreover, an increasing amount of
instructions are swapped. In the case of Minor Source Code Modifications (IIL.2) the au-
thors suggest the adaptation of the ssh-client application in three different ways: Dif-
ferent Comparison Operator, New Condition and Change a constant value. In the course
of Source Code Modifications on Malware (II1.3) two real-world malware samples are
evaluated. The source of Mirai (Linux) and Grum (Windows) are adapted in three
different ways: C&C Domain Adaptation, Evasion and New Functionality.

The insertion or swapping of just ten instructions showed a major impact on the
score values of ssdeep, mrsh-v2, and sdhash. Even two simple NOP instructions
could cause ssdeep scores to drop to zero. The authors discussed three major fac-
tors: compiler-optimized paddings between functions, linker-based paddings at the
end of sections and the positioning of the instructions. Increasing paddings are addi-
tionally causing section shifts and thus, all global references are updated (including
jump tables). In contrast, tlsh kept promising high similarity rates, because of its
underlying frequency-based nature of n-grams.

SUMMARY. Recentresearch enlightens the reasons for failure in the case of CTPH-
based binary analysis. The authors gave reasons for the fluctuating evaluation re-
sults of previous research. Considering the functionality of CTPH (i.e., ssdeep or
mrsh-v2) and a reasonable amount of occurring changes, those results are plausible.
As we will outline later, the byte-wise extraction of fixed sequences is error-prone. We
could conclude that CTPH was doomed in the field of extended binary matching, as
the overall target domain implies manifold possibilities of variation. Especially in
the field of malware analysis, where code authors have a motivation for obfuscation
and modification to evade signature-based analysis, those concepts will struggle. In
the case of the different evaluation scenarios we can summarize the main findings
of existing research: First, the distinction between data and code is of crucial impor-
tance and has an overall impact on the final inferences. Second, even small changes
on the (source) code of samples or additional insertions influence the overall binary
and code structure in a broad way. This especially has a great impact on CTPH-based
approaches. To summarize, sdhash and tlsh clearly outperformed CTPH schemes.
Each have their strengths and weaknesses in different disciplines.

RELEVANCE. We consider the task of matching executables or fragments of exe-
cutables as an important aspect of further applications to the field of memory foren-
sics. Carving segments of executed binaries out of memory not only has to consider
the challenges of its application domain, namely physical memory, but also the chal-
lenges of malicious or benign differences on a binary level itself. We should addi-
tionally underline the relevance of the proposed evaluation binaries and scenarios.
We will extend the original evaluation data set with binaries processed by additional
modification passes, revealing additional weaknesses in existing schemes. Consid-
ering the fact that the x86 instruction set remains Turing-complete, even reduced to
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a single instruction, we additionally want to stress the fact that sooner or later all of
the considered schemes will reach their boundaries of application (Dolan, 2013).

2.1.3 Database Lookup Problem

Approximate matching (a.k.a. fuzzy hashing or similarity hashing) is a common con-
cept across the digital forensic community to do known file / block identification in
order to cope with the large amounts of data. However, due to the fuzzy nature of
approximate hashes current approaches suffer from the Database Lookup Problem (Bre-
itinger, Baier, and White, 2014). This problem is based on the decision of whether a
given fingerprint is a member of the reference dataset. The general database lookup
problem is of complexity O(n) in terms of the number of queries and hence expo-
nential. To address this problem, techniques have been proposed such as multiple
Bloom filters, a single large Bloom filter, a Cuckoo Filter or Hierarchical Bloom Fil-
ter Tree (Harichandran, Breitinger, and Baggili, 2016; Lillis, Breitinger, and Scanlon,
2017).

Besides the complexity, an investigator has to deal with common blocks which
makes the identification of the correct match hard (Garfinkel and McCarrin, 2015).
The extraction and correct assignment of a specific data fragment is of crucial impor-
tance, i.e., those identified chunks allow the inference of the original source (e.g., a
potentially malicious file or a media file). Specifically, different files of the same type
or application often share a non-negligible amount of common blocks, e.g., file struc-
ture elements in the file header. This leads to multihits. Hence, those blocks or chunks
are not suitable for a unique identification of a specific file. To avoid this problem,
lookup strategies should consider additional mechanisms to handle common blocks,
e.g., by integrating functions of filtration or deduplication. Those requirements in-
fluence the applicability of a specific lookup strategy. The consideration of common
blocks also influences the results of higher level analysis. An example is Approxi-
mate Matching used for the task of identifying similar binaries or detecting shared
libraries (Liebler and Breitinger, 2018; Pagani, Dell’ Amico, and Balzarotti, 2018).

We introduce three widespread lookup strategies suitable for storing hash-based
fragments which have been proposed and are currently utilized in the field of digital
forensics.

1. hashdb: In 2015, Garfinkel and McCarrin (2015) introduced Hash-based carving,
“a technique for detecting the presence of specific target files on digital media
by evaluating the hashes of individual data blocks, rather than the hashes of
entire files”. Common blocks were identified as a problem and have to be
handled or filtered out, as they are not suitable for identifying a specific file. To
handle the sheer amount of digital artefacts and to perform fast and efficient
queries, the authors utilized a so-called hashdb. The approach was integrated
into the bulk-extractor forensic tool. Both implementations have been made
publicly available®.

2. hbft: In the scope of Approximate Matching, probabilistic data structures have
been proposed to reduce the amount of needed memory for storing relevant
artefacts. Approaches to store artefacts comprise multiple Bloom filters (Bre-
itinger and Baier, 2012b), single Bloom filters (Breitinger and Baggili, 2014) or
more exotic Cuckoo filters (Fan et al., 2014; Gupta and Breitinger, 2015). One
major problem of probabilistic data structures is the fact of losing the ability to

“https://github.com/simsong/ (last access 2021-08-01).
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actually identify a file. In 2014, Breitinger, Rathgeb, and Baier (2014) provided
a theoretical concept of structured Bloom filter trees for identifying a file. In
2017, a more detailed discussion and concrete implementation was provided
by Lillis, Breitinger, and Scanlon (2017). The approach is based on “the well-
known divide and conquer paradigm and builds a Bloom filter-based tree data
structure in order to enable an efficient lookup of similarity digests”. This leads
to Hierarchical Bloom filter trees (hbft).

3. fhmap: In 2018, Malte Skarupke presented a fast hash table called flat hash map®
(fhmap). The author claims that the implementation features the fastest lookups
to date. A hash table features a constant lookup complexity of O(1) given a
good hash function. The database implementation provides an interface for
accessing the hash table itself, however, it does not feature any image slicing,
chunk extraction or hashing. Thus, in order to utilize and evaluate fhimap in our
context, it has to be extended by additional concepts to extract data fragments
comparable to Hash-based carving or fuzzy hashing.

SUMMARY AND RELEVANCE. Indigital forensics the storage of forensic corpora
is often discussed. Proposed approaches for artefact handling incorporate manda-
tory and non-mandatory features. Mandatory features in our considered use case
are common block filtration and deduplication. In addition, techniques and imple-
mentations of closely related fields are also relevant and considerable. However, a
direct comparison of the different approaches is hard. Besides offered features, a
comparison in terms of performance and required resources is also relevant.

2.2 BINARY ANALYSIS

In this section we will introduce well-known problems in the field of binary analy-
sis. Problems of relevance for this work, usually considered for the task of reverse
engineering an unknown binary are as follows: First the following Subsection 2.2.1
gives a short introduction into the challenge of correctly disassembling x86-64 bina-
ries. Afterwards, we will introduce the problem of reliably differentiating between
code and data fragments in Section 2.2.2. Subsequently, we give required insights
into the problem of function detection in Section 2.2.3. Research efforts of all of the
aforementioned problems rely on the creation of a reliable set of ground truth bina-
ries. In Section 2.2.4 we will introduce different aspects of establishing a reliable set
of x86-64 ground truth binaries.

2.2.1 Disassembling x86/x64 Instruction Set

We first give a short introduction to the x86 encoding scheme and the fundamentals
of disassembling. Disassemblers are used to transform machine code into a human
readable representation. In the field of binary analysis and reverse engineering the
demands and requirements of a disassembler engine are clearly identified. With the
x86 instruction set, these tools have to deal with variable-length and unaligned in-
struction encodings. Additionally, executable sections could be interleaved by code
and data sequences. As Wartell et al. (2011) already described, this system design

5“You Can Do Better than std::unordered_map: New and Recent Improvements to Hash Ta-
ble Performance” presented by Malte Skarupke at C++Now in 2018; https://probablydance.
com/2018/05/28/a-new-fast-hash-table-in-response-to-googles-new-fast-hash-table/ (last
access 2021-08-01)
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Mod Reg R/M Scale Index Base

Bits: 76 543 210 76 543 210
Prefix Opcode  ModR/M SIB Displacement  Immediate
Bytes: 0-4 1-3 0-1 0-1 0,1,2,4,8 0,1,2,4,8

FIGURE 2.5: X86 Machine Instruction Format

trades simplicity for brevity and speed. In short, the process of disassembly in gen-
eral is undecidable (Wartell et al., 2011; Andriesse et al., 2016). As can be seen in
Figure 2.5, the x86 instructions are defined by sequences of mandatory and non-
mandatory bytes. The Reg field of the ModR/M byte is sometimes used as an addi-
tional opcode extension field. Prefix bytes could additionally change the overall
instruction length. For further details we refer to the Intel Instruction manual®.
Recent research of linear disassemblers has shown the significant underestima-
tion of linear disassembly and the dualism in the stance on disassembly in the liter-
ature (Andriesse et al., 2016). A more exotic form are length-disassemblers, which
could be understood as a limited subset of linear disassemblers extracting only the
lengths of an instruction. Besides the classical linear and recursive disassemblers,
Shah (2010) introduced an experimental approach of fast and approximate disas-
sembly. The approach is based on the statistical examination of the most frequent
occurred mnemonics. A set of extracted sequences of mnemonics have been used to
create a lookup table of predominant bigrams. With the help of this table, a fuzzy
32bit decoding scheme was proposed, which established a decent performance.

SUMMARY AND RELEVANCE. An important aspect of memory forensics is the
extraction and analysis of code-related fragments. We further introduce the concept
of approximate disassembling in the course of this work: the detection and extrac-
tion of sequences of code out of a large amount of unknown data (e.g., a previously
acquired memory dump) via approximate interpretation of a processed bytestream.
An approximate disassembler should process large amounts of unknown data. This
desire clearly is contrary to the goal of classical disassembler engines, where com-
putational performance is often understood as a secondary goal. Thus, we ignore
approaches like recursive traversal, as this would implicate an impractical layer of
computational overhead. The development and the maintenance process of disas-
semblers is somewhat cumbersome and tedious. Even the lookup tables of a simple
length-disassembler have to be maintained. This should be additionally considered.

2.2.2  Differentiating Code from Data

Several publications presented in the course of binary analysis discuss approaches
to differentiate code from data. In 2011, (Wartell et al., 2011) introduced a ma-
chine learning-based approach, disassembling and splitting x86 binaries into sub-
sequences of bytes and classifying them as code or data. The approach uses a sta-
tistical data compression technique. The classification of the segments is performed
with the minimum cross-entropy, identifying transitions between code and data seg-
ments. The classification makes use of a language model and different semantic
heuristics to reclassify each segment as data or code.

