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Abstract

Recently there has been increased interest in a special class of discretizations for incom-
pressible flows, which produce velocity approximations that are independent of how well
the pressure can be approximated. For this reason such methods are called pressure-robust.
While classical methods like the family of Taylor—-Hood finite elements show a locking
phenomenon induced by the viscosity parameter of the fluid, meaning that the error
of the discrete velocity solution scales with the inverse of the viscosity, pressure-robust
methods do not have this problem.

Moreover, incompressible flows tend to form layer structures, for example near walls,
and exhibit singularities in the solution near re-entrant edges of the domain. These two
effects cause additional difficulties for discretization approaches that can be addressed by
anisotropic mesh grading, which uses highly stretched elements in boundary layer regions
or near the re-entrant edges. A drawback with regard to anisotropic grading is that only
few methods are shown to work for such meshes.

The aim of this thesis is to find a combined solution to both challenges, pressure-
robustness and anisotropically graded meshes, in order to produce a framework for
methods that can satisfy the demands of the two areas. To this effect we use the well
known reconstruction approach, that alters classical discretizations in a way that makes
them pressure-robust, and connect it with new results from anisotropic interpolation
theory to show that a combined approach works.

The generated framework is applied to the modified Crouzeix—Raviart and Bernardi-
Raugel methods, and the results are supported by a variety of numerical examples.






Zusammenfassung

In letzter Zeit hat das Interesse an einer speziellen Klasse von Diskretisierungsverfahren fiir
inkompressible Stromungen zugenommen, die Geschwindigkeitsapproximationen liefern,
welche unabhéngig davon sind, wie gut der Druck angendhert werden kann. Solche
Methoden werden aus diesem Grund druckrobust genannt. Wahrend klassische Methoden
wie die Familie der Taylor-Hood finiten Elemente ein durch den Viskositatsparameter
des Fluids induziertes Locking-Phénomen aufweisen, d. h., dass der Fehler der diskreten
Geschwindigkeitslosung mit dem Kehrwert der Viskositét skaliert, besteht dieses Problem
bei druckrobusten Methoden nicht.

Auflerdem neigen inkompressible Strémungen dazu, Schichtstrukturen zu bilden, z. B.
in der Nahe von Wénden, und sie weisen Singularititen in der Losung in der Nahe von
einspringenden Kanten des Gebiets auf. Diese beiden Effekte verursachen zuséatzliche
Schwierigkeiten fiir einen Diskretisierungsansatz, die jedoch durch anisotrope Netzver-
feinerung angegangen werden konnen, wobei stark gedehnte Elemente in Grenzschichtre-
gionen oder in der Nahe der einspringenden Kanten verwendet werden. Ein Schwachpunkt
der anisotropen Netzverfeinerung ist, dass bisher nur fiir wenige Methoden gezeigt werden
konnte, dass sie fiir solche Netze anwendbar sind.

Das Ziel dieser Arbeit ist es, eine kombinierte Losung fiir beide Herausforderungen,
Druckrobustheit und anisotrope Netze, zu finden, um einen Rahmen fiir Methoden zu
schaffen, die den Anforderungen beider Bereiche gerecht werden kénnen. Zu diesem Zweck
verwenden wir den bekannten Rekonstruktionsansatz, der klassische Diskretisierungen so
verandern kann, dass sie druckrobust werden, und verbinden ihn mit neuen Ergebnissen
aus der anisotropen Interpolationstheorie, um zu zeigen, dass ein kombinierter Ansatz
funktioniert.

Der entwickelte Rahmen wird auf die modifizierten Crouzeix—Raviart- und Bernardi—
Raugel-Methoden angewandt, und die Ergebnisse werden durch numerische Beispiele
untermauert.
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CHAPTER 1

Combining pressure-robustness and anisotropic elements

Most of the commonly used classical inf-sup stable finite element methods for incom-
pressible flows, like, e.g., the Taylor-Hood finite element family, do not yield exactly
divergence-free velocity solutions in the sense of H (div, 2) in general settings. Instead, the
divergence constraint is only satisfied approximately in order to obtain an inf-sup stable
element pair. This phenomenon of discretizations is also called poor mass conservation
and can lead to severe numerical inaccuracies in certain settings, see [Lin09].

For the Stokes equations

—VAu-l-Vp:f in Qa
V.ou=0 inQ,

where v is the viscosity of the fluid, such methods lead to error estimates of the type
I Iy < inf | h+2 inf | |
u—u inf |lu—wv — in — )
ML~ exn ML e, 1P Ao

see, e.g., [Joh+17], where X}, and @}, are the velocity and pressure approximation spaces.
The second term in the bound shows that the quality of the velocity estimate depends on
the pressure and the viscosity. For v — 0 this term can deteriorate unboundedly, which
characterizes a locking behavior in the sense of [BS92|, and thus defeats the purpose
of the estimate. Numerical examples show that this is not only of theoretical interest,
but that the computed discrete solution is indeed affected, see, e.g., [AK21; AKLM21;
BLMS15; LLMS17; Lin14].

In contrast, exactly divergence-free methods of polynomial order m, which can be
H'(Q)-conforming methods like the Scott-Vogelius element, see [SV85], or H (div, Q)-
conforming discontinuous Galerkin methods, see, e.g., [CKS07; LS18; LS16], using Raviart—
Thomas or Brezzi-Douglas—Marini finite elements, see [BDM85; Néd80; Néd86; RT77],
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yield velocity error estimates of the type

— < inf — ™
| uh||1,h ~> vhngh | ’Uh”l,h +h" |l

where the second term is a consistency error that is not present for the H!(2)-conforming
methods and converges with optimal order of h for the others. Clearly, this type of estimate
is not prone to the locking effect described above. Methods for which such an error estimate
can be obtained are called pressure-robust, as they yield a discrete velocity solution that
is independent of the pressure approximation and the viscosity.

The exactly divergence-free methods we just touched on are inherently pressure-robust,
but for classical inf-sup stable elements as the ones mentioned before pressure-robustness
can also be attained by using the reconstruction approach that was established in [Lin14].
This approach applies a reconstruction operator I to the velocity test functions on the
right hand side in the discretization of the Stokes problem, which alters the discrete weak
formulation to: Find (up,pr) € X5, X Qp for which

v(Viun, Vivn) + (Vi - vp,pn) = (f, Ihop) Yoy, € Xy,
(V- up,qn) =0 Van € Qn,

holds. With this modification, pressure-robustness is achieved at the cost of an additional
consistency error that has to be bounded with the right order of h. The idea of this
method is to think of the Helmholtz—Hodge decomposition of the data function, which
can be written as f = Pf + V¢ with a divergence-free part Pf and an irrotational part
V¢. Consider now the property of the continuous setting, where the part (Ve,v) on
the right hand side of the weak form of the problem vanishes for divergence-free test
functions v due to the L?-orthogonality of divergence-free and irrotational functions. The
reconstruction approach aims to emulate this behavior by regaining the L2-orthogonality
of the irrotational part of the data and discretely divergence-free velocity test functions
vy, which are suitably mapped by the reconstruction operator to exactly divergence-free
functions. This approach has been used for various classical methods, e.g., the Crouzeix—
Raviart, Bernardi-Raugel and Taylor-Hood finite element pairs, see [LLMS17; Lin14;
LM16].

In addition to those aspects concerning pressure-robustness, incompressible flow models
produce thin boundary layers near walls which could ideally be resolved with anisotropic
elements, i.e., elements with large aspect ratio that are stretched in the direction parallel
to the wall. Since the boundary layer is thinner for smaller values of the viscosity, it
seems beneficial to combine anisotropic elements with pressure-robust methods, which
do not exhibit viscosity locking. However, the known results for pressure-robust methods,
except our recent contributions in [AK21; AKLM21] that form the basis of this thesis,
assume shape-regularity of the used elements, which only allows isotropic triangulations,
i.e., elements where the aspect ratio is bounded by a constant. This not only excludes the
very common boundary layer adapted meshes, but also meshes that are anisotropically
refined towards a re-entrant edge of the domain. The latter case is interesting, since
the solution near such edges has reduced regularity and without an appropriate mesh
refinement near the edge the convergence rates are reduced, see, e.g., [ANSOla; ANSO1b).



Outline of the thesis

In order to contribute to filling this gap in the theory, we combine results from
anisotropic interpolation theory and pressure-robust discretizations for incompressible
flows, which enables us to gain error estimates that are valid for the problem settings
described in the previous paragraph. As such, we provide a theoretical foundation for the
use of pressure-robust methods on anisotropic meshes, and extend the available research
literature in this field.

For our results we mainly rely on the mentioned reconstruction approach from [Lin14],
in combination with the Crouzeix—Raviart element in two- and three-dimensional settings
and the Bernardi-Raugel element in certain two-dimensional domains and meshes. In
general, the reconstruction approach allows the use of existing finite element implemen-
tations, that only need to be modified with the reconstruction operator. Implementing
and optimizing newly developed, exactly divergence-free methods like those from, e.g.,
[GN14a; GN14b; LS16; Sch19], may be a more difficult task, to which the reconstruction
approach may seem favorable.

Outline of the thesis

Chapter 2 starts with a recapitulation of some fundamentals on function spaces and the
Helmholtz—Hodge projection. The fundamental mathematical model for incompressible
flows, the Navier—Stokes system of partial differential equations, is introduced and the
Stokes equations are presented as a simplified variant for which most of our analytical
proofs are done. The need for pressure-robustness in discretizations for incompressible
flows is then motivated and the chapter concludes with a description of the types of
anisotropic meshes we are interested in.

Chapter 3 is dedicated to an overview of existing pressure-robust methods. Starting in
Section 3.1 with the general description and notation for the discretizations, we present
in Sections 3.2 and 3.3 several approaches to construct pressure-robust methods and
investigate their suitability for anisotropic triangulations. From the different concepts for
pressure-robust methods we concentrate in the following chapters on the reconstruction
approach.

In Chapter 4 we derive interpolation error estimates for the Brezzi—-Douglas—Marini
interpolation operator and recall the analogous estimates for the Raviart—Thomas in-
terpolation operator. Both operators can be used as reconstruction operators to build
pressure-robust methods. Section 4.2 is based on our publication [AK20], but extends
the results from Sobolev Hilbert spaces to the more general Sobolev Banach spaces,
i.e.,, p = 2 is extended to 1 < p < oo. In addition, new anisotropic estimates for the
Brezzi-Douglas—Marini interpolation on triangular prisms are proved.

Chapter 5 contains the a-priori error estimation of pressure-robust methods that use
the reconstruction approach on anisotropic meshes. In Section 5.1 a generalized error
analysis is presented, that uses a set of assumptions that represent the required properties
of a discretization to yield the error estimates. After this, Sections 5.2 and 5.3 detail how
the Bernardi—-Raugel and Crouzeix—Raviart methods fit in this general error analysis.

A variety of numerical examples is showcased in Chapter 6. The performance of the
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methods from Chapter 5 is compared to that of standard non-pressure-robust methods
on anisotropic and quasi-uniform meshes in two- and three-dimensional settings.

Chapter 7 concludes the thesis with a brief summary, conclusions and ideas for future
research projects that might extend the theory further.

Related publications

This thesis is founded on research that has already been partially published in research
articles and conference proceedings contributions. The publications are listed below and
their relevance for the thesis is noted.

Publication |

[AK20] T. Apel and V. Kempf. “Brezzi-Douglas—Marini interpolation of any order
on anisotropic triangles and tetrahedra”. SIAM J. Numer. Anal. 58.3
(2020), 1696-1718. por: 10.1137/19M1302910

Abstract: Recently, the H(div, Q)-conforming finite element families for second-order
elliptic problems have come more into focus since, due to hybridization and subsequent
advances in computational efficiency, their use is no longer mainly theoretical. Their
property of yielding exactly divergence-free solutions for mixed problems makes them
interesting for a variety of applications, including incompressible fluids. In this area,
boundary and interior layers are present, which demand the use of anisotropic elements.
While for the Raviart—Thomas interpolation of any order on anisotropic tetrahedra
optimal error estimates are known, this contribution extends these results to the Brezzi—
Douglas—Marini finite elements. Optimal interpolation error estimates are proved under
two different regularity conditions on the elements, which both relax the standard minimal
angle condition. Additionally, a numerical application on the Stokes equations is presented
to illustrate the findings.

Relevance for thesis: The reconstruction approach to generate a pressure-robust method
from classical inf-sup stable methods that was introduced in [Lin14] relies on H (div, 2)-
conforming reconstruction operators. In this publication we showed the error estimates
for the Brezzi—-Douglas—Marini interpolation on anisotropic simplices that are necessary
to extend the reconstruction approach to anisotropic meshes. The main results from the
article are given in Chapter 4 and extended from the Hilbert-space setting to the general
case of W'™P(Q) spaces.

Publication Il

[AKLM21] T. Apel, V. Kempf, A. Linke, and C. Merdon. “A nonconforming pressure-
robust finite element method for the Stokes equations on anisotropic
meshes”. IMA J. Numer. Anal. 42.1 (2021), 392-416. DOI: 10. 1093/
imanum/draa097


https://doi.org/10.1137/19M1302910
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Related publications

Abstract: Most classical finite element schemes for the (Navier—)Stokes equations are
neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations.
A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes
momentum balance is dominated by a strong and complicated pressure gradient. It is
a consequence of a method, which does not exactly satisfy the divergence constraint.
However, inf-sup stable schemes can often be made pressure-robust just by a recent,
modified discretization of the exterior force term, using H (div, Q)-conforming velocity
reconstruction operators. This approach has so far only been analyzed on shape-regular
triangulations. The novelty of the present contribution is that the reconstruction approach
for the Crouzeix—Raviart method, which has a stable Fortin operator on arbitrary meshes,
is combined with results on the interpolation error on anisotropic elements for recon-
struction operators of Raviart—Thomas and Brezzi-Douglas—Marini type, generalizing
the method to a large class of anisotropic triangulations. Numerical examples confirm
the theoretical results in a two- and a three-dimensional test case.

Relevance for thesis: In this publication we showed that the consistency error for the
reconstructed Crouzeix—Raviart method could be bounded with the necessary rate also on
meshes with unbounded aspect ratio, as long as a maximum angle condition is satisfied.
The proof is based on the results from [Lin14] and [AK20], and requires H?(Q) x H(Q)
regularity of the Stokes solution (u,p). To our knowledge this is the first result of this
type for a pressure-robust discretization for incompressible flows on anisotropic meshes
in two and three dimensions. The results are included in Chapter 5 of this thesis.

Publication Il

[AK21] T. Apel and V. Kempf. “Pressure-robust error estimate of optimal order
for the Stokes equations: domains with re-entrant edges and anisotropic
mesh grading”. Calcolo 58.2 (2021), Art. No. 15. DOI: 10.1007/s10092~
021-00402-z

Abstract: The velocity solution of the incompressible Stokes equations is not affected by
changes of the right hand side data in form of gradient fields. Most mixed methods do not
replicate this property in the discrete formulation due to a relaxation of the divergence
constraint which means that they are not pressure-robust. A recent reconstruction
approach for classical methods recovers this invariance property for the discrete solution,
by mapping discretely divergence-free test functions to exactly divergence-free functions
in the sense of H (div, ). Moreover, the Stokes solution has locally singular behavior in
three-dimensional domains near concave edges, which degrades the convergence rates on
quasi-uniform meshes and makes anisotropic mesh grading reasonable in order to regain
optimal convergence characteristics. Finite element error estimates of optimal order on
meshes of tensor-product type with appropriate anisotropic grading are shown for the
pressure-robust modified Crouzeix—Raviart method using the reconstruction approach.
Numerical examples support the theoretical results.
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Chapter 1 Combining pressure-robustness and anisotropic elements

Relevance for thesis: This publication extends the results of [AKLM21] to situations
where the domain contains a re-entrant edge and the regularity of the solution is thus
reduced. With both publications we showed that the method can be used in the most
relevant cases and produces reliable numerical results. The results from this publication
are contained in Chapter 5.
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Abstract: Pressure-robustness has been widely studied since the conception of the
notion and the introduction of the reconstruction approach for classical mixed methods in
[Lin14]. Using discretizations capable of yielding velocity solutions that are independent
of the pressure approximation has been recognized as essential, and a large number
of recent articles attest to this fact, e.g., [AP21a; LMN20]. Apart from the pressure-
robustness aspect, incompressible flows exhibit anisotropic phenomena in the solutions
which can be dealt with by using anisotropic mesh grading. The recent publications
[AK21; AKLM21] deal with the combination of both challenges. We briefly revisit the
results from [AKLM21] and provide an insightful new numerical example.

Relevance for thesis: This short proceedings contribution features a numerical example
dealing with a stagnation point flow. It illustrates the advantages of pressure-robust
methods in combination with anisotropic meshes. We use and extend this example in
Section 6.2.
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CHAPTER 2

Preliminaries and incompressible flows

This chapter introduces the mathematical theory of incompressible flows and the associ-
ated concept of pressure-robustness which is described in detail in Section 2.3. Starting
with notation and some necessary preliminary definitions and results in Section 2.1, the
framework for our analysis is set in Section 2.2 with the introduction of the Navier—Stokes
equations and one of its simplified variants, the Stokes equations, which will be used for
most of the text as model problem. In Section 2.4 we motivate the need for anisotropic
triangulations when investigating incompressible flows with finite element methods and
introduce some classes of meshes with special gradings, which can be used for a large
variety of problems.

2.1 Fundamental notation and concepts

In our estimates we may use the generic constant C' > 0, which can change from line to
line in the computations. If we want to make a dependence of the constant on a certain
parameter or variable explicit, we write, e.g., C(d). The expression a < b means that
there is a positive constant C, so that a < Cb, and a ~ b means that there are positive
constants C7, Co, so that Cia < b < Cea. Symbols in bold font indicate vectors, vector
valued functions or function spaces of vector valued functions where each component has
the stated regularity.

2.1.1 Classical and weighted function spaces

When dealing with partial differential equations, continuously differentiable functions are
a prerequisite. We use the standard notation, see, e.g., [AF03, Paragraph 1.26], and denote
by C™(G), m € Ny, the space of continuous functions f on an open set G C R?, d € N,
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whose partial derivatives D f, |a| < m, are continuous. Here o = (a1, ..., aq) € Ng is a
multi-index with

|| Ed d a——aw
o = ; an D™ = — ol
P 0z} oz,

Since continuous functions may be unbounded on an open domain, we also define the
space C™ (@), which consists of functions f € C™(G) that have bounded and uniformly
continuous derivatives D*f, 0 < |a| < m, see [AF03, Paragraph 1.28]. These spaces are

Banach spaces with respect to the norm

m(d) — Da .

1fllem @) og%?§m§22| f(@)|

Additionally we use the notation L9(G) for the usual Lebesgue spaces with 1 < g < 0.
With the notion of weak derivatives, see, e.g., [AF03, Paragraph 1.62], we can give a

definition of the standard Sobolev spaces.

Definition 2.1. Let G C R? be any domain. For all integers m > 0 the function spaces
WmA(G) = {v € LYG) : [[v]l g, < 00}, 1<g<oo,
are called Sobolev spaces, where the norms are defined by

1/q
H'||m7q7G = Z ||Dav‘|%q(6’) ) 1 S q < 0,

la|<m

Hva,oo,G = Iang)r(n HDQUHLOO(G)-

||

Occasionally we may also use fractional order Sobolev spaces W*4(Q2), s > 0, which
can be defined using an interpolation technique for Banach spaces, see [BS08, Section
14.1].

For the Hilbert space case ¢ = 2 we simplify the notation of the norm to |-, 5 ¢ =

|-I,,.c» and when we consider the whole domain €2 of a problem we omit the symbol in
the index and write Mg = -llmg and [[ll2.0 = [I|l,,- As usual, the Sobolev spaces
for ¢ = 2 are also denoted by H™(G).

With the space Cj°(G) of smooth functions with compact support we can define the
spaces Wy"?(G) as the closure of C§°(G) in W™4(Q), see [AF03, p. 60]. In the special
case of m =1 and a bounded domain G, the space VVO1 (@) contains the functions from
Wh4(@) with vanishing trace in an L?(0G) sense, see [BS08, p. 40], where 9G is the
boundary of the domain G. The dual space of WJ"%(G) is denoted by W~"4'(G), where
¢ is the conjugate exponent of ¢, i.e., it holds

1 1
qa q



2.1 Fundamental notation and concepts

For the case ¢ = 2 we use the notation WS”’Q(G) = H"(G) and W~™2(Q) = H ™(G)
as before.

In parts of the analysis we encounter singularities in the solution functions that are a
result of re-entrant corners or edges, and certain types of weighted Sobolev spaces are
useful for these cases.

Definition 2.2. Let G C R?, d € {2,3}, be a domain. Then the function spaces
VIM(G) = {0 € DGt [olypg < o0} mENo, 1<q<o0, AER,

where D'(QG) is the space of distributions, see [AF03, Paragraph 1.57], are called weighted
Sobolev spaces of Kondrat’ev type. The norm is defined by

HUHgn,q;B,G’ — Z Hrﬁ—mﬂa\DaUH

q

)
0,q9,G
|a|§m »q5

where r is the radial coordinate in polar or cylindrical coordinates, measuring the distance
to the origin or x3-axis, respectively. If ¢ = 2, we omit the parameter in the index of the
norm and write [|-||,,, 5 . Note that the semicolon in the index is used to distinguish the
notation from the norms of the standard Sobolev spaces.

In addition to the above introduced standard and weighted Sobolev spaces we often
require the space

H(div,Q) = {ve L*(Q): V-v € L}(Q)}
and its subspace
H(div,Q) = {v € H(div,Q) : v|sq - ngq = 0}

where nyq is the outward pointing unit normal vector on the boundary 902 of the domain
Q. Due to the divergence constraint in the fluid equations these spaces are important in
the treatment of flow problems.

For the finite element discretizations we require the spaces P, (G), which contain
polynomials of maximal degree k on a domain G.

The symbol Q will always denote a simply connected bounded domain in R?, d € {2,3},
that has a Lipschitz boundary, for a definition see [Sch98, p. 339]. For an arbitrary vector
I € R? we denote the directional derivative in direction I by %.

2.1.2 Helmholtz—Hodge projection

An important concept in the context of pressure-robustness is the orthogonal decompo-
sition of vector fields into divergence-free and irrotational components. An extensive,
application-oriented survey of this topic can be found in [BNPB13]|. Most of the content
of this subsection was similarly discussed in [AK21, Section 4] and [LMN20, Section 3].
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Lemma 2.3. Let g € L*(Q). Then there is a unique decomposition g = Pg + YV, where
¢ € H'(Q)/R and

Pg € L2(Q) = {v € L*(Q) : (Vq,v) =0 Vg€ H'(Q)}.

Here H'(Q2)/R is the quotient space of H'(Q2) and R, i.e., functions that differ only by a
real constant are merged to an equivalence class.

Proof. For the proof see, e.g., Theorem [.3.6 in conjunction with Corollary 1.3.4 in
[GR86]. O

This decomposition is called Helmholtz—Hodge decomposition, and the operator P :
L*(Q) — L2(Q) is the Helmholtz-Hodge projector. Since for all functions ¢ € H'(Q) the
unique Helmholtz—Hodge decomposition of V¢ is given by V¢ = 0+ V¢, we immediately
see that for the Helmholtz—Hodge projection of every gradient field it holds

P(V¢) = 0. (2.1)
By defining the restriction
(Pg,v) = (g,v) Vv e X (2:2)

of a functional g € H™1(Q) to X° = {v € H}(Q) : (V-v,q) = 0 Vq € L3(Q)}, where
L3(Q) = {q € L*(Q) : [oqdx = 0}, we can formally extend the projection operator
P from L?*(Q) to H™1(Q) with range in the dual space of X%, (X°). A detailed and
technical introduction of this extension can be found in [Mon06, Section 2].

Assuming enough regularity, the Helmholtz—Hodge decomposition of a specific vector
field f can in practice be found by solving the problem: Find (Pf,¢) € Ho(div,Q) X
H'Y(Q)/R, so that

Pf+Veo=f in €, (2.3a)
V-Pf=0 in Q. (2.3b)

2.2 Incompressible flows

After these fundamentals we now consider some facets of incompressible flows. The
standard mathematical model to describe the velocity and pressure of fluid flows is the
system of the Navier—Stokes equations, which in d spatial dimensions comprise d partial
differential equations for the momentum balance and additionally the continuity equation
which models the conservation of mass. We omit a detailed derivation of the partial
differential equations from the physical principles, for that see, e.g., [Joh16, Chapter 2]
or [CM90, Section 1.3], but discuss some aspects of the incompressibility constraint.
The continuity equation in the flow model is derived from the principle that the rate
of change of mass over time inside every subdomain vanishes. After some mathematical
manipulation of this premise, see, e.g., [Panl3, Section 5.1], we arrive at the form

ap
V- (pu) = 2.4
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2.2 Incompressible flows

where p(x,t) is the density of the fluid and w(x,t) its velocity.
When considering incompressible flows, we assume that the continuity equation simpli-
fies to V- u = 0. This is a consequence of (2.4) when p(x,t) = const, but that is only a

special case. By using the material derivative % = % + u -V we can transform (2.4) to

1Dp
_— = — A
p Dt
and see that the divergence-free condition also holds if %% = 0.

This means that incompressible flow may also occur in an incompressible fluid with
variable density, see, e.g., the example in [CL14, Section 2.4.2], but also in certain cases
of a compressible fluid at low Mach number, e.g., aerodynamics at velocities far below
the speed of sound, where the compression of the fluid can be neglected.

2.2.1 The Navier—Stokes equations

The basic governing equations for incompressible flow problems in a domain Q C R¢ are
the Navier—Stokes equations

ou—vAu+ (u-Vu+Vp=f in Q, (2.5a)
Vou=0 in Q, (2.5b)
u=0 on 012, (2.5¢)

where u and p are the velocity and pressure of the fluid, and v is the kinematic viscosity
of the fluid. Apart from (2.5¢) several other types of boundary conditions are applied
frequently, including the Dirichlet condition

u(x,t) = g(x,t) on I'p C 09, (2.6)

which can be used to prescribe an inflow or outflow on the boundary, the free-slip
condition

u-nyg =0 on I'g C 09, (2.7a)
nho(v(Vu + (Vu)') —pld)tp =0 onlgCoN, 1<k<d-1, (2.7b)

where ngq, t; are pairwise orthogonal, which describes a flow slipping along a non-
penetrable wall without resistance, or the do-nothing condition

(v(Vu+ (Vu)?) = pIld)ngg =0  on I'y C 09, (2.8)

which is often used as an outflow condition and describes that the normal stress on
the boundary I'y vanishes. A more detailed overview can be found in [Joh16, Section
2.4]. We however restrict ourselves, with the exception of some numerical examples in
Chapter 6, to the homogeneous Dirichlet boundary condition (2.5¢), which is also called
no-slip condition.

As mentioned in [JKN18, Remark 2], the Navier—Stokes equations pose three major
challenges when trying to solve them analytically or numerically:

11



Chapter 2 Preliminaries and incompressible flows

e The coupling of velocity w and pressure p.
e The nonlinear convective term (u - V)u.

e The emerging turbulent structures if the convective term dominates the viscous
term —vAu.

Due to these obstacles, the Navier—Stokes equations are still a very active research field
for mathematicians and application-oriented scientists.

Since in the study of pressure-robustness we want to concentrate on the first aspect,
the coupling of velocity and pressure, we use a simplified mathematical model in our
analysis. A possible simplification would be the Oseen equations, which are stationary,
i.e., Oyu = 0, and where the nonlinear convective term is replaced by (b - V)u, with some
divergence-free vector field b. This effectively linearizes the differential equation and takes
care of the second point in the above list. The Oseen equations arise when using certain
discretization methods for the Navier—Stokes equations, see, e.g., [Joh16, Chapter 5].

Due to the convective term, dominating convection can still occur in the Oseen equations.
To circumvent this difficulty, convection may be completely neglected, which leads to the
Stokes equations that, from a practical point of view, model highly viscous fluids. From
the three points in our list, the Stokes equations only exhibit the coupling of velocity
and pressure, which makes them well suited for our theoretical analysis in the context of
pressure-robustness. As we show in an example in Section 6.2, it is well justified looking
at the Stokes equations instead of the full model when investigating pressure-robustness
in incompressible flow discretizations, since the complexities that occur in the convective
term for exact solutions of the Navier—Stokes equations can be brought to the Stokes
equations in a complicated data function.

2.2.2 The Stokes equations

The Stokes equations emerge from the more general Navier—Stokes equations by only
considering stationary flows, i.e., diu = 0, and by additionally assuming that the
convection term is dominated by the friction term and thus can be neglected, i.e.,
(u - V)u = 0. With these modeling assumptions we arrive at the Stokes equations

—vAu+Vp=f in Q, (2.9a)
V-u=0 in Q, (2.9b)
u=0 on 0f). (2.9¢)

Due to the linearity of the equation, the kinematic viscosity v can be hidden from the
momentum balance by multiplying with ! and introducing a new pressure variable
and right hand side which are scaled by v~!. However, since viscosity plays a major
role in the context of pressure-robustness due to the viscosity locking described in the
introduction, we explicitly retain this parameter in the equation.

The weak form of the Stokes equations is derived as usual, and after integration by

12



2.2 Incompressible flows

parts the problem takes the form: Find (u,p) € X x Q = H{(Q) x L3(Q), so that

va(u,v) + b(v,p) = (f,v) Vv e X, (2.10a)
b(u,q) =0 Vq € Q, (2.10b)

where L3(Q) = {q € L*(Q) : [,qdx = 0}. The bilinear forms a : X x X — R,
b: X x @ — R in this formulation are defined by

a(u,v) /Vu Vude,

/V vgdx.

From classical results, see, e.g., [GR86, Theorem 1.5.1], we know that (2.10) has a
unique solution.

Proposition 2.4. Let Q C R? be bounded, connected and open with Lipschitz-continuous
boundary O and let f € H™1(Q). Then there is a unique pair of functions (u,p) € X xQ,
so that (2.10) is satisfied.

Even more general, existence and uniqueness of the solution is guaranteed for Dirichlet
boundary data g € H /2 (092). However, in our analysis we mostly do not require this
general setting and restrict the assumptions to f € LQ(Q) and homogeneous boundary
conditions.

One of the main properties required to prove Proposition 2.4 is the inf-sup stability
condition, see, e.g., [Joh16, Theorem 3.46].

Lemma 2.5. For the spaces X and Q there is a constant 5 > 0, so that

b
mf osup DS (2.11)
0£9€Q ozvex [V|l1llanlly

holds.

Concerning the regularity of the Stokes solution there are several additional results,
depending on the regularity of the data and the regularity of the domain. For right hand
side data in H _1(9), the classical result for smooth domains, see [Cat61, p. 311], requires
that the domain boundary is of class C2, see [Sch98, p. 340] for a definition. This was
improved upon in [GSS94], and we combine both results in the next proposition.

Proposition 2.6. Let Q C R¢ be open, bounded and connected with boundary of class
C™*2 and let f € W™9(Q), with m > —1 and q € (1,00). Then for problem (2.10) there
is a unique solution w € W 24(Q), p € WmH4(Q) with [, pde =0 and the estimate

VHuHm+2,q + HpHm—l-l,q f, ”-me,q

is satisfied.

13
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This proposition guarantees a higher regularity of the solution than Proposition 2.4
under the assumption of a certain regularity of the boundary of the domain. Additional
results are available for the in finite element analysis important cases of polygonal and
polyhedral domains. In [KO76] it was proved that the result from Proposition 2.6 holds
in the Hilbert-space setting when the domain is a convex polygon and m = 0.

An extensive analysis of the solution regularity was conducted in [Dau89] for two-
and three-dimensional domains. Additional results for prismatic domains with re-entrant
edges are given in [ANSOla, Theorem 2.1] in the context of weighted Sobolev spaces.

Lemma 2.7. Let Q = G x (0,1), where G is a polygon with exactly one re-entrant corner
at the origin with interior angle w € (w,2x). Additionally let f € L*(Q) and let X be the
smallest positive solution of
sin(Aw) = —Asin(w). (2.12)
Then the solution (u,p) of (2.10) satisfies for B € (1 — A\, 1)
ue Vyi(Q), pEVyQ)

8u 1.2 (9p 2
— “(Q — e L*(Q
ax3 S VO ( )7 8%3 € ( )a

and the estimate

ou

Op
280 H O3

8.0 T H O3

S 1 fllog
0,0

[ ] + llpl
Q

150,
holds.

Using the Helmholtz—Hodge projector from Section 2.1.2, we can derive a fundamental
property that links the projections of the data function and the Laplacian of the Stokes
velocity solution, see also [LMN20, Lemma 3.1].

Lemma 2.8. Let —A : H}(Q) — HY(Q) be defined by
(—Av,w) = (Vv,Vw) Vw € H}(Q).
Then for the velocity solution w of (2.10) the equality
P(—Au) = v 1Pf

and the estimate

v[[P(=Au)llp = [[PFfllo < [ Fllo (2.13)
hold.

Proof. We have in general f = —vAu + Vp € H 1(Q). Using the extension of the
Helmholtz-Hodge projector, see (2.2), and its properties we get

Pf =P(—vAu + Vp) = vP(—Au), (2.14)
since P(Vp) = 0. The estimate (2.13) follows immediately. O

A consequence of the preceding lemma is that even though in general —Au € H~1(1),
we see that for f € L*(Q) it holds P(—Au) € L?(Q), i.e., the divergence-free part of
—Aw has a higher regularity.

14
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2.3 Pressure-robustness

The concept of pressure-robust discretizations of incompressible flows is relatively new,
see [Lin14], even though the underlying problem of classical discretizations, the inexact
enforcement of the divergence constraint, known also as poor mass conservation, has been
subject of research activity for substantially longer, see, e.g., [GJ05; GLB97; Lin09; OR04].
This relaxation of the divergence-free condition causes a coupling of the approximability
of the discrete velocity with that of the discrete pressure. We briefly introduce the main
ideas behind pressure-robustness based on [GLS19; Joh+17; Lin14; SLLL18].

2.3.1 An equivalence class of forces

The Stokes equations show a fundamental invariance property, meaning that the velocity
solution is not affected by changes of the gradient part of the data function. This can be
seen when looking at the formulation of the problem in the subspace of divergence-free
functions: Find u € X ={v e X : (V-v,q) =0 Vg € Q} so that

va(u,v) = (f,v) Vo e X°. (2.15)

This form of the Stokes problem is an equivalent problem to (2.10) for only the velocity
field of (2.9), see [GR86, Remark 5.2]. In this setting, the pressure p is determined by
the additional problem

b(v,p) = (f,v) —va(u,v) Vo € X\ XY,

which is well posed, assuming the inf-sup condition (2.11) holds, see also [BS08, Lemma
12.2.12]. Taking into account the Helmholtz—Hodge decomposition of the data function
f=Pf + V¢, we get by using integration by parts

(f,v) = Pf,v)+(Vo,v) = (Pf,v) = (¢,V-v) + (¢,v- naQ)L2(GQ)‘

Since v € X the second and third term vanish and we are left with (Pf,v) on the
right hand side of the variational formulation (2.15), i.e., the velocity solution u € XY of
(2.10) is determined by

va(u,v) = (Pf,v) Vo € XV, (2.16)

Thus, two data functions f and g lead to the identical velocity solution of the Stokes
equations, if they have the same Helmholtz—Hodge projection, i.e., Pf = Pg. This is
the case if and only if they differ by a gradient field, which leads to the definition of an
equivalence relation.

Definition 2.9. Two vector fields f, g € L?(Q) are called velocity-equivalent, if they
differ only by a gradient field, i.e., there is a potential 1 € H*(Q) so that f = g + V. If
two functions f, g are velocity-equivalent, we write f = g.

15
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This property of the Stokes equations means that a change of the right hand side by a
gradient field, i.e., f — f+ Vo, ¢ € H(Q) N Q, results only in a change of the pressure
solution (u,p) — (u,p + ¢). As mentioned in [LMT16, Remark 2.1}, this property also
holds for any boundary condition that does not involve the pressure, e.g., general Dirichlet
or free-slip conditions, see (2.6) and (2.7). For an explanation why the pressure must not
be involved, suppose (u,p) is the solution of a problem with the do-nothing condition
(2.8). Then inserting (u,p + ¢) into (2.8) gives

(V(V’u + (VU)T) — (p + (b) Id)nag = —¢pnyq,

which shows that the boundary condition is not satisfied for general functions ¢ €
H'(Q) N Q, which means that the mentioned property does not hold.

The basic idea of a pressure-robust discretization is that, as in the continuous case, the
discrete velocity solution will not change if the right hand side data function is replaced
by another velocity-equivalent function.

2.3.2 Effect of missing pressure-robustness — an example

In order to get an impression of the effect of using a pressure-robust method instead of a
classical discretization like the Taylor—-Hood element, we show an elementary example in
advance of the detailed introduction in Chapter 3. A similar illustrative example was used
in [GLS19, Section 2.5]. Consider a hydrostatic setting on the unit square = (0,1)2,
i.e., the data function on the right hand side has the form f = V1) for some ¢ € H'(€).
This results in the solution functions (0,%) of problems (2.9) and (2.10).

We compare the classical Taylor—-Hood Pj—F;_1 element from [THT73|, denoted by
THy, with the pressure-robust modified Crouzeix—Raviart method from [Lin14], denoted
by CR-RT, which is a lowest order method that we describe and investigate in more
detail in Section 5.3. Figure 2.1 shows the elementwise gradient error of the discrete
solution on an unstructured mesh for several orders of the Taylor—-Hood element and the
modified Crouzeix—Raviart method, each for different choices of ) and the viscosity set
to v =10"%

Even though the velocity solution w = 0 is contained in the discrete velocity space and
it could be expected that all methods find the correct solution, this is not the case for
all combinations. The discrete velocity solution of the Taylor—-Hood element is severely
degraded in settings where the pressure solution is not contained in the discrete pressure
space. Even worse, when looking at the error estimates of the method, see, e.g., [Joh+17,
Section 3], the best-approximation term for the pressure is scaled with the factor v 1,
resulting in a viscosity induced locking effect.

On the other hand, the pressure-robust modified Crouzeix—Raviart method delivers
the true velocity solution w, = 0 for all tested right hand sides, even though the pressure
is only approximated by piecewise constants. Thus, this simple example already shows
the potential of pressure-robust discretizations.
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Figure 2.1: Elementwise gradient norm ||[Vuy||o 1 of discrete velocity solution for different
methods and right hand sides. Note the logarithmic scaling on the color bar.

2.4 Anisotropic triangulations for flow problems

We introduce some frequently used notation and concepts concerning meshes in general
and specifically meshes using anisotropic, i.e., highly stretched elements. Additionally
we detail the type of mesh gradings we use in the forthcoming analysis and numerical
examples for boundary layers and edge singularities in flow problems.

2.4.1 Notation for meshes and mesh regularity requirements

We consider conforming, simplicial discretizations 7} of the domain Q C R?, with space
dimension d € {2,3}. The Cartesian unit vectors are denoted by e;, i € {1,...,d}. For
every element T' € Ty, hp is its diameter and the global mesh size parameter is defined as

h = max hT.
TE T,

Since our focus is on anisotropic meshes, the aspect ratio

0 = max or
TeTh

17



Chapter 2 Preliminaries and incompressible flows

of a mesh is of interest, where

hr

opr = —

pT
is the aspect ratio of an element T', with pp being the supremum of the diameters of all
balls contained within 7', see Figure 2.2 for an illustration.

The set of facets of a mesh is denoted by F(7j), the analog for an element by
F(T). Interior facets of the mesh are collected in the set F*(7), boundary facets in
FO(Th) = F(Tn) \ Fi(Tp). Similarly, the set of vertices of a mesh, element 7" € 7;, and
facet F' € F(Ty) is denoted by V(T), V(T) and V(F), respectively, and we also use
the analogous notation for the subsets of interior vertices V(7;) and boundary vertices
VI(Th).

For F € F(T,) and T € Ty, xr and @7 denote the barycenter of the facet and element,
respectively. The unit normal vectors on the facets are denoted by n g, are outward facing
on boundary facets and have an arbitrary but fixed direction for interior facets. For an
individual element, n7 r is the unit normal vector on facet F' with outward direction
with respect to the element T

When the numbering of facets and vertices of elements becomes important, we switch
from the general notation of a facet with the symbol F' to a more specific description, where
we use the index sets I, = {1,...,n}, n € N, and the reduced index sets ;I,, = I, \ {i}.
The vertices of an element T' € 7} are identified by their position vectors pr; € R,
i € Iqy1, and the facet er; = conv{py; : j € ilg11}, i € I4y1, lies opposite to the vertex
Pr;- When only one element is important we usually omit the index 7'

Using the triangulation 7j of a domain 2, we define the spaces

P.(Tp) ={v:v|jr € P(T) VT € TR} NC(Q),
Pl(Tp) ={v :v|r € P,(T) VT € Tp},

of continuous and discontinuous piecewise polynomials of order k, respectively.

Having introduced the basic notation for meshes, we now turn to the general notion
of mesh regularity. Not imposing an upper bound on the aspect ratio ¢ can lead to
degenerated elements with strongly stretched geometries and potentially very small or
very large angles between facets and for three-dimensional settings also within facets.
Such large angles can lead to unwanted behavior of finite element discretizations and
interpolation errors, as the discussion in [AEHK21]| and our Example 4.12 shows.

The solution to this problem is using meshes which satisfy a maximum angle condition.
This requirement has a long history in finite element analysis, since it was first introduced
for triangles in [Syn57, p. 211f] and later generalized for three-dimensional settings in
[Ki192]. Figure 2.2 illustrates the different regularities in the case of triangles.

Definition 2.10. An element T € 7T, satisfies the mazimum angle condition, if there
is a constant ¢ < m, so that for the maximum angle ¢ between facets, and for d = 3
also within facets, ¢7 < ¢ holds. We use the notation MAC(¢) for the maximum angle
condition with constant ¢.
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2.4 Anisotropic triangulations for flow problems

diam(7T) = hp
@ — T
/

Figure 2.2: Triangles with decreasing regularity properties from left to right: Isotropic
triangle, anisotropic triangle with maximum angle condition, anisotropic
triangle without maximum angle condition.

Figure 2.3: Comparison of two anisotropic tetrahedra, with regular vertex property (left)
and without regular vertex property (right).

The maximum angle condition is broadly used where the aspect ratio may be unbounded,
but a certain regularity is required, see, e.g., [AADL11; AD99; Ape99; DLO0S].

For three-dimensional simplices there is another regularity assumption in use, the
regular vertex property, that defines a proper subclass of the elements satisfying the
maximum angle condition. For d = 2 it is equivalent to the maximum angle condition,
see [AD99, Section 5, p. 29].

Definition 2.11. An element T satisfies the reqular vertex property, if for one of its
vertices pp, it holds

|det Ny x| >¢ >0, ¢eRy, (2.17)
where N7 € R4 consists of the column vectors
Pr; — Prk .
I = 72—, Jj€rlap1

HPT,j - pTJsz

The vertex pp, is then called regular vertez of T'. When using this property for an
individual element in the remainder of the text, we assume that the vertices are numbered
so that pp4yq is the regular vertex. This simplifies the notation of the vectors to
lr;, = l%ll, i € 1. We write RVP(¢) for the regular vertex property with constant €.

To make this definition more tangible we describe it in a more geometric sense, see
also Figure 2.3: the vectors lr; are the unit vectors along the edges of the element
outgoing from the regular vertex, and condition (2.17) means that these vectors need to
be uniformly linearly independent, i.e., form a stable coordinate system for the element
in order for RVP(¢) to hold.

When using anisotropic elements, it is important to precisely define size parameters
for the contrasting scales. When the regular vertex property is satisfied, we can use the
lengths of the edges associated with the vectors l; as element size parameters h;, i € 1.
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x3

h1

ol

Figure 2.4: Triangular prism subdivided into three tetrahedra.

In addition to the regularity condition they satisfy, tetrahedra can have different types
of anisotropy, which may determine whether a complete mesh for a domain can be built
using only such elements. To illustrate this point, consider a triangular prism, as shown
in Figure 2.4, that is subdivided into the three tetrahedra p;pspsps, P1P4P5Pe and
P1P2P5Pg- Independent of the prism’s anisotropy, the first tetrahedron clearly satisfies
the regular vertex property, with regular vertex ps.

Consider the situation hg > hy, ho, which can occur, e.g., when a mesh is anisotropically
graded towards an edge, as in [Ape99; AK20; ANSOla]. Then the second tetrahedron
has a regular vertex, e.g., pg. The remaining third tetrahedron however, which has two
vertices each on the top and bottom surfaces of the prism, does not have a regular vertex.
This means that such a mesh can not satisfy the regular vertex property globally.

On the other hand consider a flat prism, i.e., h1 ~ ho > hg, which may be used when
grading a mesh to fit to a boundary layer. Then the second tetrahedron has the regular
vertex p, and for the third tetrahedron, which now has a flat shape, we may choose py
or ps as regular vertex.

Remark 2.12. We often use the terms mesh refinement and mesh grading, and to make
the meaning clear, we define them properly here.

With (local) mesh refinement we mean a (local) change in element sizes of the mesh,
introduced mainly by subdividing existing elements, but it can also be a result of creating a
new mesh from scratch with a different mesh size parameter. Typically a mesh refinement
that globally halves the mesh size parameter leads to an increase in the number of
elements by a factor of 24, where d is the spatial dimension.

The term mesh grading on the other hand is used when we keep the number of elements
constant, but move the vertices of the mesh so that locally a change in the element sizes
manifests.
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2.4 Anisotropic triangulations for flow problems

2.4.2 Boundary layers

A common characteristic of incompressible flows is that boundary layers are formed, for
example near walls where no-slip boundary conditions are prescribed. Starting with the
article [Pra05], this phenomenon hast been widely studied, see, e.g., [SGO06].

In general, boundary layers exhibit a large directional derivative normal to the boundary,
while the directional derivative parallel to the boundary is comparatively small. Since
large gradients typically mean larger local errors of the discrete solution, smaller element
sizes in the area of the boundary layer are necessary to counter the behavior of the
solution. This could be achieved using local refinement with isotropic elements, but
this wastes computational resources, since smaller element sizes are needed only in the
direction with the large directional derivative. Thus we want to use anisotropic meshes,
where stretched elements with small element size parameters in the right direction are
used, which mostly means perpendicular to the wall. What we can typically expect from
these types of meshes is a reduction of the error, e.g., in the energy and L2-norms.

In the numerical examples in Chapter 6 that exhibit boundary layer structures we use
meshes of Shishkin-type. The main idea is to generate a piecewise uniform mesh, where the
element size in the boundary layer is fitted to the solution, see [Lin10, Section 2.1.2]. The
process of constructing such a mesh can be best described for a one-dimensional domain,
and the extension to two- or three-dimensional meshes is straightforward. Starting with
the interval [0, 1], we choose a transition point parameter 7 € (0,1) and a mesh parameter
q € (0,1), which describe the width of the graded part of the mesh and the fraction of the
total elements used therein, respectively. We assume 7 < ¢ since otherwise the smaller
elements would be located in the area that is supposed to be outside of the boundary
layer.

For a given number N > 2 of mesh elements, the grid vertices 2%, i € {0,..., N}, are
defined by
b ion 0<i<gN,
TJr(i*qN)(ll_;q)TN, gN <i < N.

This interval mesh can then be extended into the second or third dimensions with, e.g., a
uniform mesh size to yield a tensor product mesh of quadrilateral or hexahedral elements.
By dividing the quadrilateral elements along a diagonal we get a simplicial triangulation
that has n = 2N? elements and a maximal aspect ratio of

VT 2.18
g+7—@PE+ 12 (2.18)

To get a three-dimensional mesh, either the quadrilateral mesh can be extended and
subsequently the resulting hexahedral mesh can be subdivided into tetrahedra, see, e.g.,
[ADO03], or the quadrilateral mesh in two dimensions can first be subdivided as described,
so that the extension into the third dimension results in prismatic elements with triangular
base. To get a simplicial mesh in this case, the prisms can be partitioned into tetrahedra
as seen in Figure 2.4.

o =
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Figure 2.5: Two example meshes of Shishkin-type for boundary layer phenomena.

The left hand side of Figure 2.5 shows an example mesh of this type with parameter
choices 7 = 0.1 and g = 0.5 for the zs-direction and a uniform mesh size for the xi-
direction. The right hand side of the figure shows a mesh that has been graded for layers
on two sides of the boundary, with parameters 7 = 0.05, g1 = 0.25 in the x;-direction
and the same parameters as in the first mesh for the xo-direction. A comparison of the
two meshes shows that if more than one direction contains a Shishkin-type grading, (2.18)
sets a lower bound on the actual aspect ratio.

The transition point can be chosen so that the mesh is optimally adapted to the layer.
For the original mesh type introduced by Shishkin for singularly perturbed problems,
the transition point is set to 7 = min{q, DIn N}, where D € R, is a problem specific
constant, see [Linl0, Section 2.1.2]. However, we will mostly not include a dependency
on the mesh density in our choice of the transition point, and thus we proceed to call our
meshes Shishkin-type.

Mostly motivated by the study of singularly perturbed problems, e.g., reaction-diffusion
problems with a small parameter in front of the diffusion term, a large variety of
layer-adapted meshes has been investigated, e.g., Bakhvalov meshes [Bak69], Bakhvalov-
Shishkin meshes [Lin99; Lin00] and several variants [Vul83; Vul01]. An extensive overview
of these meshes is given in [Linl0]. Since our focus lies on the interplay of pressure-
robustness and anisotropic meshes, we choose to use a simple type of layer-adapted mesh,
as described above. The Shishkin-type mesh may not be perfectly adapted to incompress-
ible flow boundary layers, but it can sufficiently show the effects of anisotropically graded
meshes without getting lost in the details of mesh adaption.

The use of these layer-adapted meshes in general does not improve the asymptotic
convergence characteristics of a discretization method but does improve the dependence
of the constant in the error estimates on the perturbation parameter, which in our case is
the viscosity v. Still, the gain in accuracy can be significant, as shown in the discussion
in [Ape99, Section 5.2] and in our examples in Chapter 6.
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Figure 2.6: Visualization of domain for singular edge problems. Example triangulation of
domain with anisotropic mesh grading.