Shttps://software.intel.com/en-us/articles/intel-sdm (last access 2021-08-01).
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Zwanger, Gerhards-Padilla, and Meier (2014) introduced Codescanner, which
can process an arbitrary input and detects code within different filetypes. The ap-
proach does not perform any disassembling of the input and uses different x86 con-
straints. The approach performs steps of data-prefiltering, byte-spectrum analysis,
and code-pattern analysis. Several steps of prefiltering are additionally used, e.g., to
ignore zero-byte paddings or high-entropy areas. During the byte-spectrum analysis
a heuristic approach is used in contrast to a statistical approach, presuming “differ-
ent semantic groups as being essential to the functionality of code”. The classifica-
tion step is performed by the “scarcity” of certain (opcode) bytes in code, expressed
by a code score ratio specifying the quotient of frequent and rare bytes. In addition,
common code patterns are taken into account, e.g., stack frames, function return
sequences, and padding bytes.

In 2018, De Nicolao et al. (2018) introduced an approach called ELISA, “a tech-
nique to separate code from data and ease the static analysis of executable files”. In
addition, the approach performs a step of Instruction Set Architecture (ISA) identifi-
cation. The approach showed a high accuracy in terms of identifying code sections
on a byte-level.

SUMMARY AND RELEVANCE. The problem of identifying code structures in
large sets of binary data could be misleadingly compared with the problem of iden-
tifying interleaved data within code sections of a single executable. The major goals
of our approach are the fast identification of code fragments, and in the best case, the
approximate disassembly of those chunks to perform additional steps of normaliza-
tion. Most of the introduced approaches obviously overlap with our further research
ambitions. However, are not directly applicable in our context.

2.2.3  Function Detection Problem

The analysis of unknown binaries often starts with the examination of function bound-
aries. Functions are a fundamental structure of binaries and most often an initial
starting point for advanced code analysis. As an important structural component of
code, they give a schematic representation of the original high level semantics and
provide a basis for further inferences. Whereas disassemblers are capable of reliably
decoding the instructions of a binary, the problem of function detection is still an
ongoing field of research. Binary analysis research claims that the problem is not
yet fully solved. New techniques tend to improve in performance and generalizabil-
ity, i.e., by the introduction of compiler- or even architecture-agnostic approaches
(Potchik, 2017, Andriesse et al., 2016; Andriesse, Slowinska, and Bos, 2017; Shin,
Song, and Moazzezi, 2015; Bao et al., 2014). Functions are used to infer the function-
ality of a given binary and thus, could be used to identify an unknown sample. In
more general terms, two binaries that share many similar functions are likely to be
similar as well (Jin et al., 2012). To summarize, functions could be used to identify,
distinguish or interpret unknown code sequences.

Besides the field of extended binary analysis, the detection of function bound-
aries is implicitly relevant for other application domains. However, depicting the
correct function detection technique requires considering the present environmen-
tal circumstances and constraints, e.g., in the context of memory carving most often
only signature-based approaches are applicable. The examination of process-related
code fragments is obviously one major benefit of memory-based forensical investiga-
tions. After successfully reconstructing the running binary out of a process context,
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steps of binary analysis and reverse engineering are applicable (Ligh et al., 2014).
The reconstruction could be hindered by malicious or legitimate changes. Addition-
ally, remaining fragments of already terminated processes are possibly ignored, due
to missing structural properties. In the case of Linux operating systems the gener-
ation of an adequate memory profile could be cumbersome. The continuous devel-
opment of operating system internals and its related structures require the constant
maintenance of interpretive frameworks. Thus, even if the interpretation of oper-
ating system related structures is a fundamental component of memory analysis,
carving could give a first solid impression or even be a last resort during examina-
tion.

In the course of function detection, machine-learning approaches have been pro-
posed, which are trained to recognize signatures located in function prologues or
epilogues (Shin, Song, and Moazzezi, 2015; Bao et al., 2014). Static function pro-
logue signature databases have to be maintained over time and the detection per-
formance of those techniques rapidly decreases for highly optimized binaries (Ea-
gle, 2008; Guilfanov, 2012). Machine-learning-based approaches try to generalize
this task and automate the process of signature detection. Besides those signature-
related approaches, Andriesse, Slowinska, and Bos (2017) introduced a compiler-
agnostic approach in the context of extended binary analysis, which is mainly based
on structural Control Flow Graphs. Moreover, their research showed significant con-
cern for all top-tier work on machine-learning-based approaches, mainly caused by
the usage of a biased dataset.

LINEAR FUNCTION DETECTION. Considering the function identification pro-
cess in the field of memory carving, the conditions exclude most of the extended
and agnostic approaches. Those have been proposed in the field of extended binary
analysis and require steps of binary lifting, control flow analysis or value-set analy-
sis. In the course of memory carving, we further denote suitable function detection
approaches as linear techniques. Those approaches do not rely on the reconstructabil-
ity of binaries and could also be used for context-unaware memory analysis.

The enumeration of unknown functions was first established with the genera-
tion of signature databases. Signature databases focus on proprietary compilers, as
open source compilers create an unmanageable diversity of function prologues (Ea-
gle, 2008; Guilfanov, 2012). Especially in the case of Linux operating systems, a
database lookup of saved signatures during carving a memory image would not be
feasible. In Bao et al. (2014) a Weighted Prefix Tree (WPT) was introduced to poten-
tially identify function start addresses. Therefore, they “weight vertices in the prefix
tree by computing the ratio of true positives to the sum of true and false positives
for each sequence” in a reference data set. The authors additionally introduce an
additional step of normalization, which improves precision and recall. The authors
created a set of 2,200 Linux and Windows binaries. The executables were generated
with different build settings, i.e., the authors used GNU gcc, Intel icc and Microsoft
Visual Studio. In addition, different optimization levels were selected during build
time. Their approach, called Byteweight, was also integrated into the Binary Analy-
sis Platform (BAP)’ .

In Shin, Song, and Moazzezi (2015) the authors provide an approach for func-
tion detection based on artificial neural networks. The paper proposes a function
detection technique with the help of Recurrent Neural Networks. In contrast to our
work, the approach of Shin, Song, and Moazzezi (2015) was performed without an

"https://github.com/BinaryAnalysisPlatform/bap (last access 2021-08-01).
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Source System Description (ELF, Linux)
WIN | LIN | OSX
Byteweight | v v X | ELFs (129): coreutils, binutils and findutils; used by
Bao et al. (2014) and Shin, Song, and Moazzezi (2015);

Nucleus v | v/ | X |ELFs (521): real-world applications and the SPEC CPU2006
Benchmark Suite; see Table 2.3 for details;

CGC Corpus| v | v | v |ELF binaries of custom-made programs specifically de-
signed to contain vulnerabilities;

TABLE 2.2: Overview of exiting ground truth and evaluation dataset
similar to Potchik (2017).

additional step of disassembling or normalization. The authors point out that the
tracking of function calls over large sequences of bytes is not feasible. In fact, recog-
nizing entry and exit patterns by training with fixed-length subsequences is eligible.
For training and testing, the work is based on the same data set provided by Bao
etal. (2014).

Andriesse, Slowinska, and Bos (2017) claim that the work of Shin, Song, and
Moazzezi (2015) and Bao et al. (2014) suffers from significant evaluation bias, as the
most of the samples contain large amounts of similar functions. The authors addi-
tionally mention that the viability of machine learning for function detection is not
yet decided. The publication proposes a compiler-agnostic approach called Nucleus,
which is mainly based on the examination of advanced control flow analysis and
does not rely on any signature information.

Potchik (2017) introduced the integration of Nucleus in the Binary Ninja Revers-
ing Platform® and proposes multiple strategies over multiple analysis passes rather
than just relying on heuristics. The author mentions the possible reduction of com-
plexity and scope reduction, by applying the technique with the highest confidence
first. Similar to other fields, the approach proposes “a method to interpret the se-
mantics of low-level CPU instructions” by the utilization of value-set analysis. The
process of value-set analysis is performed on an extended intermediate language
and thus should be architecture agnostic.

SUMMARY AND RELEVANCE. As we want to inspect code fragments in large
amounts of data within a sliding window, many of the considered approaches are
not applicable in our context or at least need to be modified. Thus, we have to con-
sider the linear characteristic of our application, which in turn leads us to a signature-
based or machine-learning-based approach like WPT- or RNN-based approaches.

2.2.4 Reliable Ground Truth Binaries

In recent publications, different sources of ground truth binaries have been proposed
and criticized. In this paragraph we give a short overview of the different sources
and outline some details of capacity and source. As we focus on the domain of Linux
executable binaries, we formally introduce ELF binaries contained in different test
suites. A comprehensive overview of the different test suites is given in Table 2.2
which have been public available’ at the time of writing.

8https://binary.ninja/ (last access 2021-08-01).
9https://github.com/Vector35/function_detection_test_suite, https://github.com/
trailofbits/cb-multios, http://security.ece.cmu.edu/byteweight/ (last access 2021-08-01)
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samples| arch |compiler|language| optimization

32|64 |gcc/llvm| C | C++|00|01|02]03|0S
SPEC| vV |V |V | V |V | V |V |V |V |V |V
glibc| X |V |V | X [ X | X | X | X|X|X]|X
server| vV |V |V | V [ X | X [ X|X|X|X]|X

| count|[200[321[321] 200 [360] 140 [100[100][100[100[100]

TABLE 2.3: Overview of Nucleus (ELF) ground truth obtained by An-
driesse et al. (2016) (gcc-510, 1lvm-370).

The work of Bao et al. (2014) and Shin, Song, and Moazzezi (2015) are criticized
by Andriesse, Slowinska, and Bos (2017) for using a biased data set, with a large
amount of overlapping and similar functions. Andriesse et al. (2016) outlined that
the average binary in their SPEC-based test suite contains less than 1 % of shared
functions, not considering bootstrap functions. We base our analysis on the data
set introduced by Andriesse et al. (2016) and perform a detailed examination of the
function structures in Section 6.1.4.

The Nucleus data set consists of approximately 4.2 GiB precompiled ELF files
and its corresponding ground truth assembly structure. The process of data set gen-
eration depends on some major parameters: operating system, instruction set archi-
tecture, language, compiler, and optimization level. The 521 binaries consist of the
SPEC CPU2006 Benchmark Suite and some real-world applications written in C and
C++. The samples are compiled for x86 and x64 with five different optimization
levels (O0-O3 and Os). The set contains dynamically and statically linked binaries,
where some of them are stripped and some are equipped with symbols. For further
details on the construction of the ground truth we refer to Andriesse et al. (2016). An
overview of the binaries is given in Table 2.3.

SUMMARY AND RELEVANCE. In the realm of binary analysis, several datasets
have been proposed and utilized in recent literature. Besides the size and diversity
of proposed ground truth datasets, the quality and usefulness has to be considered
as well. Several binary-related properties, like function size or function prologue
distribution, should be considered and need to be determined.



23

SYSTEMATIZATION OF MEMORY FORENSICS

In this chapter we provide a comprehensive overview of past research efforts in the
tield of memory forensics. We therefore categorize different publications by their ap-
proximate type of contribution. We will further describe the mentioned categories
in detail in Section 3.1 and introduce the raw results of our systematization. After-
wards, we will outline in Section 3.2 different aspects of unstructured analysis by
selected publications. In Section 3.3 we will introduce research discussing the appli-
cability of Approximate Matching in the field of memory forensics. Finally, we will
define two major research boundaries, which have to be respected in the course of
this work in Section 3.4.

3.1 CATEGORIES OF SYSTEMATIZATION

Considering the subfields of research and the ever changing historical relevance, sev-
eral ways of differentiation are imaginable. We propose a differentiation by eight
categories: Analysis Type (AT), Target System (TS), Acquisition (AC), Inconsisten-
cies (IN), Artefact Type (AR), Obstacles (OB), Aspects (AP), and Tool/Framework
introduction (FW).

¢ Analysis Type (AT). We distinguish the approaches by their general core func-
tionality. First, the analysis based on interpretation of structures called Struc-
tured Analysis (S). Most tools and frameworks utilize structured analysis, i.e.,
the software interprets the complex system related structures. In detail, the
frameworks deal with different formats of acquisition, the concepts of virtual
memory management, the present architecture and the operating system (OS)
related structures. Memory profiles are used to close the semantic gap and are
required to perform a structural examination.
Second, the extraction of artefacts via concepts of Memory Carving or Unstruc-
tured Analysis (U). There are also tools for unstructured analysis to extract in-
formation out of memory dumps. Those tools are important for different tasks
like string or key extraction. Carving memory has the advantage of being more
robust against malicious evasion or domain specific deallocations of important
structures. In addition, those tasks can achieve a high IO throughput, are well
parallelizable and offer a fast access to valuable insights.

¢ Target System and Platform (TS). Another criteria to differentiate publications
is by their considered target, i.e., operating system and platform. In this con-
text, the target systems vary over time, significantly influenced by relevance
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and popularity. The most important operating systems are obviously Win-
dows (W), Linux (L), and Mac OS X (M). In addition, mobile devices received
increasing attention due to their rapidly growing popularity and market dom-
inance. We further consider Android (A) and Symbian (S) for mobile memory
forensics research.

Acquisition Type (AC). Because of its criticality and importance, much effort
was invested in researching and assessing new and existing acquisition meth-
ods. A wide variety of acquisition methods have been researched, discussed,
and further developed in recent years besides the analysis of Live (L) systems.
Basically, we can differentiate a form of acquisition in terms of a software-
based (S) or hardware-based (H) technique. Hardware-based techniques in-
clude, for example, the use of DMA-based (D) attacks. A technique based on
both hardware- and software-based aspects is the acquisition via cold boot (C),
which exploits the remanence properties of main memory to extract data from
RAM after a reboot. Some techniques require the installation of the acquisition
procedure prior to the actual occurrence of an incident. These pre-installed (P)
techniques can include both hardware- and software-based procedures. An
important form of acquisition and the reliable basis for the development of
tools is the acquisition of virtualized system (V). Virtualization-based acquisi-
tion methods represent one of the most atomic acquisition methods available.
Various features of the operating system perform the copying of special mem-
ory areas, for example, in the case of swapping (W) or hibernation (I). Crash
dumps (R) and caches (A) introduce other data sources to be considered. Other
forms of acquisition can be based on exploiting vulnerabilities (U), memory
page tables (T), or the utilization of customized firmware (F). Many of the ap-
proaches support the transfer of acquired data over network (N). The relevance
and importance, as well as the correctness, of the techniques have been further
discussed (D) in a large body of work.

Deals with Inconsistencies (IN). Considering the different sources and meth-
ods of acquisition, as well as the volatile nature of working memory, the han-
dling of inconsistencies plays an important role in today’s research. The persis-
tence (P) of artefacts within the memory over the actual time of use has been
inspected, trying to answer the question of how long artefacts remain in main
memory under different conditions. Inconsistencies caused due to the volatile
nature of the main memory and the acquisition of a running target system are
often denoted as memory smearing (S). In addition, we consider inconsisten-
cies caused by the swapping of memory fragments (W) or effects caused dur-
ing the process of hibernation (I). Established concepts of the operating system
such as lazy evaluation (L) or newer mechanisms such as memory compres-
sion (C) have also been considered. Another important aspect is introduced
inconsistencies caused by a selected acquisition method itself, considering the
integrity of the acquired dump and the footprint (F) of the respective acquisi-
tion method.

Artefact Type (AR). The progress of the research is largely tied to the needs of
the analysts, with their enhancements forming the foundation for further im-
plementations. The continuous extraction of new artefacts probably plays one
of the most important and obvious roles in differentiating the various works.
These artefacts include, for example, (open) files (F), network connections (N),
(terminated) processes (P/T), media such as images or videos (V), databases
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(D), kernel modules and drivers (K), pool allocations (O), timelines (T), keys
and passwords (E), log files (L), communications (C), command history (N),
GUI fragments (G), command line arguments (A), clipboard (B), environment
variables (E), user sessions (U), browser artefacts (R), handles (H), memory
mappings (M), stack artefacts (S), and heap (h).

* Obstacles (OB). Besides challenges considered in terms of inconsistencies, re-
searchers and practitioners address other roadblocks caused by malicious in-
tentions or by different system-dependent extensions: anti-memory forensics
(A), OS security features (S), OS extensions and kernel extensions (E), profile
creation and initialization (P), malicious software (M), DKOM-based obfusca-
tion (D), device-specific challenges (V), and kernel fingerprinting (F).

* Aspects (AP). The category of general aspects includes publications about top-
ics like virtualization (V), machine learning (M), user space analysis (U), appli-
cation analysis (A), visualization (Z), correlation (C), formats (F), jurisdiction
(L), ground truth generation (G), de-anonymization (D), and surveys (S). In
the course of this thesis, we are especially interested in publications, address-
ing the applicability of cryptographic hash functions (H) and concepts of fuzzy
hashing (Y) in the field of memory forensics.

* Tool and Frameworks (FW). The majority of publications are proposed with
additional proof of concept implementations (I) and framework extensions.
Those extensions (E) could be implemented for existing frameworks like Volatil-
ity (V) or Rekall (R).

Table 3.1 is a comprehensive overview of all considered publications (P) and their
specific categorization. Beside the mostly peer-reviewed publications, we addition-
ally consider selected talks (T) from relevant and impactful conferences. Awarded
publications (A) are additionally highlighted.
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TABLE 3.1: Overview of different publications in the field of memory

forensics sorted by year of publication and last name of the first au-

thor. Columns: Target System (TS), Analysis Type (AT), Acquisition

(AC), Inconsistencies (IN), Obstacles (OB), Aspects (AP), Implemen-
tation (FW), Artefact (AR).
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As shown in Table 3.1, an ambitious and broad community has continuously ad-
vanced the field of memory forensics. Different aspects, problems, and applications
of the field are steadily further developed. Aspects and topics of interests change
over time and adopt to current environmental changes, e.g., target-specific updates.

3.2 UNSTRUCTURED ANALYSIS

The community and industry came up with different solutions for the analysis of
acquired memory dumps, which can be differentiated into one of two major cate-
gories: memory carving (unstructured analysis) or structured analysis. Considering
the field of unstructured analysis, several different approaches have been proposed:

MEMORY CARVING. In the beginning of memory forensics, analysts extracted
important and meaningful OS-related structures out of the memory dump by the
previous identification of robust signatures. In 2006, Schuster presented his tool
PTFinder, a tool which utilized different signatures in the header of pool tags to
identify those allocations (Schuster, 2006b). The approach has further been extended
with a pool scanner for network connections and the researcher formulated founda-
tional rules for pool-carving for Windows operating systems (Schuster, 2006a). In
2008, Hargreaves and Chivers introduced an approach to extract TrueCrypt encryp-
tion keys by linear scanning an image. The approach analyses every position within
an image and tries to extract possible key structures according to a predefined pat-
tern.

Considering the importance of signature-based analysis, the creation of robust
signatures in the case of kernel data structures has been further inspected by Dolan-
Gavitt et al. (2009), who presented an automated approach for generating robust
signatures of kernel data structures. The researchers created profiles of commonly
used fields and analysed their overall impact on the system stability.

Carving has been further discussed in recent years, for example to extract the
command prompt history (Stevens and Casey, 2010), network-related artefacts (Bev-
erly, Garfinkel, and Cardwell, 2011), visual content (Saltaformaggio et al., 2015b),
Linux kernel versions (Bhatt and Ahmed, 2018; Roussev, Ahmed, and Sires, 2014),
and documents (Al-Sharif, Bagci, and Asad, 2018).
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APPLICATION OF YARA. The application of a YARA! rule as signature-based
analysis for the examination of memory was recently discussed by Cohen (2017).
The research underlines the idiosyncrasies, pitfalls, and needed adaptations for ap-
plying signatures to this domain. The author described a context-aware scanning
scheme on the physical address space using the Windows Page Frame Number
(PFN) database, which could be used to map each physical page to a corresponding
process. By the examination of physical memory dumps, the approach still gains a
reasonable performance, which is caused by an optimized IO throughput. Contrary
to the application on hard disk images the authors discuss the applicability, expand-
ability, and required adaptations of pattern matching rules in the course of memory
analysis.

HASH TEMPLATES. Research proposed in 2008 (Walters, Matheny, and White,
2008) and 2013 (White, Schatz, and Foo, 2013) covered the utilization of crypto-
graphic hash functions to perform code integrity checks, tamper detection, whitelist-
ing, and blacklisting. Existing work addresses the problem of identifying known
code by hashing normalized portions of code in memory. A short survey of exist-
ing approaches was given by White, Schatz, and Foo (2013). As proposed by Wal-
ters, Matheny, and White (2008), offsets of variable code fragments have been used
to normalize and hash executables on a page level. A database of hash templates
was created which consists of hash values and their corresponding offsets. These
hash templates are applied on the physical address space. The comparison between
each template and each page lead to a complexity of O(n - m) for a comparison of
n templates against m memory pages. Researchers (White, Schatz, and Foo, 2013)
extended the approach and tried to improve the naive all-against-all comparison in-
troduced by Walters, Matheny, and White (2008). Therefore, they applied the hashes
on virtual memory pages and used structures in memory to identify a process. By
identifying a process, the lookup of a corresponding hash template could be per-
formed efficiently. Before creating the hash values, the introduced approaches con-
vert a present executable from disk to its state in memory and normalize it. The
conversion of disk-stored image files to a virtual loaded module was accomplished
with the help of a virtual Windows PE Loader. The identification of variable offsets
by imitating the loading process of an executable seems legitimate. A normalization
based on previously disassembling a present sequence of bytes in memory was not
mentioned by the authors. A public available Volatility plugin? provides a whitelist-
ing similar to White, Schatz, and Foo (2013). The approach performs a lookup on
a page level of executables. Therefore, the memory is processed and sent to a hash
server. In contrary to White, Schatz, and Foo (2013), the lifting of the code is per-
formed on the server, which creates integrity hashes with the help of the virtual
address of the process.

HASH-BASED CARVING. Considering the field of memory forensics and its in-
troduced conditions, we inspected approaches that are related to our task of iden-
tifying fragmented code structures. Garfinkel and McCarrin (2015) presented an
approach that covers the main considerations and pitfalls of our work in general
terms. In contrast to a whole-file hashing, a concept called hash-based carving was
introduced, which can identify files that are fragmented, files that are incomplete,
or files that have been partially modified. The publication covers similar aspects of

Ihttps://github.com/VirusTotal/yara (last access 2021-08-01).
2https://github.com/K2/Scripting/blob/master/inVteroJitHash.py (last access 2021-08-01).
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our work within a general scope. The approach is mainly considered in the field
of sector-based volumes and the sliding-window-based extraction is sized to 4 KiB.
The overall process is computationally demanding but highly parallelizable. The
authors make use of a previously introduced hashdb (Young et al., 2012) and out-
line their real-world experience by the utilization of hash-based carving. A major
contribution of the work is the discussion of classifying blocks and the negative im-
pact of common blocks, which are often shared between different documents. Their
work shows the problem of a high false identification rate caused by large amounts
of shared blocks within the processed document classes.