2.4.3 Edge singularities

Similar to the boundary layer phenomenon, large gradients in form of singularities are
introduced in the solution of elliptic boundary value problems by non-convexities in the
domain, see, e.g., [Grill]. After a suitable generalization of the definition of ellipticity in
the sense of [ADNG64], the Stokes equations can be seen as elliptical, see [Hacl7, p. 313],
so these types of singularities also occur here and were investigated in, e.g., [Dau89;
KOT76]. Local mesh refinement has been proven to ameliorate the detrimental effects of
these singularities when working with the finite element method, see, e.g., [Ape99; AK21;
ANSO1la]. Our interest in anisotropic elements leads us to consider mainly non-convex
edges, since there anisotropic grading towards the edge makes sense.

In this subsection we introduce an approach to generate meshes which are anisotropically
graded towards a re-entrant edge, by first building a quasi-uniform mesh and then moving
the vertices towards the singular edge in a specific grading process. The technique was
introduced in [AD92], is well established, see, e.g., [Ape99; AK21; ANSOla; FNPO01], and
yields tensor-product-type meshes that satisfy the maximum angle condition.

A hierarchical mesh refinement procedure that results in similarly graded meshes exists,
see [AS02], however the prismatic macro-elements that arise in the above mesh generation
process are required for the anisotropic analysis later on. In [Lil8; LN18] another kind
of mesh refinement procedure was introduced that also generates a mesh which has an
analogous grading towards re-entrant edges. However those meshes do not satisfy the
maximum angle condition, which we require for our error estimates.

In the following paragraphs we consider prismatic domains 2 = G x (0,1), with
a polygonal base G that has one non-convex corner at the origin with interior angle
w € (m,2m), as illustrated in Figure 2.6.

Suppose Dy, is a shape regular, conforming triangulation of the base area G, with
mesh size parameter h = maxpep, hp, with hp = diam (D). Given a grading parameter
w € (0,1], the vertices of this mesh are moved towards the non-convex corner so that
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Chapter 2 Preliminaries and incompressible flows

after the grading every element satisfies the condition

/v ifrp =0,
hp ~ 1 hrp ™, if0<rp < R,

h, else,

where rp = inf{dist(x, 0) : * € D} is the distance of an element D € Dj, to the concave
corner and R > 0 is the radius of the refinement zone. Since edge singularities are a
local phenomenon, it is possible to choose R quite small, given that the overall mesh
size parameter h is small so that enough graded elements are in the mesh. The local
nature of the singularities is also the reason why for analytical purposes it is sufficient to
concentrate on the setting as it is described here.

After the two-dimensional mesh is graded, it is extended in the z-direction with
uniform mesh size h3 ~ h, resulting in a mesh of prismatic elements with triangular bases.
Subdividing the prisms into three tetrahedra each, see Figure 2.4, yields the desired
simplicial mesh 7. For an element T' € 7}, let rp be the distance of the element to the
z-axis, and hy 7, ho 1, h3 T the lengths of the projections on the x-, y-, z-axis, respectively,
then it holds

e, i rp =0,
h37T ~ h, hl,T ~ h27T ~ hT‘;_H, ifo<ry < R,

h, else,

and the number of elements in the mesh satisfies N ~ h=3.

In contrast to the anisotropic mesh grading for boundary layers that was introduced
in the previous section, this type of mesh grading is employed to recover the optimal
convergence rate of a method, that is reduced due to the low regularity of the solution in
non-convex domains when using quasi-uniform meshes. Note also that when constructing
meshes in this way with a fixed grading parameter u, the anisotropy increases when the
mesh size parameter is decreased, which is also in contrast to the layer meshes, where the
anisotropy depends only on the mesh parameter ¢ and the chosen transition point 7.
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CHAPTER 3

Pressure-robust discretization of the Stokes equations

The ideas behind pressure-robustness were already introduced in Section 2.3, and now
we get into the possible discretization approaches that result in pressure-robust methods.
While there are techniques like grad-div-stabilization, see, e.g., [Joh+17, Section 5.1],
that decrease the impact of missing pressure-robustness of certain discretizations, we
concentrate on truly pressure-robust methods. In Section 3.1 we introduce the discrete
formulation for the Stokes equations and essential notation. The following Sections 3.2
and 3.3 contain a brief description of exactly divergence-free methods, i.e., methods that
yield weakly divergence-free velocity solutions by design and are thereby pressure-robust,
and the reconstruction method for classical element pairs first introduced in [Lin14].

3.1 General notation for discrete setting

In order to use non-conforming discretizations we introduce some tools from the framework
of discontinuous Galerkin methods, where we mostly follow [DE12, Section 1]. For a
function v the jump over an interior facet F', belonging to the two elements T}; and T2,
is defined pointwise by

[r(@) = vl (2) — vl (@), zeF,

while the average on that facet is defined by

fode(@) = 5 (vl (@) + vl (@) zeF.

To fix the sign of the jump we say that the adjacent elements of facet I’ are denoted so
that the arbitrary but fixed direction of the normal vector np points from T} to T2. On
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Chapter 3 Pressure-robust discretization of the Stokes equations

boundary facets we set [v]p(x) = {v}r(x) = v|r(x). Where it is unambiguous we usually
omit the index on the jump and average notation. To accommodate discrete function
spaces for which X}, ¢ X, we need the broken gradient Vj, : X & X — LQ(Q)dXd and
broken divergence Vj,- : X @ X, — L?(12) operators, that use the elementwise definitions

(Vior)|r = V(vp|r),
(Vi o)l =V - (vn|7),

for all elements T' € 7. Note that on X the broken variants coincide with the standard
gradient and divergence operators, see, e.g., [DE12, Lemma 1.22], so that for conforming
methods where X @& X, = X we can still use the broken notation. These definitions
of the two operators assume that functions from X have enough regularity at least
elementwise, which is satisfied for piecewise polynomials.

This leads us to our general formulation for the discrete Stokes problem: Find (wup, pp) €
X5 X Qp, where not necessarily X, C X, so that

vap(wn, vp) + bn(vn, pr) = ln(vn) Yo € X, (3.1a)

bn(wn, qn) = 0 Yan € Q. (3.1b)

There are several ways to define the bilinear and linear forms ay,, by, and I, depending on
the method that is used.

Introducing the space X?L = {v, € X}, : bp(vp,qn) = 0 Vg, € Qr}, we can write,
analogously to the continuous setting, a Poisson-like problem for the velocity: Find
up, € X9 so that

Vah(uh,’vh) = lh(vh) Yoy, € X?l (3.2)

To give a specific example of a possible discretization, we introduce the classical
Crouzeix—Raviart method from [CR73]. As velocity approximation space X this method
uses piecewise linear functions that are continuous at the barycenters of the element
interfaces,

CR(Ty) = {v, € L*(Q) : vy|7 € P(T) VT € Tp,, [vr](xr) = 0O VE € F(Ts)},  (3.3)

which, since CR(75,) € X, means that this is a non-conforming method. The pressure is
approximated using piecewise constants, i.e.,

Qh = {qh S Q : qh|T S PO(T) VT € 'ﬁl} (34)

Concerning the bilinear forms, only a small adjustment compared to the continuous
variants is necessary. Due to the non-conformity, the broken gradient and divergence are
needed which leads to the definitions

an(un, vp) = (Vpun, Vave),  ba(vn,q) = —(Vi - vp.q),  In(vn) = (f,vn)-
With this bilinear form aj we associate the mesh-dependent norm
lvrllyp = IVavnllg

for functions vy, € X @ X},. The Crouzeix—Raviart method is used at various instances
throughout the thesis, which is why it is introduced at this point. Other discretizations
are made explicit when needed.
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3.2 Exactly divergence-free methods

3.2 Exactly divergence-free methods

Many methods exist that are naturally pressure-robust and this is a very active field of
research, as indicated by many recent publications, e.g., [AP21a; AP21b; KR19; MYZ21;
RW18; RW20]. We give a brief overview of such finite element methods without going
into too much detail and discuss their use for anisotropic triangulations. There are also
approaches using the framework of isogeometric analysis to achieve exactly divergence-free
approximations, see, e.g., [BFS11; EH13a; EH13b], but we will not consider those.

3.2.1 H(2)-conforming methods

We start with a brief section on exactly divergence-free conforming methods, where
X C X. Such methods are characterized by the property V - X, C @Q, i.e., the
divergence of every possible discrete velocity field is contained in the pressure space,
see [Joh+17, Section 4], which leads to pressure-independent velocity errors. The term
exactly divergence-free comes from the fact that since V - vy, € @y, it holds

X) ={vh€ Xp:(V-vn,qn) =0 Vgn € Qn} C {vn € Xp: ||V wplly =0} c X,

which means that discretely divergence-free functions are exactly divergence-free.

The first method of this type is the Scott—Vogelius finite element pair that was
investigated in [SV85] for two-dimensional settings. Here the velocity is approximated in
P, (T) and the pressure in P}, (7). While this pair has the desired property V-P(7;,) C
PP, (Th) to be exactly divergence-free, showing inf-sup stability is a bit more involved.
Depending on the order k£ and the dimension d, various mesh properties need to be
satisfied to achieve inf-sup stability. For the low-order case with k = 2 and d = 2, which
was investigated in [Qin94, Chapter 4], it was proved that on barycentrically refined
meshes the inf-sup condition holds. Such meshes are constructed by dividing each triangle
of a regular mesh into three new triangles by using the barycenter of the original element
as an additional vertex, see Figure 3.1. Recently this pair was investigated concerning
the dependence of the inf-sup constant on the aspect ratio of the involved meshes, see
[KNS21]. According to [KNS21, Theorem 3.12], with a maximum angle condition and
some additional general assumptions on the mesh, the inf-sup constant of the low-order
Scott—Vogelius pair depends linearly on the inverse of the aspect ratio.

Example 3.1. We show that the inf-sup constant of the Py(75)-P(7;,) Scott—Vogelius
pair is not robust with respect to an increasing aspect ratio in the mesh. For this test we
choose a series of 2(4 x 4) Shishkin type meshes with a barycentric subdivision as the
one pictured in Figure 3.1. By letting 7 — 0, we get an increasing aspect ratio ¢ in the
meshes.

Computing the discrete inf-sup constant

F— inf sup (Vi - v, qn)

ahE€Qr v eX ), ||Qh||o||vhH1 ’

we observe the expected linear dependence on ¢! as shown in Figure 3.1.
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Figure 3.1: Left: Barycentric refinement (orange) of a Shishkin-type mesh (black) with
transition point 7 = 0.1 and ¢ = 0.5. Right: Discrete inf-sup constant of the
Scott—Vogelius pair on barycentrically refined Shishkin-type meshes.

The Scott—Vogelius method has been extended to three dimensions, see [Zha05; Zhall],
and several additional results concerning the required mesh properties have been produced
for different polynomial orders, see [Scol8, p. 146] for an overview. Another approach to
achieve an exactly divergence-free method uses complicated finite element spaces using
rational bubble functions, see [GN14a; GN14b]. An important concept in the context
of constructing new conforming divergence-free methods is the exact sequence property
of de-Rham complexes, see, e.g., [Joh+17, Section 4.3], which we explain using the
description from [AP21a, Section 1].

For Q C R2, the sequence

R -S H2(Q) X5 HY(Q) 5 L2(Q) — 0,

where V x is the two-dimensional curl operator, i.e., V x v = (9yv, —6mv)T, has the exact
sequence property, meaning that the kernel of one of the operators above the arrows is
the range of the preceding operator. For the spaces H(2) and L3(Q) that occur in the
weak formulation of the Stokes equations, there is also a sequence,

0S5 H2(Q) 25 HL(Q) > L2(Q) — 0,

which has the exactness property as above. This means that for every velocity uw € H (1)(9)
we get ¢ = V - u € L3(2), which by testing the divergence constraint of the Stokes
equations with this ¢ further implies ||V - u||§ =0, i.e., V- u = 0 almost everywhere. By
choosing finite element spaces ¥;, C HZ(Q), X, € H(Q) and Qp, C L3(2) which also
form a sequence

0-55 5 25 X1(Q) 25 Qu(Q) — 0,

with the exactness property, the discrete velocity solution would be automatically exactly
divergence-free. The before mentioned low-order Scott—Vogelius element on a barycentri-
cally refined mesh satisfies this discrete exact sequence properties in combination with
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the cubic Hsieh—Clough—Tocher element as the space 3, see [Joh+17, Section 4.3]. In
[AP21a; AP21b], a new family of arbitrary order approximation spaces is constructed

using this principle, with a modified version of the TUBA finite element spaces, see
[AFS68; MST75], used for the space ¥j,.

3.2.2 H(div, 2)-conforming methods

Apart from the conforming methods mentioned in the previous subsection where X, C X,
there is a lot of current research concerning pressure-robust methods that build on
discontinuous Galerkin discretizations. Especially methods using hybridization, see [BF91],
have become popular in this area, see, e.g., [KR19; LR20; RW17; RW18; RW20; Sch19;
SLLL18], since this technique can mitigate the higher computational cost introduced by
more nonzero matrix entries when high order methods are used, see the study in the
appendix of [SLLL18].

We present in particular the H(div, 2)-conforming discontinuous Galerkin method
that was investigated in, e.g., [LS18; SL18|. The approximation spaces in this case are
chosen as

Xy = {vn € Ho(div, Q) : vi|r € P<x(T) VT € Tp},
Qn={an € Q:qulr € P,_(T) VT € Ty},

where k > 1 and P<(T) is a space containing possibly a subset of the vector valued
polynomials with maximal degree k on the element T'. This space is not defined more
precisely, since a variety of concrete spaces can be used in applications. A possible choice
for P<(T') is the full Py(T') space, which corresponds to the well known Brezzi-Douglas—
Marini element, see [BDM85; Néd86]. Another possibility is the Raviart—Thomas space
of the appropriate order, see [Néd80; RT77].

The diffusion term is discretized by the standard symmetric interior penalty formulation,
see, e.g., [DE12; Section 6.1.2.1], which takes the form

ap(up, vp) = / Vit : Vaopdz+n Y by / [un] - [vn] ds
. Fer(m)  OF

- . /F{{vhuh}}nF [vn] ds — Z /F{{Vh’vh}np - [ur] ds,

FeF(T, FeF(Tn)

where n > 0 is a penalty parameter that must be chosen large enough so that the bilinear
form is coercive, see [DE12, Lemma 4.12]. We define the parameter hr as the diameter
of the facet F', but different choices are possible, see [DE12, Remark 4.6].

The bilinear form for the pressure-velocity coupling is the same as for the Crouzeix—
Raviart method

br(vh, qn) = —(Vi - vh, qn)-

Using this discretization, a pressure-robust error estimate can be proved, see, e.g.,

[Sch19, Theorem 5.4],

uUu—u < inf ||u—wv
e =l 5 inl = ol
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Figure 3.2: Illustration of the geometric quantities in the modified penalty term.

where the norm for v € X @& X is defined by

2 2 —1 2 2
oll2 4 = IVaolle + > hpt g e+ > hrl(Vav)norl§ or-
FeF(Tr) TET,

With the aim of using anisotropic triangulations in mind, we demonstrated in the
numerical example in Section 5 of our publication [AK20] that the method seems to
work adequately when combined with meshes that have a large aspect ratio. However,
for the form aj to be coercive, the penalty parameter n has to be chosen sufficiently
large. Unfortunately this parameter shows a clear dependence not only on the polynomial
degree that is used for the spaces X and @y, see [DE12, Lemma 4.12, Remark 1.48],
but also on the aspect ratio of the mesh, see [LS16, Remark 3].

In the example in our article [AK20] we incorporated a factor log (o) in the penalty
parameter, which worked for the meshes used in the computations. In fact tracing the
coercivity constants of the bilinear form, see [DE12, Lemma 4.12, Lemma 1.46], it seems
that for a robust implementation a linear scaling of the penalty parameter with the aspect
ratio would be necessary. Logarithmic and linear scaling employ the strategy of simply
using a large enough penalty parameter, however, in practice a large penalty parameter
has been linked to bad conditioning of the linear system, see [SL13].

In [KT21] a modified penalty term is introduced for the scalar version of aj, where
the factor h}l for every facet F' € F(T) is replaced by a better parameter. Let T' },
T2,Tr € Tp, so that F = 0TLNOT2 if F € F{(T,) and F = 9Tr N OQ if F € F(Ty),
then the new parameter is defined by

. %Jr% if F e Fi(Th),
B % it I C 99,
F

where T ", i€ {1,2} and Ty are the simplices that arise from taking the convex hull
of the facet F' and the barycenters Tri, TTp of the elements T }, Tr € Tp, as shown in
Figure 3.2 for two dimensions. Computing (F") is not expensive, as |TV}| =|TL|(d+1)71,
where d € {2,3} is the spatial dimension.

The purpose of this modification is to make the penalty parameter 1 independent of
the aspect ratio of the mesh. Let h%, = infgep dist(z, T ) be the distances of the facet
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3.2 Exactly divergence-free methods

F to the barycenters of the adjacent elements. For the large facets of a stretched element,

where hp ~ h, this means h% ~ g, and the new combined parameter

|F| |F| 1 1 o
mWE)~ —+ 7~ Tt~
h
‘T}‘ ‘Tz%‘ hg g
acts similarly to the standard penalty term with an included linear scaling on the aspect

ratio
-1 g g

n(o)hg ~ e h

In the case of a small facet, where hp ~ % and h% ~ h, the new parameter gives

1
F)~—
n(E) ~ 5
however the standard parameter becomes
2
o o
Rt~ — ~
77(0) F hF h

This shows that the geometric parameter (F') is adapted to both cases and enforces a
scaling with the aspect ratio only where necessary, while the standard term is unfavorable
for the second case.

Adapting this approach to the vector valued version of the symmetric interior penalty
formulation for the Stokes equations, we get the bilinear form

ap(wp, vp) = /thuh : Vo dx + 1 Z (F) /F[[Uh]] - [vn] ds

FeF(Trn)

- > [k forlas— Y [ {Vionbne - funl as

FeF(T, FeF(T)

The analysis of this method still needs to be done, and we show in the following
numerical experiments that it seems promising to investigate further.

Example 3.2. We compute the discrete inf-sup constant of the lowest-order Brezzi—
Douglas—Marini element pair on the unit square for a variety of two-dimensional mesh
families with anisotropic elements to see whether the discretization is stable on such
triangulations with respect to increasing aspect ratios.

The first mesh family consists of Shishkin-type meshes, see Section 2.4.2, with the
fixed number 2(10 x 2) of mesh elements, ¢ = 0.5 and a transition point 7 so that for
7 — 0 the aspect ratio increases, see the illustration on the left hand side of Figure 3.3.

The second mesh family partitions the unit square in 2(N X 2) elements, so that for
N — oo we get an increasing aspect ratio, see the center illustration in Figure 3.3.

Lastly the third type of mesh is again a Shishkin-type mesh, also with 2(N x 2) elements
and for the xi-direction a fixed transition point 7 = 0.5 and ¢ = %, which results in
meshes as pictured on the right hand side of Figure 3.3.
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Chapter 3 Pressure-robust discretization of the Stokes equations
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Figure 3.3: Illustration of the three mesh families used in Example 3.2. The parameter
to adjust the aspect ratio is highlighted.
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Figure 3.4: Computed discrete inf-sup constants for the three mesh families from Exam-
ple 3.2 plotted over the maximal aspect ratio in the mesh.

The discrete inf-sup constant

~ Vi - Un,
B inf sup VA URG)
0€Qn v,ex, llgnllollonlly,

with the norm |[-[|;, defined by

lonll?, = D Vol e+ Y. (Ellvalll} £

TETh, FeF(Tw)

can be computed as the square root of the smallest positive eigenvalue of certain eigenvalue
problems, as described in [Mal81].

The results are shown in Figure 3.4 in dependence of the aspect ratio o of the
triangulation.
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3.2 Exactly divergence-free methods
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Figure 3.5: Comparison of the velocity gradient errors produced by the Hg(div,$2)-
conforming discontinuous Galerkin methods using the standard and modified
penalty terms.

For the second mesh family the inf-sup constant clearly tends to zero for increasing
aspect ratio, which makes these types of mesh unsuitable for computations. Mesh families
1 and 3 on the other hand show a stable positive lower bound for the inf-sup constant
even for very large aspect ratios.

Example 3.3. We investigate the example from [AK20, Section 5], where the standard
symmetric interior penalty formulation is used, see, e.g., [CKS07; LS18|, and compare the
results to the method using the new formulation for the penalty term from [KT21]. The
example uses a manufactured solution for the Stokes equations on the domain Q = (0, 1)?
given by

u@) = (e ye ). () = exp(~ 1) - Co).

with stream function &(x) = 23(1 — z1)?23(1 — 22)? exp(—%-). The parameter ¢ > 0

introduces for small values an exponential boundary layer in the velocity and pressure
solutions near x1 = 0. To see the performance on anisotropic triangulations we again use
Shishkin-type meshes, with parameters 7 = 3¢|log e| and ¢ = 0.5, which fit into the mesh
families with stable inf-sup constant seen in the previous example.

We use the lowest-order Brezzi-Douglas—Marini element, as described in [BBF13,
Section 2.3.1]. The parameters are set to € = 10~% and v = 10~%. This choice of ¢ leads
to extremely anisotropic meshes with an aspect ratio of o ~ 417, cf. (2.18).

In Figure 3.5 the velocity gradient errors ||[Vyu — Vyuyl|, for the two methods are
shown for different choices of the penalty parameter n. It is immediately clear that the
choices n € {1,2} for the standard method are not suitable for this example, but the
values 1 € {5,10} yield usable results. The method using the modified penalty term on
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Chapter 3 Pressure-robust discretization of the Stokes equations

the other hand yields the same good results for the parameter choices n € {1,10}, and
thus shows a robustness with regard to the aspect ratio in the triangulation.

3.3 Pressure-robustness by reconstruction

In addition to the discretizations from Section 3.2 which are naturally pressure-robust,
a separate approach can be taken to construct pressure-robust methods from classical
inf-sup stable element pairs by using a reconstruction operator on the test functions. With
this design, the L2-orthogonality of discretely divergence-free test functions and arbitrary
gradient fields is restored, and the method can once again see the velocity-equivalence of
functions on the right hand side of the Stokes equations. The approach has been proved
and tested for the Crouzeix—Raviart element, see [Linl4; VZ19], general elements with
discontinuous pressures, see [LMT16], and the Taylor-Hood element, see [LLMS17].

Two different approaches can be taken when constructing appropriate reconstruction
operators: the first maps the test functions into H(92), the second into H(div, ). For
our goal of using anisotropic triangulations we will see that the first one is not easily
realizable. Both approaches are introduced in the next subsections.

Besides the methods from this and the previous sections, there are some other ap-
proaches for pressure-robust methods, e.g., using the virtual element method, see [FM20],
and weak Galerkin methods, see [MYZ21]. However, we do not discuss those approaches
in more detail.

3.3.1 H(2)-smoothing

We concentrate in this subsection on the method from [VZ19], where a stable smoothing
operator for the Crouzeix—Raviart method is constructed, that maps discrete velocity
test functions on the right hand side into H %)(Q) and discretely divergence-free functions
to exactly divergence-free functions. This results in a discretization that is quasi-optimal
in the sense that a velocity error estimate of the form

— <C inf —
| uhHl,h— w}gthu Uh”l,h

can be shown. Building on the findings in this reference, [KZ20] uses a similar approach
to get quasi-optimal results for a larger class of discretizations, and [KVZ21] further
improves on this.

We assume that the Crouzeix—Raviart element is used in the discretization, so we set
X, = CR(Ty). The only non-standard part of the discretization in this approach is a
modified definition of the linear form I (vy,) from (3.1a), i.e.,

In(vn) = (F, Epvn),

with the smoothing operator Ej, : X; — H(Q). When this operator satisfies the
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3.3 Pressure-robustness by reconstruction

properties
/Eh'vhds:/'vhds VE € F(Th), (3.5a)
F F
/Eh'vh dx = / vy, dx VT € Ty, (3.5b)
T T
IVia(Ervn)llg < Cstabl|Vavnllos (3.5¢)

for any vy, € X}, which implies ap,(wp,, Epvy) = ap(wp, vp) for all wp, vy, € X?L, it is
possible to show quasi-optimality, i.e., the estimate

uU—u <C inf uU—v ,

H h”l,h = ~qopt 0, €CR(T3) H h”l,h
where Coopt, is the operator norm of Ej, see [VZ19, Theorem 4.2]. The discretization
is thus pressure-robust. The challenging part is to find an operator that satisfies these
properties.

The construction of the smoothing operator in [VZ19, Section 4] consists of three steps

which, assuming a Crouzeix—Raviart function vy, is to be mapped, are:

Simplified averaging: In the first step, for every interior vertex p of the triangulation
one of its adjacent elements T}, is chosen and fixed, and the linear nodal basis
function ¢, for this vertex is multiplied with the value of v, on that element, i.e.,
the operator is defined by

dvp =S epvils, ()
PEV(Th)

With this definition Awvy, vanishes on the boundary. This first part ensures that the
mapping is into H{ () and the next steps do not disturb this property.

Facet bubbles: The next step defines facet bubble functions ¢z for every interior facet
F ¢ FY(Ty,) by

(2d —1)!
tp = ——
P = e L e
pEV(F)
and uses them to set
th = Z tF/ vhds.
F

FeFi(Th)

This step is used to set the facet moments of the mapped function so that (3.5a) is
satisfied.

Scott—Vogelius sub-problems: The final step is more involved and we omit the details
for brevity. It consists of solving local small Stokes sub-problems on a barycentric
refinement of each element 1" with homogeneous Dirichlet boundary conditions and
non-homogeneous divergence constraint r € () using Scott—Vogelius finite elements,
see Section 3.2.1. The results are operators Cp with mapping r — wp, where wp is
the velocity solution of the sub-problem. This construction can be used to correct
the divergence of the mapped function to the desired value.
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Chapter 3 Pressure-robust discretization of the Stokes equations

With these operators, the smoothing operator is defined by

Eyvy, = Avy, + B(Uh — Avh) - Z CT(V . (Avh + B(Uh — A’Uh)) -V - Uh>.
TEeTy,

By [VZ19] it is H*(Q) stable on shape regular triangulations, i.e., property (3.5¢) holds,
and by the intricate definition of B and C7 it also satisfies the other two properties
(3.5a), (3.5b).

However, as mentioned in [VZ19, Remark 4.5], the H'(Q) stability constant depends on
the shape of the elements in 7T, which makes it unsuitable for the types of anisotropically
graded meshes we intend to use. To demonstrate this dependence we use an illustrative
example.

Example 3.4. We compute the stability constant Cyap, of estimate (3.5¢) for a special
setting to see that there are cases where a dependence on the aspect ratio o can be
observed. Instead of the complete smoothing operator Ep, we use only the combined
simplified averaging and facet bubble function operator, i.e., we compute

|Vi(Avy, + B(vy, — Avg))llg
IVhonllo

Cstab =

for a Crouzeix—Raviart function vy. This is enough to make our argument, since the
stability of Ej hinges on the stability of this part of the operator, as mentioned in [VZ19,
p. 1088].

The example mesh consists of eight triangular elements with nine vertices, as pictured
in Figure 3.6, where we can adjust the aspect ratio of the elements with the parameter h.
Since just the vertex p;, = (0.5,h)7 is in the interior of the domain, only this vertex has
to be considered for the simplified averaging.

As function vy, we choose for both components the scalar Crouzeix—Raviart basis
function associated with the edge ej. This function is constant and equal to one on
the edge e, decreases linearly to a value of —1 at the opposite vertices of the adjacent
triangles and vanishes on all other elements. We choose the element T}, as indicated
in Figure 3.6 for the averaging process at vertex py,, so that we get Avy, = (¢p,, goph)T
where ,,, is the nodal linear basis function associated with p,. As a consequence, bubble
functions must be computed for all edges that end in py,.

After implementing this procedure we get the results shown in Figure 3.6 in dependence
of h. For h < 1, that means when the edge ey, is the small edge of the adjacent elements,
the stability constant Cgi,p, shows a clear dependence on the aspect ratio. However for
large values of h, when the edge e, is a long edge of the anisotropic triangles, the constant
seems to be independent of the aspect ratio.

i

As seen in the example, this construction of a smoothing operator is not suitable for
anisotropic triangulations and it is an open problem to find a stable operator for this
purpose.
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3.3 Pressure-robustness by reconstruction
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Figure 3.6: Schematic of the mesh used in Example 3.4 and computational results.

3.3.2 H(div, 2)-reconstruction

The idea to use an operator on the test functions in the linear form of the discretization
was first introduced in [Linl4], and subsequently this operator was named reconstruction
operator. It has slightly different properties than the smoothing operator from the previous
subsection. The main distinction is that the reconstruction operator I maps into the
space Ho(div, Q) instead of H}(f), while analogous properties to (3.5) hold.

The main idea of this approach is to repair the L?(Q)-orthogonality of the irrotational
part of the data function and the discretely divergence-free test functions by using the
modified linear form

In(vn) = (f, Invn) (3.6)

with the reconstruction operator Ij, so that on the right hand side of (3.2) the identity
(. Inon) = (Bf . Tyop) Vop € X

holds, where I, maps discretely divergence-free test functions to exactly divergence-free
functions.

The first use of this type of non-standard discretization in [Lin14] was for the Crouzeix—
Raviart method, and since then the approach has been extended to a large variety of
classical finite element methods, see [Joh+17; LLMS17; LMT16], but we will concentrate
mainly on the Crouzeix—Raviart element as base for the reconstruction since it proves
exceptionally well suited for anisotropic meshes.

The right choice of reconstruction operator is of special importance when using
anisotropic triangulations since, as already demonstrated in Example 3.4, the stability
constant Citap, in (3.5¢) needs to be independent of the aspect ratio. Two possible choices
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Chapter 3 Pressure-robust discretization of the Stokes equations

of reconstruction operators for mixed methods with discontinuous pressure approxi-
mation, which includes the Crouzeix—Raviart method, are the Raviart—Thomas and
Brezzi-Douglas—Marini interpolation operators, see [LMT16].

In contrast to the smoothing approach where, since Ejv;, € H}(R), it is possible to
extend the discretization approach to problems with data f € H~!(Q) by using the
duality pairing I (vy) = (f, Epvp), this is not possible with the reconstruction operator
due to the lower regularity of Iv;, € Ho(div,Q) ¢ H(Q). On the other hand this lower
regularity of the reconstruction operator’s codomain allows for more flexibility when
choosing the operator.

Since this reconstruction approach is the main method used in this thesis, we conclude
this subsection after this brief introduction and use the next chapters for a detailed
analysis. In Chapter 4 two families of possible reconstruction operators on anisotropic
meshes, the Raviart—Thomas and Brezzi—-Douglas—Marini interpolation operators, are
introduced and interpolation error estimates for anisotropic elements are derived. In
Chapter 5 we further investigate the reconstruction approach and present discretizations
for use with anisotropic triangulations.
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CHAPTER 4

H (div, Q2)-conforming interpolation on anisotropic triangulations

In this chapter we introduce two H (div, 2)-conforming interpolation operators and prove
anisotropic interpolation error estimates. For the Brezzi-Douglas—Marini interpolation, we
showed these results in [AK20] for the Hilbert space setting. Although mainly following
the reference, we generalize the analysis in terms of LP-norms for the more general
Banach-space setting in Section 4.2. Section 4.3 is concerned with the interpolation error
of the Raviart—Thomas interpolation. The results from this section are adapted from
[AADLI11], which was also the basis for the results in [AK20]. Section 4.5 contains new
anisotropic error estimates for the Brezzi-Douglas—Marini interpolation on triangular
prisms. In advance, Section 4.1 introduces the setting and some notation. Throughout
this chapter the symbol p does not denote the pressure variable as in the other chapters,
but the parameter of the Lebesgue and Sobolev spaces, which throughout the chapter is
assumed to take the values 1 < p < oo, where not stated otherwise.

4.1 Reference geometries

Before we get into the specifics of the two types of interpolation, we introduce the
reference geometries needed for the analysis. Regarding mesh regularity, for the nodal
Lagrange interpolation mainly the maximum angle condition, see Definition 2.10, matters,
but for the Brezzi-Douglas—Marini and Raviart—Thomas interpolations a better estimate
is possible when the assumption that the element satisfies the regular vertex property,
see Definition 2.11, is used. Thus two types of reference elements are required, and the
analysis will be separated into a case with regular vertex property, and a case with no
regular vertex property but with the maximum angle condition.

In the course of deriving the interpolation error estimates we use two affine mappings,
the first from a reference element to a reference family of elements, and the second from
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

Figure 4.1: Reference tetrahedron T with vertex numbering, transformed tetrahedron of
reference family R;.

3

Figure 4.2: Reference tetrahedron T for family of tetrahedra without regular vertex
property, transformed tetrahedron of reference family Ro.

the reference family to the actual element, e.g., in a mesh. Figures 4.1 and 4.2 show on
the left hand side the reference tetrahedra T and T, which we use for the regular vertex
property case and the maximum angle condition without regular vertex property case,
respectively. On the right hand side of the figures two representatives from the reference
families Rl and RQ with vertices at 0, hlel, h262, h3€3 and O, h161 + h262, h262, h363
are visualized, where h; € R, i € I;, are arbitrary element size parameters.

By using a reasonable affine transformation E, any tetrahedron satisfying RVP(¢) or

MAC(¢) can be produced from elements of the two reference families of elements.

Lemma 4.1. Let an element T satisfy MAC(p). Then there is an element T e R1UR
so that an affine transformation E(x) = Jrx + xo with ||Jr|| -, JT_1HOO < C(¢) that

maps T toT exists, where the constant C(¢) depends only on .

Now let T satisfy RVP(¢). Then there is an element T € Ry so that an affine trans-
formation mapping, like before, T to T with 197 | oo » }lJfl}lm < C(¢) ewists, where C(¢)
depends only on €. If the edges of T incident to the reqular vertex have lengths h;, i € I,
then it is possible to take Te R+ with vertices at h;e; and 0.

Proof. For the proof see [AADL11, Theorems 2.2 and 2.3]. O
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4.2 Brezzi-Douglas—Marini interpolation

This justifies the intended strategy of first mapping the reference element TorT to
an element T of one of the reference families and then using another affine mapping
to the actual element 7. This strategy permits us to utilize the simple structure of the
transformation from reference element to reference family in our proofs.

The use of the diacritical marks hat, bar and tilde indicates the type of element on
which an operator, function or coordinate is defined, corresponding to the introduction
above.

4.2 Brezzi—Douglas—Marini interpolation

While [AK20] is written to accommodate the two- as well as the three-dimensional case,
we will mostly concentrate on tetrahedra. Note that the interpolation error results are
still valid for triangles, even when not explicitly mentioned. Concerning anisotropic
quadrilateral elements some additional progress has been made in [Fra21] and triangular
prisms are discussed in Section 4.5.

4.2.1 Interpolation operators

The Brezzi-Douglas—Marini element was first introduced in [BDM85] in two dimensions
and later generalized to three-dimensional settings in [Néd86]. The Brezzi-Douglas—Marini
space of order k € N on an element is the full Py(T) space. On a mesh the degrees of
freedom result in functions with continuous normal components at the element interfaces,
which makes the global function space a subspace of H (div, ).

Definition 4.2. The space defined by
BDMg(Tr) = {v € H(div,Q) : v|r € Pu(T) VT € Ty, }
is called Brezzi—-Douglas—Marini function space of order k on the mesh 7y,.

In this section we are mainly concerned with the local interpolation errors, while the
global function space is needed later.

The original defining functionals for the local space and interpolation operator from
[BDMS5], see also [BF91, Section III.3.3], are given by

/ (IPPMv) - nre,zds = / V- N zds Vz € Pplei), i€ Igq, (4.1a)
/(I,]S’DMU) -Vzdx = / v-Vzdx Vz € Py (T), (4.1b)

T T
/(IEDM'U) czde = / v-zdx Vz € G(T), (4.1c)

T T

where we use the piecewise polynomial function space

Gip(T)={ze€Pr(T):V-2=0, z-n|sgr =0}.
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

This definition however turns out to be unsuitable for our proof, as we show below in
Remark 4.4. Instead we use the degrees of freedom from [Néd86], see also [BBF13, Section
2.5.1], which define the interpolation operator by

/ (IEDMU) ‘N7, zds = / V- N zds Vz € Pple;), i€ Igqq, (4.2a)
/(I,]S’DMU) czdx = / v-zde Vz e Np_1(T)if k> 2, (4.2b)
T T
where
Ny 1(T)=Pro(T)® Sr_1(T), (4.3)

Si-1(T)={pe€ Py1(T):p(x) -z =0Vx T}
Both types of degrees of freedom result in globally H (div,2)-conforming finite element
spaces.
4.2.2 Stability estimates

For the first stability estimate on the reference element IA“, we need the following technical
lemma, see [AK20, Lemma 3.1].

Lemma 4.3. Let T be the reference element from Figure 4.1, f/; € LP(ej), j € g,
1<p<oo, and

Fi(@2, T3) 0 0
u(z) = 0 . (@)= | @,T) |, w@=|_0
0 0 f3(Z1,72)

Then there are functions q; € Py(ej), j € 14, so that

“BDM (2, 33) “BDM 0 “BDM 0
I u = 0 , v = @(rnLr) |, I w = 0
0 0 g3(71,72)

Proof. We can show the claim by proving that the functions g; are uniquely defined by
the interpolation relations (4.2). We detail the proof for j = 1, the cases j = 2,3 then
follow analogously.

On the reference element 7' , see Figure 4.1, the normal vectors in the facets e;, i € 1311
are given by

-1 0 0 1 1
n~ =101, n~ =\1-11, n~ =101, ns =—1\1
T,e1 0 Te2 0 Tes3 1 T,eq \/g 1

With this, relation (4.2a) for i = 1 reduces to

/ fizds —/ Qizds  Vz € Pyler), (4.4)
€1

€1
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4.2 Brezzi-Douglas—Marini interpolation

which defines ¢; uniquely. So for the rest of the proof, we need to show that the remaining
relations are compatible with this result.

From (4.2a) for i = 2,3 we get trivial equations immediately, while for i = 4 we
calculate

1 1-Zo N
/ (@ - TBPM@) -y 2ds = / / (Fu(F2, T3) — (2, 7))
es ’ 0o Jo

Z(l - 53\2 — /.%‘\3, fg, fg) d/l‘\gdfg

~

= / (f1 (ZL‘\Q, ./fg) — 21\1(56\2, 553))2(1 — f/L'\Q — ./%\3, fEQ, fL‘\g) d./fgd/x\g
€1
— ()7

since z(1 — T — X3,%2,x3) is a polynomial of degree k in the variables T3, Z3 and we
have (4.4).

For k > 2, take an arbitrary z = (zl,zAg,zg)T € Nk_l(f) C Pk_l(f), and let
Z e P (f) be so that g—le = z1. Then, since f; and ¢; do not depend on 77, we get

. YA . :
/ﬁ-zdm:/flzldm:/fl(ida:: fidnids — 8—leda:
7 7 77 01 oT 7 071

~ .07 .
Z/Acth ds = ACJ1AdﬂU=/AQ1Z1 dez,
o7 7 0Ty 7
where we used the outward normal vector ny = (n1,n2,n3)7 and integration by parts.
This shows the compatibility of (4.2b) and concludes the proof. ]

Remark 4.4. We now get back briefly to the already mentioned difference in the
definitions of the degrees of freedom in (4.1) and (4.2). While we showed Lemma 4.3
using the latter, the lemma does not hold for the original definition of the interpolation
operator. The difference only appears for k£ > 2 when the interior degrees of freedom
become relevant, since the facet degrees of freedom are the same.

Consider k = 2 and a function © = (0,73)” on the reference triangle with vertices
p; = (1,0)7, py = (0,1)” and p5 = (0,0)”. Then by using the interpolation defined by
(4.2) we get the function

FBDM 5 _ 0
2 U= 135 4 372 )
20~ 51T 94

which, as expected, shows the property from Lemma 4.3. Now using (4.1) to calculate
the interpolant, we get

3 ~ ~ ~

JBDM" 5 _ 121 (1 — 71 — 27)

2 v = 1 3~ 3~92 3 ~ ~ ~ .
30 — 521 + 571 — gy P2(l — 271 — T2)

Clearly, this second interpolant does not possess the quality from the lemma.
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

For the second reference element T, which later leads to the results for elements without
regular vertex property, we get an analogous lemma, see also [AK20, Lemma 3.6].

Lemma 4.5. Let T be the reference element from Figure 4.2, e;, i € Iqy1 its facets, and
let f1 € LP(e1), fo € LP(€2), f5 € LP(e3), 1 < p < oo, where €y is the projection of es
onto the plane To = 0. Then for

f1(@2,Ts) 0 0
u(T) = 0 @) = | folmems) |, w@) = 0 :
0 0 f3 (Ela EZ)

there are functions q; € Pi(e1), Gy € Pr(€2), g3 € Pr(e3), so that

B q,(T2,T3) B 0 B 0
e N T e CRCE ) B e
0 0 73(71,72)

Proof. The proof is analogous to the proof of Lemma 4.3, only that we now need to take
a closer look at the interpolation relation for facet es instead of ey.
The normal vectors for T are

Nem, = 0 n-, =—|-1 Nem, = 0 Nm, = —
T,e1 ) T,e2 ) T,e3 ) T,eq )
0 V2 _ V2

which again yields for i = 1 of (4.2a)

/ fi1zds :/ g1z ds Vz € Pr(e1).
el €1

This defines §; uniquely and we can use it in the calculation for ¢ = 2:
[ @10 g zds = [ (7 -a)zds
€2 o2 \/5 ()
1 1—x2 -

= / / (f1(T2,T3) — 41 (T2, T3))2(T2, T2, T3) dT3 dT2
o Jo

= / (f2(T2,T3) — §1 (T2, T3))2(T2, Ta, T3) dT3 ATy = 0.
el

For i = 3,4 in (4.2a) we get trivial equalities. The interior degrees of freedom are treated
completely analogous to the proof of Lemma 4.3. 0

Using the two preceding lemmas we can prove the stability estimates on the reference

elements, where we get a better estimate on T compared to the estimate on 7. The
lemmas are analogous to [AK20, Lemmas 3.3, 3.7].
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4.2 Brezzi-Douglas—Marini interpolation

Lemma 4.6. Let u € Wl’p(f), 1 <p < oo. Then the estimates

iz

P ) divﬁHpr, ie 1y, (4.5)

hold.

Proof. Since the proof is analogous for all values of i, we only show the result for ¢ = 1.
Let

0 Uy
= | 8(31,0,7) || 5= @ — i = | @y — 231, 0,5)
u3(Z1,22,0) u3 — u3(71,72,0)

From Lemma 4.3 we know that (TE’DMG)l = (fEDMﬁ)l, and div® = div a—div @, = div a.

We construct two new functions

0 U1
Vy = T24g2 s W=V —Vyx = V2 — X242 N
x3q3 U3 — X343

where we take q; € Py (T ) J =2,3, so that

/A@jz dz = /A(aj —3g))zde =0  Vze P (T). (4.6)
T T

This means that the functions g; are well defined as the projections of %, v; € LP (f),
into Pk_l(f) with respect to the weighted scalar product (¢, 2) = [ Z;qz dz.

Since fEDM preserves polynomials of degree k, it holds fBDMv* = ,, from which follows
(IPPMg), = (IPPMB), = (IPPM@),. The interpolated function IPPM@ =T = (11,12, 13)7,
due to (4.2), is thus defined by the relations

/ tizds = / Wiz ds = / w1z ds Vz € Pg(e1),
el el €1

/ %\22 ds = / Woz ds = / (i)\g — fQ(/]\Q)Z ds=0 Vz € Pk(eg),
€es ) es

/ Tyzds = / gz ds = / (T — Tads)zds = 0 W € Py(es),
es es €3

/(f-nﬁeél)zds:/(w ng ., )zds
e4 €4
/(dlvw zdm—i—/'w Vzdx

- Z / N, )2ds
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

/(dlvw)zdx—i—/ §1dx_/ w1zds Vz € Py(eq),
T

€1

/?zdw:/ﬁ;-zdw Vz € Ny_y(T).
T T

The last relation can be split up into individual conditions by using the definition
Ny_(T ) Py (T )@Sk 1(T ) which yields

/tAlzd:L' = / w1z dex Vz € Pk_g(f),
T T
/ tyzda = / wozdx =0 Vz € Pk,g(f),
T T
/AtAgzdm = /A@?,zda: =0 Vz € Pk_g(f),
T T

//'E'Zd.’.l}:/’l/l\)-Zd:I?:/(@121+@222+{U\323)d93:/’L/l.)IZld:B VZGSk_l(T\),
T T T T

where in the calculations (4.6) was used. So the terms

/ﬁlzds:/ uzds, (4.7a)
el €1

/fu\lzdw:/ﬁlzda:, (4.7b)
7 7

/A(&i\v@)zdm:/Aéi\v(ﬂ—ﬁ*)zdm (4.7¢)
T

T

define the interpolant which, by definition, can be written as
n
(IyPMa), =t = Z i (¢i)1

where «; are the interpolation functionals evaluated with the interpolated function, and
¢; are the basis functions of the Brezzi-Douglas-Marini space, see, e.g., [BS08, Section
3.3]. To estimate the norm of the interpolant we write

Zaz $i)1 < Z |ill[(@i)1llg 7 < Z Jvil,

since the norms of the basis functions on the reference element are bounded by 1. From
all these functionals only those from (4.7) are relevant for the interpolation. Let z; be
the dual basis function to (¢1)1, then we can estimate a; = fel u1z1 ds by

/ alzl ds
€1

|@@™an =1, =

0.p,T

,D,€1 Hzl ||O,q,el S Ha

| = < [fuall llop.ers
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4.2 Brezzi-Douglas—Marini interpolation

since also the norms of the dual basis functions on the reference element are bounded by
a constant. Analogous estimates for the remaining «; terms and using a trace theorem
yields

TBDM - T ~ ~ R T
@@, = [Blloyr S Viloge, + il + e[+ o
<@y, 7+ HcﬁvaH ort Hdlvv* " (4.8)

P is the last step of the proof. We choose vy = (0,72,73)7, and
7p7

again using (4.6) we get, since for z € Pk(f) it holds Vz € Pk,l(f),

Estimating H&Rf Vs

0 :/(60 —v,)-Vzde :/ (Vo —ﬁ*)‘nfzds—/ (Ti:/(a() — v, )zdx
7 oT 7
_/ (B0 — B.) .nﬁe‘lzds—/A(Ti:z(@g _ %)z da.
eq T
Setting z = (1 — &) — Ty — #3)2s, 2« € Po_1(T), we further get

/A(l—fl—fg—fg)(&i;@*)z*dw = [(1—31—32—53)@@0)2*@ Vz, € Po_y(T),
T T

since z = 0 on e4. Choosing z, = &i\vﬁ*, using the equivalence of norms on finite-
dimensional spaces and the Hélder inequality we get

— 2 — 2 o~
Hdivi}* <laves.) < -z -3 —3)@ve.)?
7p7T 0727T j—\’
< ||div v, AHdiVﬁOH < ‘ div v, Hle’vOH R
0,q, T 0,p, T 0,p, T 0,p, T
%,

diV 6“ - —
0,p, T 8.%'1

< ||div v, R ‘
O7p7T 07p7’1"\‘

= ||div D, ‘ .
0pT 0,p,T

and combining this estimate with (4.8) yields the desired

ouy
0%,

dlqu
7p’

div v, R

0,p,T
result. O

Dividing by ’

For the second reference element we get a similar but slightly worse estimate, since the
sum of the norms of the derivatives appears on the right hand side, instead of the norm
of the divergence.

Lemma 4.7. Let w € W'P(T), 1 < p < oo. Then the estimates

ou;
ANII Ully 7+ Y =L

T
Jj€ilg J

BDM__

H(Ik w); (4.9)

7 7

0,p,T
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

Proof. 1t is possible to show the same results as in the previous lemma for 7 = 1,3 using
the same proof, which can clearly be bounded by the right hand side of (4.9) using the
triangle inequality.

The second component of the interpolant however does not satisfy the stronger estimate,
so we need to alter the proof in order to arrive at (4.9). Consider the functions

ﬁl(O,EQ,E?,) ﬂl _51(0752753)
T 0 , T =T — Ty = o :
us3(T1,T2,0) u3 — uz(T1,T2,0)

then we have divo = divu and by Lemma 4.5 (TEDMW)Q = (TgDMﬂ)g. We introduce

another two functions

14, U1 — T1q;
.= 0 |, W=0— 0, = Ty ,
T3q3 VU3 — Z3q3

where the polynomials g; € Py 1(T), j = 1,3, are defined by

/wjz dx = /(Uj *fjgj) dx Vz € P,_1(T). (4.10)
T T

As for the polynomial B, € Py(T) the equality T]:DMﬁ* = v, holds, we get (T];DME)Q =

BDM__ —BDM

(I, @)y = (I, w)2. From (4.2) by using (4.10) we get the defining relations for

=BDM__ = - - o

Ik: thZ(tl,tQ,tg) :
/ tlzds:/ wizds =0 Vz € Py(er),

el el

/ (fl —tQ)ZdS:/ (wl —WQ)ZdS
e €2
= \/5(/ w282d$+/(3m/<wl,w2,0) d.’B)
T (91’2 T
- /wgzds Vz € Py(es),
€4

/ tgzds:/ w3zds =0 Vz € Py(es),

es €4

/ (zg-i-fg)zds :/ (wy + w3)zds
eq €1
9 .
=2 (/ Wy —r da:+/ div (0,w2,w3)d$>
T 0Ty T
— /wgz ds Vz € Pk(64),
€2
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4.2 Brezzi-Douglas—Marini interpolation

and
/tlzdw:/wlzdmzo Vz € P,_o(T),
T T
/tgzdw:/wgzda} Vz € P,_o(T),
T T
/tgzdw:/wgzdm VZGPk_Q(T),
T T

/t-zdx:/w-zdwz/(wlzl + Wozo +w323)dm:/w22dw Vz € Sp_1(T).
T T T T

Similar to the proof of Lemma 4.6 and using the definition of w we can now estimate

BDM__ =
(@5, = el 7

S w2l 7 + [|div (0, ws, ws) HOpT + ||div (w1, w2, 0

_ ou; 3@'@)
<l S [H j owi1;)

0T ;
j€aly J

HO,p,T

] . (4.11)
0,p,T

Estimating the second terms in the sum is the last step. Note that for z € Py(T) we get

0= / wgﬁdaz— — aw?’zdw—i—/ wsnsz ds.
073 T3 oT

OpT

By setting z = (1 — Ty — T3) 24, 2« € Py_1(T), the boundary term vanishes and using the
definition of w3 we get
0(Z3q Jus
/ (:Ciqg’) zedx = / —z* dx,
7 OTs3 073

from which analogous reasoning as in the proof of Lemma 4.6 yields

H 9(T3q3) H dus
03 Nopz ~ 1103 llop7
By the same steps we get
H 0(7171) H oty
021 Nlopr ~ 101 llop7
Combining the last two estimates with (4.11) yields the statement of the lemma. O

The next step is now to transfer the stability estimates to the reference families of
elements. To do this, we need the transformations

T = Jrx, x=J-x
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

of the reference elements T and T to elements of the reference families R1 and Rs,
respectively. The matrix is identical for both transformations and given by

h1 0
J~ — .. c Rdxd
0 hq

with h;, ¢ € I3, being the element size parameters of the element T which can be seen
in Figures 4.1 and 4.2. In order to preserve the normal traces of functions under the
transformations, we use the contravariant Piola transform, which means a function
v € LP(T) gets transformed to © € L?(T) by

where ;b = ILjc,1,h;. The definition is analogous in the case of a function v € LP(T).
Using this transformation we can transfer the stability estimates from the reference
elements to the reference families, see also [AK20, Lemmas 3.4, 3.8].