3.3 APPLICATION OF (FUZZY) HASHING

Different authors mentioned or questioned the application of Approximate Match-
ing in the course of memory forensics (White, Schatz, and Foo, 2013; Ligh et al.,
2014). In the specific case of matching executables on disc to its counterpart loaded
in memory, most of the authors doubt the usefulness of cryptographic hash func-
tions on the raw sequences in memory. One major reason are legitimate changes to
the code sequences caused by the loading process itself. However, the application
of Fuzzy Hashing was considered as possible and relevant for further research. As
already introduced, Approximate Matching algorithms can be used to detect simi-
larities among objects, but also to detect embedded objects or fragment of objects
(Breitinger and Baier, 2012b; Roussev, Richard III, and Marziale, 2007). Investiga-
tors can use it to distinguish between non-relevant and relevant fragments in large
sets of suspicious data. In the course of memory forensics this approach would
obviously struggle with volatile instruction operands and updated byte-sequences.
Current Approximate Matching techniques constantly evolve, e.g., by the integra-
tion of better lookup strategies like Cuckoo Filters (Gupta and Breitinger, 2015) and
have already found their way into the field of memory forensics. In the following
paragraphs, we will shortly introduce considerable examples of application.

PROCESS RELATED HASHING. In 2010, researchers (Ligh et al., 2010) proposed
a script (ssdeep_procs) which enumerates running processes on a system, dumps
them to hard disk and compares the extracted executables with the help of ssdeep
(Kornblum, 2006). The Volatility plugin called impfuzzy® applies Fuzzy Hashing on
the Import API of PE files to detect malicious changes. In 2018, researchers published
a Volatility plugin called ProcessFuzzyHash to compute approximation hash values
of processes contained in a Windows memory dump (Rodriguez, Martin-Pérez, and
Abadia, 2018).

In 2012, researchers (Gu et al., 2012) presented an approach called OS-Sommelier.
The approach was proposed for memory only, precise and efficient cloud guest OS
fingerprinting via kernel code hashing. The authors identified two major challenges
for this task: (1) differentiate main kernel code from the rest of code and (2) normal-
ize kernel code to deal with variations, e.g., caused through Address Space Layout
Randomization (ASLR).

KERNEL FINGERPRINTING. In 2014, Roussev, Ahmed, and Sires discussed the
application of Approximate Matching as a content-based method for reliably iden-
tifying kernel versions. The researchers utilized SDHASH for the task of kernel fin-
gerprinting. Identifying the correct kernel version is considered as one of the first

Shttps://github.com/JPCERTCC/ impfuzzy (last access 2021-08-01).


https://github.com/JPCERTCC/impfuzzy

3.4 DISTINCTION AND RESEARCH BOUNDARIES 31

important steps for establishing deeper inference via structured memory analysis.
The researchers discussed the challenges of identifying the correct version for open
source operating systems. The proposed approach was considered as more robust
than relying only on small signatures, as the generated digests represent the whole
content of the kernel image, retrieved from a disk image. The approach was demon-
strated across different architectures without the need to parse and contextually in-
terpret the memory dump (Roussev, Ahmed, and Sires, 2014).

3.4 DISTINCTION AND RESEARCH BOUNDARIES

Many approaches shown in Table 3.1 are context-aware and fall into the category of
structured analysis. In contrast to the introduced approaches, our approach aims to
extend current techniques of unstructured analysis and the creation of new forms
of data-driven cross validation and cross verification. Thus, the overall approach
should keep several properties of application, defined by the domain of Approxi-
mate Matching and memory carving:

1. Computational Performance. Our research should keep several criteria of
computational performance and should follow properties introduced by differ-
ent concepts of Approximate Matching. Expressed more informally, proposed
approaches and techniques should always be considered for the task of data
reduction and bulk data processing.

2. Structural Independence. Our research should not rely on any structural in-
terpretation. Thus said, we do not consider any steps of structural analysis. In
this research, we already consider steps of virtual-to-physical mapping or the
recreation of an existing process context as steps of structural interpretation.
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APPROXIMATE DISASSEMBLING - APPROXIS

4.1 INTRODUCTION

In this chapter we introduce a technical acquisition (carving) component called ap-
proxis: a lightweight, robust, fast and approximate disassembler as a prerequisite for
memory-based Approximate Matching. The goal of approxis is to build a technical
component for usage in digital forensics, however, the technique may also be used
in different fields like real-time systems. Its functionality is comparable to a basic
length-disassembler approach with additional features.

Our approach is unaware of the full instruction encoding scheme of x86 or x86-
64 platforms. By the usage of 4.2 GiB precompiled ELF (Executable and Linking
Format) files and its corresponding ground truth assembly structure obtained by
Andriesse et al. (2016), we build up a decision tree of byte instructions. Each path
of the tree represents the decoding process of a byte sequence into its corresponding
instruction length. We use the opcode and mnemonic frequencies to assist the dis-
assembling process and to differentiate between code and non-code byte sequences.
The overall goal of approxis is not to reach the accuracy of professional disassem-
blers, but to extend the capabilities of a simple length disassembler.

It is important to outline the conditions and the operational field of approxis,
as our approach should not be considered in the well-known domains of binary
analysis. Thus, even if the final evaluation of approxis could seem to be incom-
plete to the reader, we argue that the extensive introduction of our approach in the
field of memory forensics is important to understand the following design decisions.
Additionally, it is somewhat negligible and deceptive to compare our approach to
other disassemblers. However, our current implementation of approxis is designed
for processing large portions of raw memory dumps, so a straight comparison with
other disassemblers is not always valid.

RELATED WORK AND PROJECTS. Recent research of linear disassemblers has
shown the significant underestimation of linear disassembly and the dualism in the
stance on disassembly in the literature (Wartell et al., 2011). A more exotic form are
the so called length-disassemblers, which could be understood as a limited subset of
linear disassemblers. A length-disassembler only extracts the lengths of an instruc-
tion. Besides the classical linear and recursive disassemblers, Shah (2010) introduced
an experimental approach of fast and approximate disassembly. The approach is
based on the statistical examination of the most frequent occurred mnemonics. A
set of extracted sequences of mnemonics have been used to create a lookup table of
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predominant bigrams. With the help of this table, a fuzzy 32bit decoding scheme
was proposed, which showed decent results.

The problem of identifying code structures in large sets of binary data could
be misleadingly compared with the problem of identifying interleaved data within
code sections of a single executable (Wartell et al., 2011). The major goals of our
approach are the fast identification and the approximate disassembly of code frag-
ments. For further details and relevant research we refer to Chapter 2.2.

REQUIREMENTS OF APPROXIMATE DISASSEMBLING In this paragraph we
introduce and explain four essential requirements for our research: lightweight, ro-
bustness, speed and versatility. These requirements should be understood as superior
and long-term goals in the context of applying Approximate Matching to the field of
memory forensics. They have to be respected in this research and beyond this work.
To be able to better describe the fundamental requirements, we first introduce the
central goals of this contribution. As the application of Approximate Matching al-
gorithms to portions of memory seems unfeasible due to an unpredictable represen-
tation of code in memory, we suggest a process of normalization after approximate
disassembling portions of code in large sets of raw and mixed data. As this work ad-
dresses the step of identifying and disassembling code in data, we define four major
goals:

1. Detect sequences of code in a vast amount of differently shaped raw data.

2. Extract sequences of instruction-related bytes with little overhead.

3. Make a statement about the confidence of the code detection process.

4. Determine additional information, like the architecture or compiler of the code.

These practical goals describe the purpose of this chapter, where the following re-
quirements describe the bounding conditions to achieve those goals. The defined
requirements are discussed by recalling some central properties of the introduced
competing approaches and by considering the mentioned goals.

The first requirement, lightweight, aims to reduce the stack of dependencies of the
target system with a focus on the instruction set and the loader traces. In contrast to
existing approaches, we propose a normalization based on previously disassembling
code in different states of an executable. We consider this approach significantly
more lightweight than imitating loader traces with the help of a self-constructed
virtual loader. A disassembler is therefore less interleaved to record the changes of
a memory loader to an image file.

Previous work to detect known fragments of code (e.g., the approach introduced
by White, Schatz, and Foo, 2013) relies on the correct identification of a running
process. This offers new degrees of bypassing and obfuscation to the malware au-
thor. Our second requirement, robustness, means to identify a code fragment without
process structures and thus being more robust against obfuscation compared to com-
peting approaches.

Our third requirement is speed, which is a central requirement adopted from the
field of Approximate Matching. In our current stage of research the detection and
extraction of code from a vast amount of data has to be done with good computa-
tional performance. As we are interested in an approximate disassembler, we con-
sider computational performance more important than accuracy of the disassembled
code. However, the degree of disassembling should enable further normalization or
the reduction of code representation.
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32bit (200 files) 64bit (321 files)
total distinct| max mean|| total distinct| max mean
35.232k 322 |11.714k 1531 ||61.441k 436 [21.627k 1859
35.232k 11632 | 5.889k 17 |/61.441k 16059 |10.360k 28

unigrams
bigrams

TABLE 4.1: Overview of unigram and bigram mnemonic counts.

A versatile approach is desirable; one which is not dependent on an a-priori
knowledge of the architecture of the target system (i.e. x86/x64). The requirement
versatility means that the disassembler works reliably for different target architec-
tures.

MNEMONIC FREQUENCY ANALYSIS. We analyzed the opcode and mnemonic
distribution of a set of ELF binaries, namely a dataset containing 521 different bi-
naries obtained by Andriesse et al. (2016). As we focus on the acquisition of byte
sequences which rely on code only, we extracted the .text section of each binary
file. It should be mentioned that the following Most Frequent Occurred (MFO)-
distribution analyses is nothing new (Bilar, 2006; Shah, 2010). However, existing
distribution analysis of mnemonics often rely on malware, which could be biased.
We used the ground truth of assemblies to determine the distribution of mnemon-
ics and extracted the bigrams of mnemonics (see Table 4.1). We divided the set of
assemblies by its architecture and determined the total amount of unigrams and bi-
grams. The column of distinct values describes the set of all occurring mnemonics.
The columns max and mean describe the assignment of the total amount of instruc-
tions to each distinct unigram or bigram. For example, the most frequently occurring
mnemonic in the case of 32bit binaries represents 33,25% of all instructions.

The frequency of occurrence of all bigrams are extracted. The probability p of
each bigram is saved as logarithmic odds (logit). We further denote the absolute
values of logits as A in Equation (4.1). Similar to Shah (2010) we want to avoid
computational underflow by multiplication of probabilities.

_ p
A= ylnl_p| (4.1)

BYTE TREE ANALYSIS. The former paragraph revisits the frequencies of most
frequently occurring mnemonics. In a next step we analyze the byte frequencies on
an instruction base. We have to deal with a vast amount of overlapping byte se-
quences and non-relevant operand information. To refine our demands, the overall
goal of approxis is not to establish a high-accuracy disassembler, but to identify in-
struction offsets and a predominant mnemonic. We extract all bytes of an instruction
and insert them in a database structured as a tree. Each node of the tree represents a
byte and stores a reference to all its corresponding children, the subsequent instruc-
tion bytes (see Figure 4.1).

As an example we inspect the byte sequence 488d and its subsequent bytes after
inserting our ground truth into the tree. In Figure 4.2 we can see the complete output
of a single node. We should mention that the amount of the child nodes was short-
ened for better representation. We also save auxiliary information like the amount
of counted bytes for a current node (line 2), the counts of different occurring instruc-
tion lengths (line 4), and the counts of all corresponding mnemonics (line 5). Each
node maintains different formats and could possibly lead to redundant information.
This structure represents an intermediate state needed for the following steps of data
analysis, post processing, and tree reduction.
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Input instructions:

push 41 55
push 41 55
mov 48 89 {3
sub 48 81 ec
lea 48 8d
mov 64 48 8b

root

48
lea sub
mov

64
mov

mov

FIGURE 4.1: Oversimplified approxis bytetree example after inserting
several instructions.

Current node: [’48,8d"];

Count: 1334022

Child nodes: [83,aa,04,87,2d,8b,0¢,8f,93, ... ,69,7d,6d,71,75,48]

{ 3:669k, 2:11k, 4:273k, 7:207k, 6:172k}

{ 2:{lea:11k}, 3:{lea:669k}, 4:{lea:273k}, 6:{lea:172k}, 7:{lea:207k}}
[[3, 669k], [4, 273k], [7, 207k], [6, 172k], [2, 11k]]

(lea’, 1334k)

FIGURE 4.2: Inspecting a node of lea (48 8d) instruction

After inserting the ground truth into the tree we perform an additional step of
reduction. Every node which represents a single length and a single mnemonic was
transformed into a leaf node. Therefore we cropped all subsequent child nodes of the
current node, which does not affect the instruction mnemonic. The reduced shape
of the tree is highlighted in black in Figure 4.1. The impact of reduction can be seen
in Table 4.2.

4.2 DISPATCHER APPROACH

The observations of the preceding section lead to the deduction of our approach,
which is based on the introduced bytetree and mnemonic frequency analysis.

DISASSEMBLING. We argue that length-disassemblers could be assumed to be
very fast and lightweight. However, even a simple length-disassembler needs to
respect a lot of basic operations and needs to be maintained for different target ar-
chitectures. The disassembler library distorm! is based on a trie structure and con-
ceptional similar to our approach. It outperforms other disassemblers with its in-
struction lookup complexity of O(1). However, the engine still respects instruction
sets on a bit granularity and performs a detailed decoding. As we value computa-
tional speed more important than accuracy, approxis will stay on a byte granularity
level. We consult the previously gained learnings of the mnemonic analysis to im-
prove our process of length disassembling. It should be clear and fair to mention

Ihttps://github.com/gdabah/distorm (last access 2021-08-01).

platform ‘ input bytes ‘ original tree ‘ reduced tree
nodes |height| size |nodes |height| size
64bit | 253.535.572 |12.773.078 | 15 |445M|87.224| 10 |7,5M
32bit | 123.221.439 | 5.871.232 | 15 |206M|35.211| 9 |3,0M

TABLE 4.2: Comparison of original and reduced bytetree.
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Decoding Length Disas. Approximate Disas. Linear Sweep  Recursive Traversal
Full X X v v

Mnemonic X 4 v v

Length v v v v

Linearity v v v X

CodeDetection - v - -

Interpretation Bit Byte Bit Bit

TABLE 4.3: Simplified comparison of capabilities of an approximate
disassembler compared to other classes of disassemblers.

that existing disassemblers are not designed for our field of application. Process-
ing a large amount of raw data is outside of the scope of classical disassemblers.
As existing length-disassembler engines reduce the amount of required decoding
mechanisms to a minimum, we introduce an approach to resolve a corresponding
mnemonic without respecting any provided opcode maps. Hence, comparing the
computational speed of approxis with other disassemblers seems less meaningful.
In Table 4.3 an overview and comparison of the considered classes of disassemblers
is given.

BYTETREE DISPATCHING. To address the introduced requirement lightweight
(see Section 4.1), approxis does not depend on the integration of a specific disas-
sembler engine. The process of disassembling is mainly realized with the already
introduced bytetree. We implemented our first prototype of approxis in the lan-
guage C and used a reduced bytetree to generate cascades of switch statements.
These statements are used to sequentially process the input instructions and to per-
form the translation into a corresponding length and mnemonic. The information
of the bytetree nodes have been reduced to a minimum core. We only store the
amount of counted visited bytes per node and the lengths. Nodes with more than
one mnemonic are reduced to a single representative, which is the predominant and
most counted mnemonic of the specific node.

The performance of the bytetree was evaluated by a set of 1318 64bit binaries.
The disassemblies obtained by the bytetree have been compared to the disassemblies
obtained by objdump. Determining the correct offsets is important to build a solid
foundation for further normalization. Thus, it is important to measure the amount
of correctly disassembled instruction offsets compared to the set of true instruction
offsets. We disassembled all binaries of an Ubuntu LTS 16.04 x86_64 and extracted
the . text sections. The determined instruction offsets by objdump build our ground
truth of relevant offsets 6,;. We measured the performance of our bytetree disassem-
bler by verifying all retrieved offsets 6,; against our set of relevant offsets. An overview
of fairly good performance is shown in Table 4.4 (row bt-dis). We denote the per-
formance in values of precision and recall, where

{0r} N {6r}| N recal] — 101} 0 {6} ]
{6} and =""Tear

We examined the binary with the lowest precision (i.e., xvminitoppm with 84.40%),
which converts a XV thumbnail picture to PPM. Extracting a bunch of false positives
underlines our assumption: even with a reliable vast amount of ground truth files,

precision =
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approach Precision Recall

max ‘ min ‘ mean (geo./ari.) ‘ max ‘ min ‘ mean (geo./ari.)
bt-dis || 100% | 84.40% | 99.50% | 99.51% || 100% | 92.40% | 99.80% | 99.80%
bta-dis || 100% | 91.49% | 99.76% | 99.76% || 100% | 93.62% | 99.84% | 99.84%

TABLE 4.4: Precision and recall of approxis.

the integration of all instructions is impossible. In case of xvminitoppm a lot of over-
long Multi Media Extension (MMX) instructions are implemented, which are not
present in the bytetree.

ASSISTED LENGTH DISASSEMBLING. Dispatching a binary stream with un-
known instruction bytes could lead to ambiguous decision paths within the byte-
tree. Namely, an unknown sequence of input bytes would lead to an exit of the tree
structure at a non-leaf node, with multiple remaining lengths and mnemonics. An
example in Figure 4.3 could not be clearly disassembled with the tree from Figure
4.1. To detect those outliers and to extend approxis with other features, we integrate
our results from Section 4.1. In detail, we use the logarithmic odds of mnemonic
bigrams to assist the process of disassembling and to identify reasonable instruction
lengths, which could not be resolved by the bytetree itself. As Shah (2010) proposed
a disassembler based on a set of logarithmic odds only, we argue that the decent
performance of this approach is not sufficient.

As the process of bytetree-based disassembling is straightforward, the integra-
tion of the absolute logit value A has not yet been described. We consider A as a
value of confidence if two disassembled and subsequent instructions are plausible or
not. So it is more likely that a sequence of instructions is in fact meaningful as long
as A remains small. In contrast, a high value of A illustrates two subsequent in-
structions, which are not common at all. We limit the range of the absolute logit A,
where 0 < A < 100. This value of confidence could be used differently to cope with
the goals and requirements in Section 4.1. We first focus on assisting our process of
disassembling by resolving plausible instruction lengths. To summarize, we use A
to determine the most plausible offset of a byte sequence, which is not known by
our bytetree. The following steps describe the process of assisted disassembling in
detail:

1. We use a table of confidence values A; to evaluate the transition between two
instruction sequences denoted by its mnemonic. If a lookup of a subsequent
mnemonic pair fails, the action gets penalized with an exorbitantly high value.
Every retrieved A; has to be under a selected threshold T. We repeat the dis-
assembling with all stored length values of a current node until an offset falls
below the threshold. If none of the length values returns a A; under the thresh-
old 7, we select the most common length of the current node.

2. All byte sequences with an unknown byte at offset zero, i.e. a byte which is
not present in the first level of the bytetree, are penalized by the system, since
bytes, which are not present on the first level of the bytetree after processing a
fairly large amount of ground truth files, are expected to be not common.

3. A simple running length counter keeps track of subsequently repeating confi-
dence values, as these indicate a significant lack of variance, often occurring in
large fragments of zero byte sequences or random padding sequences. These
non-relevant byte sequences are additionally penalized.



4.3 ASSESSMENT 39
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FIGURE 4.3: Selecting offsets with a predefined threshold 7 = 16.

Figure 4.3 illustrates the process of offset determination. We repeated the process
of disassembling the set of 1318 64bit ELF binaries with assisted length-disassembling.
The obtained results in Table 4.4 (row bta-dis) show an improvement in the case of
precision.

CODE AND ARCHITECTURE DETECTION. Besides supporting the process of
determining unknown instruction offsets during disassembling, we use the value of
confidence to realize two goals: detect code sequences in data and discriminate the
architecture of code.

Code Detection. The current implementation of approxis could differ between
code and non-code fragments in unknown sequences of bytes. A value of confidence
A; is determined for two subsequent instructions to enhance the disassembling pro-
cess. We use a sliding window approach to consider those values over sequences of
subsequent instructions. More formally, we define a windowed confidence value w, in
Equation (4.2) as the average of all A; within a sliding window, with a predefined
size n + 1 at offset x. Penalized values overwrite a local value A; and thus influence
wy. The value of w should be interpreted as a value of confidence over time. A rising
value w underlines the presence of large data fragments. A short rising peak of A
indicates the presence of short and interleaved data. A mid-ranged value of w indi-
cates the loose presence of instructions or the presence of non-common instructions.

n+x )\
Wy = Z " (4.2)

Architecture Detection. We created a bytetree and a lookup table of A; for each
architecture of our ground truth. Thus, switching the mode of operation could be
realized by simply changing the references of the used bytetree and lookup-table.
Mid-ranged values of w could indicate uncommon sequences of instructions, which
we will show later. Large sections of mid-range w values could also indicate the
presence of alternative architectures. We will demonstrate that these variances are
significant for different architectures. Sections of code are normally within a range
from 1 (high confidence) to 17 (low confidence).

4.3 ASSESSMENT

In this section we evaluate approxis in different fields of application. These assess-
ments focus on the detection of code in different areas of application. We evaluate
our approach in different fields of application. First, we show the promising disas-
sembling accuracy of approxis compared to objdump, a widely distributed and often
used linear disassembler. Second, our approach is able to distinguish between code
and data. Third, we demonstrate the capabilities to identify interleaved segments of
code within large sets of raw binary data. Our current implementation introduces
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FIGURE 4.4: Approxis applied on zip (64bit); value of w; with cutoff set to 100;

arch | #files #transition | detected
x86-64 | 400 1200 99 %
x86 392 1176 92 %

TABLE 4.5: Ratio of correctly detected transitions.

the possibility of determining the architecture of code during the process of disas-
sembling. Finally, we demonstrate the computational performance of approxis by
the application on a raw memory image.

4.3.1 Code Detection

The following evaluation addresses our defined requirement of robustness. To evalu-
ate the code detection performance in the field of binary analysis, we first examined
a randomly selected ELF binary. The result in Figure 4.4 illustrates the capabilities
of approxis to differentiate code from data. Figure 4.4-a shows the initial reduction
of confidence by the header. Figure 4.4-b shows that the . text section is clearly dis-
tinguishable and introduced by the .plt section, which is not filled with common
sequences of instructions.

We extracted from a set of 792 ELF binaries the file offsets of different sections
with the help of objdump. The offsets 6 of the sections .plt, .text and .data define
points of transition between code and data in each file. To evaluate the code de-
tection performance we inspected the average local value of confidence A; for x +1
preceding and « + 1 subsequent instructions at an offset . A transition 7; from code
to data or 7. from data to code at offset 6 is recognized by approxis, if the average lo-
cal confidence differs by a threshold 6 (see Equation (4.3)). In the case of transitions
between .plt and .text we lowered the threshold from § = 30 to § = 5. The ratio
of all correctly registered transitions is shown in Table 4.5.