Lemma 4.8. Let T = J-va—ka:o and @ € WYP(T), 1 < p < co. Then on the transformed

element T the estimate

FBDM~ ~ T~
ka vHOﬂ < |Z|: B DB, 7+ thdwvHO@f (4.12)
al<1

holds, where hz = max{h; : i € I}.

Proof. The proof follows along the lines of the proof of [AADLI11, Proposition 3.4]. Direct
calculations yield

1/p

1/p
fall 5= [ Slarde | <oy St ([ o)

TiEId i€ly T

= (det Jz)* Y~ s H@ill, 7 (4.13)

i€ly
and
(det J)?|[Bll, , 7 = ih Y h*[D*Tilly, 7 (4.14)
loe|<1
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4.2 Brezzi-Douglas—Marini interpolation

for i € I5. Applying (4.13) to fEDMﬂ and using Lemma 4.6 and (4.14) we arrive at

] (det J5) 7 3 b 7| (TEPMG
H k v 0,p, ¢ Z ) 07p7j:
i€ly
1 — ~ T~
s3Iy + 3], )
i€ly =

ST i DD B DT, 5+ det JTHo/livvaH

0,p,T
iely lal<1 P
< 3 DBl g+ i
< N ne|D v||o’p’T+hT)d1va0’pi. O
jal<1

Lemma 4.9. Let T = JTT+:BO and v € Wl’p(f), 1 < p < oo. Then on the transformed
element T the estimate

o) € 3 1Dl 4 3| 3

i€ly j€ily

. <Nl , 7 + halol,, 7
J

0.p,T

holds.

Proof. The proof is entirely analogous to the proof of Lemma 4.8, but Lemma 4.7 is used
instead of Lemma 4.6. O

Looking at the estimates componentwise, we see that estimates of type (4.5) and (4.12)
could be obtained for the first and third component on the reference element 7. However
for a complete better estimate all components would need to be estimated like this, and
the proof fails for the second component, thus in general only Lemma 4.9 holds.

After these preparatory results on the separate reference geometries, we can finally
transfer the stability results to general elements satisfying the regular vertex property
and maximum angle condition, see [AK20, Theorem 3.5, 3.10].

Theorem 4.10. Let an element T' satisfy the reqular vertex property RVP(C), let pg 4
be the regqular vertex and let l;, h;, i € I be the corresponding vectors and element size
parameters from Definition 2.11. Then for v € Wl’p(T), 1 < p < oo, the estimate

6
1By S ol + 3 Al o
Jjely

+ hrlldiv ol .z (4.15)
0,p,T

is satisfied and the constant only depends on €.

Proof. The proof follows [AADL11, Proof of Theorem 3.1]. Assume that the regular
vertex py, 1 is located at the origin, so the transformation from the element 7" € R to the
general element 7" is * = Jrx and Jre; = l;, j € I3. The existence of the transformation
matrix and [|Jr|| _IHOO < C(?) is given due to Lemma 4.1.
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

For a function & € W'(T) let

1
detKLr

v(x) = Jro(x)

be its Piola transform. Then using Lemma 4.8 yields

p

p
povyip o rlls p p‘fv~Hp
HIk ,UHO,ZJ,T ~ (det JT)p_l ’ ” + Z h pT + h% le'U 0’p77,:
Combining this with
ov 1 0v . . —1
7 = (det Jr)J7 ol div e = (det Jr)div v, ha < || Jp ||
we arrive at the estimate
— p B 2
1EPM 015 S HITIBN I e | 011G + D B hp hplldivollg,r |- O
Jeld ‘7 OzpaT

When no regular vertex property holds, we accordingly get a weaker estimate.

Theorem 4.11. Let an element T satisfy the mazimum angle condition MAC(¢). Then
forve WHP(T), 1 < p < oo, the estimate

v

Ly 0,p,T

1Mol Sllwllg e +hr D (4.16)

j€lq

is satisfied and the constant only depends on .

Proof. The proof is analogous to the proofs of [AADL11, Theorem 4.1] and [AK20,
Theorem 3.10]. Let T be an element so that T is mapped to 7" by the affine transformation
x — Jrx + xo, where ||J7|| HJ 1” C(¢). We can assume that T € Ry, because

the case T' € R; is covered in Theorem 4.10 as the element T would then satisfy the
regular vertex property. In addition we set &y = 0 to simplify notation.
The definition of the Piola transforms

1

1
_ ~ BOMy () — FBDMz =
v(x) Tt I JTJTU($)7 () = ———JrI; " v(x),

det Jr
combined with Lemma 4.9 and a change in variables gives

|L]THOO

BDM TBDM~
(Rl IS (dot Jr) " s ”Ho,p,‘f
SN[l oo | N0l + B D ;)Z- -
'i,jEId J 07p,T
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4.2 Brezzi-Douglas—Marini interpolation

Z2

D2

D3 Dy

-1 1

z1
Figure 4.3: Family of triangles not satisfying a maximum angle condition for A — 0.

When comparing Theorems 4.10 and 4.11, it is clear that (4.15) is a stronger estimate
and implies (4.16). Another difference is the use of directional derivatives in the stronger
estimate, and standard partial derivatives in the second estimate. There are different
ways to properly use the anisotropy in elements to get to a finely tuned estimate. One is
the shown use of element specific coordinate systems and directional derivatives, like in
[AADL11; AK20], another would be using a coordinate system that is independent of
the individual element and setting a condition relating the element size parameters to
the position of the element in this coordinate system, see [Ape99]. For both cases care
has to be taken when defining the element size parameters, and in general they are not
the same for the two approaches.

To complete this subsection, we show by an example that the estimate from Theo-
rem 4.11 requires the maximum angle condition.

Example 4.12. Consider the case p = 2 and the triangle 7" from Figure 4.3. For h — 0,
the triangle does not satisfy a maximum angle condition with any constant ¢ uniformly,
as the angle at py gets arbitrarily close to .

Choose the function v € L*(T) as v(x) = (0,22)7. The lowest-order Brezzi-Douglas—
Marini interpolant of v on T' can then be computed as

BDM 11
L v(x) = < 2h > )

1
_ﬁ$2 + 3

from which we can directly compute

1 h
BDM _
1> 0llor =\ o 51 7 >
h
||U2||O,T = B }j) 07
8361 0,1 3 h—0 '

This observation shows that stability estimate (4.16), which for this example can be
written as

6’1)1'
Oxj

ITPPMol|) 7 S wllr + D
i,7€14

9v2
6%’1

= lvallop +
0,1

)

0,7
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

does not hold for h — 0 when the maximum angle condition fails.

The example shows that the stability estimate does not hold without the maximum
angle condition. This implies, that the type of anisotropic mesh refinement that was
used in [Lil8; LN18] to treat edge singularities, where the maximum angle condition
is not satisfied, can in general not be used in connection with a method relying on
Brezzi—Douglas—Marini interpolation. Later in our applications to incompressible flows
we use meshes of tensor-product type instead, as described in Section 2.4.3.

4.2.3 Interpolation error estimates

In order to show the Brezzi-Douglas—Marini interpolation error results, we first show a
Bramble-Hilbert type lemma for elements with regular vertex property. The following
result can be found in [Ape99, Lemma 2.1] and is stated without proof.

Lemma 4.13. Let A C R¢ be a connected set which is star-shaped with respect to a ball
B C A, let a be a multi-index with |a| < k andv € W™HLP(A), mk € N, 0 < k < m+1,
1 < p < 0. Then there is a polynomial w € Py, (A), so that

AS ’Dav’erlfk,p,A (4.17)

holds, where the constant only depends on d, m, diam A, diam B and the polynomial w
only depends on m, v, B but not on a.

1D (v = )l 11,

This lemma can be used on a reference element, where the dependencies of the constant
are bounded. Using then the same transformations as before to get to the general element
we get the final estimate. The next lemma is from [AADL11, Lemma 6.1], with an
improved estimate for the divergence.

Lemma 4.14. Let an element T satisfy the reqular vertez property RVP(¢), with reqular
vertex py,, and vectors l; and element size parameters h; from Definition 2.11. Then
forve WMHLP(T), m >0, 1 < p < oo, there is a polynomial w € P,,(T), so that the
estimates

o-wlyrs 3 w22
jx=m-+1 0T
H (v —w) < po oty
ol Nopr ™ 42, OO o1t
d(v—w)

and analogous estimates for a, 7 €114, hold. In addition, we have the estimate

[div (v = w)llg,r S > R*[DPdivolly, 7

|a|=m

lex|
Df = 0=
where D iR
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4.2 Brezzi-Douglas—Marini interpolation

Proof. We omit the proof of the second estimate, since it was detailed in the proof of
[AADL11, Lemma 6.1]. The first estimate was proved in our publication as part of [AK20,
Lemma 4.2], but we restate it here for completeness.

For a clearer notation we assume p;,; = 0. By Lemma 4.1 we know there is an element
T ¢ R4 and linear transformation with transformation matrix Jp, so that T' = JTTV and
172l so 77| < C(@).

With a = (0,0,0), k = 0 and (4.17) on the reference element T' we get

am-&-l@,

~Qr1 ~O g
ozr{" --- 07

(4.18)

18 = Billg 7 S ilyr 7 S D
|a|=m+1

0,p, T

for ¢ € I5. Transforming onto the element T € Ry we get for ¢, j € 15 the functions

o, 1 Oy,
v; = det J5 hv“ w; = det J5 hw“ avz—d tJTh ai}lh
Lj
which we can combine with (4.18) to get
am—i—l
[0 = willy , 7 S o on* W E
\a| m—+1 0,p, T
From there we directly get
am+1~
v — wHopTN Z h W K
‘Oc| m+1 0,p, T

where & € W™HLP(T), @ € P,,(T) are the Piola transforms of v € W™hP(T),
w € P,,(T) given by

1 1
J -
det Jp (@), w(z) = 35 Jr

v(w) =

Jrw(x), x = Jrzx.

With these definitions we get the first estimate of the lemma.
For the proof of the estimate for the divergence we need the averaged Taylor polynomial
of order m, which is defined for a function f € W™+LP(T) by

Qumf |/|}<:D“f x_)y

For a vector function f let Q,,f be the componentwise application of Q),,. Since by
.. : 9
[BS08, Proposition 4.1.17] B%ime = Qm—laTi’ we get

0%, o~ —~
—Qm_ldlvv,

leva —Za Qi = Q- 12
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

which used in combination with [AADL11, Equation (6.1)] on the reference element yields

S . (s
Hdiv (v—va)H _ ‘divv—Qm_ldiva < M
0.p,T 0.p,T ozt .- - 015 N
lae|=m 0,p,T
Using div e = det Jf&ifﬁ and transforming to the element T we get
~ . = d1v 'v)
div (& — “N he|| -2
‘ IV(U Q ,pTN Z aal...a _
lae|=m 0,p,T
Now with dive = det Jrdivv and
d(div ) d(div v) du; d(div v)
7 —det J —— =det Jp——=
0z T Z Ox; 0z, r ol;
i€ly
we get
. ol 9™ (divo)
Hle (’U HOpT ~ Z h lozl . 8lad
|oe|=m. 0,p,T
where w € Py, (T). O

Now we are able to get to the interpolation error estimates. They were shown for the
Hilbert-space case in [AK20, Theorems 4.3, 4.4].

Theorem 4.15. Let an element T satisfy the reqular vertex property RVP(¢) with reqular
vertex py. 1, vectors l; and element size parameters as in Definition 2.11. Then for k > 1,
0<m<kandve WmH’p(T), 1 <p < o0, the estimate

o=l S 32 WIDEllgpr+hr 3o MDAVl (419)

lo|=m+1 la|=m
holds and the constant only depends on ¢ and k.
Proof. Since the Brezzi-Douglas—Marini interpolation operator of order k is the identity
operator for polynomials of order m < k on an element T', we have

IBDM

=v—w— IPPM(v —w) (4.20)

for an arbitrary function w € P,,(T"). With the triangle inequality, Theorem 4.10 and
choosing the function w as in Lemma 4.14 we get

IBDM

o — <o = wlg .+ [ZPY (0 —w)|[o 7

O(v; — w;)
S Hv_wHO,p,T+ Z h] Zal :
i,j€lq J

> WDVl +hr Y B(DRAV g, U

|oe|=m+1 |oe|=m

UHOpT

+ hrl|div (v — w)ly , 7
0,p,T
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4.3 Raviart—Thomas interpolation

Theorem 4.16. Let an element T satisfy the maximum angle condition MAC(¢). Then
fork>1,0<m<kandve Wm+1’p(T), 1 < p < oo, the estimate

H IBDM hm—H HDm-H

(4.21)

UHopTw UHO,p,T

holds and the constant only depends on ¢ and k.

Proof. The proof is similar to that of Theorem 4.15 where we now use the stability
estimate from Theorem 4.11. O

Example 4.17. The estimate (4.19) does not hold for elements which do not satisfy
the regular vertex property. To see this, choose p = 2 and consider the function v(x) =
(—x129,0,2223)7 on a tetrahedron T of the reference family Ro, see Figure 4.2. The
lowest order Brezzi—-Douglas—Marini interpolation of v on such a tetrahedron is

which can easily be checked by inserting the two functions into (4.2a). Similarly, we can
directly compute the norms and show

[o = IP"Mol[) 7 < > WD 5 + hrl|div ol 7
|a|=1
3 12 3 P 9 2 1/2
2 U1 V3
e (I
(; H ‘ lHO’T ZZ; ' Ox; 0,7 Ox; 0,7
2 2 2\ Y2 2 2\ /2
38hi + 21h5 + 38h; < hy+ hs + hi + hs
3150 3
R AN R
& 2103 < 4162(h3 + h3) + 6300 | hihg + <1313> + <1333> .

This means that for a sufficiently stretched element with no regular vertex, i.e., ho >
h1, hg, the interpolation error estimate does not hold.

4.3 Raviart—-Thomas interpolation

The results for the Raviart-Thomas interpolation are largely analogous to those in
Section 4.2 and were published in [AADLI11], which was the main reference for our
analysis of the Brezzi-Douglas—Marini interpolation in [AK20] and the previous section.
Since the proofs are largely similar, we state most results in this section without proofs
and only delve deeper if there are diverging points.
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

4.3.1 Interpolation operator

The Raviart—-Thomas finite element was introduced in [RT77] for triangles, and generalized
in [Néd80] to several three-dimensional geometries. The Raviart-Thomas functions of
order k on an element are a subset of Pj.1(T), and as such a subset of the Brezzi-
Douglas—Marini functions of order k + 1, however the restriction of a Raviart—Thomas
function of order k to the element facets is a polynomial of order k. Using the space
BDMjy11(7r), we can define the Raviart—-Thomas function space of order k, k > 0, on a
mesh.

Definition 4.18. The space defined by
RTy(Th) = {v € BDMy11(Th) : |1 € Pi(T) ® Py (T) VT € Th}.
is called Raviart—Thomas function space of order k on the mesh 7p,.

By this definition, RT(73) is H(div,)-conforming and thus the functions have
continuous normal components at element interfaces. Consequently, the facet degrees of
freedom of the interpolation operator look similar to the Brezzi—-Douglas—Marini variant,
only with polynomials of one degree less. In detail, the Raviart—Thomas interpolation
operator of order k > 0 is defined by, see also [BF91; Néd80],

/ (I,?Tv) ‘N7 zds = / V-Nre,zds Vz € Pp_1(e;), 1€ Igiq, (4.22a)
/(I}}TU) czdx = / v-zdx Vz € Pi_o(T) if k > 2. (4.22b)
T T

4.3.2 Interpolation error estimates

In order to keep this section brief and to the point, we skip the technical lemmas and
stability estimates on the reference element and directly state the stability estimates on
the general element, see [AADL11, Theorems 3.1, 4.1].

Theorem 4.19. Let an element T satisfy the regular vertex property RVP(¢) with regular
vertex py. 1, vectors l; and element size parameters as in Definition 2.11. Then for
veWP(T), 1 <p< oo, the estimate

ov

10 [lg 1 S 10llo g + D |
J€ly

+ hTHdiV,UHO,p,T
0,p, T

J

1s satisfied and the constant only depends on ¢.

Theorem 4.20. Let an element T satisfy the mazximum angle condition MAC(¢). Then
forve WHP(T), 1 < p < oo, the estimate

v

Lj

1l S W0llogr +hr >

jeld 0,p7T

is satisfied and the constant only depends on ¢.
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4.4 Alternative proof for lowest-order interpolation

The proofs for these theorems use the same steps as the proofs in the previous
section for the Brezzi-Douglas—Marini elements. With these stability estimates and again
using Lemma 4.14, we can show the following interpolation error results, see [AADLI11,
Theorems 6.2, 6.3].

Theorem 4.21. Let an element T satisfy the reqular vertex property RVP(¢) with regular
vertexr pg 1, vectors l; and element size parameters as in Definition 2.11. Then for k > 0,
0<m<kandve Wm“’p(T), 1 < p < oo, the estimate

o~ 10l < S0 K IDRvlg g+ hE D dive]g,y  (423)

|oe|=m+1

holds and the constant only depends on ¢ and k.

Theorem 4.22. Let an element T satisfy the mazimum angle condition MAC(¢). Then
fork>0,0<m <k andve W™LP(T), 1< p< oo, the estimate

v — I Rt | D (4.24)

"’Ho,p,T S v HO,p,T

holds and the constant only depends on ¢ and k.

The error estimates are almost identical to those of the Brezzi-Douglas—Marini interpo-
lation, with one significant difference that in essence stems from the worse interpolation
property of the Raviart—Thomas interpolation operator. For a given value of k, the opera-
tors I EDM and [ 1§T act as the identity on polynomials up to degree k, however the space
RT((7x) contains some polynomials of degree k + 1 and is thus larger than BDM (7).
This means that the Raviart—Thomas interpolation requires a larger function space to
achieve the same approximation quality as the Brezzi—-Douglas—Marini interpolation.

4.4 Alternative proof for lowest-order interpolation

Without using the technical Lemmas 4.3 and 4.5 for the proof as in the previous two
sections, it is possible to show the error estimates for the lowest-order case, i.e. k = 1 for
the Brezzi-Douglas—Marini and k = 0 for the Raviart—-Thomas interpolation, by a more
direct method. This less abstract proof uses mostly straightforward computations to
show the stability estimates on the reference element and thus gives some insight in the
structure of the lowest-order Raviart—-Thomas and Brezzi-Douglas—Marini interpolation,
which is the case we need for the construction of the pressure-robust methods later on.
Since this proof differs from the previous one only in the way the stability estimates on
the reference elements are derived, we only detail it up to this point.

In the lowest-order case, only the relations (4.2a), respectively (4.22a), matter for the
interpolation operators IPPM | respectively I(?T. By using the barycentric coordinates A;,
1 € 1441, we can get the representations

ai)\i xr
IF’DMU: Z <bz/\1§$§

1€lg 41

and IBPMy = Z bi\i(x) (4.25)
i€lgyq Ci/\i(w)

) ai\i(z)
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

for the Brezzi-Douglas—Marini interpolant in two and three dimensions, where a;, b;, ¢c; € R
are constants which are to be determined. The Raviart—Thomas interpolant takes the
form

I’Mv(z) = s + ta, (4.26)

where s € R? and ¢ € R.

Denote by ¢; j, i € Iq11, j € ilq+1, the linear basis function of facet e; with ¢; j(p;) =1
and zero at the other vertices, and by ; ; the biorthogonal system, i.e., those linear
functions on e;, for which

/ i jikds =0  Vk € ilgi1

€

holds, where 0, is the Kronecker delta. Then starting from (4.2a) we calculate on the

reference element T
=~ TBDM ~
/ v-ng, Y ds = / (77 0) - ngp iy ds
e .

i €
af a;
=/ 2 (m)'"iei%widds - <bj>"T

i ke;Iqq J

since Agle; = @i k. In three dimensions this calculation is valid analogously, so we have
the relations

s
J
s
L I — SIS . . o — I 7 P .
<b4> nT,ei_/ v nT76i¢Z7J ds resp. b; ng .. /v "T@ﬂ/’w ds
J €; Cj e;

fori € Iyyq1, j € i1411, which are d+1 systems of d equations for the unknown coefficients.
Solving them, we get the expressions

aj =/ Z@'WHJ ds — Z / Vithi 1 ds
€d+1 ]

ic€ly i€ Iy

:/ 61wd+1,1 ds + Z (/ i)\ﬂ/Jd+171 ds —/ ﬁiwi,l d8> , (4.27)
€d+1 €d+1 €

€11y

bzz/ § Vithgq1,2ds — E /Ui¢i,2ds7
€d+1 je], i€oly G

C3=/ E Vihgy1,3ds — E /@'%’,30157
€d+1 jeJ, iegly G
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4.4 Alternative proof for lowest-order interpolation

and

a; = / i)\lwl,z' dS, 1€ 1Id+1, (4.28)
€1

bz‘ = / @\21/}272‘ dS, 1€ 2[d+1,
€2

ci :/ U3z ds, i€ 3lgyq.
e3

For the Raviart—Thomas interpolation we get by similar operations the relations

/ v-ong ds=s-nz le]+1 Z(nfel)]/ zjds Vi€ I,
€; 1

JE€ly e

and thus get the terms

S; = 2/ @ ds, 1 € 1y, (4.29)
tZQZ (/ @-ds—\/g/ @de), (4.30)
j€ly €d+1 €j

for the constants in (4.26). Now we can prove the stability estimate for the reference
element T for the lowest-order case. Note that this case is of course included in Lemma 4.6
and the analogous lemma for the Raviart—Thomas interpolation.

Lemma 4.23. Let v € Wl’p(f), 1 <p<oo. Then fori € Iy, the estimate

(4.31)

0,p, T

TH (div) ~
I .
H (2 v)s 0,p,T

S Gl 7+ Hdivi?

holds, where ff(div) is etther TPDM or féD”T.

Proof. We detail the proof for i = 1 and d = 3, the other estimates follow analogously.
From (4.25), (4.27), (4.28) we deduce

P
FBDM [P
|@on]) < ¥ ladloe] £ X lar
w7 J€la+1 J€la+1
p P
5/ Dipgpads| + ) /@17#1,](18
d+1 jE1lgp '
P
+ Z (/ @j1/)d+171d8—/ i)\jll)j’ldS) s (4.32)
Jj€ilq Cd+1 €
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

and from (4.26), (4.29), (4.30) we get

P
|@on|| Sl + 17

/ i)\l ds / @\1 ds
€1 €d+1
P

+ Z (/e 6jds—\/§/e‘ﬁjd8> . (4.33)

j€1ly

P p

< +

The first terms in both inequalities can be estimated using the Holder inequality and a
trace inequality, i.e.,

p

p
[ wennds) + 3| [ Gngds| SIalg S IBIEn (30)
€dt1 jE1Ig4r Ve w w
P p
mn D < |1o1IP < <P -~
/evlds —|—/ vy ds NHvl”o,p,aTNHvl”l,p,T’ (4.35)
1 €d+1

while for the other terms we need a closer look.
We start again with the Brezzi-Douglas—Marini interpolation. With the explicit terms

N 24 (1 . N 1

Pa1(T1,1 — 2] — 23,73) = 7 (1131 = 4> , Y21(21,0,73) =24 <331 = 4) ,
— 24 (1 PN 1

Y41(T1,T2,1 — 21 — 22) = 7 <IB1 — 4) . Y31(21,22,0) = 24 (1181 — 4> ,

of the dual basis functions ; ; in (4.32) and the Hélder inequality we calculate

/ Ugthy1 ds —/ Ugthg 1 ds +/ U3ty,1 ds —/ U313, ds
e €4 €3

4 €2
1 1-7, 24 1
- Uo(T1,1 — 7 — B3, 23)— | 71 — = | V3dZ3dZ
/0 /0 2( 1 1 3 3)\/§< 1 4> 3 1

1 1-21 1
—/ / (21,0, 33)24 <31 - ) 73 d7,
0 0 4

1 1-71 ( ) 24 1 \/»
+/ / 3 /x\l,i'\g,l—fl—i/ﬁ\z <£/L'\1—> 3dzy dzy
0o Jo V3 4
1 1-7, 1
—/ / B3(71, T2, 0)24 (551 - ) 47, 47y
0 0 4
1 17&?1 17%17:?3 a’\ 1
24 / / / el (551 - ) 7o d7s d7y
o Jo 0 072 4
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4.5 Brezzi—Douglas—Marini interpolation on triangular prisms

1 =31 pl—F1—F2 g~ 1
—|-24/ / / 8723 <f1 — ) dzs dzs dzy
0o Jo 0 073 4
0ty 03\ (. 1\ .
—loa [ (S22 0 ~ )4
‘ /A <a§2 + a@,) (ml 4) x

‘ 81}2 ai}\g

+ =
8932 81‘3
For the Raviart—Thomas interpolation a similar computation yields

/@ds—\fz’)/ 62ds+/ 53ds—\/§/ U3 ds
eq e €4 €3
1

1-71 1 1-71
02(Z1,1 — 71 — T3, T3)V3dZ3 A7 —\/3/ / 02(Z1,0,73) dZ3 A7
0 0

(4.36)

0.p,T

1 pl-7 1 pl-73
+/ / Go(F1, Fa, 1 — By — B) V3 Ay Ay — \/3/ / By(F1, B0, 0) Ay 4y
0 0 0 0

0ty O3 N
f(aaﬁa@)dw '

Now combining (4.32), (4.34), (4.36) and respectively (4.33), (4.35), (4.37) and using

81)2 863
8.T 2 t o, 8x 3

(4.37)

0.p,T

ov: 86 -~ _ ov
81‘2 (9173 O,pj“ 0,p,T 83?1 O,pj“
gives the desired estimate for both operators. O

From here, the interpolation error estimates can be shown as before.