6 0+x
1, i R By 4
0, otherwise

T =T =

4.3.2 Architecture Detection

The following evaluation addresses our defined requirement of versatility. To illus-
trate the detection process of approxis for code fragments of different types, an im-
age with random bytes was generated. Within the random byte sequences we in-
serted several non-overlapping binaries at predefined offsets. In detail, we inserted
a 32-bit (i.e., ELF 64-bit LSB, dynam. linked, stripped) and a 64-bit (i.e., ELF 32-bit
LSB, dynam. linked, stripped) version of four different binaries: wget, curl, info
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FIGURE 4.5: Comparison of code detection for x86 and x86-64 binaries.
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FIGURE 4.6: Architecture detection of approxis with a selected bin size of one.

and cut. As already mentioned approxis currently relies on two different bytetrees
and mnemonic lookup-tables. By applying both versions on our pathological im-
age, we visualize the changing values of confidence (see Figure 4.5-a / 4.5-b). As
shown, the implementation is able to differentiate and align the embedded binary
blobs within the image. Sections containing executable code, i.e., instruction byte
patterns, are visualized blue.

Similar to the analysis of data and code transitions, we examined the architecture
discrimination with the help of 400 randomly selected ELF binaries for each archi-
tecture. We extracted the .text section of each binary and disassembled them with
approxis in 64bit and 32bit mode. We determined the average of all w, for the whole
.text section of each binary, denoted as w. The distribution of @ for each binary
is illustrated in Figure 4.6 and outlines the capabilities of approxis to discriminate a
present architecture.

4.3.3 Computational Performance

The following evaluation addresses our defined requirement of speed. The execution
time of approxis was tested on a machine with an Intel(R) Core(TM) i5-3570K
CPU @ 3.40GHz with 16 GiB DDR3 RAM (1333 MHz) and 6 MiB L3 cache. The im-
plementation was done in C and compiled with optimization set to -03. As we fo-
cus on a possible integration in existing Approximate Matching techniques, we only
measured the computation time of the disassembling process and ignored the load-
ing process to memory. It should be mentioned that the current prototype does not
focus on performance optimization or parallelization. We created three images with
a size of 2 GiB each to evaluate the runtime performance. As we already mentioned
in Section 4.2, the comparison of approxis with other disassemblers is somewhat
misleading. As approxis extends the capabilities of length-disassemblers, but is not
able to completely decode x86 instructions, the comparison of those disassemblers
should not be understood as a comparison with competing approaches. We applied
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Execution time Description
approxis distorm disassembler
32 64 32 64 mode

29.084s 21.936s 1m20.770s | 1m7.772s | Concatenated set of 64bit binaries from /usr/bin
27.859s 31.918s | 1m43.999s | 1Im43.046s | Raw memory dump acquired with LiME?
1m15.521s | 1m44.990s | Im58.278s | Im56.192s | Random sequences of bytes generated with /dev/urandom

TABLE 4.6: Execution time of approxis and distorm with different input data.

each disassembler in different modes and optimized our implementation of the dis-
torm engine by removing unnecessary printouts and buffers. Table 4.6 outlines that
the execution time of approxis relies on the processed input.

4.4 DISCUSSION

In this chapter, we demonstrated a first approach to detect, discriminate and ap-
proximate disassemble code fragments within a vast amount of data. In contrast to
previous work, approxis revisits the analysis of raw memory with less prerequisites
and dependencies. Our approach is a first step to fill the gap between state of the
art high level memory examination (e.g., by the usage of volatility) and methods of
data reduction similar to those in disk forensics. Our results show the capabilities of
approxis to differentiate between code and data during the process of disassembling.
By maintaining a value of confidence throughout the process of disassembling, we
can reliably distinguish between different architectures and switch the used bytetree
to obtain a better degree of accuracy. The current implementation also shows a good
computational speed.

In Chapter 5 we will further discuss the integration of approxis into an existing
Approximate Matching scheme.
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INTERFACING CTPH - MRSH-MEM

5.1 INTRODUCTION

In this chapter we present a novel approach that allows detecting similarities be-
tween software stored on hard drives and loaded as modules into memory (Linux
only). As presented in the previous chapter, we rely on approxis (Liebler and Baier,
2017), an approximate disassembler for performing carving of code-related struc-
tures. To compare the content of the dumps with the content of hard drives, we bor-
rowed concepts from a subdomain of digital forensics called Approximate Matching.
In a nutshell, these algorithms can be used to find similarities between different dig-
ital objects (e.g., compare the similarity between two text documents). We consider
our approach as robust for memory-based carving of code-related fragments, as our
implementation relies on the possibility of scattered code structures itself. Thus, our
approach does not depend on critical system-related structures, the manual adapta-
tion of signatures or the specification of any alignment properties. Using Approxi-
mate Matching for memory forensics is not new and was already discussed where
most researchers questioned the applicability and runtime efficiency of those algo-
rithms (Cohen, 2017; White, Schatz, and Foo, 2013; Ligh et al., 2014). We discuss the
application of Approximate Matching in the scope of memory carving and release
a prototype implementation which shows good computational performance. To the
best of our knowledge, this is the first usable implementation of an Approximate
Matching technique, which integrates an additional step of code carving to this de-
gree.
In this chapter we will discuss multiple contributions.

¢ We interface Approximate Matching with an additional layer of approximate
disassembling to process physical memory which is accomplished by integrat-
ing approxis into mrsh-net.

¢ We demonstrate the capabilities of our approach to identify code structures in
large amounts of raw data by the extraction of allocable code sections from
different resources (e.g., online repositories or hard disk images).

¢ We demonstrate an acceptable runtime performance for processing memory
dumps with a reasonable and realistic size.

¢ Besides our prototype implementation, we demonstrate a first application to
identify kernel structures in memory;, i.e., we profile the current running Kernel
version inside a previously acquired raw memory dump.
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FIGURE 5.1: Overview of the overall approach and application of mrsh-mem

¢ Lastly, we show the detection of code fragments of a running process in user
memory space.

As previously mentioned, this chapter presents mrsh-mem which is a combina-
tion of approxis and the Approximate Matching algorithm mrsh-net. The main goal
is the possible comparison of memory images and hard-drive content, e.g., appli-
cations installed on the system and currently executed in memory. This will allow
investigators to profile parts of the memory dump (whitelisting) or detect suspicious
code patterns inside the memory dump (blacklisting). The proposed approach there-
fore enables the performance of robust unstructured analysis of a memory dump. A
strongly generalized overview of our use case is shown in Figure 5.1. The left-hand
side outlines the already existing Approximate Matching techniques. The opposite
side is the content of this chapter, i.e., how to modify / normalize a memory image
so that we can generate a fingerprint / memory digest which then can be compared
against a traditional Approximate Matching fingerprint.

DOMAIN-SPECIFIC CONSIDERATIONS. Before discussing our approach, we
highlight some considerations which impacted our design decisions. With respect to
concepts of Virtual Memory Management, Approximate Matching and approximate
disassembling, the following listing concludes some considerations, which have to
be respected for processing raw physical memory:

* Mappings of virtually contiguous regions do not have to be physically con-
tiguous. The fact that pages of a specific context do not have to be allocated
contiguously in memory is an important issue for the overall concept of trans-
ferring Approximate Matching to the field of memory forensics. Found fea-
tures should be considered in a page-sized scope. This should lead to future
research and concepts of composing separated page sizes.

¢ The page size can vary for different architectures and pages are aligned to its
page size in memory. We expect the page size to be at least 4 KB which is the
most common page size. This is important when selecting the block size b as
it should be smaller than the page size. Explanation: a large b will reduce the
amount of chunks within a page boundary of a physical memory dump. Con-
sidering non-contiguous physical pages, this could lead to producing features
that frequently overlap with adjacent pages (all details about b are discussed
in Section 5.2.2).

¢ Pages could be shared between processes, thus a physical page could refer
to multiple virtual pages but not the other way round. The concept is also
called Shared Memory. This concept outlines, that virtual to physical mapping
is actually not a one-to-one mapping. Especially in the case of shared libraries,
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it should be clear that those matches could not actually resolve a specific sam-
ple. This problem overlaps with the problem of handling common blocks, al-
ready introduced in the case of general Approximate Matching challenges and
different database lookup strategies.

* Each process context uses its own virtual mapping. We are not able to ac-
tually resolve the physical offset of a virtual address without translation or
the analysis of system related structures. Our overall approach of processing
is context unaware. Thus, we are not able to actually resolve a virtual refer-
ence. It should be clear that examination on a higher level, e.g. the usage
of recursive traversal or control flow graph analysis, are not applicable in a
context-unaware scenario.

* Not all requested pages of a process are allocated immediately. The concept
is also called Lazy Allocation. In contrast to traditional hard drive forensics,
the looked-up data sample has not to be present in RAM completely during
acquisition. We should consider this fact during examination of found chunks
inside a target image.

¢ In case of high memory usage, the kernel is able to swap content to hard
disk, which is denoted as Swapping. Similar to Lazy Allocations, this concept
should raise our awareness, that we should not expect a sample (i.e. in the
case of loaded executables) which is fully loaded to memory at the time of
acquisition.

* We expect systems with 8 GB RAM to represent a reasonable upper limit
for current consumer PC systems. Similar to previous publications, which
have determined the required Bloom filter size for their field of application,
we should determine the maximum required size for storing memory dumps.
Even if it is common that most of the acquired memory should be initialized
with zero byte paddings, we assume this value as the possible upper limit, in
case the acquired memory is well populated.

¢ Executables are changed during the process of loading to memory. Code
on a hard disk differs from its representation in memory. Legitimate changes
to code would obviously cause the original fuzzy hashing techniques to fail.
The PRF and CHF would possibly interpret even legitimate updates to the
code structures. The possible pitfalls of applying traditional fuzzy hashes are
twofold. First, the process of chunk extraction could be disturbed, as the PRF
could trigger at different offsets. Second, the hash value of a extracted chunk
could differ, as the CHF works on a byte-level of not normalized code frag-
ments.

5.2 INTERFACING APPROXIMATE MATCHING - MRSH-V2

In the following we will describe how we combined approxis with Approximate
Matching. The workflow of data decoding and examination is depicted in Figure 5.2
and can be described as a multi-layered process. Note, even though the figure shows
a clear separation between different steps, most of them are strongly interleaved and
therefore it is hard to visualize the exact flow. A description of the steps depicted in
the figure is given in the following (step one and two are nearly unmodified steps
presented by Liebler and Baier, 2017):
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@ [approxis] @ [approxis] © [MRSH] O [approxis/MRSH] © [MRSH]
approximate determine determine chunks  remove irrelevant hash chunks
disassemble confidence (apply PRF) chunks (apply CHEF)
\ \/_\/_\/_\
raw bytes | | menmonics | | confidence | | chunks | | code chunks | |chunk hashes|
Byte MNE : Byte MNE : A MNE : Chunk MNE : Chunk [CF] Chunk : Hash
00 00 00 000 : 00 000 : 64 000 : 000 : C 092 : (C
31 ed 49 000 : 00 000 : 64 000 : (G 000 : 095 : (G
89 d1 5e 000 : 00 000 : 63 000 : C; 000 : G [0] 105 : G
48 89 e2 092 : 31 ed 092 : 12 092 : G 092 : G 095 : G, [5AC]
48 83 e4 095 : 49 89 di 095 : 09 095 : (G 095 : (&
£0 00 00 105 : 5e 105 : 11 105 : & 105 : &
00 00 00 095 : 48 89 e2 095 : 10 095 : (G 095 : Cy[1]
090 : 48 83 e4 £fO 090 : 10 090 : C3 090 : C3
000 : 00 000 : 64 000 : Cs 000 : C3
000 : 00 000 : 64 000 : C3 000 : GC3
000 : 00 000 : 64 000 : Cj 000 : Cs[0]

FIGURE 5.2: Overview of the data processing steps. The process out-
lines the interleaved characteristics of the overall approach. We high-
lighted integrated components of approxis and mrsh.

® The raw bytes from the memory are disassembled using approxis which will
return the mnemonic as well as the length of the instruction. The decoded
mnemonic is especially important for further proceedings as the process of
chunk extraction and chunk hashing.

® Using the confidence score A produced by approxis and the concept of a sim-
ple running length counter allows differentiation between code and data. The
running length counter counts repeating mnemonics, e.g., a nop-slide, which
should not be considered. Note, for our approach we will focus on code and
neglect data.

® Having the approximate disassembled code, we now identify the chunk bound-
aries based on the mnemonics. Therefore, we utilize a sliding window ap-
proach on the mnemonics (precisely, the rolling hash runs over a C-buffer that
contains the byte representations of the mnemonics). All details are provided
in Sec. 5.2.1.

@ After identifying all chunks, an additional filter is applied to remove irrele-
vant chunks. To identify relevant chunks, we utilize the confidence score. For
instance, the first three entries from chunk one (indicated by C;) have a high
confidence score (64, 64, 63), therefore we consider this chunk as not relevant
(indicated by "[0]’).

® Lastly, the relevant chunks (indicated by '[1]") will be hashed and stored into a
database. While this example focused on creating a chunk-hash based on the
mnemonic buffer, we can utilize other buffers as well for further comparisons,
e.g., the raw byte buffer.

5.2.1 Implementation Details

The previous section outlined a high level perspective of the procedure whereas this
section provides specific details about our concept. As mentioned, we are using a
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buf_by
’ Step ‘ buf_ro buf_mn PRF (buf_mn [-7:]) BF (Hash)

1 by: ..00 00 00 00 e8 00 00 00 00 83 2d 00 00 00 00 01 74 02 £3 c3... 0
ro: 5 mn: 114 PRF(114) — X

N by: .00 00 00 00 83 2d 00 00 00 00 01 74 02 £3 c3 e8 00 00 00 00 .. 0
ro: 57 mn: 114 91 PRF(114 91) — X

N by: .00 00 00 01 74 02 £3 c3 e8 00 00 00 00 e9 00 00 00 00 66 Of ... 0
ro: 572 mn: 114 91 44 PRF(114 91 44) — X

4 by: .00 01 74 02 £3 c3 e8 00 00 00 00 €9 00 00 00 00 66 Of 1f 44 .. 0
ro: 5722 mn: 114 91 44 330 PRF(114 91 44 330) — X

5 by: .74 02 £3 c3 e8 00 00 00 00 e9 00 00 00 00 66 Of 1f 44 00 00 .. Deaz’]
ro: 57226 mn: 114 91 44 330 114 PRF(114 91 44 330 114) —

. by: .00 00 00 00 €9 00 00 00 00 66 Of 1f 44 00 00 e8 00 00 00 00 .. Deaz’]
ro: 5 mn: 115 PRF(114 91 44 330 114 115) — X

7 by: .00 00 00 00 66 Of 1f 44 00 00 8 00 00 00 00 48 83 ec 70 48.. [rea27]
ro: 56 mn: 115 14 PRF(114 91 44 330 114 115 14) — X

s, by: ..1f 44 00 00 e8 00 00 00 00 48 83 ec 70 48 89 e7 e8 00 00 00 .. a2’ 2204°]
ro: 565 mn: 115 14 114 PRF(91 44 330 114 115 14 114) —

9. by: .00 00 00 00 48 83 ec 70 48 89 e7 e8 00 00 00 00 48 8b 54 24 .. [eaz’, »2b4°]
ro: 4 mn: 91 PRF(44 330 114 115 14 114 91) — X

10. by: .48 83 ec 70 48 89 e7 e8 00 00 00 00 48 8b 54 24 20 48 2b 54.. [eazr, 12b40]
ro: 43 mn: 91 95 PRF(330 114 115 14 114 91 95) — X

FIGURE 5.3: Example of the overall processing pass with different

buffers of the raw buffer (by), the buffer of decoded offsets (ro) and

the decoded mnemonics (mn). The current decoded offset is denoted
with i and shifted by the amount ro after each step.

multi-layered process which is reflected by the usage of multiple buffers. Most of
the working buffers are limited in their size and thus, have to be swapped during
processing (i.e. buf_lo, buf_ro, buf_pe, buf_mn). We skip the details of the buffer
swapping for simplicity, but recommend not considering the implementation as mul-
tiple circular buffers. For the prototype (and hence for the runtime performance
evaluation) we expect that the input stream (i.e. buf_by) can be stored in memory
completely. For a better understanding of the overall processing and the usage of the
mentioned buffers, we explain the procedure based on a comprehensive example in
the following paragraph.

Figure 5.3 gives an example of how the different buffers are utilized. The exam-
ple shows ten steps of processing, where in each step an instruction is decoded from
the byte buffer by (buf_by) at the highlighted offset (x). The decoded instruction
length and a corresponding mnemonic are saved into separate buffers after each off-
set in ro (buf_ro) and mn (buf_mn), respectively. Thus, the current buffers steadily
increase with each decoded offset. For instance, in step 1, the first seven bytes in the
byte buffer are 0xe8 00 00 00 00 83 2d. The disassembler decodes the first five bytes
to the mnemonic 114, which represents a call instruction. The pointer moves to the
next offset and repeats the decoding process similar to the first row. Thus, in step 2,
the next byte sequence 0x83 2d 00 00 00 00 01 gets decoded to the mnemonic 91. Be-
side the mnemonic, we again store the corresponding length of the instruction seven
in the buffer ro. In the third row, we can see that the previous pointer was increased
by seven and the process repeats with the decoded instruction bytes 0x74 02.

Once the mnemonics are decoded, they are ‘added’ to our sliding window, e.g.,
in step 1 the mnemonic 114 is the first entry of the rolling hash. Given that the
rolling hash has a length of seven, the last seven mnemonics serve as input for the
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PRF. As the amount of mnemonic representatives is larger than 2%, the hash value is
calculated over a sequence of integers, which stores the mnemonic representatives
decoded by approxis. As soon as the PRF determines a chunk boundary (see the
output of the PRF in steps 5 and 8 of Figure 5.3), the decoded instructions (buf_mn)
are hashed using the chunk hash function (CHF) FNV-1a (Fowler et al., 2011). The
hash value is then stored into the Bloom filter, where the hash value is separated into
k = 6 sub-hashes and each sets a bit of the Bloom filter. The procedure is identical
to the original mrsh approach. In Figure 5.3, we represent the hash values by a
shortened representation in the last column denoted as BF. The buffers by and ro are
cleared out after each chunk extraction (see steps 6 and 9 in Figure 5.3), where the
sliding window of the applied PRF keeps the buffer of the last seven mnemonics for
the next decoding pass.

To filter code related chunks and to reduce the overall amount of Bloom filter in-
serts, we utilize the introduced value of confidence for consecutive instructions (see
Chapter 4). Therefore, chunks are inserted into a Bloom filter as soon as they fulfill
two properties. First, the chunk size has to contain at least ten consecutive instruc-
tions. Second, the overall amount of considerable meaningful mnemonic bigrams
has to be at least 30 % for a current chunk.

Hashing the decoded byte sequences (buf _mn) will, for example, neglect all byte
sequences which represent operand information within an instruction. More im-
portantly, different opcodes on a byte level can be mapped to the same mnemonic
representative. Besides hashing the decoded instructions, one could also hash the
other buffers. In this prototype, we actually propose the hashing of two buffers, the
decoded buffer of representatives (buf_mn) and the original input buffer (buf_by).
This empowers an investigator to detect similar instruction sequences and inspect
possible deviations on a byte level.

We summarize two central adaptations to the original mrsh and approxis im-
plementation. In contrast to previous bytewise Approximate Matching approaches,
the chunk boundaries are defined with the help of the decoded byte sequences, not the
byte sequences themselves. Additionally, the code detection is not performed within
a fixed-sized sliding window.

5.2.2  Configurable Parameters

An overview of the important configurable parameters is given in the following sub-
section. We additionally give a short explanation and reasoning of the parameters
and the selected default values. We will first describe the important parameters
which define the overall chunk extraction process. An overview of the parameters
can be seen in Table 5.1.

SELECTING THE FEATURE (CHUNK) SIZE (b). As already introduced, the
PRF approximately defines the extracted chunk sizes. Considering the minimum
respected page size of 4KiB and the presence of non-contiguous memory mappings,
we depict a default value of b = 64 with the defined parameter name BLOCK_SIZE.

CODE CONFIDENCE. The process of filtering chunks, which store code fragments,
could be controlled by two parameters. The parameter CODE_THRESH describes the
maximum value of A which defines two consecutive instructions to be meaningful
or not. The values of A are stored within the buffer buf _lo during a decoding pass.
If less than ten consecutive instructions are detected within a chunk, the chunk will
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Parameter Range | Default | Description
BLOCK_SIZE / 64 Defined modulus and approximated size of a
chunk (b).

CODE_THRESH || [0-100] 30 The value defines the threshold of code confidence.
A sequence of instructions should be considered as
code fragments, as soon as the value of confidence
is lower than the defined CODE_THRESH.

CODE_COV [0-1] 0.3 Defines the minimum required percentage of code
coverage within a chunk, before it gets hashed and
inserted into the Bloom filter.

TABLE 5.1: Parameters of the mrsh-mem implementation.

Parameter Range | Default | Description

RLE_THRESH || [0-100] 10 Sets the threshold when the repeating sequences of
instructions should be considered as not valid.

RLE_DRAIN [0.1-1.0] 0.9 The value defines a factor, which lowers the run-
ning length counter significantly more quickly. If
the value is lower than the defined threshold, we
switch to stepwise decrementing the counter.

TABLE 5.2: Parameters of the mrsh-mem implementation for control-
ling the running length penalty.

not be inserted into the Bloom filter. Additionally, considering large chunks, we
measure the total amount of instructions within a chunk. We require at least 30 % of
the decoded instructions inside a chunk, before the chunk will be inserted into the
Bloom filter. We denote this threshold of code coverage as parameter CODE_COV.

PENALTIES. The original implementation of approxis considers a large amount
of repeating decoded mnemonics as less meaningful. An example could be mislead-
ingly decoded sequences of non-allocated zero bytes or other padding instructions
(e.g., NOP instructions). The running length counter of approxis counts subsequent
similar decoded mnemonics. As soon as the running length counter instruction ex-
ceeds RLE_THRESH, a penalty is written into the buffer buf_pe. The saved penalty
is added to the value of confidence stored in the buffer buf_lo afterwards. Besides
the threshold, we additionally configure a factor, which decreases the current run-
ning length after a sequence of similar mnemonics was interrupted. We increase
the RLE_DRAIN to respect the non-contiguous properties of physical memory dumps.
Both parameters are summarized in Table 5.2.

DETERMINING THE BLOOM FILTER SIZE (m). InSection 5.1 we described the
idiosyncrasies and properties of memory management. In this paragraph we explain
the parameter adaptations and the following impacts on the needed Bloom filter size.
For further details of the following formulas we refer to Breitinger, Baier, and White
(2014). We consider 8 GiB as reasonable RAM size and select the expected input size
(s) tobe s = 8 GiB.

With the expectation that a modulus b defines a trigger point and thus the proba-
bility of a hit is reciprocally proportional to the average chunk size, we estimate the
number of extracted chunks 7 for a given input image with size s. The calculation
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Parameter Range | Default | Description

BF_SIZE_IN_BYTES / 128 MiB | Size of the Bloom filter (b, must be a
power of two).

SUBHASHES [5,7] 6 Number of used subhashes (k).

MIN_RUN / 6 Minimum amount of correctly to be
identified consecutive features (r).