4.5 Brezzi—Douglas—Marini interpolation on triangular prisms

The proofs of anisotropic error estimates for the Brezzi—-Douglas—Marini interpolation on
simplices shown in Section 4.2 can be extended to triangular prisms with some minor
modifications. The reference geometry of a prismatic element with the notation for the
vertices is given in Figure 4.4. Concerning the facets of the prism element ﬁ, e; denotes
the facet opposite of the vertices p;, and p’, and the horizontal facet at Z3 = 0 is denoted
by ey, the one at T3 = 1 by e;. The facet normals of P are given by

-1 0 1
ns =0 ns = |-1 ns - 1
P.ex 0 ’ Pez 0 ’ Pes (/2 0 ’
0 0
npg, = 01, npg, = 0
-1 1
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

Figure 4.4: Reference prism P with vertex numbering, and a transformed prism of the
reference family Rp.

The local Brezzi-Douglas—Marini interpolation operator I,]?DM of order k£ on a prism
P maps into the space P,ﬁk(P) of vector valued polynomials of total degree k in x1 and
x9 and degree k in x3. It is defined by the functionals, see [Néd86, p. 64],

/ EDMU ‘Npe,zds = / V- -npezds Vz € Py(ei), i€ {bt},
e; €
/ IEDMU ‘npezds = / V- -npezds Vz € Qile;), i€ I,
€; €
/(I,?DMU)gzg de = / v3z3 de V23 € Py g_o(P),
P P

/ (IEDM’U)lzl + (Ik.BDM'U)ZZQ de = / V121 + V229 dx V(Zl, 22) € Pk—l,k(P),
P P

where Qp(e) is the space of polynomials with degree k in each of the dimensions of e,
P,, »(P) is the space of polynomials with total degree m in z; and z2, and degree n in
x3. The space Py, »(P) consists of pairs of polynomials with degree n in x3, which are
for fixed 3, i.e., on the triangle Ty,, in the space N, (Ty,) as defined in (4.3).

The general method to prove the interpolation error estimates on prisms is the same as
on simplices, with a few changes in the proofs. We omit all parts of the proofs that work
analogously to those in the previous sections. The first lemma is the analogous statement
of Lemma 4.3 for the prism reference element.

Lemma 4.24. Let P be the reference element from Figure 4.4, f] € LP(ej), j € {1,2},
f3 € LP(ep), 1 <p < o0, and

f1(@2,73) L R 0
u(z) = 0 ;o v(@) = | L@LT) |, w@)=| 0
0 0 f3(Z1,72)
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4.5 Brezzi—Douglas—Marini interpolation on triangular prisms

Then there are functions q; € Py(e;), j € {1,2}, gz € Px(ep), so that

71(72,73) 0 0
IPPMa = 0 . PP = | Ga(@1,3) |, PPV = 0
0 0 33(Z1,72)

Proof. The proof follows the same steps as the proof of Lemma 4.3, checking that the
interpolation functionals uniquely define the functions g;. O

With the previous lemma, we get the stability estimate on the reference element.
Lemma 4.25. Let u € Wl’p(ﬁ), 1 < p < oco. Then the estimates

Jdus
: Z23

e

dlqu —i—'
7p7

, 1 € I, (4.39a)
0,p,P

S S sl P+Hd1qu o (4.39b)

o5 Sl 5+

073
e,
7p7

hold.
Proof. The proofs for i € Iy are analogous so we only show the details for i € {1, 3},
starting with ¢ = 1. Let
0
u, = | u2(71,0,73) |, Uz — U2(33170 T3)
u3(71,72,0) uz — uz(71, 72, 0)

Q)
Il
)]
|

£
Il

The previous Lemma 4.24 thus yields (I, [BPM7), — (fBDM )1, and it holds dive =
diva — diva Uy = div . We define the two functions

0 1
Vo= | T2q2 |, W=0—0,= |02 —T2¢2 |,
x3q3 U3 — X343

where Gy € P,_1 ,(P), Gs € P, ;,_,(P), so that

/A pz da — /A (62— Bad)zdz =0 Vze Py y (D), (4.40)

P P

//\1/1)\32 de = //\(7)\3 — 55\321\3)2 de =0 Vz € Pk,k—l(ﬁ)' (4.41)
P P

As before, this means that the functions g and g3 are well defined.
Since v« € Py, ,(P) it follows that fBDMA v, and thus (ABDMA)l = (TIE’DM’/v\)l =

= U,
(TEDMﬂ)l. The interpolated function fBDM =t = (tl,tg,t3) is then defined by the
relations

/ %ZdS:/ w3zds =0 Vz € Py(ep),
ep ep
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

/%\3Zd82/’@32d8
et €t

:/w3zds—/ﬁ)\32ds: o 905 da Vz € P(er),
er €p 8%3
/ %\1Zd8 / w1z ds Vz € Qk(el),
el €1
/ tAgzds:/ Wozds =0 Vz € Qi(e2),
e €2
/ (f1 + o)z ds — / (@1 + @)= ds V2 € Qules),
es €3
/A%Zg dx = / w323 dx = /A(i}\g — fg@g)?;g de =0 \V/Zg S Pk,k—Q(ﬁ)’
P P P
/;%\121 +%\222 dx = /Aﬁ)\lzl 4+ Wozo da = /A’L/ﬁlzl dx \V/(Zl, 22) € ’Pk,Lk(ﬁ),
P P P

where the definitions of g2, g3, and that Wz, = 0, W3|e, = 0 were used. Some computations
are still required for the relation on es, which yield

1 / ~ o~ 1 N . ~
— | (t1+t2)zds=—= | (w1 +W2)zds = / W - N, ds
\/§ €3 \/§ €3 €3 :
8@1 6w2> / 8 / ~
= — + zdx + dx — w-n,s5zds
/13 (3$1 0% Lox, 8P\es oF

:/ (d1vw—2a> dac+/ 0z dm—/ w1z ds.
P (91’3 axl e1

/ﬁj\lzds:/ U1z ds,
el €1
/Aﬁlzdw:/Aﬂlzda;,
p P

—zdx = —
p 073 p 03

/(div@)zdm:/cﬁf(a—@*)zdm
5 5

Thus, the terms

zdex,

define the interpolant, so that we get the desired estimate

_ Ous
BOMg H <la 5 Hd AH I e
H( )1 ~ HUIHLp,P+ v 0,p1p+ 073 ||,

0,p,P

by the same arguments as in the proofs of Lemmas 4.6 and 4.7. The proof for the second
component works analogously.

66



4.5 Brezzi—Douglas—Marini interpolation on triangular prisms

For the third component we again start with the functions

up —u1(0, 72, x3) vl — T1q1
V=U—U, = @—ﬂ( ,0,73) |, w= |V — T2 |,
U3

where the functions ¢, g» € Pkﬂ’k(ﬁ) are defined by

/Az’u\lz de = /A(ﬁl —T1q1)zde =0 Vze P,C_Lk(ﬁ), (4.43)
P P
/Aﬁigz de = /A(ﬁg — Toqz)zdx =0 Vz € Pkfl’k(ﬁ). (4.44)
P P
This means that (fBDMA) ( DM%)3 = (ABDM )3, and dive = div . Checking the
interpolation relations for I ABDM =t= (tA tAQ, tg) we get
/ t3zds = / w3z ds Vz € Py(ep),
ep ep
/ t3zds :/ w3z ds Vz € P(er),
et €t

W1zds = Vz € Qr(er),

/ tozds = / Wozds =0 Vz € Qi(e2),
e €2

w-np,.2 ds

d1vwzdm+/'w Vzdx

P

- w-n,szds
/Bﬁ\eg or

div w2z de +/ 0z dz Vz € Qr(es),
8.1‘3

A
/\%\323 de = /’Ujgzg dx, Vz3 € Pk,k—?(ﬁ)v
P P

/AtAlzl +%\222 de = ﬁﬁhzl 4 Woze d = 0, V(zl, 22) € ,Pkfl,k(ﬁ%
P P

where the last relation holds due to the definition of the functions g1, g2, and since
Pi—1,k(P) C (P,_; x(P))% The rest of the proof can be done analogously to the proof
for the first component and leads to the estimate in the lemma. O

Just as for the simplicial elements, we now transform the stability estimate from the
reference element to an element P of the reference family Rp, see Figure 4.4. The affine
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Chapter 4 H (div, 2)-conforming interpolation on anisotropic triangulations

map to get this result is the same as for the transformation to the reference families in
the simplex case, i.e.,

hi 0 0
g=Jp2, Js=|0 hy 0
0 0 hy

Lemma 4.26. Let P = Jﬁ]3+930, xo €R3, and v € Wl’p(]g), 1 <p<oo. Then on the

prism P the estimate

_ - . dv3
HIBDMUHO,p,ﬁ S Z h*|D%v|, , 5 + hplldivolly , 5 + (h1 + h2) - (4.45)
jal<1 SlopP
holds, where hi = max{h1, ha, h3}.
Proof. Using (4.13), (4.14) and Lemma 4.25 we can compute
BDM 1 FBDM
[ia v”o (det J5) ”Z e H v)i 0.p.P
i€l3
1 ya =~ hi + ha || 9v3
< (det J5)77 | S n <||v-|y S+ Hde A) n
P ZEZI:?) ‘ “Lp,P 0,p,P hihohs 81‘3 0,p,P
N Dl T2y &MH (bt o) ‘2”3
i€l; \|al<1 0p,P T3 llop,P
~ ™ ~ 8?)3
S Z haHDaUHO }5+hﬁ‘diva (hl—l-hg)
|| <1 " 0.p.P s OPP

This stability estimate can easily be written as an estimate for the general prism with
the analogous proof as for Theorem 4.10.

Theorem 4.27. Let P be a prism element that emerges by an affine transformation of
the element P € Rp so that the top and bottom facets are parallel and satisfy a mazimal
angle condition MAC(¢). Then for v e WHP(P), 1 < p < oo, the estimate

3 0
1Mo < ol et 32 ]| 22 .

+hp|divolly, p+(hi+hs2) BTN
JEI3 3

0,p,P

(4.46)

0,p,P

is satisfied and the constant only depends on ¢. The vector l3 is the outward normal on
the top facet.

Proof. For a prism, where the top and bottom facets satisfy a maximum angle condition,
there is at least one vertex on the bottom and the top, so that the adjacent edges satisfy
the requirement for the regular vertex property, see Definition 2.11. With one of these
vertices taken as the regular vertex of the prism, the rest of the proof is entirely analogous
to the proof of Theorem 4.10. O
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4.5 Brezzi—Douglas—Marini interpolation on triangular prisms

As in the previous sections, the proof of the interpolation error estimate is now
straightforward.

Theorem 4.28. Let a prism P satisfy the same condition as in Theorem 4.27. Then for
k>1,0<m<kandve Wm+1’p(P), 1 < p < o0, the estimate

lo=12"0lly, p 5 > WIDRVlop +he 3 hIDRdv O], p

|o|=m+1 |o|=m

+(h1+ha) Y K™

la|=m

am—i—l U3

A oI5 o153t

0,p,P

holds and the constant only depends on ¢ and k.

Proof. The computations are the same as in the proof of Theorem 4.15. O
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CHAPTER b

A-priori error analysis of pressure-robust methods on anisotropic meshes

The reconstruction approach that was already briefly introduced in Section 3.3.2 is a
straightforward method to attain pressure-robustness for classical inf-sup stable mixed
methods. The cost it brings is an additional consistency error due to the non-standard
discretization of the right hand side linear form, which has to be estimated in the error
analysis.

In Section 5.1 we show pressure-robust error estimates for reconstructed methods on
anisotropic meshes in a general setting under certain assumptions on the used method.
To make this analysis useful, we introduce in Sections 5.2 and 5.3 two methods which use
the interpolation operators from Chapter 4 as reconstruction operators and show that
they fit in the general framework of Section 5.1.

5.1 General error analysis

The basic approach is to set several assumptions, prove the error estimates under these
assumptions and later show for the actual methods, that the assumptions are satisfied.
This gives a certain flexibility for the development of other methods, since only the
assumptions from this section have to be checked.

Before introducing the necessary assumptions we state a lemma that relates the solution
of the Stokes problem (2.10) with the solution of a slightly modified problem, see also
[AK21, Lemma 2].

Lemma 5.1. The functions (u,p) are the solutions of (2.9) with right hand side data
function f = Pf + V¢ if and only if the functions (u, v~ (p — ¢)) are the solutions of
the Stokes equations with unit viscosity and data function v 'Pf.

Proof. Starting with the Stokes momentum balance the proof is a straightforward calcu-

71



Chapter 5 A-priori error analysis of pressure-robust methods on anisotropic meshes

lation:
—vAu+Vp=f
& —vAu+V(p—¢)=Pf
& —Au+V(p%) = v 1PF.
The claim for the divergence constraint is trivial. O

The first assumption is necessary to ensure that [|-||; , is a norm on the space X & X,
see [LMT16, Assumption A2, Remark 2.2] and [CR73, Lemma 2]. The assumption always
holds for conforming velocity spaces, see [CR73, Remark 2].

Assumption 1. There is an r € N, with » > k — 1 where k is the polynomial order of
X, so that on every facet F' € F(T;,) and every i € I

(¢, ([oa])i)or =0 Vg e P(F)
holds for all vy, € X, where (+); is the i-th component of a vector function.

Next is an assumption that defines the required properties of the reconstruction operator.
Recall that for our approach towards pressure-robustness we use the modified linear form
In(vp) = (f, Invy) from (3.6) on the right hand side of the Stokes discretization.

Assumption 2. The reconstruction operator I, : X, — Y, C Hy(div, Q) satisfies

V- (Ihvh) =V vy Yoy, € X%, (5.1&)
lvn = Invnllg S hllvally g, Yoy, € X, (5.1b)

where the constant in the interpolation error estimate is independent of the aspect ratio
of the triangulation and the mesh size parameter h.

The following assumptions are concerned with the finite element pair of the mixed
method.

Assumption 3. There is an operator If : X — X, that for all v € X satisfies the
properties

b (v, qn) = bn(If v, qn) Van € Qn,
HIgUHLh < CF”UHth

with a stability constant C'r that is independent of the aspect ratio of the mesh and the
mesh size parameter h.

An operator that satisfies Assumption 3 is called Fortin operator. It is a standard result
that the existence of a Fortin operator with a stability constant Cr that is independent
of the mesh size parameter h is equivalent to the discrete inf-sup stability of a finite
element pair, see, e.g., [EG04, Lemma 4.19]. In the following lemma we only show the
direction that Assumption 3 implies the inf-sup condition.
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5.1 General error analysis

Lemma 5.2. Let Assumption 3 hold and let X, C X, Qp C Q. Then there is a constant
B >0 so that
b ~
inf sup _bn(vh,an) > f (5.2)
0240 €Qn 0w, e X, [1Vnl1 1 llanllo

holds, where E 1s independent of the mesh size parameter h.

Proof. Let qn € Qp. Then we have

bp(IF
sup bh(vh,Qh)> sup n(I, v,qn) sup bn(v, qn) > sup bn(v, qn)

ormix, onln = opeix 0]y opeix JTE0]l,, = opeix Crllvl,’

which, since gy, is arbitrarily chosen and we have the continuous inf-sup stability condition
(2.11), concludes the proof and we get f = C‘%, where (3 is the continuous inf-sup
constant. O

The stated result assumes a conforming discretization, but the proof can be applied to
the non-conforming Crouzeix—Raviart element, see, e.g., [Joh16, Theorem 3.151, Remark
3.152).

Assumption 4. Let (u,p) be the solution of the Stokes problem with unit viscosity. The
consistency error estimates

|an(w, vp) + bp(vn,p) — (F,vn)| S Plloally plFllg Yon € X, (5.3a)
lan(w,vp) = (f,00)] S hlloally bl Flle - Yon € X, (5.3b)

hold, where the constants are independent of the aspect ratio of the mesh and the mesh
size parameter h.

The first estimate in Assumption 4 is always satisfied for standard conforming velocity
approximations X C X. On the other hand, the second estimate follows from the first
only if X 2 C XY which is in general not the case. However, we can show a property, see
also [Linl4, p. 787] and [AK21, Lemma 3], that is useful for checking (5.3b) in certain
cases, e.g., for the Crouzeix—Raviart method.

Lemma 5.3. Let X, Qn be a finite element pair for the Stokes equations, for which
Vi -vn € Qp for all vy, € Xy,. Then (5.3a) implies (5.3b).

Proof. For vy, € X(,)l it holds Vy, - vy, = 0, since we can test with ¢, = Vj, - vy, in the
definition of X9 which yields

X?L - {’Uh e Xy : bh(vh,Vh-vh) :A(vh'vh)de:0}~

Thus we get by, (vp,p) = 0 for vy, € X?l. d
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Chapter 5 A-priori error analysis of pressure-robust methods on anisotropic meshes

Assumption 5. Let (u,p) be the solution of the Stokes problem (2.10). The approxima-
tion properties

inf ' flu—wnlly ), S RIP(Au)],,
thXh

inf —qnllyg S h
qhthllp anllo S Pl Fllo

hold, where the constants are independent of the aspect ratio of the mesh and the mesh
size parameter h.

Using these assumptions, we can prove the general pressure-robust error estimate on
anisotropic triangulations.

Theorem 5.4. Let Assumptions 1 to 4 hold and let (u,p) and (up,pr) be the solutions
of (2.10) and (3.1), respectively. Then we have the estimate

fw=unll e S intu =iy + BIBAW), (5.4)

vpEA L

Proof. Let v, € X" be the best-approximation of w with respect to ||H1h and set
wy, = up — vy, € X%. Then due to the Pythagoras theorem we have

[ = wnll} = lluw —vnll; , + wal] - (5.5)
Using (3.2) and ap(u — vy, wp) = 0 we can estimate
lwnll} , = an(wn, wh) = an(wn — vn, wy)
= ap(u — vy, wp) — ap(u, wy) + ap(up, wp)
< ‘ah(u,wh) - V_l(f,Ihwh)|.
Dividing by [|wp||, ;, and combining this inequality with (5.5) yields

|an(w, wp) — v (f, Tywy)|
lwnlly

||U_Uh”1,h < ||U_Uh||1,h+ (5.6)

Recall the Helmholtz—Hodge decomposition of the data f = Pf + V¢ and note that
V - [ywy, = 0 due to Assumption 2 and wy, € X?L. With (Vo, Iwy) = 0 we get
1 _
ap(w, wp) = — (f, ywn)| = |an(u, wp) — v (PF, Tywp)|
= an(u, wp) = v (BF, wp) + v (PF,wp — Iyws))|
< lap(u, wp) — Vﬁl(]P’f,'wh)‘ + ’Vﬁl(]P’f,'wh — Iywy)|. (5.7)

By Lemma 5.1, u is also the velocity solution of the Stokes problem with unit viscosity
and right hand side v~!'Pf, which means that we can apply the consistency estimate of
Assumption 4, which yields

|an(u, wp) — v~ (PF,wr)| S v hllwy,

LallPElo- (5:8)
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5.1 General error analysis

The second term in (5.7) can be estimated using the Cauchy—Schwarz inequality and the
interpolation error estimate for the reconstruction operator I, from Assumption 2, which
gets us

v (PF wn — Invwn)| < vTHPElllwn — Thwally S v RIPElgllwnll - (5.9)

We can now combine the individual estimates (5.8), (5.9) with (5.7) and insert the result
n (5.6). Since v, was chosen as the best-approximation of u in X 9 we now have the
final estimate

lw =l S inf Cllu = vl ), + 2[P(Au),
’vaXh
where we also used the identity (2.13). O

If we additionally use Assumption 5, we can bound the best-approximation error and
get an overall estimate.

Corollary 5.5. Under the assumptions from Theorem 5.4 and Assumption 5 the estimate
lw —unlly ) < RIP(A)],
holds.

Proof. The proof is a direct application of Assumption 5 to (5.4). O

Remark 5.6. Looking at Theorem 5.4 and Corollary 5.5, we see that the estimates
are presented in terms of the norm of the divergence-free part of the Laplacian of the
velocity solution ||P(Aw)||,. The estimate does not include the viscosity parameter at
all. However, if we use the identity (2.13), the term v~||Pf||, appears. Of course both
forms of the estimate are pressure-robust, but in one of them the factor ! is present.

This is of interest, when we look at how typical numerical examples for pressure-robust
methods are constructed. In some cases, a fixed solution (u,p) is chosen, and the data is
computed using the Stokes momentum balance equation (2.9a), where different values
for v are chosen to show that the discrete solution of the pressure-robust method does
not depend on v. This approach is represented in the given form of the estimates in the
theorem and corollary.

On the other hand, in a setting where the data function f is fixed and v is varied, the
velocity solution scales with v~! and so does the discrete solution and thus the error
of pressure-robust methods. In such a numerical experiment, the pressure-robustness
of a method can instead be shown by adding an additional gradient field to the data,
which does not influence the continuous velocity solution, and thus does not influence
the discrete velocity solution of the pressure-robust method.

Similar observations are stated in [LMN20, Remark 3.2] and [AK21, Remark 3].

For the pressure error we can get the following estimate.
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Proposition 5.7. Under the assumptions from Theorem 5.4 and with Qp, being the space
of piecewise constants, the estimate

v h
p=plo S jnt Ip=aly+ % i vl 55l G0

1s satisfied, where Ei 1s the discrete inf-sup constant.
Proof. Using the Pythagoras theorem, we can estimate
2 2 2
1P = prllo = P — maplly + ll7ap — prllg,

where 7, : L3(Q) — Qp, is the L2-projection into the discrete pressure space. For the first
. 2 _ . 2 -

term it holds ||p — mpp||g = infy, cq, |p — anllg, and since mpp — p, € Qp, we can use the

discrete inf-sup condition (5.2) to estimate

by (Vh, ThD — Dp)

1
|mhp — prllg < = sup

ﬁ vREX) thHl,h
1 b — b —

s n(Vn, mhp = p) + b (vn,p — pn) (5.11)
B vReX) thHI,h

We estimate the first term in the numerator using the Cauchy—Schwarz inequality,
the error estimate for the L?-projection into piecewise constant functions from [EG04,
Theorem 1.103] and Proposition 2.6, which yields

[br.(vn, Thp = )| < Vi - vnllollmap = pllo S llvnlly pllmap — pllo S Pllvally ull £llo- (5-12)

The function py, is the solution of the discrete problem, so we get for the second term

|bh(Vh,  — pr)| = |ba(Vn, p) + vap(un, vn) — (F, Invs)|
= |van(w, vy) + bp(vn,p) — (f,vn) +vap(up —u,v,) + (f, v — Ivy)|
Svlu— uhHl,h”UhHLh + thHOHUhHth (5.13)

where in the last step the consistency error estimate from Assumption 4, the Cauchy—
Schwarz inequality and the interpolation error estimate from Assumption 2 was used.
Now putting (5.12) and (5.13) into (5.11) and using Theorem 5.4 yields the claimed
pressure estimate. ]

Similarly to the velocity estimate, we can easily get an additional result for the pressure
error in terms of the data.

Corollary 5.8. Under the assumptions from Proposition 5.7 and Assumption 5 the
estimate

Ip = pally S BB £l
holds.
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5.2 Modified Bernardi—Raugel method

Proof. Starting from (5.10), we can use Assumption 5 for the first and second terms and
arrive at the claimed estimate. O

After the general error analysis in this section, we now show two examples of finite
element discretizations that fit into the framework. Starting in Section 5.2 with a
conforming discretization, we verify the assumptions from this section and thus see that
the method yields a pressure-robust discretization on anisotropic meshes. Unfortunately
this method is only applicable in certain two-dimensional anisotropic settings as explained
below. In Section 5.3 we use the same approach for a non-conforming classical method,
which can be used for arbitrary two- and three-dimensional meshes satisfying the maximum
angle condition.

5.2 Modified Bernardi—Raugel method

The Bernardi-Raugel finite element method from [BR85] is a lowest-order conforming
method for the Stokes equations that is inf-sup stable without stabilization, which is
shown for shape-regular meshes in, e.g., [GR86, Lemma 11.2.2].

On a simplicial element T with d € {2, 3}, the polynomial function space of this method
for the velocity approximation is given by

BR(T) = P(T) ©span {te,,...,te,. },
where, denoting by A;, j = 1,...,d + 1, the barycentric coordinates of T,
te =me, [[ M- (5.14)
J€ilgy1

Recall that n., denotes the outward pointing unit normal vector to the facet e;. The
functions t; are called facet bubbles. Pressure approximation is done using the space of
piecewise constant functions

Qn = {an € L§(Q) : qulr € Po(T) VT € Tp}. (5.15)

The global approximation space on a mesh 7y, is then defined by, see also [GR86, Section
11.2.1],

BR(T}) = {v), € C(Q) : wp|r € BR(T) VT € T} N X. (5.16)

Avoiding some technicalities we define the Bernardi—Raugel interpolation operator I ,]?R
for functions v € H?(Q) by the relations

I%v(p) = v(p) Vp € V(Th),

/I}?Rv-neds—/v-neds Ve € F(Th)-

Our aim now is to show the validity of Assumptions 1 to 5 for this method, so that
the general error estimates from Section 5.1 are valid for this method. As mentioned
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Chapter 5 A-priori error analysis of pressure-robust methods on anisotropic meshes

in [LM16, Section 4] for shape-regular meshes, the lowest-order Raviart—Thomas and
Brezzi-Douglas—Marini interpolation operators, see Sections 4.2.1 and 4.3.1, can be used
as reconstruction operators for the Bernardi—-Raugel element.

Theorem 5.9. Let X} and Qyp, be the Bernardi—Raugel finite element pair as introduced
in (5.15) and (5.16), and let the domain 2 C R? be a convex polygon. Further let the
reconstruction operator I, be defined by either (Invy)|r = IPPMoylr or (Iyvy)|r =
I§th]T for all vy, € Xy, and T € Tp,. Then Assumptions 1 to 5 hold for the wide class
of two-dimensional meshes described in [AN04, Section 2].

Proof. We go through the proof of every assumption individually:

1. Since X}, C X, it holds for every vy, € X}, on every F € F(Ty) that [vp]r = 0.
Thus Assumption 1 is satisfied with » = 0 and k = 1.

2. We immediately see that since BR(7,) € C(2) N X the operator I;, maps to a
subspace of Hg(div, 2). The interpolation error estimate (5.1b) can be verified by
setting h = maxreT, hr and summing the elementwise error estimates (4.21) or
(4.24), respectively.

To show (5.1a) we need to prove that the reconstruction operator preserves the
discrete divergence of the functions from BR(7},), i.e.,

/V-Ih'vhqhda:—/v-'vhqhda: thEQh
T T

holds for all v, € X} and all T' € Ty, see also [BBF13, Proposition 2.5.2] and
[Joh16, Lemma 4.134]. Integrating by parts we get

/V~(Ihvh—'uh)qhdx:/(vh—Ihvh)-thdw—i- Z
T T

/(Ihvh—vh)~npqhds.
FeFm) ¥

Since qp, is piecewise constant it holds Vg, = 0 and by using the definition of the
operators [ FDM, I(l))‘T, we see that the right hand side vanishes. Thus Assumption 2
holds.

3. The proof for Assumption 3 is the proof for [AN04, Theorem 1]. In particular the
meshes described in Section 2.4.2 are included in the results from the reference.

4. The first estimate in Assumption 4 is satisfied since for the Bernardi—-Raugel
method BR(7;,) C X holds, which implies |ap(w, vp) + bp(vn,p) — (f,vp)| = 0 for
all vy, € BR(Th).

For the second estimate with v, € X" we write

lan(u, vp) = (f,vn)| < lan(w, vp) + bp(va, p) — (f,vn)| + [br(vr, D),
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5.2 Modified Bernardi—Raugel method

where the first term vanishes since X 2 C Xp,. Estimating the second term, using
the L2-projection operator 7, onto Qp, we get

lan(w, v1) — (f,vn)] < [bp(vn, p)|
= |br(vh, Thp) + bp(Vh, p — ThD)|
= |by(vh, p — mhp)|
< |[IVh - vnllgllp — mnpll
< H’Uh||1,h”p = mhpllo-

The error of the L2-projection onto the piecewise constant functions can be estimated
using [EG04, Theorem 1.103] which, using Proposition 2.6 and the comment in the
subsequent paragraph, leads to the final estimate

lan(w, vn) — (f,vn)| < hljvn

|1,h||p”1 S thhHl,thHO'

. To prove the approximation estimates required for Assumption 5, we need the
stability estimate for the Bernardi-Raugel interpolation operator from [ANO4,
Section 5.2], where it was shown that for v € H?(f2) the estimate

11571, S Mol + hlol, (5.17)

holds on the types of meshes we use. Employing the technique seen in the proof of
[GR&6, I1.(1.16)], we get

inf — < inf — < |luw — IPR
v,félx,g”u vhlh,hwvhnghHu opllip S flu— ],

which leaves estimating the error of the Bernardi-Raugel interpolation. This can be
done by seeing that the operator IE’R preserves linear polynomials and then using
the stability estimate (5.17) and a Bramble—Hilbert type argument as seen in the
proofs for the Brezzi-Douglas—Marini interpolation error estimate in Section 4.2.3,
which in the end leads to the estimate

inf |[u—wv < hlul,.
vaX%H hHl,hN | ’2

As u € H?(Q) is the Stokes velocity solution for data f, we know from Lemma 5.1
that it also solves a Stokes system with data v~ 'Pf. Thus we can use Proposition 2.6
to estimate

[uly S vHIBE-

With (2.13) we now get the desired estimate

inf ||lu—wv < h||P(Aw)||,.
it = vl S HPAW),

v E

79



Chapter 5 A-priori error analysis of pressure-robust methods on anisotropic meshes

The estimate for the pressure can be acquired by again using the error estimate for
the L%-projection into piecewise constants 7 from [EG04, Theorem 1.103], with
which we can compute

inf |lp—anllo = lIlp — mpllg S Rliplly S Ao,
qh€Qn

where in the last step Proposition 2.6 was used. ]

Unfortunately, in contrast to the Crouzeix—Raviart method in the next section, we are
unable to show the existence of a Fortin operator for the Bernardi-Raugel finite element
pair on arbitrary meshes, but the method is stable on a large class of two-dimensional
meshes, as mentioned above.

An interesting result regarding practical applications for the reconstructed Bernardi—
Raugel method is that the Raviart—Thomas and Brezzi-Douglas—Marini interpolation
operators yield the same function when acting on the normal-weighted facet bubbles.

Proposition 5.10. Let t., be a Bernardi-Raugel normal-weighted facet bubble function
from (5.14). Then it holds
IPPMy, = 18T¢,..

Proof. Let IPPMt, = Zizl ar @i, and Ig{Ttei = bip;, where ¢;, and v); are the Brezzi—
Douglas—Marini and Raviart—Thomas basis functions associated with facet e;, as defined
in [BBF13, Section 2.6] for which it holds ¢; = S¢_ | éy.

The rest of the proof is a lengthy direct computation of the coefficients

ay, :/ te, -mipds, ke{l,...,d},
e;
b= \ei|_1/ t., - n;ds,
e;

which yields a, = b for all k € {1,...,d}. Here ¢, are the P,(e;) basis functions dual
to ¢;1 with respect to the functionals defining the Brezzi-Douglas—Marini interpolation.
This computation was done using the symbolic computation library SymPy. O

This result and the fact that the lowest-order Brezzi—Douglas—Marini interpolation
operator preserves the linear basis functions from BR(7;) means that for practical
applications of the method we only need to reconstruct the facet bubbles using Raviart—
Thomas interpolation, which has a simpler interpolation operator. This aspect is also
discussed in [LM16, Remark 4.2].

Numerical examples of the performance of the method are given in Chapter 6. To
conclude this section we show the reconstruction of a facet bubble in detail.

Example 5.11. To give an impression of how the reconstruction acts on the Bernardi-
Raugel facet bubble functions, we look at a reference configuration of two triangular
elements T} = p,p3p, and Ty = p,pyP3, where the vertices are set to p; = (0,0)7,py =
(1,007, p3 = (0,1)”,p, = (—1,0)T. This is sufficient, since we only need to consider
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BR facet bubble Reconstructed BR facet bubble
1 R V2
4 6
>
0_ 1 0 1 0 0_ 1 0 ] 0

T

Figure 5.1: Comparison of Bernardi-Raugel facet bubble before and after reconstruction
using Brezzi—Douglas—Marini interpolation. Color visualizes function magni-
tude |tp(z,y)| resp. [IFPMep(z,y)|.

the Brezzi—Douglas—Marini interpolation of the facet bubble functions which, as well
as the interpolated function, have support only on two triangles. The facet bubble
tr = npAi A3 associated with the facet F' = p;ps is now of interest, and fixing the normal
as nr = (1,0)7 it is defined by

1+x—
o) = (CFT) o

With the definition of the lowest-order Brezzi-Douglas—Marini basis functions on triangles
from [BBF13, Section 2.6.1] and the definition of the associated interpolation operator,
see (4.2), we can compute the reconstructed basis function as

1 /1+x
IFDMtF(x7y) - 6 < +y ) , on T1/2'

Both functions are plotted in Figure 5.1. As expected, the tangential component of the
function is no longer continuous after the reconstruction.

5.3 Modified Crouzeix—Raviart method

The reconstruction approach was first applied to the Crouzeix—Raviart method, see
[Lin14], which is also exceptionally well suited for meshes containing anisotropic elements.
Having already introduced the method in Section 3.1, we briefly recall the approximation
spaces

CR(Tn) = {v, € L*(Q) : vu|r € P(T) VT € Tp,, [vr](xr) = 0 VE € F(Th)},

for the velocity and
Qn={qn € Q: qnlr € P,(T) VT € Tn}

for the pressure. While the method is not H}(f2)-conforming, the velocity functions
are weakly continuous at the element interfaces, meaning that the mean values of the
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function on both sides of a facet are equal. Consequently, for v € X the Crouzeix—Raviart
interpolation operator I SR is defined by

/I,?Rvds = / vds VF € F(Th). (5.18)
F F

Possible reconstruction operators are the lowest-order Raviart-Thomas interpolation
operator from Section 4.3.1, for which we use the equivalent definition

1
np - [ v(xp) = ‘F/F'u-npds VF € F(Tn),

and a slightly modified version of the lowest-order Brezzi—-Douglas—Marini interpolation
operator, see Section 4.2.1, where averaging on the facets is used to have a well-defined
interpolant for Crouzeix—Raviart functions. This operator I ,]?DM is thus defined by

/(IEDMU) npeds = Aplvnekeds AEEE () Pi(F).
F [r(IFT) -npzds if F € F(Ty),

Additionally, another slightly adjusted Brezzi—Douglas—Marini interpolation operator is
required for meshes where neighboring elements have a large size difference, which for
example occurs in the Shishkin-type meshes from Section 2.4.2. This operator is defined
by

' : ds if e Fi(Ty),
/F( wo ) mrzds {fF(Ig{Tv) npzds if F e F(Tp), 2 €A,

where instead of averaging on interior facets we use the values of the function on that
side of the facet where the element has larger volume. This is expressed in the notation

: if [Trq| > [Tral,
(v-np) =1{" i : | 2 [Tea (5.19)
v-nplr,, if[Tra| > [Tk,

where ﬁ N m =F.

As this method was investigated in detail in several recent publications, there is a
considerable amount of results available. We provide an overview in Table 5.1.

To bring the method into the framework of Section 5.1, we need to check Assumptions 1
to 5.

Theorem 5.12. Let Xj and Qp, be the Crouzeix—Raviart finite element pair. Further
let the reconstruction operator I, for all vy, € X5, and T € T, be defined by either
(Invp)|r = I8 |7, or by Ivy, = ,]?DMvh resp. Ipvp, = E’DM/vh depending on whether
neighboring mesh elements are of similar size or not. Then Assumptions 1 to 8 hold for

meshes satisfying the maximum angle condition and Assumptions 4 and 5 hold

i) in two or three dimensions for meshes satisfying the mazximum angle condition if
the Stokes solution satisfies (u,p) € H?*(Q) x HY(Q),
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5.3 Modified Crouzeix—Raviart method

Table 5.1: References and results concerning the modified Crouzeix—Raviart method

Assumptions
Reference  (u,p) € Mesh 1, Relevant new results
[Lin14] H? x H' shape reg.  INT introduction of method, pres-
sure-rob. gradient estimate for
velocity
[BLMS15] H? x H! shape reg. ~ IPPM pressure-rob. gradient and L? es-
timate
[LMW17] H? x H! shape reg. & pressure-rob. L? estimate
[LMN20] H'™ x H?, shape reg. i, I,]?DM pressure-rob. gradient estimate
s € (0,1] with reduced regularity assump-
tions
[AKLM21] H? x H! anisotropic, I, IPPM  pressure-rob. gradient estimate
MAC(¢) on anisotropic meshes
[AK21] see Lemma 2.7  anisotropic, I® T ,]?DM optimal convergence rates on
MAC((9) graded meshes for singular so-

lutions due to re-entrant edges

i) in three dimensions for the type of domains and graded meshes described in Sec-
tion 2.4.3, if the grading parameter p satisfies p < A, where X is the singularity
exponent determined by (2.12).

Proof. We again provide proofs for all assumptions individually.

1. Since X, contains piecewise linear functions, it suffices to show that for i € I

(¢, ([vr])i)or =0  Vq e Py(F)

holds for all vj, € X}, on every F' € F(T}). Since the jump is a linear function on
every facet we have due to the definition of CR(7};,) and the midpoint rule

(¢, ([va])i)o,r = q/ ([vr])ids = 0.

F

Thus Assumption 1 holds.

2. We observe that (5.1a) holds due to the divergence theorem, see, e.g., [Linl4,
Lemma 1] and [LMNN18, Lemma 3.3].
Concerning the interpolation error estimate (5.1b) we can directly apply Theo-
rem 4.22 in the case I}, = Ig{T. For the other possible choices IE’DM or IE’DMI as
reconstruction operator we need an additional argument, since it is not simply the
elementwise application of IlBDM. Proofs have been given for the shape regular
case in [LMNN18, Lemma 3.3] and [BLMS15, Remark 2.2], which we adapt in the

following to the anisotropic setting using some refined arguments.
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84

We start with the proof for I ,];D’DM. Let vy, € X, and look at an individual element
T. Then using the triangle inequality we get

IBDM IBDM

[on — vhHOT < |jvn - vhHOT"i'HIBDM IBDM"’hHO,T’ (5.20)

ShrllVorllo,r

where the bound for the first term on the right hand side comes from Theorem 4.16.

Now observe that IPPMy;, — IBPMy, € P, (T) and that elements from P, (T) are
uniquely determined by the values of their normal traces on 0T. Using this on the
reference element and transforming to the general element we get

ol % 32 G o) 52
FeF(T
Since |(IPPMy), — IPPMy,,) - np| = L|[vs] - np| on each F € F(T), we get
A [ D S [ 1 RE Y P G )
FeF(T)

Using a Poincaré inequality on the facet F' and the trace inequality

7|72

IVwy - nplyp S FRE

H hHO,T7

for functions wy, € P,(T), see, e.g., WHO03] and [Riv08, p. 23], yields

[[vr] - mellor S hellVIvE] - nplly p = kel V(valr — vile) - mrllo g
F|” |F|”
<h R
< <‘ 7 IVonllo 7 + ’T,|1/2HVUhHO,T/ : (5.23)

where T NT" = F. Combining the estimates (5.22) and (5.23) and using hr < hy
we get

2
T|"?
|’|1/2HWhHO’T/>  (5.24)

D, P < S (um i
)

FeF(T

Now combining (5.24) with (5.20) and summing over all elements yields the estimate
(5.1b) for meshes where the elements do not rapidly change size, i.e., where for all
neighboring elements 7" and T”

17|

< .
G CeR (5.25)

holds.



5.3 Modified Crouzeix—Raviart method

For meshes where (5.25) is not valid, e.g., meshes of Shishkin-type, we can instead use
the operator 1 E’DM/. The proof in this case is analogous until (5.21), where we now see
with the definition of I E’DM/ that those summands vanish from the sum, where the
element 7' is the larger of the two elements adjacent to the facet F'. We collect those
facets F' for which the summands do not vanish in the possibly empty set F"(T),
(IBDMy, — [}]?DM/'Uh) .

nrg| =
|[vn] - nF| for the remaining summands. This leads to an estimate analogous to
(5.24), where the sum is taken over F"(T) instead of F(T") and we have

and can proceed in the same way as above since

7]
<y
A

since for all remaining facets in the set F"(T") the element 7" has larger volume
than 7'

Thus Assumption 2 holds.

. Let v € X. Using integration by parts, the fact that g, € Q}, is piecewise constant

and the interpolation property from (5.18), we compute

bp(v — IR, qp) = / Vi (v — Iy v)g, de

= Z / V- (v—I%) - q,dx
TeTh

= Z </ (v — IFR) - Vg, dae +/ (IFRy — v) - nathd.s>
TeT, T or

- Z Qh|T Z / h ’U—’U TLT’FdS
TeT FeF(T)

= th|T Z </(Ih ’U—’U)dS)-’nﬂFZO,
TET; rer(T) \F

where the integral of a vector function is to be understood componentwise. For
the proof of the elementwise estimate ||If’ le 7 < [v[l; r see [ANSO1b, Lemma 2]
in combination with the comment after [ANSOlb Corollary 1]. Summing over all
elements gives a global stability estimate. Thus Assumption 3 holds.

For Assumptions 4 and 5 we give separate proofs for the cases we defined in the theorem.

4.

i) The first consistency error estimate (5.3a) for meshes satisfying a maximum
angle condition and the Crouzeix—Raviart discretization was shown in [AD99,
Lemma 3.1], using the error estimate for the lowest-order Raviart—Thomas
interpolation, which we provided in Chapter 4. Estimate (5.3b) follows imme-
diately due to Lemma 5.3.

85
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ii)

ii)

Inequality (5.3a) for this case is the statement of [ANSOla, Lemma 3.3],
estimate (5.3b) follows again due to Lemma 5.3.

First recall the approximation result

inf |lu—wv < inf |lu—w
oReXY H hHLh ~ ooneXs, || hH1,h

from, e.g., [AKLM21, Lemma 3.5] and the elementwise Crouzeix—Raviart

interpolation error estimates from [AD99, Lemma 2.3] which for v € X NH?*(Q)
give the global estimate

lv = 1%, , < hlvl,,

see also [AKLM21, Lemma 3.4]. Combining these two estimates and using
Lemma 5.1 as well as (2.13) we get the estimate

inf o Ju — UhHl,h S hluly S hV*lH]P’fHo = h[[P(Au),,

’UhEXh

which we need for Assumption 5. The approximation result for the pressure
space of piecewise constants was already shown in Item 5 of the proof of
Theorem 5.9. Thus the assumption is satisfied for this case.

For this case we get from [ANSOla, Lemma 3.2] and by using Lemma 5.1 in
combination with (2.13) the estimate

inf — < h||P(A )
vhnghHu Uh”l,h < h[P(Au)|,
which in conjunction with [AKLM21, Lemma 3.5] gives the first estimate of

Assumption 5. The second inequality of the assumption is directly contained
in [ANSOla, Lemma 3.2]. O

Example 5.13. Just as before with the Bernardi-Raugel method we want to look at
the effect of the reconstruction on the Crouzeix—Raviart basis functions. We again look
at the reference configuration of two triangles T1 = pyp3p, and Th = p;pyp3, with the
same vertices as in Example 5.11. We now use the Raviart—Thomas reconstruction on
one of the basis functions associated with the facet F' = p;p3, which is defined by

142z
tF,1($ay) = ( 0 ) , on T1/27

which yields the reconstructed basis function

1tz
I8 tpa(2,y) = ( +y > ,on Ty

Both functions are visualized in Figure 5.2.

86



5.3 Modified Crouzeix—Raviart method

CR basis function Reconstructed CR basis function
1 1

V2

-1
0—1 0 1 O—1 0 1

T xT

Figure 5.2: Comparison of Crouzeix—Raviart basis function before and after reconstruction
using Raviart—Thomas interpolation. Color visualizes function magnitude

tr(z,y)| resp. |15 tr (2, y)).

D3

Dy
D2

Dy

Figure 5.3: Geometric setting for Remark 5.14

Remark 5.14. The reconstructed Bernardi-Raugel facet bubble from Example 5.11,
which is due to Proposition 5.10 the same for the two types of reconstruction, and the
reconstructed Crouzeix—Raviart basis function from Example 5.13 are, except for scaling,
the same function.

This is not just a result of the used reference geometry, but a general connection.
Consider the general setting of two triangles, as illustrated in Figure 5.3. Then the
Bernardi-Raugel bubble function t%R and Crouzeix—Raviart basis function t%ﬂ{ from the
two examples have the form

tp' = giggmp, Ry = (¢1 s 8 - ¢4> ;

)

with the standard hat functions ¢; associated to the mesh vertices p;.
We now want to compare Ith%R to Ig‘Tt%ﬁi. The fastest way to do this is to compute
the interpolation coeflicients for the representations

RT,BR BR (RT RT;CR CR 4RT
Iy ty = E ag b , Iy gy = E ap g
E E

where @R is the Raviart-Thomas basis function associated with the facet E, and

87



Chapter 5 A-priori error analysis of pressure-robust methods on anisotropic meshes

according to (4.22a)
a%R:/Et}B;R-nEds, a%R:/Etg’Pl‘-nEds.

Since for E # F' it holds t%R =0and [ B t?fl{ -ngds = 0, the interpolation problem is
reduced to finding a]}?;R and agR, which we can directly compute as

LA x |F|

BR BR
ap - = t -ans:/gblgbgnF-ans:/ <1—> de = —,

4 /F g F o |F] |F| 6
a$R = / t%ﬁ” ‘npds = (np)l/ ds = (np)1|F|.

F F
Thus we identified the scaling factor and have
IETESR = (), IR,

which agrees with the functions from Examples 5.11 and 5.13 for the fixed geometry.
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Numerical examples

The following sections contain applications of the methods from Sections 5.2 and 5.3,
where with each example a specific aspect of the methods is highlighted. We start in
Section 6.1 with an example that uses a manufactured solution that prescribes a boundary
layer in the velocity and pressure. This example shows the general applicability and
performance of the pressure-robust methods in combination with anisotropic meshes.
Continuing in Section 6.2 with the stagnation point flow, see, e.g., [SG06, Section 5.1.3],
we show that the methods perform well in more realistic applications, and also work
with the nonlinear term present in the discretization of the stationary Navier—Stokes
equations. In Section 6.3 we numerically investigate edge singularities of the Stokes flow
with pressure-robust methods and anisotropically graded meshes from Section 2.4.3.

In the following examples we use the abbreviations CR and BR for the Crouzeix—
Raviart and Bernardi-Raugel methods and add a suffix -RT or -BDM for the pressure
robust variants from Sections 5.2 and 5.3.

6.1 Boundary layer

Problem setting The purpose of this first example is to examine the performance of the
pressure-robust methods in combination with anisotropic meshes. The example employs
a manufactured solution of the Stokes equations on the unit square = (0,1)? described
by the velocity and pressure functions

w(z) = (ta“h (%)) . p(x) = tanh <y> o),

0

with a positive parameter €. Both functions exhibit a boundary layer near y = 0, as can
be seen in the visualization in Figure 6.1. The functions can be viewed as a fluid flow
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1 1
= |
.
0 0
0 1

X

Figure 6.1: Magnitude of velocity solution for ¢ = 1072, The transition parameter 7 is
chosen so that the boundary layer is contained in the graded part of the mesh,
see the dashed line in the figure.

along a wall with no-slip boundary condition. The parameter € can be used to adjust the
width of the boundary layer. Defining the boundary layer width as the distance from the
wall where 99% of the free flow velocity is reached, we compute

u(-,7)| = tanh <\k> = 0.99

& 7= 0.5/e1n (199) ~ 2.65\/¢

for the transition point parameter 7 of the Shishkin-type meshes we want to use, see
Section 2.4.2 and Figure 2.5, and additionally choose the mesh parameter ¢ = 0.5,
meaning that half of the total mesh elements are to be used in the layer. The constant
C'(e) is needed to set the mean pressure to zero and can be computed by

C(e) = [ anh (2 ) do = vEm(cosn (7)),

Numerical results Computations were performed with the CR, CR-RT, CR-BDM as
well as the BR and BR-BDM methods for parameter choices ¢ € {107%,107°} and
v € {1073,107°} on uniform and Shishkin-type meshes. For the presentation of the
numerical results in this and the next sections we use the relative errors

Jlu— uh||1,h
el
Figure 6.2 shows the convergence results of the CR, CR-RT and CR-BDM methods

for viscosity v = 1073. The plots show on the one hand the clear advantage of the

pressure-robust methods, where the velocity errors are significantly smaller than for
the standard method. On the other hand, the effect of the anisotropic mesh grading is

1P — pallo
pllo

Hu — Up, 1,hrel — ) Hp _thO,rel =
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e=10"1 e=10"°
T T 1 \\\‘ T T 1 \\\‘ : T T 1 \\\‘ T T 1 \\\‘
100.5 o ,
100 z
10—0.5 - \~\\
b il Ll Ll v
104 10° 106 104 10° 106
T T 1 \\\‘ E i T T T 1 \\\‘ T T 1 \\\‘
T 10-2 R
= 10 10,2§: .
= s Sl
& i Ss.
| i T4
2 1073 i )
E\\ Ll Ll 10_3 ?\ Ll Ll ©
104 10° 106 104 10° 106
ndof ndof
—— CR uniform —+— CR-RT uniform —& CR-BDM uniform --- O(ndof™7?)