TABLE 5.3: Parameters of the mrsh-mem Bloom filter implementa-

tion.
can be seen in Equation (5.1).
s-2%0  8.2%
n=-——=- = 134,217,728 (5.1)

In Breitinger, Baier, and White (2014) the authors mention that the choice of k
is limited by the used FNV-1a hash function. Thus, the value of k is limited to
5 < k < 7. Similar to mrsh-net we choose the value of k to be k = 6. A single
Bloom filter of size 32 MiB could be used to monitor approximately 2 GiB of data,
whereas as Bloom filter of size 2 GiB could approximately monitor 100 GiB of data
(Breitinger and Baggili, 2014). Obviously, the filter has to be stored in memory dur-
ing examination. Similar to Breitinger and Baggili (2014) we consider this size as still
manageable even on casual or mobile systems. To determine the maximum needed
size of the Bloom filter in dependency on the expected input size, we depict the cor-
responding formula from Breitinger, Baier, and White, 2014. In addition, we set the
parameter r, which defines the minimum amount of correctly-to-be-identified con-
secutive features, to be r = 6. Considering Equation (5.2) and the above-mentioned
parameters, we propose a Bloom filter size of m =~ 7.0426 - 108 bits ~ 84 MiB. An
overview of the configurable parameters can be seen in Table 5.3.

_ k-n _ —kn/m\k
m=———— wherep=(1—e )~ (5.2)

In(1— %/p)

5.3 APPLICATION

The implementation of mrsh-net uses a single, large Bloom filter which reveals two
notable disadvantages: memory consumption and the lack of file identification, i.e.,
the approach can only answer the question of whether a file is contained in a given
Bloom filter, but we cannot say to which file a similarity exists. However, we decided
to use this approach for realizing the prototype; we will evaluate possible strategies
in future research to match chunks with a given file base.

The adaptation and integration of a single Bloom Filter (BF) gives us a good com-
putational performance for initial white- or blacklisting of extracted chunks. How-
ever, to achieve better identification, we additionally create a database of extracted
Chunk Hash Values (CHV). The current Chunk Hash Database (CHDB) consists of
a single, large lookup tree, which stores all chunk hash values with a corresponding
tile name inside each leaf node. As we focus on computational speed and expect bet-
ter solutions for a fast file identification, we do not consider the database in the case
of runtime performance analysis or memory consumption. Figure 5.4 provides an
overview of the general application. First, an investigator has to acquire the dumps
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FIGURE 5.4: Overview of the application of mrsh-mem.

(memory and hard disk). Additionally, the acquisition of files from different repos-
itories can be considered. All input files are processed with mrsh-mem and stored
in the Bloom filter as well as in a database of known code fragments (CHDB). Ap-
plying mrsh-mem on the acquired memory dump will then answer the question of
whether a particular memory fragment is found in the BE. The comparison against
the database will allow answering the question of which file was matched.

Different versions of the same executable can share the same code base. Thus,
similar chunk hash values can occur, which will be inserted into the Bloom filter
digest. Leaf nodes in our CHDB, which are occupied by chunks of multiple versions
of an executable (e.g., the same chunks have been extracted for multiple versions of
a file) are denoted in the following plot as multiple hits. Chunk hash values which
only appeared for a single version are marked as single hits.

For testing purposes, we acquired memory and hard disk fragments from an
existing Debian 8 installation, which was originally setup inside a virtualized en-
vironment for common network analysis tasks. In detail, we inspected a Debian 8
installation (Debian 3.16.7 x86_64 GNU/Linux) running with the help of Virtual Box
(Version 5.2.6 r120293). The system contains several real world applications and was
used for several weeks without a reboot. To acquire the memory we used LiME!
(Linux Memory Extractor) which is a Loadable Kernel Module for memory acqui-
sition. We inserted the module into the running Kernel and acquired 2 GiB of the
memory in raw format.

5.3.1 Identify Present Linux Kernel Version

In our first application we identify the presence of Kernel fragments and the Ker-
nel version of the target system by analyzing the acquired raw memory dump with
mrsh-mem. This process can support further structured analysis and possibly en-
hance the task of profile determination. In our application we utilize a set of avail-
able Linux images of a public Debian repository?. The Kernel files (i.e., vmlinux/vm-
linuz) have been obtained by the corresponding deb-Packages, the .text sections

Ihttps://github.com/504ensicsLabs/LiME (last access 2021-08-01).
Zhttp://ftp.us.debian.org/debian/pool/main/1/linux/ (last access 2021-08-01).
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FIGURE 5.5: The detected chunk sequences and the overall counts for
each Kernel version. As can be seen, the present Kernel version of our
target system, i.e. 3.16.0-4-amd64 (9), shows a significant amount of
detected chunks.
ID Kernel ‘ ID Kernel ‘ ID Kernel
1) 3.2.0-4-amd64 2) 4.13.0-0.bpo.l1-amdé64 | 3) 4.14.0-0.bpo.2-rt-amd64
4) 4.14.0-0.bpo.3-amd64 | 5) 3.2.0-4-rt-amd64 6) 4.14.0-3-amd64
7)  4.15.0-rc8-amd64 8) 4.14.0-0.bpo.2-amd64 | 9) 3.16.0-4-amd64
10) 4.14.0-3-rt-amd64 11) 3.16.0-0.bpo.4-amd64 | 12) 4.14.0-0.bpo.3-rt-amd64

TABLE 5.4: Extracted Linux Kernel images from the Debian repos-
itory (marked with an identifier). The actual present Kernel in the
extracted memory image is highlighted (9).

have been extracted and the images have been processed with mrsh-mem. We addi-
tionally store the extracted Linux Kernels and their corresponding chunk hash val-
ues in our introduced CHDB. Subsequently, we query the CHDB with 12 different
Kernel images (see Table 5.4 for an overview of all inserted Linux Kernels).

While we expect that most of the Linux Kernels from the repository share a rea-
sonable amount of similar code chunks, this can obviously vary for different ver-
sions. To determine the actual Kernel version of our target system, we analyzed
the detected chunks in two ways. First, we determined the total amount of de-
tected chunks for each processed Kernel version. Second, we examined those chunks
which are only mapped to a single Kernel version by the CHDB and do not share mul-
tiple of those chunks with other Kernel versions.

After performing the step of chunk identification with mrsh-mem, we addition-
ally identified the related Kernel version(s) for each chunk. The amount and dis-
tribution of detected chunks by its corresponding kernel version(s) can be seen in
Figure 5.5. The statically linked Kernel images share a reasonable amount of similar
code fragments (bar multiple). However, the actual Kernel version clearly occupies
most of the extracted chunks and thus we could distinguish the present Kernel from
the other images (see column (9) in Figure 5.5). Next, we only considered chunks
which are mapped to a single Linux Kernel and do not count shared code fragments
between different versions, i.e., we filter out identified chunks which are related to
multiple Kernels. The examination of distinct mapped chunks in Figure 5.5 (bar
single) underlines the presence of our expected Kernel version (vmlinuz-3.16.0-4-
amd64).
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FIGURE 5.7: Memory dump of our

target system after rebooting the

virtual machine and thus, without
a running Wireshark instance.

FIGURE 5.6: Examination of a mem-
ory dump of our target system

while Wireshark was running (ELF
executable amd64; version 1.12.1).

CONSIDERATIONS. Discussing the examination of the Kernel .text section in
memory leads to the question of whether mrsh-mem can be used for detecting ad-
vanced Kernel infection techniques. Different hijacking techniques should lead to
the presences of modifications in the memory-located version of the original Kernel.
However, the process of Kernel loading is quiet complex and the Linux Kernel bina-
ries could additionally contain modification instructions, e.g., so-called alternative
instructions (.altinstructions®). Those instructions patch the original code dur-
ing loading. At this point we leave the question of whether mrsh-mem is usable for
advanced code integrity checks of Linux Kernels unanswered for further research.

5.3.2 Identify Application in User Memory

Kernel memory mappings should be considered contiguous in most of the cases. To
determine the capabilities in user space memory, we performed a task of process and
application identification. We inspected the raw memory dump on the presences of
application-related code fragments. In detail, we acquired three different versions of
the Wireshark Protocol Analyzer* from a Debian repository” (see Table 5.5). The ac-
quired ELFs were dynamically linked and stripped. We extracted the allocable . text
sections of the different executables and processed them with mrsh-mem, where
each executable stored approximately 4130 chunks. The chunks were also inserted
into the CHDB for the evaluation of single and multiple hits.

We ensured that an instance of Wireshark 1.12.1 was running at the time of mem-
ory acquisition. Figure 5.6 illustrates the capabilities of detecting and discriminating
a running (or formerly running) application in memory. The amount of single occu-
pied chunks (1766) clearly identifies the actual running Wireshark version (1.12.1).

To investigate possible false positives and to examine the discrimination between
a running and not-running process we repeated the procedure after rebooting the
system. Thus, we were not expecting to find presence of Wireshark. The results are
shown in Figure 5.7 and the plot indicates very low numbers / matches. Precisely,
the bars show some hits in the case of multiple-occupied chunks. To lower the values
of false positives, we propose the adaptation and increase of the MIN_RUN parameter.
We additional suggest a minimum required chunk size, as most of the false positives
were smaller than 40 bytes.

Shttps://lun.net/Articles/531148/ (last access 2021-08-01).
“https://wuw.wireshark.org/ (last access 2021-08-01).
Shttp://ftp.us.debian.org/debian/pool/main/w/wireshark/ (last access 2021-08-01).
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ID | Version

(1) | 2.4.4-1_amde64

(2) | 2.2.6+g32dacba-2+deb9u2_amd64
(3) | 1.12.1+g01b65bf-4+deb8ul3_amd64

TABLE 5.5: List of extracted Wireshark versions. The actual running version is
highlighted (3).

Execution time
insert | lookup
46.0s 48.0s 6,888k Concatenated set of 64bit binaries from /usr/bin

50.0s 50.0s 1,609k | Raw memory dump acquired with LiME

197.0s | 192.0s | 10,538k | Random byte sequences, generated with /dev/urandom

Chunks | Description

TABLE 5.6: Insert and lookup runtime performance of mrsh-mem for
different input images.

5.3.3 Runtime Performance

In the following paragraph we examine the runtime efficiency of mrsh-mem. In
detail, we measured the runtime for disassembling, chunk extraction, chunk hashing
and Bloom filter handling. Note, we differentiate between Bloom filter creation and
Bloom filter lookup. As mentioned, the processed byte sequences can significantly
influence the overall disassembling performance. Therefore, we study the runtime
performance for three different images: a concatenated set of 64 bit ELF binaries, a
raw memory dump acquired with LiME and a random sequence of bytes. Lastly, we
removed all unnecessary functionalities (e.g., printout mechanisms) and compiled
our binary with an optimization set to 02°.

The runtime efficiency test was performed on a Lenovo Thinkpad x250 with an
Intel Core i5 2x 2,2 GHz and 8 GB RAM. The performance of the built-in Solid State
Drive was also determined, where the read performance was 508 MB/s and the write
performance was 513 MB/s. The overall results are shown in Table 5.6. The column
of chunks defines the amount of triggered chunk boundaries for each image and for
one pass. Similar to our previous evaluation of approxis shown in Table 4.6, the
runtime decreases with an increasing amount of randomized and thus, uncertain
dispatching cycles. In other words, approxis has to repeatedly interpret the same
byte sequences at a given offset until the offset is finally dispatched.

54 SUMMARY

Approximate Matching techniques are known among the digital forensics commu-
nity and have been utilized in different fields of application. Current implementa-
tions empower whitelisting or identifying fragments of data in the field of classical
disk or network forensics. The application of Approximate Matching on memory
reveals several pitfalls. Similar to other unstructured analysis techniques, our in-
t