—— CR graded —+— CR-RT graded —<— CR-BDM graded

Figure 6.2: Convergence plots for the boundary layer example for e € {107%,107°},
v =103, with CR, CR-RT and CR-BDM methods.

obvious in the velocity errors as well as the pressure errors. In this example and for these
methods the positive effect of using a pressure-robust method seems to be larger than
the positive effect of the mesh grading.

To better observe the effect of the pressure-robustness of the methods, Table 6.1
compares the errors of the CR, CR-RT and CR-BDM methods for two viscosity values
on graded meshes. The typical viscosity locking effect of the classical method can be
seen by the scaling with ! of the velocity errors for the standard method, while the
pressure-robust modifications yield exactly the same results for each of the viscosity
values.

Computations were also carried out for the BR and BR-BDM methods with parameters
v =10"% ¢ € {107%,107°} and the results are shown in Figure 6.3. Here the general
picture looks similar, the use of both a pressure-robust method and anisotropic mesh
grading results in a significant reduction of the error.
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Table 6.1: Comparison of ||u — up||; ;, for parameters e = 1074, v € {1073,1075}, com-
puted with CR, CR-RT and CR-BDM methods on Shishkin-type meshes.

CR CR-RT CR-BDM
ndof v=10"3 v=10"° v=10"3 v=10"° v=10"3 v=10"°

8320 5.1285e+0 5.1381le+2 9.7122e—1 9.7122e—1 1.0228e+0 1.0228e+0
33024 2.5865e+0 2.5913e+2 4.9162e—1 4.9162e—1 5.0568e—1 5.0568e—1
131584 1.2989¢+40 1.3013e+2 2.4719e—1 2.4719e—1 2.4863e—1 2.4863e—1
525312 6.5090e—1 6.5214e+1 1.2387e—1 1.2387e—1 1.2400e—1 1.2400e—1
2099200 3.2578e—1 3.264le4+1 6.1977e—2 6.1977e—2 6.1973e—2 6.1973e—2

e=10"* e=10""
E\‘ \\\\H‘ T \\\\\H‘ T \\\\i& _kﬁl\ \\\\H‘I \\\\\H‘ T \\\\j
T 10t} 101 :
< i + g 1
_— 0 B ; - |
S 1094 AR
| r :] I BREG
ERRTN ¢ U ; |
g 107t | g
il Lol (| L1 \> Lo Lol Lol L1 :>
104 10° 106 104 10° 106
[i \\\\\H\ \\\\\H\ \\\\j E \\\\\H\
3 1072 f 7 1072
& R ]
= ¢ ?
S¥ 3 R i 3 RS
I 31 e — 10_ = E
= é |
7\\\ Lol Lol LT | 7\\\ Lol Lol ]
104 10° 106 104 10° 106
ndof ndof
—— BR uniform —&- BR-BDM uniform --- O(ndof™"/?)

—— BR graded —— BR-BDM graded

Figure 6.3: Convergence plots for the boundary layer example for ¢ € {1074 107°},
v =10~*, with BR and BR-BDM methods.
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6.2 Stagnation point flow

6.2 Stagnation point flow

For this example we can compute the exact solution to numerical accuracy for the case of
homogeneous stationary Navier—Stokes equations, which we use in the first subsection to
generate a data function f = —(w - V)u for our Stokes model. In the second subsection
we test the methods with the included nonlinear term and zero right hand side data.

6.2.1 Stokes model

Problem setting The stagnation point flow example describes the stationary laminar

flow of a fluid against a flat wall. In this setting the Navier—Stokes equations reduce

to a boundary value problem with an ordinary differential equation. The example has

originally been investigated in [Hiell], and is described in detail in [SGO06, Section 5.1.3]

and [DRO6, Section 2.3]. We already showed some numerical results in [Kem21].
Assuming the wall is situated at the y = 0 boundary and a potential flow

(U1 [ ax
o ()-(3)

1 a?
P:PO—§(U12+U22):P0—5(m2+y2), Py € R,

is present far from the wall, where Py € R is the pressure in the stagnation point (0,0)7,
the viscosity effects in the boundary layer near the wall can be included by using the

ansatz
o= ()= (anstn) o
p=p- % (2 + L), (6.10)

where n = \/%y is a transformed coordinate and f satisfies an ordinary differential
equation, which we get by inserting (6.1) into the homogeneous Navier—Stokes momentum
equation for the z-component, which yields

—vAuy + w10 + usdyur + 0pp = —a’z(f" + ff +1— f?) =0,

i.e., f needs to satisfy
f/// + ff// + 1— f/2 =0. (62)

Using the analogous approach with the y-component of the momentum equation, we get
—vAug + u10yuz + udyus + Oyp = a/av(f" + ff' = F') =0,

which after integration leads to F' = f' + %f2.
From the no-slip condition at the wall and the assumption that far from the wall the
original potential flow is present, we can derive the boundary conditions f(0) = f/(0) = 0
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2 I
.......... £(n)
/
1.5 f'(n) i
/()
]. B o S /‘_
. /
0.5} f \\‘:v.;-.,.""u. |
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Figure 6.4: Plot of the solution of (6.2) and its derivatives.
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Figure 6.5: Visualization of the velocity (left) and pressure (right) solution w and p for
v =0.01, a =1, Py = 0. Color indicates the magnitude of the velocity and
the pressure value, respectively. Arrows show the flow direction and strength.
The boundary layer width is indicated at § = 0.24.

and lim,_,~ f'(n) = 1 for (6.2), which then can be solved numerically to high precision,
e.g., using a shooting method. Figure 6.4 shows a plot of f and its derivatives. At ns ~ 2.4

we have f’(ns) ~ 0.99, and since [’ = % is the ratio of the viscous flow velocity and the

potential flow velocity in z-direction, we define § = 775\/% as the boundary layer width.
Plugging the numerical solution for f back into (6.1), we get the exact solution (u,p) for
the stagnation point flow, which is shown in Figure 6.5 in the domain Q = (—1,1) x (0,1)
for v = 1072, a = 1 and Py = 0. The boundary layer structure is only present in the
velocity profile, the pressure does not show a similar behavior.

With this setup, since u is the solution of the homogeneous stationary Navier—Stokes
equations, we can test our numerical methods for the Stokes equations by using the
expression f = —(u - V)u as right hand side data function where wu is the exact solution
from (6.1a) and by taking u also as boundary condition on 9f.
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‘T
10.0172- ——
OEl 0 1

Figure 6.6: Shishkin type mesh used in the calculations. Grading for v = 10~4, resulting
in an aspect ratio of o ~ 21.4.

Numerical results For the computations we use the domain 2 = (—1,1) x (0,1) and
set a = 1, Py = 0 and v = 107, which results in a rather sharp boundary layer with
width 6 = 0.024. The purpose of this numerical experiment is to show a benefit from
using anisotropic elements, so we compare the errors on quasi-uniform meshes to those
on graded meshes. We also want to see the effect of the pressure-robust methods, so we
compare the CR, CR-RT and CR-BDM, as well as the BR and BR-BDM methods.

We choose a simple type of mesh grading and use Shishkin-type meshes, as pictured
in Figure 6.6, where the transition point 7 is set to é. For both uniform and graded
meshes we divide the domain in 4N x 2N quadrilaterals which we then subdivide in two
triangles each. This results in rectangular isosceles triangles for the uniform meshes, and
in rectangular triangles satisfying the maximum angle condition for the Shishkin-type
meshes.

Figure 6.7 shows the calculated errors and convergence rates. We can clearly see a
large improvement of the error when switching from the standard method to the pressure-
robust variant, and another reduction when we use graded meshes in addition to the
reconstruction.

Looking at the results from the standard method on graded meshes however, we find
that the error is larger than on the uniform meshes which seems wrong, considering the
boundary layer structure of the velocity solution. To explain this behavior, we examine
the elementwise gradient error ||V (u — Uh)Hg o of the discrete velocity solution for both
methods, see Figure 6.8. 7

From these visualizations of the error it is easy to see why the grading works for the
modified but not for the unmodified method: Due to the pollution of the discrete velocity
solution by the pressure in the standard method, the error is not only significantly larger,
but also distributed throughout the domain, while for the pressure-robust version of the
method it is concentrated near the boundary layer as would be expected. Thus, for the
standard method, the mesh grading is not adapted to the actual error which then results
in a worse approximation.

The same aspect can be looked at from a less experimental viewpoint by directly
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Figure 6.7: Convergence plots for the stagnation point example, v = 1074
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Figure 6.8: Squared elementwise gradient error ||V (u — Uh)”gj of the velocity solution
for the standard (left) and modified (right) method on uniform (top) and
graded (bottom) meshes.
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|Pf| Vol = [f —Pf|
1 08 1 1.4
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Figure 6.9: Helmholtz—Hodge decomposition of the data function f = —(w - V)u into
divergence-free part Pf and irrotational part V.
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Figure 6.10: Convergence plots for the stagnation point example, comparison of BR and
BR-BDM methods, v = 1073.

computing the Helmholtz—Hodge decomposition of the data function f = —(u - V)u by
solving problem (2.3). The visualization in Figure 6.9 shows that the divergence-free part
Pf of the data is only relevant in the boundary layer, while the irrotational part V¢ takes
nonzero values throughout the domain. Contrary to pressure-robust methods that only
see the divergence-free part, non-pressure-robust methods use the whole data function,
so the structure of the data presents another explanation why the graded meshes fail for
the standard method.

Finally we also considered this example with the standard and modified Bernardi—
Raugel discretizations for v = 1073. Figure 6.10 shows the results of these computations.
We observe the same behavior of the errors for which the same explanation holds as
already described for the standard and pressure-robust Crouzeix—Raviart methods.
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6.2.2 Stationary Navier—Stokes model

Problem setting The stagnation point flow is in fact an exact solution to the stationary
Navier—Stokes problem, i.e., problem (2.5) where dyu = 0. Thus the computations from
the previous subsection using a Stokes model, where the convection term of the Navier—
Stokes equation with the exact velocity solution was taken as the right hand side data
function f = —(u-V)u, are only a test with reduced complexity to show the performance
of the methods we analyzed analytically. We now want to show that the methods also
perform well when we use an implementation of the stationary Navier—Stokes equations.

To this effect, we use a Picard-iteration type scheme and linearize the nonlinear
convection term in the equations. Using the function ug)) = 0 to start the iteration, we
use the linearized scheme

1 1 1
an(ul" D, on) + e (uf ™ uf™ Y vp) + by (o, ") = (F, o),
1
bh(ul(lm—’— )7 Qh) = 07
to solve for the solution ugmﬂ), m € Ny, which should converge to the solution of the

nonlinear problem, see, e.g., [Joh16, Remark 6.41]. The trilinear form ¢ : X ?L — R is
defined by

ch(uh,'wh, vh) = ((Ihuh . V)wh, Ihvh),

where again [} is the reconstruction operator. The operator is needed in the definition of
the trilinear form since the irrotational part of the Helmholtz—Hodge decomposition of
the nonlinear term (u - V)u can also be large, as we already saw for the stagnation point
example in Figure 6.9, see also [BLMS15, Remark 2.3].

Numerical results Results for this setting were computed for the CR and CR-RT
method on uniform and Shishkin-type meshes for viscosity values v € {1072,1073,1073-}.
Table 6.2 shows an overview of the number of iterations that were necessary to reach
convergence of the nonlinear system and the corresponding observed convergence rate of
the discrete velocity solution in the [|-[|; ,-norm.

The nonlinear iterations were stopped if the distance in the L?-norm of two consecutive
discrete velocity solutions was less than 108 or if the iteration count reached 50, in
which case the table has the entry dnc.

From the results it is clear that as the viscosity decreases, the problem gets harder
to solve, so that for lower viscosity values convergence is reached only on the finest
meshes. We also see that the anisotropically graded meshes do not help with respect
to the convergence of the nonlinear solver. The pressure-robust CR-RT method seems
require slightly less iterations in the pre-asymptotic area.

In Table 6.3 the corresponding errors for the data from Table 6.2 is shown. The
behavior of the methods on uniform and anisotropic meshes with the nonlinear term is
similar to that in the Stokes case. We see that the modified method yields lower errors
than the standard method, and that the mesh grading only improves the result for the
pressure-robust method.
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Table 6.2: Tterations until convergence and convergence orders for gradient error of
velocity, different viscosities on uniform and graded meshes. Comparison of
CR and CR-RT methods. The entry dnc means the Picard-iteration did not
converge to the required precision within 50 iterations.

v=10"2 v=10"3 v=10"35
CR CR-RT CR CR-RT CR CR-RT
ndof It eoc It. eoc It. eoc  It. eoc  It. eoc It. eoc
Uniform meshes
4192 14 095 13 1.25 dnc - dnc - dnc - dnc -
16576 13 0.97 12 1.07 dnc - dnc - dnc - dnc -
65920 12 0.99 12 1.00 20 - 19 - dnc - dnc -
262912 12 1.00 12 1.00 19 1.01 17 1.38 27 - 31 -
1050112 12 1.00 12 100 17 1.00 17 107 22 103 19 157
Shishkin-type meshes
4192 15 — 14 1.31 dnc — dnc — dnc - dnc -
16576 14 1.05 12 1.05 dnc - dnc - dnc - dnc -
65920 13 1.00 12 1.00 21 - 19 - dnc - dnc -
262912 12 1.00 12 1.00 20 1.11 17 1.30 dnc - 23 -
1050112 12 1.00 12 1.00 18 1.04 17 1.04 23 - 19 1.55

Table 6.3: Velocity gradient error [|u — up||; 5, .., for numerical results corresponding to

data from Table 6.2.

v=10"2 v=10"3 v=10"35
ndof CR CR-RT CR CR-RT CR CR-RT
Uniform meshes
4192 7.0704e—1 2.8876e—1 dnc dnc dnc dnc
16576 3.6190e—1 1.3832¢—1 dnc dnc dnc dnc
65920 1.8278¢—1 6.9438¢—2 1.2145e+0 3.5425e—1 dnc dnc
262912 9.1771le—2 3.4887e¢—2 6.0384e—1 1.3610e—1 1.5378e+0 3.9340e—1
1050112 4.5946e—2 1.7476e—2 3.0113e—1 6.4976e—2 7.5250e—1 1.3255e¢—1
Shishkin-type meshes
4192 8.9324e—1 2.1411e—1 dnc dnc dnc dnc
16576 4.3390e—1 1.0389¢—1 dnc dnc dnc dnc
65920 2.1697¢e—1 5.2106e—2 1.9280e+0 2.1808e—1 dnc dnc
262912 1.0884e—1 2.6133e—2 8.9713e—1 8.8953e—2 dnc 2.4797e—1
1050112 5.4493e—2 1.3081e—2 4.3631le—1 4.3246e—2 1.1691e+0 8.4660e—2
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6.3 Edge singularity

This example was presented in similar forms in [AKLM21] and [AK21]. It demonstrates
the optimal convergence characteristics and the pressure-robustness of the modified
Crouzeix—Raviart method on anisotropically graded meshes for domains with a re-entrant
edge as introduced in Section 2.4.3.

With the observations of Remark 5.6 in mind, we present two variations of this example.
The first one has a fixed exact solution, so that the data function changes when the
viscosity is altered, the second one uses a modification of the irrotational part of the data
function to see the pressure-robustness of the modified methods.

6.3.1 Fixed exact solution

Problem setting We consider a domain
Q={(rcosg,rsing,z) ER*:0<r<1,0<¢p<w, 0<z<1}, (6.3)

which describes a cylindrical body that has a cut-out so that a non-convex edge with
interior angle w coincides with part of the z-axis, as indicated in the left plot of Figure 6.11.
In all computations we use an interior angle of w = %7‘(, which by (2.12) results in a
singularity exponent of A = 0.54448.

We use the manufactured velocity and pressure solutions

zr)‘ul((ﬁ)
w=|( zrtuy(e) |, p =210 (g), (6.4)
2
50
3

for the Stokes equations, where

ui (@) = —sin(A¢) cos(w) — Asin(¢) cos(Aw — (A — 1)¢) + Asin(w — ¢) cos((A — 1)¢)
+sin(Aw - )

uz(p) = — sin(A¢) sin(w) — Asin(¢) sin(Aw — (A — 1)¢) — Asin(w — @) sin((A — 1)¢),

O(¢) = 2A\[sin(w + (A — 1)¢) — sin(dw — (A —1)9)]. (6.5)

An illustration of these functions is shown in Figure 6.11. The velocity field describes
an upward flow through the domain, with a component in the angular direction of
the cylindrical coordinate system around the re-entrant edge that gets stronger with
increasing z-coordinate. At the flat faces on the z-z- and y-z-planes the flow velocity
vanishes, indicating a no-slip boundary, whereas there is a flow through the rest of the
boundary. As in the stagnation point example, the change from the theoretical setting
with homogeneous boundary conditions to inhomogeneous Dirichlet boundary conditions
for parts of the boundary does not impact the performance of the methods. The low
regularity of the solution is most visible in the pressure plot on the right hand side of
Figure 6.11, where the effect of the singular factor r*~1 can be seen directly.
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Figure 6.11: Illustration of domain (6.3) for w = 2, velocity solution (left) and pressure
solution at z = 1.

By inserting these functions in the momentum equation we get the function

20\ — 1)(v — Dzr*2[sin(Mdw — (A — 2)¢) — sin(w + (A — 2)¢)]
F=12\A—1)(1 - v)zr*2[cos(\w — (A — 2)¢p) + cos(w + (A — 2)¢)] (6.6)
Pla(o)

for the right hand side of the problem. Note that for v = 1 the first two components of
the data function vanish, while for v # 1 the singular factors r*~2 are present on the
right hand side. This leads to severe computational difficulties, as the function is not
in LQ(Q) in this case. The problems arise during the numerical integration on the right
hand side, and require extra care during the calculations, especially in the case of the
Brezzi-Douglas—Marini reconstruction. We go into more detail later in this section.

Numerical results We compare the CR, CR-RT and CR-BDM methods on quasi-uniform
meshes and anisotropically graded meshes. The anisotropic meshes were generated by
the procedure described in Section 2.4.3 with a grading parameter @ = 0.4, which results
in an aspect ratio of o ~ 939.3 for the finest mesh with 1376733 degrees of freedom.

Setting v = 1 and v = 1072, the methods yield the results shown in Figure 6.12. For
v = 1 the plots on the left hand side clearly show the improved convergence rate of
the velocity and the pressure solution for all methods on anisotropically graded meshes
compared to the quasi-uniform meshes. However, the advantage of the pressure-robust
methods over the standard method is barely noticeable.

This changes when the viscosity is decreased to v = 1072: The CR method exhibits
the locking effect as before and the velocity error is scaled by roughly two orders of
magnitude, while at the same time the errors of the CR-RT and CR-BDM methods
remain unchanged. Additionally, the CR method seems to fail on the anisotropic meshes,
and the error even increases in the last step.

In order to get a better idea of the effect of the anisotropic grading, Figure 6.13 visualizes
the location of the computational error throughout the domain. The visualization uses
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Figure 6.12: Convergence plots for the singular edge example for v € {1,1072}.

the layer structure of the meshes, by first calculating the elementwise error of every
triangular prism, see the mesh generation process in Section 2.4.3, and afterwards adding
the values of stacked prisms from all layers. Then the bottom mesh is used to show the
aggregated error of the mesh volume above each triangle.

The left hand side shows the error distribution for the quasi-uniform meshes, where the
overwhelming part of the error is concentrated in the elements touching the singular edge.
In the plot for the graded mesh on the right hand side of the figure a slight concentration
of the error around the re-entrant edge is still noticeable, but the error is more spread
out through the whole domain. Observing the scaling of the color bars shows that the
graded meshes offer a much better discrete solution for the same computational effort.

Remark 6.1. As mentioned, the right hand side function f contains the factor r*~2 in

its first two components if v # 1, which is a challenge for the numerical integration of
the linear form. The smaller v gets, the larger the quadrature errors get. Thus v = 1072
is the lowest we get here, and even for this value the quadrature had to be extremely
precise.
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Figure 6.13: Cellwise error |[Vu — VuhHiT aggregated on bottom mesh for quasi-uniform
(left) and anisotropically graded (right) meshes.

The implementation uses the FEniCS framework, which provides support for arbitrary
quadrature degree, limited of course by the capabilities of the machine. Increasing this
degree helped, but additional local mesh refinement for the quadrature procedure near
the singular edge provided a better result.

To put the difficulties into perspective, for the computations with v = 1 it sufficed
to set the quadrature degree to 12 with no additional mesh refinement. For the most
challenging computation, which was the CR-BDM method for v = 1072, we additionally
uniformly refined the elements adjacent to the singular edge iteratively 14 times, to get
the results from Figure 6.12.

6.3.2 Fixed data function

Problem setting To circumvent the difficulties mentioned in Remark 6.1 but still show
the pressure-robustness of the method, we modify the data function in another way. As
the velocity solution of a pressure-robust discretization is unaffected by changes in the
irrotational part of the data function, see Section 2.3, we compare the solutions for the
two right hand sides

fz:.fo—i_vlllh 7’6{1’2}7

where we set

fo= 0 , U, =0, Ty = 10 B(¢),

with ®(¢) from (6.5). Since f, is the function from (6.6) for v = 1, which is in L*(Q),
this construction guarantees that f; € L*(Q). Additionally, since fo = f1 = [, see
Definition 2.9, and due to Lemma 5.1 and the discussion in Remark 5.6 we can deduce
that the analytical solutions for these data functions are (v~'u,p + ¥;), with w and p
from (6.4). Knowing the solutions, we can use them for the convergence analysis.
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Figure 6.14: Convergence plots for the singular edge example with fixed data on graded
meshes for v = 1073.

Numerical results The results are illustrated in Figure 6.14 only for the graded meshes,
since the difference to the quasi-uniform meshes was already highlighted in the previous
subsection. We see that all methods reach the predicted convergence rates. However,
the velocity solution of the standard method is severely worsened by the additional
irrotational part VWs. In contrast, the velocity solutions of the reconstructed methods
are not influenced at all, the lines in the plot for the CR-RT and CR-BDM methods for
data f; and f, are exactly on top of each other. For the pressure solutions we see the
expected increase of the error for all methods when switching from f; to f,.
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CHAPTER [

Conclusion and outlook

The main results of this thesis include new error estimates for the Brezzi-Douglas—Marini
interpolation on anisotropic triangles, tetrahedra and triangular prisms, a generalized
error estimation for pressure-robust discretizations of the Stokes equations using the
reconstruction approach on anisotropic meshes and the application of this procedure to
the modified Bernardi-Raugel and Crouzeix—Raviart methods.

For the interpolation error estimates in Theorems 4.15 and 4.16 we extended our
previous results from [AK20], where the estimates were shown for functions from the
spaces H™(Q2), m € N, to functions from the more general spaces W™P(Q), m € N,
1 <p< oo

Pressure-robust methods for incompressible flows were already investigated in our pub-
lications [AK21; AKLM21], where the modified Crouzeix-Raviart method was considered
for special settings. In Section 5.1 we formulated the error estimation of discretizations
using the reconstruction approach on anisotropic triangulations in a more abstract setting,
by proving error estimates using our Assumptions 1 to 5 on the used finite element pair
and the reconstruction operator. This framework is supposed to facilitate the construction
of new pressure-robust methods that are useful on anisotropic meshes, since only these
assumptions need to be checked for a specific method. We showed this process for the
modified Crouzeix—Raviart methods in Section 5.3, where we reformulated the results
from [AK21; AKLM21] to fit the assumptions for the general analysis. Additionally we
could implement this approach for certain settings and the modified Bernardi—-Raugel
method in Section 5.2 to obtain the new results from Theorem 5.9.

All results are supported by the numerical experiments in Chapter 6, which cover a
variety of different settings in which pressure-robust methods and anisotropically graded
meshes lead to more accurate discrete solutions.

Further research in this area could be focused on developing pressure-robust higher-
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order methods that work on anisotropic meshes. For now, the two methods we investigated
in detail, the modified Bernardi-Raugel and Crouzeix—Raviart finite element pairs, are
lowest-order methods that, due to the facet bubbles of the former and the non-conformity
of the latter method, contain the full space of first order polynomials in the velocity
approximation space but not the space Py(7p,). A promising direction concerning higher-
order methods could be the H(div, Q)-conforming discontinuous Galerkin method we
briefly described in Section 3.2.2. In that subsection we showed numerically that the
discrete inf-sup constant on certain anisotropic meshes seems bounded from below, and
the approach from [KT21] to show coercivity of the bilinear form seems extendable to
the vector-valued case.

All of the more closely inspected element pairs in this thesis rely on discontinuous
pressure approximations, while many of the classical pairs that are in use have continuous
pressure approximation spaces. The well known Taylor-Hood pair was recently shown
to be inf-sup stable in its lowest-order variant on certain two-dimensional anisotropic
meshes, see [BW19], and reconstruction operators for continuous pressure methods have
been proposed and analyzed for isotropic meshes, see [LLMS17]. As a research option
in this direction, it would be interesting to see whether the mentioned reconstruction
operator is stable on anisotropic meshes or if one that is can be found.

In the example in Section 6.2.2 we could numerically show that the pressure-robust
methods work well on anisotropic meshes with the nonlinear term present in the equations.
Thus, another interesting direction could be an extension of the theoretical results to the
nonlinear case.
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